import os import pandas as pd import numpy as np compare_to_gt = True ground_truth = pd.read_csv("data/zipfiles.csv", sep="\t") results = pd.read_csv("data/results.csv", sep="\t") verbose = 0 eval_readme = [] eval_training = [] eval_evaluating = [] eval_licensing = [] eval_weights = [] eval_dependencies = [] full_results = [] for (index1, row1), (index2, row2) in zip(ground_truth.iterrows(), results.iterrows()): if (pd.isna(row1["training"])): continue print(f"\nEvaluating {index1+1} out of {len(ground_truth.index)} papers...") print(f'Paper title - "{row1["title"]}" ({row1["year"]})') print(f'Repository link - {row1["url"]}') if ((not(pd.isna(row1["dependencies"]))) & (row2["pred_dependencies"] is not None)): eval_dependencies.append(row2["pred_dependencies"] == row1["dependencies"]) if (row2["pred_dependencies"] != row1["dependencies"]): print(f"Dependencies acc. - {row2['pred_dependencies']} (GT:{row1['dependencies']})") if ((not(pd.isna(row1["training"]))) & (row2["pred_dependencies"] is not None)): eval_training.append(row1["training"] == row2["pred_training"]) if (row1["training"] != row2["pred_training"]): print(f"Training acc. -{row2['pred_training']} (GT:{row1['training']})") if ((not(pd.isna(row1["evaluation"]))) & (row2["pred_dependencies"] is not None)): eval_evaluating.append(row1["evaluation"] == row2["pred_evaluation"]) if (row1["evaluation"] != row2["pred_evaluation"]): print(f"Evaluating acc. - {row2['pred_evaluation']} (GT:{row1['evaluation']})") if ((not(pd.isna(row1["weights"]))) & (row2["pred_dependencies"] is not None)): eval_weights.append(row1["weights"] == row2["pred_weights"]) if (row1["weights"] != row2["pred_weights"]): print(f"Weights acc. - {row2['pred_weights']} (GT:{row1['weights']})") if ((not(pd.isna(row1["readme"]))) & (row2["pred_dependencies"] is not None)): eval_readme.append(row1["readme"] == row2["pred_readme"]) if (row1["readme"] != row2["pred_readme"]): print(f"README acc. - {row2['pred_readme']} (GT:{row1['readme']})") if ((not(pd.isna(row1["license"]))) & (row2["pred_dependencies"] is not None)): eval_licensing.append(("No" if row1["license"] == "No" else "Yes") == row2["pred_license"]) if (("No" if row1["license"] == "No" else "Yes") != row2["pred_license"]): print(f"LICENSE acc. - {row2['pred_license']} (GT:{row1['license']})") print("\nSummary:") print(f"Dependencies acc. - {int(100 * np.mean(eval_dependencies))}%") print(f"Training acc. - {int(100 * np.mean(eval_training))}%") print(f"Evaluating acc. - {int(100 * np.mean(eval_evaluating))}%") print(f"Weights acc. - {int(100 * np.mean(eval_weights))}%") print(f"README acc. - {int(100 * np.mean(eval_readme))}%") print(f"LICENSE acc. - {int(100 * np.mean(eval_licensing))}%")