import streamlit as st import pandas as pd import json import os import plotly.express as px import plotly.graph_objects as go from plotly.subplots import make_subplots import numpy as np from pathlib import Path import glob import requests from io import StringIO import zipfile import tempfile import shutil import time from datetime import datetime, timezone import yaml # Set page config st.set_page_config( page_title="Attention Analysis Results Explorer", page_icon="🔍", layout="wide", initial_sidebar_state="expanded" ) # Custom CSS for better styling st.markdown(""" """, unsafe_allow_html=True) class AttentionResultsExplorer: def __init__(self, github_repo="ACMCMC/attention", use_cache=True): self.github_repo = github_repo self.use_cache = use_cache self.cache_dir = Path(tempfile.gettempdir()) / "attention_results_cache" self.base_path = self.cache_dir # Initialize cache directory if not self.cache_dir.exists(): self.cache_dir.mkdir(parents=True, exist_ok=True) # Get available languages from GitHub without downloading self.available_languages = self._get_available_languages_from_github() self.relation_types = None def _download_experiment_config(self): """Download and parse the experiment_config.yaml file from GitHub""" config_path = self.cache_dir / "experiment_config.yaml" # Check if we have a cached version and use_cache is enabled if config_path.exists() and self.use_cache: try: with open(config_path, 'r', encoding='utf-8') as f: return yaml.safe_load(f) except Exception as e: st.warning(f"Could not load cached config, downloading fresh: {str(e)}") # Download from GitHub config_url = f"https://raw.githubusercontent.com/{self.github_repo}/master/experiment_config.yaml" response = self._make_github_request(config_url, "experiment configuration file") if response is None: # Try to load from cache as fallback if config_path.exists(): try: with open(config_path, 'r', encoding='utf-8') as f: return yaml.safe_load(f) except Exception: pass return None try: config_content = response.text # Save to cache with open(config_path, 'w', encoding='utf-8') as f: f.write(config_content) # Parse and return return yaml.safe_load(StringIO(config_content)) except Exception as e: st.error(f"Could not parse experiment configuration: {str(e)}") return None def _get_available_languages_from_github(self): """Get available languages from experiment config file""" config = self._download_experiment_config() if config is None: # Fallback to directory-based discovery return self._get_available_languages_from_directories() try: languages = list(config.get('languages', {}).keys()) return sorted(languages) except Exception as e: st.warning(f"Could not parse languages from config: {str(e)}") # Fallback to directory-based discovery return self._get_available_languages_from_directories() def _get_available_languages_from_directories(self): """Fallback method: Get available languages from GitHub API directory listing""" api_url = f"https://api.github.com/repos/{self.github_repo}/contents" response = self._make_github_request(api_url, "available languages") if response is None: # Rate limit hit or other error, fallback to local cache return self._get_available_languages_local() try: contents = response.json() result_dirs = [item['name'] for item in contents if item['type'] == 'dir' and item['name'].startswith('results_')] languages = [d.replace("results_", "") for d in result_dirs] return sorted(languages) except Exception as e: st.warning(f"Could not parse language list from GitHub: {str(e)}") # Fallback to local cache if available return self._get_available_languages_local() def _get_models_for_language(self, language): """Get all models for a specific language from the experiment config""" config = self._download_experiment_config() if config is None: return [] try: # Get language-specific models language_models = config.get('languages', {}).get(language, {}).get('models', []) # Get multilingual models multilingual_models = config.get('multilingual_models', []) # Combine both lists all_models = language_models + multilingual_models return sorted(list(set(all_models))) # Remove duplicates and sort except Exception as e: st.warning(f"Could not get models for {language}: {str(e)}") return [] def _get_first_language_model_pair(self): """Get the first language-model pair from the experiment config for configuration discovery""" config = self._download_experiment_config() if config is None: return None, None try: languages = config.get('languages', {}) multilingual_models = config.get('multilingual_models', []) # Find first language with models for language, lang_config in languages.items(): models = lang_config.get('models', []) if models: return language, models[0] # If no language-specific models, use first language with first multilingual model if multilingual_models and languages: first_language = list(languages.keys())[0] return first_language, multilingual_models[0] return None, None except Exception as e: st.warning(f"Could not find language-model pair: {str(e)}") return None, None def _get_available_languages_local(self): """Get available languages from local cache""" if not self.base_path.exists(): return [] result_dirs = [d.name for d in self.base_path.iterdir() if d.is_dir() and d.name.startswith("results_")] languages = [d.replace("results_", "") for d in result_dirs] return sorted(languages) def _ensure_specific_data_downloaded(self, language, config, model): """Download specific files for a language/config/model combination if not cached""" folder_model_name = self._model_name_to_folder_name(model) base_path = f"results_{language}/{config}/{model}" local_path = self.base_path / f"results_{language}" / config / folder_model_name # Check if we already have this specific combination cached if local_path.exists() and self.use_cache: # Quick check if essential files exist metadata_path = local_path / "metadata" / "metadata.json" if metadata_path.exists(): return # Already have the data with st.spinner(f"📥 Downloading data for {language.upper()}/{config}/{model}..."): try: self._download_specific_model_data(language, config, model) st.success(f"✅ Downloaded {language.upper()}/{model} data!") except Exception as e: st.error(f"❌ Failed to download specific data: {str(e)}") raise def _download_specific_model_data(self, language, config, model): """Download only the specific model data needed""" folder_model_name = self._model_name_to_folder_name(model) base_remote_path = f"results_{language}/{config}/{folder_model_name}" # List of essential directories to download for a model essential_dirs = ["metadata", "uas_scores", "number_of_heads_matching", "variability", "figures"] for dir_name in essential_dirs: remote_path = f"{base_remote_path}/{dir_name}" try: self._download_directory_targeted(dir_name, remote_path, language, config, model) except Exception as e: st.warning(f"Could not download {dir_name} for {model}: {str(e)}") def _download_directory_targeted(self, dir_name, remote_path, language, config, model): """Download a specific directory for a model""" api_url = f"https://api.github.com/repos/{self.github_repo}/contents/{remote_path}" response = self._make_github_request(api_url, f"directory {dir_name}", silent_404=True) if response is None: return # Rate limit, 404, or other error try: contents = response.json() # Create local directory folder_model_name = self._model_name_to_folder_name(model) local_dir = self.base_path / f"results_{language}" / config / folder_model_name / dir_name local_dir.mkdir(parents=True, exist_ok=True) # Download all files in this directory for item in contents: if item['type'] == 'file': self._download_file(item, local_dir) except Exception as e: st.warning(f"Could not download directory {dir_name}: {str(e)}") def _get_available_configs_from_github(self, language): """Get available configurations for a language from GitHub""" api_url = f"https://api.github.com/repos/{self.github_repo}/contents/results_{language}" response = self._make_github_request(api_url, f"configurations for {language}") if response is None: return [] try: contents = response.json() configs = [item['name'] for item in contents if item['type'] == 'dir'] return sorted(configs) except Exception as e: st.warning(f"Could not parse configurations for {language}: {str(e)}") return [] def _discover_config_parameters(self, language=None): """Dynamically discover configuration parameters from available configs Now uses the first language-model pair from experiment config to discover valid configuration parameters, since configurations are consistent across all language-model combinations. """ try: # Get the first language-model pair from experiment config if language is None: language, model = self._get_first_language_model_pair() if language is None or model is None: st.warning("Could not find any language-model pairs in experiment config") return {} st.info(f"🔍 Discovering configurations using {language.upper()}/{model} (configurations are consistent across all languages and models)") else: # If language is specified, try to get first model for that language models = self._get_models_for_language(language) if not models: st.warning(f"No models found for language {language}") return {} model = models[0] available_configs = self._get_experimental_configs(language) if not available_configs: return {} # Parse all configurations to extract unique parameters all_params = set() param_values = {} for config in available_configs: params = self._parse_config_params(config) for param, value in params.items(): all_params.add(param) if param not in param_values: param_values[param] = set() param_values[param].add(value) # Convert sets to sorted lists for consistent UI return {param: sorted(list(values)) for param, values in param_values.items()} except Exception as e: st.warning(f"Could not discover configuration parameters: {str(e)}") return {} def _build_config_from_params(self, param_dict): """Build configuration string from parameter dictionary""" config_parts = [] for param, value in sorted(param_dict.items()): config_parts.append(f"{param}_{value}") return "+".join(config_parts) def _find_best_matching_config(self, language, target_params): """Find the configuration that best matches the target parameters""" available_configs = self._get_experimental_configs(language) best_match = None best_score = -1 for config in available_configs: config_params = self._parse_config_params(config) # Calculate match score score = 0 total_params = len(target_params) for param, target_value in target_params.items(): if param in config_params and config_params[param] == target_value: score += 1 # Prefer configs with exact parameter count if len(config_params) == total_params: score += 0.5 if score > best_score: best_score = score best_match = config return best_match, best_score == len(target_params) def _download_repository(self): """Download repository data from GitHub""" st.info("🔄 Downloading results data from GitHub... This may take a moment.") # GitHub API to get the repository contents api_url = f"https://api.github.com/repos/{self.github_repo}/contents" try: # Get list of result directories response = requests.get(api_url) response.raise_for_status() contents = response.json() result_dirs = [item['name'] for item in contents if item['type'] == 'dir' and item['name'].startswith('results_')] st.write(f"Found {len(result_dirs)} result directories: {', '.join(result_dirs)}") # Download each result directory progress_bar = st.progress(0) for i, result_dir in enumerate(result_dirs): st.write(f"Downloading {result_dir}...") self._download_directory(result_dir) progress_bar.progress((i + 1) / len(result_dirs)) st.success("✅ Download completed!") except Exception as e: st.error(f"❌ Error downloading repository: {str(e)}") st.error("Please check the repository URL and your internet connection.") raise def _parse_config_params(self, config_name): """Parse configuration parameters into a dictionary""" parts = config_name.split('+') params = {} for part in parts: if '_' in part: key_parts = part.split('_') if len(key_parts) >= 2: key = '_'.join(key_parts[:-1]) value = key_parts[-1] params[key] = value == 'True' return params def _download_directory(self, dir_name, path=""): """Recursively download a directory from GitHub""" url = f"https://api.github.com/repos/{self.github_repo}/contents/{path}{dir_name}" try: response = requests.get(url) response.raise_for_status() contents = response.json() local_dir = self.cache_dir / path / dir_name local_dir.mkdir(parents=True, exist_ok=True) for item in contents: if item['type'] == 'file': self._download_file(item, local_dir) elif item['type'] == 'dir': self._download_directory(item['name'], f"{path}{dir_name}/") except Exception as e: st.warning(f"Could not download {dir_name}: {str(e)}") def _download_file(self, file_info, local_dir): """Download a single file from GitHub""" try: # Use the rate limit handling for file downloads too file_response = self._make_github_request(file_info['download_url'], f"file {file_info['name']}") if file_response is None: return # Rate limit or other error # Save to local cache local_file = local_dir / file_info['name'] # Handle different file types if file_info['name'].endswith(('.csv', '.json')): with open(local_file, 'w', encoding='utf-8') as f: f.write(file_response.text) else: # Binary files like PDFs with open(local_file, 'wb') as f: f.write(file_response.content) except Exception as e: st.warning(f"Could not download file {file_info['name']}: {str(e)}") def _get_available_languages(self): """Get all available language directories""" return self.available_languages def _get_experimental_configs(self, language): """Get all experimental configurations for a language from GitHub API""" api_url = f"https://api.github.com/repos/{self.github_repo}/contents/results_{language}" response = self._make_github_request(api_url, f"experimental configs for {language}") if response is not None: try: contents = response.json() configs = [item['name'] for item in contents if item['type'] == 'dir'] return sorted(configs) except Exception as e: st.warning(f"Could not parse experimental configs for {language}: {str(e)}") # Fallback to local cache if available lang_dir = self.base_path / f"results_{language}" if lang_dir.exists(): configs = [d.name for d in lang_dir.iterdir() if d.is_dir()] return sorted(configs) return [] def _find_matching_config(self, language, target_params): """Find the first matching configuration from target parameters""" return self._find_best_matching_config(language, target_params) def _get_models(self, language, config): """Get all models for a language and configuration from experiment config""" # First try to get models from experiment config models = self._get_models_for_language(language) if models: return models # Fallback to GitHub API directory listing if config unavailable api_url = f"https://api.github.com/repos/{self.github_repo}/contents/results_{language}/{config}" response = self._make_github_request(api_url, f"models for {language}/{config}") if response is not None: try: contents = response.json() models = [item['name'] for item in contents if item['type'] == 'dir'] return sorted(models) except Exception as e: st.warning(f"Could not parse models for {language}/{config}: {str(e)}") # Final fallback to local cache if available config_dir = self.base_path / f"results_{language}" / config if config_dir.exists(): models = [d.name for d in config_dir.iterdir() if d.is_dir()] return sorted(models) return [] def _parse_config_name(self, config_name): """Parse configuration name into readable format""" parts = config_name.split('+') config_dict = {} for part in parts: if '_' in part: key, value = part.split('_', 1) config_dict[key.replace('_', ' ').title()] = value return config_dict def _load_metadata(self, language, config, model): """Load metadata for a specific combination""" # Ensure we have the specific data downloaded self._ensure_specific_data_downloaded(language, config, model) folder_model_name = self._model_name_to_folder_name(model) metadata_path = self.base_path / f"results_{language}" / config / folder_model_name / "metadata" / "metadata.json" if metadata_path.exists(): with open(metadata_path, 'r') as f: return json.load(f) return None def _load_uas_scores(self, language, config, model): """Load UAS scores data""" # Ensure we have the specific data downloaded self._ensure_specific_data_downloaded(language, config, model) folder_model_name = self._model_name_to_folder_name(model) uas_dir = self.base_path / f"results_{language}" / config / folder_model_name / "uas_scores" if not uas_dir.exists(): return {} uas_data = {} csv_files = list(uas_dir.glob("uas_*.csv")) if csv_files: with st.spinner("Loading UAS scores data..."): progress_bar = st.progress(0) status_text = st.empty() for i, csv_file in enumerate(csv_files): relation = csv_file.stem.replace("uas_", "") status_text.text(f"Loading UAS data: {relation}") try: df = pd.read_csv(csv_file, index_col=0) uas_data[relation] = df except Exception as e: st.warning(f"Could not load {csv_file.name}: {e}") progress_bar.progress((i + 1) / len(csv_files)) time.sleep(0.01) # Small delay for smoother progress progress_bar.empty() status_text.empty() return uas_data def _load_head_matching(self, language, config, model): """Load head matching data""" # Ensure we have the specific data downloaded self._ensure_specific_data_downloaded(language, config, model) folder_model_name = self._model_name_to_folder_name(model) heads_dir = self.base_path / f"results_{language}" / config / folder_model_name / "number_of_heads_matching" if not heads_dir.exists(): return {} heads_data = {} csv_files = list(heads_dir.glob("heads_matching_*.csv")) if csv_files: with st.spinner("Loading head matching data..."): progress_bar = st.progress(0) status_text = st.empty() for i, csv_file in enumerate(csv_files): relation = csv_file.stem.replace("heads_matching_", "").replace(f"_{folder_model_name}", "") status_text.text(f"Loading head matching data: {relation}") try: df = pd.read_csv(csv_file, index_col=0) heads_data[relation] = df except Exception as e: st.warning(f"Could not load {csv_file.name}: {e}") progress_bar.progress((i + 1) / len(csv_files)) time.sleep(0.01) # Small delay for smoother progress progress_bar.empty() status_text.empty() return heads_data def _load_variability(self, language, config, model): """Load variability data""" # Ensure we have the specific data downloaded self._ensure_specific_data_downloaded(language, config, model) folder_model_name = self._model_name_to_folder_name(model) var_path = self.base_path / f"results_{language}" / config / folder_model_name / "variability" / "variability_list.csv" if var_path.exists(): try: return pd.read_csv(var_path, index_col=0) except Exception as e: st.warning(f"Could not load variability data: {e}") return None def _get_available_figures(self, language, config, model): """Get all available figure files""" # Ensure we have the specific data downloaded self._ensure_specific_data_downloaded(language, config, model) folder_model_name = self._model_name_to_folder_name(model) figures_dir = self.base_path / f"results_{language}" / config / folder_model_name / "figures" if not figures_dir.exists(): return [] return list(figures_dir.glob("*.pdf")) def _handle_rate_limit_error(self, response): """Handle GitHub API rate limit errors with detailed user feedback""" if response.status_code in (403, 429): # Check if it's a rate limit error if 'rate limit' in response.text.lower() or 'api rate limit' in response.text.lower(): # Extract rate limit information from headers remaining = response.headers.get('x-ratelimit-remaining', 'unknown') reset_timestamp = response.headers.get('x-ratelimit-reset') limit = response.headers.get('x-ratelimit-limit', 'unknown') # Calculate reset time reset_time_str = "unknown" if reset_timestamp: try: reset_time = datetime.fromtimestamp(int(reset_timestamp), tz=timezone.utc) reset_time_str = reset_time.strftime("%Y-%m-%d %H:%M:%S UTC") # Calculate time until reset now = datetime.now(timezone.utc) time_until_reset = reset_time - now minutes_until_reset = int(time_until_reset.total_seconds() / 60) if minutes_until_reset > 0: reset_time_str += f" (in {minutes_until_reset} minutes)" except (ValueError, TypeError): pass # Display comprehensive rate limit information st.error("🚫 **GitHub API Rate Limit Exceeded**") with st.expander("📊 Rate Limit Details", expanded=True): col1, col2 = st.columns(2) with col1: st.metric("Requests Remaining", remaining) st.metric("Rate Limit", limit) with col2: st.metric("Reset Time", reset_time_str) if reset_timestamp: try: reset_time = datetime.fromtimestamp(int(reset_timestamp), tz=timezone.utc) now = datetime.now(timezone.utc) time_until_reset = reset_time - now if time_until_reset.total_seconds() > 0: st.metric("Time Until Reset", f"{int(time_until_reset.total_seconds() / 60)} minutes") except (ValueError, TypeError): pass return True # Indicates rate limit error was handled return False # Not a rate limit error def _make_github_request(self, url, description="GitHub API request", silent_404=False): """Make a GitHub API request with rate limit handling""" try: # Add GitHub token if available headers = {} github_token = os.environ.get('GITHUB_TOKEN') if github_token: headers['Authorization'] = f'token {github_token}' response = requests.get(url, headers=headers) # Check for rate limit before raising for status if self._handle_rate_limit_error(response): return None # Rate limit handled, return None # Handle 404 errors silently if requested (for optional directories) if response.status_code == 404 and silent_404: return None response.raise_for_status() return response except requests.exceptions.RequestException as e: if hasattr(e, 'response') and e.response is not None: # Handle 404 silently if requested if e.response.status_code == 404 and silent_404: return None if not self._handle_rate_limit_error(e.response): st.warning(f"Request failed for {description}: {str(e)}") else: st.warning(f"Network error for {description}: {str(e)}") return None def _model_name_to_folder_name(self, model_name): """Convert model name from config format to folder format Examples: - 'PlanTL-GOB-ES/roberta-base-ca' -> 'roberta-base-ca' - 'microsoft/deberta-v3-base' -> 'deberta-v3-base' - 'bert-base-uncased' -> 'bert-base-uncased' (no change) """ if '/' in model_name: return model_name.split('/')[-1] return model_name def _get_available_languages_local(self): """Get available languages from local cache""" if not self.base_path.exists(): return [] result_dirs = [d.name for d in self.base_path.iterdir() if d.is_dir() and d.name.startswith("results_")] languages = [d.replace("results_", "") for d in result_dirs] return sorted(languages) def _ensure_specific_data_downloaded(self, language, config, model): """Download specific files for a language/config/model combination if not cached""" folder_model_name = self._model_name_to_folder_name(model) base_path = f"results_{language}/{config}/{model}" local_path = self.base_path / f"results_{language}" / config / folder_model_name # Check if we already have this specific combination cached if local_path.exists() and self.use_cache: # Quick check if essential files exist metadata_path = local_path / "metadata" / "metadata.json" if metadata_path.exists(): return # Already have the data with st.spinner(f"📥 Downloading data for {language.upper()}/{config}/{model}..."): try: self._download_specific_model_data(language, config, model) st.success(f"✅ Downloaded {language.upper()}/{model} data!") except Exception as e: st.error(f"❌ Failed to download specific data: {str(e)}") raise def _download_specific_model_data(self, language, config, model): """Download only the specific model data needed""" folder_model_name = self._model_name_to_folder_name(model) base_remote_path = f"results_{language}/{config}/{folder_model_name}" # List of essential directories to download for a model essential_dirs = ["metadata", "uas_scores", "number_of_heads_matching", "variability", "figures"] for dir_name in essential_dirs: remote_path = f"{base_remote_path}/{dir_name}" try: self._download_directory_targeted(dir_name, remote_path, language, config, model) except Exception as e: st.warning(f"Could not download {dir_name} for {model}: {str(e)}") def _download_directory_targeted(self, dir_name, remote_path, language, config, model): """Download a specific directory for a model""" api_url = f"https://api.github.com/repos/{self.github_repo}/contents/{remote_path}" response = self._make_github_request(api_url, f"directory {dir_name}", silent_404=True) if response is None: return # Rate limit, 404, or other error try: contents = response.json() # Create local directory folder_model_name = self._model_name_to_folder_name(model) local_dir = self.base_path / f"results_{language}" / config / folder_model_name / dir_name local_dir.mkdir(parents=True, exist_ok=True) # Download all files in this directory for item in contents: if item['type'] == 'file': self._download_file(item, local_dir) except Exception as e: st.warning(f"Could not download directory {dir_name}: {str(e)}") def _get_available_configs_from_github(self, language): """Get available configurations for a language from GitHub""" api_url = f"https://api.github.com/repos/{self.github_repo}/contents/results_{language}" response = self._make_github_request(api_url, f"configurations for {language}") if response is None: return [] try: contents = response.json() configs = [item['name'] for item in contents if item['type'] == 'dir'] return sorted(configs) except Exception as e: st.warning(f"Could not parse configurations for {language}: {str(e)}") return [] def _discover_config_parameters(self, language=None): """Dynamically discover configuration parameters from available configs Now uses the first language-model pair from experiment config to discover valid configuration parameters, since configurations are consistent across all language-model combinations. """ try: # Get the first language-model pair from experiment config if language is None: language, model = self._get_first_language_model_pair() if language is None or model is None: st.warning("Could not find any language-model pairs in experiment config") return {} st.info(f"🔍 Discovering configurations using {language.upper()}/{model} (configurations are consistent across all languages and models)") else: # If language is specified, try to get first model for that language models = self._get_models_for_language(language) if not models: st.warning(f"No models found for language {language}") return {} model = models[0] available_configs = self._get_experimental_configs(language) if not available_configs: return {} # Parse all configurations to extract unique parameters all_params = set() param_values = {} for config in available_configs: params = self._parse_config_params(config) for param, value in params.items(): all_params.add(param) if param not in param_values: param_values[param] = set() param_values[param].add(value) # Convert sets to sorted lists for consistent UI return {param: sorted(list(values)) for param, values in param_values.items()} except Exception as e: st.warning(f"Could not discover configuration parameters: {str(e)}") return {} def _build_config_from_params(self, param_dict): """Build configuration string from parameter dictionary""" config_parts = [] for param, value in sorted(param_dict.items()): config_parts.append(f"{param}_{value}") return "+".join(config_parts) def _find_best_matching_config(self, language, target_params): """Find