Framepacks / app.py
atunc29's picture
Update app.py
d080a39 verified
raw
history blame
26.3 kB
import os
os.environ['HF_HOME'] = os.path.abspath(
os.path.realpath(os.path.join(os.path.dirname(__file__), './hf_download'))
)
import gradio as gr
import torch
import traceback
import einops
import safetensors.torch as sf
import numpy as np
import math
import spaces
from PIL import Image
from diffusers import AutoencoderKLHunyuanVideo
from transformers import (
LlamaModel, CLIPTextModel,
LlamaTokenizerFast, CLIPTokenizer
)
from diffusers_helper.hunyuan import (
encode_prompt_conds, vae_decode,
vae_encode, vae_decode_fake
)
from diffusers_helper.utils import (
save_bcthw_as_mp4, crop_or_pad_yield_mask,
soft_append_bcthw, resize_and_center_crop,
state_dict_weighted_merge, state_dict_offset_merge,
generate_timestamp
)
from diffusers_helper.models.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked
from diffusers_helper.pipelines.k_diffusion_hunyuan import sample_hunyuan
from diffusers_helper.memory import (
cpu, gpu,
get_cuda_free_memory_gb,
move_model_to_device_with_memory_preservation,
offload_model_from_device_for_memory_preservation,
fake_diffusers_current_device,
DynamicSwapInstaller,
unload_complete_models,
load_model_as_complete
)
from diffusers_helper.thread_utils import AsyncStream, async_run
from diffusers_helper.gradio.progress_bar import make_progress_bar_css, make_progress_bar_html
from transformers import SiglipImageProcessor, SiglipVisionModel
from diffusers_helper.clip_vision import hf_clip_vision_encode
from diffusers_helper.bucket_tools import find_nearest_bucket
# Check GPU memory
free_mem_gb = get_cuda_free_memory_gb(gpu)
high_vram = free_mem_gb > 60
print(f'Free VRAM {free_mem_gb} GB')
print(f'High-VRAM Mode: {high_vram}')
# Load models
text_encoder = LlamaModel.from_pretrained(
"hunyuanvideo-community/HunyuanVideo",
subfolder='text_encoder',
torch_dtype=torch.float16
).cpu()
text_encoder_2 = CLIPTextModel.from_pretrained(
"hunyuanvideo-community/HunyuanVideo",
subfolder='text_encoder_2',
torch_dtype=torch.float16
).cpu()
tokenizer = LlamaTokenizerFast.from_pretrained(
"hunyuanvideo-community/HunyuanVideo",
subfolder='tokenizer'
)
tokenizer_2 = CLIPTokenizer.from_pretrained(
"hunyuanvideo-community/HunyuanVideo",
subfolder='tokenizer_2'
)
vae = AutoencoderKLHunyuanVideo.from_pretrained(
"hunyuanvideo-community/HunyuanVideo",
subfolder='vae',
torch_dtype=torch.float16
).cpu()
feature_extractor = SiglipImageProcessor.from_pretrained(
"lllyasviel/flux_redux_bfl",
subfolder='feature_extractor'
)
image_encoder = SiglipVisionModel.from_pretrained(
"lllyasviel/flux_redux_bfl",
subfolder='image_encoder',
torch_dtype=torch.float16
).cpu()
transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained(
'lllyasviel/FramePack_F1_I2V_HY_20250503',
torch_dtype=torch.bfloat16
).cpu()
# Evaluation mode
vae.eval()
text_encoder.eval()
text_encoder_2.eval()
image_encoder.eval()
transformer.eval()
# Slicing/Tiling for low VRAM
if not high_vram:
vae.enable_slicing()
vae.enable_tiling()
transformer.high_quality_fp32_output_for_inference = True
print('transformer.high_quality_fp32_output_for_inference = True')
# Move to correct dtype
transformer.to(dtype=torch.bfloat16)
vae.to(dtype=torch.float16)
image_encoder.to(dtype=torch.float16)
text_encoder.to(dtype=torch.float16)
text_encoder_2.to(dtype=torch.float16)
# No gradient
vae.requires_grad_(False)
text_encoder.requires_grad_(False)
text_encoder_2.requires_grad_(False)
image_encoder.requires_grad_(False)
transformer.requires_grad_(False)
# DynamicSwap if low VRAM
if not high_vram:
DynamicSwapInstaller.install_model(transformer, device=gpu)
DynamicSwapInstaller.install_model(text_encoder, device=gpu)
else:
text_encoder.to(gpu)
text_encoder_2.to(gpu)
image_encoder.to(gpu)
vae.to(gpu)
transformer.to(gpu)
stream = AsyncStream()
outputs_folder = './outputs/'
os.makedirs(outputs_folder, exist_ok=True)
examples = [
["img_examples/1.png", "The girl dances gracefully, with clear movements, full of charm."],
["img_examples/2.jpg", "The man dances flamboyantly, swinging his hips and striking bold poses with dramatic flair."],
["img_examples/3.png", "The woman dances elegantly among the blossoms, spinning slowly with flowing sleeves and graceful hand movements."]
