File size: 25,779 Bytes
6f92421
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
import streamlit as st
import pandas as pd
import json
import os
import plotly.express as px
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import numpy as np
from pathlib import Path
import glob
import requests
from io import StringIO
import zipfile
import tempfile
import shutil

# Set page config
st.set_page_config(
    page_title="Attention Analysis Results Explorer",
    page_icon="🔍",
    layout="wide",
    initial_sidebar_state="expanded"
)

# Custom CSS for better styling
st.markdown("""
<style>
    .main-header {
        font-size: 2.5rem;
        font-weight: bold;
        color: #1f77b4;
        text-align: center;
        margin-bottom: 2rem;
    }
    .section-header {
        font-size: 1.5rem;
        font-weight: bold;
        color: #ff7f0e;
        margin-top: 2rem;
        margin-bottom: 1rem;
    }
    .metric-container {
        background-color: #f0f2f6;
        padding: 1rem;
        border-radius: 0.5rem;
        margin: 0.5rem 0;
    }
    .stSelectbox > div > div {
        background-color: white;
    }
</style>
""", unsafe_allow_html=True)

class AttentionResultsExplorer:
    def __init__(self, github_repo="ACMCMC/attention", use_cache=True):
        self.github_repo = github_repo
        self.use_cache = use_cache
        self.cache_dir = Path(tempfile.gettempdir()) / "attention_results_cache"
        self.base_path = self.cache_dir
        
        # Initialize cache directory
        if not self.cache_dir.exists():
            self.cache_dir.mkdir(parents=True, exist_ok=True)
        
        # Download and cache data if needed
        if not self._cache_exists() or not use_cache:
            self._download_repository()
        
        self.languages = self._get_available_languages()
        self.relation_types = None
    
    def _cache_exists(self):
        """Check if cached data exists"""
        return (self.cache_dir / "results_en").exists()
    
    def _download_repository(self):
        """Download repository data from GitHub"""
        st.info("🔄 Downloading results data from GitHub... This may take a moment.")
        
        # GitHub API to get the repository contents
        api_url = f"https://api.github.com/repos/{self.github_repo}/contents"
        
        try:
            # Get list of result directories
            response = requests.get(api_url)
            response.raise_for_status()
            contents = response.json()
            
            result_dirs = [item['name'] for item in contents 
                          if item['type'] == 'dir' and item['name'].startswith('results_')]
            
            st.write(f"Found {len(result_dirs)} result directories: {', '.join(result_dirs)}")
            
            # Download each result directory
            progress_bar = st.progress(0)
            for i, result_dir in enumerate(result_dirs):
                st.write(f"Downloading {result_dir}...")
                self._download_directory(result_dir)
                progress_bar.progress((i + 1) / len(result_dirs))
            
            st.success("✅ Download completed!")
            
        except Exception as e:
            st.error(f"❌ Error downloading repository: {str(e)}")
            st.error("Please check the repository URL and your internet connection.")
            raise
    
    def _download_directory(self, dir_name, path=""):
        """Recursively download a directory from GitHub"""
        url = f"https://api.github.com/repos/{self.github_repo}/contents/{path}{dir_name}"
        
        try:
            response = requests.get(url)
            response.raise_for_status()
            contents = response.json()
            
            local_dir = self.cache_dir / path / dir_name
            local_dir.mkdir(parents=True, exist_ok=True)
            
            for item in contents:
                if item['type'] == 'file':
                    self._download_file(item, local_dir)
                elif item['type'] == 'dir':
                    self._download_directory(item['name'], f"{path}{dir_name}/")
                    
        except Exception as e:
            st.warning(f"Could not download {dir_name}: {str(e)}")
    
    def _download_file(self, file_info, local_dir):
        """Download a single file from GitHub"""
        try:
            # Download file content
            response = requests.get(file_info['download_url'])
            response.raise_for_status()
            
