File size: 11,974 Bytes
089cc3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ceffe3
 
 
 
 
 
 
 
 
 
 
 
089cc3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ceffe3
 
 
089cc3a
 
 
 
 
 
 
8ceffe3
 
089cc3a
 
 
 
 
8ceffe3
089cc3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ceffe3
089cc3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ceffe3
089cc3a
 
8ceffe3
089cc3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ceffe3
 
 
 
 
 
 
 
 
089cc3a
 
 
8ceffe3
 
 
 
 
 
 
089cc3a
 
 
8ceffe3
 
089cc3a
 
 
 
8ceffe3
 
089cc3a
 
 
 
 
 
 
 
 
 
 
 
64b7053
 
 
089cc3a
 
 
 
 
64b7053
9978e32
089cc3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64b7053
089cc3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
import asyncio
import os
import json
from typing import List, Dict, Any, Union
from contextlib import AsyncExitStack

import gradio as gr
from gradio.components.chatbot import ChatMessage
from mcp import ClientSession, StdioServerParameters
from mcp.client.stdio import stdio_client
from anthropic import Anthropic
from dotenv import load_dotenv

load_dotenv()

loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)

SYSTEM_PROMPT = """"You are a helpful assistant. You do not have any knowledge of the World Development Indicators (WDI) data. However, you can use the tools provided to answer questions.

You must not provide answers beyond what the tools provide.

Do not make up data or information and never simulate the `get_wdi_data` tool. Instead, you must always call the `get_wdi_data` tool when the user asks for data.

You can use multiple tools if needed.

If the user asks for any information beyond what the tools available to you provide, you must say that you do not have that information."""

LLM_MODEL = "claude-3-5-haiku-20241022"


class MCPClientWrapper:
    def __init__(self):
        self.session = None
        self.exit_stack = None
        self.anthropic = Anthropic()
        self.tools = []

    def connect(self, server_path: str) -> str:
        return loop.run_until_complete(self._connect(server_path))

    async def _connect(self, server_path: str) -> str:
        if self.exit_stack:
            await self.exit_stack.aclose()

        self.exit_stack = AsyncExitStack()

        is_python = server_path.endswith(".py")
        command = "python" if is_python else "node"

        server_params = StdioServerParameters(
            command=command,
            args=[server_path],
            env={"PYTHONIOENCODING": "utf-8", "PYTHONUNBUFFERED": "1"},
        )

        stdio_transport = await self.exit_stack.enter_async_context(
            stdio_client(server_params)
        )
        self.stdio, self.write = stdio_transport

        self.session = await self.exit_stack.enter_async_context(
            ClientSession(self.stdio, self.write)
        )
        await self.session.initialize()

        response = await self.session.list_tools()
        self.tools = [
            {
                "name": tool.name,
                "description": tool.description,
                "input_schema": tool.inputSchema,
            }
            for tool in response.tools
        ]

        tool_names = [tool["name"] for tool in self.tools]
        return f"Connected to MCP server. Available tools: {', '.join(tool_names)}"

    def process_message(
        self, message: str, history: List[Union[Dict[str, Any], ChatMessage]]
    ) -> tuple:
        if not self.session:
            return history + [
                {"role": "user", "content": message},
                {
                    "role": "assistant",
                    "content": "Please connect to an MCP server first.",
                },
            ], gr.Textbox(value="")

        new_messages = loop.run_until_complete(self._process_query(message, history))
        return history + [
            {"role": "user", "content": message}
        ] + new_messages, gr.Textbox(value="")

    async def _process_query(
        self, message: str, history: List[Union[Dict[str, Any], ChatMessage]]
    ):
        claude_messages = []
        for msg in history:
            if isinstance(msg, ChatMessage):
                role, content = msg.role, msg.content
            else:
                role, content = msg.get("role"), msg.get("content")

            if role in ["user", "assistant", "system"]:
                claude_messages.append({"role": role, "content": content})

        claude_messages.append({"role": "user", "content": message})

        response = self.anthropic.messages.create(
            # model="claude-3-5-sonnet-20241022",
            model=LLM_MODEL,
            system=SYSTEM_PROMPT,
            max_tokens=1000,
            messages=claude_messages,
            tools=self.tools,
        )

        result_messages = []

        print(response.content)

        for content in response.content:
            if content.type == "text":
                result_messages.append({"role": "assistant", "content": content.text})

            elif content.type == "tool_use":
                tool_id = content.id
                tool_name = content.name
                tool_args = content.input

                result_messages.append(
                    {
                        "role": "assistant",
                        "content": f"I'll use the {tool_name} tool to help answer your question.",
                        "metadata": {
                            "title": f"Using tool: {tool_name}",
                            "log": f"Parameters: {json.dumps(tool_args, ensure_ascii=True)}",
                            "status": "pending",
                            "id": f"tool_call_{tool_name}",
                        },
                    }
                )