]
# Example generation (optional)
def generate_examples(input_image, prompt):
t2v=False
n_prompt=""
seed=31337
total_second_length=60
latent_window_size=9
steps=25
cfg=1.0
gs=10.0
rs=0.0
gpu_memory_preservation=6
use_teacache=True
mp4_crf=16
global stream
if t2v:
default_height, default_width = 640, 640
input_image = np.ones((default_height, default_width, 3), dtype=np.uint8) * 255
print("No input image provided. Using a blank white image.")
yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True)
stream = AsyncStream()
async_run(
worker, input_image, prompt, n_prompt, seed,
total_second_length, latent_window_size, steps,
cfg, gs, rs, gpu_memory_preservation, use_teacache, mp4_crf
)
output_filename = None
while True:
flag, data = stream.output_queue.next()
if flag == 'file':
output_filename = data
yield (
output_filename,
gr.update(),
gr.update(),
gr.update(),
gr.update(interactive=False),
gr.update(interactive=True)
)
if flag == 'progress':
preview, desc, html = data
yield (
gr.update(),
gr.update(visible=True, value=preview),
desc,
html,
gr.update(interactive=False),
gr.update(interactive=True)
)
if flag == 'end':
yield (
output_filename,
gr.update(visible=False),
gr.update(),
'',
gr.update(interactive=True),
gr.update(interactive=False)
)
break
@torch.no_grad()
def worker(
input_image, prompt, n_prompt, seed,
total_second_length, latent_window_size, steps,
cfg, gs, rs, gpu_memory_preservation, use_teacache, mp4_crf
):
# Calculate total sections
total_latent_sections = (total_second_length * 30) / (latent_window_size * 4)
total_latent_sections = int(max(round(total_latent_sections), 1))
job_id = generate_timestamp()
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Starting ...'))))
try:
# Unload if VRAM is low
if not high_vram:
unload_complete_models(
text_encoder, text_encoder_2, image_encoder, vae, transformer
)
# Text encoding
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Text encoding ...'))))
if not high_vram:
fake_diffusers_current_device(text_encoder, gpu)
load_model_as_complete(text_encoder_2, target_device=gpu)
llama_vec, clip_l_pooler = encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
if cfg == 1:
llama_vec_n, clip_l_pooler_n = torch.zeros_like(llama_vec), torch.zeros_like(clip_l_pooler)
else:
llama_vec_n, clip_l_pooler_n = encode_prompt_conds(n_prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
llama_vec, llama_attention_mask = crop_or_pad_yield_mask(llama_vec, length=512)
llama_vec_n, llama_attention_mask_n = crop_or_pad_yield_mask(llama_vec_n, length=512)
# Process image
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Image processing ...'))))
H, W, C = input_image.shape
height, width = find_nearest_bucket(H, W, resolution=640)
input_image_np = resize_and_center_crop(input_image, target_width=width, target_height=height)
Image.fromarray(input_image_np).save(os.path.join(outputs_folder, f'{job_id}.png'))
input_image_pt = torch.from_numpy(input_image_np).float() / 127.5 - 1
input_image_pt = input_image_pt.permute(2, 0, 1)[None, :, None]
# VAE encoding
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'VAE encoding ...'))))
if not high_vram:
load_model_as_complete(vae, target_device=gpu)
start_latent = vae_encode(input_image_pt, vae)
# CLIP Vision
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'CLIP Vision encoding ...'))))
if not high_vram:
load_model_as_complete(image_encoder, target_device=gpu)
image_encoder_output = hf_clip_vision_encode(input_image_np, feature_extractor, image_encoder)
image_encoder_last_hidden_state = image_encoder_output.last_hidden_state
# Convert dtype
llama_vec = llama_vec.to(transformer.dtype)
llama_vec_n = llama_vec_n.to(transformer.dtype)
clip_l_pooler = clip_l_pooler.to(transformer.dtype)
clip_l_pooler_n = clip_l_pooler_n.to(transformer.dtype)
image_encoder_last_hidden_state = image_encoder_last_hidden_state.to(transformer.dtype)
# Start sampling
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Start sampling ...'))))