the configuration that best matches the target parameters""" available_configs = self._get_experimental_configs(language) best_match = None best_score = -1 for config in available_configs: config_params = self._parse_config_params(config) # Calculate match score score = 0 total_params = len(target_params) for param, target_value in target_params.items(): if param in config_params and config_params[param] == target_value: score += 1 # Prefer configs with exact parameter count if len(config_params) == total_params: score += 0.5 if score > best_score: best_score = score best_match = config return best_match, best_score == len(target_params) def _download_repository(self): """Download repository data from GitHub""" st.info("🔄 Downloading results data from GitHub... This may take a moment.") # GitHub API to get the repository contents api_url = f"https://api.github.com/repos/{self.github_repo}/contents" try: # Get list of result directories response = requests.get(api_url) response.raise_for_status() contents = response.json() result_dirs = [item['name'] for item in contents if item['type'] == 'dir' and item['name'].startswith('results_')] st.write(f"Found {len(result_dirs)} result directories: {', '.join(result_dirs)}") # Download each result directory progress_bar = st.progress(0) for i, result_dir in enumerate(result_dirs): st.write(f"Downloading {result_dir}...") self._download_directory(result_dir) progress_bar.progress((i + 1) / len(result_dirs)) st.success("✅ Download completed!") except Exception as e: st.error(f"❌ Error downloading repository: {str(e)}") st.error("Please check the repository URL and your internet connection.") raise def _parse_config_params(self, config_name): """Parse configuration parameters into a dictionary""" parts = config_name.split('+') params = {} for part in parts: if '_' in part: key_parts = part.split('_') if len(key_parts) >= 2: key = '_'.join(key_parts[:-1]) value = key_parts[-1] params[key] = value == 'True' return params def _download_directory(self, dir_name, path=""): """Recursively download a directory from GitHub""" url = f"https://api.github.com/repos/{self.github_repo}/contents/{path}{dir_name}" try: response = requests.get(url) response.raise_for_status() contents = response.json() local_dir = self.cache_dir / path / dir_name local_dir.mkdir(parents=True, exist_ok=True) for item in contents: if item['type'] == 'file': self._download_file(item, local_dir) elif item['type'] == 'dir': self._download_directory(item['name'], f"{path}{dir_name}/") except Exception as e: st.warning(f"Could not download {dir_name}: {str(e)}") def _download_file(self, file_info, local_dir): """Download a single file from GitHub""" try: # Use the rate limit handling for file downloads too file_response = self._make_github_request(file_info['download_url'], f"file {file_info['name']}") if file_response is None: return # Rate limit or other error # Save to local cache local_file = local_dir / file_info['name'] # Handle different file types if file_info['name'].endswith(('.csv', '.json')): with open(local_file, 'w', encoding='utf-8') as f: f.write(file_response.text) else: # Binary files like PDFs with open(local_file, 'wb') as f: f.write(file_response.content) except Exception as e: st.warning(f"Could not download file {file_info['name']}: {str(e)}") def _get_available_languages(self): """Get all available language directories""" return self.available_languages def _get_experimental_configs(self, language): """Get all experimental configurations for a language from GitHub API""" api_url = f"https://api.github.com/repos/{self.github_repo}/contents/results_{language}" response = self._make_github_request(api_url, f"experimental configs for {language}") if response is not None: try: contents = response.json() configs = [item['name'] for item in contents if item['type'] == 'dir'] return sorted(configs) except Exception as e: st.warning(f"Could not parse experimental configs for {language}: {str(e)}") # Fallback to local cache if available lang_dir = self.base_path / f"results_{language}" if lang_dir.exists(): configs = [d.name for d in lang_dir.iterdir() if d.is_dir()] return sorted(configs) return [] def _find_matching_config(self, language, target_params): """Find the first matching configuration from target parameters""" return self._find_best_matching_config(language, target_params) def _get_models(self, language, config): """Get all models for a language and configuration from experiment config""" # First try to get models from experiment config models = self._get_models_for_language(language) if models: return models # Fallback to GitHub API directory listing if config unavailable api_url = f"https://api.github.com/repos/{self.github_repo}/contents/results_{language}/{config}" response = self._make_github_request(api_url, f"models for {language}/{config}") if response is not None: try: contents = response.json() models = [item['name'] for item in contents if item['type'] == 'dir'] return sorted(models) except Exception as e: st.warning(f"Could not parse models for {language}/{config}: {str(e)}") # Final fallback to local cache if available config_dir = self.base_path / f"results_{language}" / config if config_dir.exists(): models = [d.name for d in config_dir.iterdir() if d.is_dir()] return sorted(models) return [] def _parse_config_name(self, config_name): """Parse configuration name into readable format""" parts = config_name.split('+') config_dict = {} for part in parts: if '_' in part: key, value = part.split('_', 1) config_dict[key.replace('_', ' ').title()] = value return config_dict def _load_metadata(self, language, config, model): """Load metadata for a specific combination""" # Ensure we have the specific data downloaded self._ensure_specific_data_downloaded(language, config, model) folder_model_name = self._model_name_to_folder_name(model) metadata_path = self.base_path / f"results_{language}" / config / folder_model_name / "metadata" / "metadata.json" if metadata_path.exists(): with open(metadata_path, 'r') as f: return json.load(f) return None def _load_uas_scores(self, language, config, model): """Load UAS scores data""" # Ensure we have the specific data downloaded self._ensure_specific_data_downloaded(language, config, model) folder_model_name = self._model_name_to_folder_name(model) uas_dir = self.base_path / f"results_{language}" / config / folder_model_name / "uas_scores" if not uas_dir.exists(): return {} uas_data = {} csv_files = list(uas_dir.glob("uas_*.csv")) if csv_files: with st.spinner("Loading UAS scores data..."): progress_bar = st.progress(0) status_text = st.empty() for i, csv_file in enumerate(csv_files): relation = csv_file.stem.replace("uas_", "") status_text.text(f"Loading UAS data: {relation}") try: df = pd.read_csv(csv_file, index_col=0) uas_data[relation] = df except Exception as e: st.warning(f"Could