+
+Foundation machine learning interatomic potentials (MLIPs), trained on extensive databases containing millions of density functional theory (DFT) calculations, have revolutionized molecular and materials modeling, but existing benchmarks suffer from data leakage, limited transferability, and an over-reliance on error-based metrics tied to specific density functional theory (DFT) references.
+
+We introduce MLIP Arena, a unified benchmark platform for evaluating foundation MLIP performance beyond conventional error metrics. It focuses on revealing the physical soundness learned by MLIPs and assessing their utilitarian performance agnostic to underlying model architecture and training dataset.
+
+***By moving beyond static DFT references and revealing the important failure modes*** of current foundation MLIPs in real-world settings, MLIP Arena provides a reproducible framework to guide the next-generation MLIP development toward improved predictive accuracy and runtime efficiency while maintaining physical consistency.
+
+MLIP Arena leverages modern pythonic workflow orchestrator ๐
+ [Prefect](https://www.prefect.io/) ๐
+ to enable advanced task/flow chaining and caching.
+
+
+
+> [!NOTE]
+> Contributions of new tasks through PRs are very welcome! If you're interested in joining the effort, please reach out to Yuan at [cyrusyc@berkeley.edu](mailto:cyrusyc@berkeley.edu). See [project page](https://github.com/orgs/atomind-ai/projects/1) for some outstanding tasks, or propose new feature requests in [Discussion](https://github.com/atomind-ai/mlip-arena/discussions/new?category=ideas).
+
+## Announcement
+
+- **[April 8, 2025]** [๐ **MLIP Arena is accepted as an ICLR AI4Mat Spotlight!** ๐](https://openreview.net/forum?id=ysKfIavYQE#discussion) Huge thanks to all co-authors for their contributions!
+
+
+## Installation
+
+### From PyPI (prefect workflow only, without pretrained models)
+
+```bash
+pip install mlip-arena
+```
+
+### From source (with integrated pretrained models, advanced)
+
+> [!CAUTION]
+> We strongly recommend clean build in a new virtual environment due to the compatibility issues between multiple popular MLIPs. We provide a single installation script using `uv` for minimal package conflicts and fast installation!
+
+> [!CAUTION]
+> To automatically download farichem OMat24 checkpoint, please make sure you have gained downloading access to their HuggingFace [***model repo***](https://huggingface.co/facebook/OMAT24) (not dataset repo), and login locally on your machine through `huggginface-cli login` (see [HF hub authentication](https://huggingface.co/docs/huggingface_hub/en/quick-start#authentication))
+
+**Linux**
+
+```bash
+# (Optional) Install uv, way faster than pip, why not? :)
+curl -LsSf https://astral.sh/uv/install.sh | sh
+source $HOME/.local/bin/env
+
+git clone https://github.com/atomind-ai/mlip-arena.git
+cd mlip-arena
+
+# One script uv pip installation
+bash scripts/install.sh
+```
+
+> [!TIP]
+> Sometimes installing all compiled models takes all the available local storage. Optional pip flag `--no-cache` could be uesed. `uv cache clean` will be helpful too.
+
+**Mac**
+
+```bash
+# (Optional) Install uv
+curl -LsSf https://astral.sh/uv/install.sh | sh
+source $HOME/.local/bin/env
+# One script uv pip installation
+bash scripts/install-macosx.sh
+```
+
+## Quickstart
+
+### The first example: Molecular Dynamics
+
+Arena provides a unified interface to run all the compiled MLIPs. This can be achieved simply by looping through `MLIPEnum`:
+
+```python
+from mlip_arena.models import MLIPEnum
+from mlip_arena.tasks import MD
+from mlip_arena.tasks.utils import get_calculator
+
+from ase import units
+from ase.build import bulk
+
+atoms = bulk("Cu", "fcc", a=3.6) * (5, 5, 5)
+
+results = []
+
+for model in MLIPEnum:
+ result = MD(
+ atoms=atoms,
+ calculator=get_calculator(
+ model,
+ calculator_kwargs=dict(), # passing into calculator
+ dispersion=True,
+ dispersion_kwargs=dict(
+ damping='bj', xc='pbe', cutoff=40.0 * units.Bohr
+ ), # passing into TorchDFTD3Calculator
+ ), # compatible with custom ASE Calculator
+ ensemble="nve", # nvt, nvt available
+ dynamics="velocityverlet", # compatible with any ASE Dynamics objects and their class names
+ total_time=1e3, # 1 ps = 1e3 fs
+ time_step=2, # fs
+ )
+ results.append(result)
+```
+
+### ๐ Parallelize Benchmarks at Scale
+
+To run multiple benchmarks in parallel, add `.submit` before the task function and wrap all the tasks into a flow to dispatch the tasks to worker for concurrent execution. See Prefect Doc on [tasks](https://docs.prefect.io/v3/develop/write-tasks) and [flow](https://docs.prefect.io/v3/develop/write-flows) for more details.
+
+```python
+...
+from prefect import flow
+
+@flow
+def run_all_tasks:
+
+ futures = []
+ for model in MLIPEnum:
+ future = MD.submit(
+ atoms=atoms,
+ ...
+ )
+ future.append(future)
+
+ return [f.result(raise_on_failure=False) for f in futures]
+```
+
+For a more practical example using HPC resources, please now refer to [MD stability benchmark](../benchmarks/stability/temperature.ipynb).
+
+### List of implemented tasks
+
+The implemented tasks are available under `mlip_arena.tasks..run` or `from mlip_arena.tasks import *` for convenient imports (currently doesn't work if [phonopy](https://phonopy.github.io/phonopy/install.html) is not installed).
+
+- [OPT](../mlip_arena/tasks/optimize.py#L56): Structure optimization
+- [EOS](../mlip_arena/tasks/eos.py#L42): Equation of state (energy-volume scan)
+- [MD](../mlip_arena/tasks/md.py#L200): Molecular dynamics with flexible dynamics (NVE, NVT, NPT) and temperature/pressure scheduling (annealing, shearing, *etc*)
+- [PHONON](../mlip_arena/tasks/phonon.py#L110): Phonon calculation driven by [phonopy](https://phonopy.github.io/phonopy/install.html)
+- [NEB](../mlip_arena/tasks/neb.py#L96): Nudged elastic band
+- [NEB_FROM_ENDPOINTS](../mlip_arena/tasks/neb.py#L164): Nudge elastic band with convenient image interpolation (linear or IDPP)
+- [ELASTICITY](../mlip_arena/tasks/elasticity.py#L78): Elastic tensor calculation
+
+### Contribute and Development
+
+PRs are welcome. Please clone the repo and submit PRs with changes.
+
+To make change to huggingface space, fetch large files from git lfs first and run streamlit:
+
+```
+git lfs fetch --all
+git lfs pull
+streamlit run serve/app.py
+```
+
+### Add new benchmark tasks (WIP)
+
+> [!NOTE]
+> Please reuse, extend, or chain the general tasks defined [above](#list-of-implemented-tasks)
+
+### Add new MLIP models
+
+If you have pretrained MLIP models that you would like to contribute to the MLIP Arena and show benchmark in real-time, there are two ways:
+
+#### External ASE Calculator (easy)
+
+1. Implement new ASE Calculator class in [mlip_arena/models/externals](../mlip_arena/models/externals).
+2. Name your class with awesome model name and add the same name to [registry](../mlip_arena/models/registry.yaml) with metadata.
+
+> [!CAUTION]
+> Remove unneccessary outputs under `results` class attributes to avoid error for MD simulations. Please refer to [CHGNet](../mlip_arena/models/externals/chgnet.py) as an example.
+
+#### Hugging Face Model (recommended, difficult)
+
+0. Inherit Hugging Face [ModelHubMixin](https://huggingface.co/docs/huggingface_hub/en/package_reference/mixins) class to your awesome model class definition. We recommend [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/en/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin).
+1. Create a new [Hugging Face Model](https://huggingface.co/new) repository and upload the model file using [push_to_hub function](https://huggingface.co/docs/huggingface_hub/en/package_reference/mixins#huggingface_hub.ModelHubMixin.push_to_hub).
+2. Follow the template to code the I/O interface for your model [here](../mlip_arena/models/README.md).
+3. Update model [registry](../mlip_arena/models/registry.yaml) with metadata
+
+## Citation
+
+If you find the work useful, please consider citing the following:
+
+```bibtex
+@inproceedings{
+ chiang2025mlip,
+ title={{MLIP} Arena: Advancing Fairness and Transparency in Machine Learning Interatomic Potentials through an Open and Accessible Benchmark Platform},
+ author={Yuan Chiang and Tobias Kreiman and Elizabeth Weaver and Ishan Amin and Matthew Kuner and Christine Zhang and Aaron Kaplan and Daryl Chrzan and Samuel M Blau and Aditi S. Krishnapriyan and Mark Asta},
+ booktitle={AI for Accelerated Materials Design - ICLR 2025},
+ year={2025},
+ url={https://openreview.net/forum?id=ysKfIavYQE}
+}
+```
\ No newline at end of file
diff --git a/.github/workflows/release.yaml b/.github/workflows/release.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..5e00811148edf490168655ae3c1f1e743095b1d0
--- /dev/null
+++ b/.github/workflows/release.yaml
@@ -0,0 +1,96 @@
+name: Publish Release
+
+on:
+ workflow_dispatch:
+
+permissions:
+ contents: write # Ensure write access to push tags
+
+jobs:
+ pypi:
+ name: Publish to PyPI
+ runs-on: ubuntu-latest
+
+ steps:
+ # Step 1: Checkout the code
+ - name: Checkout code
+ uses: actions/checkout@v3
+
+ # Step 2: Set up Python
+ - name: Set up Python
+ uses: actions/setup-python@v4
+ with:
+ python-version: '3.x'
+
+ # Step 3: Install dependencies
+ - name: Install dependencies
+ run: pip install toml requests
+
+ # Step 4: Extract current version from pyproject.toml
+ - name: Extract current version
+ id: get_version
+ run: |
+ VERSION=$(python -c "import toml; print(toml.load('pyproject.toml')['project']['version'])")
+ echo "VERSION=$VERSION" >> $GITHUB_ENV
+
+ # Step 5: Get latest version from PyPI
+ - name: Get latest version from PyPI
+ id: get_pypi_version
+ run: |
+ LATEST_PYPI_VERSION=$(python -c "import toml; import requests; PACKAGE_NAME = toml.load('pyproject.toml')['project']['name']; response = requests.get(f'https://pypi.org/pypi/{PACKAGE_NAME}/json'); print(response.json()['info']['version'])")
+ echo "LATEST_PYPI_VERSION=$LATEST_PYPI_VERSION" >> $GITHUB_ENV
+
+ # Step 6: Compare current version with the latest tag
+ - name: Check if version is bumped
+ id: check_version
+ run: |
+ if [ "${{ env.VERSION }}" = "${{ env.LATEST_PYPI_VERSION }}" ]; then
+ echo "Version not bumped. Exiting."
+ echo "version_bumped=false" >> $GITHUB_ENV
+ else
+ echo "Version bumped. Proceeding."
+ echo "version_bumped=true" >> $GITHUB_ENV
+ fi
+
+ # Step 5: Remove problematic optional dependencies
+ - name: Strip problematic optional dependencies
+ run: |
+ python - < ~/.pypirc
+ echo "username = __token__" >> ~/.pypirc
+ echo "password = ${{ secrets.PYPI_API_TOKEN }}" >> ~/.pypirc
+
+ # Step 9: Build and publish package (only if version bumped)
+ - name: Build and Publish Package
+ if: env.version_bumped == 'true'
+ run: |
+ flit build
+ flit publish
diff --git a/.github/workflows/sync-hf.yaml b/.github/workflows/sync-hf.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..8bb8ea7602899d586ba2cd426f3a41e002dbc12c
--- /dev/null
+++ b/.github/workflows/sync-hf.yaml
@@ -0,0 +1,39 @@
+name: Sync to Hugging Face hub
+
+on:
+ workflow_run:
+ workflows: [Python Test]
+ branches: [main]
+ types: [completed]
+ workflow_dispatch:
+
+jobs:
+ sync-to-hub:
+ if: ${{ github.event.workflow_run.conclusion == 'success' }}
+ runs-on: ubuntu-latest
+ steps:
+ - uses: actions/checkout@v4
+ with:
+ fetch-depth: 0
+ lfs: true
+
+ - name: Push to hub
+ env:
+ HF_TOKEN: ${{ secrets.HF_TOKEN }}
+ run: |
+ # Configure Git user identity
+ git config user.name "github-actions[ci]"
+ git config user.email "github-actions[ci]@users.noreply.github.com"
+
+ # Configure LFS tracking
+ git lfs track "*.pdf"
+ git lfs track "*.png"
+
+ # Create a new orphan branch (no history)
+ git checkout --orphan hf-clean
+
+ git add .
+ git commit -m "Clean sync from main branch - $(date '+%Y-%m-%d %H:%M:%S')"
+
+ # Force push to Hugging Face main branch
+ git push -f https://HF_USERNAME:$HF_TOKEN@huggingface.co/spaces/atomind/mlip-arena hf-clean:main
\ No newline at end of file
diff --git a/.github/workflows/test.yaml b/.github/workflows/test.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..753bed9074968eaa70f79288d3b2ca8232c960c3
--- /dev/null
+++ b/.github/workflows/test.yaml
@@ -0,0 +1,103 @@
+name: Python Test
+
+on:
+ push:
+ branches: [main]
+ pull_request:
+ branches: [main]
+
+env:
+ UV_SYSTEM_PYTHON: 1
+
+jobs:
+ test:
+ runs-on: ubuntu-latest
+
+ strategy:
+ matrix:
+ python-version: ["3.10", "3.11", "3.12"]
+
+ steps:
+ - name: Checkout PR with full history
+ uses: actions/checkout@v4
+ with:
+ fetch-depth: 0
+
+ - name: Install uv
+ uses: astral-sh/setup-uv@v6
+ with:
+ enable-cache: true
+ cache-dependency-glob: "pyproject.toml"
+
+ - name: Set up Python ${{ matrix.python-version }}
+ uses: actions/setup-python@v5
+ with:
+ python-version: ${{ matrix.python-version }}
+
+ - name: Install dependencies
+ run: bash scripts/install-linux.sh
+
+ - name: List dependencies
+ run: pip list
+
+ - name: Login to Hugging Face
+ env:
+ HF_TOKEN: ${{ secrets.HF_TOKEN_READ_ONLY }}
+ run: huggingface-cli login --token $HF_TOKEN
+
+ - name: Run tests
+ env:
+ PREFECT_API_KEY: ${{ secrets.PREFECT_API_KEY }}
+ PREFECT_API_URL: ${{ secrets.PREFECT_API_URL }}
+ run: pytest -vra -n 5 --dist=loadscope tests
+
+ - name: Squash commits and trial push to Hugging Face
+ if: github.event_name == 'pull_request'
+ id: trial_push
+ env:
+ HF_TOKEN: ${{ secrets.HF_TOKEN }}
+ TRIAL_BRANCH: trial-sync-${{ github.sha }}-${{ matrix.python-version }}
+ run: |
+ # Configure Git user identity
+ git config user.name "github-actions[ci]"
+ git config user.email "github-actions[ci]@users.noreply.github.com"
+
+ # Install Git LFS
+ sudo apt-get update
+ sudo apt-get install -y git-lfs
+ git lfs install
+
+ # Configure LFS tracking for binary files (only for HF push)
+ git lfs track "*.pdf"
+ git lfs track "*.png"
+
+ git add .gitattributes
+
+ # Setup LFS for the remote
+ git lfs fetch
+ git lfs checkout
+
+ # Rebase and squash all PR commits into one
+ BASE=$(git merge-base origin/main HEAD)
+ git reset --soft $BASE
+
+ # Re-add all files (binary files will now be tracked by LFS)
+ git add .
+ git commit -m "Squashed commit from PR #${{ github.event.pull_request.number }}"
+
+ # Create a new orphan branch (no history)
+ git checkout --orphan hf-clean
+
+ git add .
+ git commit -m "Clean sync from main branch - $(date '+%Y-%m-%d %H:%M:%S')"
+
+ # Push to temporary branch on Hugging Face
+ git push -f https://HF_USERNAME:$HF_TOKEN@huggingface.co/spaces/atomind/mlip-arena HEAD:refs/heads/$TRIAL_BRANCH
+
+ - name: Delete trial branch from Hugging Face
+ if: steps.trial_push.outcome == 'success'
+ env:
+ HF_TOKEN: ${{ secrets.HF_TOKEN }}
+ TRIAL_BRANCH: trial-sync-${{ github.sha }}-${{ matrix.python-version }}
+ run: |
+ git push https://HF_USERNAME:$HF_TOKEN@huggingface.co/spaces/atomind/mlip-arena --delete $TRIAL_BRANCH || true
diff --git a/.gitignore b/.gitignore
new file mode 100644
index 0000000000000000000000000000000000000000..125b29977c7d1fcd4b66fb3556b90829ff0e99b8
--- /dev/null
+++ b/.gitignore
@@ -0,0 +1,169 @@
+*.out
+*.extxyz
+*.traj
+mlip_arena/tasks/*/
+benchmarks/
+lab/
+manuscripts/
+datasets/
+
+# Byte-compiled / optimized / DLL files
+__pycache__/
+*.py[cod]
+*$py.class
+
+# C extensions
+*.so
+
+# Distribution / packaging
+.Python
+build/
+develop-eggs/
+dist/
+downloads/
+eggs/
+.eggs/
+lib/
+lib64/
+parts/
+sdist/
+var/
+wheels/
+share/python-wheels/
+*.egg-info/
+.installed.cfg
+*.egg
+MANIFEST
+
+# PyInstaller
+# Usually these files are written by a python script from a template
+# before PyInstaller builds the exe, so as to inject date/other infos into it.
+*.manifest
+*.spec
+
+# Installer logs
+pip-log.txt
+pip-delete-this-directory.txt
+
+# Unit test / coverage reports
+htmlcov/
+.tox/
+.nox/
+.coverage
+.coverage.*
+.cache
+nosetests.xml
+coverage.xml
+*.cover
+*.py,cover
+.hypothesis/
+.pytest_cache/
+cover/
+
+# Translations
+*.mo
+*.pot
+
+# Django stuff:
+*.log
+local_settings.py
+db.sqlite3
+db.sqlite3-journal
+
+# Flask stuff:
+instance/
+.webassets-cache
+
+# Scrapy stuff:
+.scrapy
+
+# Sphinx documentation
+docs/_build/
+
+# PyBuilder
+.pybuilder/
+target/
+
+# Jupyter Notebook
+.ipynb_checkpoints
+
+# IPython
+profile_default/
+ipython_config.py
+
+# pyenv
+# For a library or package, you might want to ignore these files since the code is
+# intended to run in multiple environments; otherwise, check them in:
+# .python-version
+
+# pipenv
+# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
+# However, in case of collaboration, if having platform-specific dependencies or dependencies
+# having no cross-platform support, pipenv may install dependencies that don't work, or not
+# install all needed dependencies.
+#Pipfile.lock
+
+# poetry
+# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
+# This is especially recommended for binary packages to ensure reproducibility, and is more
+# commonly ignored for libraries.
+# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
+#poetry.lock
+
+# pdm
+# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
+#pdm.lock
+# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
+# in version control.
+# https://pdm.fming.dev/#use-with-ide
+.pdm.toml
+
+# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
+__pypackages__/
+
+# Celery stuff
+celerybeat-schedule
+celerybeat.pid
+
+# SageMath parsed files
+*.sage.py
+
+# Environments
+.env
+.venv
+env/
+venv/
+ENV/
+env.bak/
+venv.bak/
+
+# Spyder project settings
+.spyderproject
+.spyproject
+
+# Rope project settings
+.ropeproject
+
+# mkdocs documentation
+/site
+
+# mypy
+.mypy_cache/
+.dmypy.json
+dmypy.json
+
+# Pyre type checker
+.pyre/
+
+# pytype static type analyzer
+.pytype/
+
+# Cython debug symbols
+cython_debug/
+
+# PyCharm
+# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
+# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
+# and can be added to the global gitignore or merged into this file. For a more nuclear
+# option (not recommended) you can uncomment the following to ignore the entire idea folder.
+#.idea/
diff --git a/.streamlit/config.toml b/.streamlit/config.toml
new file mode 100644
index 0000000000000000000000000000000000000000..f5549d1fcd6363da43c2b96fa5e9394fea789521
--- /dev/null
+++ b/.streamlit/config.toml
@@ -0,0 +1,2 @@
+[server]
+fileWatcherType = "poll"
diff --git a/CITATION.cff b/CITATION.cff
new file mode 100644
index 0000000000000000000000000000000000000000..c09003015af2ccbf8600665792c0df85d241bff1
--- /dev/null
+++ b/CITATION.cff
@@ -0,0 +1,23 @@
+# This CITATION.cff file was generated with cffinit.
+# Visit https://bit.ly/cffinit to generate yours today!
+
+cff-version: 1.2.0
+title: MLIP Arena
+message: >-
+ If you use this software, please cite it using the
+ metadata from this file.
+type: software
+authors:
+ - given-names: Yuan
+ family-names: Chiang
+ email: cyrusyc@lbl.gov
+ affiliation: Lawrence Berkeley National Laboratory
+ orcid: 'https://orcid.org/0000-0002-4017-7084'
+repository-code: 'https://github.com/atomind-ai/mlip-arena'
+keywords:
+ - Quantum Chemistry
+ - Foundation Model
+ - Interatomic Potentials
+ - Machine Learning
+ - Force Fields
+license: Apache-2.0
diff --git a/LICENSE b/LICENSE
new file mode 100644
index 0000000000000000000000000000000000000000..261eeb9e9f8b2b4b0d119366dda99c6fd7d35c64
--- /dev/null
+++ b/LICENSE
@@ -0,0 +1,201 @@
+ Apache License
+ Version 2.0, January 2004
+ http://www.apache.org/licenses/
+
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
+
+ 1. Definitions.
+
+ "License" shall mean the terms and conditions for use, reproduction,
+ and distribution as defined by Sections 1 through 9 of this document.
+
+ "Licensor" shall mean the copyright owner or entity authorized by
+ the copyright owner that is granting the License.
+
+ "Legal Entity" shall mean the union of the acting entity and all
+ other entities that control, are controlled by, or are under common
+ control with that entity. For the purposes of this definition,
+ "control" means (i) the power, direct or indirect, to cause the
+ direction or management of such entity, whether by contract or
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
+ outstanding shares, or (iii) beneficial ownership of such entity.
+
+ "You" (or "Your") shall mean an individual or Legal Entity
+ exercising permissions granted by this License.
+
+ "Source" form shall mean the preferred form for making modifications,
+ including but not limited to software source code, documentation
+ source, and configuration files.
+
+ "Object" form shall mean any form resulting from mechanical
+ transformation or translation of a Source form, including but
+ not limited to compiled object code, generated documentation,
+ and conversions to other media types.
+
+ "Work" shall mean the work of authorship, whether in Source or
+ Object form, made available under the License, as indicated by a
+ copyright notice that is included in or attached to the work
+ (an example is provided in the Appendix below).
+
+ "Derivative Works" shall mean any work, whether in Source or Object
+ form, that is based on (or derived from) the Work and for which the
+ editorial revisions, annotations, elaborations, or other modifications
+ represent, as a whole, an original work of authorship. For the purposes
+ of this License, Derivative Works shall not include works that remain
+ separable from, or merely link (or bind by name) to the interfaces of,
+ the Work and Derivative Works thereof.
+
+ "Contribution" shall mean any work of authorship, including
+ the original version of the Work and any modifications or additions
+ to that Work or Derivative Works thereof, that is intentionally
+ submitted to Licensor for inclusion in the Work by the copyright owner
+ or by an individual or Legal Entity authorized to submit on behalf of
+ the copyright owner. For the purposes of this definition, "submitted"
+ means any form of electronic, verbal, or written communication sent
+ to the Licensor or its representatives, including but not limited to
+ communication on electronic mailing lists, source code control systems,
+ and issue tracking systems that are managed by, or on behalf of, the
+ Licensor for the purpose of discussing and improving the Work, but
+ excluding communication that is conspicuously marked or otherwise
+ designated in writing by the copyright owner as "Not a Contribution."
+
+ "Contributor" shall mean Licensor and any individual or Legal Entity
+ on behalf of whom a Contribution has been received by Licensor and
+ subsequently incorporated within the Work.
+
+ 2. Grant of Copyright License. Subject to the terms and conditions of
+ this License, each Contributor hereby grants to You a perpetual,
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
+ copyright license to reproduce, prepare Derivative Works of,
+ publicly display, publicly perform, sublicense, and distribute the
+ Work and such Derivative Works in Source or Object form.
+
+ 3. Grant of Patent License. Subject to the terms and conditions of
+ this License, each Contributor hereby grants to You a perpetual,
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
+ (except as stated in this section) patent license to make, have made,
+ use, offer to sell, sell, import, and otherwise transfer the Work,
+ where such license applies only to those patent claims licensable
+ by such Contributor that are necessarily infringed by their
+ Contribution(s) alone or by combination of their Contribution(s)
+ with the Work to which such Contribution(s) was submitted. If You
+ institute patent litigation against any entity (including a
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
+ or a Contribution incorporated within the Work constitutes direct
+ or contributory patent infringement, then any patent licenses
+ granted to You under this License for that Work shall terminate
+ as of the date such litigation is filed.
+
+ 4. Redistribution. You may reproduce and distribute copies of the
+ Work or Derivative Works thereof in any medium, with or without
+ modifications, and in Source or Object form, provided that You
+ meet the following conditions:
+
+ (a) You must give any other recipients of the Work or
+ Derivative Works a copy of this License; and
+
+ (b) You must cause any modified files to carry prominent notices
+ stating that You changed the files; and
+
+ (c) You must retain, in the Source form of any Derivative Works
+ that You distribute, all copyright, patent, trademark, and
+ attribution notices from the Source form of the Work,
+ excluding those notices that do not pertain to any part of
+ the Derivative Works; and
+
+ (d) If the Work includes a "NOTICE" text file as part of its
+ distribution, then any Derivative Works that You distribute must
+ include a readable copy of the attribution notices contained
+ within such NOTICE file, excluding those notices that do not
+ pertain to any part of the Derivative Works, in at least one
+ of the following places: within a NOTICE text file distributed
+ as part of the Derivative Works; within the Source form or
+ documentation, if provided along with the Derivative Works; or,
+ within a display generated by the Derivative Works, if and
+ wherever such third-party notices normally appear. The contents
+ of the NOTICE file are for informational purposes only and
+ do not modify the License. You may add Your own attribution
+ notices within Derivative Works that You distribute, alongside
+ or as an addendum to the NOTICE text from the Work, provided
+ that such additional attribution notices cannot be construed
+ as modifying the License.
+
+ You may add Your own copyright statement to Your modifications and
+ may provide additional or different license terms and conditions
+ for use, reproduction, or distribution of Your modifications, or
+ for any such Derivative Works as a whole, provided Your use,
+ reproduction, and distribution of the Work otherwise complies with
+ the conditions stated in this License.
+
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
+ any Contribution intentionally submitted for inclusion in the Work
+ by You to the Licensor shall be under the terms and conditions of
+ this License, without any additional terms or conditions.
+ Notwithstanding the above, nothing herein shall supersede or modify
+ the terms of any separate license agreement you may have executed
+ with Licensor regarding such Contributions.
+
+ 6. Trademarks. This License does not grant permission to use the trade
+ names, trademarks, service marks, or product names of the Licensor,
+ except as required for reasonable and customary use in describing the
+ origin of the Work and reproducing the content of the NOTICE file.
+
+ 7. Disclaimer of Warranty. Unless required by applicable law or
+ agreed to in writing, Licensor provides the Work (and each
+ Contributor provides its Contributions) on an "AS IS" BASIS,
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
+ implied, including, without limitation, any warranties or conditions
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
+ PARTICULAR PURPOSE. You are solely responsible for determining the
+ appropriateness of using or redistributing the Work and assume any
+ risks associated with Your exercise of permissions under this License.
+
+ 8. Limitation of Liability. In no event and under no legal theory,
+ whether in tort (including negligence), contract, or otherwise,
+ unless required by applicable law (such as deliberate and grossly
+ negligent acts) or agreed to in writing, shall any Contributor be
+ liable to You for damages, including any direct, indirect, special,
+ incidental, or consequential damages of any character arising as a
+ result of this License or out of the use or inability to use the
+ Work (including but not limited to damages for loss of goodwill,
+ work stoppage, computer failure or malfunction, or any and all
+ other commercial damages or losses), even if such Contributor
+ has been advised of the possibility of such damages.
+
+ 9. Accepting Warranty or Additional Liability. While redistributing
+ the Work or Derivative Works thereof, You may choose to offer,
+ and charge a fee for, acceptance of support, warranty, indemnity,
+ or other liability obligations and/or rights consistent with this
+ License. However, in accepting such obligations, You may act only
+ on Your own behalf and on Your sole responsibility, not on behalf
+ of any other Contributor, and only if You agree to indemnify,
+ defend, and hold each Contributor harmless for any liability
+ incurred by, or claims asserted against, such Contributor by reason
+ of your accepting any such warranty or additional liability.
+
+ END OF TERMS AND CONDITIONS
+
+ APPENDIX: How to apply the Apache License to your work.
+
+ To apply the Apache License to your work, attach the following
+ boilerplate notice, with the fields enclosed by brackets "[]"
+ replaced with your own identifying information. (Don't include
+ the brackets!) The text should be enclosed in the appropriate
+ comment syntax for the file format. We also recommend that a
+ file or class name and description of purpose be included on the
+ same "printed page" as the copyright notice for easier
+ identification within third-party archives.
+
+ Copyright [yyyy] [name of copyright owner]
+
+ Licensed under the Apache License, Version 2.0 (the "License");
+ you may not use this file except in compliance with the License.
+ You may obtain a copy of the License at
+
+ http://www.apache.org/licenses/LICENSE-2.0
+
+ Unless required by applicable law or agreed to in writing, software
+ distributed under the License is distributed on an "AS IS" BASIS,
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ See the License for the specific language governing permissions and
+ limitations under the License.
diff --git a/README.md b/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..63bc1facf120b8b3ae45509f6aa866e9b136b287
--- /dev/null
+++ b/README.md
@@ -0,0 +1,14 @@
+---
+title: MLIP Arena
+emoji: โ
+sdk: streamlit
+sdk_version: 1.43.2 # The latest supported version
+python_version: 3.11
+app_file: serve/app.py
+colorFrom: indigo
+colorTo: yellow
+pinned: true
+short_description: Benchmark machine learning interatomic potential at scale
+---
+
+
diff --git a/benchmarks/bzo/BZO_cubic_prim.xyz b/benchmarks/bzo/BZO_cubic_prim.xyz
new file mode 100644
index 0000000000000000000000000000000000000000..37607a2c785e9f2737aa12719cbb32a086474ff7
--- /dev/null
+++ b/benchmarks/bzo/BZO_cubic_prim.xyz
@@ -0,0 +1,7 @@
+5
+Lattice="4.2 0.0 0.0 0.0 4.2 0.0 0.0 0.0 4.2" Properties=species:S:1:pos:R:3 pbc="T T T"
+Ba 0.00000000 0.00000000 0.00000000
+Zr 2.10000000 2.10000000 2.10000000
+O 2.10000000 2.10000000 0.00000000
+O 2.10000000 0.00000000 2.10000000
+O 0.00000000 2.10000000 2.10000000
diff --git a/benchmarks/bzo/README.md b/benchmarks/bzo/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..5e2dd4ca40ba432a76256cc52a0676ecf3e1075c
--- /dev/null
+++ b/benchmarks/bzo/README.md
@@ -0,0 +1,6 @@
+# Second-order phase transition in BZO perovskite (A.10.3)
+
+To benchmark new MLIP, add model in model list or simply swap ASE calculator in [run.ipynb](run.ipynb).
+
+To reproduce the DFT PBE phonon modes, run [dft.ipynb](dft.ipynb) file. The example phonon mode used to generate plot in A.10.3 has been provided in [dft/mode-1.npy](dft/mode-1.npy).
+
diff --git a/benchmarks/bzo/dft.ipynb b/benchmarks/bzo/dft.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..956ffeaee0c593cf2b92ba4d0cd2b94a4c60acd8
--- /dev/null
+++ b/benchmarks/bzo/dft.ipynb
@@ -0,0 +1,344 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/torchani/aev.py:16: UserWarning: cuaev not installed\n",
+ " warnings.warn(\"cuaev not installed\")\n",
+ "\u001b[32m2025-03-18 22:33:32.183\u001b[0m | \u001b[33m\u001b[1mWARNING \u001b[0m | \u001b[36mmlip_arena.models\u001b[0m:\u001b[36m\u001b[0m:\u001b[36m34\u001b[0m - \u001b[33m\u001b[1mNo module named 'deepmd'\u001b[0m\n"
+ ]
+ }
+ ],
+ "source": [
+ "from mlip_arena.tasks import MD, PHONON, OPT\n",
+ "from mlip_arena.tasks.utils import get_calculator\n",
+ "from ase.build import bulk\n",
+ "from ase.io import read\n",
+ "import numpy as np\n",
+ "\n",
+ "atoms = read('BZO_cubic_prim.xyz')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
22:33:35.208 | INFO | prefect - Starting temporary server on http://127.0.0.1:8224\n",
+ "See https://docs.prefect.io/3.0/manage/self-host#self-host-a-prefect-server for more information on running a dedicated Prefect server.\n",
+ "
\n"
+ ],
+ "text/plain": [
+ "22:33:35.208 | \u001b[36mINFO\u001b[0m | prefect - Starting temporary server on \u001b[94mhttp://127.0.0.1:8224\u001b[0m\n",
+ "See \u001b[94mhttps://docs.prefect.io/3.0/manage/self-host#self-host-a-prefect-server\u001b[0m for more information on running a dedicated Prefect server.\n"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "
22:33:41.734 | INFO | Task run 'OPT: BaO3Zr - <ase.calculators.vasp.vasp.Vasp object at 0x7f582ccbee10>' - Finished in state Cached(type=COMPLETED)\n",
+ "
"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "import plotly.express as px\n",
+ "\n",
+ "for i, method in enumerate(methods):\n",
+ " filtered_data = data[data['method'] == method]\n",
+ " filtered_data = filtered_data.drop_duplicates(subset=['method', 'formula', 'volume'], keep='last')\n",
+ " \n",
+ " fig = px.scatter_ternary(\n",
+ " filtered_data, a=\"Fe\", b=\"Ni\", c=\"Cr\", color=\"b0\", \n",
+ " )\n",
+ " \n",
+ " fig.update_layout(title=method)\n",
+ " fig.show()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "mlip-arena",
+ "language": "python",
+ "name": "mlip-arena"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.11.8"
+ },
+ "widgets": {
+ "application/vnd.jupyter.widget-state+json": {
+ "state": {},
+ "version_major": 2,
+ "version_minor": 0
+ }
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}
diff --git a/benchmarks/eos_bulk/CHGNet.parquet b/benchmarks/eos_bulk/CHGNet.parquet
new file mode 100644
index 0000000000000000000000000000000000000000..43dad7c081ddbc284dc6e6b2c2852465debfa320
--- /dev/null
+++ b/benchmarks/eos_bulk/CHGNet.parquet
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:68871d694e93a3c3e7e272b9cbd87d3757e3bc689f30f3189db232d76e629c07
+size 429910
diff --git a/benchmarks/eos_bulk/CHGNet_processed.parquet b/benchmarks/eos_bulk/CHGNet_processed.parquet
new file mode 100644
index 0000000000000000000000000000000000000000..a942f3448c1013017ba0bb8a7aa85fa23f9345cd
--- /dev/null
+++ b/benchmarks/eos_bulk/CHGNet_processed.parquet
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:bfde7530e6b0d2df5a30e1b7e3ec124fb2a86f6da8e35d2548d37d10a1eff1b1
+size 387425
diff --git a/benchmarks/eos_bulk/M3GNet.parquet b/benchmarks/eos_bulk/M3GNet.parquet
new file mode 100644
index 0000000000000000000000000000000000000000..0ce0cb0cd28f9e7203404427fe68d6b04edb859c
--- /dev/null
+++ b/benchmarks/eos_bulk/M3GNet.parquet
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:53dde465b5e10edd677f131f8a531e3dfc36303dd7ec7b9df0060c19847494d9
+size 427419
diff --git a/benchmarks/eos_bulk/M3GNet_processed.parquet b/benchmarks/eos_bulk/M3GNet_processed.parquet
new file mode 100644
index 0000000000000000000000000000000000000000..d1b291c5a1b157174c53acde829d6da0b08de8a0
--- /dev/null
+++ b/benchmarks/eos_bulk/M3GNet_processed.parquet
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:eb43a3c74f3340100b1adb21b3f2d075451e1ffe88ac6d6662741bc4a0576eb8
+size 397450
diff --git a/benchmarks/eos_bulk/MACE-MP(M).parquet b/benchmarks/eos_bulk/MACE-MP(M).parquet
new file mode 100644
index 0000000000000000000000000000000000000000..7287426ae925a64ec1400a9f641848be301ada49
--- /dev/null
+++ b/benchmarks/eos_bulk/MACE-MP(M).parquet
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:ff9769eeb83042129767aeff975eb04dee8efae12e96fbd46cd3039eeda26705
+size 427896
diff --git a/benchmarks/eos_bulk/MACE-MP(M)_processed.parquet b/benchmarks/eos_bulk/MACE-MP(M)_processed.parquet
new file mode 100644
index 0000000000000000000000000000000000000000..e681cec5643003bfea9db29799c19cab5f26b9a5
--- /dev/null
+++ b/benchmarks/eos_bulk/MACE-MP(M)_processed.parquet
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:7e5507cdc5fe558b5d3fe2ea8f1dd577ac444e82c5347b5fbe738a4f855dffcb
+size 397379
diff --git a/benchmarks/eos_bulk/MACE-MPA.parquet b/benchmarks/eos_bulk/MACE-MPA.parquet
new file mode 100644
index 0000000000000000000000000000000000000000..ae18b9d947a17edb51ce0fecd2e6cc066d74d0a5
--- /dev/null
+++ b/benchmarks/eos_bulk/MACE-MPA.parquet
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:53fcd188baddd4d5e797c5aa3de1b4368db711ebd29b7877cfe224856ba9d171
+size 428888
diff --git a/benchmarks/eos_bulk/MACE-MPA_processed.parquet b/benchmarks/eos_bulk/MACE-MPA_processed.parquet
new file mode 100644
index 0000000000000000000000000000000000000000..9ba5d9f8195023b64e40ac524adb6806ae4e32f0
--- /dev/null
+++ b/benchmarks/eos_bulk/MACE-MPA_processed.parquet
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:0f3032d5a156febdd9580fa3d86cb1a84236374bcac6ccb22d18a948767db502
+size 394748
diff --git a/benchmarks/eos_bulk/MatterSim.parquet b/benchmarks/eos_bulk/MatterSim.parquet
new file mode 100644
index 0000000000000000000000000000000000000000..1ac19b614e60ddafbd3a5e0ed2599ac3e7daf401
--- /dev/null
+++ b/benchmarks/eos_bulk/MatterSim.parquet
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:e6717650b97782de6f90e4473075410fe4540279eb39338d2234d3c9399079b3
+size 389586
diff --git a/benchmarks/eos_bulk/MatterSim_processed.parquet b/benchmarks/eos_bulk/MatterSim_processed.parquet
new file mode 100644
index 0000000000000000000000000000000000000000..5c7c372a85d6f4bef844bd6dbe68bf4692ee9344
--- /dev/null
+++ b/benchmarks/eos_bulk/MatterSim_processed.parquet
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:fb1f10a60495f5e88ea8cf737fd7b47d1c471fda422374ee519d14f531c732f8
+size 290191
diff --git a/benchmarks/eos_bulk/ORBv2.parquet b/benchmarks/eos_bulk/ORBv2.parquet
new file mode 100644
index 0000000000000000000000000000000000000000..2cd571ac07630e9883eb0c9e0d854ed646a18d9b
--- /dev/null
+++ b/benchmarks/eos_bulk/ORBv2.parquet
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:ae13c9af1ae7fafe2a42ed4c47e2ba0f036abfa64a87ca517b92d89c62fcbfd9
+size 427105
diff --git a/benchmarks/eos_bulk/ORBv2_processed.parquet b/benchmarks/eos_bulk/ORBv2_processed.parquet
new file mode 100644
index 0000000000000000000000000000000000000000..82bb16f1d7a7ea63f852f9d6f1657e75abc9784f
--- /dev/null
+++ b/benchmarks/eos_bulk/ORBv2_processed.parquet
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:7eb0a3060b8a2d3541b8fb1083176c88aae0a8be0008e84d5770998b01742216
+size 402554
diff --git a/benchmarks/eos_bulk/README.md b/benchmarks/eos_bulk/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..97f5f4ecfe193d1f1128be4c864dc393445023ce
--- /dev/null
+++ b/benchmarks/eos_bulk/README.md
@@ -0,0 +1,91 @@
+# Equation of state (EOS) benchmark on WBM structures (2.1)
+
+The compiled WBM structures are available as ASE DB [here](../wbm_structures.db)
+
+## Run
+
+This benchmark requires parellel orchestration using Prefect utility. To run the benchmark, please modify the SLURM cluster setting (or change to desired job queing systems following [dask-jobqueuue documentation](https://jobqueue.dask.org/en/latest/)) in [run.py](run.py).
+
+
+```
+ nodes_per_alloc = 1
+ gpus_per_alloc = 1
+ ntasks = 1
+
+ cluster_kwargs = dict(
+ cores=1,
+ memory="64 GB",
+ processes=1,
+ shebang="#!/bin/bash",
+ account="matgen",
+ walltime="00:30:00",
+ # job_cpu=128,
+ job_mem="0",
+ job_script_prologue=[
+ "source ~/.bashrc",
+ "module load python",
+ "source activate /pscratch/sd/c/cyrusyc/.conda/dev",
+ ],
+ job_directives_skip=["-n", "--cpus-per-task", "-J"],
+ job_extra_directives=[
+ "-J c2db",
+ "-q regular",
+ f"-N {nodes_per_alloc}",
+ "-C gpu",
+ f"-G {gpus_per_alloc}",
+ ],
+ )
+
+ cluster = SLURMCluster(**cluster_kwargs)
+ print(cluster.job_script())
+ cluster.adapt(minimum_jobs=25, maximum_jobs=50)
+```
+
+## Analysis
+
+To analyze and gather the results, run [analyze.py](analyze.py) and generate summary. To plot the EOS curves, run [plot.py](plot.py)# Equation of state (EOS) benchmark on WBM structures
+
+The compiled WBM structures are available as ASE DB file [here](../wbm_structures.db)
+
+## Run
+
+This benchmark requires parellel orchestration using Prefect utility. To run the benchmark, please modify the SLURM cluster setting (or change to desired job queing systems following [dask-jobqueuue documentation](https://jobqueue.dask.org/en/latest/)) in [run.py](run.py).
+
+
+```
+ nodes_per_alloc = 1
+ gpus_per_alloc = 1
+ ntasks = 1
+
+ cluster_kwargs = dict(
+ cores=1,
+ memory="64 GB",
+ processes=1,
+ shebang="#!/bin/bash",
+ account="matgen",
+ walltime="00:30:00",
+ # job_cpu=128,
+ job_mem="0",
+ job_script_prologue=[
+ "source ~/.bashrc",
+ "module load python",
+ "source activate /pscratch/sd/c/cyrusyc/.conda/dev",
+ ],
+ job_directives_skip=["-n", "--cpus-per-task", "-J"],
+ job_extra_directives=[
+ "-J c2db",
+ "-q regular",
+ f"-N {nodes_per_alloc}",
+ "-C gpu",
+ f"-G {gpus_per_alloc}",
+ ],
+ )
+
+ cluster = SLURMCluster(**cluster_kwargs)
+ print(cluster.job_script())
+ cluster.adapt(minimum_jobs=25, maximum_jobs=50)
+```
+
+## Analysis
+
+To analyze and gather the results, run [analyze.py](analyze.py) and generate summary. To plot the EOS curves, run [plot.py](plot.py)
\ No newline at end of file
diff --git a/benchmarks/eos_bulk/SevenNet.parquet b/benchmarks/eos_bulk/SevenNet.parquet
new file mode 100644
index 0000000000000000000000000000000000000000..5a3bb7cc25bd7752f35f3fbad0154d411b270b97
--- /dev/null
+++ b/benchmarks/eos_bulk/SevenNet.parquet
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:64be88ec2632cdabf79daa01acb2cf2ef19fef0557813df5502c4f71ec566f4e
+size 428341
diff --git a/benchmarks/eos_bulk/SevenNet_processed.parquet b/benchmarks/eos_bulk/SevenNet_processed.parquet
new file mode 100644
index 0000000000000000000000000000000000000000..0d4a9920f62dd4340134b6a0ab95e77c03b6e181
--- /dev/null
+++ b/benchmarks/eos_bulk/SevenNet_processed.parquet
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:9f484928f5086e8d1411a198ac69bfe44313597909b72c8676e9131cce1660f1
+size 398295
diff --git a/benchmarks/eos_bulk/analyze.py b/benchmarks/eos_bulk/analyze.py
new file mode 100644
index 0000000000000000000000000000000000000000..accaee8ca28547e6d06cb8f0c6ae830d93eaa614
--- /dev/null
+++ b/benchmarks/eos_bulk/analyze.py
@@ -0,0 +1,223 @@
+from pathlib import Path
+
+import numpy as np
+import pandas as pd
+from ase.db import connect
+from scipy import stats
+
+from mlip_arena.models import REGISTRY, MLIPEnum
+
+DATA_DIR = Path(__file__).parent.absolute()
+
+
+def load_wbm_structures():
+ """
+ Load the WBM structures from a ASE DB file.
+ """
+ with connect(DATA_DIR.parent / "wbm_structures.db") as db:
+ for row in db.select():
+ yield row.toatoms(add_additional_information=True)
+
+def gather_results():
+ for model in MLIPEnum:
+ if "eos_bulk" not in REGISTRY[model.name].get("gpu-tasks", []):
+ continue
+
+ if (DATA_DIR / f"{model.name}.parquet").exists():
+ continue
+
+ all_data = []
+
+ for atoms in load_wbm_structures():
+ fpath = Path(model.name) / f"{atoms.info['key_value_pairs']['wbm_id']}.pkl"
+ if not fpath.exists():
+ continue
+
+ all_data.append(pd.read_pickle(fpath))
+
+ df = pd.concat(all_data, ignore_index=True)
+ df.to_parquet(DATA_DIR / f"{model.name}.parquet")
+
+
+def summarize():
+ summary_table = pd.DataFrame(
+ columns=[
+ "model",
+ "energy-diff-flip-times",
+ "tortuosity",
+ "spearman-compression-energy",
+ "spearman-compression-derivative",
+ "spearman-tension-energy",
+ "missing",
+ ]
+ )
+
+
+ for model in MLIPEnum:
+ fpath = DATA_DIR / f"{model.name}.parquet"
+ if not fpath.exists():
+ continue
+ df_raw_results = pd.read_parquet(fpath)
+
+ df_analyzed = pd.DataFrame(
+ columns=[
+ "model",
+ "structure",
+ "formula",
+ "volume-ratio",
+ "energy-delta-per-atom",
+ "energy-diff-flip-times",
+ "energy-delta-per-volume-b0",
+ "tortuosity",
+ "spearman-compression-energy",
+ "spearman-compression-derivative",
+ "spearman-tension-energy",
+ "missing",
+ ]
+ )
+
+ for wbm_struct in load_wbm_structures():
+ structure_id = wbm_struct.info["key_value_pairs"]["wbm_id"]
+
+ try:
+ results = df_raw_results.loc[df_raw_results["id"] == structure_id]
+ b0 = results["b0"].values[0]
+ # vol0 = results["v0"].values[0]
+ results = results["eos"].values[0]
+ es = np.array(results["energies"])
+ vols = np.array(results["volumes"])
+
+ indices = np.argsort(vols)
+ vols = vols[indices]
+ es = es[indices]
+
+ imine = len(es) // 2
+ # min_center_val = np.min(es[imid - 1 : imid + 2])
+ # imine = np.where(es == min_center_val)[0][0]
+ emin = es[imine]
+ vol0 = vols[imine]
+
+ interpolated_volumes = [
+ (vols[i] + vols[i + 1]) / 2 for i in range(len(vols) - 1)
+ ]
+ ediff = np.diff(es)
+ ediff_sign = np.sign(ediff)
+ mask = ediff_sign != 0
+ ediff = ediff[mask]
+ ediff_sign = ediff_sign[mask]
+ ediff_flip = np.diff(ediff_sign) != 0
+
+ etv = np.sum(np.abs(np.diff(es)))
+
+ data = {
+ "model": model.name,
+ "structure": structure_id,
+ "formula": wbm_struct.get_chemical_formula(),
+ "missing": False,
+ "volume-ratio": vols / vol0,
+ "energy-delta-per-atom": (es - emin) / len(wbm_struct),
+ "energy-diff-flip-times": np.sum(ediff_flip).astype(int),
+ "energy-delta-per-volume-b0": (es - emin) / (b0*vol0),
+ "tortuosity": etv / (abs(es[0] - emin) + abs(es[-1] - emin)),
+ "spearman-compression-energy": stats.spearmanr(
+ vols[:imine], es[:imine]
+ ).statistic,
+ "spearman-compression-derivative": stats.spearmanr(
+ interpolated_volumes[:imine], ediff[:imine]
+ ).statistic,
+ "spearman-tension-energy": stats.spearmanr(
+ vols[imine:], es[imine:]
+ ).statistic,
+ }
+
+ except Exception as e:
+ print(e)
+ data = {
+ "model": model.name,
+ "structure": structure_id,
+ "formula": wbm_struct.get_chemical_formula(),
+ "missing": True,
+ "volume-ratio": None,
+ "energy-delta-per-atom": None,
+ "energy-delta-per-volume-b0": None,
+ "energy-diff-flip-times": None,
+ "tortuosity": None,
+ "spearman-compression-energy": None,
+ "spearman-compression-derivative": None,
+ "spearman-tension-energy": None,
+ }
+
+ df_analyzed = pd.concat([df_analyzed, pd.DataFrame([data])], ignore_index=True)
+
+ df_analyzed.to_parquet(DATA_DIR / f"{model.name}_processed.parquet")
+ # json_fpath = DATA_DIR / f"EV_scan_analyzed_{model.name}.json"
+
+ # df_analyzed.to_json(json_fpath, orient="records")
+
+ valid_results = df_analyzed[df_analyzed["missing"] == False]
+
+ analysis_summary = {
+ "model": model.name,
+ "energy-diff-flip-times": valid_results["energy-diff-flip-times"].mean(),
+ "energy-diff-flip-times-std": valid_results["energy-diff-flip-times"].std(),
+ "tortuosity": valid_results["tortuosity"].mean(),
+ "tortuosity-std": valid_results["tortuosity"].std(),
+ "spearman-compression-energy": valid_results[
+ "spearman-compression-energy"
+ ].mean(),
+ "spearman-compression-energy-std": valid_results["spearman-compression-energy"].std(),
+ "spearman-compression-derivative": valid_results[
+ "spearman-compression-derivative"
+ ].mean(),
+ "spearman-compression-derivative-std": valid_results[
+ "spearman-compression-derivative"
+ ].std(),
+ "spearman-tension-energy": valid_results["spearman-tension-energy"].mean(),
+ "spearman-tension-energy-std": valid_results["spearman-tension-energy"].std(),
+ "missing": len(df_analyzed[df_analyzed["missing"] == True]),
+ }
+ summary_table = pd.concat(
+ [summary_table, pd.DataFrame([analysis_summary])], ignore_index=True
+ )
+
+
+ flip_rank = (
+ (summary_table["energy-diff-flip-times"] - 1)
+ .abs()
+ .rank(ascending=True, method="min")
+ )
+ tortuosity_rank = summary_table["tortuosity"].rank(ascending=True, method="min")
+ spearman_compression_energy_rank = summary_table["spearman-compression-energy"].rank(
+ method="min"
+ )
+ spearman_compression_derivative_rank = summary_table[
+ "spearman-compression-derivative"
+ ].rank(ascending=False, method="min")
+ spearman_tension_energy_rank = summary_table["spearman-tension-energy"].rank(
+ ascending=False, method="min"
+ )
+ missing_rank = summary_table["missing"].rank(ascending=True, method="min")
+
+ rank_aggr = (
+ flip_rank
+ + tortuosity_rank
+ + spearman_compression_energy_rank
+ + spearman_compression_derivative_rank
+ + spearman_tension_energy_rank
+ + missing_rank
+ )
+ rank = rank_aggr.rank(method="min")
+
+ summary_table.insert(1, "rank", rank.astype(int))
+ summary_table.insert(2, "rank-aggregation", rank_aggr.astype(int))
+ summary_table = summary_table.sort_values(by="rank", ascending=True)
+ summary_table = summary_table.reset_index(drop=True)
+
+ summary_table.to_csv(DATA_DIR / "summary.csv", index=False)
+ summary_table.to_latex(DATA_DIR / "summary.tex", index=False, float_format="%.3f")
+
+ return summary_table
+
+if __name__ == "__main__":
+ gather_results()
+ summarize()
diff --git a/benchmarks/eos_bulk/eSEN.parquet b/benchmarks/eos_bulk/eSEN.parquet
new file mode 100644
index 0000000000000000000000000000000000000000..0f9ec3b45d27247fb4e0ddfffe9309057413fa1b
--- /dev/null
+++ b/benchmarks/eos_bulk/eSEN.parquet
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:4503e17151b7376bbd88dc8c4767747e7290e8eae898e050b0a231a5c447e3e6
+size 427652
diff --git a/benchmarks/eos_bulk/eSEN_processed.parquet b/benchmarks/eos_bulk/eSEN_processed.parquet
new file mode 100644
index 0000000000000000000000000000000000000000..96b954d9ea717afb44fcafc6d734f4ddd9d6efa6
--- /dev/null
+++ b/benchmarks/eos_bulk/eSEN_processed.parquet
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:d7f754d8e18f645c1608e86286245c11611d5af34f3bd0bbc4a5b63b851a0dee
+size 393790
diff --git a/benchmarks/eos_bulk/plot.py b/benchmarks/eos_bulk/plot.py
new file mode 100644
index 0000000000000000000000000000000000000000..9f3fa6d747f7fe048c1d60e85181dc13ed0ea6ce
--- /dev/null
+++ b/benchmarks/eos_bulk/plot.py
@@ -0,0 +1,106 @@
+from pathlib import Path
+
+import matplotlib.pyplot as plt
+import numpy as np
+import pandas as pd
+from ase.db import connect
+
+from mlip_arena.models import REGISTRY as MODELS
+
+DATA_DIR = Path(__file__).parent.absolute()
+
+# Use a qualitative color palette from matplotlib
+palette_name = "tab10" # Better for distinguishing multiple lines
+color_sequence = plt.get_cmap(palette_name).colors
+
+valid_models = [
+ model
+ for model, metadata in MODELS.items()
+ if "eos_bulk" in metadata.get("gpu-tasks", [])
+]
+
+def load_wbm_structures():
+ """
+ Load the WBM structures from a ASE DB file.
+ """
+ with connect(DATA_DIR.parent / "wbm_structures.db") as db:
+ for row in db.select():
+ yield row.toatoms(add_additional_information=True)
+
+# Set up the grid layout
+n_models = len(valid_models)
+n_cols = 4 # Use 4 columns
+n_rows = (n_models + n_cols - 1) // n_cols # Ceiling division to get required rows
+
+# Create figure with enough space for all subplots
+fig = plt.figure(
+ figsize=(6, 1.25 * n_rows), # Wider for better readability
+ constrained_layout=True, # Better than tight_layout for this case
+)
+
+# Create grid of subplots
+axes = []
+for i in range(n_models):
+ ax = plt.subplot(n_rows, n_cols, i+1)
+ axes.append(ax)
+
+SMALL_SIZE = 6
+MEDIUM_SIZE = 8
+LARGE_SIZE = 10
+
+# Fill in the subplots with data
+for i, model_name in enumerate(valid_models):
+ fpath = DATA_DIR / f"{model_name}_processed.parquet"
+ df = pd.read_parquet(fpath)
+
+ ax = axes[i]
+ valid_structures = []
+
+ for j, (_, row) in enumerate(df.iterrows()):
+ structure_id = row["structure"]
+ formula = row.get("formula", "")
+ if isinstance(row["volume-ratio"], (list, np.ndarray)) and isinstance(
+ row["energy-delta-per-volume-b0"], (list, np.ndarray)
+ ):
+ vol_strain = row["volume-ratio"]
+ energy_delta = row["energy-delta-per-volume-b0"]
+ color = color_sequence[j % len(color_sequence)]
+ ax.plot(
+ vol_strain,
+ energy_delta,
+ color=color,
+ linewidth=1,
+ alpha=0.9,
+ )
+ valid_structures.append(structure_id)
+
+ # Set subplot title
+ ax.set_title(f"{model_name} ({len(valid_structures)})", fontsize=MEDIUM_SIZE)
+
+ # Only add y-label to leftmost plots (those with index divisible by n_cols)
+ if i % n_cols == 0:
+ ax.set_ylabel("$\\frac{\\Delta E}{B V_0}$", fontsize=MEDIUM_SIZE)
+ else:
+ ax.set_ylabel("")
+
+ # Only add x-label to bottom row plots
+ # Check if this plot is in the bottom row
+ is_bottom_row = (i // n_cols) == (n_rows - 1) or (i >= n_models - n_cols)
+ if is_bottom_row:
+ ax.set_xlabel("$V/V_0$", fontsize=MEDIUM_SIZE)
+ else:
+ ax.set_xlabel("")
+
+ ax.set_ylim(-0.02, 0.1) # Consistent y-limits
+ ax.axvline(x=1, linestyle="--", color="gray", alpha=0.7)
+ ax.tick_params(axis="both", which="major", labelsize=MEDIUM_SIZE)
+
+# Make sure all subplots share the x and y limits
+for ax in axes:
+ ax.set_xlim(0.8, 1.2) # Adjust these as needed
+ ax.set_ylim(-0.02, 0.1)
+
+# Save the figure with all plots
+plt.savefig(DATA_DIR / "eos-bulk-grid.png", dpi=300, bbox_inches="tight")
+plt.savefig(DATA_DIR / "eos-bulk-grid.pdf", bbox_inches="tight")
+# plt.show()
\ No newline at end of file
diff --git a/benchmarks/eos_bulk/preprocessing.py b/benchmarks/eos_bulk/preprocessing.py
new file mode 100644
index 0000000000000000000000000000000000000000..08789185c32c110dd37ce3576bf8779073615069
--- /dev/null
+++ b/benchmarks/eos_bulk/preprocessing.py
@@ -0,0 +1,12 @@
+import json
+
+from ase.db import connect
+from pymatgen.core import Structure
+
+with open("wbm_structures.json") as f:
+ structs = json.load(f)
+
+with connect("wbm_structures.db") as db:
+ for id, s in structs.items():
+ atoms = Structure.from_dict(s).to_ase_atoms(msonable=False)
+ db.write(atoms, wbm_id=id)
diff --git a/benchmarks/eos_bulk/run.py b/benchmarks/eos_bulk/run.py
new file mode 100644
index 0000000000000000000000000000000000000000..f62802af6d7e681a2e0eb07dc33862944c28055d
--- /dev/null
+++ b/benchmarks/eos_bulk/run.py
@@ -0,0 +1,170 @@
+# import functools
+from pathlib import Path
+
+import pandas as pd
+from ase import Atoms
+from ase.db import connect
+from dask.distributed import Client
+from dask_jobqueue import SLURMCluster
+from prefect import flow, task
+from prefect.cache_policies import INPUTS, TASK_SOURCE
+from prefect.runtime import task_run
+from prefect_dask import DaskTaskRunner
+
+from mlip_arena.models import REGISTRY, MLIPEnum
+from mlip_arena.tasks.utils import get_calculator
+
+
+@task
+def load_wbm_structures():
+ """
+ Load the WBM structures from an ASE database file.
+
+ Reads structures from 'wbm_structures.db' and yields them as ASE Atoms objects
+ with additional metadata preserved from the database.
+
+ Yields:
+ ase.Atoms: Individual atomic structures from the WBM database with preserved
+ metadata in the .info dictionary.
+ """
+ with connect("../wbm_structures.db") as db:
+ for row in db.select():
+ yield row.toatoms(add_additional_information=True)
+
+
+# def save_result(
+# tsk: Task,
+# run: TaskRun,
+# state: State,
+# model_name: str,
+# id: str,
+# ):
+# result = run.state.result()
+
+# assert isinstance(result, dict)
+
+# result["method"] = model_name
+# result["id"] = id
+# result.pop("atoms", None)
+
+# fpath = Path(f"{model_name}")
+# fpath.mkdir(exist_ok=True)
+
+# fpath = fpath / f"{result['id']}.pkl"
+
+# df = pd.DataFrame([result])
+# df.to_pickle(fpath)
+
+
+@task(
+ name="EOS bulk - WBM",
+ task_run_name=lambda: f"{task_run.task_name}: {task_run.parameters['atoms'].get_chemical_formula()} - {task_run.parameters['model'].name}",
+ cache_policy=TASK_SOURCE + INPUTS,
+)
+def eos_bulk(atoms: Atoms, model: MLIPEnum):
+
+ from mlip_arena.tasks.eos import run as EOS
+ from mlip_arena.tasks.optimize import run as OPT
+
+ calculator = get_calculator(
+ model
+ ) # avoid sending entire model over prefect and select freer GPU
+
+ result = OPT.with_options(
+ refresh_cache=True,
+ )(
+ atoms,
+ calculator,
+ optimizer="FIRE",
+ criterion=dict(
+ fmax=0.1,
+ ),
+ )
+ result = EOS.with_options(
+ refresh_cache=True,
+ # on_completion=[functools.partial(
+ # save_result,
+ # model_name=model.name,
+ # id=atoms.info["key_value_pairs"]["wbm_id"],
+ # )],
+ )(
+ atoms=result["atoms"],
+ calculator=calculator,
+ optimizer="FIRE",
+ npoints=21,
+ max_abs_strain=0.2,
+ concurrent=False
+ )
+
+ result["method"] = model.name
+ result["id"] = atoms.info["key_value_pairs"]["wbm_id"]
+ result.pop("atoms", None)
+
+ fpath = Path(f"{model.name}")
+ fpath.mkdir(exist_ok=True)
+
+ fpath = fpath / f"{result['id']}.pkl"
+
+ df = pd.DataFrame([result])
+ df.to_pickle(fpath)
+
+ return df
+
+
+@flow
+def submit_tasks():
+ futures = []
+ for atoms in load_wbm_structures():
+ model = MLIPEnum["eSEN"]
+ # for model in MLIPEnum:
+ if "eos_bulk" not in REGISTRY[model.name].get("gpu-tasks", []):
+ continue
+ try:
+ result = eos_bulk.with_options(
+ refresh_cache=True
+ ).submit(atoms, model)
+ futures.append(result)
+ except Exception:
+ # print(f"Failed to submit task for {model.name}: {e}")
+ continue
+ return [f.result(raise_on_failure=False) for f in futures]
+
+
+if __name__ == "__main__":
+ nodes_per_alloc = 1
+ gpus_per_alloc = 1
+ ntasks = 1
+
+ cluster_kwargs = dict(
+ cores=1,
+ memory="64 GB",
+ shebang="#!/bin/bash",
+ account="matgen",
+ walltime="00:30:00",
+ job_mem="0",
+ job_script_prologue=[
+ "source ~/.bashrc",
+ "module load python",
+ "module load cudatoolkit/12.4",
+ "source activate /pscratch/sd/c/cyrusyc/.conda/mlip-arena",
+ ],
+ job_directives_skip=["-n", "--cpus-per-task", "-J"],
+ job_extra_directives=[
+ "-J eos_bulk",
+ "-q regular",
+ f"-N {nodes_per_alloc}",
+ "-C gpu",
+ f"-G {gpus_per_alloc}",
+ # "--exclusive",
+ ],
+ )
+
+ cluster = SLURMCluster(**cluster_kwargs)
+ print(cluster.job_script())
+ cluster.adapt(minimum_jobs=50, maximum_jobs=50)
+ client = Client(cluster)
+
+ submit_tasks.with_options(
+ task_runner=DaskTaskRunner(address=client.scheduler.address),
+ log_prints=True,
+ )()
diff --git a/benchmarks/eos_bulk/summary.csv b/benchmarks/eos_bulk/summary.csv
new file mode 100644
index 0000000000000000000000000000000000000000..ff414cbbb09846d4b25c43ca839d719527fcabe8
--- /dev/null
+++ b/benchmarks/eos_bulk/summary.csv
@@ -0,0 +1,9 @@
+model,rank,rank-aggregation,energy-diff-flip-times,tortuosity,spearman-compression-energy,spearman-compression-derivative,spearman-tension-energy,missing,energy-diff-flip-times-std,tortuosity-std,spearman-compression-energy-std,spearman-compression-derivative-std,spearman-tension-energy-std
+MACE-MPA,1,7,1.0370741482965933,1.005455197941088,-0.9993684338373716,0.9963320580555048,0.993186372745491,2,0.28260902337559207,0.05365793240575371,0.01247051827833709,0.03852356148675327,0.07744103059608153
+eSEN,2,15,1.042211055276382,1.0082267858369258,-0.9993299832495811,0.9968570123343992,0.9920968478757424,5,0.31435657463218236,0.09009343693321628,0.012254373724862471,0.03683033142639347,0.07346152527758068
+MACE-MP(M),3,20,1.042211055276382,1.008986842539345,-0.999329983249581,0.9941160347190496,0.9915857612939804,5,0.3448779209525529,0.1291612188691875,0.011378760248143813,0.059100297945675236,0.0879944289437058
+MatterSim,4,22,1.045135406218656,1.0060900449752808,-0.99734962463147,0.9927904926901917,0.9880977115916667,3,0.376211439097473,0.055231139063835144,0.03888149868978045,0.07797796889169765,0.11523169167576831
+CHGNet,5,27,1.1053159478435306,1.014753469076796,-0.9964985866690981,0.9929971733381963,0.9866417434120545,3,0.5395426308257233,0.12255069852201543,0.051058628207987275,0.05245296840977506,0.11650035215147045
+SevenNet,6,32,1.1093279839518555,1.0186969977862483,-0.9981277164827815,0.9889121911188109,0.9859580417030127,3,0.5552625647497746,0.2749956370938698,0.025627387238441334,0.07657439969351316,0.11715556163493943
+M3GNet,7,38,1.1748743718592964,1.0175007963267957,-0.9963209989340641,0.9897426526572255,0.9801690217498693,5,0.6755070078112404,0.1488462321310986,0.05166730302469224,0.06468954475570607,0.1332400556108672
+ORBv2,8,48,1.3162134944612287,1.0374718753890275,-0.9918459519667977,0.9701425127407,0.9637462235649547,7,0.8699212994733451,0.2149179445701606,0.08208261674781654,0.1315974423719716,0.19758814985102582
diff --git a/benchmarks/eos_bulk/summary.tex b/benchmarks/eos_bulk/summary.tex
new file mode 100644
index 0000000000000000000000000000000000000000..708918a4b061a9590625eeff08bc9283d17278b7
--- /dev/null
+++ b/benchmarks/eos_bulk/summary.tex
@@ -0,0 +1,14 @@
+\begin{tabular}{lrrrrrrrlrrrrr}
+\toprule
+model & rank & rank-aggregation & energy-diff-flip-times & tortuosity & spearman-compression-energy & spearman-compression-derivative & spearman-tension-energy & missing & energy-diff-flip-times-std & tortuosity-std & spearman-compression-energy-std & spearman-compression-derivative-std & spearman-tension-energy-std \\
+\midrule
+MACE-MPA & 1 & 7 & 1.037 & 1.005 & -0.999 & 0.996 & 0.993 & 2 & 0.283 & 0.054 & 0.012 & 0.039 & 0.077 \\
+eSEN & 2 & 15 & 1.042 & 1.008 & -0.999 & 0.997 & 0.992 & 5 & 0.314 & 0.090 & 0.012 & 0.037 & 0.073 \\
+MACE-MP(M) & 3 & 20 & 1.042 & 1.009 & -0.999 & 0.994 & 0.992 & 5 & 0.345 & 0.129 & 0.011 & 0.059 & 0.088 \\
+MatterSim & 4 & 22 & 1.045 & 1.006 & -0.997 & 0.993 & 0.988 & 3 & 0.376 & 0.055 & 0.039 & 0.078 & 0.115 \\
+CHGNet & 5 & 27 & 1.105 & 1.015 & -0.996 & 0.993 & 0.987 & 3 & 0.540 & 0.123 & 0.051 & 0.052 & 0.117 \\
+SevenNet & 6 & 32 & 1.109 & 1.019 & -0.998 & 0.989 & 0.986 & 3 & 0.555 & 0.275 & 0.026 & 0.077 & 0.117 \\
+M3GNet & 7 & 38 & 1.175 & 1.018 & -0.996 & 0.990 & 0.980 & 5 & 0.676 & 0.149 & 0.052 & 0.065 & 0.133 \\
+ORBv2 & 8 & 48 & 1.316 & 1.037 & -0.992 & 0.970 & 0.964 & 7 & 0.870 & 0.215 & 0.082 & 0.132 & 0.198 \\
+\bottomrule
+\end{tabular}
diff --git a/benchmarks/force_equivariance/run.py b/benchmarks/force_equivariance/run.py
new file mode 100644
index 0000000000000000000000000000000000000000..247aa6dce766d0adfa9101f732705c813882aeaa
--- /dev/null
+++ b/benchmarks/force_equivariance/run.py
@@ -0,0 +1,307 @@
+"""
+Define equivariance testing task.
+"""
+
+from __future__ import annotations
+
+from collections.abc import Sequence
+from pathlib import Path
+
+import numpy as np
+from ase import Atoms
+from prefect import task
+from scipy.spatial.transform import Rotation as R
+from tqdm import tqdm
+
+
+def generate_random_unit_vector():
+ """Generate a random unit vector."""
+ vec = np.random.normal(0, 1, 3)
+ return vec / np.linalg.norm(vec)
+
+
+def rotate_molecule_arbitrary(
+ atoms: Atoms, angle: float, axis: np.ndarray
+) -> tuple[Atoms, np.ndarray]:
+ """Rotate molecule around arbitrary axis."""
+ rotated_atoms = atoms.copy()
+ positions = rotated_atoms.get_positions()
+ rot = R.from_rotvec(np.radians(angle) * axis)
+ rotation_mat = rot.as_matrix()
+ rotated_positions = rot.apply(positions)
+ rotated_atoms.set_positions(rotated_positions)
+ cell = atoms.get_cell()
+ rotated_cell = rot.apply(cell)
+ rotated_atoms.set_cell(rotated_cell)
+ return rotated_atoms, rotation_mat
+
+
+def compare_forces(
+ original_forces: np.ndarray,
+ rotated_forces: np.ndarray,
+ rotation_mat: np.ndarray,
+ zero_threshold: float = 1e-10,
+) -> tuple[float, np.ndarray, np.ndarray, np.ndarray]:
+ """
+ Compare forces before and after rotation, with handling of 0 force case.