rnd = torch.Generator("cpu").manual_seed(seed)
history_latents = torch.zeros(
size=(1, 16, 16 + 2 + 1, height // 8, width // 8),
dtype=torch.float32
).cpu()
history_pixels = None
# Add start_latent
history_latents = torch.cat([history_latents, start_latent.to(history_latents)], dim=2)
total_generated_latent_frames = 1
for section_index in range(total_latent_sections):
if stream.input_queue.top() == 'end':
stream.output_queue.push(('end', None))
return
print(f'section_index = {section_index}, total_latent_sections = {total_latent_sections}')
if not high_vram:
unload_complete_models()
move_model_to_device_with_memory_preservation(
transformer, target_device=gpu,
preserved_memory_gb=gpu_memory_preservation
)
if use_teacache:
transformer.initialize_teacache(enable_teacache=True, num_steps=steps)
else:
transformer.initialize_teacache(enable_teacache=False)
def callback(d):
preview = d['denoised']
preview = vae_decode_fake(preview)
preview = (preview * 255.0).detach().cpu().numpy().clip(0, 255).astype(np.uint8)
preview = einops.rearrange(preview, 'b c t h w -> (b h) (t w) c')
if stream.input_queue.top() == 'end':
stream.output_queue.push(('end', None))
raise KeyboardInterrupt('User ends the task.')
current_step = d['i'] + 1
percentage = int(100.0 * current_step / steps)
hint = f'Sampling {current_step}/{steps}'
desc = f'Total generated frames: {int(max(0, total_generated_latent_frames * 4 - 3))}'
stream.output_queue.push(('progress', (preview, desc, make_progress_bar_html(percentage, hint))))
return
indices = torch.arange(
0, sum([1, 16, 2, 1, latent_window_size])
).unsqueeze(0)
(
clean_latent_indices_start,
clean_latent_4x_indices,
clean_latent_2x_indices,
clean_latent_1x_indices,
latent_indices
) = indices.split([1, 16, 2, 1, latent_window_size], dim=1)
clean_latent_indices = torch.cat([clean_latent_indices_start, clean_latent_1x_indices], dim=1)
clean_latents_4x, clean_latents_2x, clean_latents_1x = history_latents[
:, :, -sum([16, 2, 1]):, :, :
].split([16, 2, 1], dim=2)
clean_latents = torch.cat(
[start_latent.to(history_latents), clean_latents_1x],
dim=2
)
generated_latents = sample_hunyuan(
transformer=transformer,
sampler='unipc',
width=width,
height=height,
frames=latent_window_size * 4 - 3,
real_guidance_scale=cfg,
distilled_guidance_scale=gs,
guidance_rescale=rs,
num_inference_steps=steps,
generator=rnd,
prompt_embeds=llama_vec,
prompt_embeds_mask=llama_attention_mask,
prompt_poolers=clip_l_pooler,
negative_prompt_embeds=llama_vec_n,
negative_prompt_embeds_mask=llama_attention_mask_n,
negative_prompt_poolers=clip_l_pooler_n,
device=gpu,
dtype=torch.bfloat16,
image_embeddings=image_encoder_last_hidden_state,
latent_indices=latent_indices,
clean_latents=clean_latents,
clean_latent_indices=clean_latent_indices,
clean_latents_2x=clean_latents_2x,
clean_latent_2x_indices=clean_latent_2x_indices,
clean_latents_4x=clean_latents_4x,
clean_latent_4x_indices=clean_latent_4x_indices,
callback=callback,
)
total_generated_latent_frames += int(generated_latents.shape[2])
history_latents = torch.cat([history_latents, generated_latents.to(history_latents)], dim=2)
if not high_vram:
offload_model_from_device_for_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=8)
load_model_as_complete(vae, target_device=gpu)
real_history_latents = history_latents[:, :, -total_generated_latent_frames:, :, :]
if history_pixels is None:
history_pixels = vae_decode(real_history_latents, vae).cpu()
else:
section_latent_frames = latent_window_size * 2
overlapped_frames = latent_window_size * 4 - 3
current_pixels = vae_decode(
real_history_latents[:, :, -section_latent_frames:], vae
).cpu()
history_pixels = soft_append_bcthw(
history_pixels, current_pixels, overlapped_frames
)
if not high_vram:
unload_complete_models()
output_filename = os.path.join(outputs_folder, f'{job_id}_{total_generated_latent_frames}.mp4')
save_bcthw_as_mp4(history_pixels, output_filename, fps=30)
print(f'Decoded. Latent shape {real_history_latents.shape}; pixel shape {history_pixels.shape}')
stream.output_queue.push(('file', output_filename))
except:
traceback.print_exc()
if not high_vram:
unload_complete_models(text_encoder, text_encoder_2, image_encoder, vae, transformer)
stream.output_queue.push(('end', None))
return
def get_duration(
input_image, prompt, t2v, n_prompt,
seed, total_second_length, latent_window_size,
steps, cfg, gs, rs, gpu_memory_preservation,
use_teacache, mp4_crf
):
return total_second_length * 60
@spaces.GPU(duration=get_duration)
def process(
input_image, prompt, t2v=False, n_prompt="", seed=31337,
total_second_length=60, latent_window_size=9, steps=25,
cfg=1.0, gs=10.0, rs=0.0, gpu_memory_preservation=6,
use_teacache=True, mp4_crf=16
):
global stream
if t2v:
default_height, default_width = 640, 640
input_image = np.ones((default_height, default_width, 3), dtype=np.uint8) * 255
print("No input image provided. Using a blank white image.")