            # Save to local cache
            local_file = local_dir / file_info['name']
            
            # Handle different file types
            if file_info['name'].endswith(('.csv', '.json')):
                with open(local_file, 'w', encoding='utf-8') as f:
                    f.write(response.text)
            else:  # Binary files like PDFs
                with open(local_file, 'wb') as f:
                    f.write(response.content)
                    
        except Exception as e:
            st.warning(f"Could not download file {file_info['name']}: {str(e)}")
        
    def _get_available_languages(self):
        """Get all available language directories"""
        if not self.base_path.exists():
            return []
        result_dirs = [d.name for d in self.base_path.iterdir() 
                      if d.is_dir() and d.name.startswith("results_")]
        languages = [d.replace("results_", "") for d in result_dirs]
        return sorted(languages)
    
    def _get_experimental_configs(self, language):
        """Get all experimental configurations for a language"""
        lang_dir = self.base_path / f"results_{language}"
        if not lang_dir.exists():
            return []
        configs = [d.name for d in lang_dir.iterdir() if d.is_dir()]
        return sorted(configs)
    
    def _get_models(self, language, config):
        """Get all models for a language and configuration"""
        config_dir = self.base_path / f"results_{language}" / config
        if not config_dir.exists():
            return []
        models = [d.name for d in config_dir.iterdir() if d.is_dir()]
        return sorted(models)
    
    def _parse_config_name(self, config_name):
        """Parse configuration name into readable format"""
        parts = config_name.split('+')
        config_dict = {}
        for part in parts:
            if '_' in part:
                key, value = part.split('_', 1)
                config_dict[key.replace('_', ' ').title()] = value
        return config_dict
    
    def _load_metadata(self, language, config, model):
        """Load metadata for a specific combination"""
        metadata_path = self.base_path / f"results_{language}" / config / model / "metadata" / "metadata.json"
        if metadata_path.exists():
            with open(metadata_path, 'r') as f:
                return json.load(f)
        return None
    
    def _load_uas_scores(self, language, config, model):
        """Load UAS scores data"""
        uas_dir = self.base_path / f"results_{language}" / config / model / "uas_scores"
        if not uas_dir.exists():
            return {}
        
        uas_data = {}
        csv_files = list(uas_dir.glob("uas_*.csv"))
        
        if csv_files:
            progress_bar = st.progress(0)
            status_text = st.empty()
            
            for i, csv_file in enumerate(csv_files):
                relation = csv_file.stem.replace("uas_", "")
                status_text.text(f"Loading UAS data: {relation}")
                
                try:
                    df = pd.read_csv(csv_file, index_col=0)
                    uas_data[relation] = df
                except Exception as e:
                    st.warning(f"Could not load {csv_file.name}: {e}")
                
                progress_bar.progress((i + 1) / len(csv_files))
            
            progress_bar.empty()
            status_text.empty()
        
        return uas_data
    
    def _load_head_matching(self, language, config, model):
        """Load head matching data"""
        heads_dir = self.base_path / f"results_{language}" / config / model / "number_of_heads_matching"
        if not heads_dir.exists():
            return {}
        
        heads_data = {}
        csv_files = list(heads_dir.glob("heads_matching_*.csv"))
        
        if csv_files:
            progress_bar = st.progress(0)
            status_text = st.empty()
            
            for i, csv_file in enumerate(csv_files):
                relation = csv_file.stem.replace("heads_matching_", "").replace(f"_{model}", "")
                status_text.text(f"Loading head matching data: {relation}")
                
                try:
                    df = pd.read_csv(csv_file, index_col=0)
                    heads_data[relation] = df
                except Exception as e:
                    st.warning(f"Could not load {csv_file.name}: {e}")
                
                progress_bar.progress((i + 1) / len(csv_files))
            
            progress_bar.empty()
            status_text.empty()
        
        return heads_data
    
    def _load_variability(self, language, config, model):
        """Load variability data"""
        var_path = self.base_path / f"results_{language}" / config / model / "variability" / "variability_list.csv"
        if var_path.exists():
            try:
                return pd.read_csv(var_path, index_col=0)
            except Exception as e:
                st.warning(f"Could not load variability data: {e}")
        return None
    
    def _get_available_figures(self, language, config, model):
        """Get all available figure files"""
        figures_dir = self.base_path / f"results_{language}" / config / model / "figures"
        if not figures_dir.exists():
            return []
        return list(figures_dir.glob("*.pdf"))

def main():
    # Title
    st.markdown('<div class="main-header">🔍 Attention Analysis Results Explorer</div>', unsafe_allow_html=True)
    