+
+ Args:
+ original_forces: Forces before rotation (N x 3 array)
+ rotated_forces: Forces after rotation (N x 3 array)
+ rotation_mat: 3 x 3 rotation matrix
+ zero_threshold: Threshold below which forces are considered zero
+
+ Returns:
+ tuple containing:
+ - mae: Mean absolute error between forces
+ - cosine_similarity: Cosine similarity between force vectors
+ """
+ rotated_original_forces = np.dot(original_forces, rotation_mat.T)
+ force_diff = rotated_original_forces - rotated_forces
+ mae = np.mean(np.abs(force_diff))
+
+ original_magnitudes = np.linalg.norm(rotated_original_forces, axis=1)
+ rotated_magnitudes = np.linalg.norm(rotated_forces, axis=1)
+
+ zero_original = original_magnitudes < zero_threshold
+ zero_rotated = rotated_magnitudes < zero_threshold
+ both_zero = zero_original & zero_rotated
+ either_zero = zero_original | zero_rotated
+ one_zero = either_zero & ~both_zero
+
+ cosine_similarity = np.zeros(len(original_forces))
+
+ valid_forces = ~either_zero
+ if np.any(valid_forces):
+ norms_product = np.linalg.norm(
+ rotated_original_forces[valid_forces], axis=1
+ ) * np.linalg.norm(rotated_forces[valid_forces], axis=1)
+ dot_products = np.sum(
+ rotated_original_forces[valid_forces] * rotated_forces[valid_forces], axis=1
+ )
+ cosine_similarity[valid_forces] = dot_products / norms_product
+
+ # If both forces are 0, cosine similarity should be 1. If one is 0, we take the conservative -1.
+ cosine_similarity[both_zero] = 1.0
+ cosine_similarity[one_zero] = -1.0
+
+ return mae, cosine_similarity
+
+
+def save_molecule_results(
+ aggregate_results: dict, idx_list: np.ndarray, save_path: str | Path
+) -> None:
+ """
+ Save all molecule results from equivariance testing to .npy files.
+ Save the index list of the atoms for further analysis.
+
+ Args:
+ aggregate_results: Dictionary containing the aggregated results from run()
+ idx_list: List of the indices of the atoms in the original dataset
+ save_path: Path to save the .npy files
+ """
+ save_path = Path(save_path)
+ save_path.parent.mkdir(parents=True, exist_ok=True)
+
+ all_molecule_results = aggregate_results["molecule_results"]
+ rotation_angles = list(all_molecule_results[0]["results_by_angle"].keys())
+
+ num_molecules = len(all_molecule_results)
+ num_angles = len(rotation_angles)
+ num_random_axes = len(
+ all_molecule_results[0]["results_by_angle"][rotation_angles[0]]["maes"]
+ )
+ num_atoms = len(
+ all_molecule_results[0]["results_by_angle"][rotation_angles[0]][
+ "cosine_similarities"
+ ][0]
+ )
+
+ maes = np.zeros((num_molecules, num_angles, num_random_axes))
+ cosine_similarities = np.zeros((num_molecules, num_angles, num_random_axes))
+
+ for mol_idx, molecule in enumerate(all_molecule_results):
+ for angle_idx, angle in enumerate(rotation_angles):
+ angle_results = molecule["results_by_angle"][angle]
+ maes[mol_idx, angle_idx, :] = angle_results["maes"]
+ cosine_similarities[mol_idx, angle_idx, :] = np.mean(
+ angle_results["cosine_similarities"], axis=-1
+ )
+
+ np.save(save_path.with_name(f"{save_path.stem}_maes.npy"), maes)
+ np.save(
+ save_path.with_name(f"{save_path.stem}_cosine_similarities.npy"),
+ cosine_similarities,
+ )
+ np.save(save_path.with_name(f"{save_path.stem}_idx_list.npy"), idx_list)
+
+
+@task(
+ name="Equivariance testing",
+ task_run_name=_generate_task_run_name,
+ cache_policy=TASK_SOURCE + INPUTS,
+)
+def run(
+ atoms_list: Sequence[Atoms],
+ idx_list: np.ndarray,
+ calculator: BaseCalculator,
+ save_path: str | Path | None = None,
+ rotation_angles: list[float] | np.ndarray = None,
+ num_random_axes: int = 100,
+ threshold: float = 1e-3,
+ seed: int | None = None,
+) -> dict:
+ """
+ Test equivariance of force predictions under rotations for multiple structures.
+
+ Args:
+ atoms_list: List of input atomic structures
+ idx_list: List of the indices of the atoms in the original dataset
+ calculator: Calculator to use
+ num_rotations: Number of random rotations to test
+ rotation_angle: Angle of rotation in degrees
+ threshold: Threshold for considering forces equivariant
+ seed: Random seed
+
+ Returns:
+ Dictionary containing test results
+ """
+ if seed is not None:
+ np.random.seed(seed)
+
+ if rotation_angles is None:
+ rotation_angles = np.arange(30, 361, 30)
+ rotation_angles = np.array(rotation_angles)
+
+ all_results = []
+
+ cross_molecule_cosine_sims = {angle: [] for angle in rotation_angles}
+ cross_molecule_mae = {angle: [] for angle in rotation_angles}
+
+ rotation_axes = [generate_random_unit_vector() for _ in range(num_random_axes)]
+
+ total_tests = len(atoms_list) * len(rotation_angles) * num_random_axes
+ pbar = tqdm(total=total_tests, desc="Testing rotations")
+
+ for atom_idx, atoms in enumerate(atoms_list):
+ atoms = atoms.copy()
+ atoms.calc = calculator
+ original_forces = atoms.get_forces()
+
+ results_by_angle = {
+ angle: {
+ "mae": [],
+ "cosine_similarities": [],
+ "passed_tests": 0,
+ "passed_mae": 0,
+ "passed_cosine_similarity": 0,
+ }
+ for angle in rotation_angles
+ }
+ # Test each angle with multiple random axes
+ for angle in rotation_angles:
+ for axis in rotation_axes:
+ rotated_atoms, rotation_mat = rotate_molecule_arbitrary(
+ atoms, angle, axis
+ )
+ rotated_atoms.calc = calculator
+ rotated_forces = rotated_atoms.get_forces()
+ mae, cosine_similarity = compare_forces(
+ original_forces, rotated_forces, rotation_mat
+ )
+ results_by_angle[angle]["mae"].append(mae)
+ results_by_angle[angle]["cosine_similarities"].append(cosine_similarity)
+
+ cross_molecule_cosine_sims[angle].append(
+ float(np.mean(cosine_similarity))
+ )
+ cross_molecule_mae[angle].append(float(np.mean(mae)))
+
+ mae_check = mae < threshold
+ cosine_check = all(cosine_similarity > (1 - threshold))
+ results_by_angle[angle]["passed_tests"] += int(
+ mae_check and cosine_check
+ )
+ results_by_angle[angle]["passed_mae"] += int(mae_check)
+ results_by_angle[angle]["passed_cosine_similarity"] += int(cosine_check)
+
+ pbar.update(1)
+ # Compute summary statistics
+ for angle in rotation_angles:
+ results = results_by_angle[angle]
+ results["mean_cosine_similarity"] = float(
+ np.mean(results["cosine_similarities"])
+ )
+ results["avg_mae"] = float(np.mean(results["mae"]))
+ results["equivariant_ratio"] = results["passed_tests"] / num_random_axes
+ results["mae_passed_ratio"] = results["passed_mae"] / num_random_axes
+ results["cosine_passed_ratio"] = (
+ results["passed_cosine_similarity"] / num_random_axes
+ )
+ results["passed"] = results["passed_tests"] == num_random_axes
+ results["passed_mae"] = results["passed_mae"] == num_random_axes
+ results["passed_cosine_similarity"] = (
+ results["passed_cosine_similarity"] == num_random_axes
+ )
+ results["maes"] = [float(x) for x in results["mae"]]
+ results["cosine_similarities"] = [
+ [float(y) for y in x] for x in results["cosine_similarities"]
+ ]
+
+ molecule_results = {
+ "mol_idx": idx_list[atom_idx],
+ "results_by_angle": results_by_angle,
+ "all_passed": all(
+ results_by_angle[angle]["passed"] for angle in rotation_angles
+ ),
+ "avg_cosine_similarity_by_molecule": float(
+ np.mean(
+ [
+ results_by_angle[angle]["mean_cosine_similarity"]
+ for angle in rotation_angles
+ ]
+ )
+ ),
+ "avg_mae_by_molecule": float(
+ np.mean(
+ [results_by_angle[angle]["avg_mae"] for angle in rotation_angles]
+ )
+ ),
+ "overall_equivariant_ratio": float(
+ np.mean(
+ [
+ results_by_angle[angle]["equivariant_ratio"]
+ for angle in rotation_angles
+ ]
+ )
+ ),
+ }
+
+ all_results.append(molecule_results)
+
+ pbar.close()
+
+ aggregate_results = {
+ "num_molecules": len(atoms_list),
+ "all_molecules_passed": all(result["all_passed"] for result in all_results),
+ "average_equivariant_ratio": float(
+ np.mean([result["overall_equivariant_ratio"] for result in all_results])
+ ),
+ "average_cosine_similarity_by_angle": {
+ angle: float(np.mean(sims))
+ for angle, sims in cross_molecule_cosine_sims.items()
+ },
+ "average_mae_by_angle": {
+ angle: float(np.mean(diffs)) for angle, diffs in cross_molecule_mae.items()
+ },
+ "molecule_results": all_results,
+ }
+
+ if save_path:
+ save_molecule_results(aggregate_results, idx_list, save_path)
+ np.save(
+ str(save_path.with_name(f"{save_path.stem}_molecule_results.npy")),
+ all_results,
+ )
+
+ return aggregate_results
diff --git a/benchmarks/mof/classification/M3GNet.pkl b/benchmarks/mof/classification/M3GNet.pkl
new file mode 100644
index 0000000000000000000000000000000000000000..e487b4ad1ecae8574a76621fe9a878cc545ff0af
--- /dev/null
+++ b/benchmarks/mof/classification/M3GNet.pkl
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:6f3e954dba20470846a14796b21dceeac03c02db8613527d441f387063697efe
+size 218426
diff --git a/benchmarks/mof/classification/MACE-MP(M).pkl b/benchmarks/mof/classification/MACE-MP(M).pkl
new file mode 100644
index 0000000000000000000000000000000000000000..550d35c31c694ae17fa185a3acbe19d9d041f3ec
--- /dev/null
+++ b/benchmarks/mof/classification/MACE-MP(M).pkl
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:2d0967389772b92764ecc9a521d83fefff9f99ac365bbd8ba643bec32313ce57
+size 197302
diff --git a/benchmarks/mof/classification/MACE-MPA.pkl b/benchmarks/mof/classification/MACE-MPA.pkl
new file mode 100644
index 0000000000000000000000000000000000000000..a848a5324eb3d9d3623d0bbd46d409f0deb2cefd
--- /dev/null
+++ b/benchmarks/mof/classification/MACE-MPA.pkl
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:2d8ca57b95e2089ea86e28b3866bc3118e0893832a0be94ca9399002440ea4e3
+size 299928
diff --git a/benchmarks/mof/classification/MatterSim.pkl b/benchmarks/mof/classification/MatterSim.pkl
new file mode 100644
index 0000000000000000000000000000000000000000..ecb06b552cfa6e3b467561176b520d25c8fa1867
--- /dev/null
+++ b/benchmarks/mof/classification/MatterSim.pkl
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:e7466643aedc9c6ea0b2a34fa9227fa99eeb28c67818de077b7b5edd8d49bf47
+size 298511
diff --git a/benchmarks/mof/classification/ORBv2.pkl b/benchmarks/mof/classification/ORBv2.pkl
new file mode 100644
index 0000000000000000000000000000000000000000..8c0b927957a1763e33039d1c59a393f923552117
--- /dev/null
+++ b/benchmarks/mof/classification/ORBv2.pkl
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:69c635f37e99782d0d0f2eb413f57285df0ed4666e390a2171f4d4b2b2febf36
+size 248466
diff --git a/benchmarks/mof/classification/SevenNet.pkl b/benchmarks/mof/classification/SevenNet.pkl
new file mode 100644
index 0000000000000000000000000000000000000000..d3efe3a636798a9484198768921c78bb33f19610
--- /dev/null
+++ b/benchmarks/mof/classification/SevenNet.pkl
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:f8285152e645f30facb7c53298075fd6b7483149944c98bf52f46bb1c3e62b67
+size 249418
diff --git a/benchmarks/mof/classification/analysis.ipynb b/benchmarks/mof/classification/analysis.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..9e67b3ae920832e91f1f3e3140a1e7c94e00172c
--- /dev/null
+++ b/benchmarks/mof/classification/analysis.ipynb
@@ -0,0 +1,281 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from pathlib import Path\n",
+ "\n",
+ "import pandas as pd\n",
+ "import plotly.colors as pcolors\n",
+ "import seaborn as sns\n",
+ "from matplotlib import pyplot as plt\n",
+ "\n",
+ "from mlip_arena.models import MLIPEnum\n",
+ "\n",
+ "mlip_methods = [\n",
+ " model.name\n",
+ " for model in MLIPEnum\n",
+ "]\n",
+ "\n",
+ "all_attributes = dir(pcolors.qualitative)\n",
+ "color_palettes = {\n",
+ " attr: getattr(pcolors.qualitative, attr)\n",
+ " for attr in all_attributes\n",
+ " if isinstance(getattr(pcolors.qualitative, attr), list)\n",
+ "}\n",
+ "color_palettes.pop(\"__all__\", None)\n",
+ "\n",
+ "palette_names = list(color_palettes.keys())\n",
+ "palette_colors = list(color_palettes.values())\n",
+ "palette_name = \"Plotly\"\n",
+ "color_sequence = color_palettes[palette_name] # type: ignore\n",
+ "\n",
+ "method_color_mapping = {\n",
+ " method: color_sequence[i % len(color_sequence)]\n",
+ " for i, method in enumerate(mlip_methods)\n",
+ "}"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "%matplotlib inline\n",
+ "\n",
+ "import numpy as np\n",
+ "\n",
+ "from mlip_arena.models import MLIPEnum\n",
+ "\n",
+ "# Color mapping by class\n",
+ "color_mapping = {\n",
+ " \"DAC\": \"#e41a1c\",\n",
+ " \"Flue Gas\": \"#377eb8\",\n",
+ " \"General\": \"#4daf4a\"\n",
+ "}\n",
+ "\n",
+ "# Decision boundary thresholds\n",
+ "thresholds = {\n",
+ " \"General\": (None, 35),\n",
+ " \"Flue Gas\": (35, 50),\n",
+ " \"DAC\": (50, 100)\n",
+ "}\n",
+ "\n",
+ "# Collect data from all models\n",
+ "all_data = []\n",
+ "margins = []\n",
+ "\n",
+ "for model in MLIPEnum:\n",
+ " fpath = Path(f\"{model.name}.pkl\")\n",
+ " if not fpath.exists():\n",
+ " continue\n",
+ "\n",
+ " df = pd.read_pickle(fpath)\n",
+ " df = df.drop_duplicates(subset=[\"model\", \"name\", \"class\"], keep=\"last\")\n",
+ " df_exploded = df.explode([\"henry_coefficient\", \"averaged_interaction_energy\", \"heat_of_adsorption\"])\n",
+ " df_group = df_exploded.groupby([\"model\", \"name\", \"class\"])[[\"henry_coefficient\", \"averaged_interaction_energy\", \"heat_of_adsorption\"]].mean().reset_index()\n",
+ "\n",
+ " df_group[\"model_name\"] = model.name\n",
+ " df_group[\"neg_heat\"] = -df_group[\"heat_of_adsorption\"] # negate for log scale\n",
+ " df_group = df_group[df_group[\"neg_heat\"] > 0] # remove invalid values\n",
+ "\n",
+ " df_group = df_group[df_group[\"name\"] != \"MIL-96-Al\"]\n",
+ "\n",
+ " all_data.append(df_group)\n",
+ "\n",
+ " # Compute misclassification margin\n",
+ " def point_misclassified(row):\n",
+ " val = row[\"neg_heat\"]\n",
+ " lower, upper = thresholds[row[\"class\"]]\n",
+ " return (lower is not None and val < lower) or (upper is not None and val >= upper)\n",
+ "\n",
+ " misclassified = df_group[df_group.apply(point_misclassified, axis=1)]\n",
+ "\n",
+ " def distance_to_boundary(row):\n",
+ " val = row[\"neg_heat\"]\n",
+ " lower, upper = thresholds[row[\"class\"]]\n",
+ " distances = []\n",
+ " if lower is not None:\n",
+ " distances.append(abs(val - lower))\n",
+ " if upper is not None:\n",
+ " distances.append(abs(val - upper))\n",
+ " return min(distances)\n",
+ "\n",
+ " if not misclassified.empty:\n",
+ " num_misclassified = len(misclassified) + (18 - len(df_group))\n",
+ " margin = misclassified.apply(distance_to_boundary, axis=1).mean()\n",
+ " else:\n",
+ " num_misclassified = 0\n",
+ " margin = 0.0\n",
+ "\n",
+ " margins.append((model.name, margin, num_misclassified))\n",
+ "\n",
+ "\n",
+ "# Combine all into one DataFrame\n",
+ "combined_df = pd.concat(all_data, ignore_index=True)\n",
+ "margins_df = pd.DataFrame(margins, columns=[\"model_name\", \"misclassification_margin\", \"num_misclassified\"])\n",
+ "\n",
+ "# --- Plotting ---\n",
+ "\n",
+ "with plt.style.context(\"default\"):\n",
+ "\n",
+ " LARGE_SIZE = 10\n",
+ " MEDIUM_SIZE = 8\n",
+ " SMALL_SIZE = 6\n",
+ "\n",
+ " plt.rcParams.update({\n",
+ " \"font.size\": SMALL_SIZE,\n",
+ " \"axes.titlesize\": MEDIUM_SIZE,\n",
+ " \"axes.labelsize\": MEDIUM_SIZE,\n",
+ " \"xtick.labelsize\": SMALL_SIZE,\n",
+ " \"ytick.labelsize\": SMALL_SIZE,\n",
+ " \"legend.fontsize\": SMALL_SIZE,\n",
+ " \"figure.titlesize\": LARGE_SIZE,\n",
+ " })\n",
+ "\n",
+ " fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(6, 4), sharex=False, gridspec_kw={\"height_ratios\": [3, 1.5]})\n",
+ "\n",
+ " # --- Main Stripplot ---\n",
+ " sns.stripplot(\n",
+ " data=combined_df,\n",
+ " x=\"neg_heat\",\n",
+ " y=\"model_name\",\n",
+ " hue=\"class\",\n",
+ " size=2,\n",
+ " palette=color_mapping,\n",
+ " dodge=True,\n",
+ " jitter=0.1,\n",
+ " alpha=1,\n",
+ " ax=ax1,\n",
+ " )\n",
+ "\n",
+ " xmin, xmax = ax1.get_xlim()\n",
+ "\n",
+ " ax1.axvspan(xmin, 35, color=color_mapping[\"General\"], alpha=0.1, label=\"General\")\n",
+ " ax1.axvspan(35, 50, color=color_mapping[\"Flue Gas\"], alpha=0.1, label=\"Flue Gas\")\n",
+ " ax1.axvspan(50, 100, color=color_mapping[\"DAC\"], alpha=0.1, label=\"DAC\")\n",
+ "\n",
+ " ax1.axvline(x=35, linestyle=\"--\", color=\"gray\", label=\"Exp. $\\\\mathregular{CO_2}$ $Q_\\\\text{st}$ = 35 kJ/mol\")\n",
+ " ax1.axvline(x=50, linestyle=\"--\", color=\"gray\", label=\"Exp. $\\\\mathregular{CO_2}$ $Q_\\\\text{st}$ = 50 kJ/mol\")\n",
+ " ax1.axvline(x=100, linestyle=\"--\", color=\"gray\", label=\"Exp. $\\\\mathregular{CO_2}$ $Q_\\\\text{st}$ = 100 kJ/mol\")\n",
+ "\n",
+ " ax1.set_xscale(\"log\")\n",
+ " ax1.set_xlabel(\"Heat of $\\\\mathregular{CO_2}$ Adsorption $Q_\\\\text{st}$ [kJ/mol]\")\n",
+ " ax1.set_ylabel(\"\")\n",
+ " ax1.set_xlim(xmin, xmax)\n",
+ "\n",
+ " yticks = ax1.get_yticks()\n",
+ " yticks = np.array(yticks)\n",
+ " yticks = yticks[np.isfinite(yticks)] # Remove any NaNs\n",
+ "\n",
+ " # Draw horizontal lines between models (skip the last one)\n",
+ " for y in yticks[:-1] + np.diff(yticks) / 2:\n",
+ " ax1.axhline(y=y, color=\"gray\", linestyle=\":\", linewidth=0.7, alpha=0.5, zorder=0)\n",
+ "\n",
+ " handles, labels = ax1.get_legend_handles_labels()\n",
+ " legend_dict = dict(zip(labels, handles, strict=False))\n",
+ "\n",
+ " desired_order = [\n",
+ " \"General\", \"Exp. $\\\\mathregular{CO_2}$ $Q_\\\\text{st}$ = 35 kJ/mol\", \"Flue Gas\",\n",
+ " \"Exp. $\\\\mathregular{CO_2}$ $Q_\\\\text{st}$ = 50 kJ/mol\", \"DAC\", \"Exp. $\\\\mathregular{CO_2}$ $Q_\\\\text{st}$ = 100 kJ/mol\"\n",
+ " ]\n",
+ "\n",
+ " ordered_handles = [legend_dict[label] for label in desired_order if label in legend_dict]\n",
+ "\n",
+ " ax1.legend(\n",
+ " ordered_handles,\n",
+ " desired_order,\n",
+ " loc=\"lower center\",\n",
+ " bbox_to_anchor=(0.5, 1),\n",
+ " ncol=3,\n",
+ " frameon=True\n",
+ " )\n",
+ "\n",
+ "\n",
+ " ax1.spines[\"top\"].set_visible(False)\n",
+ " ax1.spines[\"right\"].set_visible(False)\n",
+ "\n",
+ " # --- Misclassification Margin Barplot ---\n",
+ "\n",
+ " # Sort by error margin\n",
+ " margins_df_sorted = margins_df.sort_values(by=\"misclassification_margin\", ascending=True)\n",
+ "\n",
+ " # Extract color values in order\n",
+ " bar_colors = [method_color_mapping[m] for m in margins_df_sorted[\"model_name\"]]\n",
+ "\n",
+ " sns.scatterplot(\n",
+ " data=margins_df_sorted,\n",
+ " x=\"num_misclassified\",\n",
+ " y=\"misclassification_margin\",\n",
+ " hue=\"model_name\",\n",
+ " palette=bar_colors,\n",
+ " ax=ax2\n",
+ " )\n",
+ "\n",
+ " for _, row in margins_df_sorted.iterrows():\n",
+ " x = row[\"num_misclassified\"]\n",
+ " y = row[\"misclassification_margin\"]\n",
+ " model = row[\"model_name\"]\n",
+ " color = bar_colors[margins_df_sorted[\"model_name\"].tolist().index(model)]\n",
+ "\n",
+ " ax2.text(\n",
+ " x+0.1,\n",
+ " y,\n",
+ " f\"{y:.2f}\",\n",
+ " fontsize=SMALL_SIZE,\n",
+ " ha=\"left\",\n",
+ " va=\"bottom\",\n",
+ " color=color,\n",
+ " alpha=0.9\n",
+ " )\n",
+ "\n",
+ " ax2.set_ylabel(\"Misclass. margin [kJ/mol]\")\n",
+ " ax2.set_xlabel(\"Missing + misclass. count\")\n",
+ " ax2.spines[\"top\"].set_visible(False)\n",
+ " ax2.spines[\"right\"].set_visible(False)\n",
+ " # ax2.set_xticklabels(margins_df_sorted[\"model_name\"], rotation=45)\n",
+ " ax2.set_yscale(\"log\")\n",
+ "\n",
+ " handles, labels = ax2.get_legend_handles_labels()\n",
+ " legend_dict = dict(zip(labels, handles, strict=False))\n",
+ " ax2.legend(\n",
+ " legend_dict.values(),\n",
+ " legend_dict.keys(),\n",
+ " loc=\"upper left\",\n",
+ " bbox_to_anchor=(0, 1),\n",
+ " ncol=3,\n",
+ " frameon=True\n",
+ " )\n",
+ "\n",
+ " plt.tight_layout()\n",
+ " plt.savefig(\"mof-misclassification_margin.pdf\", bbox_inches=\"tight\")\n",
+ " plt.show()\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "mlip-arena",
+ "language": "python",
+ "name": "mlip-arena"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.11.8"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/benchmarks/mof/classification/classification.py b/benchmarks/mof/classification/classification.py
new file mode 100644
index 0000000000000000000000000000000000000000..edf0fae3bd8b2e8c4ae9eb6701cc931cd4a3ff7f
--- /dev/null
+++ b/benchmarks/mof/classification/classification.py
@@ -0,0 +1,152 @@
+import functools
+import itertools
+from pathlib import Path
+
+import pandas as pd
+from ase import Atoms
+from ase.build import molecule
+from dask.distributed import Client
+from dask_jobqueue import SLURMCluster
+from prefect import Task, flow, task
+from prefect.client.schemas.objects import TaskRun
+from prefect.states import State
+from prefect_dask import DaskTaskRunner
+from tqdm.auto import tqdm
+
+from mlip_arena.models import MLIPEnum
+from mlip_arena.tasks.mof.flow import widom_insertion
+from mlip_arena.tasks.utils import get_calculator
+
+
+def load_row_from_df(fpath: str):
+ df = pd.read_pickle(fpath)
+
+ for _, row in df.iterrows():
+ yield row
+
+
+def save_result(
+ tsk: Task,
+ run: TaskRun,
+ state: State,
+ row: pd.DataFrame,
+ model_name: str,
+ gas: Atoms,
+ fpath: str,
+):
+ result = run.state.result()
+
+ assert isinstance(result, dict)
+
+ copied = row.copy()
+ copied["model"] = model_name
+ copied["gas"] = gas
+
+ for k, v in result.items():
+ copied[k] = v
+
+ fpath = Path(f"{model_name}.pkl")
+
+ if fpath.exists():
+ df = pd.read_pickle(fpath)
+ df = pd.concat([df, pd.DataFrame([copied])], ignore_index=True)
+ else:
+ df = pd.DataFrame([copied])
+
+ df.drop_duplicates(subset=["name", "model"], keep="last", inplace=True)
+ df.to_pickle(fpath)
+
+
+# Orchestrate your awesome dask workflow runner
+
+nodes_per_alloc = 1
+gpus_per_alloc = 1
+ntasks = 1
+
+cluster_kwargs = dict(
+ cores=4,
+ memory="64 GB",
+ shebang="#!/bin/bash",
+ account="m3828",
+ walltime="04:00:00",
+ job_mem="0",
+ job_script_prologue=[
+ "source ~/.bashrc",
+ "module load python",
+ "source activate /pscratch/sd/c/cyrusyc/.conda/mlip-arena",
+ ],
+ job_directives_skip=["-n", "--cpus-per-task", "-J"],
+ job_extra_directives=[
+ "-J mof",
+ "-q regular",
+ f"-N {nodes_per_alloc}",
+ "-C gpu",
+ f"-G {gpus_per_alloc}",
+ # "--exclusive",
+ ],
+)
+
+cluster = SLURMCluster(**cluster_kwargs)
+print(cluster.job_script())
+cluster.adapt(minimum_jobs=10, maximum_jobs=20)
+client = Client(cluster)
+
+
+@task
+def run_one(model, row, gas):
+ return widom_insertion.with_options(
+ refresh_cache=False,
+ on_completion=[functools.partial(
+ save_result,
+ row=row,
+ model_name=model.name,
+ gas=gas,
+ fpath=f"{model.name}.pkl"
+ )]
+ )(
+ structure=row["structure"],
+ gas=gas,
+ calculator=get_calculator(
+ model,
+ dispersion=True
+ ),
+ criterion=dict(fmax=0.05, steps=50),
+ init_structure_optimize_loops = 10,
+ )
+
+
+@flow
+def run_all():
+ futures = []
+ gas = molecule("CO2")
+
+ for model, row in tqdm(itertools.product(MLIPEnum, load_row_from_df("input.pkl"))):
+
+ if model.name not in ["MACE-MPA", "MatterSim", "SevenNet", "M3GNet", "ORBv2"]:
+ continue
+
+ fpath = Path(f"{model.name}.pkl")
+
+ if fpath.exists():
+ df = pd.read_pickle(fpath)
+ if row['name'] in df['name'].values:
+ continue
+
+ try:
+ print(model, row['name'])
+ future = run_one.submit(
+ model,
+ row,
+ gas,
+ )
+ futures.append(future)
+ except Exception:
+ continue
+
+ return [f.result(raise_on_failure=False) for f in futures]
+
+# run_all()
+run_all.with_options(
+ task_runner=DaskTaskRunner(address=client.scheduler.address),
+ log_prints=True,
+)()
diff --git a/benchmarks/mof/classification/input.pkl b/benchmarks/mof/classification/input.pkl
new file mode 100644
index 0000000000000000000000000000000000000000..c64343235f1e28f359437e099c8251d65eaa7208
--- /dev/null
+++ b/benchmarks/mof/classification/input.pkl
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:f66941e6898e0b0dbef120b2b17bd6828a1cf4db6aad94e1fd83aaa8b21acd84
+size 286336
diff --git a/benchmarks/mof/classification/mof-misclassification_margin.pdf b/benchmarks/mof/classification/mof-misclassification_margin.pdf
new file mode 100644
index 0000000000000000000000000000000000000000..31cd95c7feb20efb342a2cc87826424769acd225
--- /dev/null
+++ b/benchmarks/mof/classification/mof-misclassification_margin.pdf
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:77b1c766a04fc365be40bff75e656d9d6bb9d39e10c282ef7e2e36ea97248138
+size 31870
diff --git a/benchmarks/mof/golddac.ipynb b/benchmarks/mof/golddac.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..9f1002f615478673aa3a5721b9e1f35d6b31c33c
--- /dev/null
+++ b/benchmarks/mof/golddac.ipynb
@@ -0,0 +1,527 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Prepare input structures\n",
+ "\n",
+ "We first start by preparing the input ASE database. In the subfolder `golddac/test.xyz` there are a 312 total of MOF + gas configurations for 26 MOFs. The original `GoldDAC` dataset can be found at https://github.com/hspark1212/DAC-SIM/tree/main/assets/GoldDAC."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "tags": []
+ },
+ "outputs": [],
+ "source": [
+ "from dotenv import load_dotenv\n",
+ "\n",
+ "load_dotenv()\n",
+ "\n",
+ "from ase.io import read\n",
+ "\n",
+ "atoms_list = read(\"golddac/test.xyz\", index=\":\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "26\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Collect by MOF name\n",
+ "from collections import defaultdict\n",
+ "\n",
+ "mof_dict = defaultdict(list)\n",
+ "\n",
+ "for atoms in atoms_list:\n",
+ " mof_name = atoms.info[\"group\"]\n",
+ " mof_dict[mof_name].append(atoms)\n",
+ "print(len(mof_dict))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Demo Interaction (Adsorption) energy between MOF and gas molecules (CO2, H2O)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "No module named 'deepmd'\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\u001b[32m2025-01-10 16:24:46.439\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mmlip_arena.tasks.utils\u001b[0m:\u001b[36mget_calculator\u001b[0m:\u001b[36m30\u001b[0m - \u001b[1mUsing device: cuda:0\u001b[0m\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "MLIPEnum.MACE-MP(M)\n",
+ "Selected GPU cuda:0 with 40339.31 MB free memory from 1 GPUs\n",
+ "Selected GPU cuda:0 with 40339.31 MB free memory from 1 GPUs\n",
+ "Default dtype float32 does not match model dtype float64, converting models to float32.\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\u001b[32m2025-01-10 16:24:46.593\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mmlip_arena.tasks.utils\u001b[0m:\u001b[36mget_calculator\u001b[0m:\u001b[36m42\u001b[0m - \u001b[1mUsing calculator: \u001b[0m\n",
+ "\u001b[32m2025-01-10 16:24:46.640\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mmlip_arena.tasks.utils\u001b[0m:\u001b[36mget_calculator\u001b[0m:\u001b[36m54\u001b[0m - \u001b[1mUsing dispersion: \u001b[0m\n"
+ ]
+ }
+ ],
+ "source": [
+ "from mlip_arena.models import MLIPEnum\n",
+ "from mlip_arena.tasks.utils import get_calculator\n",
+ "from ase import units\n",
+ "\n",
+ "for model in MLIPEnum:\n",
+ " print(model)\n",
+ " break\n",
+ "calc = get_calculator(\n",
+ " calculator_name=model,\n",
+ " calculator_kwargs=None,\n",
+ " dispersion=True,\n",
+ " dispersion_kwargs=dict(damping='bj', xc='pbe', cutoff=40.0 * units.Bohr),\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ " 0%| | 0/26 [00:00, ?it/s]/pscratch/sd/c/cyrusyc/.conda/mlip-arena/lib/python3.11/site-packages/torch_dftd/torch_dftd3_calculator.py:98: UserWarning: Creating a tensor from a list of numpy.ndarrays is extremely slow. Please consider converting the list to a single numpy.ndarray with numpy.array() before converting to a tensor. (Triggered internally at ../torch/csrc/utils/tensor_new.cpp:275.)\n",
+ " cell: Optional[Tensor] = torch.tensor(\n",
+ "100%|โโโโโโโโโโ| 26/26 [01:55<00:00, 4.44s/it]\n"
+ ]
+ }
+ ],
+ "source": [
+ "import pandas as pd\n",
+ "from tqdm.auto import tqdm\n",
+ "\n",
+ "results = []\n",
+ "\n",
+ "for mof_name, atoms_list in tqdm(mof_dict.items()):\n",
+ "\n",
+ " for atoms in atoms_list:\n",
+ " name_split = atoms.info[\"name\"].split(\"_\")\n",
+ " gas_name = name_split[1]\n",
+ " region = name_split[2] # R: repulsion E: equilibrium P: weak-attraction\n",
+ " adsorption_type = name_split[3] # N, A\n",
+ " if adsorption_type == \"A\":\n",
+ " dist = name_split[4]\n",
+ " elif adsorption_type == \"N\":\n",
+ " if region == \"R\" or region == \"E\":\n",
+ " dist = name_split[4].split(\"-\")[1]\n",
+ " elif region == \"P\":\n",
+ " dist = name_split[4].split(\"-\")[0]\n",
+ " else:\n",
+ " raise ValueError(f\"Unknown region: {region}\")\n",
+ " else:\n",
+ " raise ValueError(f\"Unknown adsorption type: {adsorption_type}\")\n",
+ "\n",
+ " # True energies (PBE+D3)\n",
+ " true_te = atoms.info[\"DFT_E_total\"]\n",
+ " true_ie = atoms.info[\"DFT_E_int\"]\n",
+ "\n",
+ " # Predicted energies\n",
+ " tags = atoms.get_tags()\n",
+ " framework_gas = atoms.copy()\n",
+ " framework = framework_gas[tags == 0]\n",
+ " gas = framework_gas[tags == 1]\n",
+ "\n",
+ " pred_te = calc.get_potential_energy(framework_gas)\n",
+ " pred_ie = (\n",
+ " pred_te\n",
+ " - calc.get_potential_energy(framework)\n",
+ " - calc.get_potential_energy(gas)\n",
+ " )\n",
+ "\n",
+ " # Collect results\n",
+ " row_data = {\n",
+ " \"mof_name\": mof_name,\n",
+ " \"gas\": gas_name,\n",
+ " \"region\": region,\n",
+ " \"adsorption_type\": adsorption_type,\n",
+ " \"dist\": dist,\n",
+ " \"true_te\": true_te,\n",
+ " \"true_ie\": true_ie,\n",
+ " \"pred_te\": pred_te,\n",
+ " \"pred_ie\": pred_ie,\n",
+ " }\n",
+ " results.append(row_data)\n",
+ "\n",
+ "# Convert to DataFrame\n",