                result_messages.append(
                    {
                        "role": "assistant",
                        "content": "```json\n"
                        + json.dumps(tool_args, indent=2, ensure_ascii=True)
                        + "\n```",
                        "metadata": {
                            "parent_id": f"tool_call_{tool_name}",
                            "id": f"params_{tool_name}",
                            "title": "Tool Parameters",
                        },
                    }
                )

                print(f"Calling tool: {tool_name} with args: {tool_args}")
                result = await self.session.call_tool(tool_name, tool_args)

                if result_messages and "metadata" in result_messages[-2]:
                    result_messages[-2]["metadata"]["status"] = "done"

                result_messages.append(
                    {
                        "role": "assistant",
                        "content": "Here are the results from the tool:",
                        "metadata": {
                            "title": f"Tool Result for {tool_name}",
                            "status": "done",
                            "id": f"result_{tool_name}",
                        },
                    }
                )

                result_content = result.content
                print(result_content)
                if isinstance(result_content, list):
                    result_content = "\n".join(str(item) for item in result_content)
                    print("result_content", result_content)

                try:
                    result_json = json.loads(result_content)
                    if isinstance(result_json, dict) and "type" in result_json:
                        if result_json["type"] == "image" and "url" in result_json:
                            result_messages.append(
                                {
                                    "role": "assistant",
                                    "content": {
                                        "path": result_json["url"],
                                        "alt_text": result_json.get(
                                            "message", "Generated image"
                                        ),
                                    },
                                    "metadata": {
                                        "parent_id": f"result_{tool_name}",
                                        "id": f"image_{tool_name}",
                                        "title": "Generated Image",
                                    },
                                }
                            )
                        else:
                            result_messages.append(
                                {
                                    "role": "assistant",
                                    "content": "```\n" + result_content + "\n```",
                                    "metadata": {
                                        "parent_id": f"result_{tool_name}",
                                        "id": f"raw_result_{tool_name}",
                                        "title": "Raw Output",
                                    },
                                }
                            )
                except:
                    result_messages.append(
                        {
                            "role": "assistant",
                            "content": "```\n" + result_content + "\n```",
                            "metadata": {
                                "parent_id": f"result_{tool_name}",
                                "id": f"raw_result_{tool_name}",
                                "title": "Raw Output",
                            },
                        }
                    )

                # claude_messages.append(
                #     {
                #         "role": "user",
                #         "content": f"Tool result for {tool_name}: {result_content}",
                #     }
                # )
                claude_messages.append(
                    {"role": "assistant", "content": [content.model_dump()]}
                )
                claude_messages.append(
                    {
                        "role": "user",
                        "content": [
                            {
                                "type": "tool_result",
                                "tool_use_id": tool_id,
                                "content": result_content,
                            }
                        ],
                    }
                )
                next_response = self.anthropic.messages.create(
                    model=LLM_MODEL,
                    system=SYSTEM_PROMPT,
                    max_tokens=1000,
                    messages=claude_messages,
                )

                print("next_response", next_response.content)

                if next_response.content and next_response.content[0].type == "text":
                    result_messages.append(
                        {"role": "assistant", "content": next_response.content[0].text}
                    )

        return result_messages


client = MCPClientWrapper()


def gradio_interface():
    with gr.Blocks(title="MCP WDI Client") as demo:
        gr.Markdown("# WDI MCP Client")
        gr.Markdown("Connect to the WDI MCP server and chat with the assistant")

        with gr.Row(equal_height=True):
            with gr.Column(scale=4):
                server_path = gr.Textbox(
                    label="Server Script Path",
                    placeholder="Enter path to server script (e.g., wdi_mcp_server.py)",
                    value="wdi_mcp_server.py",
                )
            with gr.Column(scale=1):
                connect_btn = gr.Button("Connect")

        status = gr.Textbox(label="Connection Status", interactive=False)

        chatbot = gr.Chatbot(
            value=[],
            height=500,
            type="messages",
            show_copy_button=True,
            avatar_images=("👤", "🤖"),
        )

        with gr.Row(equal_height=True):
            msg = gr.Textbox(
                label="Your Question",
                placeholder="Ask about what indicators are available for a specific topic (e.g., What's the definition of GDP?)",
                scale=4,
            )
            clear_btn = gr.Button("Clear Chat", scale=1)

        connect_btn.click(client.connect, inputs=server_path, outputs=status)
        msg.submit(client.process_message, [msg, chatbot], [chatbot, msg])
        clear_btn.click(lambda: [], None, chatbot)

    return demo


if __name__ == "__main__":
    if not os.getenv("ANTHROPIC_API_KEY"):
        print(
            "Warning: ANTHROPIC_API_KEY not found in environment. Please set it in your .env file."
        )

    interface = gradio_interface()
    interface.launch(debug=True)