    # Sidebar for navigation
    st.sidebar.title("🔧 Configuration")
    
    # Cache management section
    st.sidebar.markdown("### 📁 Data Management")
    
    # Initialize explorer
    use_cache = st.sidebar.checkbox("Use cached data", value=True, 
                                   help="Use previously downloaded data if available")
    
    if st.sidebar.button("🔄 Refresh Data", help="Download fresh data from GitHub"):
        # Clear cache and re-download
        cache_dir = Path(tempfile.gettempdir()) / "attention_results_cache"
        if cache_dir.exists():
            shutil.rmtree(cache_dir)
        st.rerun()
    
    # Show cache status
    cache_dir = Path(tempfile.gettempdir()) / "attention_results_cache"
    if cache_dir.exists():
        st.sidebar.success("✅ Data cached locally")
    else:
        st.sidebar.info("📥 Will download data from GitHub")
    
    st.sidebar.markdown("---")
    
    # Initialize explorer with error handling
    try:
        explorer = AttentionResultsExplorer(use_cache=use_cache)
    except Exception as e:
        st.error(f"❌ Failed to initialize data explorer: {str(e)}")
        st.error("Please check your internet connection and try again.")
        return
    
    # Check if any languages are available
    if not explorer.languages:
        st.error("❌ No result data found. Please check the GitHub repository.")
        return
    
    # Language selection
    selected_language = st.sidebar.selectbox(
        "Select Language",
        options=explorer.languages,
        help="Choose the language dataset to explore"
    )
    
    # Get configurations for selected language
    configs = explorer._get_experimental_configs(selected_language)
    if not configs:
        st.error(f"No configurations found for language: {selected_language}")
        return
    
    # Configuration selection
    selected_config = st.sidebar.selectbox(
        "Select Experimental Configuration",
        options=configs,
        help="Choose the experimental configuration"
    )
    
    # Parse and display configuration details
    config_details = explorer._parse_config_name(selected_config)
    st.sidebar.markdown("**Configuration Details:**")
    for key, value in config_details.items():
        st.sidebar.markdown(f"- **{key}**: {value}")
    
    # Get models for selected language and config
    models = explorer._get_models(selected_language, selected_config)
    if not models:
        st.error(f"No models found for {selected_language}/{selected_config}")
        return
    
    # Model selection
    selected_model = st.sidebar.selectbox(
        "Select Model",
        options=models,
        help="Choose the model to analyze"
    )
    
    # Main content area
    tab1, tab2, tab3, tab4, tab5 = st.tabs([
        "📊 Overview", 
        "🎯 UAS Scores", 
        "🧠 Head Matching", 
        "📈 Variability", 
        "🖼️ Figures"
    ])
    
    # Tab 1: Overview
    with tab1:
        st.markdown('<div class="section-header">Experiment Overview</div>', unsafe_allow_html=True)
        
        # Load metadata
        metadata = explorer._load_metadata(selected_language, selected_config, selected_model)
        if metadata:
            col1, col2, col3, col4 = st.columns(4)
            with col1:
                st.metric("Total Samples", metadata.get('total_number', 'N/A'))
            with col2:
                st.metric("Processed Correctly", metadata.get('number_processed_correctly', 'N/A'))
            with col3:
                st.metric("Errors", metadata.get('number_errored', 'N/A'))
            with col4:
                success_rate = (metadata.get('number_processed_correctly', 0) / 
                               metadata.get('total_number', 1)) * 100 if metadata.get('total_number') else 0
                st.metric("Success Rate", f"{success_rate:.1f}%")
            
            st.markdown("**Random Seed:**", metadata.get('random_seed', 'N/A'))
            
            if metadata.get('errored_phrases'):
                st.markdown("**Errored Phrase IDs:**")
                st.write(metadata['errored_phrases'])
        else:
            st.warning("No metadata available for this configuration.")
        
        # Quick stats about available data
        st.markdown('<div class="section-header">Available Data</div>', unsafe_allow_html=True)
        
        uas_data = explorer._load_uas_scores(selected_language, selected_config, selected_model)
        heads_data = explorer._load_head_matching(selected_language, selected_config, selected_model)
        variability_data = explorer._load_variability(selected_language, selected_config, selected_model)
        figures = explorer._get_available_figures(selected_language, selected_config, selected_model)
        
        col1, col2, col3, col4 = st.columns(4)
        with col1:
            st.metric("UAS Relations", len(uas_data))
        with col2:
            st.metric("Head Matching Relations", len(heads_data))
        with col3:
            st.metric("Variability Data", "✓" if variability_data is not None else "✗")
        with col4:
            st.metric("Figure Files", len(figures))
    