+ "df = pd.DataFrame(results)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0MAAAHbCAYAAAAJakHoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADH3UlEQVR4nOzdeVxU9f7H8dfMsCM7AoKKooIiiFvuS665pOaW7WW/utVV86bdViu1vFndrDTramVl5ZpL7nuZueYKuK+IICj7vs3M748BkkRkYIYzA5/n4+GD6cycM+8vGofPfDeVXq/XI4QQQgghhBB1jFrpAEIIIYQQQgihBCmGhBBCCCGEEHWSFENCCCGEEEKIOkmKISGEEEIIIUSdJMWQEEIIIYQQok6SYkgIIYQQQghRJ0kxJIQQQgghhKiTpBgSQgghhBBC1ElSDAkhhBBCCCHqJCmGhBBCCCGEEHWSFEPCaly7do2QkBBee+01paMIIYQQcl8SohawUTqAEABffvkln376KQCbN28mKCjIZNcOCQkp899qtRpXV1datmzJgw8+yNChQ8t9vVqtZseOHQQEBJR73SFDhnDx4kUAvv32W7p163bba6KioliyZAmHDh3i5s2b2NjYEBAQQI8ePXjqqafw9fWtVOa/e//99xk1alSFr6muixcvsmTJEg4ePMj169fJz8/H3d2d0NBQBgwYwPDhw7G3t7/tvKq2WQghLInclyrO/HfmvC+VvPfZs2fv+Jq+ffsSFxfHzp07adiwYZXfS+5hdY8UQ0Jxer2en3/+GZVKhV6vZ+XKlbz66qsmf5+JEycCUFRUxOXLl9mxYwcHDhwgOjr6tvezsbGhqKiI1atXM2nSpNuudeTIES5evFj6uvLa9N///pevv/4aGxsbunXrxqBBgygsLOTYsWMsWrSIpUuXMnv2bAYNGnTXzH/XqlUrY5putM8//5z58+ej0+lo27YtI0eOxNnZmaSkJA4fPsy0adNYunQpq1evLj3HVG0WQgilyX3J8u5L5ib3sDpML4TCfv/9d31wcLB+2rRp+q5du+q7dOmiz8/Pv+11sbGx+uDgYP2rr75q1PWDg4P1wcHBtx3ft2+fPiQkRN+yZUv9tWvXyry+Z8+e+pEjR+rvvfdevVarve3c1157Td+6dWv9M888ow8ODtbv3bu3zPPz5s3TBwcH6/v06aM/d+7cbedv2bJFHx4erm/VqpV+3759lc5cE7744gt9cHCwvnfv3vrjx4+X+5rdu3frH3/88TLHqttmIYSwFHJfsqz7UmXeu0+fPvrg4GB9bGxsld5D7mF1l8wZEopbuXIlAGPHjmXYsGGkpKSwY8cOs79v165dCQoKQqfTERUVddvzY8aMIT4+nr1795Y5npWVxZYtW+jbty9eXl63nRcbG8uXX36Jra0tX375JS1atLjtNffddx+vv/46Wq2W6dOno9PpTNewarh27Rrz58/H1taWhQsXEhERUe7revXqxddff13639bcZiGE+Du5L9Wtn9Hy/anbpBgSikpKSmLXrl00a9aMNm3alI43XrFiRY28v16vv+Nzw4YNw9HRsfSmWGL9+vXk5OQwZsyYcs9bvXo1RUVF9OvXr8Ix1mPHjqV+/fpcuXKFQ4cOVa0BJrZ69WoKCwsZOHAgwcHBFb7Wzs6uzHnW2mYhhLiV3Jfq3s9o+f7UbTJnSCiq5JfvBx54ADBMkgwNDeXAgQPExsbSqFEjs733gQMHuHLlCiqVirCwsNued3Fx4b777mPjxo2kpKTg6ekJGD4x9Pf3p0ePHmzatOm2844cOQJA9+7dK3x/GxsbOnfuzIYNGzh69ChdunS57TXz5s277VhAQIDZJqkePnwYMHw6aQxTtlkIIZQk9yXLui/d7b1LZGRkVPm6cg+r26QYEorRF09K1Wg0jBgxovT4qFGjeO+991i5ciVTpkwx2fuV/BAtmai6c+dOdDodTz311B1Xnhk7dixr167ll19+Yfz48Zw+fZqTJ08yceJE1OryO1aTkpIA8PPzu2umktfcuHGj3Oc///zz24516tTJbDedkuzGrpZjyjYLIYRS5L5kefelu723Kcg9rG6TYkgo5sCBA1y9epWePXuW+eX7/vvv54MPPmD16tW8+OKL2NhU/M+0vE+KRo4ceduNpOSHqEqlwtXVlfbt2zNmzJgyN7y/69ixI02bNuXnn39m/PjxrFixArVazejRo+94TskQB5VKVWHuW19zp9dWtIzo3VT2+3IrY7JX9bzy2rxgwQK2bdvG5cuXsbOzo23btkyZMuWuQ/WEEMKU5L5kefelyr53ydLaf1eZ+4spvz/C+kgxJBSzfPlygNs+TfLw8KBv375s3bqVX3/9lQEDBlR4nTt9SvX3H65V/QE+ZswYPvroI/bv38+GDRvo1q0b/v7+d3x9/fr1uXTpEgkJCXe9dslr6tevX6VsFans9+VWPj4+lc5+q+q2+dChQzzyyCOEh4ej1+uZO3cu48ePZ+PGjbi7uxuVRQghqkruS5Z3X6quytxfLOX7I5QhxZBQxK0r87z00ku89NJL5b5u+fLld73pVOdTqsoYOXIkn376Ka+99hoZGRl3nKBaokOHDhw8eJB9+/YxduzYO75Oq9Vy8OBBANq3b2/SzFC170uHDh04cOAABw4cqDB7eedVp83ffPNNmdd9+OGHdOzYkaNHj9K3b18jWyGEEMaT+5Jl3peqqzL3F0v5/ghlyGpyQhFr1qyhsLCQ1q1bM2bMmHL/eHh4sHfv3nK7vWuSl5cX9957LwkJCXh4eNCvX78KXz9q1Cg0Gg3bt2/nwoULd3zdqlWruHHjBk2bNqVTp06mjl0lo0aNwtbWlq1bt1aYHaCgoKDMeaZsc3Z2NjqdDldXV+MbIYQQVSD3Jcu8L5laefcX+f7UbdIzJBRRsizo9OnTadOmTbmv8fT0ZOHChfz8889Mnjy5JuPd5tVXX+WBBx7Ax8enzJLS5WnUqBHPPfccX3zxBc8//zz/+9//aN68eZnX7Nixg1mzZqHRaHjnnXfuOOm1pjVs2JCJEyfyySef8I9//IPPPvuM8PDw2173+++/8/XXX7N48WLA9G2eNWsWrVq1ol27dqZtoBBC3IHclyzzvmRq5d1f5PtTt0kxJGrcwYMHuXz5MsHBwXe84YBhxZyvvvqKVatWMXHixBpMeLtGjRoZtZzqpEmTyM3N5dtvv2XEiBH06NGD5s2bU1RUxLFjxzhx4gQODg58/PHHRi9jbW7PP/88RUVFzJ8/nzFjxtCuXTvCwsJwdnYmKSmJw4cPc+XKlduWfTVVmz/44AOOHDnC0qVL0Wg05m6uEELIfcnC70umUtH9Rb4/dZcUQ6LGlWxcd7c5KY0bN6ZTp04cPHiQ3bt3W9XKYmq1mtdee40hQ4bw008/8eeff7J//340Gg0BAQE8/fTTPPnkk5VaxlMJEydOZPDgwSxZsoSDBw+yevVqCgoKcHd3p2XLljzzzDO3rXZkija///77bNy4ke+//96se3kIIcSt5L5k+fel6rrb/aWuf3/qMpW+oq2OhRCihrz33nts2rSJH374gWbNmikdRwghRC0h9xdREekZEkIobvr06axbt4758+fj6urKzZs3AXBycsLZ2VnhdEIIIayV3F/E3UjPkBBCcSEhIeUenzhxIpMmTarhNEIIIWoLub+Iu5FiSAghhBBCCFEnybqAQgghhBBCiDpJiiEhhBBCCCFEnSTFkBBCCCGEEKJOktXkhBBC1DpZWVl88cUXnDlzhlOnTpGamlrpCdPbtm1jy5YtREVFkZiYiLe3N+3atWPSpEk0adLE/OGFEELUmFpTDOl0OoqKilCr1ahUKqXjCCFEnaHX69HpdNjY2KBWW8aAg7S0NFasWEHLli3p378/K1eurPS5X331Fd7e3jz//PM0atSI69evs2DBAkaOHMmKFSto0aJFpa8l9yYhhFBGZe9NtWY1uYKCAqKiopSOIYQQdVZ4eDh2dnZKxwAMN0EAlUpFSkoKXbt2rXTPUHJyMl5eXmWOJSYm0q9fP0aMGMGsWbMqnUPuTUIIoay73ZtqTc9QScUXHh6ORqMx+nytVktUVFSVz7d20n5pv7Rf2l/dn5+W0isEVKsX5u+FEICvry++vr4kJCQYdS25N1WPtF/aL+2X9pv73lRriqGSG59Go6nWP5jqnm/tpP3Sfmm/tL+qavMwsNjYWOLj4+nfv79R59Xm74kQQliDu/0crjXFkBBCCGEORUVFvPHGGzg5OfHUU09V6RrVHSpX14faSful/XWZtN+87ZdiSAghhLgDvV7Pm2++yZEjR5g7dy4NGjSo0nVkmFzVSPul/dJ+aX91f37ejRRDQgghRDlKCqF169Yxe/Zso4fI3UqGcFePtF/aL+2X9puLFENCCCHE35QUQqtXr2bWrFmMGDFC6UhCCCHMwHKW/hFCCCEsgF6vZ9q0aaxevZqZM2cyevRopSMJIYQwE+kZEkIIUSvt3r2b3NxcsrOzAbhw4QJbtmwBoHfv3jg6OvLGG2+wdu1atm/fTkBAAADvvfceP//8M6NHjyY4OJjjx4+XXtPOzo7Q0NAab4sQQgjzkGJICCFErTRjxgzi4uJK/3vLli2lxdDOnTtp2LAhOp0OrVbLrfuP//rrrwCsWrWKVatWlblmQEAAu3btqoH0QgghaoIUQ0IIIWqlyhQts2fPZvbs2UafJ4QQonaQOUNCCCGEEEKIOkmKISGEEEIIIUSdJMWQEEIIIYQQok6SYkgIIYQQQghRJ0kxJIQQQgghhKiTpBgC0OtRrZuA37kflU4ihBBCAHA9PZenvz/Mket5SkcRQohaS4ohgLx01CeW4n/2OyjMUTqNEEIIQXRcBrvPJfFDZJbSUYQQotaSYgjA0R29sw8qdHDjtNJphBBCCDo19cRWoyI2o4hLN6UgEkIIc5BiqIRfGACqxCiFgwghhBDg5mhL1yAvALacTFQ4jRBC1E5SDBXT+4YbHiREKxtECCGEKDaotS8AW6KlGBJCCHOQYqiEr/QMCSGEsCz9Q31RAyevZ3A1Wea0CiGEqUkxVEzvV9wzlHgKdFplwwghhBCAl7MdrX3sANhy8rrCaYQQovaRYqiEZzN0antUhdmQclnpNEIIIQQAXQIcANgcnaBwEiGEqH2kGCqh1pDjGmR4nHBC2SxCCCFEsc4B9qhUcOxqGtfTc5WOI4QQtYoUQ7fIdWtueJAg84aEEEJYBg9HDe0buwOwRXqHhBDCpKQYukWOazPDAymGhBBCWJDBrf0AGSonhBCmJsXQLaRnSAghhCW6r3iJ7T+vpHAzM1/hNEIIUXtIMXSLXJem6FFBViJkyp4OQgghLIO/uyMRDd3Q62HbKekdEkIIU5Fi6BY6G0fwKu4dkv2GhBBCWJBBYQ0A2BwlxZAQQpiKFEPFriRnk5qrRV+8+aoMlRNCCGFJBocZ5g3tv5RManaBwmmEEKJ2kGIIyCvUMnjuXt78NeWvzVelGBJCCGFBmng706qBK1qdnu2nZSi3EEKYghRDgFqlQgUkZmu57tjCcFCKISGEEBampHdIltgWQgjTkGIIsLNRE9HQDYA/cxsaDiadh4JsBVMJIYQQZZUUQ3vO3yQjr1DhNEIIYf2kGCpWsqHdvkQ11PMF9HDjtKKZhBBCiFu18HWhWX1nCrV6dp2+oXQcIYSwelIMFesQ6AHA0atpUDpvKFK5QEIIIUQ5hoQXryoXfV3hJEIIYf2kGCrWtpE7ABdvZpPrFWo4KPOGhBBCWJhBxUPldp+7SU5BkcJphBDCukkxVMzT2Q5/Fw0AF9RNDQelGBJCCGFhQhu40tjTibxCHb+dval0HCGEsGpSDN2ipZcdAAdzAgwHEk+CTqtgIiGEEKIslUpVupDCpigZKieEENUhxdAtQrxtAdie6Ay2TlCYA8kXFU4lhBBClFUyVO7XMzfIK5QP7YQQoqqkGLpFSc/Q8WuZ6HxaGw7KIgpCCCEsTNtG7vi7OZBdoGXP+SSl4wghhNWSYugW/i4a3B1tyS/SkeISYjgo84aEEEJYGJVKxX3FvUOyqpwQQlSdFEO3UKtUpfsNnaGJ4aAUQ0IIYXWysrL48MMPefrpp+nSpQshISHMmzev0ucnJyfz2muv0blzZyIiIhg3bhz79+83Y2LjDQ4zLLG9/VQiBUU6hdMIIYR1kmLob9oHugOwL9twk5FiSAghrE9aWhorVqygoKCA/v37G3VuQUEBTz31FPv37+fNN9/kiy++wMvLi2eeeYZDhw6ZKbHxOgR64F3Pnsy8IvZdlKFyQghRFVIM/U37xobNVzckeKBXqSH7BmQmKpxKCCGEMQICAvjzzz/58ccfmTJlilHnrly5knPnzvHpp58yfPhwunfvzty5c2nSpAkfffSRmRIbT6NWMSjMF4At0QkKpxFCCOukeDF08OBBQkJCyv1z/PjxGs/TJsANG7WKq5lQ5B5kOCi9Q0IIYVVUKhUqlapK5+7YsYOmTZvSrl270mM2NjYMHz6cyMhIEhMt5wOykqFy204lUqSVoXJCCGEsG6UDlJgyZQqdO3cuc6xFixY1nsPRTkNrf1dOXEsn0SmYhqkXDCvKtTBumIUQQgjrdP78eTp06HDb8ZCQkNLnfX19jbqmVlu15a9LzrvT+R0bu+HhZEtKdgEHLiXRNcirSu9jqe7W/tpO2i/tv/VrXVPd9lf2PIsphgIDA2nbtq3SMQDoEOjJiWvpnNI3oSFIz5AQQtQhaWlpuLm53Xa85FhaWprR14yKqt59pKLz2/nYsOtKIT/+dhLHDNdqvY+lqu73z9pJ+6X9dZm5228xxZAl6RDowaK9l9md4cdAkGJICCHqmIqG2FVl+F14eDgajcbo87RaLVFRURWe/6jjTXZdOcLRG1ratIlAra7a8EBLVJn212bSfmm/tL/q7S85/24sphiaOXMmU6ZMwcHBgXbt2vHCCy/QsWNHo69jiqEI7RoZPlnbnlyfWfagT76ALjcD7JyrdG1rIF2x0v5bv9Y10v6aGYpgLdzd3cvt/UlPTwcot9fobjQaTbV+mano/J7BPrg42HAjM58TcRl0bOJZ5fexVNX9/lk7ab+0X9pvvvYrXgy5uLjwxBNP0LlzZ9zd3YmJieGbb77hiSeeYMGCBfTs2dOo65lqKEJ9JzU3ctzIsfXEqTCF83t/IdsjtFrXtgbSFSvtr8uk/XW7/SWCg4M5d+7cbcdLjikxn7UidjZq+rfyZc2xODZHJ9TKYkgIIcxF8WIoNDSU0NC/ioyOHTsyYMAAhg0bxkcffWR0MWSqoQhdzp5gfeR1Euu1pGnqPoJd89FbyJwmc5CuWGm/tF/ab+6hCNaif//+zJgxgxMnThAREQFAUVER69atIyIiwujFE2rCoDA/1hyLY0t0AtOGtqrySnpCCFHXKF4MlcfV1ZV7772XZcuWkZeXh4ODQ6XPNdVQhHuaerI+8jpR2sY0ZR/qxGioA78kSVestF/aL+2vLXbv3k1ubi7Z2dkAXLhwgS1btgDQu3dvHB0deeONN1i7di3bt28nICAAgDFjxrBkyRImT57M1KlT8fLyYsmSJVy+fJlvv/1WsfZUpHdwfZzsNMSl5RJ5LZ2IRu5KRxJCCKtgkcUQgF6vB6o2UdUUSjZf/T3dj+EqZBEFIYSwMjNmzCAuLq70v7ds2VJaDO3cuZOGDRui0+nQarWl9xwAOzs7vvvuOz766CPee+89cnNzadWqFV999RWdOnWq8XZUhoOthj4tfdgYeZ3N0QlSDAkhRCVZZDGUnp7Ob7/9RqtWrbC3t1ckQ0s/F5ztNBwpaAT2QOJJ0GlBXXs+NRVCiNps165dd33N7NmzmT179m3Hvb29+eCDD8wRy2wGh/mxMfI6W6Kv8+qgEBkqJ4QQlaB4MTR16lQaNGhAWFgYHh4exMTEsGjRIpKTk8u9QdUUG42ato3d2X+hkEKNI7ZFuZB8AeqHKJZJCCGEuJM+IT7Y26i5kpzDmYRMWjWonXsOCSGEKSleDIWEhLBp0yaWLVtGTk4Obm5udOjQgQ8//JA2bdoomq1DYw/2Xkjmml0QTXNPGobKSTEkhBDCAjnb29AruD7bTyWyOeq6FENCCFEJihdD//jHP/jHP/6hdIxydShenvREYSOachISIiF8jMKphBBCiPINCfczFEPRCUwZKB/eCSHE3aiVDmDJ2jV2R6WCg7mGFYZkEQUhhBCWrG9LX2w1Ks7fyOLCjSyl4wghhMWTYqgCrg62hPi6cEoXaDhwPRJuWXFICCGEsCRujrZ0b+4NwJbo6wqnEUIIyyfF0F20D/TgrL4ROtSQkwRZiUpHEkIIIe5ocJgfAJuiEhROIoQQlk+KobvoGOhBHvbEaWSonBBCCMs3INQPjVrFqesZXE3OUTqOEEJYNCmG7qJDoGHz1WOFjQ0HEiIVTCOEEEJUzNPZji5BhgWANstQOSGEqJAUQ3fR2NMJ73p2RGtLiiHpGRJCCGHZBoU1AGBztAyVE0KIikgxdBcqlYoOgR6c0jcxHJBiSAghhIW7r7UvKhUcj00jPi1X6ThCCGGxpBiqhA6BHpzWFfcMJV+EfFmuVAghhOXycXGgY/Ew7y3SOySEEHckxVAldAj0JBk3buAJ6OHGKaUjCSGEEBUaXDxUToohIYS4MymGKiEswBU7G/Ut84ZkEQUhhBCWbVDxEtt/xqRwIzNP4TRCCGGZpBiqBHsbDW0C3DilL958VeYNCSGEsHD+7o5ENHJHr4dtJ2WPPCGEKI8UQ5XUIdCDU7riYui69AwJIYSwfCUbsMoS20IIUT4phiqpfaDHXz1DN06BtkjZQEIIIcRdlBRDBy6lkJpdoHAaIYSwPFIMVVKHQA9i9L5k6+2hKA+SLygdSQghhKhQoJczoQ1c0er0bD8lQ+WEEOLvpBiqJO969gR61eO0zBsSQghhRWSonBBC3JkUQ0boEOj517whWVFOCCGEFRgcbiiG/riQREZeocJphBDCskgxZIQOt84bkp4hIYQQVqC5jwvNfepRqNWz87QMlRNCiFtJMWSEjk3+WlFOnxAFer3CiYQQQoi7G1IyVC5KNmAVQohbSTFkhOb16xFv35QivRpVThJkyk1FCCGE5RsU1gCA3edukp0vq6EKIUQJKYaMoFaraN3Yl4t6f8MBGSonhBDCCrRq4EKglxP5RTp+O3tT6ThCCGExpBgyUscy84ZkEQUhhBCWT6VSMah4qNwmWVVOCCFKSTFkpA6BHresKCc9Q0IIIazDkOKhcr+euUFeoVbhNEIIYRmkGDJSRCN3ztAEgKJ46RkSQghhHdo0dCPA3ZGcAi2/n5OhckIIAVIMGc3Z3gatT2sANGmXIT9T4URCCCHE3alUKu5rbRgqtyVaFgASQggAm6qcdP78eY4ePUpiYiJ5eXl4eHjQvHlz7rnnHurVq2fqjBYnuGlTrqd40kCVAomnoHFnpSMJIYQQdzU43I9Fey+z/XQiBUU67GzkM1EhRN1W6WIoPT2d5cuXs3z5cuLj49GXs8eOjY0NvXr14vHHH6dr164mDWpJ2gd6cOrPQBpoUgyLKEgxJIQQwgp0aOxBfRd7bmbms/diEn1CfJSOJIQQiqpUMbR48WLmz58PwJAhQ+jUqROtW7fG09MTe3t70tPTiY2N5fjx4+zcuZOnn36abt268fbbbxMYGGjWBiihQ6AHq/WB9OMYRfEnqta9JoQQQtQwtVrFoNZ+/HAghi1RCVIMCSHqvEr9Hv/DDz/w+uuvM3ToUGxtbW973tvbG29vb9q1a8f48eO5evUqX375JZs3b+b55583eWilBbg7ct2hORRBXuxxav/AQCGEELXF4DBDMbTtVAKztGHYaGSonBCi7qpUMbR582ZsbCrf/9G4cWPef/99tNrau3SnXcO2cAUcUs6Ctgg00j8khBCWJDs7m08//ZTNmzeTnp5OUFAQ//jHPxg6dOhdzz1w4AALFizgzJkz5OXl0bBhQ8aOHcujjz6KRqOpgfTm06mpJx5OtqTmFHLocgrdmnsrHUkIIRRTqY+Dzp8/X6WLW/sNoyKBzUPJ0jtgoy+A5Kp9f4QQQpjPpEmTWLt2LRMnTuSrr74iPDycKVOmsH79+grP27dvH+PHj6eoqIh3332X+fPn07lzZ2bNmsX7779fQ+nNx0ajZmCobMAqhBBQyWJo5MiRjBo1iiVLlpCZKUtJA3Ro4sVpfWMAdNdlvyEhhLAku3fvZu/evbzzzjs89NBDdOnShffee4/u3bvz4YcfVjhyYfXq1djY2LBgwQL69+9Pt27dmDZtGj169GDNmjU12ArzGRxuKIa2nkxEp7t9QSQhhKgrKlUMPffcc6SkpDBz5kx69OjByy+/zIEDB8ydzaK1auDKOZoCkH7piMJphBBC3Gr79u04OTkxaNCgMsdHjRrFjRs3OHHixB3PtbW1xdbWFgcHhzLHXVxcsLe3N0vemtatmTcuDjbczMznyNVUpeMIIYRiKjXR5aWXXuJf//oXe/bsYfXq1Wzbto2NGzfi7+/P6NGjGTlyJA0aNDB3Votiq1GT5dES0reSf+3ON1UhhBA17/z58zRr1uy2+a4hISGlz7dv377ccx966CE2bNjAe++9x3PPPYejoyO7du1ix44dTJkypUp5qjqHtuQ8U8/B1aigX0sf1h6PZ1NkPO0buZn0+qZirvZbC2m/tP/Wr3VNddtf2fMqPetfpVLRq1cvevXqRUZGBuvWrWP16tXMnTuX+fPn06VLF8aOHUu/fv3KXXGuNnJs3A6ioF7aadDrQaVSOpIQQgggLS2Nhg0b3nbczc2t9Pk7iYiI4Pvvv2fy5Mn89NNPgGEO7JQpU3j66aerlCcqKqpK55nq/PKEOOUBsP5YLEP981BZ8D3MHO23JtJ+aX9dZu72V2kJNFdXVx577DEee+wxzpw5w6pVq9iwYQMvvfQS7u7u7N+/39Q5LVJgy44URaqpp02HzOvg6q90JCGEEMUq+uW+oueio6OZOHEibdq0YebMmTg6OnLgwAE+/fRT8vPzmTBhgtFZwsPDq7SokFarJSoqqsrnV6Rlay3zDu8iKVeL2rspEY3cTXp9UzBn+62BtF/aL+2vevtLzr+baq8H3bJlS4YPH05OTg6rV6+u8NO22iaiqS8X9AG0VMWScfkorhFSDAkhhCVwd3cv936Unp4O/NVDVJ6ZM2fi5eXF/PnzS2/AXbp0Qa1W8/nnnzN8+HAaNWpkVB6NRlOtX2aqe355nDUa+rb0YUPkdbaevkH7Jl4mvb4pmaP91kTaL+2X9puv/VXeaS0lJYXvvvuOYcOG8eCDD/LLL7/Qp08f5s+fb8p8Fs3dyY5r9s0AuHH+sMJphBBClAgODubixYsUFRWVOX7u3DkAWrRoccdzT58+TVhY2G033/DwcHQ6HRcvXjR9YIUMDjPM990SnYBeL6vKCSHqHqN6hnQ6Hb///jurVq3it99+o7CwkCZNmjBlyhRGjhyJt3fd27gt36s1JPxGYbwsoiCEEJaif//+rFixgm3btjFkyJDS42vWrMHHx4eIiIg7nuvj40N0dDRarbZMQXT8+HEA/Pz8zJa7pt0bUh97GzUxyTmcvp5JqL+r0pGEEKJGVaoYunz5MqtWreKXX34hKSkJBwcH7r//fkaPHk3Hjh3NndGiOTdpBwngnn5G6ShCCCGK9e7dm+7duzN9+nSysrJo3LgxGzduZM+ePXz00UelRc4bb7zB2rVr2b59OwEBAQA89dRTvPfeezz//POMGzcOR0dH9u/fz7fffku3bt1o2bKlkk0zKWd7G3oH12fbqUQ2R1+XYkgIUedUqhgaPHgwAG3atGHSpEkMHToUZ2dnswazFk1CO8MBaKCNpyA7HTtny1yeVAgh6pp58+bxySefMHfuXNLS0ggKCmLOnDkMHTq09DU6nQ6tVltmiNjjjz+Or68v3333HdOmTSM/P5+AgAAmTJjAU089pUBLzGtIeIPiYiiBqQNDlI4jhBA1qlLF0JNPPsmYMWMqHGNdVwU2akQCXviRzOVThwi5Z4DSkYQQQgDOzs5MmzaNadOm3fE1s2fPZvbs2bcdHzhwIAMHDjRnPIvRt5UPthoVF25kceFGJs19XJSOJIQQNaZSCyi8/vrr5RZCly5d4siRI+Tk5Jg8mLVQqVQkOhq+N8nn/1Q4jRBCCGEcVwdbejQ3zPndHJWgcBohhKhZVVpNbu3atfTq1YuhQ4fy2GOPcfnyZQAmT57MihUrTBrQGhT6hAGgu163N8USQghhnUpWldsULcWQEKJuMboY2rx5M6+99hqhoaG89dZbZcZZt27dms2bN5s0oDVwb9oeAM+ss7I0qRBCCKszINQXjVrF6esZxCRnKx1HCCFqjNHF0MKFCxk1ahT/+9//GDduXJnngoKCuHDhQrUCrVy5kpCQENq1a1et69SkRqGdAWimu8q1pAyF0wghhBDG8XC2o2uQYdPVzdI7JISoQ4wuhi5evFhmJZ5b3WnH78pKTEzkgw8+wMfHp8rXUIK9dxA5KkfsVYWcPXVU6ThCCCGE0QaFGfZPkmJICFGXGF0MOTo6kpmZWe5ziYmJuLlVfWnpd955h44dO9K9e/cqX0MRajVJzsEApF48onAYIYQQwngDW/uiUsGJ2DTi0nKVjiOEEDXC6GKoXbt2/PTTT+XOjVm9ejWdOnWqUpBffvmFQ4cOMX369CqdrzSdr2ERBVWiLKIghBDC+vi4OHBPoCcAW6R3SAhRR1Rqn6FbTZgwgUceeYQxY8YwbNgwVCoV27ZtY968eRw+fJiVK1caHSI5OZn//Oc/TJ06FT8/P6PPv5VWq63WeVU9371JO7j4E36550nLzsfFwehvraKq235rJ+2X9t/6ta6pbvvr6vetNhoc7sehKylsib7O//VoqnQcIYQwO6N/Yw8PD+err75ixowZpRvVLViwgMDAQBYuXEhwcLDRIWbMmEHTpk155JFHjD7376KiqtczU9XznQrq4Q6EqmJY9eth2jZwqFYOpVT3+2ftpP3S/rqsrrdfGOYNzVh/isMxqdzIzMPHxTrvZUIIUVlV6r7o0qULmzdv5urVqyQlJeHh4UHTplX7BGnr1q3s2rWLtWvXolKpqnSNW4WHh6PRaIw+T6vVEhUVVeXzKWqJds8EPFVZaPVFtG3b1vhrKKja7bdy0n5pv7S/6u0vOV9YvwZujrRt5M7x2DS2nkzk8S6BSkcSQgizqtZYrsaNG9O4ceMqn5+dnc3MmTN5/PHH8fHxISPDsCx1YWEhABkZGdjY2ODk5FTpa2o0mmr9MlPl8zXOpNYLwiPrPJkxx9Foelc5g5Kq+/2zdtJ+ab+0v+62XxgMDvPjeGwam6OuSzEkhKj1KrWAwqZNm4y+cGJiIkeOVLyyWmpqKklJSSxatIh77rmn9M+GDRvIycnhnnvu4eWXXzb6vZWiatAGANubJ9HqZPNVIYQQ1mdwWAMADl5OISW7QOE0QghhXpXqGZo5cyYLFizgscceY/DgwdSrV++Or42OjmbVqlWsWbOGf//733To0OGOr61fvz6LFy++7fjChQv5888/+eqrr/Dw8KhMRIvg2qQdnF9Fc91lziZkEurvqnQkIYQQwiiNvZxo7e/KyfgMtp9KYNw9VR8BIoQQlq5SxdD27duZN28es2bNYubMmYSGhhIaGoqXlxd2dnakp6cTGxvL8ePHuXnzJi1atGDevHn07Nmzwuva29vTuXPn246vWbMGjUZT7nOWTF3cMxSqimFPTIoUQ0IIIazS4DA/TsZnsDlaiiEhRO1WqWLIxcWFN954gwkTJrB69Wp2797N2rVryc39a1O2Ro0a0bNnT4YNG0aXLl3MFtii+YUD0ESdyJeXrkHXJsrmEUIIIapgUFgD/rvtHHsvJJGeW4ibo63SkYQQwiyMWkDBzc2N8ePHM378eAAyMzPJy8vD3d0dW1vT/aCcPXt26bLdVsXJkzynBjjkXCcz5jjQQ+lEQgghhNGa+9SjhU89zt/IYufpREa1b6h0JCGEMItKLaBwJy4uLtSvX9+khZC1s/E3DJWrn32OxIw8hdMIIYQQVTM43LCQwuboBIWTCCGE+VSrGBK3s/GPAAzzho7GpCqcRgghhKiawWF+APx+7ibZ+UUKpxFCCPOQYsjUiucNhaqvcFiKISGEEFaqpZ8LTbycyC/S8evZG0rHEUIIs5BiyNSKi6Fg1TWOX7mpcBghhBCialQqFYOK9xzaHCVD5YQQtZMUQ6bmHojOzgV7VRF510+TV6hVOpEQQghRJUPCDUPlfj17Q+5nQohaSYohU1OrUfmFARCsv0LktXSFAwkhhBBVEx7gRoC7IzkFWnafk9EOQojax+hi6N133+XSpUvmyFJrqPyKN19Vx3A4JkXhNEIIIUTVGIbKGXqHtsiqckKIWsjoYmjt2rUMHTqU8ePHs2PHDvR6vTlyWbeSRRRkRTkhhBBWrmRVuR2nE8kvkqFyQojaxehiaM+ePUybNo2bN28yceJE+vbty8KFC0lJkR6QUg3+6hk6ciVFCkYhhBBWq31jD3xc7MnMK2LfhWSl4wghhEkZXQw5OTnx6KOPsmHDBr799ltat27NZ599xr333strr71GVFSUOXJal/ot0att8FBl4ZCbyKWkbKUTCSGEEFWiVv81VG5z9HWF0wghhGlVawGFrl278vnnn7Nz507atWvHL7/8woMPPsjYsWPZtWuXqTJaHxt7VPVbAob9ho7IUDkhhBBWrKQY2n4qkSKtTuE0QghhOtUqhvLy8li5ciXPP/88Bw8epFmzZkyYMAGtVsuECROYP3++qXJan1vmDR25IsWQEEII69WpiSeeznak5hRy8LIMixdC1B5VKoauXr3K+++/T69evXjnnXfw8/Nj0aJFbNiwgYkTJ7J69WqeffZZfvzxR1PntR4lxZA6hiNXpRgSQghhvWw0agaG+gKwKUqGygkhag+ji6FnnnmGQYMG8fPPPzNixAi2bNnC//73P7p161bmdX369CE1tQ4XAbf0DF24kUVaToHCgYQQQoiqGxzeAICtJxPR6mRhICFE7WBj7AmxsbG8/vrrjBo1Cmdn5zu+rkWLFixevLha4ayar2Hj1UD1DVzI4ejVVPq29FU4lBBCCFE1XYO8cHWwISkrnyMxqXRq6ql0JCGEqDaje4a2bt3K448/XmEhBFCvXj06depU5WBWz8kT3BoB0EoVI4soCCFEDcvOzmbWrFn06NGD8PBwRowYwcaNGyt9/o4dO3jsscdo3749bdu2ZejQoSxfvtyMiS2bnY2a/sVD5WRVOSFEbWF0z5Awgl84pMcSqo7hsCyiIIQQNWrSpElERUUxdepUmjRpwoYNG5gyZQo6nY5hw4ZVeO7ChQv55JNPeOihh/jHP/6Bra0tly5dorCwsIbSW6bBYQ1YfTSOLdEJvDU0FLVapXQkIYSoFqOLob59+6JSlf/DT61W4+LiQnh4OE888QTNmjWrdkCr5hcOZzcRqoph2bU0CrU6bDXVWsBPCCFEJezevZu9e/fy8ccfc//99wPQpUsX4uPj+fDDDxkyZAgajabcc6Ojo/nkk0+YMmUKzz77bOnxrl271kh2S9azhTfOdhqup+dx4loa7Rp7KB1JCCGqxejfzDt16oRerycxMZGAgAAiIiLw9/cnMTERrVZLgwYN2L59O6NHj5YNWIsXUQi3uUpeoY5T8RkKBxJCiLph+/btODk5MWjQoDLHR40axY0bNzhx4sQdz/3pp5+ws7Pj8ccfN3dMq+Ngq6FvK8NQuS3RCQqnEUKI6jO6GOrRowd2dnZs376dxYsXM2fOHH744Qe2bduGnZ0d/fv3Z+vWrTRp0oR58+aZI7P1KC6GmnMNW4pk3pAQQtSQ8+fP06xZM2xsyg6ACAkJKX3+Tv7880+aNWvG1q1bue+++2jVqhW9evXiv//9LwUFsjLo4OINWDdHJ6DXy6pyQgjrZvQwuf/9739MmjSJBg0alDnu7+/PhAkT+OKLLxg5ciRPPfUU//nPf0wW1Cq5B4K9K7b5GTRTxXPkaiOepqnSqYQQotZLS0ujYcOGtx13c3Mrff5OEhMTSUlJYdasWUyePJlmzZqxf/9+vvrqK65fv87HH39sdB6tVmv0ObeeV9XzzaFnc08cbNVcTckh+loaof6uZnsvS2x/TZL2S/tv/VrXVLf9lT3P6GIoJiaGevXqlfucq6srcXFxAAQEBJCbm2vs5WsXlcrQOxSzl1DVFfZdCUav199xzpUQQgjTqehnbUXP6fV6srOzmTNnDkOHDgUM841yc3P5/vvvefHFFwkMDDQqS3WHjVvasPMIH1sOxuXz3a4TPBLmYvb3s7T21zRpv7S/LjN3+40uhvz9/VmzZg29e/e+7blVq1aV9hilpaWVfgJXpxUXQ601V1mdkUd8eh4B7o5KpxJCiFrN3d293N6f9PR0gArvT+7u7ty8eZMePXqUOd6rVy++//57Tp48aXQxFB4efscFGyqi1WqJioqq8vnm8pAqnoMrIjmeBB+2bWu297HU9tcUab+0X9pf9faXnH83RhdD//d//8fbb7/NQw89xKBBg/D29iYpKYktW7Zw4sQJZs6cCcDBgwcJCwszOnitUzxv6B6Ha1AIh6+kENA2QOFQQghRuwUHB7NhwwaKiorKzBs6d+4cYNgY/E5CQkK4efPmbcdL5seo1cavCqrRaKr1y0x1zze1/qF+2GmiuXgzm0tJObTwNW/vkKW1v6ZJ+6X90n7ztd/on+gPPvggM2bM4Nq1a8yePZuXX36Z2bNnc+3aNWbMmMHYsWMBeP755/nwww9NHtjq+LUBoIXuMqDnqCyiIIQQZte/f39ycnLYtm1bmeNr1qzBx8eHiIiIO547cOBAAH7//fcyx3fv3o1arSY8PNz0ga2Mi4MtPVp4A4aFFIQQwloZ1TOk1Wq5evUqgwcP5sEHH+TSpUukpaXh7u5OUFBQmTHY3t7eJg9rleq3BLUtjtpM/EnmcIwMHRRCCHPr3bs33bt3Z/r06WRlZdG4cWM2btzInj17+Oijj0o/ZXzjjTdYu3Yt27dvJyDA0Gs/atQoli9fzowZM0hNTaV58+bs27ePJUuW8Mgjj5S+rq4bFObHrjM32BydwIv97tzTJoQQlsyoYkiv1zN06FC+/PJLevfuLZuqVoaNnaEgSowiVB3DruveZOcX4Wxv9AhFIYQQRpg3bx6ffPIJc+fOJS0tjaCgoDKLIgDodDq0Wm2ZJaJtbW1ZtGgRc+bMYcGCBaSnpxMQEMDUqVMZP368Ek2xSANa+aJRqzh9PYMrSdk08XZWOpIQQhjNqN/IbWxs8Pb2ln0FjOUXDolRdHGKY0dWB07EptGtufScCSGEOTk7OzNt2jSmTZt2x9fMnj2b2bNn33bc3d2dmTNnls6DFbfzcLajWzMv9pxPYnN0Ai/cKx+QCiGsj9FzhoYOHcratWvNEKUWK11EwbDs+GGZNySEEKIWGFS8AeuW6OsKJxFCiKoxeqxWy5Yt2bRpE0888QQDBw6kfv36t+3XUDL5VBQrLoaCii4CcESKISGEELXAwFA/pq2N5sS1dK6l5tDQw0npSEIIYRSji6FXX30VMOzQfejQodueV6lUnD59uvrJahM/wxLjLnnxuJLN0as26HR61GrZfFUIIYT1qu9izz1NPDl0OYUt0Qk80zNI6UhCCGEUo4uhxYsXmyNH7eboAW6NIf0qbe2u8XueM+dvZBHiZ/5du4UQQghzGhLmJ8WQEMJqGV0MderUyRw5aj+/cEi/Sn+PRH5PDOFwTIoUQ0IIIazeoLAGTF9/iiNXU7mRkYePq4PSkYQQotKM30a7WGZmJnv27GHdunWkp6ebMlPtVDxvqL3dNUDmDQkhhKgd/NwcaNfYHb0etp6UDViFENalSsXQ/Pnz6dmzJ88++yyvvvoq164ZfsF/8sknWbhwoUkD1hrFxVBgoWERhaNSDAkhhKglBhevKrc5WoohIYR1MboY+umnn5g/fz5jxoxhwYIFZfYc6tOnD7/99psp89UexcVQvYwL2KmKuJKcw83MfIVDCSGEENU3OKwBAAcuJZOcJfc2IYT1qFIx9NRTTzFt2jR69OhR5rnAwEBiYmJMFq5WcW8M9m6odIX080oD4OhV6R0SQghh/Rp5OhEW4IpOD9tPJSodRwghKs3oYig2NpaePXuW+5yzszMZGRnVDlUrqVSlvUN93Q03Cpk3JIQQorYo6R2SoXJCVF9+kZYlh64SdUN6Ws3N6GLIxcWFpKSkcp+Li4vDy8ur2qFqreJiqK3tVUCKISGEELXHoOJ5Q/suJpGeU6hwGiGs16HLKQz5bA9v/XKK6btTeXfjafKLtErHqrWMLoa6du3K119/TU5OTukxlUpFUVERS5cuvW3onLhFgzYANCwwLKIQdS1d/nELIYSoFZrVr0ewbz0KtXp2nJahckIYKz23kNdXR/Hggv1cvJmNq4NhB5zv9sUwcv4+LtzIUjhh7WR0MfTiiy8SHx/P0KFDmT17NiqVih9//JGxY8cSExPDP//5T3PkrB2Ke4Yckk/i5WRLgVZHdJwsSy6EEKJ2kKFyQhhPr9ezKeo6/efsZukhw+ihh+5pxG8v9+b17u54Otly6noGw+b9wYo/Y8ssXiaqz+hiKDAwkKVLlxIUFMTSpUvR6/X88ssveHh4sGTJEvz9/c2Rs3bwDgG1Laq8dAYEGIYQyFA5IYQQtcXgcMNQud/P3yQrv0jhNEJYvvi0XJ5dfJh//nSUm5n5BHk7s+wfXZg9ug1ujrZ09Hdgw6TudG/uRW6hlldWRTJp6THSc2UoqqnYVOWk5s2b880331BQUEBqaipubm44OMiO03dlYwc+LSEhinvdEliGH4evpPKPXkoHE0IIIaovxNeFpt7OXE7K5tczNxgWIR+QClEerU7PD/uv8NHWs2QXaLHVqHihdzP+2ac5DrYaw4ti9mKfnYava1t+eLozC36/xMfbzrIh8jrHrqYx9+G2dAj0VLYhtUCVNl0tYWdnh6+vrxRCxvAzzBtqY2PoBj16NVW6O4UQQtQKKpWqdCGFLTJUTohynUnIYPSX+5i+/hTZBVo6BHqw8cWeTBkY8lchdOk3NIuH0fL35yEhGrVaxQv3NmPl811p5OlIXFouDy44wOe7zqPVye+R1VGlnqFr166xefNm4uPjycvLK/OcSqXiP//5T6Wvdfr0aT755BPOnTtHSkoKDg4ONG3alEceeYQRI0ZUJZ5lK5435JtzDjtNF5KyCohJzqGJt7PCwYQQQojqGxLWgC9/u8iuMzfILdDiaKdROpIQFiGvUMvcnedZ+PslinR66tnb8OrgljzaqTFqteqvF+p0sP0dAGyKstEvHQtPbwXPprRrbCicpq2JZt2JeP677Rx/XEji03Ht8HOTzomqMLoY+u2335g4cSI6nQ5PT0/s7OzKPK9Sqe5wZvkyMjLw8/Nj6NCh+Pr6kpuby/r163nllVeIi4urfQsyFBdDmsRowhu6cSQmlSMxqVIMCSGEqBXCAlxp6OHItdRcdp+7WdpTJERdtu9CEm+sieJKsmE15vta+zJjeFj5BczJ1XD9OHq7euTZ18cx8zL8MNJQELn44upgy2cPtaVXcH3e/iWaA5dSGPTZ73w0JoIBob413DLrZ3Qx9Mknn9C+fXs++eQTk+wp1LlzZzp37lzmWJ8+fbh27RorVqyofcWQb5jha/pVujfTcCQGjlxNZXSHhsrmEkIIIUxApVIxqLUfX/9xmS3R16UYEnVaanYB/9l0mpVHrgHg62rPjOFhd/7/oqgAdr0LgL7bi5yzbUebP19GlXoZfhwN4zeCgxsqlYoxHRrSvrE7Ly47RnRcBs8uPsyTXQN5fUirv4bbibsyes5QTEwMzz77rNk3V/Xw8ECjqYV/kY7u4N4YgB71DOOpj1yRFeWEEELUHiWryu08fUP20xN1kl6v55fjcfSfs7u0EHqsS2O2T+ld8QcER76D1Cvg7IO+8wsUOXihe3QVOPtAYhQsfRgKc0tfHlS/Hqte6MazPZsC8P3+GB6Yv5fziZlmbF3tYnTPkL+/f5kNV01Fp9Oh0+nIyMhg8+bN/PHHH7z11ltGX0errdoP3ZLzqnq+MdS+4ajSrtJKdRlowbkbmaRm5eHqaGv2976Tmmy/JZL2S/tv/VrXVLf9dfX7Ju6sXSMPfF3tSczIZ++FJPq2lKE7ou6ITclh2tpodp+7CUALn3q8Pyqcjk3usvJbfibs/sDw+N7XwK54CoVnEDy2Cr4bCjF74ef/gwcXg8bwa7y9jYY3h4bSvbk3L688wZmETIZ9/gdv39+ahzs1MnoKS11jdDH03HPPsWjRInr16oWjo6PJgkyfPp3ly5cDYGtry5tvvslDDz1k9HWioqKqlaO651dGA703/kD+xX34ObckIVvLqt1Haednb/b3vpuaaL8lk/ZL++uyut5+YTpqtWGo3Pf7Y9gclSDFkKgTirQ6vtt3hY+3nSO3UIudRs3Evs15vncz7GwqMRhr3+eQkwRezaH9E2Wfa9AGHl4KP4yCsxthw2QY/jncUujcG+LDpsk9mbriBHvOG+Yo7Tl/k9mj2uDmpNwH7pbO6GIoKiqK5ORkBgwYQOfOnfHw8LjtNdOmTTM6yPPPP8/YsWNJSUlh165dvPvuu+Tm5vJ///d/Rl0nPDy8SsPrtFotUVFRVT7fKI7xcO57vArj6Brsy5pj8aTZeNK2bQvzvm8FarT9FkjaL+2X9le9/SXnC3GrQWEN+H5/DNtPJ1Ko1WGrqdZuHkJYtOi4dF5fHUVUXDoAnZp68v6ocJrVr1e5C2Qmwr55hsf93gaNLfy9171JDxizCFY8Dsd+BCcvGDCzzEt8XBz4fnwnvv7jEh9tPcvm6AROxKbx2cPtuOduPVN1lNHF0I8//lj6eOPGjbc9r1KpqlQM+fv74+9v2Jytd+/eAMyZM4eRI0fi6Vn5vzyNRlOtX2aqe36l+EcAoLp5lk5tXVhzDI5eTbOIX8JqpP0WTNov7Zf21932C9Pq1NQTL2c7krMLOHgphR4tvJWOJITJ5RQU8emO83zzx2W0Oj2uDja8MaQVD3ZsVHa57Lv5/UMozIaADtBq+J1f1+p+GDYX1k2EvZ+Bkzd0f7HMS9RqFf/o1YwuQV68uPQYV5JzGLdgPy/2a8HEPs2xkQ8myjC6GDpz5ow5ctymTZs2LFu2jNjYWKOKIavg1ggc3CAvna4uSQAcj02jSKuTf6BCCCFqBY1axcDWviw9FMvm6OtSDIla5/dzN3lzbRSxKYYFDYa2acA7w0LxcTFyv5/ki4aFE8DQ03O3OT7tH4ecZNjxDmx/y9BD1O7R217WpqE7G17sydu/RLP6aByf7jjPvgvJfPpQW/zdTTfVxdpZ7G/eBw8eRK1W06hRI6WjmJ5KBX5tAGhccAEXextyCrScSZCVP4QQQtQeg8MaALD1ZAJanV7hNEKYRnJWPi8tP84Tiw4Rm5KLv5sD3zzZkfmPtDe+EALDUtq6Imgx0DAUrjK6T4auEw2P102Cs5vLfVk9exvmPNiWT8ZF4Gyn4dCVFAZ/toct0deNz1lLVaoY+vPPP8nOzr7r61JSUvj555+NCvDWW2/xwQcfsGnTJg4dOsTWrVt56aWX+OWXXxg/fnzt6xUqUVwMqROjaRdomHd1JEaW2BZCCFF7dG3mhZujLUlZBRy+kqJ0HCGqRa/X8/ORa/Sbs5s1x+JQqWB89yZsm9Kbfq2quEhI3BE4uQZQQb93Kn+eSgUD34OIR0CvhZVPwZW9d3z5yHYN2fhiTyIaupGeW8jzPx7ljTVR5BbIaqCVKoaeeOIJLl68WPrfOp2OsLAwTp06VeZ1sbGxRi+H3bZtWyIjI5k5cybjx49n2rRpJCUl8eGHH/LKK68YdS2r4hdu+JoQRUcphoQQQtRCtho1/Yt/SdwcnaBwGiGqLiY5m8e+OcjLK0+QllNISz8X1vyzO+8Ma009e6NnnRjo9bC9uACKeBj8wow7X6WC4fMgeBAU5Rn2IEq482I2TbydWfl8N57rHQTAkoNXGTH/D87W8ZFJlfrb0+v1t/13UVHRbcerYvTo0YwePbra17E6txRDHXq4A1IMCSGEqH0Gh/mx6ug1tp5M4O37Q42bVC6Ewgq1Or7ec5lPd5wjv0iHvY2af/UP5pmeTau/QuKFnXBlD2jsoc8bVbuGxgbGfgc/jISr++HH0fD0VvBsWu7L7WzUvD64FT2ae/PS8hOcS8xi+Od/MG1oKx7rElgn9ySy2DlDtZ53MGjsID+ddq6ZqFUQl5bL9fTcu58rhBBCWIkeLbxxttNwPT2P49fSlI4jRKWdiE1j+Od7+WDLGfKLdHRv7sXWf/XihXubVb8Q0ukMCyAAdHoW3KsxR97WER5eBr5hkJUIPzxgWKq7Aj1b1GfLv3pyb0h98ot0vPXLSf7xwxFSswuqnsNKSTGkFBs7qN8SAKeUU7Rq4ArA0Zg0BUMJIYQQpuVgqymdT7FFhsoJK5CVX8SM9ScZ+cVeTl/PwN3Jlv+OjeDH/+tME29n07xJ1EpIjAZ7N+g5tfrXc3SHx1aBRxNIvWLoIcpLr/AU73r2LHryHt66PxRbjYrtpxIZ/NkeDlxKrn4eKyLFkJKKF1EgIbJ03tDhGJlgKoQQppCdnc2sWbPo0aMH4eHhjBgxotz98e7mk08+ISQkhPvvv98MKeuGwWF+AGyOvm6SIfZCmMuuM4kMnLObb/deQaeHB9r6s3NKb8Z0aGi6IWSFebDrPcPjni+Bk4kWC3Pxg8fXgLMPJEYZ5hAVVjziSK1W8X89mrLmn90J8nYmISOPh786wJxtZynS6kyTy8JVesbXpUuXSjfj0xbviHvp0qXbXiOMcMu8ofatnuT7/TEclXlDQghhEpMmTSIqKoqpU6fSpEkTNmzYwJQpU9DpdAwbNqxS1zh9+jSLFi3C21v2yKmO3iH1cbBVE5uSy8n4DMIC3JSOJEQZNzLzmLH+FBsjDUtON/RwZNbIcHoH1zf9mx3+BtKvgos/dH7etNf2DDL0EH03FGL2ws9Pw4M/GOYWVSAswI31k3owfd1JVh65xtxdF9h7MZnPHmpLQw8n02a0MJUuhl5//fXbjv19tTe9Xl8nJ15V2a2LKAwy9AydjM8gt0CLo53sAi+EEFW1e/du9u7dy8cff1zao9OlSxfi4+P58MMPGTJkSOkHfHdSVFTE66+/zrhx4zh79iypqfJhVVU52dlwb7APW04msDn6uhRDwmLo9XqW/xnLfzadJiOvCLUKnukZxL/6t8DJroqrxFUkLx1+/8jwuM/rhvk+ptagDTy8FH4YBWc3wfrJMOLzu27m6mxvw0djI+gZXJ83V0dxJCaVwZ/tYfaoNgxt08D0OS1Epf6W33//fXPnqJtKllBMjyXAPg8/VwcSMvI4cS2NLkFeymYTQggrtn37dpycnBg0aFCZ46NGjWLq1KmcOHGC9u3bV3iNhQsXkp6ezksvvcTzz5v409vKuHkW9ZIH8W44Etq2rfn3N7HB4X7FxVACLw8MkQ9PheIu3szijdVRHLxsmKIQFuDK7FFtzFus7/0MclPBO8SwR5C5NOkBY7+F5Y/B8R/B2QsGzKzUqcMj/GnXyJ0Xlx3j2NU0Jiw5yp7zjXh7WKh5CkSFVapFI0eONHeOusnBDdwDIS0GVWI0HQI92Bh1nSMxqVIMCSFENZw/f55mzZphY1P2NhcSElL6fEXF0IULF/jyyy/5/PPPcXY20YRpY6VfQ5V6hQa5i0H3BtylJ8vS9W3pg51GzaWb2Zy/kUWwr4vSkUQdVVCkY8Hui8z79QIFRTocbTVMHRjMU92aYFPdVeIqknEd9n9heNz/nbsOXau2lkNh2FxYN9FQhDl5Q/cXK3VqI08nVjzXlU93nOOL3y6y7M9Y/rySwryH2xPq72re3DWs9pV31sYvHNJiDEPlAoeUFkNCCCGqLi0tjYYNG9523M3NrfT5O9HpdLzxxhsMHDiQ3r17myRPyVxbozTuhtrRA7vcZAov7YbmfU2SRSlOtmp6NPdi19mbbIqMp1nf5nc9p+T7VqXvXy0g7Td9+49eTeWNNSc5fyMLgJ4tvHl3eCiNPJ0AvVm/16pf/4O6KBd9o87omt8Hd3kvk7Q/4hFU2Umod06H7W+hc/RAX8keKTUwpX8LujT1ZOrKSC7ezOaB+X/w2uCWPNGlsdl7d6vb/sqeJ8WQ0vzawJkNhmKo46OA4X9UnU4vG9MJIUQ1VHSjrui5b7/9lpiYGL788kuTZYmKuvOu8BVp5NMTn5h1ZOxZyJUsE604paBWrvnsAtYcvkJPz6xKn1fV719tIe2vfvuzC3Usicpi68Uc9ICrvZqn27rQo5GG5KvnSL5a/ZwVsc+8SutjPwJwtvGjZJ84Uelzq91+p14ENHsQv4srUK1/kUvX00j361b504EP+rjx+Z/pHLmez8wNp9l45BIT7nHDzd78C1Ob+9+/FENKu2URhVB/Vxxs1aTlFHIpKYvmPjKEQAghqsLd3b3c3p/0dMO+GyU9RH8XHx/P3LlzmTp1Kra2tmRkZACGxRR0Oh0ZGRnY2dnh4OBgVJ7w8PC7LthQHp3Hc7B4HZ6Jf+Ae2gLsFBqyZyJNggtYcORXYtKLcGvYgqZ32bNFq9USFRVV5e+ftZP2m6b9204lMn3LKRIz8wEY3T6A1weH4OFkZ6qod6VeMQcVOvTBQ2jR97FKnWPSv/+IL9Gt06COXEqzY++he+RnCKx8QQTQs5OeHw5c5f0tZzlyPZ/Xfk3n47Ft6NbMPFM7qtv+kvPvRoohpZUUQzfPYKsvJKKhOwcvp3AkJlWKISGEqKLg4GA2bNhAUVFRmXlD586dA6BFixblnhcbG0teXh6zZs1i1qxZtz1/zz338MQTT/Dmm28alUej0VTtl5nGXchz8schJx7N+S3Q5kHjr2FBvFwc6drMiz3nk9h2+gb/vPfuQ+WgGt+/WkLaX7X2J6Tn8c66aLaeTASgiZcT/xkZTrfmNbxUfuwhOLsBVGpU/d8xui0m+/sf8TnkpaE6txnN8kdg/Ka/fg+tpPE9gugc5M2kpUe5eDObJ779kxd6N+OlAcHYmmm+lbn//cumq0pzawgO7qArgptn6FCy+eoVmTckhBBV1b9/f3Jycti2bVuZ42vWrMHHx4eIiIhyz2vVqhWLFy++7U/Lli0JCAhg8eLFPPZY5T7VNQmVipSG/Q2PTyyrufc1o8FhhiV6t0QnKJxE1FY6nZ4fDsQwYM5utp5MxEat4p/3NmPLv3rVfCGk18P2dwyP2z4KPi1r9v1vpbExrDDXuBvkZxiW3k65bPRlQv1dWT+pBw93aoReD1/8dpGx/9vP1eQcM4Q2P6OKoby8PB566CH27dtnrjx1j0pVZqhcxyaGYujIVSmGhBCiqnr37k337t2ZPn06K1as4MCBA7z11lvs2bOHf//736WfMr7xxhuEhoYSFxcHgKurK507d77tj6urK05OTnTu3JnAwMAabUtKwwGGB5d+hczEGn1vcxjY2he1CiKvpXMt1Tp/eRKW61xiJmMX7OettdFk5hcR0cid9ZN68MqgljjYKtC7dm4LXN0HNg7Q542af/+/s3U07EHkGwbZN+CHB6r0c8XJzob3R7Xhi0fb4+pgw/HYNIbM3cMvx+NMn9nMjCqGHBwcOHfuXJ3uqjWLBsWfUCZE0b6xoRi6dDOblOwCBUMJIYR1mzdvHsOHD2fu3Lk888wznDhxgjlz5jB8+PDS1+h0OrRaLXq9XsGkFct3DkAf0BH0Ooj+Wek41eZdz557mhgWg5DeIWEqeYVa5mw7y9C5ezgSk4qznYbpw0JZ/UI3WjVQaClonRZ2TDc87vICuPork+PvHN3hsVXg0QRSr8CPoyE3rUqXGhLegE2Te9Ix0IOs/CImLzvOyytPkJ1fZMLA5mX0MLl27doRGRlpjix11y09Q+5OdjT3qQfAUVliWwghqszZ2Zlp06bxxx9/EB0dzbp16xg6dGiZ18yePZuzZ8+Wuwz3rX744Qc2bNhgzrgV0rcZZ3hQS4bKDQk3DJXbLMWQMIGDl5IZMncPc3ddoFCrp38rH7ZP6c1T3ZuiUXJl3hNL4eYZw3SI7v9SLkd5XPzg8TXg7AOJUbDsESjMrdKlGno4sewfXXixXwvUKvj5yDXun/cH0XHpJg5tHkYXQ6+++irLly9n7dq1ZGdnmyNT3XNLMYReT4fGMlROCCHEX/ShI0FtCwmRcOO00nGq7b7WfgAciUklMSNP4TTCWqXnFPL66kjGLTzApZvZ1Hex54tH2/PVEx3xd3dUNlxhLvz6H8PjXi8bemMsjWeQoYfI3hVi9sLPT4O2aj06Nho1UwYEs+TZLvi5OnA5KZuRX+zl6z2X0Okst+cdqlAMjRs3joSEBF5//XU6duxIu3btaN++femfDh06mCNn7eYdDBo7w2S2tJjSRRSOyCIKQgghAJw8ocVAw+PI5cpmMQE/NwfaN3YHYOtJ6R0SxtHr9WyMvE6/ObtZeigWgIc7NWbHS70ZEt7A7JuBVsqhhZARB26N4J5nlU5zZw3aGOYQaezh7CZYP9mw6EMVdQnyYvPkngwM9aVQq+e9jad5+vs/ScrKN2Fo0zJ6ae377rvPMv6R1SYaW/BpBddPwPVIOjQx7DJ+4loaBUU67Gxk0T8hhKjz2jwIZzdC5Ero+zaorfveMDisAUevprE5KoEnujZROo6wEvFpuby1NpqdZ24AEFTfmfdHhtM5yDx73VRJTgrs+djwuM+bYGvcvmQ1rkkPwypzyx+D4z+CsxcMmFnly3k427Hg8Q78ePAq7204xW9nbzLo0z3MeTCCXsH1TRjcNIwuhmbPnm2OHMIv3FAMJUQR1GoYHk62pOYUcjI+nXbFw+aEEELUYcGDwN4NMq5BzB/QtJfSiaplUJgfszad5uDlZJKz8vGqZ690JGHBtDo9i/df4b9bz5JdoMVWo+KFe5szoU8z7G0sbGGvPz6BvHTwaW09e4O1HArD58EvE2DvZ+DkDd1frPLlVCoVj3cJpFMTTyYtPcq5xCyeWHSI53oFMXVgiEV90G85Seo6vzaGrwlRqFSqv4bKySIKQgghwPDpcusHDI9PWP9QuUaeToQHuKHTw7ZT1r9kuDCfMwmZjPpyHzPWnyK7QEvHQA82vdiTKQOCLa8QSr8GBxcYHvefDmoLy1eRdo9B/xmGx9vfgmM/VfuSIX4u/DKhB492bgzAgt8vMeZ/+7iSZDnrDhjdM1Ti3LlzXLx4kfz828cAPvDAA9XJVDfduogC0D7Qgx2nb3AkJpVneiqYSwghhOWIeAiOfg+nfoGh/zXsGWLFBoX5ERWXzuboBB7u1FjpOMLC5BVq+TEqk/Wr9lGk0+Nib8Org1vySKfGqJVcJa4iv74P2nwI7AEtBiidxng9/gU5SbBvHqybBI4e0HJItS7paKdh1shweraoz6urIom8ls7QuXt494EwRrWveCXPmmB0MZSbm8sLL7zAgQMHUKlUpXsz3DqPSIqhKvBtbfiacQ1yUugYaNiD4XBMKnq9XuZpCSGEgEZdwK0xpF81THYOG610omoZHObHR1vPsu9CEuk5hbg52SodSViIpKx8Hvzffi4V9yAMau3HjBGt8XW14Pk3iafgxBLD4wEzwVp/dxvwrmHe0/Gf4Ofx8NhqaNK92pcdFOZHm4Zu/GvZcQ5dSWHKihPsOZ/Euw+EUc++yv0z1Wb0MLkvvviCuLg4fvzxR/R6PZ9//jnffvstAwYMIDAwkDVr1pgjZ+3n4GbY/AogIYo2Dd2wUau4mZnPtdSqrfsuhBCillGr/5qDUAuGygXVr0eIrwtFOj3bT8tQOfGXDzaf4VJSNh4Oar58tB3/e7yDZRdCADtnGDZHDh0BDa14dWWVCobNhZAhUJQHSx8qHblUXf7ujiz9Rxde6h+MWgVrjsUxdO4eTsSmmeT6VWF0MbRz506effZZ2rVrB0CDBg3o2rUrc+fOpXXr1ixZssTkIeuMW4bKOdhqaB3gBsi8ISGEELeIeMjw9cIOyLqpbBYTGBxu2HNoS/R1hZMIS3E8No2VR64B8Eo3dwaG+iqcqBKu7IVzW0ClMaz2aO00NjBmETTuZtj65YdRkHLZNJdWq5jcvwXLn+tKgLsjMck5jP5yHwt2X1RkTyKji6G4uDiCgoLQaDSoVCpyc//qtRg2bBg7d+40acA65ZZFFAA6yiIKQggh/s67Bfi3B70WTq5WOk21DQ5rAMDv55PIyq/aho+i9tDp9Lyz7iQAI9v5E+xlp3CiStDrYcc7hscdngTv5srmMRVbR8MeRL7hkH0DfngAMk3Xg3tPE082vdiTwWF+FOn0vL/5DE9+e4gbmTW7EbPRxZCLiws5OTkAeHl5ERMTU/pcUVFR6XOiCv62iELJinKHpRgSQghxqzbjDF9PLFM2hwkE+9YjyNuZgiIdu4r3jhF11+pjcZyITcPZTsMrA4OVjlM5ZzbAtT/B1gl6v6p0GtNydIfHVhmmcqRegR9HQ26ayS7v5mTLF4+25/1R4TjYqtlzPonBn+7h17M197PA6GIoJCSEK1euANC5c2cWLFjA4cOHiYyMZP78+bRs2dLUGeuOkmIo6SwU5pUWQ2cTMsjMK1QwmBBCCIsSNtowHCf+KCSdVzpNtahUKgaFyVA5AZl5hczefAaAF/u1wMfS5wgBaItgR/Fy1F0ngoufsnnMwcUXHl8Dzj6QGAXLHoFC081nV6lUPNypMesn9qClnwvJ2QWM//ZPZm06TaHW/MPmjC6GRo8eTXa2YWWPf/3rX+Tm5vL4448zbtw44uPjee2110wess5wDTAsYagrgptn8HV1oKGHIzo9nIhNVzqdEEIIS1GvPjTvb3hcC3qHhoQbhsr9euYmuQVahdMIpczbdYGkrHyCvJ0Z372p0nEq59gPkHwenLyg2ySl05iPZ5Chh8jeFWL2ws9PGwpBE2rh68LaCd15smsgAIv2xjDnQJpJ36M8RhdDQ4YM4YUXXgCgUaNGbN26lfnz5/PFF1+wdetWIiIiTB6yzlCp7jhv6HBMilKphBBCWKKI4qFyUStAp1M2SzW19neloYcjuYVadp+ToXJ10YUbWSz6wzBB/637Q7GzMfpX1JpXkA2/zTY87vUKOLgqm8fcGrSBh5eBxt6wtP/6yYb5UibkYKthxogwvnqiI74u9tTEdlLV/pfm5ORE37596dOnD+7u7iaIVMfdYd6QLKIghBCijJAhYOcCaVch9oDSaapFpVIxuHio3OboBIXTiJqm1+uZueEURTo9fVv60Kelj9KRKufAl5CVAO6B0HG80mlqRpPuMPZbUKnh+I+w3Twr5w0I9WXvq/fycld3s1z/VlZQdtcxf+sZal9cDB27moZWgeUGhRBCWChbR8N+JlArhsoNKl5VbufpG+QXyVC5umTn6Rv8fu4mthoVb90fqnScyslOhr2fGR73exts7JXNU5NaDoXh8wyP98396/tgYiqVClUNbFxbqe1eW7ZsWekwKpWKU6dOVStUnXZrz5BOR0s/V5ztNGTlF3EuMZNWDWp5F6wQQojKixhn+HT25FoY/CHYWsGE8zto18gdX1d7EjPy+eN8Ev1aWcHeMqLa8ou0vLvR8Hvj//UIoqm3s8KJKmnPfw377/i1gdajlE5T89o9BjnJhp6h7W+Dkze0e1TpVFVSqWJowoQJNVKZCQz7R2jsoSAT0q6g8QyiXWMP/riQxOGYVCmGhBBC/CWwh2HxnYw4OL/1r54iK6RWqxgc1oDv9l1hc3SCFEN1xDd/XCYmOQcfF3sm9rWS/XlSr8ChrwyPB8wAdR0daNV9MmQnGXqH1k0yLALWcojSqYxWqWJo0qRavDqGpdHYgk8ruH7c0DvkGUSHQEMxdDQmlce7BCqdUAghhKVQqyF8LOz9FE4st+piCGBQmB/f7bvC9lOJFGp1Mpa/lktIz+PzXRcAeH1IS+rZV+rXUuX9+h/QFULQvdCsr9JplDVgpqGH6PhP8PN4eGy1YV6RFZGfM5ZIFlEQQghRWREPGb6e3wY51r3y6D1NPPGuZ0d6biEHLiUrHUeY2ezNp8kp0NK+sTsPtA1QOk7lXI+EyBWGx/2nKxrFIqhUMGyuYUGXojxY+lDp76/WwugSfO3atXd9zQMPPFCFKKLU3xZRaNvYHZUKrqbkcCMzDx8X6x0TLoQQwsR8WhnuGwmREL0KOj2rdKIq06hVDAj1Y+mhq2yOTqBbkKfSkYSZHL6Swtrj8ahUMH14a+uZjrFjOqCHsDHg307pNJZBYwNjFsEPo+DqPsPX/9tq2JvIChhdDN1pU9Vb/xFLMVRNf+sZcnWwJcTXhTMJmRyNSS1dcUcIIYQADL1DCZEQudyqiyGAIeGGYmjbyQSm399K6TjCDLQ6PdPXnwRgXMdGtGnormygyrr0G1zcCWpb6DtN6TSWxdYRHl4K390PiVHww0h4ehu4WP7cP6OLoZ07d952LDU1lZ07d7Jp0yY++eQTkwSr03xbG75mxBmWbnT2okOgB2cSMjl8RYohIYQQfxM2GrZNg2t/QvJF8GqmdKIq6xLkhZujLUlZBRyOSaUOLVhcZ6w4HEt0XAYuDja8fF+I0nEqR6eD7e8YHnd8GjybKpvHEjm6w2OrYNFAwyITP46GpzYYjlswo+cMBQQE3PYnLCyMyZMnM3DgQBYvXmyOnHWLgyt4FP9PlmjoHerYpHje0FWZNySEEOJvXPwgqI/hccl8Bitlq1EzINTwafKWk7IBa22TnlPIR1vPAvBS/2C861lJuXtqrWFxK7t60OvfSqexXC6+8PgacPYx/A679GEozFU6VYVMuoBC165d2bVrlykvWXf9fRGFxoZx09Fx6eQVymZ0Qggh/qZkIYXI5aC37k26B4f5AbDtZCI6K2+LKOuTHedIyS6ghU89Hu9qJSvkagth50zD424vQr36yuaxdJ5Bhh4ie1fDHKKfnwZtkdKp7sikxVBcXBzqurrWuqn9bRGFRp6O1Hexp1CrJyouXcFgQgghLFLLoWDrDKmXIfaQ0mmqpUcLb+rZ25CQkc/5lEKl4wgTOZuQyQ8HYgB4Z1hrbDVW8jvjke8M/185+0DXCUqnsQ4N2sDDy8DGAc5ugvWTLfZDGqPnDP3555+3HSsoKODs2bMsWLCArl27miRYnfe3niGVSkWHxh5sOZnAkZhU7mkiK+wIIYS4hZ0zhA6HE0sNvUONOyudqMrsbTT0a+XDL8fj2RebxzilA4lq0+v1zFh/Eq1Oz32tfenRwlvpSJWTnwm7PzA8vvdVsK+nbB5r0qQ7jPkWlj8Gx38EJ08Y+K7SqW5jdDH0+OOP37b8ob640uvWrRtvvfWWaZLVdSXF0M2zUJgHtg50CDQUQ4evpEJvZeMJIYSwQG0eNBRDJ1fDoNlgY6d0oiob1safX47Hs+ViDqfiMwhv5KF0JFENW08msO9iMnY2aqYNDVU6TuXtnw/ZNw1Dv9o/qXQa69NyCAyfB7/8E/bNBWdv6D5Z6VRlGF0MlbdAgr29PQEBAXh7W0mVbw1c/cHJy7Cr783T4N+ODsWLKBy9moper7eeNfmFEELUjKa9waUBZF43bMLa6n6lE1VZv1Y+9G/pw44zN/jXihNsmNQTRzuN0rFEFeQVanl3w2kAnu8VRCNPJ4UTVVLWDdg3z/C439ugsVU2j7Vq9yjkJMH2tw1/nLwNxyyE0cVQp06dTBpg//79rFu3jmPHjpGQkICLiwthYWFMmDCBsLAwk76XVVGpDL1Dl34zDJXzb0drf1fsbNSkZBdwOSmboPrSVSuEEOIWag2EjzH8Ahe5zKqLIZVKxfujwjgy5zcu3szmvY2nmDUyXOlYogoW7L5EXFou/m4OvHBvc6XjVN7vH0FBFgR0gNAHlE5j3bpPhuwkQ+/Qukng6GHoNbIARs9cu3z5MocOlT8x89ChQ1y5csWo6y1dupS4uDieeOIJFi5cyJtvvklKSgrjxo1j//79xsarXf42b8jeRkNEQzcAjsTIEttCCCHK0aZ4VblzWyHXuu8Vns52TOpkuO/9dPAqW2WpbatzLTWHL367AMDrQ1pZT+9e8kU4vMjwuP8Mw4fUonoGzIS2j4FeCyufgit7lU4EVKEYmj17drkbrwL8+uuvzJ4926jrvfPOOyxevJhHHnmETp06MWjQIBYtWoS7uzsLFiwwNl7t8rcV5QDaBxbvNyTFkBBCVCg7O5tZs2bRo0cPwsPDGTFiBBs3brzredu2bWPKlCkMGDCANm3a0LdvX6ZOnWr0h32K8QsDn9agLYCTa5VOU20RvvY806MJAK+uiiQhPU/ZQMIo7286Q36Rjk5NPbm/jRVtGr/rPdAVQfMB0LSn0mlqB5UKhn0GIUNAmw9LHyrzO65SjC6GoqKiuOeee8p97p577iE6Otqo63l5ed12zNnZmWbNmnH9+nVj49Uut/YM6XQAdAw0rCInxZAQQlRs0qRJrF27lokTJ/LVV18RHh7OlClTWL9+fYXnffXVV+Tm5vL888/z9ddfM3nyZE6fPs3IkSM5f/58DaWvpoji9dcilyubw0SmDggmLMCVtJxCpq48jk5nmUv0irL2X0xmY9R11CqYPqy19cx1jjtqWIQEFfR/R+k0tYvGBsYsgsDukJ8BP4yClEuKRjJ6zlBmZiZOTuVPfHNwcCA9vfp74GRmZnLq1Cm6dOli9LlabdU2JC05r6rnm4VHEGqNPaqCLLTJF8EziIiGrgCcv5FFSlYebo6mmcxnke2vQdJ+af+tX+ua6rbfEr9vu3fvZu/evXz88cfcf79h3kyXLl2Ij4/nww8/ZMiQIWg05Q/X+d///nfbB3VdunShX79+fPfdd8yaNcvs+astfCxsfweu7ofUK+DRROlE1WJno+azh9px/9w/2Hshma/2XOK53s2UjiUqUKTVMWP9SQAe7RxIqL+rwokqSa+HHcUFUJtxf30wLUzH1hEeXgrfDoXEKPhhJDy9FVz8FIljdDHk6+tLZGQk3bp1u+25yMhI6tev/q68M2bMKP1UzlhRUdXrbqvu+abWsl4TnNPPcuXAetL8DetpN6in4XqWlp9/O0qHBvYmfT9La39Nk/ZL++uy2tT+7du34+TkxKBBg8ocHzVqFFOnTuXEiRO0b9++3HPLG7Hg6+uLr68vCQlWMmfF1R+CehsW4YlcCb3/rXSiamtWvx7vDAvltdVRfLT1LN2aeRNePI9WWJ4lh65yJiETdydbpgwIVjpO5V3cCZd/B40d9H1T6TS1l4MbPLYKFg00fGDz4xh4agM4utd4FKOLof79+7Nw4ULatm1bpufm4MGDfPXVV4wZM6ZagT799FPWr1/PW2+9VaXV5MLDw+/4aV9FtFotUVFRVT7fXFTXOsGxszR1zELfti0A3S5GsepoHGk2HrRta5ofMJba/poi7Zf2S/ur3v6S8y3J+fPnadasGTY2ZW9zISEhpc/fqRgqT2xsLPHx8fTv39+kOc2qzbjiYmgZ9Hq5VkwAH3dPI347e5MtJxN4cdkxNkzqgbO90b/KCDNLyS7g423nAJg6MAQPZyvZ70qng+3TDY87/QPcGysap9Zz8YXH18A39xl6iJY+DI+vNvQc1SCjf4JMmDCBP/74g/Hjx9OkSRP8/PxISEjgypUrNG/enEmTJlU5zOeff86XX37JSy+9xGOPPVala2g0mmr9MlPd802uQQQc+wF1YjQU5+rYxJNVR+M4ejXN5Fktrv01TNov7Zf21472p6Wl0bBhw9uOu7m5lT5fWUVFRbzxxhs4OTnx1FNPVSmPIkO4g4egtnFElXwBbeyfhuWBrUx57Z/1QCjHY1O5nJTNjHUneX9U7d2Gw1qH8P536xnScwtp6efCuA4BVjOFQRW1EnViFHp7F3Td/gUKf9+t9e/fKG6B8MjPqBffj+rqPvQrx6Mb+z2obWpsCLfRxZCLiwvLly/nu+++Y8+ePcTHx+Ph4cGkSZN48skncXZ2NjosGAqhefPmMWnSpCoNj6u1/ra8NkDH4hXlTsSmU6jVYasxeh0MIYSo9SqarF3Zidx6vZ4333yTI0eOMHfuXBo0qNpqWEoN4W7i2w2vuJ0k75pPbPiL1cqgpL+3/4V2Tkzfnc+KI9dobJdF14YOCiWrGZbW81qRy2mFLD2UDMAjLW2JijxR7WvWRPtV2gJa//oO9kB803EknLsKXDX7+1aGNf39V1W9DjNpceAV1Oc2k7r4cWIiXintzTZ3+6vUt+zs7MyECROYMGGCSULMnz+fefPm8cILLzBx4kSTXLPW8G1t+JoZb9isytmbZvXr4epgQ0ZeEWeuZ8qYaSGE+Bt3d/dye39KFvkp6SGqSEkhtG7dOmbPnl2tIXKKDeGu9xws3Un9G3vwCl8AGtMsulNT7tT+tkAC5/hy9yUWHstiRI8I/N1rdmhNTbC2Ibx6vZ7ZXx9CDwwN9+PRAW2rdb2abL/q4P9Q5yagd2mA3wPT8bMtf7GwmmRtf//V0xZ9w/roVz6Bd+xWPBsGU9Tn7RoZwl3lgbaZmZkcP36c1NRUevfuXakbS3kWLVrE3Llz6dmzJ/feey/Hjx8v83zb4nkydZa9C3gGGZYdTIiCZn1Qq1V0CPTg17M3ORyTIsWQEEL8TXBwMBs2bKCoqKjMvKFz5wzzGFq0aFHh+SWF0OrVq5k1axYjRoyoVh7FhnA37wfOPqiyb6C5/BuEDLrrKZaovPZPGRjCvovJnLiWzss/R7Hk2S5o1NY/L6o81jKEdd2JeP68koqDrZo3h4aaLLPZ25+XDnv+C4Dq3tfROLiY772qwFr+/qst9H4YPg9++Sfq/fOwcfICp15mb3+VxlfNnz+fnj178uyzz/Lqq69y7do1AJ588kkWLlxo1LV+/fVXAPbs2cO4ceNu+yMod6hcB9l8VQgh7qh///7k5OSwbdu2MsfXrFmDj48PERERdzxXr9czbdo0Vq9ezcyZMxk9erS545qPxgbCixc2ilymbBYTs9UYltt2stNw8HIK/9t9UelIdVpOQRH/2XgagAn3Nreunrq9cyE3BbyDoe2jSqep29o9CgPeBUC9czqesVvN/pZGF0M//fQT8+fPZ8yYMSxYsAC9/q+Nz/r06cNvv/1m1PV++OEHzp49e8c/gnKLofZSDAkhxB317t2b7t27M336dFasWMGBAwd466232LNnD//+979LP2V84403CA0NJS4urvTc9957j59//plRo0YRHBzM8ePHS/+cOnVKqSZVXZviDxbPbDJ8Al6LNPF2ZsZww3DyOdvPceyq3BOV8sWvF0nIyKORpyPP9gpSOk7lZSbA/vmGx/3eMXyAIJTV/UXoZpjj6HfR/BtHG/03/tNPP/HUU0/xyiuv3LZKQ2BgIDExMSYLJ4r5tTF8vaUYatvIHY1axfX0POLTcq3rExghhKgB8+bN45NPPmHu3LmkpaURFBTEnDlzGDp0aOlrdDodWq22zAd7JSMWVq1axapVq8pcMyAggF27dtVMA0ylQQTUbwk3z8CpddD+caUTmdSYDg3Zfe4mGyKvM3nZcTZN7kk9WW67RsUkZ7Pw90sAvDkkFAdbKxrS9dtsKMqFhp2g5dC7v17UjAEz0Xm14GpSIc3N/FZG/7SIjY2lZ8+e5T7n7OxMRkZGtUOJvynpGUo6B4W5YOuIk50NoQ1ciYpL53BMKsOlGBJCiDKcnZ2ZNm0a06ZNu+NrZs+ezezZs8scs7pi525UKmjzIOycCZHLa10xpFKpmDUynGNX07iaksM7v5zk4wfvPAxSmN57G09ToNXRo7k397X2VTpO5SWdh6OLDY8HzKwVe3HVGioV+raPkvW3tQTMwehhci4uLiQlJZX7XFxcXLk7d4tqcmkATt6g18KN06WHS+YNHZWhckIIISoS/qDh65U9kBarbBYzcHO05ZNxbVGrYNXRa6w7Ea90pDrj93M32X4qEY1axTvDQiu9bL1F2DnD8LtVyBAI7Kp0GqEQo4uhrl278vXXX5OTk1N6TKVSUVRUxNKlS+nRo4dJAwoMn1TIIgpCCCGqyr0RNCke1RG1QtksZtKpqScT+xgG1Ly5JorYlJy7nCGqq1CrY8b6kwA82bUJLXwtaxW2CsX+CafXg0oN/d5WOo1QkNHF0Isvvkh8fDxDhw5l9uzZqFQqfvzxR8aOHUtMTAz//Oc/zZFTlLf5ahNDMXTqegbZ+UVKpBJCCGEtShZSOLEcbpkjVZu82K8F7Ru7k5lXxEvLj1Ok1SkdqVb7ft8VLt7MxsvZjsn9K16u3qLo9bC9uABq+wj4tFI2j1CU0cVQYGAgS5cuJSgoiKVLl6LX6/nll1/w8PBgyZIl+Pv7myOnKF1EIbL0UAM3R/zdHNDq9Jy4lqZMLiGEENYhdDjYOEDSWbh+Quk0ZmFTvNx2PXsbDsekMv9XWW7bXG5m5vPZjvMA/Pu+ENwcrWhD3/Pb4Oo+w/8P976hdBqhsCrtM9S8eXO++eYbjh49yu7duzly5AiLFi2iWbNmps4nSpT2DEWD7q9PukqX2L4iQ+WEEEJUwMENQgYbHkeaf7lapTTydOK9B8IA+GznOY7EpCicqHb6aOsZMvOLCA9wY2zHRkrHqTydFnZMNzzu/Dy4BSgaRyivSsVQCTs7O3x9fXFwcDBVHnEnXs0Nn2AUZkPq5dLDHUuKIdlbQQghxN20ecjwNepn0Nbe4dUPtAvggbb+6PQwedlxMvIKlY5Uq5yITWPlkWsATB8eikZtRYsmnFgGN06Bgzv0+JfSaYQFqNTS2mvXrjXqog888EAVoogKaWzAJxTijxqGynkZeuE6BHoChhXldDo9amv6gSSEEKJmNe8HTl6QfQMu/QotBiidyGxmPhDGkaupxKbk8tbaaD57qJ3SkWoFnU7P9PUn0ethVLuA0t9DrEJhLvw6y/C451Rw9FA2j7AIlSqGXnvttUpfUKVSSTFkLn7hxcVQFLQeCUCrBi442mrIyCviws0sgq1pJRchhBA1S2MLYaPh0ELDULlaXAy5Otjy6bh2PLhgP78cj+fekPqMbNdQ6VhWb82xOI5dTcPZTsOrg1sqHcc4h76CjDhwbQid/qF0GmEhKlUM7dy509w5RGWUs6KcjUZN20bu7L+UzJGYVCmGhBBCVKzNQ4Zi6PQGyM8E+9p73+gQ6MHkfi2Ys/0cb609SYfGnjT2clI6ltXKzCtk9pYzAEzq1wJfVyuaJpGbCns+Njzu8wbYWlF2YVaVKoYCAmRymUUoXVEuqszhDoEe7L+UzOErqTzcqbECwYQQQliNgPaGeajJFwz7rLR9ROlEZjWhT3P2nL/Jn1dSeXHZMVY+3xVbTbWmTNdZn++6wM3MfJp4OTG+exOl4xjnj08gL80w5SDiIaXTCAtS5Z8GWVlZ/PHHH2zYsIG9e/eSlZVlylyiPL6hgAoyr0PWzdLDHYr3GzoqiygIIYS4G5Xqr4UUTixTNksN0KhVfDKuLS4ONhyPTWPuzvNKR7JKl25msWivYQGnt4eFYm