else:
composite_rgba_uint8 = input_image["composite"]
rgb_uint8 = composite_rgba_uint8[:, :, :3]
mask_uint8 = composite_rgba_uint8[:, :, 3]
h, w = rgb_uint8.shape[:2]
background_uint8 = np.full((h, w, 3), 255, dtype=np.uint8)
alpha_normalized_float32 = mask_uint8.astype(np.float32) / 255.0
alpha_mask_float32 = np.stack([alpha_normalized_float32]*3, axis=2)
blended_image_float32 = rgb_uint8.astype(np.float32) * alpha_mask_float32 + \
background_uint8.astype(np.float32) * (1.0 - alpha_mask_float32)
input_image = np.clip(blended_image_float32, 0, 255).astype(np.uint8)
yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True)
stream = AsyncStream()
async_run(
worker, input_image, prompt, n_prompt, seed,
total_second_length, latent_window_size, steps,
cfg, gs, rs, gpu_memory_preservation, use_teacache, mp4_crf
)
output_filename = None
while True:
flag, data = stream.output_queue.next()
if flag == 'file':
output_filename = data
yield (
output_filename,
gr.update(),
gr.update(),
gr.update(),
gr.update(interactive=False),
gr.update(interactive=True)
)
elif flag == 'progress':
preview, desc, html = data
yield (
gr.update(),
gr.update(visible=True, value=preview),
desc,
html,
gr.update(interactive=False),
gr.update(interactive=True)
)
elif flag == 'end':
yield (
output_filename,
gr.update(visible=False),
gr.update(),
'',
gr.update(interactive=True),
gr.update(interactive=False)
)
break
def end_process():
stream.input_queue.push('end')
quick_prompts = [
'The girl dances gracefully, with clear movements, full of charm.',
'A character doing some simple body movements.'
]
quick_prompts = [[x] for x in quick_prompts]
def make_custom_css():
base_progress_css = make_progress_bar_css()
extra_css = """
body {
background: #fafbfe !important;
font-family: "Noto Sans", sans-serif;
}
#title-container {
text-align: center;
padding: 20px 0;
margin-bottom: 30px;
background: linear-gradient(135deg, #4b9ffa 0%, #2d7eeb 100%);
border-radius: 15px;
box-shadow: 0 4px 15px rgba(0,0,0,0.1);
}
#title-container h1 {
color: white;
font-size: 2.5rem;
margin: 0;
font-weight: 800;
text-shadow: 1px 2px 2px rgba(0,0,0,0.2);
}
.container {
display: flex;
gap: 20px;
}
.settings-panel {
flex: 0 0 350px;
background: #ffffff;
padding: 20px;
border-radius: 15px;
box-shadow: 0 2px 8px rgba(0,0,0,0.1);
}
.settings-panel h3 {
color: #2d7eeb;
margin-bottom: 20px;
font-size: 1.3rem;
border-bottom: 2px solid #4b9ffa;
padding-bottom: 10px;
}
.main-panel {
flex: 1;
background: #ffffff;
padding: 20px;
border-radius: 15px;
box-shadow: 0 2px 8px rgba(0,0,0,0.1);
}
.gr-form {
border: none !important;
background: transparent !important;
}
.gr-box {
border: 1px solid #e0e0f0 !important;
background: #f8f9fe !important;
border-radius: 10px !important;
margin-bottom: 15px !important;
transition: all 0.3s ease;
}
.gr-box:hover {
border-color: #4b9ffa !important;
box-shadow: 0 2px 8px rgba(75, 159, 250, 0.1) !important;
}
.gr-input, .gr-button {
border-radius: 8px !important;
transition: all 0.3s ease !important;
}
.gr-button {
min-height: 45px !important;
font-weight: 600 !important;
text-transform: uppercase !important;
letter-spacing: 0.5px !important;
}
.gr-button:hover {
transform: translateY(-1px) !important;
}
.gr-button.primary-btn {
background: #4b9ffa !important;
color: white !important;
border: none !important;
}
.gr-button.secondary-btn {
background: #ff4d4d !important;
color: white !important;
border: none !important;
}
.progress-container {
margin-top: 20px;
padding: 15px;
background: #f8f9fe;
border-radius: 10px;
}
"""
return base_progress_css + extra_css
css = make_custom_css()
block = gr.Blocks(css=css).queue()
with block:
with gr.Group(elem_id="title-container"):
gr.Markdown("<h1>FramePack I2V</h1>")
gr.Markdown(
"""Generate amazing animations from a single image using AI.