    # Tab 2: UAS Scores
    with tab2:
        st.markdown('<div class="section-header">UAS (Unlabeled Attachment Score) Analysis</div>', unsafe_allow_html=True)
        
        uas_data = explorer._load_uas_scores(selected_language, selected_config, selected_model)
        
        if uas_data:
            # Relation selection
            selected_relation = st.selectbox(
                "Select Dependency Relation",
                options=list(uas_data.keys()),
                help="Choose a dependency relation to visualize UAS scores"
            )
            
            if selected_relation and selected_relation in uas_data:
                df = uas_data[selected_relation]
                
                # Display the data table
                st.markdown("**UAS Scores Matrix (Layer × Head)**")
                st.dataframe(df, use_container_width=True)
                
                # Create heatmap
                fig = px.imshow(
                    df.values,
                    x=[f"Head {i}" for i in df.columns],
                    y=[f"Layer {i}" for i in df.index],
                    color_continuous_scale="Viridis",
                    title=f"UAS Scores Heatmap - {selected_relation}",
                    labels=dict(color="UAS Score")
                )
                fig.update_layout(height=600)
                st.plotly_chart(fig, use_container_width=True)
                
                # Statistics
                st.markdown("**Statistics**")
                col1, col2, col3, col4 = st.columns(4)
                with col1:
                    st.metric("Max Score", f"{df.values.max():.4f}")
                with col2:
                    st.metric("Min Score", f"{df.values.min():.4f}")
                with col3:
                    st.metric("Mean Score", f"{df.values.mean():.4f}")
                with col4:
                    st.metric("Std Dev", f"{df.values.std():.4f}")
        else:
            st.warning("No UAS score data available for this configuration.")
    
    # Tab 3: Head Matching
    with tab3:
        st.markdown('<div class="section-header">Attention Head Matching Analysis</div>', unsafe_allow_html=True)
        
        heads_data = explorer._load_head_matching(selected_language, selected_config, selected_model)
        
        if heads_data:
            # Relation selection
            selected_relation = st.selectbox(
                "Select Dependency Relation",
                options=list(heads_data.keys()),
                help="Choose a dependency relation to visualize head matching patterns",
                key="heads_relation"
            )
            
            if selected_relation and selected_relation in heads_data:
                df = heads_data[selected_relation]
                
                # Display the data table
                st.markdown("**Head Matching Counts Matrix (Layer × Head)**")
                st.dataframe(df, use_container_width=True)
                
                # Create heatmap
                fig = px.imshow(
                    df.values,
                    x=[f"Head {i}" for i in df.columns],
                    y=[f"Layer {i}" for i in df.index],
                    color_continuous_scale="Blues",
                    title=f"Head Matching Counts - {selected_relation}",
                    labels=dict(color="Match Count")
                )
                fig.update_layout(height=600)
                st.plotly_chart(fig, use_container_width=True)
                
                # Create bar chart of total matches per layer
                layer_totals = df.sum(axis=1)
                fig_bar = px.bar(
                    x=layer_totals.index,
                    y=layer_totals.values,
                    title=f"Total Matches per Layer - {selected_relation}",
                    labels={"x": "Layer", "y": "Total Matches"}
                )
                fig_bar.update_layout(height=400)
                st.plotly_chart(fig_bar, use_container_width=True)
                
                # Statistics
                st.markdown("**Statistics**")
                col1, col2, col3, col4 = st.columns(4)
                with col1:
                    st.metric("Total Matches", int(df.values.sum()))
                with col2:
                    st.metric("Max per Cell", int(df.values.max()))
                with col3:
                    best_layer = layer_totals.idxmax()
                    st.metric("Best Layer", f"Layer {best_layer}")
                with col4:
                    best_head_idx = np.unravel_index(df.values.argmax(), df.values.shape)
                    st.metric("Best Head", f"L{best_head_idx[0]}-H{best_head_idx[1]}")
        else:
            st.warning("No head matching data available for this configuration.")
    