+jUTiREdKvwYH/GR73nw5qK8ouzK5KxdA333xDz549efbZZ3n55Zd55pln6NmzJ99++62p84lb2buAZ5DhceJfvUPtGxmKoctJ2SRl5SuRTAghhDVpM9bw9fLvkBGvbJYa0NDDif+MNAw1n//rBQ5eSlY4kfV5d8MpCrV6+oTUp29LX6XjGOe390GbD4HdocVApdMIC2N0MbR27Vo++ugj7rnnHubMmcNPP/3EnDlz6NSpEx9++KHRK88JI5Uzb8jNyZZg33qAYVU5IYQQokIeTaBxV0APUSuVTlMjhkX4M6ZDQ3R6eGn5cdJzZLntytp1JpFfz97EVqPirftDlY5jnBun4fgSw+P+Mww9o0Lcwuhi6LvvvuP+++9n4cKFDB48mA4dOjB48GAWLFjA0KFD+f77782RU5QopxgCw7whkP2GhBBCVFKbcYavJ2rvBqx/N314awK9nIhPz+ONtVHo9XqlI1m8/CItM9efAuDpHk0Jql9P4URG2jkT9DpoNQwa3aN0GmGBjC6GLl26xPDhw8t9bvjw4Vy8eLHaoUQF7riIgmGd/yNXpBgSQghRCa0fAI0d3Dh52z2ltqpnb8NnD7XDRq1iY+T10o1DxZ0t+uMKV5JzqO9iz6S+LZSOY5yY/XB2E6g00O8dpdMIC2V0MeTg4EB6enq5z6Wnp+PgIEsVmlWD4mIo6Zxh87BiJT1DkXHp5BdplUgmhBDCmjh6QPAgw+PIutM71LaROy8NCAZg+rqTXE7KVjiR5UrMyGPeLsOCE68Nakk9+0otQmwZ9HrY/rbhcfsnwNvKCjlRY4wuhjp06MDnn39OYmJimeM3b95k/vz5dOzY0WThRDnq+YJzfUOX741TpYebeDnh5WxHQZGO6LgMBQMKIYSwGiVD5aJ+Bl3d+SDt+d7N6BLkSU6BlsnLjlFQpFM6kkWavfkMOQVa2jV2Z2Q7K9tm5cxGuHYIbJ3g3teUTiMsmNHF0JQpU0hKSmLgwIE8//zzvPXWWzz//PMMGDCApKQkpkyZYo6cooRKVe68IZVKRfvi3iFZREEIIUSltBho6CHKvA6XdyudpsaULLft5mhL5LV0PtlxTulIFudITAprjsWhUsH0Ya1Rq61o4QFtEeycYXjc5Z/g4qdsHmHRjC6GWrRowc8//0y/fv2Iiopi9erVREVF0a9fP1auXEnz5s3NkVPcqqQYuh5Z5nDJULnDMSk1nUgIIYQ1srGD1qMMj+vQQgoADdwcmT3KcD/93+6L7LuYpHAiy6HV6Zm+zjD65MEOjYho5K5sIGMd/8kwncDRE7pPVjqNsHBVGvzZtGlT5syZY+osorLusIhCx5IV5WLS0Ov1qGT5SCGEEHcT8RAc/gZOr4eCOWDnrHSiGjM4vAEP3dOIZX/GMmX5CTZP7omHs53SsRS38nAsUXHpuNjb8O9BIUrHMU5BjmFfIYDer4CDq7J5hMWr0qarQmElPUOJJ8uM8Q4LcMNOoyYpK5/YlNw7nCyEEELcouE94NEUCrMN8yzqmLeHhRLk7UxCRh6vr5blttNzC/lw61kAJvdvgXc9e4UTGengl4Zhn+6NoePTSqcRVqBKPUOnTp1i/fr1xMfHk5+fX+Y5lUrFl19+aZJw4g68moONo+HGlXIZvA1DEx1sNYQFuHL0ahqHY1Jo7OWkcFAhhBAWT6UyLKSwezacWAZtHlQ6UY1ysjMstz3qy71sOZnAsj9jebhTY6VjKebTHedIyS6guU89nuzWROk4xslJgT8+NTzu+xbYWFkhJxRhdM/Q2rVrGT16NIsXL+bo0aOcO3futj/CzNQa8C3eATqh/HlDR2QRBSGEEJVVUgBd+hUyE5TNooDwhm68PNAwHGzm+lNcuJGlcCJlnE/MZPH+GADeGRaKrcbKBhDt+RjyMwwjaMLGKJ1GWAmj/5V/+eWX9O7dm3379rFnzx527dpV5s/OnTvNkVP8XTkryoEUQ0IIIarAqxk07GTYtiF6ldJpFPFszyC6N/cit9Cw3HZd27NPr9czff1JtDo9A0N96dmivtKRjJMaA4cWGh73nwFqKyvkhGKM/pdy48YNnnjiCdzc3MyRR1TWHYqhkuW1zyZmkpFXWNOphBBCWKuS3qETy5TNoRC1WsWcB9vi4WTLyfgMPt5Wt0a6bD2ZyN4LydjZqJk2NFTpOMb79T+gLYCmvaFZX6XTCCtidDHUqlWr2zZcFQq4w4pyPi4ONPZ0Qq+HY1fTaj6XEEII6xQ2GtS2huHXN04rnUYRvq4OfDDacH9d+Psl9py/qXCimpFXqOW9jYaltJ/rFWR9c44ToiCyeGn4/tMN8+CEqCSji6FXXnmFhQsXcubMGXPkEZXlEwqoICsBsm6UeaqjDJUTQghhLCdPwyasUGd7hwAGtvbj0c6GBRSmrjhBclb+Xc6wfgt/v8S11FwauDnwwr3NlI5jvB0zAL1hz6yA9kqnEVbG6NXk2rZty8CBAxk5ciT169e/bbicSqVi3bp1Jgso7sC+nmGMd/IFwycizfuVPtU+0IPVx+I4KsWQEEIIY0SMg7MbIWol9Hunzs67mDY0lIOXU7hwI4tXV0Xy1RMda+3efXFpuXzx2wUAXh/SCie7Ki00rJzLv8OF7aC2gb7TlE4jrJDRP+UWLlzIggUL8PDwwN/fH3d39zJ/ZC5RDbrDvKGOTQw9Q8euplKk1dV0KiGEENaqxX1g7wYZcRDzh9JpFONop2HuQ+2w06jZcfoGPx68qnQks3l/02nyCnV0auLJsDYNlI5jHL0etr9jeNzxacOHxEIYyejyf/HixYwePZqZM2ei0WjMkUlUll84nFxzWzHUwscFF3sbMvOLOJuYSWt/KVCFEEJUgq0DtH4Ajn4PJ5ZD015KJ1JMqL8rrw5uybsbTvHehlN0bupJsK+L0rFM6sClZDZEXketgneGh1pf79eptRB/FOzqQa9XlE4jrJTRPUPZ2dncf//9UghZAr8Iw9e/FUMatYq2jd0BmTckhBDCSBEPGb6e+gUKcpTNorDx3ZrQK7g++UU6Xlx6jLzC2rPcdpFWx/R1JwF4pHNj6/vgVFsIO2caHnebBPWsbClwYTGMLobat2/PxYsXzZFFGKtkmFzy+dtuWB0DPQEphoQQdVd2djazZs2iR48ehIeHM2LECDZu3Fipc5OTk3nttdfo3LkzERERjBs3jv3795s5sYVo1AXcG0NBJpzdpHQaRanVKv47tg1eznacScjkgy21Z/GopYeuciYhEzdHW6YOCFE6jvGOfg8pl8C5PnSdoHQaYcWMLobefPNNli1bxo4dOygoKDBHJlFZLr7g7GPYJO9vy6CWbL56+IoUQ0KIumnSpEmsXbuWiRMn8tVXXxEeHs6UKVNYv359hecVFBTw1FNPsX//ft58802++OILvLy8eOaZZzh06FANpVeQWg3hxXsORa5QNosF8HFx4KOxhuW2v917hV/P3rjLGZYvNbuA/xbvozR1YDAeznYKJzJSfhb89oHhce9Xwb52DV8UNcvoOUOjR4+mqKiISZMmoVKpcHBwKPO8SqXiyJEjJgso7sIvHC7uhIQT0LBD6eG2jd1RqwyrxCSk5+Hn5lDBRYQQonbZvXs3e/fu5eOPP+b+++8HoEuXLsTHx/Phhx8yZMiQOw73XrlyJefOnWPZsmW0a9cOgM6dOzNixAg++ugjVq5cWWPtUEzEQ7Dnv3BhB2TdrPNDkPq29OWpbk34bt8V/r3yBJsn96K+i73SsapszvZzpOcW0tLPhUc6NVY6jvH2z4fsG+AZBB2eUjqNsHJGF0P33Xef9U2wq81Ki6Gy84bq2dvQ0s+VU9czOHo1lSHhVrZCjBBCVMP27dtxcnJi0KBBZY6PGjWKqVOncuLECdq3L38/kh07dtC0adPSQgjAxsaG4cOHM2fOHBITE/H19TVrfsV5twD/9obJ6dGroMvzSidS3GuDW7L/YjJnEzP5988n+Pape6zy96FT8Rn8dDAGgHeGtcZGY2XLp2fdhH1zDY/7vgUaW2XzCKtnVDGk1Wp57rnn8PT0lCW0LcUdltcGw1C5U9czOHxFiiEhRN1y/vx5mjVrho1N2dtcSEhI6fN3KobOnz9Phw4dbjt+67m1vhgCQ+9Q/FGIXCbFEOBgq2Huw+0Y9vkf/Hb2Jt/tu8L47k2VjmUUvV7P9PUn0elhaJsGdG3mpXQk4/3+ERRkgX87CH1A6TSiFjCqGNLr9QwdOpQvv/yS3r17myuTMIafYRwziSdBpwX1X8M+Ojbx4IcDMRy5KvOGhBB1S1paGg0bNrzteMkHeWlpaRWeW94HfpU590602qqtQlZyXlXPr5ZWI1BveR1V/DG0iafBO7jGIyja/nI0r+/E64NCmLHhNO9vPkOnJh609DPffBVTt39D5HUOXU7BwVbNa/cFW8z39U5ua3/KZdSHF6ECtH3fMewzZOFtqA5L+/df06rb/sqeZ1QxZGNjg7e3N3q9vkqhhBl4NQMbRyjMMayq4t2i9Kn2jQ2LKJyMSye3QIujnSyHLoSoOyoawnS34U3VObc8UVG3997X5PlV1az+PbjfOMCNHfOIb/l/imQA5dpfnnAHPR0a2HPkej7PfX+QD/t7Ya8x73A5U7Q/r0jHzC1JAIwIduLGlbNYy1IQJe1veuRdPHWFpNfvxIV0Vzh+XNlgNcSS/v0rwdztN3rO0NChQ1m7di333nuvGeIIo6k14Nsa4g5DQmSZYqihhyO+rvYkZuQTeS2NzkFW2B0uhBBV4O7uXm4PTnp6OkCFQ72rc+6dhIeHV2l/Pq1WS1RUVJXPry6V7TOw+gB+N37HZ9xnoKrZ+SVKt/9OvmiRz9B5e7mWUcDmOHumDw81y/uYsv1ztp8nOfcGAe4OvD22Kw62lvP9vJMy7b8RhSb+V/SoqPfAf2nrF6Z0PLOz1H//NaW67S85/26MLoZatmzJpk2beOKJJxg4cCD169e/7VOygQMHGntZUR1+4cXFUBSEjS49rFKp6BDowaaoBI5cTZViSAhRZwQHB7NhwwaKiorKzBs6d86wnHCLFi3udCrBwcGlr7tVZc69E41GU61fZqp7fpW1uh/sXFClx6K5dgiadK/5DCjY/jvwdXPi4wfb8uSiQ/xw8Cq9Q3zoH2q+eWTVbX9sSg5f/XEZgLfuD8XZwbqW0tZoNGh2GTZYVbV5EE1AhMKJapal/fuvaeZuv9HF0KuvvgpAYmJiufstqFQqTp8+fdtxYUYVLqLgaSiGZL8hIUQd0r9/f1asWMG2bdsYMmRI6fE1a9bg4+NDRMSdf5nq378/M2bM4MSJE6WvKyoqYt26dURERNSNxRNK2DpC6Ag4/iNELlesGLJEvYPr8389mvLNH5d5ZVUkWxr2xMfVMrexeG/jKQqKdHRv7sV9rf2UjmO8S7/Cpd9AYwd93lQ6jahljC6GFi9ebI4cojpKFlG4w4pyAEeupqLX661yGVAhhDBW79696d69O9OnTycrK4vGjRuzceNG9uzZw0cffVT6KeMbb7zB2rVr2b59OwEBAQCMGTOGJUuWMHnyZKZOnYqXlxdLlizh8uXLfPvtt0o2SxkR4wzF0Mm1MPhDsLXMX/iV8MqgEPZdTOb09QymrjzB9+M7oVZb1n12z/mbbD2ZiEat4p1hra3v9wC9DvXOGYbH9zwDHoHK5hG1jtHFUKdOnUwaICsriy+++IIzZ85w6tQpUlNTmThxIpMmTTLp+9RqvqGACrISITMRXP761DK0gSv2NmrScgq5eDOb5j71lMsphBA1aN68eXzyySfMnTuXtLQ0goKCmDNnDkOHDi19jU6nQ6vVllkYyM7Oju+++46PPvqI9957j9zcXFq1asVXX31l8nugVQjsAa4NIeManNsCrR9QOpHFsLfRMO/httw/7w/2nE9i0d7LPNMzSOlYpQq1OmasPwXAE10DCfY138p35uIR9yuqhEiwd4WeLysdR9RCVZ4JmZmZyZ49e1i3bl3ppNKqSEtLY8WKFRQUFNC/f/8qX6dOs3MGr+aGx4lle4fsbNRENHIH4GiMDJUTQtQdzs7OTJs2jT/++IPo6GjWrVtXphACmD17NmfPnr1tGW5vb28++OADDh48SGRkJMuXL6dbt241Gd9yqNXQZqzhceRyZbNYoOY+Lrx1v2EBhQ+2nCE6ruq/E5na4v0xXLiRhaezHf/qX/NLo1dbUT4BZ74xPO4+GZxl7rMwvSoVQ/Pnz6dnz548++yzvPrqq1y7dg2AJ598koULFxp1rYCAAP78809+/PFHpkyZUpU4Au66+SrA4ZiUmkwkhBCitmgzzvD1/DbITlY2iwV6pFNjBoT6UqjVM3nZMXIKipSORFJWPp9uNyz68e/7QnBztFU4kfFUR7/DPjcBfT0/6PKC0nFELWV0MfTTTz8xf/58xowZw4IFC8oMLejTpw+//fabUddTqVTWN37VElVQDHUsmTckPUNCCCGqwqeVYX6qrghOrlY6jcVRqVR8MLoNvq72XLyZzbsblF9I6r9bz5KZX0RYgCsPdmykdBzj5aWj2vNfAPS9XzGMghHCDIyeM/TTTz/x1FNP8corr9y2s2tgYCAxMTEmC1cVVrnLtyn4hqEB9Ncj0f2tDRENXQG4eDObpMxcPJxuX1LT6ttfTdJ+af+tX+uamtrlW1i5iIcM+9lFLodOzyqdxuJ4Otsx58G2PPbNQZYeukrv4PoMClNm5bbIa2ksPxwLwPRhrdFY2KIOlbLxZVQ5yeQ5N8K27WNKpxG1mNHFUGxsLD179iz3OWdnZzIyMqodqjqsdZfv6rLJVxEBkHyByMP70dk4lnk+wEVDXKaWVb8dpaP/nVcCstb2m4q0X9pfl9X19ou7CBsD26bBtT8h+SJ4NVM6kcXp3tybf/QKYsHuS7y2OpK2jdzxc6vZ1fd0Oj3T151Er4eR7QLo2MSzRt/fJCJXQNQK9CoNV9q+Qgu10b+uClFpRv/rcnFxISkpqdzn4uLi8PJSdnKbte7ybQr6fb6oshJp42cDDduWea7bpShWHokjzcaTtm1vn0RZG9pfHdJ+ab+03/y7fAsr5+ILzfrChR2GX1b7vK50Ios0dUAI+y4kExWXzpQVx/nx/zrX6HLba4/HcfRqGk52Gl4b3LLG3tdkUq/AxqkA6Hv9m2zX1srmEbWe0cVQ165d+frrr+nXrx/29vaAYaxsUVERS5cupUePHiYPaQyr3eXbFPzC4UIimhsnIbBLmac6NvFk5ZE4jlxNq7B9Vt1+E5D2S/ul/XW3/aIS2owrLoaWw72vgcz5vY2djZrPHmrL0Ll/sO9iMgv3XOL53jXTi5aVX8T7m88AMLFvc3wtdBPYO9IWwernID8DGnVG32MKREYrnUrUckYvoPDiiy8SHx/P0KFDmT17NiqVih9//JGxY8cSExPDP//5T3PkFJVR4Ypyhm7yE7FpFGp1NZlKCCFEbdFyKNg6Q+pliD2kdBqLFVS/HtOHG5bb/u/Ws0ReS6uR9/181wVuZuYT6OXE//VoWiPvaVJ7PobYA4Y9hUYtBBkeJ2qA0cVQYGAgS5cuJSgoiKVLl6LX6/nll1/w8PBgyZIl+Pv7myOnqIwKiqEgb2fcnWzJL9JxMl7ZeV1CCCGslJ0zhA43PI5cpmwWC/dgx0YMCfejSKdn8rLjZOebd7nty0nZfPPHJQDevj8Uexsr6+WNPQS7PzA8HvoxeDRRNI6oO6pUcjdv3pxvvvmGgoICUlNTcXNzw8Gh6l2xu3fvJjc3l+zsbAAuXLjAli1bAOjduzeOjo4VnS5K+LUxfE08CTotqP/6QahWq+jQ2IOdZ25wJCaVtsUbsQohhBBGaTMOTiyF6NUwaDbY2CudyCKpVCreH9mGY1fTuJyUzYz1J/lwTITZ3u/dDaco1Oq5N6Q+fVv6mO19zCIvA1Y9A3othI+FNg8qnUjUIUb3DL3++uvExhqWa7Szs8PX17e0EIqLi+P1142fUDljxgwmT57MG2+8AcCWLVuYPHkykydPJjlZNnerNM8gsHWColzDSj9/0754v6Gjst+QEEKIqmraC1waQF4anN+udBqL5uZkyyfj2qJSwYrD19gYed0s77PrTCK7ztzAVqPirftDrW//xs2vQloMuDU29AoJUYOMLobWrFlDamr5v0ynpqaydu1ao0Ps2rWLs2fPlvunYcOGRl+vzlJrwLd41ZWEyNueLtl89XBMSpnNcoUQQohKU2sgfIzhsQyVu6suQV78817DAgqvr44kLi3XpNfPL9KWbvI6vntTmtWvZ9Lrm130KjixBFRqwzwhBzelE4k6xuhiqCLp6enY2d2+oaeoQRXMG2rT0B0btYrEjHyT/zAWQghRh7R5yPD13FbIldEGd/Ov/sFENHInI6+Il5YfR6sz3QeS3+69wuWkbLzr2TOpb3OTXbdGpMXC+pcMj3u+DIFdlc0j6qRKzRn6888/OXjwYOl/r1y5kt9//73Ma/Lz89m5cyfNmskmbIqqoBhytNPQ2t+VE9fSORKTSkMPpxoOJ4QQolbwCwPfMEiMhpNroOPTSieyaLYaNXMfasuQz/Zw6HIKX/52gYl9W1T7ujcy8pi38zwArw1uiYuDbbWvWWN0WljzHOSnQ0BH6P2K0olEHVWpYujgwYN8/vnngGFC4MqVK8t9nb+/P2+//bbp0gnjlSyiUE4xBIYltkuKoRFtA2owmBBCiFqlzYOwPdqwAasUQ3cV6OXMjBFhvLzyBJ/sOE/35t60a+xRrWvO3nKG7AItbRu5M6qdld3T//gEYvaCXT0Y/RVorKiQE7VKpYqhZ/6/vfuOj6pMFzj+m5KQ3oAUQg8kkEIoQihBBFEBwVBEvHcvuAoqq7CuoOuCuIILgrrISlxEhFX0el2QtlJUmiIWAqIJkRp6DyU9IWVmzv3jZCYZkkBCykkyz/fzOZ85OWXmeWcmefOct5xJk/jd736Hoij07duXFStWEB4ebneMs7Mz7u7utRKkqAL/cLXfbe4VyE5V7xheSo82vvzrh1P8fFq6NQghhKiGqLGw7VU4+xOkn5apkCthTPdgdh27ysakizz370Q2/zH2jltz9p9JZ90vFwCY81AEen0DmjTh/H74dr66PuwtdQIoITRSqTFDLi4u+Pr64ufnx44dO+jZsye+vr52iyRC9YSzGzQt7jNcTuvQXW3Vq1BHLmeRU8v3PBBCCNGIebWA9gPU9QOrtY2lgdDpdMwdGUmwjytn0/J49YuDd/Q8FovC7OJzx/ZoSXRDul1GQQ6smwQWE0SMguj/0joi4eCqPIFCcHCwTJJQ39nGDZWdUS7Ay4VgH1csCiSdy6jbuIQQQjQu1okUkv4NMktppXi7OvGPR7ui18G6Xy7wn8QLVX6Oz/efI/lCJp5NjPx5SKdaiLIWffUSpJ0Er5YwfBE0tGnARaNT5WSoqKiIJUuWMGzYMLp27Urnzp3tlpu7zwkN3GbckLV1SLrKCSGEqJbOw8HoCmkn4MIvWkfTYPRs62ebQGHW+t84l5ZX6XMzbxTx5ldHAXhucEeaezagm94e3AC//i+gg9Hvg2v1xkwJURMqNWaotLfffpuPPvqIu+++m8GDB0srUX10ixnlQB039J/Ei+w/K8mQEEKIamjiqSZEyZ+r9xxq2UPriBqMPw7qwPcpV/nlbAZ/WpXIqqd6YzTc/hr14h0pXM8tJKS5OxP6tK39QGtK5gXY+Jy6Hvs8tI3VNh4hilU5Gfryyy959tlnmTJlSm3EI2qCNRm6flztm9vE/gZs3Ytnr/n1TDpmi4KhIQ26FEIIUb90eVRNhn5bCw+8LrOCVZLRoOedR7sx7J3d7D+TzrvfHOdPg0NveU5KajYrfzwNwKsjInA21ujtImuPdRrt/Axo0Q3umaF1RELYVPm3KDMzk7vuuqs2YhE1xcMfPAIBBa4cKrO7U6An7s4GsgtMpFzJrvv4hBBCNB7t7wF3f8i7Dse3ax1Ng9LKz425oyIBtcXn59NpFR6rKApzNh7CZFG4LzyAu0Ob11WY1fdjPJzeDU5uMGYFGKVXkag/qpwM9ezZkyNHjtRGLKIm3WISBaNBT9fWPoA6NacQQghxxwxGiHpYXT+wSttYGqC4rsGM6haMRYHn/p1IVn5RucdtPZTK98ev4WzQM+vBznUcZTVc/BV2zlXXh74BTUO0jUeIm1Q5GZo1axZr1qxh69atFBYW1kZMoibcdtyQHwD7ZRIFIYQQ1dVlnPp4ZAvkZ2obSwP0WlwErfxcuZBxg1nrf0O5aWa+giIzczerPT2evLsdbZo2kNuZFObC2klgKYLOI6DbeK0jEqKMKo8ZiouLw2Qy8dxzz6HT6XBxcbHbr9Pp2L9/f40FKO5QJSZRAGQSBSGEENUXFA3NO8HVI3DoP9B9gtYRNSieLk6882g3xi79iS+SLnJPWHNGd29p27/8+9OcS7tBoJcLz9zTQcNIq+jrmer4Zc8WMGKxTKMt6qUqJ0MPPPAAOvky13/W6bVTD4LZpHZjKKVbax90OjhzPY+r2QX4uVX5qyCEEEKodDq1dWjHHEhaJcnQHeje2pc/3duRhduO8cqG3+jRxpeWPi5cyzPz3q6TAMwY1gn3Jg2kvj68CfZ/BOhg1FJw89M6IiHKVeXfqAULFtRGHKKm+bUDJ3coylXv/9A8zG63l4sTYQGeHLmczf4z6dzXuQENxBRCCFH/RI1Vk6Ez30PGOfBppXVEDc4zAzuwO+Uae0+n8dy/E/n3k734+EA2N4rM9Gzry0PRLbQOsXKyLsEXU9X1vlOh/QBt4xHiFhrInIyiyvQGCIhQ1yvoKtfd2lXuTMWz1wghhBCV4tMK2vZX15NXaxtLA2XQ61j0aFc8XYwknsvg2f/7lR/O5aPXweyHIhpGzxyLBTZMhhtpavfJQa9oHZEQt1SplqGDBw9W6UkjIiLuKBhRwwKj4PxedUY560w/pdzVxpf/SzgrM8oJIYSoGV3GqVMoJ62C2GkyRuQOBPu4Mn90FFP+71d2HLkKwLi7WhHRwlvjyCppzxI4+S0YXWH0cplGW9R7lUqGxowZU6mrEYqioNPpOHz4cLUDEzWgkpMo/HYhi4Iic11FJYQQorEKfwi2vADXjsKlRPUGm6LKhndpwa6jV/l8/3ncnXRMu6+j1iFVzqUDaldJgCGvQ/Nb30RWiPqgUsnQ/PnzazsOURuskyhcOgCKUuYKXWs/N5p5NOFaTgHJF7OqPoBMCCGEKM3FG8KGwsH1cGC1JEPVMCcugqbuTgSQgZ97A2hdKcxTp9E2F0LYg9Djca0jEqJSKvX/76hRo2o7DlEb/DuDTg951yAnFTwD7XbrdDp6tPHh64Op/HI2g16eGsUphBCi8ejyqJoMJa+B+/5WZjZTUTluzkZefCCMxMRErUOpnG2vqC2CHgHwULx0kRQNhkyg0Jg5u0HT4qb1291vSMYNCSEakdzcXObNm0dsbCxRUVHExcWxefPmSp27detWpk2bxn333UeXLl0YNGgQ06dP5/Tp07UbdGPR4V5wawa5V+DkN1pHI+rC0a9g33J1fdRScG+qbTxCVIEkQ41dUHFXucsHyt3do4067/8vZzPK3PFaCCEaqqlTp7JhwwamTJnCBx98QFRUFNOmTWPjxo23PfeDDz7gxo0bTJ48meXLl/Pcc89x+PBhRo0aRUpKSh1E38AZnCByjLqe9G9tYxG1LzsV/vOMut5nCoQM0jYeIapI2q4bu8AoSP68wpahyGAvnI160nILuZRjRnp3CyEaul27dvHDDz+wcOFChg8fDkDv3r25ePEib775JsOGDcNgMFR4/tKlS2na1P7Kdu/evbn33nv56KOPmDdvXq3G3yh0GQd734cjm6EgG5pIP+xGyWKBDX+AvOsQEAn3/lXriISoMmkZauysM8pdKr9lqInRQJdgdbrOo9eL6ioqIYSoNdu2bcPNzY0hQ4bYbR89ejRXrlwhKSnpluffnAgBBAQEEBAQwOXLl2s01kYruDs07QCmG3D49q1xooHauwxO7ACjC4xZAcYmWkckRJVJMtTYBRQnQ2kn1atz5bCOGzp6vbCuohJCiFqTkpJCSEgIRqN954ewsDDb/qo6d+4cFy9epEOHDjUSY6On06kTKYB0lWusUg/CtuKWoPvngn8nbeMR4g5JN7nGzqM5eAZB9iVIPQStY8ocYk2GklMLuZpdQKCPW11HKYQQNSYjI4OWLVuW2e7t7W3bXxUmk4mZM2fi5ubG73//+zuKyWy+s3u5Wc+70/M1Ffkwhm/mopz6Dkv6WfAKrvJTNOjy14B6W/6iG+jXTERnLkDpeD+W7o9DLcRYb8tfR6T81St/Zc+TZMgRBEapydDlAxUmQy5Oei7nmrn7rW95qGswE2Pb0TnIS4NghRCiREJCAhMmTKjUsRs2bKBz584At7xReGVuIm6lKAovv/wy+/fvZ/HixQQFBVX63NKSk8sft1lX52sl1C8Kz7RkLm2NJ7XDo3f8PA21/DWlvpW/5W/vEnD1MEXOvhxq9zSm23Q9ra76Vv66JuWv3fJLMuQIAqMgZWuFkyg09WjC8gk9+NuGRI5eL2LN/vOs2X+e2A7NmNi/HQM6Nkevl/sFCCHqXrt27Zg7d26ljrUmKj4+PuW2/mRmZgIlLUS3Y02EvvjiCxYsWMDgwYMrF3Q5oqKibjlpQ0XMZjPJycl3fL7WdJbHYfM0gq9/T9DDC6p8fkMvf3XVy/If34bh1DoA9GOWEtlhYK29VL0sfx2S8lev/Nbzb0eSIUdgnUShgmQIoE/7prw+qCmKX1s+/OkMXyZf4vvj1/j++DU6+HswMbYdo7oF4+LkeL+MQgjt+Pv7M3bs2CqdExoayqZNmzCZTHbjho4dOwZAx44db/sc1kRo3bp1zJs3j7i4uKoFfhODwVCtf2aqe75mIkfDV39Bd+UQhquHSuqjKmqw5a8h9ab8OVfhiynqesxkDGFDbn18Dak35deIlL92yy8TKDiCwOJ7DV05BGbTLQ/t1tqHf/53d3a9OJBJse3wbGLk+JUcZqxLpu+Cnby99ShXsvPrIGghhLgzgwcPJi8vj61bt9ptX79+Pf7+/kRHR9/yfEVRmDVrFuvWreO1115jzJgxtRlu4+bqC6HF/zDLRAoNm6LAf56F3KvgHw6D52gdkRA1QpIhR+DbDpzcwZQP149X6pRWfm7MGh7OjzMG8crwcIJ9XEnLLWTxzuPELviGFz9P4sjlrFoOXAghqm7AgAH069eP2bNns3r1avbs2cMrr7zC7t27efHFF+2uMM6cOZPw8HAuXLhg2zZ37lzWrFnD6NGjCQ0NJTEx0bYcOnRIiyI1bNHFY4WS14DFMQeCNwr7lkPK12BoAmOWg5OL1hEJUSOkm5wj0OshMBLOJahd5aow/aWnixMTY9vxWJ82bD2UyvLdJ/nlbAaf7z/P5/vP079jMybGtmNAaPMqDUoWQojaFB8fz6JFi1i8eDEZGRm0b9+et99+mwcffNDuOIvFgtlsRlEU27ZvvvkGgLVr17J27Vq744ODg9m5c2ftF6Ax6XCf2kKUcxlO7YKQQVpHJKrqymHYOktdv+81CIjQNh4hapAkQ44iMKo4GToAXarW/x7AaNAzLCqIYVFB7D+Tzr++P8WXv11id8o1dqdco2PxuKKRMq5ICFEPuLu7M2vWLGbNmnXL4xYsWMCCBfYD+yXZqWFGZ4gYDT+vgKRVkgw1NKYCWDtJ7V3SYTDEPK11RELUKOkm5ygqMYlCZfVo48s/f6eOK5oY2w6PJkZSruTwl3XJ9Fuwk7e3HeNqdkG1X0cIIUQjYe0qd3gjFOZqG4uomh2vQepv4NYM4paoN9QVohGRZMhRlE6GSnUHqY5Wfm68Mjycn2YMYtaDnQn2ceV6biGLd6TQb8FO/rwmiaOXs2vktYQQQjRgLXuq41eLcuHwJq2jEZV1fAf89K66HvdP8AzQNh4haoEkQ47CPxx0esi7BtmXa/SpPV2cmNS/PbtevId//nd3urbyodBsYfXP53ngH98xfkUCu45dteuTL4QQwoHodNBlnLp+YJW2sYjKyb0OG/6grvecBHU0jbYQdU2SIUfh5ArNQtX1GugqVx6jQc+DXYLY8Gw/1v6hL8OiAtHrYHfKNR77114e+Md3rNp3lvwimU1ICCEcTpdH1MeT39T4RTlRwxQFvpgKOanQLAzu+5vWEQlRayQZciTW+w1dPlDrL9WjjS9LfteDXS8O5Il+7XB3NnAsNYeX1qrjiv6x/RjXcmRckRBCOIymIdCyFygWdZptUX/t/xCObgaDszqNtrOb1hEJUWskGXIktnFDtZ8MWbXyc+OvI8L5aea9vDysMy28XbieW8g/tqfQd8FO/rL2AMdSZVyREEI4hGhrVzm5AWu9dfUYfDVTXb/3VQjqom08QtQySYYcSQ3OKFdVXi5OPHl3e77780Di/6sb0a18KDRZ+Pe+c9y/6Dsm/Gsv38m4IiGEaNwiRoPeSa2HUuUGtvWOqRDWTgTTDWg/EHo/o3VEQtQ6SYYciTUZSjsJBdq0xhgNekZEt2DDM31Z+4c+DI1UxxV9d+wqE4rHFa3ed07GFQkhRGPk5gcd71fXZSKF+mfn39TeI65+MPI99abtQjRy8i13JO7NwLOFup56UNNQdDodPdr48d7/9ODbFwbyeL+2tnFFf157gNg3dvLO9hSuy7giIYRoXKxd5ZI/B4tF21hEiZPfwo+L1fWH4sErSNNwhKgrkgw5Gg27ylWkdVM3Xh0RwY8z7mXmsE608HbhWk4hi7Yfo0/xuKIUGVckhBCNQ8cHwMUbsi7A6d1aRyMA8tJgffE02j1+D52HaxqOEHVJkiFHo8EkCpXl7erEU3eHsOvPA1n8X93o0tLbNq7ovkXf8di/9rI7RcYVCSFEg+bkAuEj1XXpKqc9RYGNf4Tsi9C0IzzwutYRCVGn6kUylJuby7x584iNjSUqKoq4uDg2b96sdViNUz1sGbqZk0HPQ9Et+M+z/fh8ch8eiAhAp4Ndx64yfsVehr6zm9U/n6PAJOOKhBCiQYp+VH089AUU5mkbi6P79RM4vFGd2GLMcnB21zoiIeqUUesAAKZOnUpycjLTp0+nbdu2bNq0iWnTpmGxWBgxYoTW4TUu1mQo9RCYTWCoF1+Bcul0Onq29aNnWz/OXM/lwx9Os/rncxy5nM2f1xzgza+OMqFPG34X05qmHk20Dlc0EGaLQm6hiex8Ezn5JnIKisjILeT4xXyKfNLwcW+Cp4sTni5GPJyN6PU6rUMWovFp1Rt8WkPGWTi6BaIe1joix3TtOHz5kro+aBa06KppOEJoQfP/hHft2sUPP/zAwoULGT5c7aPau3dvLl68yJtvvsmwYcMwGAwaR9mI+LYDZw8ozIHrKeDfWeuIKqVNU3dmPxTB84ND+fe+s3z042kuZebz9rZj/POb44zu3pKJsW3p4O+pdaiiliiKQm6hmZx8E9n5RWQXmIrX1YQm27ZevL14W05BSeKTnV9EbuEtWhR/2Gv3o04HHs5GvFzV5EhdnPAqfrT97Frys5eLES8XJ9vPbs4GdDpJqISwo9dDl3Hw3VtqVzlJhuqeqRDWTYKiPGjbH/r+UeuIhNCE5snQtm3bcHNzY8iQIXbbR48ezfTp00lKSqJ79+4aRdcI6fUQEAnn9qhd5RpIMmTl7ebE0wNCeCK2HVuSL7F89ymSL2Ty2d6zfLb3LAPDmjMxtj39OjSVf0DrCUVRyC+y3DaByc4vsiUudkmN9bwCEzU5XMzZoFdbf1yMeDQxkn8jD7PemZwCE1k3TBSaLSgKZBeYyC4w3fHrGPS6kkSqSXHC5GpNnEqSrNIJ1M3HNDHq5fssGh9rMnR8B+RcAQ9/rSNyLN/Oh4u/gosPjHpfptEWDkvzZCglJYWQkBCMRvtQwsLCbPurkgyZzXc2jsR63p2e35DoAiLRn9uD5VISSsQYoOGVXw8MjwrkwcgAfj6TzorvT7P9yBW+OXqVb45eJSzAgydi2zKiSwuaGG//B76hlb+mVVT+giKzLRGxa2WxS2pu2l7OsWZLzWUxBr0OzyZqwuDRRE1mPJuUJDWeNz163HysixMeTYx23wuz2UxycjJRUVG2lmhr2a3JWVZ+SfKWnV9EVql1db99i1RWvlpus0UhI6+IjLwi4MYdldnJoCtJlJqUSpaaGG9KporL6qLus7VYNTHifIvfg+p+/x3190ZUU7OO0KI7XPwFflsHvSdrHZHjOP09fL9IXX9oMXgHaxuPEBrSPBnKyMigZcuWZbZ7e3vb9ldFcnL1Jgao7vkNQdNCb9oCOSk/kdIs0W5fQyy/EzA5Uk9c22ZsTslj56kbHE3N4aW1vzF/0yGGdnDj/hA3vJrcPilqiOW/FUVRKDArZBcq5BRaiheF7AJ1Pdv6c6GFvCILedu+Ia9I4UaRhTyTgqkGbwGiB1yddLg66XAz6nGzrjsVrxt1uDvpbce4O+lxNZbaX3yss54KWkkUoKh4KaVQXUxARvFSkVt9/h7FS5Cx1A92pXMuXoqjKX7v84qsi4Vcu0eF3EKLbV9ekUJukf3PeUWKWiqzQlpuIWm5hbeI/tac9eDmrL6X7sXvqZuTHncnHW5OOtr5OAGN6/svGoDoR9Vk6MC/JRmqKzfSYd1TgALd/gfC47SOSAhNaZ4MQUX/2Nx+X3lKX9mtivKuDDda/gocWIhn3mm6RkeDTtcoyt8VGBoLmTeK+Pe+c3z80xkuZxXw2cEc1h3NY3S3YB7v14aQ5h5lzq3v5VcUhbxCM5k31BaGDNtjYcm24u2lf868UUihufqtMh5NDLbWBvv18ltoymuVqc9jZ+rr52+xqOOkrF0Fs2+UdBssv8Wq1M8FJnLyi8gpUFttCi1QmG8hIx+g/Jach+/uQgvfqs8kZX3/hKiyyDHw1Qy1u9bVY9A8VOuIGjdFgY1/Uu/x5NcehryhdURCaE7zZMjHx6fc1p/MzEygpIWosgwGQ7X+manu+Q1CYCToDOjyrmPIuwJeLWy7GkP5/TwMPDOwI0/eHcKW5Et8sPskv13I4rN95/hs3zkGdfJnUmw7+oSUHVdU2+W3JjVqMlNYKomxrheWSnZK1jPziig033kzjZNBh4+bMz6uTvi6OePt5oSPqxM+bk74uDnj5WIgPfUCkWEd8HZztnUl83CwGdXq2/ffYAAfJyM+7nc+W6LZopBTKkkqSZ5KHjPyClFyrxPk41avyi8cgHsz6DAYUr5WW4fu/avWETVuSZ/BoQ2gN6rTaDcpe3FQCEejeTIUGhrKpk2bMJlMduOGjh07BkDHjh21Cq3xcnKB5mFw5ZA6iUKpZKgxcTLoiesazEPRLdh7Ko3l359i++FUdh65ws4jV+gU6Mmk/u0ZER2EsYr/61uTmvTihMXaGpOeZ22pKSz+WW2dqemkxtfNCR/XkqTG190Zb2ty46ru9y5OdHxcnW7bKmM2m0lMTKNraHP5Z7iRMeh1eBd/Hyqifv6J9bblTjRy0eOKk6HPYeAsGchfW9JOwpYX1fV7ZkBwD23jEaKe0DwZGjx4MKtXr2br1q0MGzbMtn39+vX4+/sTHR2tYXSNWGCUmgxdOgChD2gdTa3S6XTEtG9KTPumnLqWy4c/nOLzn89z5HI2L3yexBtfHWF8TGsClCJyT1wnK99UKsEpJL1Ul7PSCU5RNbqfORv0eLs52SU1vsXJizWp8S1OZKxJja+bE65O9bermRBC3JGwYdDECzLPwtmfoG0/rSNqfMxFsPZJ9bYabfpB7PNaRyREvaF5MjRgwAD69evH7NmzycnJoXXr1mzevJndu3fz1ltvyVXq2hIYpd7b4fIBrSOpU+2aufNaXCTT7gvl//aeZeWPp0nNKuDt7SnFR1yv0vM5G/TFXc3UpMa2XpzU+LoVbytOaqw/S1IjhBDFnFwh/CH49X/VrnKSDNW8XW/ChZ+hiXfxNNryv5UQVponQwDx8fEsWrSIxYsXk5GRQfv27Xn77bd58MEHtQ6t8QqMUh8vO+agZx83Z565pwOTYtuzOfkiK388zemr2TT3citJYKzdzEonOq6ltklSI4QQNaPLo2oydPA/MPQttTu3qBlnfoLdf1fXRywCn1baxiNEPVMvkiF3d3dmzZrFrFmztA7FcQQUJ0PppyA/C5yqPoNUY+Bs1DOqW0se6hJEYmIiXbt2ldZIIYSoa236gVdLyDoPx76CiJFaR9Q43MhQp9FWLBD93+rsfUIIOzJK0VG5NwWv4puspR7UNhYhhBCOTa+HLmPV9QOrtI2lMdnygjoWy7ctDJVptIUojyRDjszBu8oJIYSoR7o8qj6mbIXcqo3fFOU4sBqSPwedAUYvBxcvrSMSol6SZMiR2ZIhx5pEQQghRD3k3wmCosFigoPrtI6mYUs/DZumqev3/AVa9dQ0HCHqM0mGHJm0DAkhhKhPuoxTH6Wr3J0zm9RxQoXZ0Ko3xE7TOiIh6jVJhhyZNRm6cli9B4EQQgihpciHQaeH8/vg+gmto2mYdi+EcwnqvZtGLwNDvZgrS4h6S5IhR+bTFpw9wVwA11Nue7gQQghRqzwDIGSQui6tQ1V3bi/sKp4o4cG3wbeNtvEI0QBIMuTI9HoIjARAd/k3jYMRQgghKJlI4cAqUBRtY2lI8rNg7SRQzBD1SMnsfEKIW5JkyNFZu8qlyrghIRyGxQK51+DSATi2Fd0vK/FO/UnrqGpUbm4u8+bNIzY2lqioKOLi4ti8efMdPdeiRYsICwtj+PDhNRylKFenYeq979JPw/m9WkfTcHz5Z8g4A96t4cG/ax2NEA2GdCR1dMXJkC71N2guN2MTosErzIWsS5B9EbIvQ1bxY/bF4u2XIfsSWErGCeqBDoC570jwaalV5DVq6tSpJCcnM336dNq2bcumTZuYNm0aFouFESNGVPp5Dh8+zL/+9S+aNWtWi9EKO87uEP4QJH2GLnk1tBivdUT1X/IaSPpMHW815gNw8dY6IiEaDEmGHF3pGeUipDuCEPWW2QQ5qWoik32pgoTnEhRkVfIJdeDeHDwDUTyDuKgPJtAjsFaLUFd27drFDz/8wMKFC22tOb179+bixYu8+eabDBs2DIPBcNvnMZlMzJgxg3HjxnH06FHS09NrO3Rh1WWcmgwdXI8uYJzW0dRvGWdLptG++0Vo3VvbeIRoYCQZcnTNO4PeiO5GGk7517SORgjHoyhwI71UgnPppoSneMm5AlTygoWzJ3gGglcQeBYvXi3UbZ7Wx0AwOAFgMZu5nJhIoE5Xe+WsQ9u2bcPNzY0hQ4bYbR89ejTTp08nKSmJ7t273/Z5li1bRmZmJs8//zyTJ0+urXBFedrdDZ5B6LIv4Z36I9BL64jqJ4sZ1j0NBZnQsifc/WetIxKiwZFkyNE5uUCzMLhyELfMFOA+rSMSovEoulFOkmNtySn1sym/cs+nN4LHzUlOOQlPE8/aLVc9l5KSQkhICEajfRUXFhZm23+7ZOj48eO89957vPvuu7i7u9darKICegNEPQw/xhOy/zWUlBUQ1BWCuqg3Zg2KVr/zjSSBv2Pfvw1nfwRnD5lGW4g7JL81Qu0qd+UgrllyTwchKsVihtyrFYzHKdV1LT+j8s/p6leczAQVt+qUasmxJjxuzdRZIMUtZWRk0LJl2bFP3t7etv23YrFYmDlzJvfffz8DBgyokZjMZnO1zrvT8xu0HpPQpexAf/UQuqwLkHUBjpZMgqG4NYOgLigBXVCCukBgF/Btq46baSRu+flf2I/+m/noAMuQN1G820Aj+5449PcfKX91y1/Z8yQZEmoydODfuGUe1zoSIbSlKJCfWfF4HGsrT06qOn1tZRhdi5OZFhV3XfMIVFtpRRkJCQlMmDChUsdu2LCBzp07A6C7RYvBrfYBfPjhh5w5c4b33nuv8oHeRnJy9WbsrO75DVbvd9EX5eCWdQK3zBTcMo/jlpmCS84ZdHnX4MROdCd22g43G93J8wohz7ujbcn3aK22NDVgN3/+etMNOu96EhfFTFqLgZyyhEFiojbB1QGH/f4Xk/LXbvklGRK2SRQ80g6g270QmoWAbzvwaweuvhoHJ0QNKroBmRcg81zxch4yz6PPOEfE1ZPov0qDorzKPZdODx4BN3VXu6klxzNIndXJ0bvyVEO7du2YO3dupY4NCgoCwMfHp9zWn8zMTKCkhag8Fy9eZPHixUyfPh0nJyeystQJKUwmExaLhaysLJydnXFxqVryGhUVValJG25mNptJTk6+4/MbOmv5293zP3bltxTdgCuH0F1OhstJ6mPqQQymXDzTDuCZdsB2rGJ0Af9wlMAuaktSYBfwDwdj/b8AUdHnr9s4FX3eRRSvYLz/ewVdXX20C7IWyfdfyl+d8lvPvx1JhoRaORiccSrMhG/n2e9z9S1OjNqryZFf+5JEySNA/skT9YeiQN71kiQnw5rsnLUlPeReLfdUHWD3b5GLd6mWnAq6rnn4N/irzQ2Bv78/Y8dW7eaRoaGhbNq0CZPJZDdu6NixYwB07NixwnPPnTtHfn4+8+bNY968eWX29+zZkwkTJvDyyy9XKSaDwVCtf2aqe35DV6b8Bg9o3UtdrMxFcO0YXEpS76F1KQkuJ6MrzIaLv6C7+EvJsToDNO9UMv4oqIt6YbCejrezK//BDZD4KaBDN/oDDB5NtQytTsj3X8pfm+WXZEiAqy+W8f/h8k+rCWqSjz79FKSfUrsC3UhXl9KViJWTu9o/2684OSqdNHm1lIGcomaZCtUxA5nnS7XqnCuV9JwH043bP4+TO/i0Au+W4K0+WjyDSblygw7d+2PwDgZnt9ovj6g1gwcPZvXq1WzdupVhw4bZtq9fvx5/f3+io6MrPLdz5858/PHHZba//vrrZGdnM3/+fAIDG8cU5I2OwQkCItSl63+r2ywWtT67lFScHBUnSXnX4cpBdUn6v5Ln8AspSY6CoiEwGtzrUbKReR42/lFd7z8N2vbTNh4hGgH5b1WoWsVw+XoTArt2BWv2XZCj3gE8/RSknYS04sf0U+of5KLcksrkZnon8GldkhyVTpR82sj4CGFPUdTJBuxadOy7spF9mUpNLe0RWJzotCxOelrZkh68W6qtnTe1aCpmMzmJiep31IGvvjUWAwYMoF+/fsyePZucnBxat27N5s2b2b17N2+99ZbdFcaZM2eyYcMGtm3bRnBwMF5eXsTExJR5Ti8vL8xmc7n7RD2m10PTEHWJHK1uUxT1woqt9aj4MesCpJ1Ql4PrSp7Dq2Wp5Kj40atF3feMsJhh/WR1XGOL7nDPjLp9fSEaKUmGRMWaeEBgpLrczFSo3uitdKJkXU8/DebCkkqlDB14BZffouTbDly8artkoq6ZTerkAxW16GSeg8Kc2z+P0aUkqSmd5FhberyCwdik9ssj6r34+HgWLVrE4sWLycjIoH379rz99ts8+OCDdsdZLBbMZjOKIjeddhg6XcnfkU4lLYfkXrNPji4dUOuwrPPqcnRLybHFM9nZJUi+7Wp3tscfF8Pp3Wrr9pjltvuECSGqR5IhcWeMztCsg7rczGJWZ+BKP2XfmpR2EtJOQ2F2SeVyenfZ892a3TQ+qVSi5N5MxinVRwXZFbfoZJxTZ2ZTLLd/HrdmN7XotLR/lM9fVJK7uzuzZs1i1qxZtzxuwYIFLFiw4LbP98knn9RUaKK+cm8GHe5VF6v8LEj9zX4c0tUjUDyTHaVmssPZs3jsUZeSrnbNwmqmy/ilRNhZPJHI0DfUli4hRI2QZEjUPL1B/WfWp5V6F/HSFEW9+lZuonRKrWCsy/l9ZZ/b2RP82tpP5GBd9wqWe7DUBosFci5X3KKTeU7ttnE7eifwDi6/Rce7lfr5yVgdIUR94uIFbfqqi1XxTHa25OhSEqQeVC/0nflBXayKZ7KzG4fkH1GlruJ60w30654Diwk6PwTd/qcGCyiEkGRI1C2dDjyaq0urXmX352eVkygVL1kX1MrmcrK63MzQBHzblJ8o+bRWW7MckcUCliK166K5qHgpLN5WvBTl43nlZ3S/Hig1ScF5tStk1kX12Ntx8am4RcenFbj7S7IqhGj4nFwhuIe6WNlmsis9DumAWmdd/MV+EiLbTHZdSmazC4issIt4y4NL0KUdV2exHPGOtI4LUcMkGRL1i4tXSeVws6J8yDhTTqJ0Uv2n3VygVkbXjpU9V6dX/zGvaJpwQyWu0lUmqTAXqlfvKn1MoTqeprxjzEVlX89y0367Y0o9Z+kYKnFzUAMQeqsDdAa15cZuYoLS43aC6+2UtEIIUevsZrL7L3Vb6ZnsLpdqRbKbye6zkufwCyk7Dun0DzQ/uxkFHbrR74ObnzblE6IRk2RINBxOLtA8TF1uZjapY5BKT+RgbVFKP6XeSDPjrLqc2lXmdL1HAOG4oP/BUE5yUvmkomHQgcFZrbwNTqB3QjE4ka844RLQEZ1Pa/sWHe+W6gxtMlW6EEJUXoUz2V20n6ThUlJx/WWdyW59yVPo1NZ0pc9UdDd3OxdC1Aj570Y0Dgajes8j37bAQPt9igI5V8qOT7Ku30hHl5OKa5Vf1JpUOKuvb3BWx8VYkwxrwqF3quAY+4SkZo+p4GeDc7k3CrWYzRxKTKRr164OfWM3IYSoVTpd8djJYAgbWrI99zpcTrJPkNJOoFMs5HqH4TJwpnYxC9HISTIkGj+dDjwD1KVNn7L7b6RjvnaC44cS6RDWGYOTS/mJTZmfJWkQQghRA9ybQsggdbHKz8J89SjHLubTxeCgY16FqAOSDAnh6gstupFzRQetuspNN4UQQmjPxQtadMdyJVHrSIRo1GRqJyGEEEIIIYRDkmRICCGEEEII4ZAkGRJCCCGEEEI4JEmGhBBCCCGEEA5JkiEhhBBCCCGEQ5JkSAghhBBCCOGQJBkSQgghhBBCOCRJhoQQQgghhBAOSZIhIYQQQgghhEOSZEgIIYQQQgjhkCQZEkIIIYQQQjgkSYaEEEIIIYQQDkmSISGEEEIIIYRDkmRICCGEEEII4ZCMWgdQUxRFAcBsNt/R+dbz7vT8hk7KL+Uv/ehopPzVK7/1POvfYVFC6qbqkfJL+Us/Ohopf93UTTqlkdRehYWFJCcnax2GEEI4rKioKJydnbUOo16RukkIIbR1u7qp0SRDFosFk8mEXq9Hp9NpHY4QQjgMRVGwWCwYjUb0eul9XZrUTUIIoY3K1k2NJhkSQgghhBBCiKqQS3hCCCGEEEIIhyTJkBBCCCGEEMIhSTIkhBBCCCGEcEiSDAkhhBBCCCEckiRDQgghhBBCCIckyZAQQgghhBDCIUkyJIQQQgghhHBIDpEMrVu3jrCwMNsSHh5ObGwszz//PKdPn7Y79ueff+bll19m9OjRREZGEhYWxvnz57UJvIZUtvxms5kPP/yQiRMncvfddxMdHc3QoUP5+9//TlZWlnYFqCU3vy83LwkJCVqHeMe++uorwsLC2LJlS5l9Dz30EGFhYezevbvMvsGDBzNq1CgAvvnmG/785z8zYsQIIiIiCAsLq/W4a0p1y5+Tk8N7773H+PHj6devH926dWPEiBEsW7aMgoKCuihCtdTE579o0SJGjhxJr169iIqK4t577+WVV17hwoULtR6/o5C6Seqm8kjdJHXTzaRuqt26yXjHZzZA8+fPp3379hQUFPDLL7+wdOlSEhIS+PLLL/H29gZgz549/PTTT3Tu3Bl3d3f27t2rcdQ153blz8/PJz4+nuHDhzN27Fh8fX05dOgQ7733Ht988w1r167FxcVF62LUOOv7crMOHTpoEE3N6NWrFzqdjj179jBs2DDb9oyMDI4dO4abmxsJCQn079/ftu/y5cucO3eOxx9/HIBt27aRlJRE586dcXJy4uDBg3VejjtV3fJfvHiRlStXEhcXx+9//3vc3NzYv38/7777Lj/++CMffvghOp1Oi6JVSk18/llZWTz44IOEhITg7u7O8ePHee+999i5cyebNm3C19e3zsvVWEndJHVTeaRuUkndJHVTbddNDpUMdezYkaioKABiYmIwm83Ex8ezfft2xowZA8AzzzzDlClTAFixYkWjqnBuV34XFxd27Nhh90WKiYkhKCiI5557jq+//pq4uDitwq81pd+XxsLPz4+OHTuW+f7u27cPo9HImDFjylxd3LNnD6B+5gBz585Fr1cbj1977bUGVeFUt/wtW7Zk586duLm52fb36dMHV1dX3nzzTfbv389dd91V+wW5QzXx+b/66qt2+63vy1NPPcWOHTt4+OGHa7EEjkXqJqmbyiN1k0rqJqmboHbrJofoJlcR6x+Z69ev27ZZf8Ecwc3lNxgM5WbUXbp0AdTsXDQcMTExnDp1iitXrti2JSQkEBkZyYABAzh48CA5OTm2fXv37sVgMNj+kDb034XqlN/Nzc2usrFqSL8L1f38y+Pn5weA0ehQ19HqnNRNUjc1ZlI3Sd1U3+qmhv2NqiZrf+u2bdtqG4hGKlt+a1bekJvmb8VisWAymewWs9msdVjV1rt3bwC7KzAJCQn06tWL7t27o9Pp2L9/v92+8PBwPD096zzW2lAb5W9Ivws1VX6TyUR+fj6HDh3i9ddfp23bttx33311UwgHJXWT1E0gdVPpfVI3Sd1Um3WTQyVD1j8subm57N69m/fee4+ePXsyaNAgrUOrE3dS/tTUVBYuXEhkZCQDBw6sw2jrziOPPEJERITd0hi6JvTs2RO9Xm/7g5Oenk5KSgo9e/bE3d2d8PBw2x/QS5cucf78eVszdGNQ0+U/cuQIy5cv57777qNTp051UobqqInyX716lYiICKKjoxk1ahRms5mPP/4Yd3f3Oi9PYyZ1k9RN5ZG6SeomqZvqpm5yqL4OjzzyiN3PISEhLFmyxGG6fFS1/BkZGTz55JMoisI//vGPBt80XZE33niDkJAQu231eQBiZXl7e9OpUydb/9t9+/ZhMBjo3r07oP5Bsv7BsR7TmCqcmiz/+fPnmTx5MoGBgcydO7cOoq++mii/r68va9asobCwkJMnT7J8+XImTJjAJ598gr+/fx2WpnGTuknqpvJI3SR1k9RNdVM3Nc6/IBV44403WLNmDStXrmTcuHGcOHGCadOmaR1WnalK+TMzM3niiSdITU3lX//6F61atarjaOtOSEgIUVFRdktkZKTWYdWImJgYTp8+TWpqKgkJCURERNiunPTq1YvDhw+TnZ1NQkICRqORHj16aBxxzaqJ8l+4cIEJEyZgMBhYuXIlPj4+dVyKO1fd8huNRqKioujRowdjx45l5cqVnD9/nmXLlmlRnEZL6iapm8ojdZPUTVI31U3d5FDJkPUPS+/evXnttdcYO3Ysu3fv5quvvtI6tDpR2fJnZmby+OOPc/78eT788MMG0ewqyme9mrJ371727t1Lz549bfusf1z27dtHQkICUVFRja77U3XLf+HCBcaPHw/Axx9/TGBgYB1FXjNq+vMPDAzE39+/zD1wRPVI3SR1k6ORuknqJqg/dZNDJUM3e/HFF/H29mbx4sVYLBatw6lz5ZXfWtmcO3eOFStWEB4ernGUojp69uyJwWDg66+/JiUlhV69etn2eXp60rlzZzZs2MCFCxcaVTcEq+qU/+LFi4wfPx6LxcLKlSsJDg6u6/CrraY//zNnznD58mXatGlTm2E7PKmbpG5q7KRukrqpPtVNjtEhuQLe3t489dRTvPXWW2zcuJG4uDjS0tJsg7qOHTsGwHfffYefnx9+fn52H1hDd3P5H3jgASZOnMihQ4eYOXMmZrOZxMRE2/F+fn60bt1au4BrSUpKSrkz9LRu3do2XWND5eHhQXh4ONu3b0ev15dpau7ZsycrV64EyvbJvXDhAsnJyQCcPXsWwHalNjg4uEEM5L3T8l+/fp0JEyZw9epV5s2bx/Xr1+2mOQ4MDGwQV+LutPxHjhxh/vz5PPDAA7Rq1Qq9Xs+xY8f46KOP8PHx4YknnqjTcjgaqZukbgKpm6RukroJ6qZucuhkCGD8+PF8+umnLFmyhOHDh5OSksJzzz1nd8ycOXMAtR/jJ598okWYtaZ0+bt162b7AzNv3rwyx44aNYoFCxbUdYi1bsaMGeVunzt3LmPHjq3jaGpeTEwMycnJdO7cGQ8PD7t9PXv25KOPPsLJyYlu3brZ7UtISCjz3lh/NxrSd+FOyn/8+HHOnTsHqFepbzZlyhSmTp1au4HXkDspf7NmzfD39+fDDz/k6tWrmEwmAgMDueeee5g8eTJBQUF1XQyHI3WT1E1SN0ndJHVT3dRNOkVRlGqVRgghhBBCCCEaIIceMySEEEIIIYRwXJIMCSGEEEIIIRySJENCCCGEEEIIhyTJkBBCCCGEEMIhSTIkhBBCCCGEcEiSDAkhhBBCCCEckiRDQgghhBBCCIckyZAQQgghhBDCIUkyJO7YunXrCAsLsy3h4eHExsby/PPPc/r0aa3DA2Dp0qVs3769zPaEhATCwsJISEjQICrVzp07mTx5Mn379iUyMpJevXrx2GOP8cUXX1BUVKRZXDcr7736y1/+wqBBg2r1dVNTU4mPj+fw4cO1+jpCiMZF6qbqkbrp1qRuanyMWgcgGr758+fTvn17CgoK+OWXX1i6dCkJCQl8+eWXeHt7axrb+++/zwMPPMDgwYPttkdERLBq1So6dOhQ5zEpisLMmTNZt24dAwYM4C9/+QtBQUFkZ2eTkJDAnDlzSE9P57HHHqvz2CrrmWeeYcKECbX6GleuXOHdd98lODiYzp071+prCSEaH6mbqkbqpsqRuqnxkWRIVFvHjh2JiooCICYmBrPZTHx8PNu3b2fMmDEaR1c+Dw8PunbtqslrL1++nHXr1jF16lSmTJlit2/QoEFMmjSJM2fO1GlM+fn5uLi4VPr41q1b12I0QghRfVI3VY3UTcJRSTc5UeOslc/169ftticnJzN58mR69epFVFQUI0eOZMuWLXbHpKWlMXv2bIYNG0a3bt3o06cPEyZM4Oeffy7zOoWFhbz77rsMHTqUqKgoYmJiGD9+PL/88gsAYWFh5OXlsX79elt3ifHjxwMVd0XYsWMH48aNIzo6mm7duvH444/z66+/2h0THx9PWFgYKSkpTJs2jR49etC3b19mzJhBdnb2Ld+boqIili9fTvv27Xn22WfLPaZ58+bcddddtp8zMjKYPXs2/fv3JzIyknvvvZdFixZRWFhod15BQQELFy5k0KBBREZG0r9/f+bMmUNWVpbdcYMGDeLpp59m69atjBw5kqioKN59910ATpw4wcSJE4mOjiYmJoa//vWv5ObmlomxvK4IYWFhvPbaa2zYsIGhQ4cSHR3NQw89xDfffGN33JkzZ5gxYwb3338/0dHR9O/fn8mTJ3P06FHbMQkJCTz88MMAzJgxw/b5xcfH246pzPdJCCGspG6qmNRNUjc5MmkZEjXu/PnzALRt29a2bc+ePUyaNIno6Ghmz56Np6cnW7Zs4fnnnyc/P5/Ro0cD6h9XgClTptCsWTPy8vLYtm0b48eP56OPPiImJgYAk8nEpEmT2L9/PxMmTKB3796YzWaSkpK4dOkSAKtWreKxxx4jJiaGZ555BlCvulVk48aNvPDCC8TGxrJw4UIKCwtZvny57bVLVwIAU6dOZdiwYTz88MMcO3aMhQsXAmrXjIr89ttvZGRkMHbsWHQ63W3fy4KCAiZMmMC5c+eYOnUqYWFh/PzzzyxbtozDhw+zbNkyQO3e8Mwzz7Bnzx6eeuop7rrrLo4ePUp8fDyJiYmsWrUKZ2dn2/MePHiQEydO8Ic//IGWLVvi6urKtWvXGD9+PEajkVdffZWmTZuyceNG/va3v902Tqtvv/2W5ORk/vjHP+Lm5sby5cuZMmUKX331Fa1atQLULgY+Pj5Mnz4dPz8/MjMzWb9+PY888gjr16+nffv2REREMH/+fGbMmMEf/vAH7rnnHgACAwOByn+fhBDCSuomqZukbhLlUoS4Q2vXrlVCQ0OVxMREpaioSMnJyVG+++47pV+/fsrvfvc7paioyHbskCFDlJEjR9ptUxRFefrpp5V+/fopZrO53NcwmUxKUVGR8thjjynPPvusbfv69euV0NBQZfXq1beMsWvXrspLL71UZvuePXuU0NBQZc+ePYqiKIrZbFZiY2OV4cOH28WSk5Oj9OnTRxk3bpxt2+LFi5XQ0FDlgw8+sHvO2bNnK1FRUYrFYqkwns2bNyuhoaHKZ599dsu4rT777DMlNDRU2bJli932ZcuWKaGhocr333+vKIqifPfdd+XGZH29VatW2bYNHDhQ6dy5s3Ly5Em7Y9966y0lLCxMOXz4sN32xx9/3O69UhRFeemll5SBAwfaHRcaGqr07dtXyc7Otm27evWq0qlTJ+X999+vsIwmk0kpLCxU7r//fuX111+3bT9w4IASGhqqrF27tsw5d/p9EkI0flI3Sd1UmtRN4nakm5yotkceeYSIiAi6d+/OpEmT8PLyYsmSJRiNasPjmTNnOHnyJCNGjADUK2fW5e677+bq1aucOnXK9nyfffYZo0aNIioqivDwcCIiIvjpp584ceKE7Zjdu3fTpEmTGuv3ferUKa5cuUJcXBx6fcmvhbu7O/fffz9JSUncuHHD7pzymuILCgrKdMGojj179uDm5saQIUPstluvLv3000+240pvtxo6dChubm6240rH2q5dO7ttCQkJdOzYkU6dOtltHz58eKXjjYmJsbvC2axZM5o2bcqFCxds20wmE0uXLmXYsGFERkYSHh5OZGQkp0+ftvuMK1LV75MQwjFJ3aSSuknqJnFr0k1OVNsbb7xBSEgIubm5bNmyhVWrVjFt2jSWL18OwLVr12zHvfHGG+U+R3p6OgAffvghCxYs4NFHH+W5557D19cXvV7PO++8w8mTJ23Hp6Wl4e/vb1c5VIf19Zs3b15mn7+/PxaLhaysLFxdXW3bfXx87I6zNvXn5+dX+DpBQUFASXeN28nIyKBZs2Zlui00bdoUo9Fo67qRkZGB0WjEz8/P7jidTkezZs1sx1mVV86MjAxatmxZZnuzZs0qFSuUfU9AfV8KCgpsPy9YsIBPP/2UJ598kp49e+Lt7Y1Op2PWrFl2x1WkKt8nIYTjkrpJJXWT1E3i1iQZEtUWEhJiG5jau3dvLBYLn3/+OV999RVDhgzB19cXgKeffpr77ruv3OewXgn64osv6NWrF3PmzLHbf/NAST8/P/bv34/FYqmRSsca49WrV8vsu3LlCnq9Hi8vr2q/TmRkJD4+PuzYsYPp06fftm+2j48PSUlJKIpid+z169cxmUy2uH18fDCZTKSlpdlVOoqicO3aNdvnY1Xe6/r4+Nj+mJdW3rbq+OKLLxg5ciTTpk2z256enl6p97gq3ychhOOSuqnypG6SusmRSTc5UeNefPFFvL29Wbx4MRaLhfbt29O2bVuOHDlCVFRUuYu1+Vqn09kNpgQ4cuQIiYmJdtv69+9PQUEB69atu2Uszs7Ot7waZtWuXTsCAgLYtGkTiqLYtufl5bF161a6du1qd+XtTjk5OTFp0iROnjzJP//5z3KPuX79Ovv37wegT58+5OXllbk534YNG2z7Sz9+8cUXdsd9/fXX5OXl2fbfSkxMDCkpKRw5csRu+6ZNm25fsCrQ6XQ4OTnZbfv2229JTU2121bR1cyqfJ+EEMJK6qaKSd0kdZMjk5YhUeO8vb156qmneOutt9i4cSNxcXHMmTOHJ598kokTJzJq1CgCAgLIzMzkxIkTHDx4kMWLFwNwzz33sGTJEhYvXkzPnj05deoUS5YsoWXLlpjNZttrDB8+nHXr1jF79mxOnTpFTEwMiqKQlJRESEgIDz74IAChoaHs3buXnTt30rx5c9zd3Wnfvn2ZmPV6PS+++CIvvPACTz/9NOPGjaOwsJAVK1aQlZXF9OnTa+z9sVY48fHxJCcnM3z4cNuN7fbt28fq1auZOnUqPXr0YOTIkXz66ae89NJLXLhwgdDQUPbv38/777/PgAED6Nu3LwD9+vUjNjaWv//97+Tk5NC9e3eOHj3K4sWLCQ8PJy4u7rZxPfbYY6xdu5annnqKP/3pT7YZe0p3AakJ99xzj21mnrCwMA4ePMiKFStss/FYtW7dGhcXFzZu3EhISAhubm74+/sTEBBQ6e+TEEJYSd10a1I3Sd3kqCQZErVi/PjxfPrppyxZsoThw4fTu3dvPv/8c5YuXcrrr79OVlYWPj4+hISEMHToUNt5kydP5saNG6xZs4bly5fToUMHZs+ezfbt29m7d6/tOKPRyAcffMD777/P5s2bWblyJe7u7nTq1In+/fvbjnv55ZeZM2cO06ZN48aNG/Tq1YtPPvmk3JhHjBiBq6sry5Yt4/nnn8dgMBAdHc3HH39M9+7da+y90el0zJ8/n8GDB7N69Wrb+2GN/4UXXrANNm3SpAkff/wxixYtYvny5aSnpxMQEMATTzxhd1M8nU7HkiVLiI+PZ926dSxduhQfHx/i4uKYNm1amSua5WnevDn/+7//y7x585g9ezaurq4MHjyYV155xTb9a014+eWXMRqNLFu2jLy8PMLDw4mPj+edd96xO87V1ZXXX3+dd999l4kTJ1JUVMSUKVOYOnVqpb9PQghRmtRNFZO6SeomR6VTSre7CiGEEEIIIYSDkDFDQgghhBBCCIckyZAQQgghhBDCIUkyJIQQQgghhHBIkgwJIYQQQgghHJIkQ0IIIYQQQgiHJMmQEEIIIYQQwiFJMiSEEEIIIYRwSJIMCSGEEEIIIRySJENCCCGEEEIIhyTJkBBCCCGEEMIhSTIkhBBCCCGEcEj/D+kt9iJySYInAAAAAElFTkSuQmCC",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA04AAAHbCAYAAAD8lMpYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACesElEQVR4nOzdd3xUVf7/8dedSSN1QieNThAISVikKKCIDbCLZXWtu3bUn+5+batr2V3bNldAV6yrrqgoYgMsYEGlKQmE3klooaX3zMzvj8mEBAKZSSZzk8z7+XjkMZN777nzOYPmzmfuOZ9jOJ1OJyIiIiIiInJcFrMDEBERERERae2UOImIiIiIiDRCiZOIiIiIiEgjlDiJiIiIiIg0QomTiIiIiIhII5Q4iYiIiIiINEKJk4iIiIiISCOUOImIiIiIiDRCiZOIiIiIiEgjlDiJiIiIiIg0QomTiIiIiIhII5Q4SZuya9cukpOTeeCBB8wORUREApyuSSKBJcjsAETcXnzxRZ577jkA5s+fT58+fXx27uTk5Hq/WywWoqOjGThwIJdffjmTJ0/22Wud6PUtFgtff/018fHxDR43adIktm7dCsDrr7/OKaeccswxWVlZvPPOOyxfvpwDBw4QFBREfHw8Y8aM4frrr6dbt24njOF4nnrqKS655BJvuuW1rVu38s4777Bs2TL27t1LRUUFNpuNQYMGcdZZZ3HBBRcQGhp6TLum9llEpKl0TWq/1yT3a2/cuPG4x5xxxhns3r2bhQsXkpCQ0OTX0vWrfVHiJK2C0+nkgw8+wDAMnE4ns2fP5v777/f560ydOhWA6upqtm/fztdff83SpUtZs2ZNi7xeXUFBQVRXVzNnzhzuvPPOY/b/8ssvbN26tfa4ozmdTv7+97/zyiuvEBQUxCmnnMK5555LVVUVGRkZvPbaa8yaNYunn36ac88997hxuN+Do5100klN75wHpk+fzowZM3A4HKSlpXHxxRcTERHBwYMH+fnnn3n44YeZNWsWc+bMqW3jqz6LiHhD16T2f01qabp+tVNOkVbg+++/dw4YMMD58MMPO0ePHu0cNWqUs6Ki4pjjcnJynAMGDHDef//9Xp1/wIABzgEDBhyz/aeffnImJyc7Bw4c6Ny1a1eT4/fk9ceOHeu8+OKLnaeffrrTbrcfc8wDDzzgHDx4sPN3v/udc8CAAc4ff/yx3v5p06Y5BwwY4Bw/frxz06ZNx7RfsGCBMyUlxXnSSSc5f/rppwZjaOg98IcXXnjBOWDAAOdpp53mzMzMbPCY7777znnNNdfU29bcPouINIWuSe37muTJa48fP945YMAAZ05OTpNeQ9ev9klznKRVmD17NgCXXXYZ559/PocPH+brr79u8dcdPXo0ffr0weFwkJWVxdatW0lOTubaa689bpvzzz+fwYMHc+DAAaD+GPetW7dy1113MWrUKAYOHMiyZcvqtZ0yZQp79uzhxx9/rLe9uLiYBQsWcMYZZ9CpU6djXjMnJ4cXX3yR4OBgXnzxRfr373/MMeeccw4PPvggdrudxx57DIfD0ZS3xOd27drFjBkzCA4OZubMmaSmpjZ43Lhx43jllVdqf2/LfRaRtk3XpPZ7TfIHvT/tlxInMd3BgwdZtGgRffv2ZejQobVjmt9//32/vL7T6ax93rdvX0aOHMmyZcvYvn37Mcf+8ssvbNq0iQkTJtClS5d6+3bu3MkVV1zB3r17ueCCC5gyZQoRERH1jjn//PPp0KFD7UXZ7dNPP6W0tJQpU6Y0GOOcOXOorq5mwoQJJxwXftlll9GlSxd27NjB8uXLG+27P8yZM4eqqirOPvtsBgwYcMJjQ0JC6rVrq30WkbZL16T2fU3yB70/7ZfmOInp3B+sL7roIsA1aXPQoEEsXbqUnJwcEhMTW+y1ly5dyo4dOzAMgyFDhgBw1VVXsWzZMt5///1jxpi/9957AFxxxRXHnGvlypXccsst3Hvvvcd9vaioKM455xw+//xzDh8+TMeOHQHXt5txcXGMGTOGefPmHdPul19+AeDUU089YX+CgoIYOXIkn332GStXrmTUqFHHHDNt2rRjtsXHx7fYJNyff/4ZcH2T6g1f9llExFO6JrXva1Jjr+1WWFjY5PPq+tV+KXESUzlrJt1arVYuvPDC2u2XXHIJf/nLX5g9e/YJ/+h7y/1H0j0Rd+HChTgcDq6//vraqjlnnnkmXbt25aOPPuKee+6pvQtSUFDAggULSEpKarCyUOfOnY87ybWuyy67jLlz5/Lxxx9zww03sH79etauXcvUqVOxWBq+CXzw4EEAunfv3uj53cfs37+/wf3Tp08/ZtuIESNa7CLljt3bykG+7LOIiCd0TWr/16TGXtsXdP1qv5Q4iamWLl1KdnY2Y8eOrffB+rzzzuOZZ55hzpw53HXXXQQFnfg/1Ya+Nbr44ouPKSHq/iNpGAbR0dEMGzaMKVOm1LtABgUFcfnllzN9+nS+/PJLzjvvPAA++ugjKioquPzyyzEM45jXGzhwYL2hZsczfPhwevfuzQcffMANN9zA+++/j8Vi4dJLLz1uG/fQjYZe92juY4537InKrzbG0/e5Lm9ib2q7hvr80ksv8eWXX7J9+3ZCQkJIS0vj3nvvbXS4oIgELl2T2v81ydPXdpcjP5on1xZfvj/SuihxElO5hxkc/c1SbGwsZ5xxBl988QXffPMNZ5111gnPc7xvrI7+4+npH+jLL7+c//znP7z33nu1F6n333+f4ODg415MOnfu7NG5wTUh929/+xtLlizhs88+45RTTiEuLu64x3fp0oVt27axb9++Rs/tPubo8e6+4On7XFfXrl09jr2u5vZ5+fLlXHXVVaSkpOB0Onn++ee54YYb+Pzzz7HZbF7FIiKBQdek9n9Nai5Pri2t5f0R31PiJKapW6Xonnvu4Z577mnwuPfee6/Ri1RzvrFqSLdu3TjjjDP48ssv2bZtG4cOHWLr1q1Mnjy5dgz40bz5tujiiy/mueee44EHHqCwsPC4E3DdfvWrX7Fs2TJ++uknLrvssuMeZ7fba6smDRs2zON4PNWU9/lXv/oVS5cuZenSpSeMvaF2zenzq6++Wu+4Z599luHDh7Ny5UrOOOMML3shIu2drkmBcU1qLk+uLa3l/RHfU1U9Mc1HH31EVVUVgwcPZsqUKQ3+xMbG8uOPPzZ4u7ylXXXVVYDrW713330XaHgCblN06tSJ008/nX379hEbG8uECRNOePwll1yC1Wrlq6++YsuWLcc97sMPP2T//v307t2bESNG+CTW5rrkkksIDg7miy++OGHsAJWVlfXa+bLPJSUlOBwOoqOjve+EiLR7uiYFxjXJ1xq6tuj9ab90x0lM4y5/+thjjzF06NAGj+nYsSMzZ87kgw8+4O677/ZneIwePZrevXvz0UcfUVpaSu/evRk5cqTPzn///fdz0UUX0bVr10bHoScmJnLLLbfwwgsvcOutt/Kf//yHfv361Tvm66+/5q9//StWq5VHH330uJN6/S0hIYGpU6fyr3/9i5tvvpl///vfpKSkHHPc999/zyuvvMKbb74J+L7Pf/3rXznppJNIT0/3bQdFpF3QNSkwrkm+1tC1Re9P+6XESUzhXpNiwIABx71Agavaz8svv8yHH37oUXUgX7vyyit56qmnap/7UmJioldlbe+8807Kysp4/fXXufDCCxkzZgz9+vWjurqajIwMVq1aRVhYGP/4xz+8Lv3d0m699Vaqq6uZMWMGU6ZMIT09nSFDhhAREcHBgwf5+eef2bFjR235XTdf9fmZZ57hl19+YdasWVit1pburoi0MbomBdY1yVdOdG3R+9M+KXESU7gXEmxszktSUhIjRoxg2bJlfPfdd36viHbxxRfzzDPPEBwcXLumh1ksFgsPPPAAkyZN4n//+x8rVqxgyZIlWK1W4uPjufHGG7nuuus8Kn9qhqlTpzJx4kTeeecdli1bxpw5c6isrMRmszFw4EB+97vf1askBb7p81NPPcXnn3/Of//73xZdf0VE2i5dk7zX1q9JzdXYtSXQ35/2ynDWXaJaROpZsmQJ119/PRdeeCHPPvus2eGIl/7yl78wb9483nrrLfr27Wt2OCIizaJrUuuga0vg0h0nkRN45ZVXAPjNb35jciTirccee4xPPvmEGTNmEB0dzYEDBwAIDw8nIiLC5OhERLyna5L5dG0JbLrjJHKUDRs2sHDhQtauXcvChQuZMGECL7zwgtlhiZeSk5Mb3D516lTuvPNOP0cjItI0uia1Lrq2BDbdcRI5yrp163j++eeJjIxk0qRJPProo2aHJE1gxvoeIiK+pmtS66JrS2DTHScREREREZFGqGi8iIiIiIhII5Q4iYiIiIiINCIg5zg5HA6qq6uxWCwYhmF2OCIiAcPpdOJwOAgKCsJi0Xd3brouiYiYx9Nrk+mJU3FxMS+88AIbNmxg3bp15OXlHVOZxG638+abb/LDDz+wefNmCgoKiIuLY8KECdx8881ER0d79ZrV1dVkZWX5uisiIuKhlJQUQkJCzA6j1dB1SUTEfI1dm0xPnPLz83n//fcZOHAgZ555JrNnzz7mmPLycqZNm8Z5553HZZddRmxsLOvWrePFF1/km2++4cMPPyQsLMzj13RnkikpKVitVq9jttvtZGVlNbl9W6f+q//qv/rf3L+futtUn65LzaP+q//qf+D2H/x3bTI9cYqPj2fFihUYhsHhw4cbTJzCwsJYuHAhsbGxtdtGjhxJjx49uPvuu/niiy+48MILPX5N9zAIq9XarP/Amtu+rVP/1X/1X/1vKg1Hq0/XJd9Q/9V/9T9w+w8tf20yPXHy5OJptVrrJU1uQ4cOBWDfvn0+j0tERMQT69atY/r06axevZqioiJ69OjBeeedx29/+1s6dOhgdngiIuIjpidOzbF06VIA+vXr16T2dru9We2a2r6tU//V/7qPgUb9b17/29v7tmXLFq688kp69+7NQw89RGxsLD///DMvvPACa9eu5cUXXzQ7RBER8ZE2mzjl5ubyj3/8gyFDhjB+/PgmnaO5E3EDfSKv+q/+BzL1P7D77/bpp59SUVHBtGnTSEpKAmD06NEcOHCA9957j4KCAmJiYkyOUkREfKFNJk75+fncdNNNOJ1OnnvuuSZPMtYk3KZR/9V/9V/9b+7fz/YiODgYgMjIyHrbo6KisFgstftFRKTta3OJU0FBATfeeCO5ubn897//JTExscnn0iTc5lH/1X/1X/0PdBdddBH//e9/eeyxx/i///s/YmNjWbFiBe+99x5XX3014eHhZocoIiI+0qYSp4KCAm644QZ27drFG2+8wcCBA80OSUREAlhCQgLvvvsuU6dO5cwzz6zdfs011/DHP/7R6/Np7m3TqP/qf93HQBPo/Qf/zb9tM4mTO2nKycnhtddeY9CgQWaHJCIiAW7Xrl3cdtttdOrUieeff56OHTuyatUqXnzxRUpLS3nyySe9Op/m3jaP+q/+B7JA7z+0/HvQKhKn7777jrKyMkpKSgBXlaIFCxYAcNppp2EYBr/97W9Zt24dDz30EHa7nczMzNr2HTt2rJ2UKyIi4i//+Mc/KC4uZu7cubXD8k4++WRiY2N56KGHuOiiixgxYoTH59Pc26ZR/9V/9T9w+w/+m3/bKhKnxx9/nN27d9f+vmDBgtrEaeHChcCRDPKvf/3rMe0vvvhinn76aT9EKiIicsT69evp27fvMXOZUlJSANi8ebNXiZPm3jaP+q/+q/+B239o+fegVSROixYtavSYjRs3+iESERERz3Xt2pXNmzdTUlJCRERE7Xb3qIhu3bqZFJmIiPhaq0icRERE2qLrrruOO+64gxtvvJHrrruO2NhYVq1axUsvvUS/fv0YN26c2SGKiIiPKHESERFpogkTJvDGG2/w8ssv8+STT1JUVET37t258sorufnmmwkJCTE7RBER8RElTiIiIs0watQoRo0aZXYYIiLSwixmB9DWbMot4vrXV7DpUKXZoYiIiABgZH1A3+UPQXmh2aGIiLRbSpy89NOWgyzecohPNpWYHYqIiAgAxprZ2HKXYqz/2OxQRETaLSVOXhrYIxqATYeqTI5ERETExdlloOvJ3lXmBiIi0o4pcfLS0IQYLAYcKnOwt6Dc7HBERESgRyoAxt5Mc+MQEWnHlDh5KTwkiIHdowBYlZNvbjAiIiKAs0e660nuGqjWHFwRkZagxKkJ0hJtAGQocRIRkdYgthfVwZEY9ko4sN7saERE2iUlTk3gTpwycwrMDURERATAMCiNGeB6vifD3FhERNopJU5NkJ4YA0DW7gKq7A6ToxEREYFSmxInEZGWpMSpCXp1iiAy2KCi2sH6vVozQ0REzFdSe8cp09Q4RETaKyVOTWCxGPTvFAxARna+ucGIiIgApbZk15PctVBdYW4wIiLtkBKnJhrQKQSAjOw8kyMRERGByg7dcXaIBUcV7F9ndjgiIu2OEqcmGtCx5o6TKuuJiEhrYBi16zlpnpOIiO8pcWqi/jWJ085DpRwq1pAIERExX+16TkqcRER8TolTE0WEWOjXJQKATN11EhGRVsDZI831RAUiRER8TolTM9QuhKsCESIi0hq4E6f966Cq3NRQRETaGyVOzVCbOOWoQISIiLQCMQkQ3gkc1a7qeiIi4jNKnJohPckGQGZ2PnaH09xgREREDAPiauY57dU8JxERX1Li1Az9u0YSEWKlpNLO5v1FZocjIiJyZLieCkSIiPiUEqdmsFoMUjXPSUREWhP3HScViBAR8SklTs3kHq6nhXBFRMQsr/6wnbsWHCC3sBzi0lwb96+HqjJT4xIRaU+UODVTemIsoDtOIiJinuXb89hdZOfLdbkQHQ8RXcBph31rzA5NRKTdUOLUTGk1d5w27y+moKzK3GBERCQgDY6LBmDVroKjCkRkmheUiEg7o8SpmTpHhpLUMRyA1bvyzQ1GREQC0tCEGABW5RS4NqhAhIiIzylx8gH3PKeVO/NNjUNERAKTO3HadrDENfqhtkCEEicREV9R4uQDw5Jq5jlpIVwRETFBx4gQukVYAcjaVXAkcTqwASpLTYxMRKT9UOLkA0cq6+XjdGohXBER8b9+HYMBWLUrH6J7QGQ3cDpgX5a5gYmItBNKnHxgYPdoQoMsFJRVsf1gidnhiIhIABpQkzhl5uS7Nmi4noiITylx8oGQIAsp8a7x5SpLLiIiZuhXJ3FyOp2qrCci4mNKnHykdrie5jmJiIgJescGY7UYHCiqYG9BuSrriYj4mBInH0lP0kK4IiJinlCrwcBuUQCsysmHuDTXjgMboaLYtLhERNoLJU4+4r7jtGFfEaWV1eYGIyIiASk10TVsPHNXPkR1h6gegFMFIkREfECJk4/0iOlA9+gw7A4nq3cVmB2OiIj4wQMPPEBycvJxfzIzM/0aT2rtQrj5rg0qECEi4jNBZgfQngzraWNe1j4ysvMZ1aeT2eGIiEgLu/3227nyyiuP2X7rrbcSEhJCSkqKX+NxL4SbtasAu8OJNS4dNs5TgQgRER9Q4uRD6YmxNYmTCkSIiASCpKQkkpKS6m1bvnw5eXl53HbbbVitVr/G07dLJBEhVkoq7WzZX0yyCkSIiPiMhur50JHKeloIV0QkUH3wwQcYhsGll17q99e2WgxS6g7XcxeIOLgZKor8Ho+ISHuiO04+NCQ+hqCaUrC788tIiA03OyQREfGjoqIivvjiC0aPHk1iYqLX7e12e5Ne193ObreTmhDD0m2HycjO49Jhg7FEx2MU7sa+OxN6ntKk87d2dfsfiNR/9b/uYyBq7nvgaTslTj4UFmxlUFw0q3cVkJGdr8RJRCTAfPbZZ5SXlzNlypQmtc/Kal71u6ysLKKrygFYunkvmZlV9AnvRWzhbvb8/Dn789r3dam5719bp/6r/4Gupd8DJU4+lp5oq02czk+NMzscERHxow8++ACbzcZZZ53VpPYpKSlNmhdlt9vJysoiJSWFbr2r+NuSb8kutJM8KIXwotNh34/EG/uJS0trUlytXd3++3teWWug/qv/gdx/aP574G7fGCVOPpaeFMt/l+wkI0cFIkREAsmGDRtYs2YN1157LSEhIU06h9VqbdYHH6vVSnxsMF2jQtlfVMGG3GKGJwwDwLJvFbTzD1XNff/aOvVf/Q/k/kPLvwcqDuFjw5JiAVi7u5CK6sAdayoiEmg++OADAC677DJT4zAMg9REGwCZOfnQo2Ytp0NboFzrDIqINJUSJx9L7NiBThEhVNodrN1TaHY4IiLiB5WVlXz66acMHTqUAQMGmB0OaTWJ06pdBRDRCWJqSqbvXWVeUCIibZwSJx8zDONIWfLsfFNjERER//j666/Jz883/W6TW1rtHaeaYeNxqa7HPZmmxCMi0h6YnjgVFxfz7LPPcuONNzJq1CiSk5OZNm1ag8euXbuW66+/nvT0dIYPH87UqVPJycnxc8SNS68ZrqeFcEVEAsMHH3xAeHg4kyZNMjsUgNq1nHIOl3GouALiaobraSFcEZEmMz1xys/P5/3336eyspIzzzzzuMdt3bqVa665hqqqKp577jmefPJJduzYwVVXXcXhw4f9GHHj0mu+6dMdJxGRwPDaa6+RkZFBZGSk2aEAEB0WTN8uEQCs3lVwJHHam2leUCIibZzpVfXi4+NZsWIFhmFw+PBhZs+e3eBxzz//PCEhIbz00ku1F6bBgwdzzjnn8Oqrr/J///d//gz7hIYm2jAM2J1fxv7CcrpGh5kdkoiIBJjURBtbD5SQmZPP+FPTXBsPb4OyPOgQa2psIiJtkel3nAzDwDCMEx5TXV3Nt99+y9lnn13v27z4+HhGjhzJ119/3dJheiUyNIjkblEAZOTkmxuMiIgEpPTaAhH5EN4RbD1dO1QgQkSkSUxPnDyRnZ1NeXk5ycnJx+wbMGAAO3fupKKiwoTIjs9dIGKl5jmJiIgJ3CXJV+Xk43Q668xzyjQtJhGRtsz0oXqeyM/PB8Bmsx2zz2az4XQ6KSgooGvXrl6d125v2jpL7nYnap+WEMOs5Tlk7Mxr8uu0Vp70vz1T/9X/uo+Bprn9D9T3zQwDu0cTYrWQV1pF9uFSesalwbq5KhAhItJEbSJxcjvRkL7Ghvs1JCsrqznhnLB9WEk14CoF+8vKDKwW7+Nr7Zr7/rV16r/6H8gCvf9tQUiQhUFx0WTm5JOZk09PVdYTEWmWNpE4ue805eUdO+wtPz8fwzCIjo72+rwpKSlYrVav29ntdrKysk7YfqjDycPfLaSovJqw7n0ZHOd9fK2VJ/1vz9R/9V/9b3r/3e3FP9ISbWTm5LMqp4ALz6xZyyl/J5Qeds17EhERj7WJxCkpKYmwsDA2bdp0zL5NmzbRs2dPQkNDvT6v1Wpt1gefE7W3Wl0XrMWbD7JqdyFDE9tfBaPmvn9tnfqv/qv/gdv/tqLeQrgdBkFsb8jb7ipL3vcMU2MTEWlr2kRxiKCgIMaPH89XX31FcXFx7fY9e/awbNkyzjrrLBOjOz4thCsiImZyF4hYs6eQKrtDC+GKiDRDq7jj9N1331FWVkZJSQkAW7ZsYcGCBQCcdtppdOjQgTvvvJMpU6Zw6623ctNNN1FZWcnzzz9PbGwsN954o5nhH5e7sl6mFsIVERET9OoUTnRYEIXl1WzcV8SQuHRYO0eV9UREmqBVJE6PP/44u3fvrv19wYIFtYnTwoULSUhIoG/fvrz11lv8/e9/5+6778ZqtTJq1ChmzJhBx46tc5y2ew2NbQdLyCupJDYixNyAREQkoBiGQWrNsPHMnHyGxKW5dihxEhHxWqtInBYtWuTRcUOGDOGNN95o2WB8yBYeQp8uEWxzr9w+0Lty6SIiIs2V7p5vm5PPb9JqCkQUZEPJIYjoZG5wIiJtSJuY49SWpSdqnpOIiJgntbZARD6ExUDHvq4dezXPSUTEG0qcWph7nlNGTr6pcYiISGAammADYMuBYorKq1QgQkSkiZQ4tbC6BSIcDqe5wYiISMDpEhVKvK0DTidk7S6okzhlmhqXiEhbo8SphSV3i6JDsJWiimq2HihuvIGIiIiPuddzWpVTACoQISLSJEqcWliQ1cLQhBgAMlSWXERETHAkccqH7kMBAwp3QfEBM8MSEWlTlDj5Qe1CuDkqECEiIv5Xv0BENHTu79qxN9OskERE2hwlTn7gnue0cme+qXGIiEhgGhIfjcWAfYXl7Csohx5prh0qECEi4jElTn7gTpw27S9yVTQSERHxo/CQIAZ0iwJg1a58VdYTEWkCJU5+0DUqjIRYV0Wj1bsKzA5HREQCUL15TqqsJyLiNSVOflI7z0kL4YqIiAnS6s5z6p4CGFC0B4pyzQxLRKTNUOLkJ+k1FyxV1hMRETO4C0Ss3lWAIzgCuiS7dqhAhIiIR4Ka0mjz5s2sXLmS3NxcysvLiY2NpV+/fpx88slERkb6OsZ2wT3PKSMnH6fTiWEY5gYkIiIBpX/XSDoEWymuqGbbwWL69UiDAxtc85wGnGN2eCIirZ7HiVNBQQHvvfce7733Hnv27MHpdB57sqAgxo0bxzXXXMPo0aN9GmhbNygumhCrhcMllWQfLqVnpwizQxIRkQASZLWQEh/D8h2HycwpoF9cOqx+VwUiREQ85FHi9OabbzJjxgwAJk2axIgRIxg8eDAdO3YkNDSUgoICcnJyyMzMZOHChdx4442ccsop/OlPf6Jnz54t2oG2IjTIyuD4aDKy88nIzlfiJCIifpea6EqcVuXkM2WYCkSIiHjDo8Tprbfe4sEHH2Ty5MkEBwcfs79z58507tyZ9PR0brjhBrKzs3nxxReZP38+t956q8+DbquGJcWSkZ3Pyuw8LkqPNzscEREJMGmJscB2V4GIScPAsEDxPijcC9E9zA5PRKRV8yhxmj9/PkFBnk+HSkpK4qmnnsJutzc5sPaodp6TCkSIiIgJUhNjAFi/t5ByI5SwLgNh/zrXcD0lTiIiJ+RRVb3Nmzc36eRWq7VJ7dord0ny9XsLKatUUikiIv4Vb+tA58gQqh1O1u0tPLKekyrriYg0yqPE6eKLL+aSSy7hnXfeoaioqKVjarfiYsLoGhVKtcPJmj1aCFdERPzLMAxSE2xAzUK4PdJcO1QgQkSkUR4lTrfccguHDx/miSeeYMyYMfzhD39g6dKlLR1bu2MYRp3heloIV0RE/M+9EO6qnPwjd5z2ZEAD1XJFROQIjxKne+65h2+++YaZM2cyfvx4vvzyS2644QYmTJjACy+8wN69e1s6znbDPVxP85xERNqPn3/+mZtuuomTTz6ZoUOHcvbZZ9dWo21t3AvhZubkQ/chYFih5AAU7jE1LhGR1s7jig+GYTBu3DjGjRtHYWEhn3zyCXPmzOH5559nxowZjBo1issuu4wJEyY0WHlPXNJrLlhKnERE2odPP/2U++67j4kTJ/LMM88QHh5OTk4Oubm5ZofWoKEJrgIROw6Vkl9lxdb1JMhd47rrFKOKryIix+N5qbw6oqOj+c1vfsNvfvMbNmzYwIcffshnn33GPffcg81mY8mSJb6Os91ISYjBajHYV1jO3oIyesR0MDskERFpotzcXP70pz9xxRVX8Nhjj9VuHzVqlHlBNcIWHkLvzhFsP1jCql0FnBaX5kqc9mbCSeeZHZ6ISKvl0VC9Exk4cCAXXHABZ5xxBgD5+fnNPWW7Fh4SxEk9ogBYuTPf3GBERKRZZs+eTWlpKTfddJPZoXglteaukwpEiIh4rsmJ0+HDh3njjTc4//zzufzyy/n4448ZP358qx3T3ZqkJ7rnOalAhIhIW7ZixQpsNhvbtm3jwgsvZNCgQYwePZo//elPFBcXmx3ecaXVnecUN8y1UQUiREROyKuheg6Hg++//54PP/yQb7/9lqqqKnr16sW9997LxRdfTOfOnVsqznYlPcnGW0t3kpGTb3YoIiLSDLm5uZSVlXH33Xdzyy23kJaWRlZWFtOmTWPz5s288847GIbh8fmaunC8u52n7VPiowFX4lTdeTRWSxBG6SHsedkQk9CkGMzkbf/bG/Vf/a/7GIia+x542s6jxGn79u18+OGHfPzxxxw8eJCwsDDOO+88Lr30UoYPH96kAAOZu7Je1u4CKqsdhAQ1e8SkiIiYwOl0UlFRwdSpU7n55psBGDlyJMHBwTz55JMsWbKEU045xePzZWVlNSseT9tX2p0EGXC4pJKvlq/ltMhehBduYcdPc8jvMa5ZMZipue9fW6f+q/+BrqXfA48Sp4kTJwIwdOhQ7rzzTiZPnkxERESLBtae9eoUji08mPzSKtbvLawtDSsiIm2LzWYDYMyYMfW2jxs3jieffJK1a9d6lTilpKRgtVq9jsNut5OVleVV+5OW/UTW7kKqouMJ6zsaMrbQO7QAZ1qa169vtqb0vz1R/9X/QO4/NP89cLdvjEeJ03XXXceUKVPo37+/14HIsQzDID3RxjcbD5CRnafESUSkjUpOTiYzM/OY7c6auUIWi3cjCqxWa7M++HjTPi0xlqzdhWTtLuSC+GGQ8RaWfaugDX/wau7719ap/+p/IPcfWv498Ogv+oMPPthg0rRt2zZ++eUXSktLfR5Ye1e7EK7mOYmItFlnn302AN9//3297e7fU1NT/R6Tp+oViKhbWU8FIkREGtSkdZzmzp3LP//5Tw4cOADABx98wODBg7n77rs59dRTufzyy30aZHuUnmQDYKUq64mItFljxoyprSjrcDhIS0tjzZo1TJ8+nfHjx7fqecDu0Q5Zuwuo7pxOkCUYyvIgfyfE9jI1NhGR1sjrqgTz58/ngQceYNCgQTzyyCO1wxEABg8ezPz5830aYHuVmmjDMCDncBkHiirMDkdERJroueee47rrruP999/npptuYtasWVx//fU8//zzZod2Qn06RxAVGkR5lYNNh6qg22DXjj2ZpsYlItJaeZ04zZw5k0suuYT//Oc/XHHFFfX29enThy1btvgsuPYsOiyY/l0jgZphEiIi0iaFhYXxhz/8gW+//Za1a9fyzTffcO+99xISEmJ2aCdksRgMTaxZCHdXPsSluXZoIVwRkQZ5nTht3bqVyZMnN7jPZrORn5/f3JgChhbCFRERM6Um2ABYlZMPcemujXszzQpHRKRV8zpx6tChA0VFRQ3uy83NJSYmptlBBQr3PKeM7HxT4xARkcCkAhEiIp7zOnFKT0/nf//7X725TW5z5sxhxIgRPgksELgr663alY/doYuUiIj4lztx2pRbRIltAFhDoLwA8rabG5iISCvkdeJ0xx13kJmZyZQpU3jrrbcwDIMvv/ySW2+9lZ9//plbb721JeJsl/p1jSQyNIjSSjubchu+iyciItJSukaH0SMmDIcT1uwrg25DXDtUIEJE5BheJ04pKSm8/PLLlJaW8vTTT+N0OnnppZfYvn07M2fOZMCAAS0RZ7tktRik1kzM1XA9ERExQ+08JxWIEBE5oSat4zRq1Cjmz59PdnY2Bw8eJDY2lt69e/s6toAwLCmWH7ccYmV2HleNTDI7HBERCTCpiTYWrN3nmud0Uk2BCCVOIiLHaFLi5JaUlERSUoB92D+0FWPhn+nQeRKQ1uzTHSkQocp6IiLif+55TqtyCmCCu7LeanA4wOL1wBQRkXbLo7+I8+bN8/rEubm5/PLLL163a/W2LsKy7iPiNr7uk9Ol1ZQk33qghILSKp+cU0RExFMpCTEYBuzOL2N/WC+whkKFCkSIiBzNo8TpiSee4MILL2T27NkUFxef8Ng1a9bw+OOPc84557BhwwafBNmqJI0CIPrAL1BV1uzTdYwIoVencAAyd+U3+3wiIiLeiAwNql2QffWeUuie4tqh4XoiIvV4NFTvq6++Ytq0afz1r3/liSeeYNCgQQwaNIhOnToREhJCQUEBOTk5ZGZmcuDAAfr378+0adMYO3ZsS8fvf92G4IxJwFKwC/v27+GkSc0+ZXpSLDsOlZKRncdpA7r4IEgRERHPpSbY2JRbzKpd+ZwZlw67f3YlTilTzA5NRKTV8ChxioqK4qGHHuKOO+5gzpw5fPfdd8ydO5eysiN3XBITExk7diznn38+o0aNarGATWcYOAdMxFjxMsam+T5KnGx8lLFblfVERMQUaUk2Zv+yy1UgYliaa6NKkouI1ONVcYiYmBhuuOEGbrjhBgCKioooLy/HZrMRHBzcIgG2Rs4B58KKlzE2f+GTybPpNfOcMnPycTicWCyGL8IUERHxSG1J8px8HJPSXOP4965SgQgRkTqa9dcwKiqKLl26BFTSBEDPU7EHhWMU5/pkDPjAHlGEBVsoKKti28ESHwQoIiLiueTuUYQGWSgsr2aHJQGCOkBlERzeanZoIiKthr5GagprCAVdTnY93+h9xcGjBVstDI23ASpLLiIi/hdstTAk3rUg+6o9xSoQISLSgDaVOK1bt47bb7+dMWPGkJqayrnnnsv06dPrzbXyl4Lup7iebJzvk/PVrueUk++T84mIiHjjyHC9AohzL4SbaVo8IiKtTbMWwPWnLVu2cOWVV9K7d28eeughYmNj+fnnn3nhhRdYu3YtL774ol/jKeg6Eqdhxdi/FvJ2QGyvZp3vyEK4+c0NTURExGtpSTb4seYLvFPTXBt1x0lEpFabSZw+/fRTKioqmDZtGklJSQCMHj2aAwcO8N5771FQUEBMTIzf4rGHRLvWdNr5I2xcAKNubdb50pNcBSI27iukpKKaiNA2808jIiLtQFrNHaf1ewqp7DaUEKgpEGEHi9XM0EREWoU2M1TPXYAiMjKy3vaoqCgsFospBSqcA851PdnU/OF63aLDiIsJw+GE1bsKmn0+ERERbyR27EBseDCVdgfrK3tAcDhUlcChLWaHJiLSKnh9W+PPf/4zV199NX369GmJeI7roosu4r///S+PPfYY//d//0dsbCwrVqzgvffe4+qrryY8PNzrc9rt9ibF4m5X3fcsQr56BOeOH3CU5EFYdJPO55aWaGNPwT5W7jzMiF62Zp2rJbn739T3r61T/9X/uo+Bprn9D9T3rS0wDIPURBvfbjzAqj1FpHYfCjlLXcP1uiSbHZ6IiOm8Tpzmzp3LO++8w6hRo7j66quZMGEChtHy6w4lJCTw7rvvMnXqVM4888za7ddccw1//OMfm3TOrKysZsWUtbuUQZE96VC8k50LXyUvfnyzztfF6ipF/u2anYyKKWzWufyhue9fW6f+q/+BLND7316lJrgSp8zsfK6NSz+SOKVeaXZoIiKm8zpxWrx4MR999BGzZs1i6tSp9OjRg1//+tdMmTKFjh07tkSMAOzatYvbbruNTp068fzzz9OxY0dWrVrFiy++SGlpKU8++aTX50xJScFq9X7ctt1uJysri5SUFIIOXQQ//ZtelevpmXaP1+eqy9Exj/+uWsa2Aiepqal+SUibom7/m/L+tXXqv/qv/je9/+720jql1RQqytyVD2eqsp6ISF1eJ07h4eFcffXVXH311SxZsoT//e9//Pvf/2b69OlMmjSJq6++mpSUFJ8H+o9//IPi4mLmzp1bOyzv5JNPJjY2loceeoiLLrqIESNGeHVOq9XarA8+VqsVy8BJ8NO/sWz5CnCAtelzrVISYgm2GhwqqWRvYSWJHb0ffuhPzX3/2jr1X/1X/wO3/+2VuyT5tgMlFHUcQhTAvtUqECEiQjOLQ4wePZrp06ezcOFC0tPT+fjjj7n88su57LLLWLRoka9iBGD9+vX07dv3mLlM7iRt8+bNPn09jyWcDOGdoLwAspc061RhwVYGxbkqA67UQrgiIuJnHSNCSKr50m5VaWcIiYSqUji4yeTIRETM16zEqby8nNmzZ3PrrbeybNky+vbtyx133IHdbueOO+5gxowZvoqTrl27smXLFkpKSuptz8zMBKBbt24+ey2vWKzgrq7ng8Vw0xNtgNZzEhERc6TWXIdW7SmCHqmujVrPSUSkaYlTdnY2Tz31FOPGjePRRx+le/fuvPbaa3z22WdMnTqVOXPmcNNNN/H222/7LNDrrruOvLw8brzxRubNm8eSJUv4z3/+w1NPPUW/fv0YN26cz17La8kTXY8b54HT2axT1S6Em5PfvJhERESaIDXBNfIhIzsfeqS5NipxEhHxfo7T7373O3766Sc6dOjAJZdcwjXXXFO7IG1d48ePZ+bMmT4JEmDChAm88cYbvPzyyzz55JMUFRXRvXt3rrzySm6++WZCQkJ89lpe6zMerKGQtwMObISuA5t8qmE1C+Gu21NAeZWdsGCNKRcREf9xf4GXmZOPMz0NA1QgQkSEJiROOTk5PPjgg1xyySVEREQc97j+/fvz5ptvNiu4o40aNYpRo0b59Jw+ERoJfU6DzV+67jo1I3FKiO1A58gQDhZXsnZPIb/qGevDQEVERE5scFwMVovBweIK9keeRDdwFYiwV4PV648NIiLthtdD9b744guuueaaEyZNAJGRkV5XuWvTaofrNW+ek2EYpCW6kqUMFYgQERE/Cwu2MrB7FAAriztCSBRUl8OBDSZHJiJirmYVh5A63AUidq2A4v3NOtWwnjZABSJERMQc7gIRmbsLIS7NtXFvplnhiIi0Cl7fcz/jjDOOuzCrxWIhKiqKlJQUrr32Wvr27dvsANuM6DjXJNq9mbDpCxh2TZNPla47TiIiYqK0RBvvLMsmMzsfeqXCjsWuAhHpvzE7NBER03h9x2nEiBE4nU5yc3OJj48nNTWVuLg4cnNzsdvt9OjRg6+++opLL7008FaHT57kemzmcL2hCTFYDNhTUM6+gnIfBCYiIuK5tJo7Tlm7C3D0SHdtVGU9EQlwXidOY8aMISQkhK+++oo333yTf/7zn7z11lt8+eWXhISEcOaZZ/LFF1/Qq1cvpk2b1hIxt17ueU5bF0FVWZNPExEaRHL3aAAyc3TXSUSktVq2bBnJyckN/rjXGWyL+naJJCLESmmlnR2hA1wb960Be5W5gYmImMjrxOk///kPd955Jz169Ki3PS4ujjvuuIOZM2cSFRXF9ddf36YvGk3SPQWiE6C6DLZ916xT1a7npHlOIiKt3r333st7771X76d///5mh9VkVotBSs16Tj8X2CA0BuwVsH+9uYGJiJjI68Rp586dREZGNrgvOjqa3bt3AxAfH09ZWdPvurRJhnHkrtOm5g3XS68ZJqHESUSk9evZsydpaWn1fhqrPtvauQtEZOwqgLhU10YViBCRAOZ14hQXF8dHH33U4L4PP/yw9k5Ufn4+MTExzYuuLaotS74AHI4mnya9ZiHc1bvzqbI3/TwiIiJN4f4Cb1VOPsRpnpOIiNdV9X7729/ypz/9iSuvvJJzzz2Xzp07c/DgQRYsWMCqVat44oknANe47yFDhvg84Fav1xjXmhfF+2BvBsT/qkmn6dM5gpgOwRSUVbFhb1HtkAkREWl9nnjiCe69917CwsJIT0/ntttuY/jw4V6fx263N+n13e2a2r4hQ+Jcc2035hZRPnYIYYBzdwYOH76Gr7RE/9sS9V/9r/sYiJr7HnjazuvE6fLLL8fpdDJt2jSefvrp2u2dO3fm8ccf57LLLgPg1ltvJSQkxNvTt31BodBvAqyb66qu18TEyWIxSEu08d2mA2Tk5ClxEhFphaKiorj22msZOXIkNpuNnTt38uqrr3Lttdfy0ksvMXbsWK/O19xqtL6sZut0OokNs5BX7uCLnCAuBJy5a1i1cgVOS7DPXseXAq6a71HUf/U/0LX0e+BV4mS328nOzmbixIlcfvnlbNu2jfz8fGw2G3369Km3vlPnzp19HmybkTzxSOJ0xsNNPk16Uk3ilJ3PtaN9F56IiPjGoEGDGDRoUO3vw4cP56yzzuL888/nb3/7m9eJU0pKClar1es47HY7WVlZTW5/PL9au5Kv1+9nv20ozjAblvJ8UnuEQI9Un72GL7RU/9sK9V/9D+T+Q/PfA3f7xniVODmdTiZPnsyLL77IaaedFlgL3Hqj/9lgWCB3DeTthNieTTqNe56TFsIVEWk7oqOjOf3003n33XcpLy8nLCzM47ZWq7VZH3ya2/5o6UmxfL1+P6t2F2LEpcG2b7HuWwUJw3z2Gr7k6/63Neq/+h/I/YeWfw+8Kg4RFBRE586dcTqdLRVP+xDeEZJqbhFtWtDk06Ql2ADYcaiUwyWVPghMRET8wX2drDsSoy1yL4S7alf+kQIRqqwnIgHK66p6kydPZu7cuS0QSjtTW11vXpNPERMeTN8urnK2WghXRKRtKCgo4Ntvv+Wkk04iNDTU7HCaxT2/NudwGUWxNQWfVFlPRAKU18UhBg4cyLx587j22ms5++yz6dKlyzHfqJ199tk+C7DNSp4EXz4MO36A8gIIa1pxh/SkWLYeKCEjO58zBnbzcZAiItIcv//97+nRowdDhgwhNjaWnTt38tprr3Ho0KF6BZTaqugw1xd4Ww+UsMbZh9EAueugusJVDElEJIB4nTjdf//9AOTm5rJ8+fJj9huGwfr1WlmcTn2h8wA4uAm2LIQhlzTpNOlJNj74ZZcWwhURaYWSk5OZN28e7777LqWlpcTExPCrX/2KZ599lqFDh5odnk+kJtrYeqCEpYcjGN2hI5Qdhty1EN865zmJiLQUrxOnN998syXiaJ+SJ7oSp43zm5w4DaspEJGZk4/d4cRqadvj5UVE2pObb76Zm2++2ewwWlRaoo05K3eTuasA4tJg6yLXcD0lTiISYLxOnEaMGNEScbRPyZPgx3/D5i/AXgVW79e9GNAtivAQK8UV1WzZX0xy96gWCFRERKRhdQtEOE9Jx9i6SAUiRCQgeV0cwq2oqIjFixfzySefUFBQ4MuY2o+EkyG8k2uOU/bSJp3CajFIramup7LkIiLibwO7RxNitZBfWsWB6Jo1q1QgQkQCUJMSpxkzZjB27Fhuuukm7r//fnbt2gXAddddx8yZM30aYJtmsUL/c1zPN85v8mnSk2wAmuckIiJ+FxJkYVBcNACZ1TXrEu5fD1XlJkYlIuJ/XidO//vf/5gxYwZTpkzhpZdeqrem0/jx4/n22299GV/bV7cseRPXv6pdCFclyUVExATu4XpLD4ZDeGdwVLsKRIiIBJAmJU7XX389Dz/8MGPGjKm3r2fPnuzcudNnwbULfc8AawjkbYcDG5t0CvcFa/P+YgrLq3wYnIiISONSE11LamTuyncViADYs9K0eEREzOB14pSTk8PYsWMb3BcREUFhYWGzg2pXQiOh92mu501cDLdLVCiJHTvgdMLqHM0nExER/0pLdI18WLOnEHv3NNfGPZmmxSMiYgavE6eoqCgOHjzY4L7du3fTqVOnZgfV7riH621a0ORTuMuSq0CEiIj4W69O4USHBVFZ7WBXh4GujaqsJyIBxuvEafTo0bzyyiuUlpbWbjMMg+rqambNmnXM8D0BBpzresxZDsUHmnSK9JrheiuVOImIiJ8ZhkFqzXXol6ok18b966Gy9PiNRETaGa8Tp7vuuos9e/YwefJknn76aQzD4O233+ayyy5j586d3H777S0RZ9sWEw890gCna02nJjhSICK/XkEOERERf3DPt/1pfyhEdAWnHXLXmBuUiIgfeZ049ezZk1mzZtGnTx9mzZqF0+nk448/JjY2lnfeeYe4uLiWiLPtq62u17Sy5Cf1iCYkyLWOxo5D+oZPRET868hCuAUQl+7aqHlOIhJAgprSqF+/frz66qtUVlaSl5dHTEwMYWFhvo6tfUmeCN8+BVsXQVUZBHfwqnlIkIWU+Bh+2ZlHRnYevTtHtFCgIiIixxpasxj7lgPFVKSkELr5Cy2EKyIBpUkL4LqFhITQrVs3JU2e6D4UouOhqhS2f9+kU7jnOWkhXBER8bcuUaHE21wVXrcFD3BtVIEIEQkgTbrjtGvXLubPn8+ePXsoL6+/crhhGDz55JM+Ca5dMQzXXacVr7jKkg84x+tTuOY5bddCuCIiYoq0RBu788tYXtGTkwAObIDKEgjRKAgRaf+8Tpy+/fZbpk6disPhoGPHjoSEhNTbbxiGz4Jrd2oTpwUw2QEW7274pSfZAFi/t4iySjsdQqwtEKSIiEjDUhNj+DxrLz/tD+K6yO5QvA/2ZUHSKLNDExFpcV4nTv/6178YNmwY//rXv7Rmk7d6jYWQSNeFZm8mxA/zqnmcrQPdo8PYV1jO6l35jOyj919ERPzHvRDuqpwC6JUOm+a7CkQocRKRAOD1HKedO3dy0003KWlqiqBQ6DfB9byJ1fXcd50ycvJ9E5OIiIiHhsRHYzFgX2E5RZ1SXBtVIEJEAoTXiVNcXFy9xW/FS8mTXI/NTZy0EK6IiPhZeEgQA7pFAbDJ2te1UYmTiAQIrxOnW265hddee42ysrKWiKf96382GBbIzYL8bK+buxfCXZmthXBFRMT/3Os5LS1NdG04uAkqis0LSETET7ye45SVlcWhQ4c466yzGDlyJLGxsccc8/DDD/skuHYpvCMkjoLsn1xFIkbe7FXzIXExBFkMDhRVsKegnHibd+tBiYiINEdqoo13V+TwY66VO6LioGgP7FsNPU8xOzQRkRbldeL09ttv1z7//PPPj9lvGIYSp8YkT6xJnOZ5nTh1CLFyUo9osnYXkJGdp8RJRET8yn3HafWuApwD0zA27nEN11PiJCLtnNeJ04YNG1oijsCSPAm+egR2/ADlBRAW41Xz9CRbTeKUz3lD41ooSBERkWP17xpJh2ArxRXVHI4ZTCfmuSrriYi0c17PcRIf6NwPOvUHRxVsWeh1cxWIEBERswRZLaTEu77wW48KRIhI4PAocVqxYgUlJSWNHnf48GE++OCDZgcVEJInuh43LfC66bCaAhFrdhdSUW33ZVQiIiKNSk10JU6LS+JdGw5tgfJCEyMSEWl5HiVO1157LVu3bq393eFwMGTIENatW1fvuJycHB555BHfRtheucuSb/oC7NVeNU3qGE7HiBAq7Q7W7dGFSkRE/Cu1Zp7TT/ssEJMIOF0FIkRE2jGPEqejy147nU6qq6tVDrs5EkdAh45Qng85S71qahgG6TUXrYzsfJ+HJiIiciLuAhHr9xZi757q2qjheiLSzmmOk1ksVhhwjut5ExbDrZ3nlJPvu5hEREQ8EG/rQOfIEKodTvZFnuTaqAIRItLOKXEyk3ue04bPwcu7d+6FcFUgQkRE/M0wDFITbACscfZ2bdQdJxFp55Q4manvGWANgbztrpXXvTA0IQbDgF15ZewvKm+hAEVERBrmnuf0bVFNgYjDW11LbIiItFMer+O0bds2rFYrAHa7vXbb0ce0tJ9//pmXXnqJzMxMKioq6N69OxdeeCF33HFHi7+2z4VGQe9xsOVr12K4XZI9bhoVFsyArlFszC0iMzufswd3b8FARURE6nPPc1qyxwm2JMjPhr2rXNc1EZF2yOPE6cEHHzxm23333Vfvd6fTiWEYzY/qOD799FPuu+8+Jk6cyDPPPEN4eDg5OTnk5ua22Gu2uOSJNYnTfBhzj1dNh/W0sTG3iJVKnERExM+GJrhKku84VErl0KGE5Ge7huspcRKRdsqjxOmpp55q6TgalZuby5/+9CeuuOIKHnvssdrto0aNMi8oXxgwET7/PeQsh5KDENHZ46bpibHMWp6jeU4iIuJ3tvAQeneOYPvBEnZ1GEgfPtM8JxFp1zxKnC6++OKWjqNRs2fPprS0lJtuusnsUHwrJh56pLqGN2z6AtKv9ripu7Le6l0FVNsdBFk1ZU1ExGyzZ8/m4YcfJjw8nIyM9p1IpCbEsP1gCavsvekDqqwnIu1am/mkvWLFCmw2G9u2bePCCy9k0KBBjB49mj/96U8UFxebHV7zuBfD3TjPq2Z9u0QSFRpEWZWdjblFLRCYiIh4Izc3l2eeeYauXbuaHYpfuAtELCro4dqQtx3KNApCRNonj+c4mS03N5eysjLuvvtubrnlFtLS0sjKymLatGls3ryZd955x+v5Ve4iF95yt2tq+2P0Oxvrt0/h3LoIR0UJBIV53DQ1MYYfthxi5Y7DDOwW6Zt4GuHz/rcx6r/6X/cx0DS3/+39fXv00UcZPnw4NpuNL774wuxwWpy7QMRPexw4Y3th5O1wjaDoc7qZYYmItIg2kzg5nU4qKiqYOnUqN998MwAjR44kODiYJ598kiVLlnDKKad4dc6srKxmxdTc9rWcTlLCOhNSfpBtC9+gsJvn87a6B7tKkS9ctY1BoYd9E4+HfNb/Nkr9V/8DWaD3vyEff/wxy5cvZ968eTz33HNmh+MXJ/WIJthqcKikkrI+QwnP2+Ga56TESUTaoTaTONlsNgDGjBlTb/u4ceN48sknWbt2rdeJU0pKSm2JdW/Y7XaysrKa3L4hxt4L4JfX6Fu9CWfarR63y+twgA/W/0J2iZW0tDSfxNKYluh/W6L+q//qf9P7727f3hw6dIgnn3yS3//+93Tv3vQqp61mJISHgi0wsHsUWbsL2RHSj0GAc/dKHH6OQ3eC1f+6j4Em0PsP/hsN0WYSp+TkZDIzM4/Z7nQ6AbBYvJ+uZbVam/XBp7nt6xk4GX55DcvmL8AwwMP+/KpnRwC2HSyhqMKOLTzEN/F4wKf9b4PUf/Vf/Q/c/h/t8ccfp3fv3lx11VXNOk+rGQnhhfiwarKAhQdsDAIqd65gTQPXa39oj0m5N9R/9T/QtfR74FXiVF5ezvXXX89dd93l9d2d5jr77LN57733+P777xk0aFDt9u+//x6A1NRUv8bjc73HQkgkFO2FvZkQP8yjZrERIfTpHMG2gyVk5OQzPjkwJiSLiLQWX3zxBYsWLWLu3LnNXsuwNY2E8NQZjt0s2JrFCudJAISW7iVtQBKEd/RbDLoTrP6r/4Hbf/DfaAivEqewsDA2bdpkyj/KmDFjGD9+PDNmzMDhcJCWlsaaNWuYPn0648ePZ/jw4X6PyaeCQqHvGbD+E9i0wOPECSAtyeZKnLKVOImI+FNJSQlPPPEE11xzDV27dqWwsBCAqqoqAAoLCwkKCiI8PNyj87WqkRAeGlYz8mH5PjvOLn0wDm/Dmrsa+k3waxygO6Hqv/ofyP2Hln8PvB7flp6ezurVq1silkY999xzXHfddbz//vvcdNNNzJo1i+uvv57nn3/elHh8rollydOTYgG0EK6IiJ/l5eVx8OBBXnvtNU4++eTan88++4zS0lJOPvlk/vCHP5gdZovq0zmCqNAgyqscFMYOcW3cm2lqTCIiLcHrOU73338/t99+O126dOGss84iIiKiJeJqUFhYGH/4wx/a70Wo/9lgWGBfFuTngC3Ro2bpNeVgM3PycTicWCzNGyoiIiKe6dKlC2+++eYx22fOnMmKFSt4+eWXiY2NNSEy/7FYDIYmxvDjlkNsC+5POrgq64mItDNeJ05XXHEFVVVVPPjggzz44IOEhYXVG9NtGAa//PKLT4MMGBGdIHEkZC9xDdcbcZNHzQZ2jyIs2EJReTXbDhbTr2tUCwcqIiIAoaGhjBw58pjtH330EVartcF97VFqgo0ftxxieXnPmsQp0+SIRER8z+vE6Zxzzmn25Fc5geSJrsRp4zyPE6cgq4WhCTaWbz/Myux8JU4iIuJXqTUjH77I68YtAAU5UHIQIjqbGZaIiE95nTg9/fTTLRGHuCVPgq/+BNsXQ3khhEV71Cw9yZU4ZWTnc/lwz4b4iYhIy3j66acD6npZO2R8vx1Hj75YDm913XXqf6apcYmI+JL3ix9Jy+rcHzr1A0cVbF3ocbNhKhAhIiIm6RodRo+YMBxOOBwz2LVxr+Y5iUj70uQFcDdt2sTWrVupqKg4Zt9FF13UnJgkeSL8NA02zofBF3vUxP1t36bcIoorqokMbTNrG4uISDuQmmBjb8E+Nlv70Rk0z0lE2h2vP12XlZVx2223sXTpUgzDwOl0AtSb96TEqZmSJ7kSp81fgr0arI3/M3WNDiPe1oHd+WWszsnnlH4aVy4iIv6Tmmhjwdp9LClPZDSosp6ItDteD9V74YUX2L17N2+//TZOp5Pp06fz+uuvc9ZZZ9GzZ08++uijlogzsCSMgA4doSwPcpZ53Cw9yQZARk5+y8QlIiJyHKmJMQDMP9ANMKBwNxTvNzcoEREf8jpxWrhwITfddBPp6ekA9OjRg9GjR/P8888zePBg3nnnHZ8HGXCsQTDgHNdzLxbD1UK4IiJilqEJNgwDNhdAdcf+ro0arici7YjXidPu3bvp06cPVqsVwzAoKyur3Xf++eezcKHnBQ3kBAac63rcOA9qhkM2pvaOU3Z+7RBKERERf4gMDaJ/10gADkQNdG3UcD0RaUe8TpyioqIoLS0FoFOnTuzcubN2X3V1de0+aaZ+E8AaAoe3wcHNHjUZHBdNiNXCoZJKcg6XNd5ARETEh1ITbACsN/q5NuzNNC0WERFf8zpxSk5OZseOHQCMHDmSl156iZ9//pnVq1czY8YMBg4c6OsYA1NoFPQa63ru4XC90CArg+Jc6z5l5Gi4noiI+Jd7IdwfSxNcG3THSUTaEa8Tp0svvZSSkhIA/t//+3+UlZVxzTXXcMUVV7Bnzx4eeOABnwcZsJInuh43zve4iXs9p5U7lTiJiIh/pdUkTp/t74zTsEDRXijaZ25QIiI+4nU58kmTJtU+T0xM5IsvvqgtTZ6eno7NZvNlfIEteSLM+4Orsl7JQYhovMR4epINflRlPRER8b/k7lGEBlnILQ+iKq4/IYc3ugpEJJ9rdmgiIs3m9R2no4WHh3PGGWcwfvx4JU2+FpMA3YcCTteaTh5wF4hYt6eQ8ip7y8UmIiJylGCrhSHxrrLk+yKSXRs1XE9E2olmJ07SwpJr7vB5OM8p3taBLlGhVDucrNld0IKBiYiIHMtdIGKNs49rgwpEiEg74dFQvYEDB2IYhkcnNAyDdevWNSsoqSN5Inz3NGxZBFXlEBx2wsMNwyA90caX63LJyM5neK+OfgpURETkyEK43xYnMglcd5ycTvDwc4SISGvlUeJ0xx13eJw4iY/1SIWoOCjaAzsWQ/+zGm2SnhTrSpxUWU9ERPwsPdFVpGjBgc48E2LBKM51FYmIjjM5MhGR5vEocbrzzjtbOg45HsNwTar9+TXXcD2PEicb4FoIV0RExJ8SO3YgNjyYvFIotw2gQ94GV4EIJU4i0sZpjlNbUDvPab5ruEMjhibEYLUY7C0oZ2+BFsIVERH/MQyjdj2n3eEqECEi7YfX5cjnzp3b6DEXXXRRE0KR4+o1FoIjXEMd9mZCXPoJDw8PCWJg9yjW7ikkIzufHikd/BOniIgIrgIR3248wKrq3vQDJU4i0i54nTgdb4HbunOglDj5WHAY9DsD1n/quuvUSOIEruF6rsQpj0kpPfwQpIiIiIt7IdyFRXFcCq4v/VQgQkTaOK8Tp4ULFx6zLS8vj4ULFzJv3jz+9a9/+SQwOUrypCOJ0/iHGj08PTGWt5dma56TiIj4nXuo3sLDXXGGB2GUHIDC3a71CUVE2iivE6f4+PgGtw0ZMoTq6mrefPNNnn76aZ8EJ3X0PxsMC+xbDQW7Gr34uAtEZO0uoLLaQUiQprOJiIh/dIwIIaljONmHoSSmP5F5613D9ZQ4iUgb5tNP06NHj2bRokW+PKW4RXSGxJGu5xvnN3p4784RxHQIpqLawYZ9hS0cnIiISH3uu047Qwe4NuzJNC0WERFf8GnitHv3biwW3dloMQPOdT16kDgZhqGy5CIiYprUBNdCuBlVvVwbVCBCRNo4r4fqrVix4phtlZWVbNy4kZdeeonRo0f7JDBpQPIk+PpR2P49lBdCWPQJD09PjOXbjQfIyM7julN6+SdGERERjhSI+DI/jt+ACkSISJvndeJ0zTXX1KugB+CsWVvolFNO4ZFHHvFNZHKszv2hY184vBW2LoLBF53w8GE9bQCs1B0nERHxsyHxrjUFl5Z0xxkejFF6CApywJZkdmgiIk3ideL05ptvHrMtNDSU+Ph4Onfu7JOg5DgMA5InwpLpruF6jSROqYk2DAOyD5dysLiCzpGh/olTREQCXliwtXZNwcLo/sTkr3MN11PiJCJtlNeJ04gRI1oiDvFU8iRX4rT5C7BXg/X4/4TRYcH06xLJ5v3FZGbnc+agbn4MVEREAl1qomtNwW3B/UlnnatAxKALzQ5LRKRJvK7ksH37dpYvX97gvuXLl7Njx47mxiQnkjgSOsRCWR7savjfoa7aAhE5eS0cmIiISH1pCTYAVlT2dG1QgQgRacO8TpyefvrpBhfBBfjmm2+0hlNLswZB/3NczzfOa/Tw9KRYQJX1RETE/9Jqvrz7Mq+Ha8OeDFeBCBGRNsjrxCkrK4uTTz65wX0nn3wya9asaXZQ0ojkia5HD8qSu+84rcrJx+7QxUpERPynb5dIIkKsrK6Mw2EJgfJ8yN9pdlgiIk3ideJUVFREeHh4g/vCwsIoKChodlDSiL5ngCUYDm2Bg5tPeGj/rlFEhFgpqbSzeX+RnwIUEREBq8UgJSGGSoLJj+rv2qjheiLSRnmdOHXr1o3Vq1c3uG/16tV06dKl2UFJI8KiofdY1/NGhutZLUbt6u0arici4lvr16/n5ptv5vTTT2fo0KGMGDGCK664go8//tjs0FoN9zVos7Wfa4MSJxFpo7xOnM4880xmzpzJ0qVL621ftmwZL7/8MmeddZbPgpMTSJ7kevRguN6wmnlOK3eqQISIiC8VFhbSvXt37rnnHmbOnMkzzzxDfHw89913Hy+88ILZ4bUK7gIRS8trypDvyTQtFhGR5vC6HPkdd9zBDz/8wA033ECvXr3o3r07+/btY8eOHfTr148777yzJeKUow04F+b9AXKWQclBiDj+GlpHKuvl+yc2EZEAMXLkSEaOHFlv2/jx49m1axfvv/8+t99+u0mRtR7uAhFfF/Tg7mBgb6arQIRhmBmWiIjXvL7jFBUVxXvvvcfUqVOJiYlhz549xMTEcOedd/Luu+8SGRnZEnHK0WyJ0D0FnA7Y/OUJD02rGSaxZX8xBWVVfghORCSwxcbGYrVazQ6jVegeHUbXqFA22BNqCkQUQN52s8MSEfGa13ecACIiIrjjjju44447fB2PeCN5EuzLcg3XS7vquId1igylZ6dwdh4qZVVOPuMGaB6aiIgvORwOHA4HhYWFzJ8/nx9++IFHHnnE7LBaBcNwzbX9al0FByMH0LVwjWueU8c+ZocmIuKVJiVO4Kqul5mZSV5eHqeddhoxMTG+jEs8kTwRvnsGtiyEqnIIDjvuoemJNnYeKiUjW4mTiIivPfbYY7z33nsABAcH88c//pErr7zS6/PY7fYmvb67XVPbt7Sh8dF8tS6XDUYfurIGx+6VOE+6yGfnb+39b2nqv/pf9zEQNfc98LRdkxKnGTNm8PLLL1NeXo5hGHzwwQfExMRw3XXXceqpp3LzzTc35bTirR5pENUDivbCjh+g/5nHPTQ9KZa5mXvIyFGBCBERX7v11lu57LLLOHz4MIsWLeLPf/4zZWVl/Pa3v/XqPFlZWc2Ko7ntW0pERQUA3xXGMQ4o3vQDmztn+vx1Wmv//UX9V/8DXUu/B14nTv/73/+YMWMGV111FWPHjuWWW26p3Td+/Hi+/PJLJU7+YhiuIhG/vO4qS37CxMkGuEqSO51ODE3KFRHxmbi4OOLi4gA47bTTAPjnP//JxRdfTMeOHT0+T0pKSpPmRtntdrKysprcvqX1La/iie8X8mN5LwiFqOKtpKUOBcPrqdYNau39b2nqv/ofyP2H5r8H7vaNaVLidP3113Pfffcdc1urZ8+e7NypFcH9KnlSTeI0Hyb/47hVik7qEU1okIWCsiq2HyyhTxcV8RARaSlDhw7l3XffJScnx6vEyWq1NuuDT3PbtxRbhJW+XSLYfCAeuzUUa0UR1vyd0LmfT1+ntfbfX9R/9T+Q+w8t/x54/VVPTk4OY8eObXBfREQEhYWFzQ5KvNB7HASHQ9Ee2LvquIcFWy0MTXDNQ1uphXBFRFrUsmXLsFgsJCYmmh1Kq5GaaMOOldzwAa4NezNNjUdExFtNKkd+8ODBBvft3r2bTp06NTso8UJwGPQ9w/W8kcVw02sWws3I1jwnERFfeOSRR3jmmWeYN28ey5cv54svvuCee+7h448/5oYbbvDqblN7514aY62zpprengzzghERaQKvh+qNHj2aV155hQkTJhAaGgq4So1WV1cza9YsxowZ4/MgpRHJk2DDZ655TuMfPO5h6TUXrQzdcRIR8Ym0tDTmzJnDRx99RFFREeHh4QwcOJBnn32WCy+80OzwWpXUBBsAi0viOQuUOIlIm+N14nTXXXcxZcoUJk+ezJlnnolhGLz99tusX7+ePXv28Nxzz7VAmHJCA84BDNi3Ggp2Q0x8g4e57zht2FdIaWU14SFNrkYvIiLApZdeyqWXXmp2GG3CST2iCbFaWFreE0JxDS93OMDimwIRIiItzeu/Vj179mTWrFn06dOHWbNm4XQ6+fjjj4mNjeWdd96prSrkD7NnzyY5OZn09HS/vWarFNEZEke6nm86/nC97jFh9IgJw+GE1bsK/BSciIgIhARZGBQXzVZnHNXWMKgshkNbzA5LRMRjTbrl0K9fP1599VUqKyvJy8sjJiaGsLDjL77aEnJzc3nmmWfo2rUrxcXFfn3tVil5IuQsdc1zOvl3xz0sPcnG3qx9ZGTnM6qP5qOJiIj/pCXayMzJZ09Yf5JKslwFIroMMDssERGPNOv+eEhICN26dfN70gTw6KOPMnz4cE499VS/v3arlDzR9bj9e6goOu5h6YkqECEiIuZITXRVd13t6O3aoHlOItKGeHTHae7cuV6d9KKLLmpCKJ77+OOPWb58OfPmzdOcKrfOA6BjHzi8DbYugkENT0oe1tMGuEqSayFcERHxJ3eBiO+LEzjPihInEWlTPEqcHnjgAY9PaBhGiyZOhw4d4sknn+T3v/893bt3b9a5jl7A19t2TW3fUowB52JZ+gKODfNwJp/X4DEDu0USbDU4WFxB9qFiEmLDvX6d1tp/f1H/1f+6j4Gmuf0P1PdNXHp3jiA6LIiVFb3ACuxdDQ47WAJ70U4RaRs8SpwWLlzY0nF47PHHH6d3795cddVVzT5XVlaWqe19LdLoTzLgWD+PVYm/HPdC1DM6iC15VcxdvIoxSR2a/Hqtrf/+pv6r/4Es0PsvTWMYBqmJNn7cHEeVtQPBVSVwcDN0HWh2aCIijfIocYqPb7i8tb998cUXLFq0iLlz5/pkiFlKSgpWq/ffctntdrKysprcvsU4huDMeJyg8nzSOldC0ugGDztl1zq2LMkmz2ojLe0kr1+m1fbfT9R/9V/9b3r/3e0lcKUl2li8+SA5of3pU7raNVxPiZOItAFNXsinuLiYzMxM8vPziY2NJTU1lcjISF/GVk9JSQlPPPEE11xzDV27dqWwsBCAqqoqAAoLCwkKCiI83POhZ1artVkffJrb3uesVteaTqvfw7r5C+jd8GLEv+rZkTeXZJOZU9C++u9n6r/6r/4Hbv+l6dzznDKqe9GH1a7Kemm/NjUmERFPNClxevXVV5k+fTrl5eW1BQbCwsK46667uOGGG3wdIwB5eXkcPHiQ1157jddee+2Y/SeffDITJkzghRdeaJHXbzOSJ8Lq91xlyc/+c4OHuCvrrdtTSEW1ndAgffgRERH/SE20AbC4JIFLg1GBCBFpM7xOnObOncvf/vY3xo0bx8UXX0zXrl3Zv38/c+fO5dlnnyU2NrZFikN06dKFN99885jtM2fOZMWKFbz88svExsb6/HXbnL4TwBIMhza7xo137n/MIYkdO9ApIoRDJZWs3VPIsCS9byIi4h9dokKJt3Ugq6CmJPne1WCvBmuTB8GIiPiF13+l3njjDc477zz+/ve/19s+ceJE/vCHP/Df//63RRKn0NBQRo4cecz2jz76CKvV2uC+gBQWDb3GwLZvXHedGkicDMMgPSmWr9fnkpGdr8RJRET8Ki3Rxrz8HlRawwmpLoWDm6DbILPDEhE5Ia8XwN22bRsXXHBBg/suuOACtm7d2uygpJmSJ7keN84/7iHpSTYAVmohXBER8bPUxBicWNgR3M+1QcP1RKQN8DpxCgsLo6CgoMF9BQUFhIWFNTsobzz99NNkZOgPbj3J57oec5ZCyaEGD3EnTpnZ+f6JSUREpIa7QMTPlT1dG/ZmmhaLiIinvE6cfvWrXzF9+nRyc3PrbT9w4AAzZsxg+PDhPgtOmsiWBN1SwOmAzV82eMjQBBsWA3bnl5FbWO7nAEVEJJClJMRgMWBpeU3ipDtOItIGeD3H6d577+XKK6/k7LPPZvTo0XTp0oUDBw6wdOlSgoKCmD59ekvEKd5Kngi5WbBxXoNlXiNDgxjQLYoN+4rIyM7n3CHdTQhSREQCUXiI6xqUlVtTIGJflgpEiEir5/Udp/79+/PBBx8wYcIEsrKymDNnDllZWUyYMIHZs2fTr1+/lohTvJU80fW4dRFUVzR4SHpNUYiMHM1zEhER/0pLtLHD2Y0KawRUl8OBDWaHJCJyQk36aqd3797885//9HUs4ks90iCqBxTthR2Lod+ZxxySnmRj1vJsMjTPSURE/Cw10ca7K3LYYu3HYPsq13C97kPMDktE5Li8vuMkbYTFAgNqikQcp7resJoCEat35VNtd/gpMBERkSMFIpZXJLk2aJ6TiLRyTbrjtG7dOj799FP27NlDRUX9YWCGYfDiiy/6JDhppuSJ8MvrrsRp0t/BMOrt7tM5kuiwIArLq9mwr4gh8TEmBSoiIoFmQLdIOgRb+aWqFzeEoMp6ItLqeZ04zZ07lwcffBCLxULHjh0JDg6ut9846sO5mKj3OAgOh8LdsG819Eitt9tiMUhLiuX7TQfIyM5T4iQiIn4TZLWQEh/D6p19XBv2rYHqSggKMTcwEZHj8DpxevHFFznttNN45plniInRB+1WLbgD9D0DNnzmuut0VOIEkJ5oq0mc8rlmtAkxiohIwEpNjGH5jq6UWSPpYC+GA+sbvFaJiLQGXs9x2r9/P9dee62SprbCXV1v47wGd7sXws3IyfdPPCIiIjVSE22AwUZLX9eGPZkmRiMicmJeJ04nnXTSMYvfSivW/xzAgL2roGD3MbvTEm0AbD9YQl5JpX9jExGRgOYuELFMC+GKSBvgdeJ03333MXPmTDZs0HoLbUJkF0gc4Xq+acExu23hIfTpEgFApu46iYiIHyXEdqBzZAir7L1cG1QgQkRaMa/nOKWlpXH22Wdz8cUX06VLl2OG7BmGwSeffOKzAMUHkidCzjLXPKeTf3vM7vTEWLYdKCEjO4/xA7uaEKCIiAQiwzBITbCxemPdAhEVEBRqbmAiIg3w+o7TzJkzeemll4iNjSUuLg6bzVbvR3OfWqHkSa7H7d9BRfExu4f1tAGa5yQiIv6Xmmhjl7MLJZYocFTB/nVmhyQi0iCv7zi9+eabXHrppTzxxBNYrdaWiEl8rfMAiO0Nedth6yIYdEG93emJsQBkZufjcDixWFRSXkRE/MNdIGIdfTiZVa4CEXHpJkclInIsr+84lZSUcN555ylpaksM48hdp43zj9k9oFsk4SFWiiqq2XLg2DtSIiIiLSU1wTVSZXmlCkSISOvmdeI0bNgwtm7d2hKxSEtylyXftAAc9nq7gqwWhtZcuDKy8/wdmYiIBDBbeAi9O0eQ5aiZ56TESURaKa8Tpz/+8Y+8++67fP3111RWqnx1m5E0CsJsUHYYcpYfszs9yTVcLyM7379xiYhIwEtNiCHL0dv1y/71UFVubkAiIg3weo7TpZdeSnV1NXfeeSeGYRAWFlZvv2EY/PLLLz4LUHzEGgz9z4as912L4fYcXW93es16TkqcRETE31ITbczN7EyRJYYoRwHsXwvxvzI7LBGRerxOnM455xwMQ8UD2qTkiTWJ03w4+8/1dqUl2QDYtL+IovIqosKCTQhQRKRtWbJkCZ988gkZGRns27ePqKgohgwZwh133MGQIUPMDq/NcBeIyHL05hQyXcP1lDiJSCvjVeJkt9u55ZZb6Nixo8qOt0X9JoAlGA5thoNboHO/2l1do8JIiO3ArrwyVu8q4NR+nU0MVESkbZg1axb5+flce+219OvXj8OHD/P6669zxRVX8MorrzB69OjGTyIM6hFNsNXgl+penBKU6aqsJyLSyng1x8npdDJ58mQyMzNbKBxpUWEx0GuM6/mmY6vrDaud56QCESIinnj00Ud58803ueqqqxgxYgTnnnsur732GjabjZdeesns8NqMsGArJ/WIPjLPSYmTiLRCXiVOQUFBdO7cGafT2VLxSEtzV9droCx5es1wvZWa5yQi4pFOnTodsy0iIoK+ffuyd+9eEyJqu1ITbEcq6x1YD1Vl5gYkInIUr+c4TZ48mblz53L66ae3QDjS4gacC/Pvg+wlUHoYwjvW7kqvc8fJ6XRqLpuISBMUFRWxbt06Ro0a5XVbu93e+EEnaNfU9q1BSnw0b9GRfIsNmyMf+97VED/co7btof/Nof6r/3UfA1Fz3wNP23mdOA0cOJB58+Zx7bXXcvbZZ9OlS5djPmCfffbZ3p5W/CW2J3QbArlrYPOXkHpl7a5BPaIJCbKQV1rFzkOl9OocYWKgIiJt0+OPP05ZWRm33nqr122zsrKa9drNbW+m0OJqwGBVdU9Os+Sze/lnHOjt3ceUttx/X1D/1f9A19LvgdeJ0/333w9Abm4uy5cfux6QYRisX7+++ZFJy0me6EqcNs6rlziFBFkYEhfNyux8MnLylDiJiHjpueee49NPP+WRRx5pUlW9lJQUrFar1+3sdjtZWVlNbt8aDHU4+eO3C8m09+E0yyoSrAeJT0vzqG176H9zqP/qfyD3H5r/HrjbN8brxOnNN9/0OhhpZZInwvd/gy0LoboCgkJrd6UnxboSp+x8Lk5PMDFIEZG2Zfr06bz44ovcc889/OY3v2nSOaxWa7M++DS3vZmsVkhNjCFrm2uek2XvKtdGr87RdvvvC+q/+h/I/YeWfw+8TpxGjBjREnGIP/VIh8juULwPdiyGfmfW7nIXiNBCuCIinps+fTrTpk3jzjvvbNIQPXFJTbDx4ZaaynoH1kNlKYSEmxuUiEgNr6rq1VVUVMTixYv55JNPKCgo8GVM0tIsFkg+1/V844J6u9wlydfvLaSsMnAnGYqIeGrGjBlMmzaN2267jalTp5odTpuWmmgjl1gOG7HgdLiGlYuItBJNSpxmzJjB2LFjuemmm7j//vvZtWsXANdddx0zZ870aYDSQpInuR43zoc65eV7xITRLTqUaoeTrN1KiEVETuS1117j+eefZ+zYsZx++ulkZmbW+xHvpCXaAIOM6l6uDXsyTIxGRKQ+r4fq/e9//2PGjBlcddVVjB07lltuuaV23/jx4/nyyy+5+eabfRqktIDe4yCoAxTugn1Z0GMo4CrukZ4Yy4K1+8jIzmNE746NnEhEJHB98803ACxevJjFixcfs3/jxo3+DqlN6xYdRo+YMLJKejOBDCVOItKqNClxuv7667nvvvuOqXnes2dPdu7c6bPgpAUFd4C+Z8DGz113nWoSJ3DNc3IlTvnmxSci0ga89dZbZofQ7qQm2Fi9vmYh3D2ZpsYiIlKX10P1cnJyGDt2bIP7IiIiKCwsbHZQ4ifJE12PG+fV2+xeCHdlzUK4IiIi/pKaaCPLUVMg4uBGqCwxNyARkRpeJ05RUVEcPHiwwX27d++mU6dOzQ5K/GTAOYABezOhYHft5pT4GKwWg/1FFewtKDctPBERCTypiTEcIJYDdHQViNinRT1FpHXwOnEaPXo0r7zyCqWlpbXbDMOgurqaWbNmMWbMGJ8GKC0osisknOx6vulIdb0OIVZO6hEFqCy5iIj4V0p8DIYBmfaau06a5yQirYTXidNdd93Fnj17mDx5Mk8//TSGYfD2229z2WWXsXPnTm6//faWiFNaSu1wvfn1NqcnuobrZWTn+TsiEREJYFFhwfTvGnlkuJ4SJxFpJbxOnHr27MmsWbPo06cPs2bNwul08vHHHxMbG8s777xDXFxcS8QpLcVdlnz791BRXLt5WE8bABk5+f6PSUREAlpqgo3VTnfilGlqLCIibl5X1QPo168fr776KpWVleTl5RETE0NYWJivYxN/6JIMsb0hbzts+wZOOh84cscpa3cBldUOQoKavFayiIiIV1ITbTz3S01lvYOboKIIQqPMDUpEAp7Xn4YffPBBcnJyAAgJCaFbt261SdPu3bt58MEHfRuhtCzDaHC4Xs9O4cSGB1NZ7WDdXlVKFBER/0lLtHGQGPbRCXDC3tVmhyQi4n3i9NFHH5GX1/C8l7y8PObOndvcmMTf3InTpgXgcK3NZRhGbVlyzXMSERF/Su4eRWiQhVXuAhF7M02NR0QEmpA4nUhBQQEhISG+PKX4Q9JoCIuB0kOwa0Xt5vREG6DKeiIi4l/BVgtD4mNY7XAvhKsCESJiPo/mOK1YsYJly5bV/j579my+//77esdUVFSwcOFC+vbt69sIpeVZg6H/2ZA127UYbtIo4MhCuBk5uuMkIiL+lZpgY02OKuuJSOvhUeK0bNkypk+fDriGcM2ePbvB4+Li4vjTn/7ku+jEf5In1iRO8+GsJwAYmuhaSyPncBkHiiroEhVqcpAiIhIoUhNjmPtjTeJ0aAuUF0JYtLlBiUhA8yhx+t3vfsfVV1+N0+nklFNO4dVXX2XQoEH1jgkJCSEiIqJFghQ/6HcmWIJc1YsObYVOfYmuWUtjU24xmTn5nDWom9lRiohIgEhLtHGYaHY5O5NgHIS9q6D3WLPDEpEA5tEcp7CwMGJjY+nYsSMLFy7k5JNPJjY2tt6PkqY2LiwGeo1xPa9TXW+YCkSIiIgJkjq6qrvWLoSrAhEiYjKvi0PEx8erAER75V4Mt07ilJ5kA2ClEicREfEjwzBITbSRpQIRItJKeL0AblVVFS+//DKfffYZe/bsoaKiot5+wzBYt26dzwJ0W7JkCZ988gkZGRns27ePqKgohgwZwh133MGQIUN8/noBacC5MP8+yF4CpYchvGNtgYjVuwqotjsIsmohXBER8Y/UBBu/bFbiJCKtg9eJ0z//+U/eeOMNxo0bx5lnnum3u0+zZs0iPz+fa6+9ln79+nH48GFef/11rrjiCl555RVGjx7tlzjatdie0HUw7F8Lm7+C1Cvo1yWSqNAgiiqq2ZRbzKA4TcwVERH/SEu08V9HL9cvh7dBWT50sJkYkYgEMq8Tp/nz53PHHXcwderUlojnuB599FE6depUb9vYsWM5++yzeemll5Q4+UryRFfitHEepF6BxeIaKvHDloNk5OQpcRIREb8ZmhBDPlFkO7qQZDngKhDR5zSzwxKRAOX1uKuCggKGDx/eErGc0NFJE0BERAR9+/Zl7969fo+n3XLPc9qyEKpdwzDd85y0EK6IiPhTp8hQkjqGk+XUek4iYj6v7zidfPLJbNiwgVGjRrVEPF4pKipi3bp1TY7Fbrc3q11T27dq3YdiieyGUZyLfdv30PcMUuNdd5kysvOw2+3tu/8eUP/V/7qPgaa5/Q/U902aLjXRRtaaPky2LldlPRExldeJ08MPP8ztt99OXFwcp59+uqkV9h5//HHKysq49dZbm9Q+KyurWa/f3PatVVLH4XQp/pxDP71FTlFHgiocAGw9UMIPy1cSGeK6Udle++8p9V/9D2SB3n/xn9SEGBZlqUCEiJjP68TpwgsvpLq6mrvvvhvDMAgLC6u33zAMfvnlF58FeDzPPfccn376KY888kiTq+qlpKRgtVq9bme328nKympy+1Yv/DeQ/Tld8n6hU2oqGAa9fvyeHYdKsdsSSenbsX33vxHt/t+/Eeq/+t+c/rvbi3gqLdHG8+4CEXk7aqu+ioj4m9eJ0znnnINhGC0Ri8emT5/Oiy++yD333MNvfvObJp/HarU264NPc9u3Wv3GQ1AHjIJdWA+uh+4pDEuKZcehUlbtKuS0AV2Adtx/D6n/6r/6H7j9F/8ZHBdDiSWKHY5u9LLkugpE9B1vdlgiEoC8TpyefvrplojDY9OnT2fatGnceeedTR6iJ40I7uC6