not load {csv_file.name}: {e}") progress_bar.progress((i + 1) / len(csv_files)) time.sleep(0.01) # Small delay for smoother progress progress_bar.empty() status_text.empty() return uas_data def _load_head_matching(self, language, config, model): """Load head matching data""" # Ensure we have the specific data downloaded self._ensure_specific_data_downloaded(language, config, model) folder_model_name = self._model_name_to_folder_name(model) heads_dir = self.base_path / f"results_{language}" / config / folder_model_name / "number_of_heads_matching" if not heads_dir.exists(): return {} heads_data = {} csv_files = list(heads_dir.glob("heads_matching_*.csv")) if csv_files: with st.spinner("Loading head matching data..."): progress_bar = st.progress(0) status_text = st.empty() for i, csv_file in enumerate(csv_files): relation = csv_file.stem.replace("heads_matching_", "").replace(f"_{folder_model_name}", "") status_text.text(f"Loading head matching data: {relation}") try: df = pd.read_csv(csv_file, index_col=0) heads_data[relation] = df except Exception as e: st.warning(f"Could not load {csv_file.name}: {e}") progress_bar.progress((i + 1) / len(csv_files)) time.sleep(0.01) # Small delay for smoother progress progress_bar.empty() status_text.empty() return heads_data def _load_variability(self, language, config, model): """Load variability data""" # Ensure we have the specific data downloaded self._ensure_specific_data_downloaded(language, config, model) folder_model_name = self._model_name_to_folder_name(model) var_path = self.base_path / f"results_{language}" / config / folder_model_name / "variability" / "variability_list.csv" if var_path.exists(): try: return pd.read_csv(var_path, index_col=0) except Exception as e: st.warning(f"Could not load variability data: {e}") return None def _get_available_figures(self, language, config, model): """Get all available figure files""" # Ensure we have the specific data downloaded self._ensure_specific_data_downloaded(language, config, model) folder_model_name = self._model_name_to_folder_name(model) figures_dir = self.base_path / f"results_{language}" / config / folder_model_name / "figures" if not figures_dir.exists(): return [] return list(figures_dir.glob("*.pdf")) def _handle_rate_limit_error(self, response): """Handle GitHub API rate limit errors with detailed user feedback""" if response.status_code in (403, 429): # Check if it's a rate limit error if 'rate limit' in response.text.lower() or 'api rate limit' in response.text.lower(): # Extract rate limit information from headers remaining = response.headers.get('x-ratelimit-remaining', 'unknown') reset_timestamp = response.headers.get('x-ratelimit-reset') limit = response.headers.get('x-ratelimit-limit', 'unknown') # Calculate reset time reset_time_str = "unknown" if reset_timestamp: try: reset_time = datetime.fromtimestamp(int(reset_timestamp), tz=timezone.utc) reset_time_str = reset_time.strftime("%Y-%m-%d %H:%M:%S UTC") # Calculate time until reset now = datetime.now(timezone.utc) time_until_reset = reset_time - now minutes_until_reset = int(time_until_reset.total_seconds() / 60) if minutes_until_reset > 0: reset_time_str += f" (in {minutes_until_reset} minutes)" except (ValueError, TypeError): pass # Display comprehensive rate limit information st.error("🚫 **GitHub API Rate Limit Exceeded**") with st.expander("📊 Rate Limit Details", expanded=True): col1, col2 = st.columns(2) with col1: st.metric("Requests Remaining", remaining) st.metric("Rate Limit", limit) with col2: st.metric("Reset Time", reset_time_str) if reset_timestamp: try: reset_time = datetime.fromtimestamp(int(reset_timestamp), tz=timezone.utc) now = datetime.now(timezone.utc) time_until_reset = reset_time - now if time_until_reset.total_seconds() > 0: st.metric("Time Until Reset", f"{int(time_until_reset.total_seconds() / 60)} minutes") except (ValueError, TypeError): pass return True # Indicates rate limit error was handled return False # Not a rate limit error def _make_github_request(self, url, description="GitHub API request", silent_404=False): """Make a GitHub API request with rate limit handling""" try: # Add GitHub token if available headers = {} github_token = os.environ.get('GITHUB_TOKEN') if github_token: headers['Authorization'] = f'token {github_token}' response = requests.get(url, headers=headers) # Check for rate limit before raising for status if self._handle_rate_limit_error(response): return None # Rate limit handled, return None # Handle 404 errors silently if requested (for optional directories) if response.status_code == 404 and silent_404: return None response.raise_for_status() return response except requests.exceptions.RequestException as e: if hasattr(e, 'response') and e.response is not None: # Handle 404 silently if requested if e.response.status_code == 404 and silent_404: return None if not self._handle_rate_limit_error(e.response): st.warning(f"Request failed for {description}: {str(e)}") else: st.warning(f"Network error for {description}: {str(e)}") return None def main(): # Title st.markdown('
🔍 Attention Analysis Results Explorer
', unsafe_allow_html=True) # Sidebar for navigation st.sidebar.title("🔧 Configuration") # Cache management section st.sidebar.markdown("### 📁 Data Management") # Initialize explorer use_cache = st.sidebar.checkbox("Use cached data", value=True, help="Use previously downloaded data if available") if st.sidebar.button("🔄 Clear Cache", help="Clear all cached data"): # Clear cache and re-download cache_dir = Path(tempfile.gettempdir()) / "attention_results_cache" if cache_dir.exists(): shutil.rmtree(cache_dir) st.sidebar.success("✅ Cache cleared!") st.rerun() # Show cache status cache_dir = Path(tempfile.gettempdir()) / "attention_results_cache" if cache_dir.exists(): # Get more detailed cache information cached_items = [] for lang_dir in cache_dir.iterdir(): if lang_dir.is_dir() and lang_dir.name.startswith("results_"): lang = lang_dir.name.replace("results_", "") configs = [d.name for d in lang_dir.iterdir() if d.is_dir()] if configs: models_count = 0 for config_dir in lang_dir.iterdir(): if config_dir.is_dir(): models = [d.name for d in config_dir.iterdir() if d.is_dir()] models_count += len(models) cached_items.append(f"{lang} ({len(configs)} configs, {models_count} models)") if cached_items: st.sidebar.success("✅ **Cached Data:**") for item in cached_items[:3]: # Show first 3 st.sidebar.text(f"• {item}") if len(cached_items) > 3: st.sidebar.text(f"... and {len(cached_items) - 3} more") else: st.sidebar.info("📥 Cache exists but empty") else: st.sidebar.info("📥 No cached data") st.sidebar.markdown("---") # Initialize explorer with error handling try: with st.spinner("🔄 Initializing attention analysis explorer..."): explorer = AttentionResultsExplorer(use_cache=use_cache) except Exception as e: st.error(f"❌ Failed to initialize data explorer: {str(e)}") st.error("Please check your internet connection and try again.") # Show some debugging information with st.expander("🔍 Debugging Information"): st.code(f"Error details: {str(e)}") st.markdown("**Possible solutions:**") st.markdown("- Check your internet connection") st.markdown("- Try clearing the cache") st.markdown("- Wait a moment and refresh the page") return # Check if any languages are available if not explorer.available_languages: st.error("❌ No result data found. Please check the GitHub repository.") st.markdown("**Expected repository structure:**") st.markdown("- Repository should contain `results_*` directories") st.markdown("- Each directory should contain experimental configurations") return # Show success message st.sidebar.success(f"✅ Found {len(explorer.available_languages)} languages: {', '.join(explorer.available_languages)}") # Language selection selected_language = st.sidebar.selectbox( "Select Language", options=explorer.available_languages, help="Choose the language dataset to explore" ) st.sidebar.markdown("---") # Configuration selection with dynamic discovery st.sidebar.markdown("### ⚙️ Experimental Configuration") # Discover available configuration parameters (optimized to use first language only) with st.spinner("🔍 Discovering configuration options..."): config_parameters = explorer._discover_config_parameters() if not config_parameters: st.sidebar.error("❌ Could not discover configuration parameters") st.stop() # Show discovered parameters st.sidebar.success(f"✅ Found {len(config_parameters)} configuration parameters") st.sidebar.info("💡 Configuration options are consistent across all languages - using optimized discovery") # Create UI elements for each discovered parameter selected_params = {} for param_name, possible_values in config_parameters.items(): # Clean up parameter name for display display_name = param_name.replace('_', ' ').title() if len(possible_values) == 2 and set(possible_values) == {True, False}: # Boolean parameter - use checkbox default_value = False # Default to False for boolean params selected_params[param_name] = st.sidebar.checkbox( display_name, value=default_value, help=f"Parameter: {param_name}" ) else: # Multi-value parameter - use selectbox selected_params[param_name] = st.sidebar.selectbox( display_name, options=possible_values, help=f"Parameter: {param_name}" ) # Find the best matching configuration selected_config, config_exists = explorer._find_matching_config(selected_language, selected_params) # Show current configuration st.sidebar.markdown("**Selected Parameters:**") for param, value in selected_params.items(): emoji = "✅" if value else "❌" if isinstance(value, bool) else "🔹" st.sidebar.text(f"{emoji} {param}: {value}") st.sidebar.markdown("**Matched Configuration:**") st.sidebar.code(selected_config if selected_config else "No match found", language="text") # Show configuration status if config_exists: st.sidebar.success("✅ Exact configuration match found!") else: st.sidebar.warning("⚠️ Using best available match") st.sidebar.markdown("---") # Get models for selected language and config if not selected_config: st.error("❌ No valid configuration found") st.info("Please try different parameter combinations.") st.stop() models = explorer._get_models(selected_language, selected_config) if not models: st.warning(f"❌ No models found for {selected_language}/{selected_config}") st.info("This configuration may not exist for the selected language. Try adjusting the configuration parameters above.") st.stop() # Model selection selected_model = st.sidebar.selectbox( "Select Model", options=models, help="Choose the model to analyze" ) # Main content area tab1, tab2, tab3, tab4, tab5 = st.tabs([ "📊 Overview", "🎯 UAS Scores", "🧠 Head Matching", "📈 Variability", "🖼️ Figures" ]) # Tab 1: Overview with tab1: st.markdown('
Experiment Overview
', unsafe_allow_html=True) # Show current configuration in a friendly format st.markdown("### 🔧 Current Configuration") config_params = explorer._parse_config_params(selected_config) col1, col2 = st.columns(2) with col1: st.markdown("**Configuration Parameters:**") for param, value in config_params.items(): emoji = "✅" if value else "❌" if isinstance(value, bool) else "🔹" readable_param = param.replace('_', ' ').title() st.markdown(f"{emoji} **{readable_param}**: {value}") with col2: st.markdown("**Selected Parameters vs Actual:**") for param in selected_params: selected_val = selected_params[param] actual_val = config_params.get(param, "N/A") match_emoji = "✅" if selected_val == actual_val else "⚠️" st.markdown(f"{match_emoji} **{param}**: {selected_val} → {actual_val}") st.markdown("**Raw Configuration String:**") st.code(selected_config, language="text") st.markdown("---") # Load metadata metadata = explorer._load_metadata(selected_language, selected_config, selected_model) if metadata: st.markdown("### 📊 Experiment Statistics") col1, col2, col3, col4 = st.columns(4) with col1: st.metric("Total Samples", metadata.get('total_number', 'N/A')) with col2: st.metric("Processed Correctly", metadata.get('number_processed_correctly', 'N/A')) with col3: st.metric("Errors", metadata.get('number_errored', 'N/A')) with col4: success_rate = (metadata.get('number_processed_correctly', 0) / metadata.get('total_number', 1)) * 100 if metadata.get('total_number') else 0 st.metric("Success Rate", f"{success_rate:.1f}%") if metadata.get('random_seed'): st.markdown(f"**Random Seed:** {metadata.get('random_seed')}") if metadata.get('errored_phrases'): with st.expander("🔍 View Errored Phrase IDs"): st.write(metadata['errored_phrases']) else: st.warning("No metadata available for this configuration.") # Quick stats about available data st.markdown("---") st.markdown('
Available Data Summary
', unsafe_allow_html=True) # Show loading message since we're now loading on-demand with st.spinner("Loading data summary..."): uas_data = explorer._load_uas_scores(selected_language, selected_config, selected_model) heads_data = explorer._load_head_matching(selected_language, selected_config, selected_model) variability_data = explorer._load_variability(selected_language, selected_config, selected_model) figures = explorer._get_available_figures(selected_language, selected_config, selected_model) col1, col2, col3, col4 = st.columns(4) with col1: st.metric("UAS Relations", len(uas_data)) with col2: st.metric("Head Matching Relations", len(heads_data)) with col3: st.metric("Variability Data", "✓" if variability_data is not None else "✗") with col4: st.metric("Figure Files", len(figures)) # Show what was just downloaded if uas_data or heads_data or variability_data is not None or figures: st.success(f"✅ Successfully loaded data for {selected_language.upper()}/{selected_model}") else: st.warning("⚠️ No data files found for this configuration") # Tab 2: UAS Scores with tab2: st.markdown('
UAS (Unlabeled Attachment Score) Analysis