    # Tab 4: Variability
    with tab4:
        st.markdown('<div class="section-header">Attention Variability Analysis</div>', unsafe_allow_html=True)
        
        variability_data = explorer._load_variability(selected_language, selected_config, selected_model)
        
        if variability_data is not None:
            # Display the data table
            st.markdown("**Variability Matrix (Layer × Head)**")
            st.dataframe(variability_data, use_container_width=True)
            
            # Create heatmap
            fig = px.imshow(
                variability_data.values,
                x=[f"Head {i}" for i in variability_data.columns],
                y=[f"Layer {i}" for i in variability_data.index],
                color_continuous_scale="Reds",
                title="Attention Variability Heatmap",
                labels=dict(color="Variability Score")
            )
            fig.update_layout(height=600)
            st.plotly_chart(fig, use_container_width=True)
            
            # Create line plot for variability trends
            fig_line = go.Figure()
            for col in variability_data.columns:
                fig_line.add_trace(go.Scatter(
                    x=variability_data.index,
                    y=variability_data[col],
                    mode='lines+markers',
                    name=f'Head {col}',
                    line=dict(width=2)
                ))
            
            fig_line.update_layout(
                title="Variability Trends Across Layers",
                xaxis_title="Layer",
                yaxis_title="Variability Score",
                height=500
            )
            st.plotly_chart(fig_line, use_container_width=True)
            
            # Statistics
            st.markdown("**Statistics**")
            col1, col2, col3, col4 = st.columns(4)
            with col1:
                st.metric("Max Variability", f"{variability_data.values.max():.4f}")
            with col2:
                st.metric("Min Variability", f"{variability_data.values.min():.4f}")
            with col3:
                st.metric("Mean Variability", f"{variability_data.values.mean():.4f}")
            with col4:
                most_variable_idx = np.unravel_index(variability_data.values.argmax(), variability_data.values.shape)
                st.metric("Most Variable", f"L{most_variable_idx[0]}-H{most_variable_idx[1]}")
        else:
            st.warning("No variability data available for this configuration.")
    
    # Tab 5: Figures
    with tab5:
        st.markdown('<div class="section-header">Generated Figures</div>', unsafe_allow_html=True)
        
        figures = explorer._get_available_figures(selected_language, selected_config, selected_model)
        
        if figures:
            st.markdown(f"**Available Figures: {len(figures)}**")
            
            # Group figures by relation type
            figure_groups = {}
            for fig_path in figures:
                # Extract relation from filename
                filename = fig_path.stem
                relation = filename.replace("heads_matching_", "").replace(f"_{selected_model}", "")
                if relation not in figure_groups:
                    figure_groups[relation] = []
                figure_groups[relation].append(fig_path)
            
            # Select relation to view
            selected_fig_relation = st.selectbox(
                "Select Relation for Figure View",
                options=list(figure_groups.keys()),
                help="Choose a dependency relation to view its figure"
            )
            
            if selected_fig_relation and selected_fig_relation in figure_groups:
                fig_path = figure_groups[selected_fig_relation][0]
                
                st.markdown(f"**Figure: {fig_path.name}**")
                st.markdown(f"**Path:** `{fig_path}`")
                
                # Note about PDF viewing
                st.info(
                    "📄 PDF figures are available in the results directory. "
                    "Due to Streamlit limitations, PDF files cannot be displayed directly in the browser. "
                    "You can download or view them locally."
                )
                
                # Provide download link
                try:
                    with open(fig_path, "rb") as file:
                        st.download_button(
                            label=f"📥 Download {fig_path.name}",
                            data=file.read(),
                            file_name=fig_path.name,
                            mime="application/pdf"
                        )
                except Exception as e:
                    st.error(f"Could not load figure: {e}")
            
            # List all available figures
            st.markdown("**All Available Figures:**")
            for relation, paths in figure_groups.items():
                with st.expander(f"📊 {relation} ({len(paths)} files)"):
                    for path in paths:
                        st.markdown(f"- `{path.name}`")
        else:
            st.warning("No figures available for this configuration.")
    
    # Footer
    st.markdown("---")
    
    # Data source information
    col1, col2 = st.columns([2, 1])
    with col1:
        st.markdown(
            "🔬 **Attention Analysis Results Explorer** | "
            f"Currently viewing: {selected_language.upper()} - {selected_model} | "
            "Built with Streamlit"
        )
    with col2:
        st.markdown(
            f"📊 **Data Source**: [GitHub Repository](https://github.com/{explorer.github_repo})"
        )

if __name__ == "__main__":
    main()