KG2c51oMt3sK6Uk25mTsJiMn3+zoREQkgHQIsTKwexRZB3rTi1zXcD0lTiJigja1mumMGTOYNm0at912m9/LoQec5Imux43zAGoXws3MzsPhcJoVlYiIBKDURBtZjprKeioQISIm8eiO09q1a7066eDBg5sUzIm89tprPP/884wdO5bTTz+dzMzMevvT0tJ8/poBbcC5gOH6Zq9wD8nduxMWbKGwvJrth0rMjk5ERAJIWoKNj1aoQISImMujxOnSSy/1aF6T0+nEMAzWr1/f7MCO9s033wCwePFiFi9efMz+jRs3+vw1A1pkV0gYDrtWwKYFBA+/kaHxNpbvOExGTj792tS9ShERactSE2382X3HKT9bBSJExBQeJU5PPfVUS8fRqLfeesvsEAJP8kRX4rRxPgy/kfQkV+KUmV1Av15mByciIoGiX9dIHCFRbHN0p49ln+uuU78JZoclIgHGo8Tp4osvbuk4pDVKngQLn4Bt30FlyZF5Tjn5TOkVYXJwIiISKKwWg5SEGLJy+tAHJU4iYg4NuJLj6zIQYnuBvQK2fkN6kg2AjblFlFU5TA1NREQCS70CEZrnJCImUOIkx2cYrrtOABvn0y06jHhbBxxO2JJXZW5sIiISUNISbGQ5agpE7F1lbjAiEpCUOMmJDTjX9bhpATjspNXcdVqdW2leTCIirUhxcTHPPvssN954I6NGjSI5OZlp06aZHVa7k5poY62zJw6nAQU5UHzA7JBEJMAocZIT63kKhMZA6UHY9TOn9u0MwJwNJTzx2Xoqqu0mBygiYq78/Hzef/99KisrOfPMM80Op93qERNGeFQs253dXRu0npOI+JkSJzkxazD0P8v1fOM8Lh+ewPWn9ATgv0t2cvGMn9iyv9jEAEVEzBUfH8+KFSt4++23uffee80Op90yDIPURBurne71nDJNjUdEAo8SJ2lc8kTX48b5BFktPDL5JB481UbH8GDW7S3k/Gk/8P6KHJxOp7lxioiYwDAMj9Y6lOZLS6wzz0kFIkTEz5Q4SeP6nQmWIDi4EQ5tBWB4XBif3Xkqp/TtRFmVnfs+XM2dszIoLFfRCBERaRmpCXUq62monoj4mUfrOEmA62CDnqfC9u9ci+GOvA2AbtFhvPXbkbz0/Vb+8eUmPlu9l8ycfJ7/dTrDatZ8EhERz9ntTZs36m7X1PZtxeAekax19sLhNLAU7sZesAciuwVM/49H/Vf/6z4Goua+B562U+Iknkme5EqcNi2oTZzAtSjh7af3Y1SfTtw1K4NdeWVc9p8l3HvWAG47rS8Wi4aviIh4Kisry9T2bUFsVARbKuIYYOxm248fUdhtVO2+QOj/iaj/6n+ga+n3QImTeCb5XFhwP+z8Ccryjtk9LCmWeXeP5aE5WXy2ei9/+2IjP209yD8vT6NbdJgJAYuItD0pKSlYrVav29ntdrKysprcvi0ZsWU1WWt6M4Dd9O1QiDMtLaD63xD1X/0P5P5D898Dd/vGKHESz8T2gq6DYP86jC1fA/2POSQ6LJhpv05n3IAuPPrxWn7ccoiJ/17M3y8byhkDu/k9ZBGRtsZqtTbrg09z27cF6UmxZK3uw6XWH7DsXQV1+hsI/T8R9V/9D+T+Q8u/ByoOIZ5zV9fbNP+4hxiGweXDE/nsrjEM6hHN4ZJKbnzjZx7/dK3WfBIRkWarWyDCqcp6IuJHSpzEc8mTADC2fI3hOHH1vL5dIvnojlO44dReALz+4w4unvETWw9ozScRaX++++47FixYwDfffAPAli1bWLBgAQsWLKCsrMzk6NqXgT2i2GLpjd1pYBTvg8K9ZockIgFCQ/XEc3HDIKIrRsl+Ig+tAk4+4eGhQVYePX8wY/p15v8+WM26vYWc9/wPPH7hYC77VYLWPRGRduPxxx9n9+7dtb+7kyaAhQsXkpCQYFZo7U5okJXecV3ZnJvAQCPHVZa839lmhyUiAUB3nMRzFourSAQQv/4VyNvpUbMJJ3Vj/t1jj6z59MFq7no3U2s+iUi7sWjRIjZu3Njgj5Im30tLtLHGWbOek4briYifKHES74y4BWdoFBEFm7DMHAur3vOomXvNp/vOTcZqMfh01R4m/XsxK7OPrdAnIiJyIqmJMax2L4S7J9PUWEQkcChxEu90H4Lj5sUUxw7BqCyGj26GD38H5QWNNnWv+TT71tEkxHaoXfNpxjdbcDicfgheRETaA1eBiD5ATYEIp64hItLylDiJ92xJbDzlXzhOewAMK2TNhv+MgeylHjV3r/l03tAe2B1O/vbFRq55bRm5heUtHLiIiLQHvTpFsCu0L9VOC0bJfihSgQgRaXlKnKRpLFac4+6DGxeArSfkZ8PrE+Gbp8Be3Whz95pPz04ZSodga+2aT4s25PoheBERacssFoOBiV3Z7KyZP7Y309R4RCQwKHGS5kkcAbf+AEOvBKcDvnsa3pgEeTsabao1n0REpKnSEm2srhmuZ6hAhIj4gRInab6waLjkJbj0VQiNhpxl8J+xsPp9j5przScREfFWaoKNrJrKesa+VSZHIyKBQImT+E7KFNfdp8RRUFEIc26CD2/yqHCEe82nV68bTseIkNo1n97/OQenJv2KiMhRUhNtZNVU1nPuyVSBCBFpcUqcxLdie8L1n8PpD9UUjni/pnDEMo+aa80nERHxRJeoUAqjk6lyWrGUHiS4bL/ZIYlIO6fESXzPGgSn339U4YhzPS4coTWfRETEE4OSurKppkBERMEmk6MRkfZOiZO0nNrCEVccVThiZ6NNteaTiIg0xrUQrqtARHi+EicRaVlKnKRlhUXDJTPhklfqFI4YA6tne9Rcaz6JiMjxpCbYWFNTICK8YKPJ0YhIe6fESfxj6GVw62JIHFlTOOJ3MOdmjwpHaM0nERFpyJD4GNY4XXecOuRvUoEIEWlRSpzEf2J7wfXz4PQHwbDA6vc8LhyhNZ9ERORoEaFBOLoMotJpJaSqEApyzA5JRNoxJU7iX9YgOP0BuGEB2JJqCkdMhG+f9qhwhNZ8EhGRugYndWGjMxEAy/u/gQ3zdOdJRFqEEicxR9JIV+GIlMvBaYdvn4I3JntUOEJrPomIiFtqoo1/Vl9GKR0wctfAu7+Gl8fDpi+VQImITylxEvOExcClL8MlL0NIFOQs9apwhNZ8EhGR1AQb3zjSmVD9b+yn/D8IjoA9GfDOZfDKmbDlayVQIuITSpzEfEMvh9t+aKBwRGGjTRta82ny84vJ0JpPIiIBYUC3SDoEW9lbHcmS3nfA/1sNp9wFQR1g98/w9qXw2jmw7VslUCLSLEqcpHU4XuGInOWNNj16zaecw641n174Vms+iYi0d0FWC0MTogH4zasrOGfmOqZZr2XntUth1B0QFOZaCuPNC11Dwnf8YHLEItJWKXGS1uOYwhE74bVz4dtnPCocUXfNp2qHk2cXuNZ82q81n0RE2rU/TjqJX/UIJdhqsDG3iH98tYnTXljL5E0T+e/JH1OU+luwhsLOH13J0xvnwc4lZoctIm2MEidpfY4pHPGkx4UjGlrz6dx/L+abDfv9ELiIiJhhcFw0D42JZdmDZ/DslKGMG9AFq8Vg7Z5CHv3mECnLJnBDzMusTbgCpzUEdiyG18+FNy/yaGSDiAgocZLWyl044uKZ9QtHZH3QaNOG1ny64Y0VPPHpOq35JCLSjsV0COby4Ym8eeMIVvzxTJ68OIVT+nbCYsA3e4KYvOVCTi35O192mITdCIJt38CrZ7nmQe36xezwRaSVU+IkrVvqFa7CEQkjXIUjPvwtzLnFo8IRR6/59NqP27Xmk4hIgOgYEcJVI5N456ZRLH1oAk9cOJgRvTqy1+jMzXm/4bTyf/CufTx2LK7Ke6+cAf+73FWRT0SkAUqcpPWL7QU3zIfTHqgpHPGux4UjtOaTiIh0jQrj2tG9eP/W0Sx5YAKPnDeILon9eaDqJsZX/IPZ1eOwOw3Y/AXMPJ2qt6+EvavNDltEWhklTtI2WINg/IOuBCqmTuGI754FR+PD7xpa8+lurfkkIhJwuseE8dsxvfno9lP54f7xXH3uabzZ7X4mVP6dD+1jsDsNgrfMh5fGsuulKRRnrzI7ZBFpJZQ4SduSNMo1dC/lMlfhiG/+6iockZ/daNOj13z6RGs+iYgEtITYcG45rS+f3jmGN37/a/ad8W9uiZ7Bx/ZTcDgNEvZ+ReRr41jxtwtZ9P13lFQ0XuFVRNovJU7S9oTFwKWvHCkckb0EXvSscITWfBIRkYb06hzBHeP78crvr2bwnbN5e9gsvg0aA8DJJd9y+sILWfTXC3js9Y+Yl7WXskoVGxIJNEqcpO1KvQJuXVxTOKLAq8IRWvNJRESOp1/XSK69cCKn/fEztl/2JZs6jsdiODnf8iOP7LiBsvd/x8V/eYu7ZmXw5dp9qtgqEiCUOEnb1rF3TeGI+48UjnhpLOSsaLSp1nwSEZETMQyD3oNHMuCuuThv/o7CnmdhNZxcav2Bz4x7GLP2Uf789jyG//lr7n0/k2827Key2mF22CLSQpQ4SdtnDYLxD8H181yFI/J2wGvneFQ4Qms+iYiIJ4y4NKJv+ABu+gZn/3MIMhxcHvQd34T+gYfsL7JsZSY3vLGCk//6Nfd/sJrFmw9QbVcSJdKetKnEqaSkhL/+9a+MGTOGlJQULrzwQj7//HOzw5LWoudo19C9IVO8LhyhNZ9ERMQj8cMwrn4ffrcQ+k4gCDu/DvqG7zr8nr93eIPwsn2893MO17y6nJFPLuSPH2WxZOsh7JpHK9LmtanE6c4772Tu3LlMnTqVl19+mZSUFO69914+/fRTs0OT1qKDrcmFI7Tmk4iIeCxhOFwzB278EvqcTpCzminOL/kx/PfMiv+A5PAiDpVU8r9l2fz65aWMfmohj32ylp93HFYxIpE2qs0kTt999x0//vgjjz76KFdeeSWjRo3iL3/5C6eeeirPPvssdruGVUkNw6hTOOLkI4UjProVKooaba41n0TEGxoNEeCSRsK1H7uGi/cai8VRyehDc1hg3MUPqV/y29QwosOC2F9UwRs/7WDKf5Yw5plF/OWzdWTm5OuLOZE2pM0kTl999RXh4eGce+659bZfcskl7N+/n1WrtECdHKVjb7hhwZHCEatmwX/GwK6fG22qNZ9ExFMaDSEA9DoVrv8MrvsUkkZj2CtI2PgGj2y9ioyR3/HWlb24JD2eyNAg9hSU88oP27loxo+M+9s3PD1/A2t2FyiJEmnlgswOwFObN2+mb9++BAXVDzk5Obl2/7Bhw8wITVozd+GIPuNhzk2uwhGvng2nPwhj7wWL9fhNa9Z8GtWnE3fNyqhd8+meM/vTN9jO3oJygqxWLAZggMUwsBgGBq7nrm2uAhSWmv3U7DNqfjdw3SAzavaJSNviHg3xj3/8g/POOw+AUaNGsWfPHp599lkmTZqE1Xr8vzPSDvUeB73GwrZv4ZsnYddyrMtmMDb4dcaOuInye6fy3S4Hn63ey8L1ueQcLuM/323lP99tpU/nCCYP7cF5Q+NI7h5ldk9E5ChtJnHKz88nISHhmO0xMTG1+73V1OF97naBOjywTfY/YQTc/D3GvD9gWfshfPMXnFsX4rjoJYg59r+rulLjo/ls6in8ce5aPs/ax9++3OTa8fm3Pg3RnVy5Eyl3AmbUScDqbqv7u2t/zbZ6SdmRfXW3GUaddrjPV//c7n31zg0YQHFxMRG/LAfA/f2o64tSJ+4vTJ0125w1R7ieHznYWdvmyHF123Kcts6j2tbddrxzHTnWecJzOd2xNdC27jnt9mrCvviGIKsFq8UgyGI08Hhkn+W4xxgE1TnOanVtsxpHHWN1ne9457Ae53UbfKyJ2WpQ/5zWo8/p2mc5KrFv7v//bervhgdONBri97//PatWrdKXeoHIMKDveOhzOmxZCN8+Cbt/gR//TdjyVzhn5C2cc+GdlF06lEUb9vPZ6j0s2rCfbQdLmLZoC9MWbaF/10jOGxrHeak96Nsl0uweiQhtKHGCE38r35Rv7LOyspoTTrPbt3Vtsv+9b6djcH+S1jyPNXsJzhdGkz30XvLixzfa9IZkJ71Co3lnTTEllQ4cAE7qPzaDwwmO2k/4bWC4xv7DZkdgrvIKsyPwG2tN8m41DIIscNHACKAN/v/fAnw9GkJf6DVNq+5/n/HQ+3TY8hWWb5/C2LcKfvgnzuUzCR15K+eOvJ1zB6dRXFHNog37+Xz1Pr7ffIDN+4v519eb+NfXmzipexSTh3ZnckoPkjqGH/MSrbr/fqD+B3b/wX9f6rWZxMlmszV4V6mgoAA4cufJGykpKU0aQmG328nKympy+7auzfc/PR3GXI7zo5sJ2v0zfVb+GUf1FpznPg2hJx4akZ4Od19w/P47a+5WOGruZDicx25zOp212x1OjmxzHNvGibM2oXI6j9whqU2y6uxz1JwP6m+re566r+2sdxzgrPNa9fpSf1u13cGunBwSExOxWl3TJN1fXNQOPaTmd+PINmqOcD+vvfvl3lNzLEefq/b4+m1poO3x4sB97jrbj46DRs7l7qfdbmfT5s306dsPJwbVDid2h7Pm0YHd7jxq25FHe+3vjmO2H32eaocTh4Njjq1tY69/rN3hxO6sOcbe8DlPHNPxk3W70/VThRPskF1Q3ey/n+2Fr0dD6Au95mnd/e8Kw/9JTO5PxG18g/DCrRiL/071khfZ32cKuX0uJSk4kttSLFyb3IXleyr4MaeM1bmVrN9XxPp9Rfz9y830jQ3i1MQOnJIYRpfw+v8Ptu7+tzz1v3303+l0UmmH8moH5XYnFdVOymt+Kuw1j+5tNfstBpzbL7zF34M2kzgNGDCAzz77jOrq6nrf7G3a5Bo21b9/f6/PabVam/XBv7nt27o23f/OfeHGBa5Fchf/HcvqWZCz1FXKPGG4R6do0/1vBrvdTqblIGlpCQHb/6oDwaQmxrar/ruT6nqJWr0ksGa73c7h7E0B+99/Q3w5GkJf6DVN2+p/OpxzG/YNn2P57mmCDqwnbtN/6ZE9F+eoqThH3AyhUZwK3APklVby5dpcPs/ax5Jth9iaV83WvCLeXF3EsCQbk1O6c/ZJXdi/c3Mb6b/vta1/f98zo/9Op5PKagelVXZKK+yUVtkpq7RTWllNaaWd0sqa36uObCtzb6/X5sjx7n1lVfZ6w/E9FR5s4eEpo1r0S702kzideeaZvP/++3z55ZdMmjSpdvtHH31E165dSU1NNTE6aZOswXDGH13j0OfcDHnbXYUjxj8IY05cOEKkvTEM97ynE/93b7fbyc9RMRM3X4+G0Bd6zdN2+m+FIRfBoAtg3Vz49mmMgxsxvv0rLHsBTrkLRtwMoZF0jurAVaN6cdWoXhwsrmD+mn18tmoPy3ccZmV2Piuz8/nLvA30iw2mW8ZKLBZLzfBa1/xKi+EqduT6f7ymWJHFVczIahhYLEeKG7mOo2a7UTsX9rjt67Std5zlSFGkeuetPeeR4+vFaRzVvk6cddtbLdSJxwCng4Oldg4UVxEU5Kg3suB4RZvqzxk+9vi2WLipof/+K6sdNQlMNSUVdZIbd/JSWe1KZNzJS0V1g0mQK/GppqTyyD5/LEcWFmwhPCSI8BAr4SFWOoQEER5sJSL0yPMOIVZiw4MZGl7Q4n8D2kzidNppp3Hqqafy2GOPUVxcTFJSEp9//jmLFy/mb3/7Wxv5QymtUs9T4NYf4PN7Yc2HsOgvsGURXDITbIlmRycirVhLjIaQAGKxwJBLYNCFsPYj+PYpOLQFFj4OS6bDqf8PTv4dhLjmNXWODOWaUT25ZlRPcgvLmZe1l89W7+WXnXlsPlzF5sOHzO2P2XxctAmOTbRqky+MevvqFVY6phhT/ePB9U9f7xx1honXL9xU89p1jqf2mCP7i4uLsf7wU50kyJX0nGgYtq+EBFkID7ESERJEB3eCE+x6DA91JTfupCcixFpzTFDNtvrtwuvuC7ZisdQkrw4HVJdBZQlUFtc8HvmxO2FVSecW72ubSZwApk2bxr/+9S+ef/558vPz6dOnD//85z+ZPHmy2aFJW9fBBpe+Cv3Ognl/gOyf4MVT4fx/wZBLzY5ORFopjYYQn7BYIWUKDLoI1nwA3z7tGgXx1SPw0zQY8/9g+I0Q3KG2SbfoMG44tTc3nNqbnEPFfLQ4k/jEnoCB3enE6XRid7jnv7rm0dpr5rjaHUfmtDpq5kc6nOBwuI6118xxtTuOtHU4qXPeo4+nznGu13U6Gzivo+a8zqPO636do4537/PkXNV2B4Zh1JvP6wvuOcAurb1wU9Vx9wRbDToEW4kIrZOkBLueR4Ra6RBc967OCZKZOs/dyU2Qtc6ysE4nVFdAVelRCU4eVJbWT3wKSqCqbgJU9/ij2leVnLDnVqDL4NvhVyN99F42rE0lThERETz88MM8/PDDZoci7ZFhQNqvXavAf3gT7P4ZPrgRNn8Nk55ttHCEiAQejYYQn7IGQeqVMGQKrH4PvnsG8nfCFw/Bj8+71h8cdh0Eh9VrFmfrwKmJHUhLiwvI/+bsdjuZmZmkpaU1WLSpfkEmd7GlYwsn0cC24x3v3nZ04Sdqj6k53lH/HCc6vm5Bp4aOr3/OOgWeHHa2bd/BoAF9iQwLqZPgHElygusmN7VvXLUrOamqm9Dk13les734qASm8uhkp7T+784Wru4XEgnB4RAS4XoeEoEzvBMFXUcQ17Kv3LYSJxG/6NinpnDEM7D4H7DqHche4rojlfArs6MT8ZzTCfYq1/CG6gqoqnlsyu9V5VBdjsVeSXT0KUCa2b1rNTQaQnzOGgTpV8PQyyHzHfj+b1CQA/Pvgx+eq0mgroWgULMjbfXc8zeP1FZtBRwOcFS5/j47qlwJTO3v1XW2H/17zXHU/O6wg70KR3UFu6q2k3CwI5a6SVBV6Ynv5NhbeFmNoLCa5CYCgiOOPK9JdggJr/Pcw+OCOrjGLR79ltrtVGRmtmx/UOIk0jBrMJzxMPQ9o07hiLNchSNG3212dNLWeJTAuBITd4LSvN/d5y8HZ3NXGKvPALp2yQVu9el52zKNhpAWYw2GX10Hqb+GjLdcX+YV7nYNKf/hORj3e0j7DRgBcJfJ4QB75ZGEojaZqISqCsIKt8FeA3A0nnh4mrDUbvMgmfHotWq2+fjvsgVIAljT1BMEHZWoHJ3AuPeFN3JcnUQnOML1BUA70/56JOJLDRSOsGxZRJfo4RjVK8FqdV2wDItrjLphqf9Tu63OPoulgW11jzOOOlfd8xsNbKvT7rivaa27mJK5HA7XbXyH/ajHE21vaJ+jgWN9td1Rf3+d54a9iqTcPRg7I8Fe7vmdm9YwNj4o7MhPcN3nHVzfXAfVPJ7gd4c1hJ2V8Qw2uy8igSQoBE7+LaT/Bla+WZNA7YLP7oHF/8IY+3twnnTiczidrr9j7mTDXn38RKT2Q//RxzXSpsF97p/KI4lF7fPKOglHZcPt3Oc/QbJhBdffpO98+ab7mSUILMGuZNkSVPMY7Eo+avfVPebI705LEPlFJcR0iccSGulFolOzLyjE7N63GUqcRBpzVOEII/snkvip6d/smKnBJO/oZO3ESZ7FsDCorBTLTyFeJB91Hts4C9CluSc5XgLTjITmyO/HOW9QqE+SZ6fdTpUfhkOISAOCQmHETa4E6pc34Id/QUE2ls/uZmhoLJYlnWqGcB0nEWkNX+D4jOFKIKwhOC1BVDsMgkLDMGqTiuAGko2jE5KjjztxgnLsOU50ziAPXq/Osc34++yw29lWM8eLAJzj5k9KnEQ8UadwhOOH5yjYux1bTDSG01lzR6ImSahNIBz1f+reuXA66txFObqd8zjnqrPv6HN5c8vf6U5ijl95p9G3AugAUNzkUzTyAjWJmqXu3byjttU+NrTd0sBxx9t+nPPWJpLHnsOBhX0H8+ie0AtLSLj3CY2PEhgRCWDBHWDUba5CET+/hvPH5wguOQAVed6dx7DWJh+uD/khdZKBmud1k4Ta5yF1PvjXPLeGHEkIap830L7RfUHHieno444kCA67ndXHKQ4h4ktKnES80bEPzsn/qv1mp1X8ga4t9+Nl8lYvWTt6W51krd657Nirq9i6bRt9+ydjtQb7MIlx39Vq3UmF025nb2Ym3fTNnoiYLSQcTpmKI/1atiz+gH79B2ANDjtB8nFUItLAJHsROT4lTiJtnXvZcyz45X9pu52iQhv0TFPiICLSGoREUNwpFZLS9HdZpAXpqwYREREREZFGKHESERERERFphBInERERERGRRihxEhERERERaYQSJxERERERkUYocRIREREREWmEEicREREREZFGKHESERERERFphBInERERERGRRihxEhERERERaYQSJxERERERkUYocRIREREREWmEEicREREREZFGKHESERERERFpRJDZAZjB6XQCYLfbm9Te3a6p7ds69V/9r/sYaNT/5vXf3c79d1hcdF1qHvVf/a/7GGgCvf/gv2uT4QzAq1dlZSVZWVlmhyEiErBSUlIICQkxO4xWQ9clERHzNXZtCsjEyeFwUF1djcViwTAMs8MREQkYTqcTh8NBUFAQFotGi7vpuiQiYh5Pr00BmTiJiIiIiIh4Q1/3iYiIiIiINEKJk4iIiIiISCOUOImIiIiIiDRCiZOIiIiIiEgjlDiJiIiIiIg0QomTiIiIiIhII5Q4iYiIiIiINEKJ01HmzJlDcnJy7c+gQYMYM2YM99xzDzt27Kh37M8//8wf//hHLrnkEoYMGUJycjK7du0yJ3Af8bT/drud119/nd/+9reMGzeO1NRUJk6cyN///ncKCwvN60ALOfp9Ofpn2bJlZofYZAsWLCA5OZl58+Yds++CCy4gOTmZxYsXH7PvzDPP5OKLLwbgm2++4b777uP888/n/7d370FRnWccx78LmAhouIiI46UGdJHLFlFh8UK9xHuwYL11pgNURSUGakUdY9I0YL3GOjZgEQlW0ToORtFRYzRBk9FOZTFYqfVKvFVJooiiInI//YPZUzeAoMCi8HxmGMf3vMt53rNnz2/es+8uXl5euLu7N3vdTaWx4y8qKmLjxo2EhoYyZMgQfH19mThxIsnJyZSWlppjCI3SFM//+vXrCQkJwd/fH51Ox1tvvcWHH35IXl5es9ffVkg2STbVprVmk+SS5NLLmktWjXp0K7Zq1SpcXV0pLS3l9OnTJCUlYTAY+OKLL7CzswMgMzOTkydP4uHhga2tLVlZWS1cddOpb/wlJSUkJCQQFBTE1KlTcXBw4Pz582zcuJGvv/6aPXv20L59+5YeRpMzHpef6t27dwtU0zT8/f3RaDRkZmYyYcIEtb2wsJDLly9jY2ODwWAgMDBQ3fbjjz9y8+ZNZsyYAcBXX31FTk4OHh4etGvXjnPnzpl9HC+qseP//vvvSU1NJTg4mN/+9rfY2NiQnZ3Nhg0b+Oc//8mWLVvQaDQtMbQGaYrn/+HDh7z99tu4ublha2vLd999x8aNGzl27BgHDx7EwcHB7ONqrSSbJJtq09qySXJJcullzSWZONWhT58+6HQ6APR6PZWVlSQkJJCRkcHkyZMBmDdvHlFRUQBs3ry5VYVTfeNv3749R48eNTnx9Ho9Xbt2Zf78+Rw5coTg4OCWKr/ZPH1cWgtHR0f69OlT4/w9deoUVlZWTJ48ucZdy8zMTKD6OQdYvnw5FhbVb2AvW7bslQqoxo6/e/fuHDt2DBsbG3X7oEGDsLa25uOPPyY7O5uBAwc2/0BeUFM8/x999JHJduNxmTNnDkePHmXKlCnNOIK2RbJJsqk2rS2bJJckl17WXJKleg1kvCAVFBSobcYXZFvw0/FbWlrWOlv/+c9/DlTP/MWrQ6/Xc+3aNe7cuaO2GQwGvL29GTZsGOfOnaOoqEjdlpWVhaWlpXrhfdVfC40Zv42NjUk4Gb1Kr4XGPv+1cXR0BMDKSu7PNSfJJsmm1kpySXLpZcylV/usMiPj+vBevXq1bCEtpKHjN874X9XlAfWpqqqioqLC5KeysrKly2q0gIAAAJO7OwaDAX9/f/r3749GoyE7O9tkm6enJx07djR7rc2hOcb/Kr0Wmmr8FRUVlJSUcP78eVauXEmvXr0YPXq0eQbRRkk2STZB68wmySXJJXj5ckkmTnUwXoQeP37MiRMn2LhxI35+fowcObKlSzOLFxn/7du3WbduHd7e3owYMcKM1ZrPtGnT8PLyMvlpDcsj/Pz8sLCwUC9Q9+/fJzc3Fz8/P2xtbfH09FQvuD/88AO3bt1S3w5vDZp6/BcvXiQlJYXRo0fTt29fs4yhMZpi/Pn5+Xh5eeHj48OkSZOorKxk27Zt2Nramn08rZlkk2RTbVpjNkkuSS69jLkkayjqMG3aNJP/u7m5kZiY2GaWnTzv+AsLC5k9ezaKovCXv/zllX+LvC5r1qzBzc3NpO1l/oBlQ9nZ2dG3b191zfCpU6ewtLSkf//+QPUFzHiBMvZpTQHVlOO/desWkZGRuLi4sHz5cjNU33hNMX4HBwd2795NWVkZV69eJSUlhbCwMLZv346zs7MZR9O6STZJNtWmNWaT5JLk0suYS63zCtIE1qxZw+7du0lNTWX69OlcuXKFmJiYli7LbJ5n/A8ePGDmzJncvn2bv/3tb/To0cPM1ZqPm5sbOp3O5Mfb27uly2oSer2e69evc/v2bQwGA15eXupdGX9/fy5cuMCjR48wGAxYWVkxYMCAFq64aTXF+PPy8ggLC8PS0pLU1FTs7e3NPIoX19jxW1lZodPpGDBgAFOnTiU1NZVbt26RnJzcEsNptSSbJJtq01qzSXJJcullyyWZONXBeBEKCAhg2bJlTJ06lRMnTnD48OGWLs0sGjr+Bw8eMGPGDG7dusWWLVteibd/Re2Md2qysrLIysrCz89P3Wa8GJ06dQqDwYBOp2t1S7AaO/68vDxCQ0MB2LZtGy4uLmaqvGk09fPv4uKCs7Nzjb8xJBpHskmyqS2RXJJcgpcrl2Ti1ECLFy/Gzs6O+Ph4qqqqWrocs6tt/MZgunnzJps3b8bT07OFqxSN4efnh6WlJUeOHCE3Nxd/f391W8eOHfHw8GDfvn3k5eW1quUQRo0Z//fff09oaChVVVWkpqbSrVs3c5ffaE39/N+4cYMff/yRn/3sZ81Zdpsn2STZ1JpJLkkuvWy51DYWRTcBOzs75syZw9q1azlw4ADBwcHcu3dP/dDa5cuXATh+/DiOjo44OjqaPMGvup+Of+zYscyaNYvz58/z/vvvU1lZyZkzZ9T+jo6O9OzZs+UKbia5ubm1flNRz5491a+5fFV16NABT09PMjIysLCwqPGWt5+fH6mpqUDNdcR5eXmcPXsWgP/+978A6h3gbt26vRIfUn7R8RcUFBAWFkZ+fj4rVqygoKDA5KuhXVxcXom7fC86/osXL7Jq1SrGjh1Ljx49sLCw4PLly2zduhV7e3tmzpxp1nG0NZJNkk3QerNJckly6WXLJZk4PYfQ0FB27NhBYmIiQUFB5ObmMn/+fJM+cXFxQPXay+3bt7dEmc3m6fH7+vqqF6QVK1bU6Dtp0iRWr15t7hKb3dKlS2ttX758OVOnTjVzNU1Pr9dz9uxZPDw86NChg8k2Pz8/tm7dSrt27fD19TXZZjAYahwb42vjVToXXmT83333HTdv3gSq737/VFRUFNHR0c1beBN5kfE7OTnh7OzMli1byM/Pp6KiAhcXF4YPH05kZCRdu3Y19zDaHMkmyabWnE2SS5JLL1MuaRRFUV740UIIIYQQQgjRBshnnIQQQgghhBCiHjJxEkIIIYQQQoh6yMRJCCGEEEIIIeohEychhBBCCCGEqIdMnIQQQgghhBCiHjJxEkIIIYQQQoh6yMRJCCGEEEIIIeohEychhBBCCCGEqIdMnIRZpKen4+7urv54enoydOhQFixYwPXr11u6PACSkpLIyMio0W4wGHB3d8dgMLRAVdWOHTtGZGQkgwcPxtvbG39/f8LDw9m/fz/l5eUtVtdP1Xas3nvvPUaOHNms+719+zYJCQlcuHChWfcjhGhdJJsaR7Lp2SSbWh+rli5AtC2rVq3C1dWV0tJSTp8+TVJSEgaDgS+++AI7O7sWrW3Tpk2MHTuWUaNGmbR7eXmRlpZG7969zV6Toii8//77pKenM2zYMN577z26du3Ko0ePMBgMxMXFcf/+fcLDw81eW0PNmzePsLCwZt3HnTt32LBhA926dcPDw6NZ9yWEaH0km56PZFPDSDa1PjJxEmbVp08fdDodAHq9nsrKShISEsjIyGDy5MktXF3tOnToQL9+/Vpk3ykpKaSnpxMdHU1UVJTJtpEjRxIREcGNGzfMWlNJSQnt27dvcP+ePXs2YzVCCNF4kk3PR7JJtFWyVE+0KGNQFRQUmLSfPXuWyMhI/P390el0hISEcOjQIZM+9+7dIzY2lgkTJuDr68ugQYMICwvj22+/rbGfsrIyNmzYwPjx49HpdOj1ekJDQzl9+jQA7u7uFBcXs3fvXnXJRmhoKFD3coijR48yffp0fHx88PX1ZcaMGfzrX/8y6ZOQkIC7uzu5ubnExMQwYMAABg8ezNKlS3n06NEzj015eTkpKSm4urry7rvv1tqnc+fODBw4UP1/YWEhsbGxBAYG4u3tzVtvvcX69espKyszeVxpaSnr1q1j5MiReHt7ExgYSFxcHA8fPjTpN3LkSObOncuXX35JSEgIOp2ODRs2AHDlyhVmzZqFj48Per2eP/7xjzx+/LhGjbUth3B3d2fZsmXs27eP8ePH4+Pjwy9/+Uu+/vprk343btxg6dKljBkzBh8fHwIDA4mMjOTSpUtqH4PBwJQpUwBYunSp+vwlJCSofRpyPgkhhJFkU90kmySb2jJ5x0m0qFu3bgHQq1cvtS0zM5OIiAh8fHyIjY2lY8eOHDp0iAULFlBSUsKvfvUroPpCDBAVFYWTkxPFxcV89dVXhIaGsnXrVvR6PQAVFRVERESQnZ1NWFgYAQEBVFZWkpOTww8//ABAWloa4eHh6PV65s2bB1TfzavLgQMHWLRoEUOHDmXdunWUlZWRkpKi7vvpwACIjo5mwoQJTJkyhcuXL7Nu3TqgenlIXf7zn/9QWFjI1KlT0Wg09R7L0tJSwsLCuHnzJtHR0bi7u/Ptt9+SnJzMhQsXSE5OBqqXWMybN4/MzEzmzJnDwIEDuXTpEgkJCZw5c4a0tDRee+019feeO3eOK1eu8M4779C9e3esra25e/cuoaGhWFlZ8dFHH9GpUycOHDjAn/70p3rrNPrmm284e/Ysv/vd77CxsSElJYWoqCgOHz5Mjx49gOplDvb29ixcuBBHR0cePHjA3r17mTZtGnv37sXV1RUvLy9WrVrF0qVLeeeddxg+fDgALi4uQMPPJyGEMJJskmySbBK1UoQwgz179iharVY5c+aMUl5erhQVFSnHjx9XhgwZovzmN79RysvL1b7jxo1TQkJCTNoURVHmzp2rDBkyRKmsrKx1HxUVFUp5ebkSHh6uvPvuu2r73r17Fa1Wq+zateuZNfbr109ZsmRJjfbMzExFq9UqmZmZiqIoSmVlpTJ06FAlKCjIpJaioiJl0KBByvTp09W2+Ph4RavVKp9++qnJ74yNjVV0Op1SVVVVZz2ff/65otVqlZ07dz6zbqOdO3cqWq1WOXTokEl7cnKyotVqlX/84x+KoijK8ePHa63JuL+0tDS1bcSIEYqHh4dy9epVk75r165V3N3dlQsXLpi0z5gxw+RYKYqiLFmyRBkxYoRJP61WqwwePFh59OiR2pafn6/07dtX2bRpU51jrKioUMrKypQxY8YoK1euVNv//e9/K1qtVtmzZ0+Nx7zo+SSEaP0kmySbnibZJOojS/WEWU2bNg0vLy/69+9PREQEb7zxBomJiVhZVb/5eePGDa5evcrEiROB6jtyxp9f/OIX5Ofnc+3aNfX37dy5k0mTJqHT6fD09MTLy4uTJ09y5coVtc+JEyd4/fXXm2yd+rVr17hz5w7BwcFYWPz/JWRra8uYMWPIycnhyZMnJo+pbTlAaWlpjWUgjZGZmYmNjQ3jxo0zaTfetTp58qTa7+l2o/Hjx2NjY6P2e7rWN99806TNYDDQp08f+vbta9IeFBTU4Hr1er3JnVMnJyc6depEXl6e2lZRUUFSUhITJkzA29sbT09PvL29uX79uslzXJfnPZ+EEG2TZFM1ySbJJvFsslRPmNWaNWtwc3Pj8ePHHDp0iLS0NGJiYkhJSQHg7t27ar81a9bU+jvu378PwJYtW1i9ejW//vWvmT9/Pg4ODlhYWPDJJ59w9epVtf+9e/dwdnY2CZLGMO6/c+fONbY5OztTVVXFw4cPsba2Vtvt7e1N+hmXG5SUlNS5n65duwL/XzJSn8LCQpycnGosnejUqRNWVlbq8pHCwkKsrKxwdHQ06afRaHByclL7GdU2zsLCQrp3716j3cnJqUG1Qs1jAtXHpbS0VP3/6tWr2bFjB7Nnz8bPzw87Ozs0Gg1/+MMfTPrV5XnOJyFE2yXZVE2ySbJJPJtMnIRZubm5qR+6DQgIoKqqis8++4zDhw8zbtw4HBwcAJg7dy6jR4+u9XcY7zDt378ff39/4uLiTLb/9EOgjo6OZGdnU1VV1SQBZawxPz+/xrY7d+5gYWHBG2+80ej9eHt7Y29vz9GjR1m4cGG9a8nt7e3JyclBURSTvgUFBVRUVKh129vbU1FRwb1790wCSlEU7t69qz4/RrXt197eXr3wP622tsbYv38/ISEhxMTEmLTfv3+/Qcf4ec4nIUTbJdnUcJJNkk1tmSzVEy1q8eLF2NnZER8fT1VVFa6urvTq1YuLFy+i0+lq/TG+ha7RaEw+KApw8eJFzpw5Y9IWGBhIaWkp6enpz6zltddee+ZdNqM333yTLl26cPDgQRRFUduLi4v58ssv6devn8kdvRfVrl07IiIiuHr1Kn/9619r7VNQUEB2djYAgwYNori4uMYfSty3b5+6/el/9+/fb9LvyJEjFBcXq9ufRa/Xk5uby8WLF03aDx48WP/AnoNGo6Fdu3Ymbd988w23b982aavrLunznE9CCGEk2VQ3ySbJprZM3nESLcrOzo45c+awdu1aDhw4QHBwMHFxccyePZtZs2YxadIkunTpwoMHD7hy5Qrnzp0jPj4egOHDh5OYmEh8fDx+fn5cu3aNxMREunfvTmVlpbqPoKAg0tPTiY2N5dq1a+j1ehRFIScnBzc3N95++20AtFotWVlZHDt2jM6dO2Nra4urq2uNmi0sLFi8eDGLFi1i7ty5TJ8+nbKyMjZv3szDhw9ZuHBhkx0fYzglJCRw9uxZgoKC1D8yeOrUKXbt2kV0dDQDBgwgJCSEHTt2sGTJEvLy8tBqtWRnZ7Np0yaGDRvG4MGDARgyZAhDhw7lz3/+M0VFRfTv359Lly4RHx+Pp6cnwcHB9dYVHh7Onj17mDNnDr///e/Vby56ehlKUxg+fLj6DUXu7u6cO3eOzZs3q99KZNSzZ0/at2/PgQMHcHNzw8bGBmdnZ7p06dLg80kIIYwkm55Nskmyqa2SiZNocaGhoezYsYPExESCgoIICAjgs88+IykpiZUrV/Lw4UPs7e1xc3Nj/Pjx6uMiIyN58uQJu3fvJiUlhd69exMbG0tGRgZZWVlqPysrKz799FM2bdrE559/TmpqKra2tvTt25fAwEC13wcffEBcXBwxMTE8efIEf39/tm/fXmvNEydOxNramuTkZBYsWIClpSU+Pj5s27aN/v37N9mx0Wg0rFq1ilGjRrFr1y71eBjrX7RokfpB2tdff51t27axfv16UlJSuH//Pl26dGHmzJkmf6BQo9GQmJhIQkIC6enpJCUlYW9vT3BwMDExMTXulNamc+fO/P3vf2fFihXExsZibW3NqFGj+PDDD9WvzG0KH3zwAVZWViQnJ1NcXIynpycJCQl88sknJv2sra1ZuXIlGzZsYNasWZSXlxMVFUV0dHSDzychhHiaZFPdJJskm9oqjfL0+7lCCCGEEEIIIWqQzzgJIYQQQgghRD1k4iSEEEIIIYQQ9ZCJkxBCCCGEEELUQyZOQgghhBBCCFEPmTgJIYQQQgghRD1k4iSEEEIIIYQQ9ZCJkxBCCCGEEELUQyZOQgghhBBCCFEPmTgJIYQQQgghRD1k4iSEEEIIIYQQ9ZCJkxBCCCGEEELU43/SNlv3Jm8HaAAAAABJRU5ErkJggg==",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0MAAAHaCAYAAADCNpJNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACj2UlEQVR4nOzdd3hc1bX38e+ZUe9dskYuci+Suy2bYkJoAQcIAUICgQAJwQntkuQmQJI3IffexIQUAjYEhx7AARswJWCKA4FQXLEt9yLhIlmyeq8z8/5xZsaSJVkaSaORNL/P88xzRqdpbRl0tGbvvbbhdDqdiIiIiIiIBBiLvwMQERERERHxByVDIiIiIiISkJQMiYiIiIhIQFIyJCIiIiIiAUnJkIiIiIiIBCQlQyIiIiIiEpCUDImIiIiISEBSMiQiIiIiIgFJyZCIiIiIiAQkJUMiIiIiIhKQgvwdgEhnJk2a1GFfcHAwKSkpzJs3j+9///uMGzeu02v27t3b6X6LxcJ7772HzWbr9HtedNFFHDx4EIAnn3yS0047rct4goODiYqKIj09nalTp/KVr3yF0047DYul888Xuovt5P0D6eDBgzz//POsX7+eY8eO0dTURFxcHFOnTuW8887jkksuITQ0tMN1ubm5PP/882zYsIGSkhKCgoKw2WycccYZXH/99aSmpvqhNSIivqHnku/15Ht/+ctfpqCggHXr1pGRkdGr76Pnl7SlZEgGtVtvvdXzvqamhu3bt7NmzRreeecdnn/+eaZMmdKj+wQFBdHa2srLL7/Mbbfd1uH45s2bOXjwoOe87uKx2+3U1NSwf/9+1qxZw6pVq5g+fTp/+MMfGD16tJet9J9ly5axfPlyHA4HM2fO5LLLLiMyMpLS0lI2bdrEL37xC1auXMnLL7/sucbpdPKHP/yBxx57jKCgIE477TS+8pWv0NLSwueff84TTzzBypUrWbp0KV/5ylf82DoRkf6n59LQpeeXdEbJkAxqnT0g/ud//odnn32Wp59+mqVLl/boPomJiSQlJfHyyy9zyy23dPikbPXq1QQHB7Nw4UI+/PBDr+IpLS3lf/7nf1i7di033HADq1evJiEhoUdx+dMjjzzCQw89xIgRI/jLX/7CjBkzOpzz4Ycf8thjj7Xbt3z5ch577DFsNhuPPvooEyZMaHf87bff5r//+7/50Y9+RGxsLAsXLvRpO0REBpKeS0OXnl/SGc0ZkiHn9NNPB6C8vNyr66644goKCwv5+OOP2+2vra1l7dq1fPnLXyYxMdHreJKSkvjzn//M/PnzKSgo4NFHH/X6HgPt6NGjLF++nODgYFasWNFpIgSwaNGidsnQkSNHeOSRRwgODuaRRx7p8CABuOCCC7j77rux2+38+te/xuFw+KwdIiKDgZ5Lg5+eX9IVJUMy5HzyyScATJ8+3avrLr74YsLDw1m1alW7/a+//jr19fVcccUVvY7JYrHwwx/+0HO/we7ll1+mpaWF888/n4kTJ57y3JCQkHbXtba2cs4553Q6ft7tyiuvJDk5mS+++IINGzb0W9wiIoORnkuDn55f0hUNk5NB7aGHHvK8r62tJTc3ly1btnDOOedwww03eHWv6OhoLrjgAv75z39SXl7uGTKwatUq0tPTOeOMM3jzzTd7HeucOXMICgqirKyMo0eP9npi50DYtGkTgNdDADZv3gyc+BS0K0FBQeTk5PDGG2+wZcsWFixY0LtARUQGGT2XfK/tz/hk1dXVvbqnnl/SFSVDMqgtW7asw77x48dzwQUXEBkZ6fX9rrzyStasWcOrr77KDTfcwO7du9m5cye33nprlxV3eiokJITY2FjKysooLy8f1A+d0tJSAK8r5rivS0tL6/Zc9znHjx/3MjoRkcFLzyXf6+xn3Fd6fklXlAzJoNa2vGZ9fT0HDhzgD3/4Az/96U/Jy8vjzjvv9Op+c+fOJTMzk9WrV3PDDTfw4osvYrFYuPzyy/s79AHR2adnl112WbcPPKfTCYBhGF59P2+uc5/T9txHH32Ud955h/z8fEJCQpg5cyY/+tGPuh2qJyIyWOi5dGq9fS611ZPS2m315NnS1+eXDF9KhmTIiIiIYPr06SxbtoyzzjqLxx57jG9+85uMGDHCq/tcccUV3H///Xz66ae88cYbnHbaaaSnp/c5vubmZqqqqgCIj4/v8/16orNPz+bPn9/tQyclJYW8vDyKioq8+n7Jyck9vs59TnJysmffhg0buPrqq8nOzsbpdPLggw9yww038M9//pO4uDivYhER8Tc9lzrq7XOpL3rybOnr80uGLxVQkCEnJiaGzMxMWltb2blzp9fXX3bZZQQHB3PXXXdRXV3dpwmqbW3atInW1laSkpIYOXJkv9yzO3v37u3wysnJ6fa6OXPmAPDZZ5959f3c17knC3fFbrezfv16AGbPnu3Z//jjj3P55ZczceJEJk2axO9//3vKy8vZsmWLV3GIiAwmei6d0NvnUl/05NnS1+eXDF9KhmRIcn/S5e729kZiYiJf+tKXKCoqIj4+nnPOOafP8TgcDh555BEAvvrVr/b5fr729a9/neDgYN5++20OHDhwynObm5vbXWe1Wnn33XdPed1LL73E8ePHyczMZP78+V2eV1dXh8PhICYmxvtGiIgMInouDR6dPVv6+/klw4eSIRly3nvvPY4ePUpwcDCzZs3q1T1+9rOfsXz5clasWNGudHRvlJWVceedd7JhwwbS09O5+eab+3S/gZCRkcGtt95KS0sL3//+98nNze30vA8//JDvfe97nq9HjhzJzTffTEtLC0uWLOn0gfLee+/xf//3f1itVn71q1+dcgLw//3f/zFlypRe/zuKiAwGei4NLp09W/r7+SXDh+YMyaDWdiJmfX09Bw8e9KzEfeedd5KUlNSr+44cObJXQwbc8TgcDmpqati/fz+bN2+mpaWF6dOn84c//KFXq3zfddddXR771a9+RXh4uNf37M6SJUtobW1l+fLlXHHFFcyaNYusrCwiIyMpLS1l06ZNfPHFF2RlZbW77rbbbqOhoYEnn3ySSy+9lDPOOIPx48fT2trK559/zrZt2wgLC+OPf/zjKUt333fffWzevJmVK1ditVr7vX0iIr6g55Lvnkv94VTPlv56fsnwomRIBrW2EzGtVisJCQmcffbZfPvb3+52rQBfxhMcHExkZCQ2m42vfe1rnH/++Zxxxhm9/hTplVde6fLYPffc47OHzq233sqFF17I888/z/r163n55Zdpbm4mLi6OyZMn873vfY9LL7203TUWi4W77rqLiy66iOeee46NGzfy6aefYrVasdls3HjjjXznO985ZfnS3/3ud/zzn//k6aefHrBx7CIi/UHPJd8+l/qiu2dLfzy/ZPgxnL0Z3Coi0kv/+7//y5tvvsnf//53xo0b5+9wRERkGNCzRXpLPUMiMmB+/etf89prr7F8+XJiYmIoKSkBzPK0vVmsUERERM8W6Qv1DInIgJk0aVKn+2+99VZuu+22AY5GRESGAz1bpC+UDImIiIiISEBSzUAREREREQlISoZERERERCQgKRkSEREREZGApGRIREREREQC0rApre1wOGhtbcVisWAYhr/DEREJGE6nE4fDQVBQUK8XeByu9GwSEfGPnj6bhk0y1NraSm5urr/DEBEJWNnZ2YSEhPg7jEFFzyYREf/q7tk0bJIhd8aXnZ2N1Wr1+nq73U5ubm6vrx/q1H61X+1X+/v6+1O9Qh3p2dQ3ar/ar/ar/b5+Ng2bZMg9/MBqtfbpP5i+Xj/Uqf1qv9qv9veWhoF1pGdT/1D71X61X+3vre6eTfoYT0REREREApKSIRERERERCUhKhkREREREJCApGRIRERERkYCkZEhERERERAKSkiEREREREQlISoZERERERCQgKRkSEREREZGApGRIREREREQCkpIhEREREREJSEqGREREREQkIAX5OwAREZGeqq2t5eGHH2bPnj3s2rWLiooKbr31Vm677bZ2502aNKnLe2RmZrJ27dpTfp9rr72WDRs2dNh/xhln8Pjjj/cueBERGXSUDImIyJBRWVnJiy++yOTJkzn33HNZtWpVp+e98MILHfZt27aN3/72t5x33nk9+l4jR47kD3/4Q7t90dHR3gctIiKDlpIhwOl08tOXcglprmXmTH9HIyIiXbHZbGzcuBHDMCgvL+8yGZrZyS/zF154AcMwuOKKK3r0vcLCwjq9z4CpKsDy+h3EJHwZ8GMcIiLDmOYMATVNrby0pYAXdtRS39zq73BERKQLhmFgGIbX19XW1rJ27VrmzZvH6NGjfRCZDxxZj3HgXdIOPO/vSEREhi31DAExYcGkRIdyvKaJPUU1zMsM9XdIIiLSj958803q6+u58sore3zN4cOHmT9/PrW1taSnp7N48WJ+8IMfEBYW5vX3t9vtXl9D/DisQHh1HvbWwPygzv1z69XPbxhQ+9X+tttA09f29/Q6JUMu09JjOL63hJ2F1czLTPJ3OCIi0o9Wr15NTEwMF1xwQY/Onz17NhdeeCFjx46lqamJDz/8kMcee4zNmzfzzDPPYLF4N7AiNzfX65gNRwszjSCCWuvI3fAezRFpXt9juOjNz284UfvV/kDm6/YrGXKZlh7D+65kSEREho/9+/ezbds2rrnmGkJDe9bzf+edd7b7+qyzzsJms3Hfffexbt26HhdhcMvOzsZqtXp1DQCbJkPxDibHtWCZOtP764c4u91Obm5u739+Q5zar/ar/b1vv/v67igZcpk6IgaAXYU1fo5ERET60+rVqwG8GiLXmUsuuYT77ruPrVu3ep0MWa3WXj3MHanZULwDa8lOLNaveX39cNHbn99wofar/Wq/79qvAgouWelmMrTveA1NrYE5NlNEZLhpbm7m1VdfZdq0aUyZMqVf7untELk+ScsCwCjaMXDfU0QkgCgZckmPCyMqxKDF7mR/ca2/wxERkX7wr3/9i4qKih6X0z6VV155BYAZM2b0+V495UzNNt8cVzIkIuILGibnYhgGY+OC2X68mR0FVWTZYv0dkoiIdOLf//43DQ0N1NXVAXDgwAHWrl0LmHN7wsPDPeeuXr2asLAwLr744i7vN3XqVObNm8fTTz8NwKZNm3jkkUc477zzGDlypKeAwosvvsiCBQv48pe/7MPWnSTV1TNUeRgaKiE8buC+t4hIAFAy1EZmvCsZKqzydygiItKFe++9l4KCAs/Xa9eu9SRD69atIyMjA4Bjx47x8ccfc8kllxAdHd3l/ex2Ow6Hw/N1cnIyVquVhx9+mIqKCgzDYPTo0dx+++3ceOONAztMLjyOpvAUQhuOQ/EOGHPGwH1vEZEAoGSojbFx5o9DFeVERAavf/3rXz06b8SIEezevbvb8/bu3dvu69GjR7NixYpexeYLDTHjzWSoKFfJkIhIP9OcoTbGxgcDsPtYNa12Rzdni4iI+F597HjzjYooiIj0OyVDbaRFWYkMsdLY4iCvtM7f4YiIiNAQM858U7Tdv4GIiAxDSobasBgGU10ltncUaN6QiIj4X707GSrZA63N/g1GRGSYUTJ0Evfiq5o3JCIig0FzRBrO0GiwN0PpPn+HIyIyrCgZOsk09QyJiMhgYlg8JbYp1rwhEZH+pGToJFmuZGhXYTUOh9PP0YiIiLRZfLUo17+BiIgMM0qGTjIuOZLQIAs1Ta0cLq/3dzgiIiKQOs3cqoiCiEi/UjJ0kiCrhclp5uJ8WnxVREQGA2dam54hp0YtiIj0FyVDnZhmiwVUREFERAaJ5MlgWKGhAqoL/R2NiMiwoWSoE1npZjKkIgoiIjIoBIVB8iTzveYNiYj0GyVDnciynSiv7dRwBBERGQzcFeWUDImI9BslQ52YmBpNkMWgvK6ZY1WN/g5HREQEPPOGVERBRKS/DIpkaNeuXfzwhz/kjDPOYMaMGXzlK19h2bJlNDQ0+CWesGAr41OiAM0bEhGRQcKdDGmtIRGRfuP3ZOjAgQN885vfpKCggHvuuYe//vWvLF68mIcffpgf/ehHfosry6Z5QyIiMoi4k6HyPGiq8W8sIiLDRJC/A3j99ddpamrioYceYtSoUQAsXLiQkpISXnjhBaqqqoiNjR3wuLLSY1i9GXaqvLaIiAwGkUkQPQJqjkHxThi1wN8RiYgMeX7vGQoODgYgKiqq3f7o6GgsFovn+EA70TOkYXIiIjJItF1vSERE+szvPUNf+9rXePrpp/n1r3/Nf//3fxMfH8/GjRt54YUXuOaaa4iIiPDqfna7vVdxuK9zbyemRGIYUFTdSHFVPUlRob2671BxcvsDjdqv9rfdBpq+tj9Qf25+kZYN+99RMiQi0k/8ngxlZGTwj3/8g1tvvZVzzz3Xs//aa6/l5z//udf3y83t2wOi7fUjoqwU1th5/T9bmZU2vJMht77+/IY6tV/tD2SB3v4hQeW1RUT6ld+ToaNHj/KDH/yAxMREHnzwQRISEti2bRuPPPII9fX1/Pa3v/XqftnZ2VitVq/jsNvt5Obmtrt+zt5tFG4/RmN4EjNnjvP6nkNJZ+0PJGq/2q/297797utlAKRNN7fHd4G9Fax+f4yLiAxpfv8t+sc//pHa2lrWrFnjGRI3b9484uPjueeee/ja177G/Pnze3w/q9Xapz9m2l6fnRHL69uPsetYTcD8gdTXn99Qp/ar/Wp/4LZ/SEjIhOBIaKmD8oOQPMnfEYmIDGl+L6Cwe/duxo0b12FuUHa2OUl0//79/ggLgGnpKqIgIiKDiMUKqdPM9xoqJyLSZ35PhlJSUjhw4AB1dXXt9m/duhWA1NRUP0RlmpYeA8Dh8nqqGlr8FoeIiIhHmnve0Hb/xiEiMgz4PRn6zne+Q0VFBTfeeCNvvvkmn376KX/961/53e9+x/jx41m0aJHfYouLCCEjPhyAXYXqHRIRkUFA5bVFRPqN35Ohc845h6eeeoqoqCh++9vfsmTJEl555RW++c1v8uyzzxISEuLX+LJcQ+W0+KqIiAwK7iIKRTv8G4eIyDDg9wIKAAsWLGDBgsG5knaWLYa1O4vYUaBkSEREBoGUqWBYoO441BRDtP+Gk4uIDHV+7xka7KZ5eoY0TE5ERAaBkAhIcC33oKFyIiJ9omSoG9NsZhGFgyW11De3+jkaERER2swbUhEFEZG+UDLUjZToMFKiQ3E4YfexGn+HIyIiciIZKta8IRGRvlAy1ANZNhVREBGRQcRTREHD5ERE+kLJUA+41xtSEQURERkU3GsNle6H5rpTnysiIl1SMtQDKqIgIiKDSlQqRCYDTji+29/RiIgMWUqGeiDLVURhX3ENTa12P0cjIiIBzzC0+KqISD9QMgTgdGK8fBPpe57o9LAtLpy4iGBa7E72F9cOcHAiIiKdUDIkItJnSoYAmmqw7HyJtP3PQVPHoXCGYZDlGiqneUMiIjIopCoZEhHpKyVDAGExOGNHYuCEwq2dnuIuoqB5QyIiMih4ymvvBIfDv7GIiAxRSoZcnOmzATAKt3R6fJqrvPYOldcWEfGb2tpafv/733PjjTeyYMECJk2axEMPPdThvLvuuotJkyZ1eH3lK1/p8ff65JNPuOqqq5gxYwY5OTncddddlJWV9Wdz+iZxPASFQUsdVOT7OxoRkSEpyN8BDBq2ObD7VYyCzZ0eznL1DO0+Vk2r3UGQVXmkiMhAq6ys5MUXX2Ty5Mmce+65rFq1qstzw8LCePrppzvs64kNGzZw0003cdZZZ/Hwww9TVlbGH/7wB66//npeeuklQkJC+tSOfmENgpSpULgFirZD4jh/RyQiMuQoGXJx2uaYb7roGRqTGElkiJW6Zjt5pXVMTI0ewOhERATAZrOxceNGDMOgvLz8lMmQxWJh5syZvfo+v//97xkzZgwPPvggQUHmozIjI4NvfetbrF69mquvvrpX9+13aVmuZCgXpl3m72hERIYcdW+4pU3HaVgwao5BVUGHwxaLwVQtvioi4leGYWAYhk+/R3FxMbm5uVx66aWeRAhg9uzZjBkzhvfee8+n398radPNbdEO/8YhIjJEKRlyC4mkITrTfN/FUDktvioiMnQ0NjZy+umnM2XKFBYtWsRvfvMbKisru71u3759AEyaNKnDsUmTJnmODwoqry0i0icaJtdGXdwUIqoPQsEmmHpJh+NZNpXXFhEZCiZPnszkyZOZMGECYM4Bevrpp/n0009ZvXo1kZGRXV7rTphiY2M7HIuLi+tRQnUyu713C3a7r+vy+qTJWAFqCrFXF0NkUq++z2DVbfuHObVf7W+7DTR9bX9Pr1My1EZd/GSSD78BBZ3PG8qymcPkdhVW43A4sVh8O1RDRER65/rrr2/39emnn87UqVO5/fbbWbVqVYfjnelqOF5vhunl5vat5+ZU10+LSCesvpCDn7xKTfKcPn2fwaqvP7+hTu1X+wOZr9uvZKiNurgp5pvCz8FhB4u13fHxyVGEBlmoaWrlcHk9Y5K6/mRRREQGl/POO4+IiAi2bt16yvPi4uIAOu0Bqqys7LTHqDvZ2dlYrdbuTzyJ3W4nNzf3lNdb9s+BPYWMj2rA2cuCEYNVT9o/nKn9ar/a3/v2u6/vjpKhNhqjR+EMicJoroWSvZA6td3xIKuFyWnRbDtaxc7CaiVDIiJDjNPpxGI59XTZiRMnArB3717OOuusdsf27dvnOe4Nq9Xapz9mTnn9iBmw53Usx3fCMP2Dqa8/v6FO7Vf71X7ftV8FFNoyrDBipvm+YFOnp2jxVRGRoWnt2rU0NDQwY8aMU56XmprK9OnTef3119uNOd+6dSv5+fmcd955vg7VO2lZ5lZFFEREvKaeoZM402djHPqPWVFu9nUdjmelq4iCiIg//fvf/6ahoYG6ujoADhw4wNq1awE466yzKC8v58c//jGLFy9m1KhRGIbBxo0befrpp5kwYQJXXnllu/tNnTqVefPmtVug9Sc/+Qk33ngjd9xxB1dffTVlZWX88Y9/ZOLEiVx++eUD19iecFeUK9kLLY0Q3LOFZUVERMlQB57FV492Xl7bXURhZ2E1TqfT5+tdiIhIe/feey8FBSfWg1u7dq0nGVq3bh3R0dEkJSXx5JNPUlZWht1ux2azce2117JkyRIiIiLa3c9ut+NwONrty8nJYcWKFTz44IMsWbKE8PBwvvSlL/HTn/6UkJAQ3zfSGzE2CI+Hhgoo2QPpM/0dkYjIkKFk6GS22eb2+C5oroOQ9vOCJqZGY7UYlNc1c6yqkfS4cD8EKSISuP71r391e86yZct6fL+9e/d2uv/000/n9NNP7/F9/MYwzN6h/A/NoXJKhkREekxzhk4WY4PoEeC0w7FtHQ6HBVuZkBIFaPFVEREZJFK1+KqISG8oGeqMe6hcQVdD5TRvSEREBpE0JUMiIr2hZKgznnlDnVeUy0p3zxtSMiQiIoOAOxkq3gFOp39jEREZQpQMdcbTM7Sl08Oe8toFGiYnIiKDQNJEsIZAUzVUHvJ3NCIiQ4aSoc6kzwIMqDoMtcc7HJ4yIgbDgKLqRkprmwY+PhERkbaCQiB5kvleQ+VERHpMyVBnwmJOPFQ6mTcUFRpEZpJZZU5FFEREZFBIm25ulQyJiPSYkqGu2Oaa2y7nDamIgoiIDCKeIgo7/BuHiMgQ0qt1hvbv38+WLVsoLi6msbGR+Ph4xo8fz7x584iKiurvGP3DNhu2PnuKinIxvLatUEUURERkcFBFORERr/U4GaqqquKFF17ghRdeoLCwEGcn1WqCgoJYtGgR1157LQsXLuzXQAdchqtnqGALOBxgad+JNi1dRRRERGQQSZ1mbqsOQ0MFhMf7Nx4RkSGgR8nQM888w/LlywG46KKLmD9/PtOmTSMhIYHQ0FCqqqo4cuQIW7duZd26ddx4442cdtpp/L//9/8YPXq0TxvgMylTISgMmqqg/CAkTWh3eJqrvPbh8nqqGlqIDQ/2R5QiIiKm8HiIHWUmQ8U7YcwZ/o5IRGTQ61Ey9Pe//527776bxYsXExzc8Y/+pKQkkpKSmDVrFjfccAOHDx/mkUce4a233mLJkiX9HvSAsAbDiJlw5DNz3tBJyVBcRAgZ8eEcrWhgV2E1C8cl+idOERERt7RsMxkqylUyJCLSAz1Kht566y2Cgno+vWjUqFH87ne/w2639zqwQcE2x0yGCjbDzG91OJyVHsvRigZ2FlYpGRIREf9Ly4a9/9S8IRGRHupRNbn9+/f36uZWq7VX1w0aGe7FVzuvKOceKqeKciIiMiikZZnbou3+jUNEZIjoUTJ02WWX8fWvf53nn3+empoaX8c0eNhcyVDRDmhp7HA4y2YWUdBaQyIiMii4K8qV7IXWZv/GIiIyBPQoGbr55pspLy/nN7/5DWeccQY/+clP+Oyzz3wdm//FjYaIJHC0dDrkYJrN7Bk6WFJLfXPrQEcnIiLDWGOLnb9/dojjdV48X+JGQ2gM2JuhdJ/vghMRGSZ6lAzdeeedvP/++6xYsYKzzz6bd955hxtuuIFzzjmHhx9+mGPHjvk6Tv8wjBO9Q50MlUuJDiMlOhSHE3YfC6AeMxER8bn39xzn16/v5vHPvXi+GAakuofKad6QiEh3epQMARiGwaJFi3jggQf4z3/+w89//nNiY2N58MEHOffcc/nud7/L2rVraWlp8WW8A8+z3lBXi6+6h8pp3pCIiPSfkQkRAOwsaabV7uj5hVp8VUSkx3qcDLUVExPDt7/9bV5++WXWrFnD1Vdfza5du7jzzjtZtGhRf8foX7bZ5vaoiiiIiMjAmTIihuiwIBpanezyZvSBOxkqVjIkItKdXiVDbU2ePJlLLrmEL3/5ywBUVlb29ZaDS7orGarIh/ryDoenpauIgoiI9D+rxWDu6HgANn7R8fnTpbY9Q06nDyITERk+ep0MlZeX89RTT3HxxRfzjW98g1dffZWzzz6b5cuX92d8/heRAAnjzPedDJXLchVR2FdcQ1PrEF9XSUREBpX5mQkAbMiv6PlFyZPBsEJDBVQX+CgyEZHhoecrqQIOh4MPP/yQl156iQ8++ICWlhbGjBnDj370Iy677DKSkpJ8Fad/ZcyF8oNmMjThvHaHbHHhxEUEU1nfwv7iWs8cIhERkb7KGePqGTpUgcPhxGIxur8oOAySJ8HxXWbvUGyGj6MUERm6epQM5efn89JLL/Hqq69SWlpKWFgYX/3qV7n88suZO3eur2P0P9sc2P5Cp/OGDMNgWnoMHx8oY0dBlZIhERHpN9PSYwgLMqhqaGFPUQ1TXfNUu5WW7UqGdsCkC30bpIjIENajZOjCC81fpNOnT+e2225j8eLFREZG+jSwQcXWpqKc02mWLm0jKz2Wjw+Uad6QiIj0qyCrhcmJwWwtbmZ9fpl3ydD2F6Bou28DFBEZ4nqUDH3nO9/hiiuuYMKECb6OZ3BKywJrCDSUm4UUEsa2OzzN1Ru0Q+W1RUSkn01LDjGTobxybjg9s2cXaa0hEZEe6VEBhbvvvrvTRCgvL4/NmzdTX1/f74ENKkGhJ6rzFGzpcDjL9Und7mPV3q0FISIi0o2pySEAbPiiHGdPq8O5n1kV+dCoUQsiIl3pVTW5NWvWsGjRIhYvXsy3v/1t8vPzAbjjjjt48cUX+zXAQcM2x9x2Mm9oTGIkkSFWGlsc5JXWDXBgIiIynI1LCCYs2EJ5XTP7j9f27KLIJIhON98f3+W74EREhjivk6G33nqLu+66i6lTp/LLX/6y3adU06ZN46233urXAAeNtvOGTmKxGJ5x3Ds1VE5ERPpRsMVg1sg4ANbn93K9IRER6ZTXydCKFSv4+te/zl//+leuuuqqdsfGjh3LgQMH+i24QcXdM3RsG7Q2dzjsXnx1R4GGI4iISP/Kca03tD6vrOcXpbnnDamIgohIV7xOhg4ePMjixYs7PRYXF0dlZWVfYxqcEsdBWBzYm+D4zg6H3SW1dxSoZ0hERPqXe/HV9fm9mDekniERkS55nQyFh4dTU1PT6bHi4mJiY4fpOjuGccp5Q1k2c5jcrsJqHI4ePqhERER6YGZGLCFBFkpqmsjv6dzUtOnm9vhusLf6LjgRkSHM62Ro1qxZPPfcc51+MvXyyy8zf/78fglsUHInQ51UlBuXHEVIkIWaplYOlw/z6noiIjKgQoOtzPR23lB8JgRHQmsjlA3TIewiIn3kdTJ0yy23sHXrVq644gr+/ve/YxgG77zzDkuWLGHTpk0sWbLEF3EODhnuIgode4aCrRampEUDaPFVERHpd17PG7JYIHWa+V5D5UREOuV1MpSdnc3f/vY36uvrWbp0KU6nk0cffZT8/HxWrFjBxIkTfRHn4ODuGSrdB40d5wZp8VUREfGVnMxEoJfzhoqVDImIdCaoNxctWLCAt956i8OHD1NaWkp8fDyZmT1cFXsoi0yCuNFQecgcKjfu7HaHs9JVREFERHxj9ug4giwGx6oaOVrRwMiEiO4vUhEFEZFT6tWiq26jRo1i9uzZgZEIuXnmDXVcb2iaZ62h6p5/aiciItIDESFBTM8wP3T7rKdD5dxFFI5tBz2XREQ66FEy9Oabb3p94+LiYjZv7pgwDHkZXS++OiktGqvFoLyumaLqxgEOTERk+KutreX3v/89N954IwsWLGDSpEk89NBD7c6x2+08+eSTfPe732XRokXMmDGDCy+8kD/84Q9UV/dsTue1117LpEmTOry++93v+qJZPZYz9sRQuR5JmQKGBepLobbYh5GJiAxNPUqGfvOb33DppZeyatUqamtrT3nujh07uPfee7ngggvYs2dPvwQ5qLQtr33Sp2xhwVYmpEQBWnxVRMQXKisrefHFF2lububcc8/t9JzGxkYeeughbDYb99xzDytWrOAb3/gGL774It/61rdobOzZh1UjR47khRdeaPe65557+rM5XvMUUcjvYc9QSAQkjjffF+3wUVQiIkNXj+YMvfvuuzz00EP83//9H7/5zW+YOnUqU6dOJTExkZCQEKqqqjhy5Ahbt26lpKSECRMm8NBDD3HmmWf6Ov6BN2IGGFaoOw5VRyFuZLvDWbZY9hTVsKOgivOmpvopSBGR4clms7Fx40YMw6C8vJxVq1Z1OCcsLIx169YRHx/v2ZeTk8OIESO44447ePvtt7n00ku7/V5hYWHMnDmzP8Pvs7ljErAYcKS8gcLKBtLjwru/KC3bLPxTtB0mdJ5AiogEqh4lQ9HR0dxzzz3ccsstvPzyy/z73/9mzZo1NDQ0eM4ZOXIkZ555JhdffDELFizwWcB+Fxxuliot2m4OlTs5GUqPYfVm2KmKciIi/c4wjG7PsVqt7RIht+nTzfkzRUVF/R7XQIkKDSLLFsv2o1Wszy/jslkZ3V+Ulg07XlIRBRGRTnhVTS42NpYbbriBG264AYCamhoaGxuJi4sjODjYJwEOShlzXcnQJpj2tXaHPOW1NUxORGRQ+eyzzwAYP358j84/fPgw8+fPp7a2lvT0dBYvXswPfvADwsLCfBlmt3IyE8xkKK+8Z8lQqirKiYh0pVeltd2io6OJjo7ur1iGDtsc2PSEWV77JFNGxGAYUFTdSGltE0lRoX4IUERE2iouLuaPf/wjWVlZnH322d2eP3v2bC688ELGjh1LU1MTH374IY899hibN2/mmWeewWLxrhir3W7vVdzu69peP290PH/7KJ/1+WU9u2/KVKyAs+wAjoZqCInsVSz+0Fn7A4nar/a33Qaavra/p9f1KRnqT5s2beLRRx9l69atNDU1kZaWxqWXXsott9zi79A6srkqyhV+DvZWsJ74MUaFBpGZFEleSR07C6s5a2Kyn4IUEREwiy7cdNNNOJ1OHnjggR4lMnfeeWe7r8866yxsNhv33Xcf69at47zzzvMqhtzcvvXKtL0+rNmBAeSX1vP+p5uJD7d2e/300HiCmyrY9/Fr1MdP6VMs/tDXn99Qp/ar/YHM1+0fFMnQ66+/zk9/+lMuvPBC7rvvPiIiIjhy5AjFxYO0DGjSBAiJhuYaKNkDaVntDmelx5JXUseOgiolQyIiflRVVcWNN95IcXExTz/9NCNHjuz+oi5ccskl3HfffWzdutXrZCg7Oxurtfuk5WR2u53c3NwO10/Z8DG7jtVQF5nO2dNHdHsfy86ZkPc+k2KacA6yohCn0lX7A4Xar/ar/b1vv/v67vg9GSouLub//b//x1VXXcWvf/1rz/5BXYTBYgXbLMj/0Jw3dFIyNC09hte2FaqIgoiIH1VVVXHDDTdw9OhRnnrqKSZPntwv9/V2iByYRR368sfMydfnjE1k17EaNh6q4NKezBsaMR3y3sdyfAcMwT+q+vrzG+rUfrVf7fdd+73/jd7PVq1aRX19PTfddJO/Q/GOe72hThZfzXIVUdhZqCIKIiL+4E6Ejhw5wuOPP87UqVP7fM9XXnkFgBkzZvT5Xn2Vk+lafDWvh4uvppmV9LTWkIhIe37vGdq4cSNxcXHk5eXxwx/+kP379xMbG8t5553HT3/6U6KiovwdYufc84aOdkyGpqXHAHCorJ6qhhZiwwOo0p6IiI/9+9//pqGhgbq6OgAOHDjA2rVrAXNuj2EYfPe732XXrl3cc8892O12tm7d6rk+ISGBUaNGeb6eOnUq8+bN4+mnnwbMOayPPPII5513HiNHjvQUUHjxxRdZsGABX/7ylweusV2Y71p8df/xWspqm0jsrlhPmquiXPFOcNjNEQ4iIuJ9MvQ///M/XHPNNYwdO7ZfAiguLqahoYE77riDm2++mZkzZ5Kbm8tDDz3E/v37ef7553u0roRbf1bsOaURM83qPCW7cTRUQciJpC061EpGfDhHKxrYcbSCBWMTexXTQFLFErW/7TbQqP0DU7Gnv9x7770UFBR4vl67dq0nGVq3bh1wYsLt//3f/3W4/rLLLmPp0qWer+12Ow6Hw/N1cnIyVquVhx9+mIqKCgzDYPTo0dx+++3ceOONvRom198SIkOYmBrFvuJaNuSXc2F2N/OGEsZBUBi01EF5PiT1rLy4iMhw53UytGbNGp5//nkWLFjANddcwznnnONVsnIyp9NJU1MTt956K9///vcBc6Xw4OBgfvvb3/Lpp59y2mmn9fh+/VmxpzvZYcmENJZw4MOXqE1qP2zCFuHgaAW8s2kPYdVDp4ypKpao/YFM7R8a7f/Xv/7V7Tl79+7t8f1OPnf06NGsWLHC67gGWk5mIvuKa1nfk2TIGgQpU6Fwi7lOnpIhERGgF8nQRx99xCuvvMLKlSu