', unsafe_allow_html=True) uas_data = explorer._load_uas_scores(selected_language, selected_config, selected_model) if uas_data: # Relation selection selected_relation = st.selectbox( "Select Dependency Relation", options=list(uas_data.keys()), help="Choose a dependency relation to visualize UAS scores" ) if selected_relation and selected_relation in uas_data: df = uas_data[selected_relation] # Display the data table st.markdown("**UAS Scores Matrix (Layer × Head)**") st.dataframe(df, use_container_width=True) # Create heatmap fig = px.imshow( df.values, x=[f"Head {i}" for i in df.columns], y=[f"Layer {i}" for i in df.index], color_continuous_scale="Viridis", title=f"UAS Scores Heatmap - {selected_relation}", labels=dict(color="UAS Score") ) fig.update_layout(height=600) st.plotly_chart(fig, use_container_width=True) # Statistics st.markdown("**Statistics**") col1, col2, col3, col4 = st.columns(4) with col1: st.metric("Max Score", f"{df.values.max():.4f}") with col2: st.metric("Min Score", f"{df.values.min():.4f}") with col3: st.metric("Mean Score", f"{df.values.mean():.4f}") with col4: st.metric("Std Dev", f"{df.values.std():.4f}") else: st.warning("No UAS score data available for this configuration.") # Tab 3: Head Matching with tab3: st.markdown('
Attention Head Matching Analysis
', unsafe_allow_html=True) heads_data = explorer._load_head_matching(selected_language, selected_config, selected_model) if heads_data: # Relation selection selected_relation = st.selectbox( "Select Dependency Relation", options=list(heads_data.keys()), help="Choose a dependency relation to visualize head matching patterns", key="heads_relation" ) if selected_relation and selected_relation in heads_data: df = heads_data[selected_relation] # Display the data table st.markdown("**Head Matching Counts Matrix (Layer × Head)**") st.dataframe(df, use_container_width=True) # Create heatmap fig = px.imshow( df.values, x=[f"Head {i}" for i in df.columns], y=[f"Layer {i}" for i in df.index], color_continuous_scale="Blues", title=f"Head Matching Counts - {selected_relation}", labels=dict(color="Match Count") ) fig.update_layout(height=600) st.plotly_chart(fig, use_container_width=True) # Create bar chart of total matches per layer layer_totals = df.sum(axis=1) fig_bar = px.bar( x=layer_totals.index, y=layer_totals.values, title=f"Total Matches per Layer - {selected_relation}", labels={"x": "Layer", "y": "Total Matches"} ) fig_bar.update_layout(height=400) st.plotly_chart(fig_bar, use_container_width=True) # Statistics st.markdown("**Statistics**") col1, col2, col3, col4 = st.columns(4) with col1: st.metric("Total Matches", int(df.values.sum())) with col2: st.metric("Max per Cell", int(df.values.max())) with col3: best_layer = layer_totals.idxmax() st.metric("Best Layer", f"Layer {best_layer}") with col4: best_head_idx = np.unravel_index(df.values.argmax(), df.values.shape) st.metric("Best Head", f"L{best_head_idx[0]}-H{best_head_idx[1]}") else: st.warning("No head matching data available for this configuration.") # Tab 4: Variability with tab4: st.markdown('
Attention Variability Analysis
', unsafe_allow_html=True) variability_data = explorer._load_variability(selected_language, selected_config, selected_model) if variability_data is not None: # Display the data table st.markdown("**Variability Matrix (Layer × Head)**") st.dataframe(variability_data, use_container_width=True) # Create heatmap fig = px.imshow( variability_data.values, x=[f"Head {i}" for i in variability_data.columns], y=[f"Layer {i}" for i in variability_data.index], color_continuous_scale="Reds", title="Attention Variability Heatmap", labels=dict(color="Variability Score") ) fig.update_layout(height=600) st.plotly_chart(fig, use_container_width=True) # Create line plot for variability trends fig_line = go.Figure() for col in variability_data.columns: fig_line.add_trace(go.Scatter( x=variability_data.index, y=variability_data[col], mode='lines+markers', name=f'Head {col}', line=dict(width=2) )) fig_line.update_layout( title="Variability Trends Across Layers", xaxis_title="Layer", yaxis_title="Variability Score", height=500 ) st.plotly_chart(fig_line, use_container_width=True) # Statistics st.markdown("**Statistics**") col1, col2, col3, col4 = st.columns(4) with col1: st.metric("Max Variability", f"{variability_data.values.max():.4f}") with col2: st.metric("Min Variability", f"{variability_data.values.min():.4f}") with col3: st.metric("Mean Variability", f"{variability_data.values.mean():.4f}") with col4: most_variable_idx = np.unravel_index(variability_data.values.argmax(), variability_data.values.shape) st.metric("Most Variable", f"L{most_variable_idx[0]}-H{most_variable_idx[1]}") else: st.warning("No variability data available for this configuration.") # Tab 5: Figures with tab5: st.markdown('
Generated Figures
', unsafe_allow_html=True) figures = explorer._get_available_figures(selected_language, selected_config, selected_model) if figures: st.markdown(f"**Available Figures: {len(figures)}**") # Group figures by relation type figure_groups = {} for fig_path in figures: # Extract relation from filename filename = fig_path.stem relation = filename.replace("heads_matching_", "").replace(f"_{selected_model}", "") if relation not in figure_groups: figure_groups[relation] = [] figure_groups[relation].append(fig_path) # Select relation to view selected_fig_relation = st.selectbox( "Select Relation for Figure View", options=list(figure_groups.keys()), help="Choose a dependency relation to view its figure" ) if selected_fig_relation and selected_fig_relation in figure_groups: fig_path = figure_groups[selected_fig_relation][0] st.markdown(f"**Figure: {fig_path.name}**") st.markdown(f"**Path:** `{fig_path}`") # Note about PDF viewing st.info( "📄 PDF figures are available in the results directory. " "Due to Streamlit limitations, PDF files cannot be displayed directly in the browser. " "You can download or view them locally." ) # Provide download link try: with open(fig_path, "rb") as file: st.download_button( label=f"📥 Download {fig_path.name}", data=file.read(), file_name=fig_path.name, mime="application/pdf" ) except Exception as e: st.error(f"Could not load figure: {e}") # List all available figures st.markdown("**All Available Figures:**") for relation, paths in figure_groups.items(): with st.expander(f"📊 {relation} ({len(paths)} files)"): for path in paths: st.markdown(f"- `{path.name}`") else: st.warning("No figures available for this configuration.") # Footer st.markdown("---") # Data source information col1, col2 = st.columns([2, 1]) with col1: st.markdown( "🔬 **Attention Analysis Results Explorer** | " f"Currently viewing: {selected_language.upper()} - {selected_model} | " "Built with Streamlit" ) with col2: st.markdown( f"📊 **Data Source**: [GitHub Repository](https://github.com/{explorer.github_repo})" ) if __name__ == "__main__": main()