Just upload an image, write a prompt, and watch the magic happen!"""
)
with gr.Row(elem_classes="container"):
with gr.Column(elem_classes="settings-panel"):
gr.Markdown("### Settings")
# Basic Settings
with gr.Group():
input_image = gr.Image(
label="Upload Image",
type="numpy",
height=320
)
prompt = gr.Textbox(
label="Describe the animation you want",
placeholder="E.g., The character dances gracefully with flowing movements...",
lines=3
)
total_second_length = gr.Slider(
label="Video Length (Seconds)",
minimum=1,
maximum=60,
value=2,
step=0.1
)
# Advanced Settings
with gr.Group():
steps = gr.Slider(
label="Generation Steps",
minimum=1,
maximum=100,
value=25,
step=1,
info='Higher values = better quality but slower'
)
gs = gr.Slider(
label="Animation Strength",
minimum=1.0,
maximum=32.0,
value=10.0,
step=0.1,
info='Controls how closely the animation follows the prompt'
)
use_teacache = gr.Checkbox(
label='Fast Mode',
value=True,
info='Faster generation but may affect quality of fine details'
)
gpu_memory_preservation = gr.Slider(
label="VRAM Usage",
minimum=6,
maximum=128,
value=6,
step=0.1,
info="Increase if you get out of memory errors"
)
mp4_crf = gr.Slider(
label="Video Quality",
minimum=0,
maximum=51,
value=16,
step=1,
info="Lower value = higher quality (0-51)"
)
seed = gr.Number(
label="Seed",
value=31337,
precision=0,
info="Change for different results"
)
# Hidden settings
n_prompt = gr.Textbox(visible=False, value="")
latent_window_size = gr.Slider(visible=False, value=9)
cfg = gr.Slider(visible=False, value=1.0)
rs = gr.Slider(visible=False, value=0.0)
with gr.Row():
start_button = gr.Button(
value="▶️ Generate Animation",
elem_classes=["primary-btn"]
)
stop_button = gr.Button(
value="⏹️ Stop",
elem_classes=["secondary-btn"],
interactive=False
)
with gr.Column(elem_classes="main-panel"):
preview_image = gr.Image(
label="Generation Preview",
height=200,
visible=False
)
result_video = gr.Video(
label="Generated Animation",
autoplay=True,
show_share_button=True,
height=512,
loop=True
)
with gr.Group(elem_classes="progress-container"):
progress_desc = gr.Markdown(
elem_classes='no-generating-animation'
)
progress_bar = gr.HTML(
elem_classes='no-generating-animation'
)
# Quick Prompts Section
with gr.Group():
gr.Markdown("### 💡 Quick Prompt Ideas")
example_quick_prompts = gr.Dataset(
samples=quick_prompts,
label='Click any prompt to try it',
samples_per_page=5,
components=[prompt]
)
# Setup callbacks
ips = [
input_image, prompt, n_prompt, seed,
total_second_length, latent_window_size,
steps, cfg, gs, rs, gpu_memory_preservation,
use_teacache, mp4_crf
]
start_button.click(
fn=process,
inputs=ips,
outputs=[
result_video, preview_image,
progress_desc, progress_bar,
start_button, stop_button
]
)
stop_button.click(fn=end_process)
example_quick_prompts.click(
fn=lambda x: x[0],
inputs=[example_quick_prompts],
outputs=prompt,
show_progress=False,
queue=False
)
block.launch(share=True)