59dZbGTFiBN/61re44oorSEhI8DqAuLg4AM4444x2+xctWsRvf/tbdu7c6VUy1N8Ve07Fsj8H9rzBhIiqDtV5Tqs4yPqC/VQSxcyZ/h9f3h1VLFH71X6139cVe6R/5YxN4O+fHWJ9fk/nDWWbyVDxDsj6um+DExEZIrxOhiIiIrjmmmu45ppr+PTTT3nuuef4y1/+wrJly7jooou45ppryM7O7vH9Jk2a1G4st5vT6QS8r9rT3xV7TiljHux5A0vhlg7VeaZnxAGw61jNkPrjShVL1H61X+2XocE9b2hPUTVV9S3ERnQzP9U9b6hIiauIiFufBj4vXLiQZcuWsW7dOmbNmsWrr77KN77xDa688soeDWMAOP/88wH48MMP2+13fz0YqvZ0yVNRbkuHQ9NsZhGFgyW11De3DmRUIiISAFKiwxibHInTCRu+6EHvkJIhEZEO+pQMNTY2smrVKpYsWcL69esZN24ct9xyC3a7nVtuuYXly5d3e48zzjiDs88+m+XLl/Pwww/zySefsGLFCv70pz9x9tlnM3fu3L6E6Fvps8CwQPVRqClqdyglOoyU6FAcTth9rMZPAYqIyHB2osR2Wfcnp04ztzXHoK7Uh1GJiAwdvUqGDh8+zO9+9zsWLVrEr371K9LS0njiiSd44403uPXWW3n55Ze56aabePbZZ3t0vwceeIDvfOc7vPjii9x0002sXLmS66+/ngcffLA34Q2c0ChIdi3i18l6Q+4S21p8VUREfGHBWHOoXI/mDYVGQ4KrEqx6h0REgF7MGfre977HJ598Qnh4OF//+te59tpr263X4Hb22Wf3uBpPWFgYP/nJT/jJT37ibTj+Z5sDx3fB0U0weXG7Q1m2WN7fW8LOAi2+KiIi/c89b2hnYRXVjS3EhPVg3lB5npkMjTt7ACIUERncvO4ZOnLkCHfffTcffvghP//5zztNhAAmTJjAM8880+cABz3PvKHOeoZiAdihniEREfGBEbHhjEqIwOGEzV9UdH9BquYNiYi05XXP0Ntvv92j86Kiopg/f77XAQ05Ga45TYWfg8MBbarfZbmKKOwrrqGp1U5okKo0iYhI/8rJTOBweT3r88s5e3LKqU92F1Eo3uH7wEREhgD/L6M91CVPgeAIaKqGsv3tDtniwokND6bF7mR/ca2fAhQRkeEsZ6yriEJ+D4oouJOhkr3Q0ujDqEREhgave4a+/OUvYxhGp8csFgvR0dFkZ2dz3XXXMW7cuD4HOOhZg2DETDj8iTlvKHmS55BhGGTZYvj4QBk7CqrIssX6L04RERmWclzzhnKPVlHf3EpEyCke7THpEJ4ADeVQstusiioiEsC87hmaP38+TqeT4uJibDYbM2bMID09neLiYux2OyNGjODdd9/l8ssvD5wVyW2zzW0n84ayXPOGdhaqiIKIiPS/kQkR2OLCaXU42Xyom3lDhgFpWeZ7zRsSEfE+GTrjjDMICQnh3Xff5ZlnnuFPf/oTf//733nnnXcICQnh3HPP5e2332bMmDE89NBDvoh58HHPGyrY1OHQNJuKKIiIiG+5e4fW5/Vk8dXp5rZI84ZERLxOhv76179y2223MWLEiHb709PTueWWW1ixYgXR0dFcf/31bN26tb/iHNzcFeWKd0JLQ7tDWa61hnYfq6bV7hjoyEREJAC4S2x7NW9IPUMiIt4nQ4cOHSIqKqrTYzExMRQUFABgs9loaGjo9LxhJ3YkRKaAoxWObW93aExiJJEhVhpbHOSV1vkpQBERGc7cRRS2HamiscV+6pPbJkMOfUgnIoHN62QoPT2dV155pdNjL730kqfHqLKyktjYACkYYBhdrjdksRhMdfUO7dRQORER8YExiRGkRIfSbHfw+eHKU5+cNBGsIdBcA5WHBiQ+EZHByutk6Lvf/S5r167lm9/8Jk899RRvvPEGTz31FN/85jd59913+d73vgfA+vXrycrK6veAB60MdzLUybwh9+KrBSqiICIi/c8wjJ6X2LYGQ/Jk873WGxKRAOd1ae1vfOMbOJ1OHnroIZYuXerZn5SUxL333suVV14JwJIlSwgJCem/SAe7LnqGAE9J7R0F6hkSERHfyMlM4PVthT0volC03RwqN+Vi3wcnIjJIeZUM2e12Dh8+zIUXXsg3vvEN8vLyqKysJC4ujrFjx7ZbfygpKanfgx3U0l3ltSu+gLpSiDzR/mmuYXK7CqtxOJxYLJ2v0yQiItJbC8aaRRS2HK6gqdVOaJC165NVXltEBPBymJzT6WTx4sV8/vnnGIbBuHHjmDNnDuPGjetyIdaAER4HiRPM9wVb2h0anxJFSJCFmqZWDpfXD3xsIiIy7I1LjiIpKoSmVgfbj3YzEkEV5UREAC+ToaCgIJKSknA6nb6KZ2jrYr2hYKuFKWnRgBZfFRER3zAM40SJ7bxu5g2lunqGqo5AQzcLtYqIDGNeF1BYvHgxa9as8UEow8Ap5g1p8VUREfG1+WPc6w11M28oPA7iRpnvtfiqiAQwrwsoTJ48mTfffJPrrruO888/n+Tk5A5D5M4///x+C3BIaZsMOZ1myW2XrHQVURAREd9yV5TbfKiCFruDYOspPvNMzYbKw+ZQucwzByhCEZHBxetk6Gc/+xkAxcXFbNiwocNxwzDYvXt33yMbilKzwBpqDjkoz4PEcZ5D0zxrDVXjdDo1x0pERPrdpNRo4iKCqaxvYUdBFbNGxXd9clo27P2n5g2JSEDzOhl65plnfBHH8BAUAiOmw9GNZu9Qm2RoUlo0VotBeV0zRdWNjIgN92OgIiIyHFksBvPGJPDurmLW55d3nwwBFCsZEpHA5XUyNH/+fF/EMXzY5pxIhqZ/w7M7LNjKhJQo9hTVsKOgWsmQiIj4RE6mKxnKK2PJWeO6PtGdDB3fA63N5gd6IiIBxusCCm41NTV89NFHvPbaa1RVaR6Mh81VUe7opg6HtPiqiIj42gLXvKFNX1Rgd5yi+mvcKAiNBUcLlO4doOhERAaXXiVDy5cv58wzz+Smm27iZz/7GUePHgXgO9/5DitWrOjXAIccm2vx1aLt5idtbZyYN6RkSEREfGPKiBiiQ4OoaWpl16mWczAMLb4qIgHP62ToueeeY/ny5VxxxRU8+uij7dYcOvvss/nggw/6M76hJ2EshMeDvbnDOOwTPUNaa0hERHzDajGYO8acK7Q+v5v1hjyLr6q8togEpl4lQ9dffz2/+MUvOOOMM9odGz16NIcOHeq34IYkw2hTYntLu0NTRsRgGFBU3UhpbZMfghMRkUDgLrHd7XpDnmRou48jEhEZnLxOho4cOcKZZ3a+HkFkZCTV1er16GreUFRoEJlJkYBZYltERMQXcjLNxVc3flGO41TzhlLbDJNznuI8EZFhyutkKDo6mtLS0k6PFRQUkJiY2Oeghry2i6+eRIuvioiIr2XZYokIsVJZ38Le4pquT0yeDJYgaKyE6oIBi09EZLDwOhlauHAhjz32GPX19Z59hmHQ2trKypUrOwydC0juZKhsv7kAaxsqoiAiIr4WbLUwZ7Rr3lDeKeYNBYdB0iTzvYooiEgA8joZuv322yksLGTx4sUsXboUwzB49tlnufLKKzl06BA//OEPfRHn0BKZCPFjzPeFn7c75C6ioGFyIiLiSwu8njekZEhEAo/XydDo0aNZuXIlY8eOZeXKlTidTl599VXi4+N5/vnnSU9P90WcQ49n3lD7oXLunqFDZfVUNbQMdFQiIhIg3POGNuSXt6v82oGnvLaKKIhI4AnqzUXjx4/n8ccfp7m5mYqKCmJjYwkLC+vv2IY22xzYsbrDvKG4iBAy4sM5WtHArsJqFo7THCsREel/2RmxhAZZKKtr5sDxWiakRnd+ospri0gA69Wiq24hISGkpqYqEepMhqtnqGBThwo9mjckIiK+FhpkZfYo93pDpxgql+pKhiryoVFDuEUksPSqZ+jo0aO89dZbFBYW0tjY2O6YYRj89re/7ZfghrS0bLNCT10JVB6G+NGeQ1npsby9s1jzhkREvFRbW8vDDz/Mnj172LVrFxUVFdx6663cdtttHc7duXMn999/P9u2bcNqtbJgwQJ+9rOfMXLkyB59r08++YS//OUv7Nmzh7CwMM4++2z++7//e0hVTc0Zm8CneWWszy/n2wtGd35SZCLE2MxqcsU7YfTCgQ1SRMSPvE6GPvjgA2699VYcDgcJCQmEhIS0O24YRr8FN6QFh5vrNxzbag6Va5sM2VReW0SkNyorK3nxxReZPHky5557LqtWrer0vIMHD3LttdcyZcoUHnjgAZqamnjwwQe5+uqrefXVV0lISDjl99mwYQM33XQTZ511Fg8//DBlZWX84Q9/4Prrr+ell17q8OwbrHIyE4H9rM8rw+l0dv2MTs0yk6GiXCVDIhJQvE6G/vznPzN79mz+/Oc/D6lPx/zCNudEMpT1dc/uaTZzmNzBklrqm1uJCOlVB52ISMCx2Wxs3LgRwzAoLy/vMhl68MEHCQkJ4dFHHyUqKgqAadOmccEFF/D444/z3//936f8Pr///e8ZM2YMDz74IEFB5u/ojIwMvvWtb7F69Wquvvrq/m2Yj8waFUeI1cLxmia+KKv3LPzdQVo27H8bilVRTkQCi9dzhg4dOsRNN92kRKgnPPOG2hdRSIkOIzk6FIcTdh87xWJ4IiLSjmEY3Y5AaG1t5YMPPuD888/3JEJgJlI5OTm89957p7y+uLiY3NxcLr30Uk8iBDB79mzGjBnT7fWDSViwlZkj44Bu1htSeW0RCVBed0mkp6e3W3BVTsFdXrtwK9hbwBrsOZSVHsP7e0vYWVjlWRhPRET67vDhwzQ2NjJp0qQOxyZOnMjHH39MU1MToaGhnV6/b98+gE6vnzRpElu2bPE6Jrvd7vU1ba/r7fUA88bEs+GLcj7LK+PKObbOT0qZhhVwFu/C0dJkznkdBPqj/UOZ2q/2t90Gmr62v6fXef3b7uabb+aJJ55g0aJFhIeHex1YQEkcD6Gx0FQFx3fDiOmeQ1m2WDMZKlARBRGR/lRZWQlAXFxch2NxcXE4nU6qqqpISUk55fWxsbGdXu8+7o3c3L71uPTl+kRHEwD/2VvE55/bO+9ZczqYaQ3Ham9gz8ev0xid2evv5wt9/fkNdWq/2h/IfN1+r5Oh3NxcysrKOO+888jJySE+vmOvxi9+8Yt+CW7Is1jANgvyPjBLbLdJhqalu4ooqLy2iIhPnGo4XU+K/XR1Tm8KBWVnZ2O1Wr2+zm63k5ub2+vrASY2t/Lb/6yjtMFB0uhJjEyI6PQ8y9ZsOLqBKXF2nNkze/W9+lt/tH8oU/vVfrW/9+13X98dr5OhZ5991vP+n//8Z4fjhmEoGWrLNseVDG2GuTd6dme5iijsK66hqdVOaFDg/UcuIuIL7h6hioqKDscqKysxDIOYmJhur++sB6iysrLTHqPuWK3WPv0x05fro8OtZGfE8vnhSjYdrmJMcheLr46YDkc3YDm+A6xX9TpWX+jrz2+oU/vVfrXfd+33Ohnas2ePL+IYvtzzho62L6JgiwsnNjyYqoYW9hfXespti4hI34waNYqwsDDP3J+29u3bx+jRo7ucLwTmvCKAvXv3ctZZZ3W43n18KMnJTOTzw5WszyvjijkZnZ+UmmVuVURBRAKI19XkxEu2Oea2ZA80nagcZxiGp3dop4bKiYj0m6CgIM4++2zeffddamtrPfsLCwtZv34955133imvT01NZfr06bz++uvtJuBu3bqV/Pz8bq8fjHLGmusqrc8v7/qkNNdQ7qJccDoHICoREf/rUTK0ceNG6urquj2vvLyc1atX9zmoYSU6FWJHAk4o/LzdoSz3vCEVURAR6bF///vfrF27lvfffx+AAwcOsHbtWtauXUtDQwMAt912Gw0NDSxZsoR///vfvPvuu9x8883Ex8dz4403trvf1KlT+c53vtNu309+8hPy8vK44447+OSTT3j99df5r//6LyZOnMjll18+MA3tR3NHx2Mx4HB5PceqGjo/KWUKGBaoL4Xa4oENUETET3qUDF133XUcPHjQ87XD4SArK4tdu3a1O+/IkSP88pe/7N8IhwPbbHN70npD02wqoiAi4q17772XO+64g3vuuQeAtWvXcscdd3DHHXdQVmaupTNu3Dj+/ve/ExQUxB133MFdd93FqFGjeO6550hISGh3P7vdjsPhaLcvJyeHFStWUFJSwpIlS/jf//1fcnJyeOqppwgJCRmYhvaj6LBgz3Ds9Xld9A6FREDiBPO9hsqJSIDo0Zwh50nd5U6nk9bW1g77pQu2ubDrVTi6qd3uaenmMLndx6pptTsIsmrUoohId/71r3/16LysrCyeeuqpbs/bu3dvp/tPP/10Tj/9dG9CG9RyMhPYfrSK9fllfG1WF+sNpWVB6V4o2g4Tht5wQBERb+mv74HgnjdU0H6hvszESCJDrDS2OMgr7X4YooiISG/Nz0wETtEzBJCWbW6LdgxARCIi/qdkaCCkzzTHYdcUQnWhZ7fFYjA1XUUURETE9+aPScAwIK+0juM1jZ2f5EmGNExORAKDkqGBEBIJKVPN9yfPG1IRBRERGQCxEcFMTjM/gNvQVVU5d0W5sgPQrBELIjL89Xidoby8PM+CR+5So3l5eR3OkS7Y5kDxDnPe0JSLPbvdE1p3FKhnSEREfCsnM4Hdx6pZn1fOV6endzwhKgUiU6DuOBTvgpHzBj5IEZEB1ONk6O677+6w76c//Wm7r51OJ4Zh9D2q4cg2B7Y83UnPkPkp3a7CahwOJxaLfn4iIuIbC8Ym8NQnX7A+v6zrk9Ky4eA6KM5VMiQiw16PkqHf/e53vo5j+MuYa24LPweHHSxmL9v4lChCgizUNLVypKKe0YmRfgxSRESGM3cRhX3FtZTXNZMQ2UmZcHcypHlDIhIAepQMXXbZZb6OY/hLngzBkdBcC6X7zMXtgGCrhSlp0Ww7WsWOgmolQyIi4jMJkSFMTI1iX3EtG/LL+ErWiI4nqYiCiAQQFVAYKBYrpM8y35+83pAWXxURkQEyP9NcdPazrkpsu5Oh4p3mSAYRkWFMydBAss02t13MG1IRBRER8bUc11C5LivKJY6HoHBoqYfy/AGMTERk4CkZGkjueUMF7XuGslzltXcWVuN0Ogc6KhERCSA5Y82eod1F1VTVt3Q8wWKFVNdyEEXbBzAyEZGBp2RoINnmmNviXdBc79k9KS0aq8WgvK6ZououFsITERHpBynRYYxNisTphI1fdDNUTvOGRGSYUzI0kGJsEJUGTjsc2+bZHRZsZUJKFKDFV0VExPfcvUNdlthOzTK3SoZEZJjzKhlqbGzkm9/8Jp988omv4hneDONE79BJ84a0+KqIiAwU97yh9V3NG0qbbm6LdwxQRCIi/uFVMhQWFsa+ffuwWq2+imf4y3AnQydVlHMVUdipinIiIuJj7opyOwqqqGnsZN5Q6lTAgJpjUFsysMGJiAwgr4fJzZo1i+3bNaGy17rpGdpZqGFyIiLiW+lx4YxMCMfhhE2HKjqeEBoNCWPN98UaKiciw5fXydDPfvYzXnjhBdasWUNdXZ0vYhre0mcBBlQebvdp25QRMRgGHKtqpLS2yX/xiYhIQOi2xHaa5g2JyPDndTJ01VVXUVRUxN13383cuXOZNWsWs2fP9rzmzJnjiziHj7BYSJpovm/TOxQVGkRmUiSg3iEREfG9HNdQufV5XRRR8FSU07whERm+gry94IILLsAwDF/EEjgy5kLpXnPe0KSveHZPS48lr6SOHQVVnDUx2Y8BiojIcLdgrNkztP1oFfXNrUSEnPQngbuIgnqGRGQY8zoZWrp0qS/iCCy22bD1uY7zhtJjeH1boYooiIiIz2XEh5MeG0ZhVSNbDlVyxoSk9ie4y2uX7oOWBggOH/ggRUR8TOsM+YNtrrkt2AwOh2e3iiiIiMhAMQyDnLHuEtudDJWLSYfwBHNtvOO7Bzg6EZGB4XXPkNu+ffs4ePAgTU0dJ/t/7Wtf60tMw1/qNAgKg8YqKM+DpPHAifLah8rqqWpoITY82J9RiojIMJeTmcArnxewPq+TIgqGYc4byv+3ud6QbfbABygi4mNeJ0MNDQ384Ac/4LPPPsMwDJxOJ0C7eURKhrphDYYRM+DIenPekCsZiosIwRYXTkFlA7sKq1k4LtHPgYqIyHDm7hnaeqSSxhY7YcEnrSPoToY0b0hEhimvh8k9/PDDFBQU8Oyzz+J0Olm2bBlPPvkk5513HqNHj+aVV17pU0CrVq1i0qRJzJo1q0/3GfS6XG9Ii6+KiMjAGJMYQXJ0KM12B58frux4gqeinJIhERmevE6G1q1bx0033eRJVkaMGMHChQt58MEHmTZtGs8//3yvgykuLua+++4jJSWl1/cYMtzJ0NFN7XZnpWvekIiIDAzDMDwltjtdb6htee02c1xFRIYLr5OhgoICxo4di9VqxTAMGhoaPMcuvvhi1q1b1+tgfvWrXzF37lxOP/30Xt9jyHAnQ0W50Hpi3pW7iMKOAvUMiYiI752yiELSRLCGQHMNVB4a4MhERHzP62QoOjqa+vp6ABITEzl06MQvx9bWVs8xb7366qts2LCBX//61726fsiJHwMRieBoaTf8YJprmNzBklrqm1v9FJyIiASKBa6eoS2HK2huPan3xxoMKVPM9xoqJyLDkNcFFCZNmsQXX3zBokWLyMnJ4dFHH2X06NGEhISwfPlyJk+e7HUQZWVl/Pa3v+XHP/4xaWlpXl/flt1u79N1vb2+NyzpszEOvIvjyEacI8xhh4kRwSRHhVJS28TOgkpmj4ofkFj80f7BRO1X+9tuA01f2x+oP7fhYnxKFImRIZTVNbP9aCVzxyS0PyE1G45tM5OhqZf4J0gRER/xOhm6/PLLPb1B//Vf/8XVV1/NtddeC0BMTAwrVqzwOoh7772XzMxMrr76aq+vPVlubt8+uerr9d4YYbWRDlTseI8vQuZ79o+MgpJaeHvDLizlkQMWDwxs+wcjtV/tD2SB3v5AZRgG8zMTeGtHEevzyzsmQ+55Q8U7Bj44EREf8zoZuuiiizzvR44cydtvv+0psz1r1izi4uK8ut/bb7/Nv/71L9asWdOuPHdvZWdnY7Vauz/xJHa7ndzc3F5f3ytRpbD3KRIa8ombOdOze2HJfrYUHaTaEsvMmVkDEopf2j+IqP1qv9rf+/a7r5ehK8eVDH2WV8YtZ49vf1AV5URkGOv1oqtuERERfPnLX+7VtXV1dfzmN7/h2muvJSUlhepqs4JaS0sLANXV1QQFBREREdHje1qt1j79MdPX670ych4ARvlBrE1VEGF+GpedEQfAzmPVA/6H2YC2fxBS+9V+tT9w2x/I5meaRRQ2H6qgxe4g2NpmSnGa60O5qiNQX+55VomIDAdeF1DoTxUVFZSWlvLEE08wb948z+uNN96gvr6eefPm8ZOf/MSfIfpWRAIkjDXfF27x7J6WbhZR2FdcQ1OrxuKLiIhvTU6LJjY8mPpme8elHcJiIW6U+V5D5URkmOlRz9DkyZN7PITNMAx27drVo3OTk5N55plnOuxfsWIFGzdu5G9/+xvx8QNTQMBvbHOhPA+Obobx5wKQER9ObHgwVQ0t7C+u9ZTbFhER8QWLxWDemATe213M+rwyZo6Ma39C2nSoPGyuN5S5yC8xioj4Qo+SoVtuuaVf5vOcLDQ0lJycnA77X3nlFaxWa6fHhh3bHMh9EQo2e3YZhkGWLYaPD5Sxs7BKyZCIiPjcgrGuZCi/nJvPGtf+YFo27HlD84ZEZNjpUTJ02223+TqOwJUx19wWbAKnE1xJZ1Z6LB8fKGNHQTVXzfNjfCIiEhByXPOGNuaXY3c4sVrafAiqIgoiMkz5dc5QV5YuXcrnn3/u7zAGRmoWWIKhvqzd6t7TXL1BOwqr/BWZiIgEkKnpMUSHBlHT1MruYyfNG0p1FVEo2QOtzQMfnIiIj3hdTW7NmjXdnvO1r32tF6EEqOAw8xO3wi1wdBPEjwFOFFHYfayaVruDIOugzFtFRAalu+66i1deeaXL4y+88AIz2yxp0NbLL7/M3Xff3emx//znPyQnJ/dHiIOO1WIwd0w87+8t4bO8svZDtONGQWgsNFVB6d4TPUUiIkOc18nQXXfd1en+tnOKlAx5yTbHTIYKtkD2FQBkJkYSGWKlrtlOXmkdE1Oj/RykiMjQ8cMf/pBvfvObHfYvWbKEkJAQsrO7/2P+d7/7HWPHjm23z9u19Iaa+ZmJvL+3hPX55XzvzDZtNwwzATr0H3OonJIhERkmvE6G1q1b12FfRUUF69at48033+TPf/5zvwQWUDLmwsa/mfOGXCwWg6npMWz8ooKdhVVKhkREvDBq1ChGjRrVbt+GDRuoqKjgBz/4QY/WU5owYUKPkqbhJGesuYbQxi/KcTicWE6eN+ROhkREhgmvkyGbzdbpvqysLFpbW3nmmWdYunRpvwQXMGxzzO2xbWBvAWswANPSY9n4RQU7Cqq5bJYf4xMRGQZWr16NYRhcfvnl/g5l0Mq2xRIRYqWyvoV9x2uYnBZz4qB78VUlQyIyjPTrRJSFCxfyr3/9qz9vGRgSxpmL2rU2QvFOz273vKEdBSqiICLSFzU1Nbz99tssXLiQkSNH9uiaJUuWMGXKFObPn8+tt97Kvn37fByl/wVbLcwZba7vtz6vvP3BthXlnM4BjkxExDe87hk6lYKCAiwWTfT3msUC6bMh731zvaH0mQCeyau7Cqs7DlcQEZEee+ONN2hsbOSKK67o9tykpCSWLFnCzJkziYqKYt++faxYsYKrrrqKlStXMnnyZK+/v91u703Ynut6e31vzBsdz0f7S/ksr5Rv57RJHBMmYLEEYTRWYq84DLEZPo/FH+0fTNR+tb/tNtD0tf09vc7rZGjjxo0d9jU3N7N3714effRRFi5c6O0tBcx5Q+5kaN53ARifEkVIkIWaplaOVNQzOjHSz0GKiAxNq1evJi4ujvPOO6/bcxctWsSiRYs8X8+bN4+zzjqLiy++mL/85S888sgjXn//3Ny+DS3r6/XeSLCbpbM/2V/C559/3q5A0pSoUURU55H/6atUpZ0+YDENZPsHI7Vf7Q9kvm6/18nQtdde2+4XI4DT1V1+2mmn8ctf/rJ/Igs07nlDBZs9u4KtFqakRbPtaBU7CqqVDImI9MKePXvYsWMH1113HSEhIb26R0ZGBnPmzGHbtm29uj47O7tHRRtOZrfbyc3N7fX1vTGl1cH/fPQeVU0Oom0TGJ8S5TlmfDEPcvMYG1GHs4vS5P3JH+0fTNR+tV/t73373dd3x+tk6JlnnumwLzQ0FJvNRlJSkre3Ezd3MlSyFxqrIcycLzQ1PdZMhgqrWDx9hB8DFBEZmlavXg3AlVde2af7OJ3OXg8Ft1qtffpjpq/XeyPCamX2qHg+zStj46FKJo1os97QiOmQ+wKW4zthAP84G8j2D0Zqv9qv9vuu/V4nQ/Pnz/dFHBKVArGjoOowFH4OY88CIMumIgoiIr3V3NzM66+/zvTp05k4cWKv73PkyBG2bNnCaaed1o/RDV7zMxP4NK+MDfnlfHvB6BMH2hZREBEZBrz+iCs/P58NGzZ0emzDhg188cUXfY0pcGW4h8qdWG8oK/1EEQWnqveIiHjlvffeo7KyssteoXvuuYepU6dSUFDg2Xf99dezbNky3nvvPT799FOefvpprr76agzD4I477hio0P3Kvd7Q+vyy9s8edzJU8YU5ikFEZIjzumdo6dKljBkzptMeovfff5/8/Hz++te/9ktwAcc2B3a+AgVbPLsmpUVjtRiU1TVTVN3IiNhwPwYoIjK0rF69moiICC666KJOjzscDux2e7s/+CdOnMhbb73FE088QVNTEwkJCSxYsIAf/vCHZGZmDlTofjV7VDwhVgvF1U0cKqtnTJJrzmpEAsTYoLrAXApitIomicjQ5nUylJub2+UnbPPmzeP111/vc1AByzbX3B7dZK7hYBiEBVuZkBLFnqIadhRUKxkSEfHCE088ccrjS5cu7bBQ+D333OPLkIaEsGArM0aaC3+vzy87kQyB2TtUXWAOlVMyJCJDnNfD5GpqaoiIiOj0WFhYGFVVmtvSayNmgGGF2iKoLvTsnuYaKqd5QyIiMlByMhOBUy2+un2AIxIR6X9eJ0Opqals3975L8Dt27eTnJzc56ACVkgEpE4137edN+QqorCzUMmQiIgMjBPzhk5KhlKzzK2KKIjIMOB1MnTuueeyYsUKPvvss3b7169fz9/+9rceLWgnp9DJekNZNrNnaGehJquKiMjAmDM6niCLQUFlA0fK608ccPcMHd8N9lb/BCci0k+8njN0yy238J///IcbbriBMWPGkJaWRlFREV988QXjx4/ntttu80WcgcM2FzY/BUdPJENTRsRgGHCsqpHS2iaSokL9F5+IiASEiJAgsmyxbD1SyYb8ckYmuIbIx2dCSBQ010LZfkiZ4t9ARUT6wOueoejoaF544QVuvfVWYmNjKSwsJDY2lttuu41//OMfREVFdX8T6VqGq4hC4efgsAMQFRpEZqI5eVW9QyIiMlDaltj2sFg0VE5Ehg2ve4YAIiMjueWWW7jlllv6Ox5JmnjiE7eSPZA6DYBptljySuvYUVDFWRM1L0tERHxvQWYij/47r+O8obQsOPKZWURh+jf8E5yISD/wumfIraamho8++ojXXntNFeT6k8UK6bPM923nDaWbRRR2qWdIREQGyNwx8VgMOFRWT1FV44kDnopyO/wTmIhIP+lVMrR8+XLOPPNMbrrpJn72s59x9OhRAL7zne+wYsWKfg0wILmLKBxtW1HOVV5bFeVERGSARIcFe5Z3aDdUzpMM5Zrr4omIDFFeJ0PPPfccy5cv54orruDRRx9tt2r32WefzQcffNCf8QUm97yhgi2eXdNcPUOHyuqpamjxR1QiIhKAcjLNeUOftV1vKGUqGBaoL4WaIj9FJiLSd71Khq6//np+8YtfcMYZZ7Q7Nnr0aA4dOtRvwQUsd8/Q8Z3QXAdAXEQItrhwQEPlRERk4OSMdS2+2rZnKDgcEieY71VEQUSGMK+ToSNHjnDmmWd2eiwyMpLqav2h3mcx6RCdDk4HFG717NbiqyIiMtDmjYnHMCCvpI7jNZ3MGypWMiQiQ1evSmuXlpZ2eqygoIDExMQ+ByWAbba5bVdEQYuviojIwIqLCGFSajQAG/MrThxoO29IRGSI8joZWrhwIY899hj19SdWozYMg9bWVlauXNlh6Jz0kmfeUCdFFArUMyQiIgNnQWdD5ZQMicgw4HUydPvtt1NYWMjixYtZunQphmHw7LPPcuWVV3Lo0CF++MMf+iLOwOOeN9RJEYWDJbXUN7f6IyoREQlA7iIK69sWUXAnQ2UHPfNbRUSGGq+TodGjR7Ny5UrGjh3LypUrcTqdvPrqq8THx/P888+Tnp7uizgDT/oswICqI1BTDEBKTBjJ0aE4nLD7WI1/4xMRkYAx35UM7S2uobyu2dwZlQJRqYATinf5LzgRkT4I6s1F48eP5/HHH6e5uZmKigpiY2MJCwvr79gCW2g0JE+Gkt3mvKHJFwHm4qvv7y1hV2EVc0bH+zlIEREJBIlRoUxIiWL/8Vo25Jfzlaw080BaNhwohqLtMHKef4MUEemFXi266hYSEkJqaqoSIV/JcA+V62zekIooiIjIwMkZ6xoqp3lDIjKM9KhnaM2aNV7d9Gtf+1ovQpEObHPg82fbVZRzrwS+Q+W1RURkAOVkJvLsZ4fbzxtKzTK3SoZEZIjqUTJ011139fiGhmEoGeovNndFuS3gcIDF4imisK+4hqZWO6FBVj8GKCIigcJdRGF3UTVVDS3EhgdD2nTz4PFd4LCDRc8kERlaepQMrVu3ztdxSGdSpkJQODRVQ9kBSJ5IRnw4seHBVDW0sL+41jNsTkRExJdSYsLITIokv7SOTV+Uc86UVEgcZz6nWuqhPA+SJvg7TBERr/QoGbLZbL6OQzpjDYL0mXD4U3PeUPJEDMMgyxbDxwfK2FlYpWRIREQGTE5mAvmldazPdyVDFiukTjWHcxdtVzIkIkNOrwso1NbW8p///Ic33niDjz/+mNra2v6MS9w86w2dmDeUla4iCiIiMvA8RRTyOiuisMMPEYmI9E2vSms//vjjLFu2jMbGRpxOJ4ZhEBYWxu23384NN9zQ3zEGNncydPRERbmprnlDKqIgIiIDKSczEYAdhdXUNrUSFRqkinIiMqR5nQytWbOG+++/n0WLFnHZZZeRkpLC8ePHWbNmDb///e+Jj49XAYX+5E6GindASyMEh3mGxu0+Vo3d4cRqMfwYoIiIBIr0uHBGJoRzpLyBTV+U86VJKSeKKCgZEpEhyOthck899RRf/epXWbFiBRdeeCFz5szhwgsv5NFHH2Xx4sU8/fTTvogzcMWNgshkcLSa47GBzMRIIkOsNLY4yCvR8EQRERk47t6h9fmuEtspUwEDaougtsR/gYmI9ILXyVBeXh6XXHJJp8cuueQSDh482OegpA3D6DBvyGIxNFRORET8Yr6rxPYGdzIUGgUJY833xeodEpGhxetkKCwsjKqqzv8Ar6qqIiwsrM9ByUnc6w21mTc0TUUURETEDxa4eoa2H62kodlu7tS8IREZorxOhubMmcOyZcsoLi5ut7+kpITly5czd+7cfgtOXGyzzW2binLuxVd3FKhnSEREBs7IhHBGxIbRYney5XCFuVPJkIgMUV4XUPjRj37EN7/5Tc4//3wWLlxIcnIyJSUlfPbZZwQFBbFs2TJfxBnY3MlQRT7UlUFkoqeIwq7CahwOJxYVURARkQFgGAY5mQms2VrI+rwyTh+fpGRIRIYsr3uGJkyYwOrVqznnnHPIzc3l5ZdfJjc3l3POOYdVq1Yxfvx4X8QZ2MLjIdH1cy3cAsD4lChCgizUNLVypKLej8GJiEigyRlrDpX7zD1vyJ0Mle6HlgY/RSUi4r1erTOUmZnJn/70p/6ORU7FNhfKDpjzhiacR7DVwpS0aLYdrWJHQTWjEyP9HaGIiASIHFcRha1HKmlssRMWPQIiEqG+DI7vPjGiQURkkPO6Z0j85KSKcgBT3UUUVFFOREQGUGZSJMnRoTS3Oth6pNKsfKqhciIyBPWqZ2jXrl28/vrrFBYW0tTU1O6YYRg88sgj/RKctJHRJhlyOsEwyLKpiIKIiAw8wzCYn5nAP7cfY0N+OQvGJkJqFuR9oGRIRIYUr5OhNWvWcPfdd2OxWEhISCA4OLjdccPQRH6fSM0Cawg0lJuFFBLGkpV+ooiC0+nUz15ERAbMAlcytD6/DJgAadPNA8U7/BqXiIg3vE6GHnnkEc466yzuu+8+YmNjfRGTdCYo1HzQFGyCo5shYSyT0qKxWgzK6popqm5kRGy4v6MUEZEA4S6isPlQBc2tDkI8w+R2gMMBFo3EF5HBz+vfVMePH+e6665TIuQPJ80bCgu2MiElCtDiqyIiba1fv55JkyZ1+tq6dWu315eVlXHXXXeRk5PDjBkzuOqqq/j00099H/gQMiElioTIEBpbHOQWVELSBLCGQnMNVH7h7/BERHrE656hKVOmdFhwVQZIxlzY8KjZO+QyLT2WPUU17Cio4rypqX4MTkRk8PnRj35ETk5Ou30TJkw45TXNzc1cf/31VFdX8/Of/5zExESee+45vve97/Hkk08yf/58X4Y8ZBiGwfwxCazdWcRneeXMGZ0AKZPh2DZz3lDCWH+HKCLSLa97hn7605+yYsUK9uzZ44t45FTcPUPHtkNrM4CniMJOVZQTEelg9OjRzJw5s90rMvLUSxGsWrWKffv28cADD3DJJZdw+umn8+CDDzJmzBjuv//+AYp8aMgZa5bYXn/yekNFmjckIkOD1z1DM2fO5Pzzz+eyyy4jOTm5w3A5wzB47bXX+i1AaSNhLITFQWOlOUHVNpssm/nz31moYXIiIv3hvffeIzMzk1mzZnn2BQUFcckll/CnP/2J4uJiUlPVEw+Qk+maN/RFOa12B0HuIgqqKCciQ4TXPUMrVqzg0UcfJT4+nvT0dOLi4tq9NJfIhwyjw7yhKSNiMAw4VtVIaW3TKS4WEQk8v/nNb5g6dSqzZ8/mu9/9Lps2ber2mv379zNp0qQO+9379u/f3+9xDlWT06KJCQuirtnOjsJqrTUkIkOO1z1DzzzzDJdffjm/+c1vsFqtvohJTiVjLhxc50qGbiIqNIjMxEjySuvYWVjNWROT/R2hiIjfRUdHc91115GTk0NcXByHDh3i8ccf57rrruPRRx/lzDPP7PLaysrKTj/Yc++rrKz0Oh673e71NW2v6+31A2HemHjW7Snhs4OlZM+bghWg+ij22lIIj+/TvYdC+31J7Vf7224DTV/b39PrvE6G6urq+OpXv6pEyF9O6hkCmGaLJa+0jh0FVUqGRESAqVOnMnXqVM/Xc+fO5bzzzuPiiy/m/vvvP2UyBKdeM683a7rl5vatp6Sv1/tSRkgjAO9u+4J50VVkRYwgtP4YBz5eQ23SrG6u7pnB3P6BoPar/YHM1+33OhmaPXs2Bw8eZOHChb6IR7rjToZK90FDJYTHkZUew+vbCtmleUMiIl2KiYnhS1/6Ev/4xz9obGwkLCys0/Pi4uI67f2pqjIL1fRmOHh2dnavPkS02+3k5ub2+vqBYEmq4untn7Kvwk729BkE75sDe99gQlQDzpkz+3TvodB+X1L71X61v/ftd1/fHa+ToZ///OfcfvvtpKWlsWjRIkJCQrwOTvogMgniRkPlISj8HMad7SmisEMV5URETsnpdAKn7t2ZOHEi+/bt67Dfva+70tydsVqtffpjpq/X+1J2RhxRoUHUNLay73gdWSOmw943sBzfCf0U82Bu/0BQ+9V+td937fc6Gbr88stpbW3ltttuwzCMDp+sGYbB5s2bu7ha+kXGXDMZKtgE485mWrpZXvtQWT1VDS3Ehgf7OUARkcGnqqqKDz74gClTphAaGtrleeeeey733nsv27ZtY8aMGQC0trby2muvMWPGDFWSO0mQ1cLcMfF8sLeE9fnlZKVlmQdUXltEhgCvk6ELLrigV+OlpR/Z5sCOl6BgCwBxESHY4sIpqGxgV2E1C8cl+jlAERH/+vGPf8yIESPIysoiPj6eQ4cO8cQTT1BWVsbSpUs9591zzz2sWbOGd999F5vNBsAVV1zB888/zx133MGPf/xjEhMTef7558nPz+fJJ5/0V5MGtZzMRDMZyivju1muinIle8w18YI0gkREBi+vkiG73c7NN99MQkKCSmj7k22uuT26CZxOMAyybDEUVDaws7BKyZCIBLxJkybx5ptv8o9//IP6+npiY2OZM2cOv//975k+fbrnPIfDgd1u9wyfAwgJCeGpp57i/vvv53//939paGhgypQp/O1vf2P+/Pn+aM6g5158dcMX5TiiZ2MJi4XGKjMhGjG9m6tFRPzHq2TI6XSyePFiHnnkEc466yxfxSTdGTEdLEFQdxyqjkLcSLLSY3l7Z7EWXxURAb7//e/z/e9/v9vzli5d2q6nyC0pKYn77rvPF6ENS9m2WMKDrVTWt7C/pI5Jqdlw6D/mekNKhkRkEPNq0dWgoCCSkpLafYImfhAcDqnTzPcF5gKCniIKBSqiICIiAyvYamHOaHNNofX5ZScWXy3WvCERGdy8SoYAFi9ezJo1a3wQinjlpPWG3EUUDpbUUt/c6q+oREQkQOVkmkPl1ueVn0iGigJ7fRQRGfy8LqAwefJk3nzzTa677jrOP/98kpOTOxRUOP/88/stQOmCbS5segKOmslQSkwYydGhlNQ0sftYjecTOhERkYGQM9acr7o+vwznl7MwAIq2e+a2iogMRl4nQz/72c8AKC4uZsOGDR2OG4bB7t27e3y/Tz/9lNdee43PP/+coqIioqOjycrK4pZbbiErK8vb8AKHu2fo2Fawt4I1iKz0GN7fW8KuwiolQyIiMqBmjIwlNMhCaW0zB8lgvCXILKJQdQTiRvk7PBGRTnmdDD3zzDP9GsDKlSuprKzkuuuuY/z48ZSXl/Pkk09y1VVX8dhjj7Fw4cJ+/X7DRtJECImG5hoo2Q1p2WTZYnl/bwk7ClREQUREBlZokJVZo+L4LK+c9YdrGZ882ZwzVLRDyZCIDFpeJ0P9XVb0V7/6FYmJ7UtBn3nmmZx//vk8+uijSoa6YrGAbRbkf2jOG0rL9swb2lGoIgoiIjLwcjITzWQor5xr0rJdyVAuTL7I36GJiHTK6wIKbjU1NXz00Ue89tprVFX1/o/vkxMhgMjISMaNG8exY8d6fd+A0Ha9IWBaullRbl9xDc2tDn9FJSIiAcpdRGFDfjnOVNdQ96LtfoxIROTUepUMLV++nDPPPJObbrqJn/3sZxw9ehSA73znO6xYsaLPQdXU1LBr1y4mTJjQ53sNa56KclsAyIgPJzY8mBa7k33FNX4MTEREAtGsUfEEWw2Kqhs5HuF6hquinIgMYl4Pk3vuuedYvnw5V199NWeeeSY333yz59jZZ5/NO++806OF7k7l3nvvpaGhgSVLlnh9rd1u79X3dF/X2+v9YsQsrICzZDeOhioIiWJaegyfHCwj92glU9KienyrIdn+fqT2q/1tt4Gmr+0P1J+bdBQeYmVGRhybDlXwaV06XwOoPGQWUgiL9XN0IiId9SoZuv766/npT3/a4QE4evRoDh061KeAHnjgAV5//XV++ctf9qqaXG5u3z6B6uv1Ay07LJmQxhIOfPgStUkzSLI2APDv7XlMDCr1+n5Drf39Te1X+wNZoLdf+kfO2AQ2HargwwI7X4vJgOqjULwTRp/m79BERDrwOhk6cuQIZ555ZqfHIiMjqa7ufSWzZcuW8cgjj3DnnXfy7W9/u1f3yM7Oxmq1en2d3W4nNze319f7i2X/AtjzOhMiqnDOnMlho5DX9m2nuDmYmTNn9vg+Q7X9/UXtV/vV/t633329CJhFFJa/f9BcfHVUtpkMFeUqGRKRQcnrZCg6OprS0s57HAoKCjotiNATy5Yt46GHHuK2227r1fA4N6vV2qc/Zvp6/YDLmAt7XsdSuAWsVqaPNNcX2l1UA4YFq8W7he6GXPv7mdqv9qv9gdt+6R9zRsdjtRgUVDZQPX0SMbylIgoiMmh5XUBh4cKFPPbYY9TX13v2GYZBa2srK1eu5IwzzvA6iOXLl/PQQw/xgx/8gFtvvdXr6wNahquiXMFmADITI4kMsdLY4iCvpNaPgYmISCCKDA0i22bOD9ppH23uLNrhx4hERLrmdc/Q7bffzhVXXMHixYs599xzMQyDZ599lt27d1NYWMgDDzzg1f2eeOIJHnzwQc4880y+9KUvsXXr1nbHvRnqFZBGzATDAtUFUH0MS8wIpqbHsPGLCnYUVjEhNdrfEYqISIDJGZvA1iOVfFg9goUAx3eDvQWswf4OTUSkHa97hkaPHs3KlSsZO3YsK1euxOl08uqrrxIfH8/zzz9Penq6V/d7//33Afjoo4+46qqrOrykG6FRkDzFfO/qHXKvN7SjoPfzt0RERHrLvd7Q2oIQCIkGexOU7vdzVCIiHXndMwQwfvx4Hn/8cZqbm6moqCA2NpawsLBeBfD3v/+9V9dJGxlz4PhOMxma8lWmpccAsKOg94vhioiI9NbcMQlYDMgvb6R57BRCCjdA8Q5Inerv0ERE2vG6Z+juu+/myJEjAISEhJCamupJhAoKCrj77rv7N0Lpnmfx1U0AZLnGau8qrMbhcPorKhERCVAxYcFMdX0wdzR0vLlTRRREZBDyOhl65ZVXqKio6PRYRUUFa9as6WtM4i2bu4jC5+BwMD4lipAgCzVNrRypqD/1tSIiIj6Qk2lWl93aMtLcUaTy6yIy+HidDJ1KVVUVISEh/XlL6YnkyRAcAc01ULqPYKuFyWlm4QTNGxIREX9wzxt6tzzZ3FGUC06NVhCRwaVHc4Y2btzI+vXrPV+vWrWKDz/8sN05TU1NrFu3jnHjxvVvhNI9axCkz4JDH5vzhlImMy09lu1Hq9hRWMXi6SP8HaGIiASY+ZkJGAb8qzwJZ7gFo74MaoogRs8kERk8epQMrV+/nmXLlgHmmkKrVq3q9Lz09HT+3//7f/0XnfScbbYrGdoEs64hy6YiCiIi4j9xESFMSo1mT1ENtVFjia45YPYOKRkSkUGkR8nQ9773Pa655hqcTiennXYajz/+OFOntq8IExISQmRkpE+ClB6wtV98NSv9RBEFp9OJYRj+ikxERAJUTmYCe4pqyA/KZDoHzCIKE8/3d1giIh49SobCwsI8FePWrVtHcnKy5gYNNu6KcsU7oaWBSWnRWC0GZXXNFFU3MiI23L/xiYhIwMkZm8jTnx5iQ4ON6aAiCiIy6HhdQMFmsykRGoxiMyAqFRytcGw7YcFWJqREASqiICIi/jHfVUTh39Vp5o7iHX6MRkSkI68XXW1paeFvf/sbb7zxBoWFhTQ1NbU7bhgGu3bt6rcApYcMw+wd2vumOW9oVA7T0mPZU1TDjoIqzpua6u8IRUQkwCRFhTI+JYrdx0ebO8oOQlMthEb5NzARERevk6E//elPPPXUUyxatIhzzz1XvUSDiScZcs0bssXw0hbYWaieIRER8Y+czASeO15LTXAS0S2lcHwXjJzv77BERIBeJENvvfUWt9xyC7feeqsv4pG+cM8bOroJgCybWURhZ6EqyomIiH/kjE3kufWH2cto5lJqFlFQMiQig4TXc4aqqqqYO3euL2KRvrLNNreVh6CulCkjYjAMOFbVSGlt06mvFRER8QH34qsbGmzmjiLNGxKRwcPrZGjevHns2bPHF7FIX4XFQtJE833BZqJCg8hMNMuda6iciIj4Q2pMGGMSI9jlcM0bUkU5ERlEvE6GfvGLX7B69WreeecdmpubfRGT9MVJ6w1Ncw2V0+KrIiLiLzmZiexyupKh4p3gsPs3IBERF6/nDF166aW0trZyxx13YBiGZ/0hN8Mw2Lx5c78FKF6yzYZtz5+YN5Qew+vbCtmlniEREfGTnLEJrNqURhOhhLY2mFXlkif6OywREe+ToQsuuADDMHwRi/SHjDY9Q04n09JdPUMqoiAiIn6SMzYRBxZ2OUYyy3IAinOVDInIoOB1MrR06VJfxCH9JWUaWEOhsRLK85iWPhKAQ2X1VDW0EBse7N/4REQk4NjiwsmID2dXzWgzGSrKhazL/R2WiIj3c4ZkkAsKgREzzPdHNxEfGYItLhxAQ+VERMRv2s0bUhEFERkketQztHPnTq9uOm3atF4FI/3ENgeObjCHys24iixbDAWVDewsrGLhuER/RyciIgEoZ2wC//h8lPmFkiERGSR6lAxdfvnlPZon5HQ6MQyD3bt39zkw6YOMubAeKHAXUYjl7Z3FKq8tIiJ+k5OZwK+do3A4DSy1xVB7HKJS/B2WiAS4HiVDv/vd73wdh/Qn9+KrRbnQ2sQ0Wwyg8toiEjg+/fRTXnvtNT7//HOKioqIjo4mKyuLW265haysrFNe+/LLL3P33Xd3euw///kPycnJvgh52BuVEEFMTBz5jWmMM46Zz6jx5/g7LBEJcD1Khi677DJfxyH9KT4TwhOgoRyKdpCVbg5bPFhSS31zKxEhXtfNEBEZUlauXEllZSXXXXcd48ePp7y8nCeffJKrrrqKxx57jIULF3Z7j9/97neMHTu23b64uDgfRTz8GYZBztgEdu8czTiUDInI4KC/iocjwzDnDR14Fwo2k5Ixh+ToUEpqmth9rIY5o+P9HaGIiE/96le/IjGx/RzJM888k/PPP59HH320R8nQhAkTyM7O9lWIASknM5FduaP4qvUzKN7h73BERFRNbtjyrDd0YvFVgF1ab0hEAsDJiRBAZGQk48aN49ixY36ISMAsouCuKOc4tt3P0YiIqGdo+LLNMbcFmwGYlh7L+3tL2FGgIgoiEphqamrYtWsXCxYs6NH5S5Ysoby8nOjoaObPn8/tt9/OxIm9WyjUbrf36breXj/YjI4Poyh8AtjBKNuPvbEWgsO7PH+4td9bar/a33YbaPra/p5ep2RouHInQ2UHoKGCLHcRBfUMiUiAuvfee2loaGDJkiWnPC8pKYklS5Ywc+ZMoqKi2LdvHytWrOCqq65i5cqVTJ482evvnZvbt1LSfb1+MEmIS6S0NIYkqtn38avUx3X/8xxO7e8NtV/tD2S+br+SoeEqIsEspFCRDwVbmJZujo/fV1xDc6uDkCCNkBSRwPHAAw/w+uuv88tf/rLbanKLFi1i0aJFnq/nzZvHWWedxcUXX8xf/vIXHnnkEa+/f3Z2Nlar1evr7HY7ubm5vb5+MLqg8TC7147iTOsOJsU245w5s8tzh2P7vaH2q/1qf+/b776+O0qGhrOMua5kaDMZ475MbHgwVQ0t7CuuIcsW6+/oREQGxLJly3jkkUe48847+fa3v92re2RkZDBnzhy2bdvWq+utVmuf/pjp6/WDyYJxSXzgHM2Z7MBZtKNH7RpO7e8NtV/tV/t91351DwxnbeYNGYbhGSq3U0PlRCRALFu2jIceeojbbrut2+Fx3XE6nVgsemz21YSUKA4FjwOg4fBW/wYjIgFPv9WHM5urotzRTeB0Mi3d7A1SEQURCQTLly/noYce4gc/+AG33nprn+515MgRtmzZwowZM/opusBlsRiEZJg/x5CyXeBw+DkiEQlkGiY3nKVlgyUY6kuh8jDT0lVEQUQCwxNPPMGDDz7ImWeeyZe+9CW2bt3a7vhM1zyVe+65hzVr1vDuu+9is9kAuP7665k7dy6TJ08mMjKSffv28dhjj2EYBnfccccAt2R4Gj1hBk2Hgwm110PlF5AwtttrRER8QcnQcBYcBmlZUPg5FGwiy3YBALuPVWN3OLFaDD8HKCLiG++//z4AH330ER999FGH43v37gXA4XBgt9txOp2eYxMnTuStt97iiSeeoKmpiYSEBBYsWMAPf/hDMjMzB6YBw9z88SnsfS+D6UY+9sLtWJUMiYifKBka7mxzXMnQFjKnfp3IECt1zXbySmqZkBrt7+hERHzi73//e4/OW7p0KUuXLm2375577vFFSNLG5LQYXrVkMp18Sg9sIjXra/4OSUQClOYMDXdt5g1ZLAZTRmionIiI+JfVYtCYMAWAxiO9q9AnItIflAwNd+6Kcse2gb3FU1JbRRRERMSfosbMMreVu/0ciYgEMiVDw13ieAiNhdYGOL7rRBGFAvUMiYiI/2ROywEg0V6CvbbMz9GISKBSMjTcWSxgMz99o2Czp2doV2E1DofzFBeKiIj4zpQxGRxxpgJwZPd6P0cjIoFKyVAg8Mwb2sz4lChCgizUNLVypKLev3GJiEjACrJaKI4YD0Dxvk1+jkZEApWSoUDgnjdUsJlgq4XJaWYVOc0bEhERf3KkZpnbY9v9HImIBColQ4HAnQyV7IHGaqalu4ooqKKciIj4UcI4c+RCYu0+Dd0WEb9QMhQIolMhdiTghGNbybKZRRR2FqpnSERE/GfUVLOIQqbzKAeLVERBRAaekqFA4e4dOrqJLFfP0M6CqnarrouIiAykkIRR1BlRBBt29uZu9Hc4IhKAlAwFijbzhialRWO1GJTVNVNU3ejfuEREJHAZBhUxkwCoyPvcz8GISCBSMhQoMlwV5Qo2ExZsZUJKFKAiCiIi4l/W9Onm9vgOjVYQkQGnZChQjJgBhhVqjkF14YkiClp8VURE/ChxvPlh3Vh7HnmldX6ORkQCjZKhQBESCSlTzfdHN6mIgoiIDAohrp6hKcYh1h9UEQURGVhKhgKJbba5Ldjs6RnaqfLaIiLiT8mTsRtBxBr17Nu/y9/RiEiAUTIUSNrMG5qabvYMHatqpLS2yY9BiYhIQAsKoTFuAgB1h7Zq3pCIDCglQ4HEXVGu8HOigg3GJkUCGionIiL+FZoxE4D0hv0cKW/wbzAiElCUDAWS5MkQHAnNtVCyl2k2DZUTERH/C0rPBmCK5TCf5WvekIgMHCVDgcRihfRZ5vuCzWS5hsrtVHltERHxpzQzGZpqfMH6vHI/ByMigUTJUKDJcC++uulEeW31DImIiD+lZgEwylLCzrzDfg5GRAKJkqFA4543VLCZaa6eoUNl9VQ3tPgxKBERCWgRCThiMgCIqdpLQaXmDYnIwFAyFGhsropyxbuID27FFhcOwK5jGionIiL+Y0k7MW9ofZ7mDYnIwFAyFGhi0iEqDZx2OLbNs/jqrmM1fg5MREQCmmfe0CHNGxKRAaNkKNAYRpv1hja1WXxVPUMiIuJH7mTI8gUbvlAyJCIDQ8lQILLNNrcFmz09Q0qGRETEr9LMIgoTjaMcKa3ieHWjnwMSkUCgZCgQuecNHd1Mlqtn6GBJLU2tWvVbRET8JG4MhEQTarQy1jjGZ/nqHRIR31MyFIjSZwEGVB0mxVJNcnQoDiccqlJFORER8ROLxdM7ZM4bUhEFEfE9JUOBKCwGkieZ79ssvppX0erHoEREJOB55g0dYr16hkRkACgZClTuoXIFmz1FFPIq1TMkIiJ+lOruGfqCA8drKa1t8nNAIjLcKRkKVO4iCkc3eYoo7C1t5lhVI06n5g6JiIgfuHqGsoKOAE42flHh33hEZNgL8ncA4ifu8tqFW8j6ajQAR2vsnPH7D0iJDmXGyDhmjoxjRkYc2RmxxIYH+zFYEREJCClTwLAS56wmlQo2fFHOpRn+DkpEhjMlQ4EqZSoEhUFjFRmOY/z4vAm8vDGfw9V2jtc08e6uYt7dVew5fWxSJDNGxjEjI5YZI+OYMiKGsGCrHxsgIiLDTnA4JE2Ekt1MtRxiQ/5oLs2I9HdUIjKMKRkKVNZgGDETjnwGBZv54Zeu5LS4GiZNzWZPcS1bj1Sy/WgV245WcqisnrzSOvJK63jl8wIAgq0Gk9NimDEylhkZZi/S2OQorBbDv+0SEZGhLS3LTIaMQ3xQXENNc7i/IxKRYWxQJEN1dXU88MADvPXWW1RVVTF27Fi+//3vs3jxYn+HNrzZ5pjJ0NFNkHUlAOEhVuaOSWDumATPaRV1zWw7Wsm2I1WubSVldc3kFlSRW1DFsxwGICo0iCxbjDnELiOOGSPjGBEbhmEoQRIRkR5Ky4bcVcwLL8BZC7tLmjnT3zGJyLA1KJKh2267jdzcXH784x8zZswY3njjDX70ox/hcDi4+OKL/R3e8JUxx9wWbD7lafGRIXxpUgpfmpQCgNPppKCywZMcbT1SyY6CKmqbWvksr5zP8k6UQ02ODmVGxonhdTMy4oiN0PwjERHpgruIguUQAG8eqGfUjiJmj0lgRKx6iUSkf/k9Gfr3v//Nxx9/zB//+Ee++tWvArBgwQIKCwv5/e9/z0UXXYTVqrkpPmFzJUNFudDa2OPLDMMgIz6CjPgIFk8fAYDd4eTA8Vq2Halkq6v3aE9RDSU1Tby3u5j3dp+Yf5SZFOlJjqZnxDEtXfOPRETEJdVMhhKbC4igkdzjcMvKrQCkxYQxa1Sc6xVPVnos4SF6fohI7/k9GXr33XeJiIjgK1/5Srv9X//61/nxj3/Mtm3bmD17tp+iG+biRkNEEtSXQvEO+vKfg9ViMCktmklp0Xxj3kgAGlvs7Cysaje87ouyevJL68gvrWPN1kIAgiwGk0dEmz1Irip24zT/aMhzOp3YHU7sTicOB7Q6HDgcYHfv9xxz0ur62tH22EnHHa6v2x43z3fd2/Xecz/XtW3v1fFa89Vqd1BSUs0HpfuJCA0mPNhCeIiVsGAr4cFWwkM634YFWwkNsmgo6CDVlyHYZWVl3H///bz//vs0NjYyefJk/uu//ouFCxcOQOQBLioZotIwaov463mhPHswnKMNQewpqqGoupG3dhTx1o4iwHz2TBkRzayR8Z4EaUxihP6fFJEe83sytH//fsaNG0dQUPtQJk2a5DnuTTJkt9t7FYf7ut5eP1RZbLMx9r+D88hGCFvYr+0PtsDMjFhmZsQCowCoqDfnGm07Ys432nqkirK6ZnYUVLOjoJrn1pvzjyJDrGTZYpjuHmKXEevT+UfD/d/f6XRS09hKaW0TpbXNlNY2U1LbdOLrmkaKy6sJW/8ZDuiQgHi+9iQ4YLe3STicHZMMx1BcrmrfQa8vMQw8iVF4sOXE+7bJVLDFs6/DuafYF+G6R1iQhSCr75aF6+t//4P1/5veDsFubm7m+uuvp7q6mp///OckJiby3HPP8b3vfY8nn3yS+fPnD2ArAlRaNhwo4oyoY0TOmc3MmTNpbHW6nhuVfH64gi2HKympafI8P/7+mTmsLi4imJkj4zwJ0oyRcVoeQkS65PdkqLKykoyMjosIxMbGeo57Izc3t0/x9PX6oSbNYsMGVO16H2YvHJD2xwBnJsCZCVacWfGUNjg4UN7C/vIWDpS3cLCihbpmO+vzK1iff2LBvbhQC+MSgpmQEMx41ys6pH//QBxK//5Op5O6FieVjQ6qmhxUNtqpbHS0+dpBVaODyiY7VY0OWhw9uWuzr8P2sBpgMcBiGG3em19bLJ0dM7AY7usMz/lWS/uv2x1rt9/8FNnS6fc1cDidNNuhye6kqdVJk91Jc5v3TXYnzW3et7p+nk4n1DfbqW/2bUIQZIFQq0Go1SAkyPC8Dw0yCGnzPtRqEGLF876z881zjHbnRAQbQ+q//+70ZQj2qlWr2LdvH//4xz+YNWsWADk5OVx66aXcf//9rFq1asDaEbDSsuHAu1Cc61kkPDI0iAVjE1kwNhEwfwcWVjWy9bCZHH1+pJLcgioq61v4YG8JH+wt8dxuXHIks0a5eo9GxjMxNcqnHzCISO/ZHU7qm1upbWjG4fT9J6t+T4aAU37a721PQHZ2dq/mGNntdnJzc3t9/ZAVXQZ7nySh/iBf0PufX1+d1+a93eHkYEmtq7S3+dpbVENlk4PNx5rYfKzJc+7oxAhmZMQy3RbL9IzYXs8/Giz//k6nk6qGFlfvTZOnB6eszdfubVltE812735JRIUGkRQVQlJUaLttQmQwlccLyRw9mqAgq5lEWAyCLObWakCQxYLFQifHDKwW18s4cb7VajG3HY6Z28GkN//+rXYHja0OGlvsNDTbaWix09jioMH1dWOLua/Bc9xxYp/nuMN13cnXnDjX/RxodUCrw0yAfSEp3MI7PzqL2IhQr691//wGk74MwX7vvffIzMz0JEIAQUFBXHLJJfzpT3+iuLiY1NRUn8Yf8FxFFIyiXLB1fophGNjiwrHFhXvmrza3Oth9rNrTe/T5EXN5iIMldRwsqWP15qMARIRYybbFtkmQ4kiJCRuQpokMJ06nk6ZWB3VNrdQ326ltajUTmSY79U2trq/t1DW3UtfUSl2TvfNz2xxvaDnx4eKM1BBennWKAPqB35OhuLi4Tnt/qqqqgBM9RD1ltVr79MdsX68fcjLmAmBU5GNtrh4U7bdaYUp6HFPS47jKNRqlscXOrmPVbDtizj3adrSK/NI6DpXVc6isnte2HQPM+UeT0qLbLRA7ISW6x/OPfNF+p9NJZX0LpbVNrqFpzZTUuIao1ZwYqlZS00RZXRMtXiY40WFBJEeFmolNtJngJEeFkhQd2i7pSY4O7TJRtNvtbN1awczp6X7/9/cnb/79rVYroSHg3W8o77gfMo3tkip38mQmUvXNrW0SsvbJlTsZa2xun5i1T8ocNNsdGAZYLP7//7+/9GUI9v79+5kzZ06H/W2vVTLkY65kiOO7wdnzXteQIIv5+39kHN85bQwAZbVNbD1S6UqQzG1tUyvr88tZn3+i+qktLpyZrsRo1qh4FfeRYcnucFLX3Ep9U9tkxPzaTFjMZMWTvDTbPUlKfYd95nu7j8bFWy0GaVG+/3/Q78nQxIkTeeONN2htbW330Nq3bx8AEyZM8FdogSEiARLGQflBIiv3AIv8HVGnwoKtzB4Vz+xR8Z59lfXNbD9axfajlWw9Yo4jL61tYmdhNTsLq3l+vXleRIiVLFssM12lvWeMjMUWF96n+UcOh5PKhhZPQlNS2+RKcNw9N+arpMbs1Wn18hdFTFiQJ5lJdiU0yZ7kxp3omEmOHtbDl2EY5pyhYCtxPvw+Tc0tbN++jegwvz8S+k1fhmBXVlZ2+kFcb4dvg+azei12NJbgCIyWekJrC7DbZ/b6VnHhQXxpYhJfmpgEnBh94H5ubD1Syb7jtRRUNlBQ2cA/t5sfrgVbDaakxTBzVCyzXMV9Rsb37dnhrUD693c4nJTVNVNU3UhRVSPF1U0UVTVQWFzD2mN7CLJaMDzDnw3zAxzPsGqjzRDpE8esljbnuY4brv3u9+2HV7c/r7N7d33/E9/bvH/HY573FsPzva2G0SEOd4wOu50mu5PjVQ002p3tEpETvS3uJKX917Vt9rf9urFnY+Z7xT3XNTI0iEjX1vzaSmRIEBGubduvo9rtD2p3fZDhZMeOHT6fz+r3J9+5557Liy++yDvvvMNFF13k2f/KK6+QkpLCjBkz/BhdgMiY2yYZGjriIkJYNDGZRROTAfNT9GNVjZ7y3tuPmIlSXbOdDfnlbGjzCWBiZIhn3aMZI2PJSo/G4TR/EVfUt3oSGU9vTk1zuwSnvM77BCc2PPjE0LRoM8lJjm47XM3cnxgZogRHBlSQ1YJlGFbf6ssQ7P4cvg2az9obk6LGEFWxi4jqAz5p/8QgmJgJ38iMoqElggMVLewva2FfeQv7ylqoanKwvaCK7QVVPPOpWdwnJtTChIRgJiYGM9E1dzUi2Pdzj4b6v3+T3UlFg52yBgflbbblDXbK6s33FY0OuhwYsbduQOMdfIq7P8VLVgPCgwzCggzCgi0n3gcZ7d8HW9rtO3HMQnjwiX2hQeYw+K7ZXa+T5ia3ul510Ij5Kj/pSl//9+/3ZOiss87i9NNP59e//jW1tbWMGjWKf/7zn3z00Ufcf//9w2bIxqBmmwPbXyCyYre/I+kTwzBIjwsnPS6cC7NPrH+UV1LL1iOVbDtayfajVew+Vk1ZXTP/2nOcf+057rneYoDD6d0vnLiI4JPm35gJTnKbIWtJUaEkRoUQGqT/lkUGSl+GYPf38G3QfNbeMApzYPMuYo+vZ+Ts87DE2iA83izh6ANti6Y7nU6OVjTwuWtY9tYjlewsrKb6pLmrhgHjk6NcPUexzBwVx/h+XBpisP/7O53mKIni6iaOVTVSXG2+iqqbXL07Zg9PZUNLt/ey4CDNqGRSRB0TI6oZE1JNurWSlsZ6giLjabWE0myE0EwozYb5vskIpcW1bSKEZtq8N0JodgbhwMDhqnTqcILD6cTpem9v89593NmmIqqz3TW0q5ZqHmt7Tft7tzvm7Px+3ogIadu7Yu3Qi+L+Ouqk/RFtemIiQ91fBxFiNQZ9Cfq+/vff0/msfk+GAB566CH+/Oc/8+CDD1JZWcnYsWP505/+1KO1IKQf2Mx5QzHHN8AD0yA6DaLSICrF9T71xL7oVIhMgaAQPwfdM1aLwYTUaCakRnPl3BPrH+12zz86WsW2I5XkldZ5SkHHexKc9sPRPEmOK9FJjAwlJEjViEQGo74MwZ44caLnvLb6Mnxb81l7YcR0ABKPvguPvWvus4aYz6PoESdt09t/HRrd56RpTHI0Y5KjuWz2iWfHrmPVZvU6V4GGoxUN7D9ey/7jtbzoKs4QFRrE9IxYT+W6maPiSIryvjBJW/7492+xOzheYw5VK6pqosid6FS5Xq6vm1q7H3YVRT2jgquYElnL2LAaRgdXMcJSQZKjjNjWUiKajhPcUILhdJidBzUn3aC6t60wIDgcgsJOve3JOT29Rw//u2ufNJ1Itjz7HE5aWu3s3bWDnDmzCA4eFH+y+4Wv//sfFD/ZyMhIfvGLX/CLX/zC36EEprRsnEmTMEr3Qs0x89Wd8ISTEqVU1/tUV9Lk2hca5fv4vRQWbHVVEDox/6iitpGNW7ezaP4swkK0HoXIUNeXIdjnnnsu9957L9u2bfOc19raymuvvcaMGTNUPGGgTLsMR96HNB7dRnhLJUZDOdibofKw+TqV4Mj2yVHMiE4SqBHmH7A91Nnc1eM1Zmlvd3GGbUfN4gyfHCzjk4NlnvNGJUSYax+5FoadOiLGrx+m1TS2eBIadw+O+725NQv6dNd7YcVOGpVMjKhhQngtmaHVZFgrSaWcBEcZ0c0lhDUWY2lxDXNzj4PqimEx/4Zw/Xs5olIpKasgOS4Ki70JWhqgtbHNthFaG8xtS/2JY7gDd5r7W+qhoe8/tx4JCutRAmUEh2ENCscaHAZB4eDZnkis7NZQUioPYzlcZ34IbVjBEgQW9zaozded7XO9N1zHB3lPkL8MimRI/CwoBMfN/2Hn+n8xbXQi1vpSqCmC2uKTtsfN944WaCg3X8d3nfreIVFmD5O7V6nt1tPzlGYWcvDj/6Qx4cEkhlsJ1roTgcfp7PjyFz2o+k1Ph2Dfc889rFmzhnfffRebzazhfMUVV/D8889zxx138OMf/5jExESef/558vPzefLJJ/3ZrMASHo/z8sfZvXUrM2fOxOpsNZ9FNUWuD+662DZVQ0sdlB80X6cSFtuxV+nkbVRql6MhUqLDOH9aGudPSwPModn7imtcVesq+PxwJfuP13K4vJ7D5fW8tq0QMKveZaXHMNO1MOysUXF9Luzj/v5lteaQtXY9OW22xVWN1HW7LpqTaBrIsFYwKaKW8eE1jHL15iQ7y4ltLSWy6TjBjaVmb44DqHO9uhIaY/5MY0ac+JnHpLffF5Vi/tHujsJu5+jWrSTNnGmWmu0Jp9NMmjskTt1t2yRWrQ3m/p6e62g98f1bG81XY2XP4j0FKzAR4LM+38pkdJdEnXTcsHSdYFlOkZgZp7jnqRK3k6/DQlCT7z9UVzIkJouVlvBkSJ956l84Dgc0VEBtUZsEqQhqittva49Dc635Kq+F8rxuvn9w+56lDkP0XNvIZLCq56aD1mbz4d/sftW2eX/yq80x1zWWplom11Rg2RSB+YmaOylwnviArd2+k7bQ9TFnm0/onF3cp8fXOzu/j9fXt7kO84EzB+CNvv0zDFVWYFrkSJj6CYTH+DucftOTIdgOhwO73Y6zTRIcEhLCU089xf3338///u//0tDQwJQpU/jb3/7G/Pnz/dEUAQgKhfjR5utUmmpdH+J1kTBVF5rb1gZorDJfJd3MmY1MPnXCFJ0OkUlYLVamjIhhyogYrs4ZBUBVQ4tZ9bTN8LqK+ha2HK5ky+FK+Nj8FsnRoebcI9fwuukZsYQFnUiOGprtnffktEl8jtc0dVvmOIhWRlDF2LAqJkXUkhlSZfbmWCpJsJcS3VJKWEMx1tZ684IW16srhvXEz8Kd1Hh64kacSHgGaqSIYZj/rQT1bWiiV+ytJyVSnWzb9lz1KBlrxNnSQENdNeGhwRgOu5l0OexmuXlHa5vXSV93xWkHux3sTV2fM4hYgQkx4yFng0+/j5Ih8Y7FApGJ5it12qnP9TyQitokSsUde5ways3epuqj5uuUDIhI7GaInmsbEtFvze43Dof5C7HThKW2i2Pu9/WdX9NcZ/78+sAAIgEq+6GNMiRZW2pP/RAdgnoyBHvp0qUsXbq0w/6kpCTuu+8+X4YnvhIaZb4Sx3V9jtNpJkHd9TLVFJm/X+tKzFfRKSZjG9YTz6U2yVJsdBpnxozgzKwRsHAczrA4DpU38PmRCk+CtKuwmpKaJt7ZVcw7u8xCPhYDJqRE0dDQSNUb66jqtgiBkxjqGWFx9+ZUMzq4inRLBUnOCuJaS4lsPk5wQymG+8Ogetery59l7InE5uReHPf+yOR2vTkByRoE1mhzrlo/ctjtJ3pGvZkz43CclCx1lkR1llB1kWT1+bqTj7d2EmObc5zmPZ32Fkpj53e17nK/UTIkvtOTBxKYvRp1x9v0LhW1SZra9DjVHTf/J6kvNV/FO7r5/jE9GKKXalYnOpnTCa1NruSks8TkFL0t7ZKak3tiTvXU6QfWEAiJNMfLh7R9Rbm2EW3en9hvt4aRf7iAzLHjXL9wDdeQLcPMlDxfc9KxzrbdnUM/3afNcJI+3sfucJCbu4Ps7Cys/fpQ98GQOx8M47M77OTuyWdGmC+XkBUZRAwDwuPMV8rkrs9zOMwP7LrrZao7bv4BV1Novk71ra0hjIlOY0z0CC6LToNxI2jJTuVIayy7ayPZXB7Gh8esHKg22FtcC5i9OelUMjq4ikmRNWSGVDMyqJJUo4JERynRLWWENRZjbXVNjGmlYxGCtixBJ3pu2g1Xa7tNM58TMvRYLGAJAYZGsauuOOx2SrZuVTIkASAoBGIzzNepOBxQX+ZKlE4emndSj1NLvTluvOn/t3fnQU3e+R/A3wlBOVQiIuLPYy1oIkcWL4gX9ah3sWC9dmYHXG9qYV1R11q3W3A91zpuwUWkuIqu42gVHbVWW4+O7qwExdVlPVHRFVoVUS6RI+H5/cHmqZGACCERnvdrJuP4fb5Jvt8nyfOez/N8E4qA/Nt1P65da8jbuMNXD8h/0P98BeYN/ur5m5O9UpTUVrzUVdi8crN3bviv/BkMKKy4DKj61H9ddktiMMDQ2qX6qqNE5y/Y5dp6FERvH7kccHarvnloau9n0FdfOarzKtNP1Rlm5kcg7AF4/u9mXMRZ1dYJZa3cgPJiOOoLfr6a87ofIXBQvnIV59UrO/8HOLlVz42IWAxRMyKXA206Vt/gV3s/QQDKi80vyTP5MYiH1d9/MpRDVvgADrU9nsKxzqsqsHcyU6S0+V9/M+32TtW/FMMvyxMRtQx2iurCo13nuvvpy3/OodquMhU/BMoLIa8shVPlS7+aJ7c3LXBevYpjLHrexiXiRG8xFkPU8shkgEO76pvba/4eyP+CyVD4I27fvIaePn1g59DO9IqL1NdCExGRZShaA8ru1be6VDwHih/CUPQTbmbnQD1gOOzauPNqDlETYDFE0mYMprZdUPLEHujsL81lUkRE9PZo5Vz9fVtlD7x4evl/P1LAQoioKfCTRUREREREksRiiIiIiIiIJInFEBERERERSRKLISIiIiIikiQWQ0REREREJEkshoiIiIiISJJYDBERERERkSSxGCIiIiIiIkliMURERERERJLEYoiIiIiIiCSJxRAREREREUkSiyEiIiIiIpIkFkNERERERCRJLIaIiIiIiEiSFLYegKUIggAAMBgMDbq/8X4NvX9zx/lz/i//KzWcf+Pmb7yf8ThMP2M2NQ7nz/m//K/UcP7WySaZ0ELSq6KiApmZmbYeBhGRZGk0GrRq1crWw3irMJuIiGzrddnUYoqhqqoq6PV6yOVyyGQyWw+HiEgyBEFAVVUVFAoF5HKuvn4Zs4mIyDbqm00tphgiIiIiIiJ6EzyFR0REREREksRiiIiIiIiIJInFEBERERERSRKLISIiIiIikiQWQ0REREREJEkshoiIiIiISJJYDBERERERkSRJohhKTU2FWq0Wbz4+Phg6dCgWLVqEe/fumfS9ePEiVqxYgQ8//BB+fn5Qq9XIycmxzcAtpL7zNxgM2L59O2bPno13330X/v7+GD9+PL744gsUFRXZbgJN5NX98upNp9PZeogNdvz4cajVahw7dqzGtg8++ABqtRrnzp2rsW3UqFGYNGkSAODMmTP4/e9/j4kTJ8LX1xdqtbrJx20pjZ1/SUkJtmzZgrCwMAwZMgR9+/bFxIkTkZSUhPLycmtMoVEs8fpv2rQJoaGhCAwMhEajwXvvvYfPPvsMubm5TT5+qWA2MZvMYTYxm17FbGrabFI0+J7N0Nq1a+Hp6Yny8nJcunQJiYmJ0Ol0+Pbbb+Hi4gIASEtLw/nz5+Ht7Q1nZ2ekp6fbeNSW87r5l5WVIT4+HsHBwZg6dSrat2+Pa9euYcuWLThz5gwOHDgABwcHW0/D4oz75VU9e/a0wWgsIzAwEDKZDGlpaZgwYYLYXlBQgFu3bsHJyQk6nQ5BQUHitocPH+LBgweYOXMmAOD777/HlStX4O3tDXt7e1y9etXq82ioxs7/xx9/REpKCkJCQvCb3/wGTk5OyMjIwObNm/HPf/4T27dvh0wms8XU6sUSr39RURHef/99eHl5wdnZGbdv38aWLVtw+vRpHD16FO3bt7f6vFoqZhOzyRxmUzVmE7OpqbNJUsVQr169oNFoAABarRYGgwHx8fE4efIkJk+eDABYsGABIiMjAQDbtm1rUYHzuvk7ODjg1KlTJm8krVaLzp07Y+HChThx4gRCQkJsNfwm8/J+aSlcXV3Rq1evGu/fCxcuQKFQYPLkyTXOLqalpQGofs0BYNWqVZDLqy8er1y5slkFTmPn37VrV5w+fRpOTk7i9kGDBsHR0RF//vOfkZGRgQEDBjT9RBrIEq//559/brLduF/mzZuHU6dOYcqUKU04A2lhNjGbzGE2VWM2MZuAps0mSSyTq43xIJOfny+2GT9gUvDq/O3s7MxW1L/85S8BVFfn1HxotVpkZ2fj8ePHYptOp4Ofnx+GDRuGq1evoqSkRNyWnp4OOzs78UDa3D8LjZm/k5OTSdgYNafPQmNff3NcXV0BAAqFpM6jWR2zidnUkjGbmE1vWzY173dUIxnXW/fo0cO2A7GR+s7fWJU350vzdamqqoJerze5GQwGWw+r0QYOHAgAJmdgdDodAgMD0a9fP8hkMmRkZJhs8/HxQdu2ba0+1qbQFPNvTp8FS81fr9ejrKwM165dw5o1a9CjRw+MHj3aOpOQKGYTswlgNr28jdnEbGrKbJJUMWQ8sDx//hznzp3Dli1bEBAQgJEjR9p6aFbRkPk/evQIGzduhJ+fH0aMGGHF0VrPtGnT4Ovra3JrCUsTAgICIJfLxQPOs2fPkJWVhYCAADg7O8PHx0c8gP7000/IyckRL0O3BJae/40bN5CcnIzRo0ejd+/eVplDY1hi/nl5efD19YW/vz8mTZoEg8GAnTt3wtnZ2erzacmYTcwmc5hNzCZmk3WySVJrHaZNm2byfy8vLyQkJEhmycebzr+goABz586FIAj4y1/+0uwvTddm/fr18PLyMml7m7+AWF8uLi7o3bu3uP72woULsLOzQ79+/QBUH5CMBxxjn5YUOJacf05ODiIiIuDh4YFVq1ZZYfSNZ4n5t2/fHvv370dFRQXu3r2L5ORkhIeHY9euXXB3d7fibFo2ZhOzyRxmE7OJ2WSdbGqZR5BarF+/Hvv370dKSgqmT5+OO3fuIDo62tbDspo3mX9hYSFmzZqFR48e4W9/+xu6detm5dFaj5eXFzQajcnNz8/P1sOyCK1Wi3v37uHRo0fQ6XTw9fUVz5wEBgbi+vXrKC4uhk6ng0KhQP/+/W08YsuyxPxzc3MRHh4OOzs7pKSkQKlUWnkWDdfY+SsUCmg0GvTv3x9Tp05FSkoKcnJykJSUZIvptFjMJmaTOcwmZhOzyTrZJKliyHhgGThwIFauXImpU6fi3LlzOH78uK2HZhX1nX9hYSFmzpyJnJwcbN++vVlcdiXzjGdT0tPTkZ6ejoCAAHGb8eBy4cIF6HQ6aDSaFrf8qbHzz83NRVhYGABg586d8PDwsNLILcPSr7+Hhwfc3d1r/A0cahxmE7NJaphNzCbg7ckmSRVDr1q6dClcXFwQFxeHqqoqWw/H6szN3xg2Dx48wLZt2+Dj42PjUVJjBAQEwM7ODidOnEBWVhYCAwPFbW3btoW3tzcOHTqE3NzcFrUMwagx8//xxx8RFhaGqqoqpKSkoEuXLtYefqNZ+vW/f/8+Hj58iF/84hdNOWzJYzYxm1o6ZhOz6W3KJmksSK6Fi4sL5s2bhw0bNuDIkSMICQnB06dPxS913bp1CwBw9uxZuLq6wtXV1eQFa+5enf/YsWMxe/ZsXLt2DZ9++ikMBgMuX74s9nd1dUX37t1tN+AmkpWVZfYXerp37y7+XGNz1aZNG/j4+ODkyZOQy+U1LjUHBAQgJSUFQM01ubm5ucjMzAQA/Pe//wUA8Uxtly5dmsUXeRs6//z8fISHhyMvLw+rV69Gfn6+yc8ce3h4NIszcQ2d/40bN7B27VqMHTsW3bp1g1wux61bt7Bjxw4olUrMmjXLqvOQGmYTswlgNjGbmE2AdbJJ0sUQAISFhWH37t1ISEhAcHAwsrKysHDhQpM+sbGxAKrXMe7atcsWw2wyL8+/b9++4gFm9erVNfpOmjQJ69ats/YQm9zy5cvNtq9atQpTp0618mgsT6vVIjMzE97e3mjTpo3JtoCAAOzYsQP29vbo27evyTadTldj3xg/G83pvdCQ+d++fRsPHjwAUH2W+lWRkZGIiopq2oFbSEPm7+bmBnd3d2zfvh15eXnQ6/Xw8PDA8OHDERERgc6dO1t7GpLDbGI2MZuYTcwm62STTBAEoVGzISIiIiIiaoYk/Z0hIiIiIiKSLhZDREREREQkSSyGiIiIiIhIklgMERERERGRJLEYIiIiIiIiSWIxREREREREksRiiIiIiIiIJInFEBERERERSRKLIWqw1NRUqNVq8ebj44OhQ4di0aJFuHfvnq2HBwBITEzEyZMna7TrdDqo1WrodDobjKra6dOnERERgcGDB8PPzw+BgYGYMWMGDh8+jMrKSpuN61Xm9tUnn3yCkSNHNunzPnr0CPHx8bh+/XqTPg8RtSzMpsZhNtWN2dTyKGw9AGr+1q5dC09PT5SXl+PSpUtITEyETqfDt99+CxcXF5uObevWrRg7dixGjRpl0u7r64u9e/eiZ8+eVh+TIAj49NNPkZqaimHDhuGTTz5B586dUVxcDJ1Oh9jYWDx79gwzZsyw+tjqa8GCBQgPD2/S53j8+DE2b96MLl26wNvbu0mfi4haHmbTm2E21Q+zqeVhMUSN1qtXL2g0GgCAVquFwWBAfHw8Tp48icmTJ9t4dOa1adMGffr0sclzJycnIzU1FVFRUYiMjDTZNnLkSMyZMwf379+36pjKysrg4OBQ7/7du3dvwtEQETUes+nNMJtIqrhMjizOGD75+fkm7ZmZmYiIiEBgYCA0Gg1CQ0Nx7Ngxkz5Pnz5FTEwMJkyYgL59+2LQoEEIDw/HxYsXazxPRUUFNm/ejPHjx0Oj0UCr1SIsLAyXLl0CAKjVapSWluLgwYPicomwsDAAtS9FOHXqFKZPnw5/f3/07dsXM2fOxL/+9S+TPvHx8VCr1cjKykJ0dDT69++PwYMHY/ny5SguLq5z31RWViI5ORmenp74+OOPzfbp2LEjBgwYIP6/oKAAMTExCAoKgp+fH9577z1s2rQJFRUVJvcrLy/Hxo0bMXLkSPj5+SEoKAixsbEoKioy6Tdy5EjMnz8f3333HUJDQ6HRaLB582YAwJ07dzB79mz4+/tDq9Xij3/8I54/f15jjOaWIqjVaqxcuRKHDh3C+PHj4e/vjw8++ABnzpwx6Xf//n0sX74cY8aMgb+/P4KCghAREYGbN2+KfXQ6HaZMmQIAWL58ufj6xcfHi33q834iIjJiNtWO2cRskjJeGSKLy8nJAQD06NFDbEtLS8OcOXPg7++PmJgYtG3bFseOHcOiRYtQVlaGDz/8EED1wRUAIiMj4ebmhtLSUnz//fcICwvDjh07oNVqAQB6vR5z5sxBRkYGwsPDMXDgQBgMBly5cgU//fQTAGDv3r2YMWMGtFotFixYAKD6rFttjhw5giVLlmDo0KHYuHEjKioqkJycLD73yyEAAFFRUZgwYQKmTJmCW7duYePGjQCql2bU5j//+Q8KCgowdepUyGSy1+7L8vJyhIeH48GDB4iKioJarcbFixeRlJSE69evIykpCUD18oYFCxYgLS0N8+bNw4ABA3Dz5k3Ex8fj8uXL2Lt3L1q1aiU+7tWrV3Hnzh189NFH6Nq1KxwdHfHkyROEhYVBoVDg888/R4cOHXDkyBH86U9/eu04jX744QdkZmbit7/9LZycnJCcnIzIyEgcP34c3bp1A1C9xECpVGLx4sVwdXVFYWEhDh48iGnTpuHgwYPw9PSEr68v1q5di+XLl+Ojjz7C8OHDAQAeHh4A6v9+IiIyYjYxm5hNZJZA1EAHDhwQVCqVcPnyZaGyslIoKSkRzp49KwwZMkT49a9/LVRWVop9x40bJ4SGhpq0CYIgzJ8/XxgyZIhgMBjMPoderxcqKyuFGTNmCB9//LHYfvDgQUGlUgn79u2rc4x9+vQRli1bVqM9LS1NUKlUQlpamiAIgmAwGIShQ4cKwcHBJmMpKSkRBg0aJEyfPl1si4uLE1QqlfDVV1+ZPGZMTIyg0WiEqqqqWsfzzTffCCqVStizZ0+d4zbas2ePoFKphGPHjpm0JyUlCSqVSvjHP/4hCIIgnD171uyYjM+3d+9esW3EiBGCt7e3cPfuXZO+GzZsENRqtXD9+nWT9pkzZ5rsK0EQhGXLlgkjRoww6adSqYTBgwcLxcXFYlteXp7Qu3dvYevWrbXOUa/XCxUVFcKYMWOENWvWiO3//ve/BZVKJRw4cKDGfRr6fiKilo/ZxGx6GbOJXofL5KjRpk2bBl9fX/Tr1w9z5sxBu3btkJCQAIWi+sLj/fv3cffuXUycOBFA9Zkz4+3dd99FXl4esrOzxcfbs2cPJk2aBI1GAx8fH/j6+uL8+fO4c+eO2OfcuXNo3bq1xdZ9Z2dn4/HjxwgJCYFc/vPHwtnZGWPGjMGVK1fw4sULk/uYuxRfXl5eYwlGY6SlpcHJyQnjxo0zaTeeXTp//rzY7+V2o/Hjx8PJyUns9/JY33nnHZM2nU6HXr16oXfv3ibtwcHB9R6vVqs1OcPp5uaGDh06IDc3V2zT6/VITEzEhAkT4OfnBx8fH/j5+eHevXsmr3Ft3vT9RETSxGyqxmxiNlHduEyOGm39+vXw8vLC8+fPcezYMezduxfR0dFITk4GADx58kTst379erOP8ezZMwDA9u3bsW7dOvzqV7/CwoUL0b59e8jlcnz55Ze4e/eu2P/p06dwd3c3CYfGMD5/x44da2xzd3dHVVUVioqK4OjoKLYrlUqTfsZL/WVlZbU+T+fOnQH8vFzjdQoKCuDm5lZj2UKHDh2gUCjEpRsFBQVQKBRwdXU16SeTyeDm5ib2MzI3z4KCAnTt2rVGu5ubW73GCtTcJ0D1fikvLxf/v27dOuzevRtz585FQEAAXFxcIJPJ8Ic//MGkX23e5P1ERNLFbKrGbGI2Ud1YDFGjeXl5iV9MHThwIKqqqvD111/j+PHjGDduHNq3bw8AmD9/PkaPHm32MYxngg4fPozAwEDExsaabH/1i5Kurq7IyMhAVVWVRULHOMa8vLwa2x4/fgy5XI527do1+nn8/PygVCpx6tQpLF68+LVrs5VKJa5cuQJBEEz65ufnQ6/Xi+NWKpXQ6/V4+vSpSegIgoAnT56Ir4+RuedVKpXiwfxl5toa4/DhwwgNDUV0dLRJ+7Nnz+q1j9/k/URE0sVsqj9mE7NJyrhMjixu6dKlcHFxQVxcHKqqquDp6YkePXrgxo0b0Gg0Zm/Gy9cymczky5QAcOPGDVy+fNmkLSgoCOXl5UhNTa1zLK1atarzbJjRO++8g06dOuHo0aMQBEFsLy0txXfffYc+ffqYnHlrKHt7e8yZMwd3797FX//6V7N98vPzkZGRAQAYNGgQSktLa/xxvkOHDonbX/738OHDJv1OnDiB0tJScXtdtFotsrKycOPGDZP2o0ePvn5ib0Amk8He3t6k7YcffsCjR49M2mo7m/km7yciIiNmU+2YTcwmKeOVIbI4FxcXzJs3Dxs2bMCRI0cQEhKC2NhYzJ07F7Nnz8akSZPQqVMnFBYW4s6dO7h69Sri4uIAAMOHD0dCQgLi4uIQEBCA7OxsJCQkoGvXrjAYDOJzBAcHIzU1FTExMcjOzoZWq4UgCLhy5Qq8vLzw/vvvAwBUKhXS09Nx+vRpdOzYEc7OzvD09KwxZrlcjqVLl2LJkiWYP38+pk+fjoqKCmzbtg1FRUVYvHixxfaPMXDi4+ORmZmJ4OBg8Q/bXbhwAfv27UNUVBT69++P0NBQ7N69G8uWLUNubi5UKhUyMjKwdetWDBs2DIMHDwYADBkyBEOHDsUXX3yBkpIS9OvXDzdv3kRcXBx8fHwQEhLy2nHNmDEDBw4cwLx58/C73/1O/MWel5eAWMLw4cPFX+ZRq9W4evUqtm3bJv4aj1H37t3h4OCAI0eOwMvLC05OTnB3d0enTp3q/X4iIjJiNtWN2cRskioWQ9QkwsLCsHv3biQkJCA4OBgDBw7E119/jcTERKxZswZFRUVQKpXw8vLC+PHjxftFRETgxYsX2L9/P5KTk9GzZ0/ExMTg5MmTSE9PF/spFAp89dVX2Lp1K7755hukpKTA2dkZvXv3RlBQkNhvxYoViI2NRXR0NF68eIHAwEDs2rXL7JgnTpwIR0dHJCUlYdGiRbCzs4O/vz927tyJfv36WWzfyGQyrF27FqNGjcK+ffvE/WEc/5IlS8Qvm7Zu3Ro7d+7Epk2bkJycjGfPnqFTp06YNWuWyR/Fk8lkSEhIQHx8PFJTU5GYmAilUomQkBBER0fXOKNpTseOHfH3v/8dq1evRkxMDBwdHTFq1Ch89tln4s+/WsKKFSugUCiQlJSE0tJS+Pj4ID4+Hl9++aVJP0dHR6xZswabN2/G7NmzUVlZicjISERFRdX7/URE9DJmU+2YTcwmqZIJL193JSIiIiIikgh+Z4iIiIiIiCSJxRAREREREUkSiyEiIiIiIpIkFkNERERERCRJLIaIiIiIiEiSWAwREREREZEksRgiIiIiIiJJYjFERERERESSxGKIiIiIiIgkicUQERERERFJEoshIiIiIiKSpP8H0WhBngxasIoAAAAASUVORK5CYII=",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2EAAAHaCAYAAACJnkGgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC4B0lEQVR4nOzdeXxU1d0/8M+dmUz2ZLKTlSSQhUA2gYQtQRRXBKpi8bGtxcpjUUGs9qeC+qh97CNK6wZIRSu4ACotIqhQAZVFNoFsyBKWhGyQhCQz2ZdZfn9MJiQmJHNnT+bzfr3ymnDnnpvvGdvcfO8553sEnU6nAxEREREREdmExN4BEBERERERORMmYURERERERDbEJIyIiIiIiMiGmIQRERERERHZEJMwIiIiIiIiG2ISRkREREREZENMwoiIiIiIiGyISRgREREREZENMQkjIiIiIiKyISZhRERERERENiSzdwBE9pCQkNDj3y4uLvDy8kJYWBiSkpJw6623YtKkSZBIej+nMLQ9c+ZMn9caiK+vL1QqFZYsWYJ58+b1eU5+fj7+67/+CyEhIdi6dSu8vLy63isoKMCGDRtw5MgRVFdXQyaTITw8HFOmTMG8efMQEhLS41onTpzA3XffjdTUVHz++ee9fta2bdvw5z//GQDwww8/IDQ0tMf7zc3NyMjIgIuLC44cOQIXFxdR/RXr/Pnz2LBhAw4fPoxLly6hra0NCoUCSUlJuOmmmzBr1iy4urr2aif2cyEichS8J13lKPekX36ufbnhhhtQXl6O3bt3IyIiwqSfw3uX82ISRk5t4cKFAACNRoOGhgacPXsWW7ZswaZNm5CSkoK//e1vGD58uFHX6O7DDz9EQ0MD7r//fvj4+PR4b9q0aViwYAH+/ve/Y+LEib1umC0tLfh//+//QavV4rXXXuu62el0Ovztb3/D+++/D5lMhkmTJuHWW29FR0cHcnJy8MEHH2Djxo1YtmwZbr311q7rJSUlwdfXFydOnEBjY2OPmycAHDp0CIIgQKfT4dChQ7jzzjt7vH/06FF0dHRgwoQJVk/AVq5ciVWrVkGr1SItLQ133nknPD09ceXKFRw9ehTPPfccNm7ciM2bN3e1MfVzISJyNLwnOdY9yZp47yLoiJxQfHy8Lj4+vs/3qqurdY899pguPj5eN23aNF1NTY3RbQ2mTZumi4+P15WWlvb5/t69e3UJCQm6O+64Q9fW1tbjvf/5n//RxcfH615//fUex1esWNEVU2FhYa9r7tixQ5ecnKwbNWqU7sCBAz3ee/TRR3Xx8fG63bt392p3ww036B544AHduHHjdE899VSv91999VVdfHy87v333++3z+Z65513dPHx8bqpU6fqcnNz+zxnz549ut/97nc9jpnzuRAROQLek65ylHuSJT7X/vDeRVwTRvQLgYGBeOONN5CRkYHy8nK8++67Fv8ZWVlZ+O1vf4vCwkL8/e9/7zq+Z88efPrppxg9enSPp5mlpaVYvXo1XFxcsHr1asTFxfW65i233IIlS5ZAo9HgxRdfhFar7Xpv4sSJAPRPGLsrKytDWVkZJkyYgHHjxvV6v3sbwzWsoaysDKtWrYKLiwvWrFmD1NTUPs/Lzs7G+++/3/Vvcz8XIiJHx3tST7a4J1kb710EsDAHUZ8kEgkeeeQRAPr56dbw//7f/8PIkSPx4Ycf4uDBg6itrcXSpUvh7u6Ov/3tbz2mWWzevBlqtRo33nhjv/P977nnHgQFBaG4uBhHjhzpOj5hwgQAwMGDB3ucb/j3hAkTkJmZicuXL6OoqKjrfZVKhVOnTkGhUCAxMdEi/e7L5s2b0dHRgZtvvhnx8fH9niuXy3u0M+dzISIaDHhP0rPVPcnaeO8igGvCiK5p7NixkMlkqKmpQVlZmcmLbq/F1dUVf/vb33DPPffg6aefRkJCAq5cuYIXXngBsbGxPc49duwYAGDy5Mn9XlMmkyEzMxNfffUVjh8/3nWjGzFiBIKDg3H27FnU1tbC398fgP6JopeXF0aPHt2V3Bw6dAgxMTEAgCNHjkCr1SIzM7PPBeGWcvToUQDin2ya+7kQEQ0WvCfZ7p7U3YoVK675Xn19vUnX5L2LAI6EEV2TXC6Hr68vAKC2ttYqP2PUqFFYvHgxKisrsXfvXlx//fW47777ep135coVAMCwYcMGvKbhnKqqqh7HMzMzuxY6Gxw+fBjjxo2DVCpFQkICFApFj/dtNe3D0D+xVaAs8bkQEQ0GvCfZZyriypUrr/nV0NBg0jV57yKAI2FEdvfggw/iww8/RHV1NZ566qk+z9HpdAAAQRAGvJ7hnF+eO3HiRGzbtg2HDh3C7bffjvPnz6O6uhqZmZld52dkZODw4cPQ6XQQBKHrhmfs07e+nhjeeeedAz6xFdM/U9v98nN599138e2336KoqAhyuRxpaWl44oknBpwOSUQ0lPGe1JMxJeq7M+beYonPjwY/JmFE19De3g6VSgUA8PPzs9rPkUgkXdMu+tr/CgCCgoJw4cIFXL58ecDrGc4JCgrqcfyXC6G7z703yMjIwLfffoszZ84gICAA586dw7Bhw7qmggxk5cqVvY5lZGQMeMMLDg42un/dmfO5HDlyBPfddx+Sk5Oh0+nw9ttv44EHHsDXX38NhUIhKg4iImvjPcl29yRzGHNvscTnR4MfpyMSXcPRo0ehVqsRGBiIyMhIu8YyduxYAMCBAwf6PU+j0eDw4cMAgOuuu67He2FhYYiKisLFixdx6dIlHDp0CL6+vj0WNxueQB46dMikaR9nzpzp9WW4pjH966sSljHtTPlc/vnPf+Luu+9GfHw8EhIS8Nprr6G2thbHjx8XFQMRkS3wnmS7e5I5jLm3WOLzo8GPSRhRH7RaLVavXg0AuOOOO+wcDXDXXXdBKpVi586dOHfu3DXP+/e//42qqirExMQgIyOj1/uGm9eBAwfw008/Yfz48T0WN8fFxcHf37/HDc8WC4HvuusuuLi44D//+U+//QP0T4O7t7PE5wIATU1N0Gq1vTYyJSKyN96TbHtPsqS+7i2WvHfR4MUkjOgXampq8Kc//QlHjhxBWFgY/vjHP9o7JERGRuKPf/wjOjo6sGDBgj5/ae/atQt//etfIZVK8cILL/RZOcpw81q3bh2USmWvJ4KGOfhHjhzpmhpiiwXQERERWLhwITo6OvDQQw+hoKCgz/P27t2L+fPnd/3bUp8LAPz1r3/FqFGjkJ6ebplOERFZAO9Jtr8nWVJf9xZL3rto8OKaMHJqhkW7Wq0WDQ0NOHv2LI4dO4aOjg6kpKTgb3/7W1fpXHtbtGgRWlpasHbtWsyePRtTpkzByJEjoVarkZOTg7y8PLi5ueHvf//7NW9SEyZMgCAIKCwsBIA+p2VkZmZix44daGpqQmxsrOiKhaZasGAB1Go1Vq1ahTlz5iA9PR1jxoyBp6cnrly5gqNHj6K4uBhjxozp0c4Sn8urr76KY8eOYePGjZBKpbboLhFRL7wnOc49yRL6u7dY4vOjwY1JGDk1w6JdFxcXeHp6Ijw8HL/61a9w8803Y8qUKQ715EkikeCZZ57B7bffjvXr1+Onn37CwYMHIZVKER4ejj/84Q/4/e9/32/JW39/f8THx+PMmTPw8/PrsxJg95ugrad9LFy4ELfddhs2bNiAw4cPY/PmzWhvb+/amHP+/PmYPXt2jzbmfi6vvPIKvv76a3z44Yd2X2dBRM6N9yTHuieZY6B7iyU+PxrcBJ2hTiYRkZN5+eWX8c033+Djjz/GiBEj7B0OERENAby3kDE4EkZETunFF1/E1q1bsWrVKvj4+KC6uhoA4OHhAU9PTztHR0REgxHvLWQsjoQRkVNKSEjo8/jChQuxaNEiG0dDRERDAe8tZCwmYURERERERDbkOCs8iYiIiIiInACTMCIiIiIiIhtiEkZERERERGRDTMKIiIiIiIhsiCXqzaTVaqFWqyGRSCAIgr3DISJyGjqdDlqtFjKZzKE2sXUEvDcREdmHsfcmJmFmUqvVKCgosHcYREROKzk5GXK53N5hOBTem4iI7GugexOTMDMZMtzk5GRIpVLR7TUaDQoKCkxuP9ix/+w/+8/+m/v7k6NgvfHeZB72n/1n/9l/a9+bmISZyTDNQyqVmvU/VHPbD3bsP/vP/rP/puJ0u954b7IM9p/9Z//Zf1MNdG/i40MiIiIiIiIbYhJGRERERERkQ0zCiIiIiIiIbIhJGBERERERkQ0xCSMiIiIiIrIhJmFEREREREQ2xCSMiIiIiIjIhpiEERERERER2RCTMCIiIiIiIhtiEkZERERERGRDTMKIiIiIiIhsiEkYERERERGRDTEJIyIiIiIisiEmYXbU1KbGoxtysOtCs71DISIiAgCculSPeWt/wrnaDnuHQkQ0ZDEJs6OLNc3Y8XMlNpxohE6ns3c4RERE2He2GvvO1eCrs032DoWIaMhiEmZHsUGekEkEqNq0uKRqtXc4RERESBzmAwA4W8ORMCIia2ESZkduLlLEh3gBAPLLVHaOhoiICEiNVAAALjdpUNPUbt9giIiGKCZhdpYc7gsAKChnEkZERPbn6+6CkUGeAIC8UqV9gyEiGqKYhNlZSoQ+Ccsvr7dzJERERHqG0bAcJmFERFbBJMzOUrqNhGm1LM5BRET2lxapvzfllXKWBhGRNTAJs7O4EC/IJUBDqxrFNaxERURE9pfeORKWV6aEhg8IiYgsjkmYnblIJYjxcwHA4hxEROQY4oK94CYV0NimwfnqRnuHQ0Q05DAJcwAjOpOwvDKlfQMhIiICIJNKMMJff2/KKamzczREREMPkzAHMNKfI2FERORY4jrvTbkszkFEZHFMwhyAIQn7uUIFtUZr52iIiIiA+ADDSJjSvoEQEQ1BTMIcQKiXFF6uMrR2aFFYybn3RERkf/GdDwjPVDagsU1t52iIiIYWJmEOQCIIGBPuAwDI57owIiJyAH7uUoQr3KDTAfmckkhEZFFMwhyEYb+w/HKuCyMiIsfATZuJiKyDSZiDSInoTMI4EkZERA7CsF8Y14UREVkWkzAHYRgJO32pAa0dGjtHQ0REBKRF6u9NuaV10Om4aTMRkaUwCXMQYQo3BHjKodbqcOpSvb3DISIiwuhQH7hIBVxpbEdZXYu9wyEiGjKYhDkIQRC6TUnkujAiIrI/VxcpkkL1haO4LoyIyHIGbRJ26tQpPPTQQ7j++uuRkpKCjIwMzJ07F19++eWAbTdv3oyEhIQ+v6qrq20Qfd9SIhQAgDyuCyMiIgeRHuUHAMgpqbNzJEREQ4fM3gGYqr6+HsOGDcOMGTMQEhKClpYWbNu2DU899RTKy8vxyCOPDHiNV155BbGxsT2OKRQKK0U8sNRIjoQREZFjSY9SYN0BFucgIrKkQZuEZWZmIjMzs8exadOmoaysDJ9//rlRSVhcXBySk5OtFaJoyeEKAMD56kY0tqnh5Tpo//MQETmlU6dO4Y033kBhYSFqa2vh5uaGmJgY3HfffZg9e/aA7WtqarB8+XJ8//33aG1tRWJiIh5//HFMnDjRBtH3LT1SPxJ2sqIebWoNXGVSu8VCRDRUDLm/8v38/FBTU2PvMEwS5O2KMF83VKhaUVCmwsQRAfYOiYiIRDBnlkZ7ezvmzZuH+vp6PPvsswgICMD69esxf/58rF27FhkZGTbsyVWR/u7w95SjtqkdJyvqu6YnEhGR6QZ9EqbVaqHValFfX4/t27dj//79eP75541qu2DBAtTW1sLb2xsZGRl47LHHEB8fb+WI+5cSoUCF6jIKypVMwoiIBhlzZmls2rQJhYWF+PTTT5Gent51vdmzZ2P58uXYtGmTVWO/FkEQkB6pwO7TVcgpUTIJIyKygEGfhL344ov47LPPAAAuLi549tlnce+99/bbJjAwEAsWLEBaWhq8vLxQWFiINWvWYO7cudi4cSMSExNFx6HRmLa3l6Gd4TU53Ac7fr6M3FKlydccTH7Zf2fD/rP/3V+djbn9H0yfmzGzNHbt2oWYmJiuBAwAZDIZZs2ahddffx2VlZUICQmxdqh9So/qTMJYIZGIyCIGfRK2YMEC3HPPPaitrcV3332H//3f/0VLSwsefPDBa7bJzs5GdnZ217/Hjx+PqVOnYubMmXjrrbewevVq0XEUFBSYFP8v23u0tgEAjl6oRm5urlnXHEzM/fwGO/af/XdmQ7H/pszSOHv2LMaOHdvreEJCQtf7YpMwSz0gNGyhklNSN6iSX1PxAQn73/3V2bD/tnlAOOiTsLCwMISFhQEApk6dCgB4/fXXceedd8Lf39/o60RERGDs2LHIy8szKY7k5GRIpeIXK2s0GhQUFHS1j23pwEt7d6OqSYOouCT4e8pNimew+GX/nQ37z/6z/6b339DeEZkyS0OpVMLX17fXccMxpVIpOg5LPSAUOrQQAJTVteCHQ8egcHOO/7066v++bIX9Z/+dmbX7P+iTsF9KSUnBp59+itLSUlFJGADodDpIJKZtnSaVSs36I8rQ3s9LithAT1y40oSfLzXg+oRgk685mJj7+Q127D/7z/4Prf6bMksD0K+/MuW9a7HUA0IAGHlgP85WNULtG4m0UUP73sQHJOw/+8/+W/sB4ZBLwg4fPgyJRILIyEhR7UpLS3H8+HFMmjTJSpEZLyXCFxeuNCG/TOU0SRgR0VBiyiwNhULR52iXSqXfO7KvUbKBWOoBIQBcF+WHs1WNyCtT4ZYxoSZfczAZig8IxGD/2X/233r9H7RJ2PPPPw8vLy8kJycjMDAQdXV12LFjB7755hs8+OCDXTe5pUuXYsuWLdi5cyfCw8MBAPPmzcO4ceOQmJgIT09PFBYW4v3334cgCFi8eLE9uwVAXyFxS24F8suU9g6FiIgswJhZGvHx8SgsLOx13HAsLi7OqjEOJD1Kgc+OlnLTZiIiCxi0SVhaWho2b96ML774Ag0NDfDw8EBiYiJee+21HhtiarVaaDQa6HS6rmPx8fHYvn07PvjgA7S1tcHf3x8TJkzAI488gpiYGHt0pwfDAui8MhV0Op1JU1CIiMhxGDNLY/r06XjppZeQl5eH1NRUAIBarcbWrVuRmppqt8qIBmlRCgBAfpkSGq0OUgnvTUREphq0Sdjdd9+Nu+++e8Dzli1bhmXLlvU4tnTpUmuFZRGjw3whlQiobmjD5fpWhPq62zskIiIygjmzNObMmYMNGzZg8eLFePLJJxEQEIANGzagqKgIa9eutWe3AABxwd7wlEvR1K7B2aoGJA7zsXdIRESD1qBNwoYyd7kUccFeOH25AXmlKiZhRESDhDmzNORyOdatW4fly5fj5ZdfRktLC0aNGoX33nsPGRkZ9uhOD1KJgNRIBQ6cr0FOiZJJGBGRGZiEOajUCAVOX25AQbkSt44ZZu9wiIjICObM0gCAwMBAvPrqq9YIzSLSowxJWB3+KyPK3uEQEQ1aptVjJ6tLidSvC8svU9k5EiIiIr30SD8AYHEOIiIzMQlzUKkRCgD6JKz7dBUiIiJ7MRTnOFfdiPrWDvsGQ0Q0iDEJc1AJw7whl0mgaunAxZpme4dDRESEQC9XRPq7Q6cD8ks5U4OIyFRMwhyUi1SCpFD9ouc87hdGREQO4uqUxDo7R0JENHgxCXNgqRFcF0ZERI4lvXNKYk6p0q5xEBENZkzCHFhK17owpV3jICIiMkiLVAAAckuVXLNMRGQiJmEOLKVzJOxEeT3UGq2doyEiIgKSwnwgl0pQ29SOklquWSYiMgWTMAcWG+QFT7kULR0anKtutHc4REREcJVJMTpcv2aZpeqJiEzDJMyBSSUCxoRzXRgRETkWFucgIjIPkzAHl9o5957rwoiIyFEY9gvLZXEOIiKTMAlzcCmskEhERA4mvfMB4c8V9Wjt0Ng3GCKiQYhJmINL7ayQeOpSPdrUvNEREZH9Rfi5I9DLFWqtDj9X8CEhEZFYTMIcXISfO/w8XNCh0eH0pQZ7h0NERARBEK7uF8biHEREojEJc3CCIHC/MCIicjiG/cK4aTMRkXhMwgaB1M51YXlcF0ZERA7CMBKWy5EwIiLRmIQNAskcCSMiIgeTEqGARADKlS2orG+1dzhERIMKk7BBwDASdq6qEU1tajtHQ0REBHi5yhAf4g2A68KIiMRiEjYIBPu4YZiPG7Q64EQ5pyQSEZFjSOd+YUREJmESNkgY9gsrYBJGREQOIj3SDwCQU1Jn50iIiAYXJmGDRGpnFSoW5yAiIkdhGAnLL1NBrdHaNxgiokGESdggYRgJY3EOIiJyFCOCvODtKkNLhwZnKrmXJRGRsZiEDRIp4QoAwMWaZiib2+0bDBEREQCJREAa14UREYnGJGyQ8PVwQXSABwD9tA8iIiJH0LVpMyskEhEZjUnYIJLC/cKIiMjBGNaFsTgHEZHxmIQNIoZ1YSzOQUREjiKts0Li+eomqJo77BwNEdHgwCRsEOFIGBERORp/T3nXdPk83p+IiIzCJGwQGRPuA4kAVNa3obK+1d7hEBERAeC6MCIisZiEDSIechnigr0BsDgHERE5jvSozk2bS7kujIjIGIM2CTt16hQeeughXH/99UhJSUFGRgbmzp2LL7/80qj2NTU1eOaZZ5CZmYnU1FTMnTsXBw8etHLU5uN+YURE5GjSu5Wp1+l09g2GiGgQkNk7AFPV19dj2LBhmDFjBkJCQtDS0oJt27bhqaeeQnl5OR555JFrtm1vb8e8efNQX1+PZ599FgEBAVi/fj3mz5+PtWvXIiMjw4Y9ESclUoFNx8pYnIOIiBxG4jAfuMokUDZ3oLimGTGBnvYOiYjIoQ3aJCwzMxOZmZk9jk2bNg1lZWX4/PPP+03CNm3ahMLCQnz66adIT0/vut7s2bOxfPlybNq0yaqxmyO120iYTqeDIAh2joiIiJydXCbBmHBfHLtYh5ySOiZhREQDGLTTEa/Fz88PUqm033N27dqFmJiYrgQMAGQyGWbNmoX8/HxUVlZaO0yTJQ7zgVyqf9pYWtti73CIiIgAAOkszkFEZDSTRsLOnj2L48ePo7KyEq2trfDz88PIkSMxfvx4eHl5WTrGfmm1Wmi1WtTX12P79u3Yv38/nn/++X7bnD17FmPHju11PCEhoev9kJAQq8RrLrlMglGh3sgrUyGvTImozrLARERE9qQvzlHE4hxEREYwOglTqVT47LPP8Nlnn6GioqLPhbcymQzZ2dn43e9+h4kTJ1o00Gt58cUX8dlnnwEAXFxc8Oyzz+Lee+/tt41SqYSvr2+v44ZjSqVSdBwajUZ0m+7txLRPDvdFXpkKuaV1uH2MYyaLxjKl/0MJ+8/+d391Nub23xE/t4MHD2Lr1q3IycnB5cuX4e3tjTFjxuDRRx/FmDFj+m27efNmLFmypM/39u/fj6CgIGuEbDGG4hynLjWgpV0Dd3n/s1KIiJyZUUnYRx99hFWrVgEAbr/9dmRkZGD06NHw9/eHq6srVCoVSktLkZubi927d+MPf/gDJk2ahP/5n//B8OHDrdqBBQsW4J577kFtbS2+++47/O///i9aWlrw4IMP9tuuv7VUpqyzKigoEN3G1Pa+mmYAwMHT5cgNHRr7hZn7+Q127D/778yGUv83btwIpVKJ+++/HyNHjkRtbS3Wrl2LuXPn4v333zfqAeUrr7yC2NjYHscUCoWVIracUF83BHu7oqqhDScqVBgf7W/vkIiIHJZRSdjHH3+MJUuWYMaMGXBxcen1fmBgIAIDA5Geno4HHngAJSUlWL16NbZv344FCxZYPOjuwsLCEBYWBgCYOnUqAOD111/HnXfeCX//vm8ACoWiz9EulUpfcbCvUbKBJCcnD7gWrS8ajQYFBQWi2ruHNmDV0R9RXK9FckoqpJLBW5zDlP4PJew/+8/+m95/Q3tH8sILLyAgIKDHsaysLNx888149913jUrC4uLikJycbK0QrUYQBKRHKfCfnyuRU1LHJIyIqB9GJWHbt2+HTGb88rGoqCi88sordpkqkpKSgk8//RSlpaXXTMLi4+NRWFjY67jhWFxcnOifK5VKzfojSkz7hGG+8JBL0dyuQXFtC+JDvE3+uY7C3M9vsGP/2X/2f2j0/5cJGAB4enpixIgRuHTpkh0isq30KL/OJExp71CIiByaUZnV2bNnMWrUKNEXt8dN9fDhw5BIJIiMjLzmOdOnT8dLL72EvLw8pKamAgDUajW2bt2K1NRUhy3KYSCVCBgT5osjxbXIL1MNiSSMiGioamhowMmTJzFhwgSjzl+wYAFqa2vh7e2NjIwMPPbYY4iPjzfpZ9tyvTIApIb7AABySuoccs2esbhek/3v/ups2H/brFc2Kgm78847kZSUhDlz5mDmzJnw9rb/H/3PP/88vLy8kJycjMDAQNTV1WHHjh345ptv8OCDD3aNgi1duhRbtmzBzp07ER4eDgCYM2cONmzYgMWLF+PJJ59EQEAANmzYgKKiIqxdu9ae3TJaSoQhCVNiztgIe4dDRETX8NJLL6GlpWXA6fmBgYFYsGAB0tLS4OXlhcLCQqxZswZz587Fxo0bkZiYKPpn23K9MgBo1VpIBOByfRt2HziGAI/BPcLpaNNdbY39Z/+dmbX7b1QS9sc//hFffvkl/vKXv+DVV1/FTTfdhDlz5hj9VM8a0tLSsHnzZnzxxRdoaGiAh4cHEhMT8dprr2H27Nld52m1Wmg0mh7VHOVyOdatW4fly5fj5ZdfRktLC0aNGoX33nsPGRkZ9uiOaCmd+7HklansGwgREV3Tm2++iW3btuH5558fsDpidnY2srOzu/49fvx4TJ06FTNnzsRbb72F1atXi/75tlyvbJB46EecvNSADp9wpI0ZJvpnOwKu12T/2X/239rrlY1Kwv70pz/h8ccfx759+7B582Z8++23+PrrrxEWFoa7774bd955J0JDQ0UHaY67774bd99994DnLVu2DMuWLet1PDAwEK+++qo1QrOJ1Ah98ZBTFfVoV2shlw25fbeJiAa1lStXYvXq1fjTn/6E3/72tyZdIyIiAmPHjkVeXp5J7W25XtkgPcoPJy81IK+8HjNSw03+2Y5gKK1XNAX7z/6z/9brv9F/uQuCgOzsbLz55pvYv38/nn32Wfj6+uLtt9/G9OnT8eCDD2LHjh3o6OiwWrB0VZS/BxQeLmjXaHHmcoO9wyEiom5WrlyJFStWYNGiRWZXCdbpdJBIBs+DNv2mzfp1YURE1DeTfqv7+Pjgt7/9LTZv3owtW7bgvvvuw8mTJ/GnP/2px1QKsh5BEJAcrh8NyytT2jcYIiLqsmrVKqxYsQIPP/wwFi5caNa1SktLcfz48a4iUoOBYdPmgnIVOjRa+wZDROSgjK87fw2JiYmYNWsWmpubsXnz5j733yLrSInwxb6zV5BfpgRg3U2xiYhoYB988AHefvttZGVl4frrr0dubm6P99PS0gD0XTRq3rx5GDduHBITE+Hp6YnCwkK8//77EAQBixcvtnFPTBcT4AkfNxnqW9U4c7kBY8LF771JRDTUmZyE1dbWYuvWrfj3v/+Nc+fOQSqVYtq0aZgzZ44l46N+pEQoAAD5LM5BROQQvv/+ewDAvn37sG/fvl7vnzlzBkDfRaPi4+Oxfft2fPDBB2hra4O/vz8mTJiARx55BDExMbbpgAVIJALSovywt7AaOSV1TMKIiPogKgnTarXYu3cv/v3vf+OHH35AR0cHoqOj8cQTT+DOO+9EYGCgteKkPqR2JmGFlQ1oblfDQ272wCYREZnh448/Nuq8vopGLV261Boh2UV6pKIzCVPidxPtHQ0RkeMx6q/2oqIi/Pvf/8aXX36JK1euwM3NDXfccQfuvvtujBs3ztox0jUM83VDsLcrqhracLKiHuOi/e0dEhERUde6sNxSpV3jICJyVEYlYbfddhsAICUlBYsWLcKMGTPg6elp1cDIOCkRCuw6VYm8MhWTMCIicghpnXtZXrjShLqmdvh5yu0bEBGRgzEqCfv973+POXPmIC4uztrxkEipEb7YdaqyszgHERGR/Sk85IgN9MSFK03ILVNiWkKwvUMiInIoRpWoX7JkSZ8J2IULF3Ds2DE0NzdbPDAyTkrn00YW5yAiIkeS1jklMadEadc4iIgckUn7hG3ZsgXZ2dmYMWMGfvvb36KoqAgAsHjxYnz++ecWDZD6l9JZdaroShNULdwom4iIHINh02auCyMi6k10ErZ9+3Y888wzSEpKwvPPP9+jvO7o0aOxfft2iwZI/fPzlCPK3wMAUMDRMCIichDpnTM1ckvqoNXq+j+ZiMjJiE7C1qxZg7vuugv/+Mc/MHfu3B7vxcbG4ty5cxYLjoyTEqEfDcvjujAiInIQCcO84eYiQX2rGheuNNk7HCIihyI6CTt//jxmzJjR53sKhQJKpdLcmEgkQxLG4hxEROQoXKQSpIQrAAA5JXX2DYaIyMGITsLc3d3R0NDQ53uVlZXw9fU1OygSJ6Vz02YW5yAiIkfC/cKIiPomOglLT0/H+vXre6wFM9i8eTMyMjIsEhgZb0y4LwQBuKRqRVVDq73DISKiwayuGMJXj8O1qdzsSxn2C2OFRCKinkQnYY8++ihyc3MxZ84cfPzxxxAEAd9++y0WLFiAo0ePYsGCBdaIk/rh5SrDyCAvACzOQUREZjq1DZKcjxBa+LHZlzJUSDx9uR7N7Wqzr0dENFSITsKSk5Px3nvvobm5GcuWLYNOp8O7776LoqIirFmzBvHx8daIkwZgmJKYxySMiIjMETIaAOB9JRfoY9aLGMN83RDq6watjlPmiYi6k5nSaMKECdi+fTtKSkpw5coV+Pn5ISYmxtKxDX2tKkg+/Q1C3EcBaWlmXSo10hf/Pl7G4hxERGSeyAnQSVwgb62CRnkRCBxh1uXSoxS4VHAZuaVKTIgNsFCQRESDm0mbNRtERUXhuuuuYwJmqvpLEIr3IfTsJ4DWvGka3Ytz9LVej4iIyChyDyB8LABAKN5n9uWurgtjhUQiIgOjkrBvvvlG9IUrKytx7Ngx0e2cSmAcdG6+kKqbgUt5Zl1qVKg3XKQCapvaUVbXYqEAiYjIGemGT9Z/c/FHs69lWBd2vETJh4RERJ2MSsL+8pe/YPbs2di0aRMaGxv7PffEiRN46aWXcMstt+D06dMWCXLIkkiBKP2Nztynja4yKRKH+QDgvHsiIjKPLjoLQOe9yczEaUyYL2QSAdUNbahQsYIvERFg5JqwnTt3YsWKFfjrX/+Kv/zlL0hKSkJSUhICAgIgl8uhUqlQWlqK3NxcVFdXIy4uDitWrEBWVpa14x/0dDFZEAq/0d/osp8061rJEb4oKFchv0yJGSmhFoqQiIicTsR4aCUukDRcAmovAAGmrwtzl0sxKtQHBeUq5JTUIVzhbsFAiYgGJ6OSMG9vbyxduhSPPvooNm/ejD179mDLli1oabk67S0yMhJZWVmYOXMmJkyYYLWAhxrD00aUHgbU7YBMbvK1UiN8seEwkMfiHEREZA4XdzQpRsG7Nh8o3mdWEgbo14UVlKuQW6LEHSlhFgqSiGjwElUd0dfXFw888AAeeOABAEBDQwNaW1uhUCjg4uJilQCHvKBR6JAr4NKuBMqPAcMnmnwpQ3GOE+X10Gp1kEgEy8RIREROpyEwTZ+EFe0Dxs4z61rpUQp8fOgickqVFomNiGiwM6s6ore3N4KCgpiAmUMQ0BCYpv++aK9Zl4oL9oKbiwSNbWpcuNJkfmxEROS0GgLS9N8U7zd7XZihOEdBuQrtaq2ZkRERDX5mJWFkGVdvdOYV55BJJRgT5gsA3C+MiIjM0uSXBJ3UFWi8DNScM+ta0QEeUHi4oF2txalL9RaKkIho8GIS5gAaAtP135QeBjrMKy/ffb8wIiIiU+mkciBivP4fZj4kFAQB6Z37heVySiIREZMwR9DmGQGddyigaQdKj5h1rdRI/UgYi3MQEZG5uvYLK7LEps36KYnctJmIiEmYYxCEq1USzVwXZhgJO1lRjw4N590TEZHpuu5NFlkXpgAAFucgIgKTMMcRPUX/amYSFh3gAW83GdrUWpy53GCBwIiIyGmFjwVkbkBTFXCl0KxLpXZOR7xY04yaxjYLBEdENHiJTsL+93//FxcuXLBGLKIcPHgQS5Yswa233oq0tDRkZWXh4YcfxokTJwZsu3nzZiQkJPT5VV1dbYPoe9NFZ+u/qTgOtJmePAmCgJQIQ3EOrgsjIiIzyFyByAz992auC/N1d8HIYC8AnDJPRCQ6CduyZQtmzJiBBx54ALt27YLOzOkJptq4cSPKy8tx//33Y82aNXj22WdRW1uLuXPn4uDBg0Zd45VXXsFnn33W40uhUFg38GtRROm/tGqg5JBZl7panENpflxEROTcDA8JLbIuTAEAyClRmn0tIqLBTNRmzQCwb98+fPHFF9i4cSMWLlyI0NBQ/Nd//RfmzJkDf39/a8TYpxdeeAEBAQE9jmVlZeHmm2/Gu+++i4kTB970OC4uDsnJydYKUbyYbCDnE/2UxLibTL5MaoShOAdHwoiIyEyG6fKGdWGCYPKl0qMU+NexMiZhROT0RI+EeXh44De/+Q2++uorrF27FqNHj8Zbb72F66+/Hs888wwKCgqsEWcvv0zAAMDT0xMjRozApUuXbBKDxXU9bbRMcY7Cyga0tGvMDIqIiJxa+FhA5g40XwGqT5t1qfTOCol5pUpotfaZSUNE5AhEj4R1N3HiREycOBGXL1/G008/jS+//BJffvklxowZg4cffhg33HCDpeI0SkNDA06ePIkJEyYYdf6CBQtQW1sLb29vZGRk4LHHHkN8fLxJP1ujMS3ZMbTTaDRA1CRIAegu50PbWAO4K0y6ZrCXCwK95LjS2I4T5XW4LsrPpOvYQo/+OyH2n/3v/upszO2/s35uNieTA1GZwIUf9KNhwaNMvlR8iBc85FI0tKlxvroRcSHelouTiGgQMSsJa21txbZt27B+/XqcPn0aI0eOxK233orvvvsOjz76KBYuXIhHH33UUrEO6KWXXkJLSwsWLFjQ73mBgYFYsGAB0tLS4OXlhcLCQqxZswZz587Fxo0bkZiYKPpnmzsCaGg/2jMSbk2lKNqzHqphk02+3nBvAVcage2HT0JS62lWbLZgqxFUR8X+s//OzNn7PyhEZ+mTsKK9QMZ/m3wZmVSC5HBfHC6qRU6JkkkYETktk5KwkpISrF+/Hl988QUaGxuRnZ2Np556CpMmTQIALFy4EK+//jo++eQTmyVhb775JrZt24bnn38eY8aM6ffc7OxsZGdnd/17/PjxmDp1KmbOnIm33noLq1evFv3zk5OTIZVKRbfTaDQoKCjoai9UTAeOrUWsUAZdWpro6xlk1Z7DsUvnUAtvpKWlmHwda/tl/50N+8/+s/+m99/Qnmyg+35hWi0gMX2Hm/QoP30SVlqHX4+PtFCARESDi+gkbP78+Thw4ADc3d1x11134Xe/+x2ioqJ6nTdt2jSsWbPGIkEOZOXKlVi9ejX+9Kc/4be//a1J14iIiMDYsWORl5dnUnupVGrWH1Fd7WOnAsfWQlK8HzDjeqmdUxDzy1WD4o87cz+/wY79Z//Z/6HR/4MHD2Lr1q3IycnB5cuX4e3tjTFjxuDRRx8d8AEhANTU1GD58uX4/vvv0draisTERDz++ONGFZuyqvDrABcPoKUWqD4FhIw2+VJdmzazOAcROTHRSVhpaSmWLFmCu+66C56e157mFhcXh48++sis4IyxcuVKrFixAosWLRpwGuJAdDodJGY83bMIw9PGqp+BpiuAZ6BJl0ntLM5xoboJ9a0d8HFzsVCARER0LRs3boRSqcT999+PkSNHora2FmvXrsXcuXPx/vvv95tMtbe3Y968eaivr8ezzz6LgIAArF+/HvPnz8fatWuRkZFhw578gtQFiJoAnP9OX6renCSss0x9YWUDGtvU8HI1a2UEEdGgJPo333/+8x+jzvPy8rL6DWPVqlVYsWIFHn74YSxcuNCsa5WWluL48eNdUyrtxjMQCB6tT8KK9wGj7zTpMv6eckT4uaOsrgUnylSYNNK0ZI6IiIxnzvYpmzZtQmFhIT799FOkp6cDADIzMzF79mwsX74cmzZtsmrsA4rO0idhxfuACaY/9Az2cUO4wh3lyhbklykxaQTvT0TkfOw87GO6Dz74AG+//TaysrJw/fXXIzc3t8eXwdKlS5GUlITy8vKuY/PmzcPKlSuxa9cuHDx4EB9++CHuu+8+CIKAxYsX26E3vxDTORpm5saYKdwvjIjIpszZPmXXrl2IiYnpSsAAQCaTYdasWcjPz0dlZaXF4xXFMFPj4o/6dWFmSOOURCJycqJHwm644QYI19ioUSKRwNvbG8nJybj//vsxYsQIswO8lu+//x6AfvPofft6JytnzpwBAGi1Wmg0Guh0V/cjiY+Px/bt2/HBBx+gra0N/v7+mDBhAh555BHExMRYLWajxWQDh/9hkf3Cvim4jPwypWXiIiIi0YzdPuXs2bMYO3Zsr+MJCQld74eEhFglRqOEpQFyL6ClTj9bY1iyyZdKj1Tg6/xLTMKIyGmJTsIyMjJw5MgRVFVV4brrrkNgYCCqq6uRk5OD4OBghIaGYufOnfjyyy/x8ccfIznZ9F/S/fn444+NOm/ZsmVYtmxZj2NLly61RkiWM3wSAAGoOQvUXwJ8Qk26jGEkLJ8jYUREdmPs9ilKpRK+vr69jhuOKZVK0T/bIntYdpFAEpkJ4fxuaC/sgS4oyaRrA0BqhA8AILe0Dmq1+poPd+2Fe/ix/91fnQ37b5s9LEUnYVOmTEFubi527tyJ0NCryUFFRQX+8Ic/YPr06Vi2bBl+97vfYcWKFTarkDikuPsBoanApVz93PuUX5t0meRwXwgCUK5swZXGNgR6uVo2TiIi6peY7VMA9JuMmJKoWGoPS4MQ+QhEYDfq877BeVfTKzaqNTrIBOBKYzt2HjiGYE/HLM7h7FsgsP/svzOzdv9F/9b7xz/+gUWLFvVIwAAgLCwMjz76KN555x3ceeedmDdvHv7v//7PYoE6nZgsfRJWtMfkJMzbzQWxgZ44X92EgjIVpiUGWzZGIiK6JrHbpygUij5Hu1Qq/WyGvkbJBmKpPSy7BGuBU2vgqzqBtJRkQGL61gJJhw8iv1yFNu9wpKWYNuPDWriHH/vP/rP/1t7DUnQSdvHiRXh5efX5no+PT1cBjPDwcLS0tIi9PBnETAUOrDC7OEdqhALnq5uQV6ZkEkZEZCOmbJ8SHx+PwsLCXscNx+Li4kTHYbE9LA3C0gG5N4RWFaRXTulnbZjouuF+yC9XIa9MhV+lR5h8HWsaSnvYmYL9Z//Zf+v1X3R1xLCwMHzxxRd9vvfvf/+7a4TsWnPbyUhREwBBCigvAnUXTb4M14UREdmWqdunTJ8+HRcuXEBeXl7XMbVaja1btyI1NdW+RTkMpLLOdcsw+yGhYdPm3FKleTEREQ1CopOwBx98EDt27MC9996LdevW4auvvsK6detw7733YufOnZg/fz4A4PDhw0bNf6drcPUGwjurZBWbfqNL6dwUM79M2aNCJBERWZ4526fMmTMHcXFxWLx4MbZt24YDBw7g8ccfR1FREf785z/boTfXED1F/1q836zLpEf6AQB+Lq9Hm9o5CwAQkfMSPR3x17/+NXQ6HVasWNGj6mBgYCBeeukl3HPPPQCABQsWQC6XWy5SZxSTDZQd0ZeqTx94PUFfkkJ9IJMIuNLYjgpVK8IV7hYOkoiIDMzZPkUul2PdunVYvnw5Xn75ZbS0tGDUqFF47733kJGRYZsOGMOwl+XFA4BWY/K6sEh/d/h7ylHb1I6TFfVIj/KzYJBERI5NVBKm0WhQUlKC2267Db/+9a9x4cIFKJVKKBQKxMbG9qjcFBgYaPFgnU5MFrDvb/opHzodYEJlLDcXKeJDvHHyUj3yS5VMwoiIrMic7VMA/b3z1VdftXRYljUsBXD1BdpUwKU8IPw6ky4jCALSIxXYfboKOSVKJmFE5FRETUfU6XSYMWMGcnJyIAgCRowYgbFjx2LEiBEOt8fHkBCZCUjlQEMFUHPe5MukRurXheVxXRgREZlLIr26LszcKYlcF0ZETkpUEiaTyRAYGMi1Rbbi4g5EdE5BKd5r8mVSIhQA9OvCiIiIzNa1Lszc4hz60a+c0jpzIyIiGlREF+aYMWMGtmzZYoVQqE8x2frXInOSMP1IWEGZClotE2giIjJT17qwg4BGbfJlUiJ8IQhAaW0LqhvaLBQcEZHjE12YIzExEd988w3uv/9+3HzzzQgKCuo1FfHmm2+2WIBOLyYL+AFmrQuLD/GGq0yChjY1imuaEBvU9z5vRERERgkZA7j5Aq2d68Iixpp0GW83F8QFe6GwshG5pUrclOQAZfiJiGxAdBL29NNPAwAqKytx5MiRXu8LgoBTp06ZHxnphY8DZO5A8xWg6hQQkiT6Ei5SCUaH+eB4iRL5ZSomYUREZB6JFBg+BTjztX5KoolJGKAvVV9Y2YickjomYUTkNEQnYR999JE14qBrkcn1Gzdf+F5/ozMhCQP068KOlyiRV6bEr9LDLRwkERE5nehuSdiUx02+THqUAp8dLWVxDiJyKqKTMIfaq8RZxGTrk7CivUDmH026hKFCYj4rJBIRkSUY1oWVHAI0HYDUxaTLpHVWSMwrVUKj1UEqYbVlIhr6RBfmMGhoaMC+ffuwdetWqFT8w96qDMU5ivfpN8Y0gaFC4s8VKqg1WgsFRkRETit4NODuB7Q3AhW5Jl8mLtgbnnIpmto1OFvVYLn4iIgcmElJ2KpVq5CVlYX//u//xtNPP42ysjIAwO9//3usWbPGogESgNA0QO6tXwB9ucCkS8QEeMLbVYbWDi0KKxstGx8RETkfiQQYPln/vRml6qUSAamRCgBATonS/LiIiAYB0UnY+vXrsWrVKsyZMwfvvvtujz3Dpk2bhh9++MGS8REASGVXN8Y0sVS9RCJgTLhhSqLSQoEREZFT6z5TwwxdmzYzCSMiJ2FSEjZv3jw899xzmDJlSo/3hg8fjosXL1osOOrGAje6lM51YXlcF0ZERJZg2LTZsC7MRGmR3LSZiJyL6CSstLQUWVlZfb7n6emJ+vp6s4OiPhiSsIsHTL7RpXauC+NIGBERWUTQKMAjAOhoBsqPm3yZtM7piGerGlHfanoyR0Q0WIhOwry9vXHlypU+3ysvL0dAQIDZQVEfQsaYvQA6JUI/EnbmcgNaO0wr8EFERNSlx7ow06bLA0CQtysi/d2h0wH5pZytQURDn+gkbOLEiXj//ffR3NzcdUwQBKjVamzcuLHXFEWyEInk6rSPoj0mXSJc4Y4ATznUWh1OXeKIJRERWUDXdPn9Zl0mvXNKYi6nJBKRExCdhD322GOoqKjAjBkzsGzZMgiCgE8++QT33HMPLl68iEceecQacRIARJu3LkwQhK7RMO4XRkREFtG1LuwwoG4z+TJprJBIRE5EdBI2fPhwbNy4EbGxsdi4cSN0Oh2+/PJL+Pn5YcOGDQgLC7NGnARcfdpYcsjkG51hv7A8rgsjIiJLCEoEPAIBdYtZ68IMFRJzSpU9Ki8TEQ1FMlMajRw5Ev/85z/R3t6Ouro6+Pr6ws3NzdKx0S8FJQCewUBTFVB2FIieLPoSqZEcCSMiIgsSBP1o2Mkt+pkawyeadJmkMB/IpRLUNrWjpLYZwwM8LRsnEZEDMWmzZgO5XI6QkBAmYLYiCEBMZ2VKE/cLSw5XAADOVzeisU1tocCIiMipGe5NZmyj4iqTYnS4DwAgt1RpgaCIiByXSSNhZWVl2L59OyoqKtDa2trjPUEQ8H//938WCY76EJ0FnPh3541uiejmQd6uCPN1Q4WqFQVlKkwcwWqWRERkJsOa5dIj+unyMleTLpMWqUBOiRI5JUrMTgu3YIBERI5FdBL2ww8/YOHChdBqtfD394dcLu/xviAIFguO+hDT7UbX3gzIPURfIiVCgQrVZeSXKZmEERGR+QLjAK8QoLHS5OnyAJAe5Ye1PxYjp4QVEoloaBOdhL3xxhu47rrr8MYbb3BPMHvwjwV8woH6cqD0MDBimuhLpET6YsfPl7kujIiILMOwLswwU8PUJKyzQuLJS/Vo7dDAzUVqwSCJiByH6DVhFy9exH//938zAbMXQbg6GmbiurBUVkgkIiJLM5SqN2O/sAg/dwR6uaJDo8PPFdzPkoiGLtFJWFhYWI+NmskOos0rzjEmXF8hsayuBbVN7ZaKioiInFn3dWEdrf2few2CIFwtVc8piUQ0hIlOwv74xz/igw8+QEtLizXiMdrBgwexZMkS3HrrrUhLS0NWVhYefvhhnDhxwqj2NTU1eOaZZ5CZmYnU1FTMnTsXBw8etHLUFmKoQlWRA7SKf1Lo6+6C2EB96d98joYREZElBIwAvIYBmjag7CeTL9O1aTMrJBLRECZ6TVhBQQFqampw0003ITMzE35+fr3Oee655ywSXH82btwIpVKJ+++/HyNHjkRtbS3Wrl2LuXPn4v3338fEidfep6S9vR3z5s1DfX09nn32WQQEBGD9+vWYP38+1q5di4yMDKvHbxZFFOAXA9QVASUHgfhbRF8iJcIXF640Ib9MhesTgq0QJBERORXDNioFm/TrwgwPDEUyjITlligtFxsRkYMRnYR98sknXd9//fXXvd4XBMEmSdgLL7zQa11aVlYWbr75Zrz77rv9JmGbNm1CYWEhPv30U6SnpwMAMjMzMXv2bCxfvhybNm2yauwWEZOlT8KK9pqYhCmwJbeCI2FERGQ50VP0SVjRPkB83SgA+vuTRADKlS2oqm9FsA/3IiWioUd0Enb69GlrxCFaX4VBPD09MWLECFy6dKnftrt27UJMTExXAgYAMpkMs2bNwuuvv47KykqEhIRYPGaLipkKHP/I9OIckfp1YXllKuh0Om4tQERE5jOsWS4/avI2Kl6uMsSHeOP05QbklCpxy+hhFg6SiMj+TNqs2VE1NDTg5MmTmDBhQr/nnT17FmPHju11PCEhoet9sUmYRqMRdf4v24luHzkRUgC6ywXQNl4B3HtPC+1PQrAXpBIB1Q1tKK9rRqivfZ40mtz/IYL9Z/+7vzobc/vvrJ+bQ/OPBbzDgIYKoOwIEHu9SZdJj1Lok7ASJmFENDQZlYT99NNPSEpKgqenZ7/n1dbW4rvvvsOcOXMsEpxYL730ElpaWrBgwYJ+z1MqlfD19e113HBMqVSK/tkFBQWi25jbPslrONwbL6L4h0+gDBU/9z7CW4qLKjW27s9FZrh9p3uY+/kNduw/++/MnL3/Q4phXVj+Z/pS9aYmYZF+2HiklBUSiWjIMioJu//++/HZZ58hJSUFAKDVapGSkoLPP/8cSUlJXeeVlpbi+eeft0sS9uabb2Lbtm14/vnnMWbMmAHP72/6nSlT85KTkyGVit9UUqPRoKCgwKT2wqXpwNF/IkYohy4tTfTPzrxwAhePlaHBxR9pafGi21uCOf0fCth/9p/9N73/hvbkYKKn6JOwon0mX8JQnKOgXAW1RguZVHQxZyIih2ZUEqbT6Xr9W61W9zpuLytXrsTq1avxpz/9Cb/97W8HPF+hUPQ52qVSqQCgz1GygUilUrP+iDKpfexU4Og/ISneB5jws1OjFPj8WBkKyuvt/geguZ/fYMf+s//sv/P2f8jpWhd2DGhvAuT9z6Lpy4ggL3i7ytDQpkZhZSOSwnwsHCQRkX0N+kdLK1euxIoVK7Bo0aIBpyEaxMfHo7CwsNdxw7G4uDiLxmg1w6foX6tPAY1VopunRigA6PcKc5SEmoiIBjm/aMA3EtB2AKWHTbqERCIgtWu/ME5JJKKhZ1AnYatWrcKKFSvw8MMPY+HChUa3mz59Oi5cuIC8vLyuY2q1Glu3bkVqaqrjV0Y08AwAQpL13xeLn/aRMMwbcpkE9a1qXKxptnBwRETklARBPyUR0K8LM5FhSmIO9wsjoiFo0CZhH3zwAd5++21kZWXh+uuvR25ubo8vg6VLlyIpKQnl5eVdx+bMmYO4uDgsXrwY27Ztw4EDB/D444+jqKgIf/7zn+3QGzMYNsM0Ye69i1SCpFD9FI887hdGRGS2xsZGvPbaa/jDH/6ACRMmICEhAStWrDCq7ebNm5GQkNDnV3V1tZUjt7Bo0+9NBl2bNpcqzY+HiMjBGF2i/sKFC11z9g1lgS9cuNDrHFv5/vvvAQD79u3Dvn29f8mfOXMGgL6IiEaj6THdTi6XY926dVi+fDlefvlltLS0YNSoUXjvvfeQkZFhmw5YSkw2cOgd0/cLi/BFbqkS+WUqzE4Lt3BwRETORalU4vPPP0diYiKmT5+OTZs2ib7GK6+8gtjY2B7HFAqFhSK0EcNIWMVxoK0RcPUSfYm0SP3WK+eqGqFq6YCvu4slIyQisiujk7AlS5b0OvbUU0/1+LctN/39+OOPjTpv2bJlWLZsWa/jgYGBePXVVy0dlu0NnwQIEqD2PKAqB3zFJVIpEQoAF5HPkTAiIrOFh4fjp59+giAIqK2tNSkJi4uLQ3JyshWisyG/4YAiClCWAKWHgJHTRV/C31OO4QEeuFjTjLxSJbLjg6wQKBGRfRiVhL3yyivWjoNM5eYLhKbpnzYW7wNS7xXVPDVSXwnyRHk9ywATEZnJVg8iB4XoLCB3vX5dmAlJGACkRypwsaYZOSVMwohoaDEqCbvzzjutHQeZIyZbn4QV7RWdhMUEesFTLkVTuwbnqhuROIxlgImI7GnBggWora2Ft7c3MjIy8NhjjyE+3rS9HA3LB0xtZ2p7ABCiJkOSux66or3Qmnid1AhfbMmtwPGSWrNiEcsS/R/M2H/2v/urszG3/8a2M3o6IjmwmCzgxzf1SZhOp69MZSSpRMCYcF8cLqpFfqmKSRgRkZ0EBgZiwYIFSEtLg5eXFwoLC7FmzRrMnTsXGzduRGJiouhrmruZtTntXZr9kAIAFTnIP3oAWpmH6Gt4tHQAAI4V1yAnJ8fmI43Ovhk4+8/+OzNr959J2FAQNRGQyABVKVBXDPjHiGqeGqnA4aJa5JUp8evxkdaJkYiI+pWdnY3s7Oyuf48fPx5Tp07FzJkz8dZbb2H16tWir5mcnGzSRtgajQYFBQUmtzfQHY+GUFeMFEUTMHKS6PZJai2e37MLje1aKCLjERMofuNnU1iq/4MV+8/+s/+m99/QfiBMwoYCuScQPk6/+Ll4n+gkLCVCvy4sv0xljeiIiMhEERERGDt2bI99LcWQSqVm/RFlbntETwHqiiG9+COQcKvo5u5SKZLDfXHsYh3yy+sxMsS2szXM7v8gx/6z/+y/9frPKgxDRUzn01MTStWnRigAAKcv16NN7Zzzf4mIHJVOp4NEMkhv19Gd9yZzNm2OVADgps1ENLQM0t/q1Ev3TZu77YlmjAg/d/h5uKBDo8PpSw1WCI6IiExRWlqK48ePIzU11d6hmMawX9ilXKDVtNkW6VH6/cK4aTMRDSWikrDW1lbce++9OHDggLXiIVNFZABSV6DxMnDlrKimgiB07hcG7hdGRGSmPXv2YMeOHfj+++8BAOfOncOOHTuwY8cOtLS0AACWLl2KpKQklJeXd7WbN28eVq5ciV27duHgwYP48MMPcd9990EQBCxevNgufTGbbzjgHwvotEDJIZMukR6lAACculSPlnbO1iCioUHUmjA3NzcUFhY69fxQh+XiBkRm6NeEFe8FgsSVM06N8MWewmrklanwOyuFSETkDF566aUeyZUhAQOA3bt3IyIiAlqtFhqNBrpuMxfi4+Oxfft2fPDBB2hra4O/vz8mTJiARx55BDEx4tb6OpToLKD2gn66fPwtopuH+roh2NsVVQ1tOFGhwvhofysESURkW6ILc6SnpyM/Px+ZmZnWiIfMETNVn4QV7QXGzxfVlCNhRESW8d133w14zrJly7Bs2bIex5YuXWqtkOwrOgs4/qHJ68IEQUB6lAL/+bkSOSV1TMKIaEgQvSbs6aefxmeffYYtW7agqanJGjGRqQzrwor3A1qtqKaGConnqhrR1Ka2dGREROSsDOvCLucDLUqTLsF1YUQ01IgeCZs7dy46OjqwZMkSLFmyBG5ubj02TxQEAceOHbNokGSksOsAF0+guQaoOgkMG2N002AfNwzzccPl+lacKFchMzbAioESEZHT8AkFAkYCNeeAkoNAwm2iL8EKiUQ01IhOwm655Rab71hPRpLJgagJwPnd+mmJIpIwQD8advlkK/LLmIQREZEFRWfpk7CifSYlYckRvpBKBFxSteKSqgWhvu5WCJKIyHZEJ2G/nMNODiYmW5+EFe0FJjwsqmlqpALfnqxEHteFERGRJUVPAY6t1T8gNIGHXIaEEG+cvFSP3BIlQpOZhBHR4MZ9woYaw6bNxT8CWnGlfA3rwgrKTdvLhYiIqE/RnWuWLxcAzbUmXcJQqp7rwohoKBA9EmZQWFiI8+fPo62trdd7v/rVr8yJicwRmgq4+gJtKuBSHhB+ndFNU8IVAICLNc1QNrdD4SG3UpBERORUvEOAwHjgSqF+XVjiDNGXSI/yw/rDJVwXRkRDgugkrKWlBQ8//DAOHToEQRC69jjpvk6MSZgdSaRA9GTgzDf6KYkikjBfDxdEB3iguKYZ+WUqZMcHWTFQIiJyKtFZ+iSsaJ9JSVhaZ3GO/HIlOjRauEg5mYeIBi/Rv8HeeecdlJeX45NPPoFOp8PKlSuxdu1a3HTTTRg+fDi++OILa8RJYhimfZgw9577hRERkVUYStWbuC4sNtATPm4ytHZoceZygwUDIyKyPdFJ2O7du/Hf//3fSE9PBwCEhoZi4sSJePvttzF69Ghs2LDB4kGSSIZ1YRcPApoOUU0N68LyyrgujIiILMjwgLDyhEnrwiQSAWmd+4XlcF0YEQ1yopOw8vJyxMbGQiqVQhAEtLS0dL03c+ZM7N6926IBkgmCkwB3f6CjCSg/LqppqmG6B0fCiIjIkryCgKBE/ffF+026xNX9wuosFBQRkX2ITsK8vb3R3NwMAAgICMDFixe73lOr1V3vkR1JJEBM5xPHor2imo4O84FEACrr21BZ32qF4IiIyGl1TZc3LQlLM1RIZHEOIhrkRCdhCQkJKC4uBgBkZmbi3XffxdGjR5Gfn49Vq1YhMTHR0jGSKbpudOKSMA+5DHHB3gCAPE73ICIiS4oxfc0yAKR1rlu+cKUJyuZ2CwVFRGR7opOwu+++G01NTQCAxx9/HC0tLfjd736HuXPnoqKiAs8884zFgyQTxEzVv5YcBjrEjWgZ1oXlc10YERFZ0vDO4hxVJ4GmK6Kb+3nKERvoCYD7hRHR4Ca6RP3tt9/e9X1kZCT+85//dJWrT09Ph0KhsGR8ZKrAOMArBGisBMp+uvr00QgpkQpsOlaGPK4LIyIiS/IMAIJHA1U/66ckjv6V6EukRSlw4UoTckqUuD4h2PIxEhHZgNmbbHh4eOCGG27AtGnTmIA5EkG4WiVR5Lqw1M6RsIJyVdc+cERERBbRVarezOIcHAkjokGMOx0OZSbuF5Y4zAdyqQTK5g6U1rYM3ICIiMhYZq4LS+8sU59bUgetlg8KiWhwMmo6YmJiIgRBMOqCgiDg5MmTZgVFFmIYCSs7CrQ3AXJPo5rJZRKMCvVGXpkKeWVKRAV4WDFIIiJyKsMnAxCA6tNAY7W+dL0ICcO84eYiQX2rGkU1TRgR5GWdOImIrMioJOzRRx81OgkjB+IXDfhGAaoSoOQQMPJGo5umRCiQV6ZCfpkSM1PDrBcjERE5Fw9/IGQMUFmgHw0bc5eo5i5SCVLCFThSXIucEiWTMCIalIxKwhYtWmTtOMgaBEE/7SN3vX5dmKgkTL8uLI8VEomIyNKip3QmYftFJ2GAvjiHPgmrw5yxEVYIkIjIurgmbKgzsThHSudeLCfKVdBwzj0REVmSuevCDMU5uGkzEQ1SokvUb9myZcBzfvWrX5kQijiNjY145513cPr0aZw8eRJ1dXVYuHChUaN2mzdvxpIlS/p8b//+/QgKEjc/3aEZinNcygVaVYCbr1HNRgZ7wUMuRXO7BuerGxEf4m29GImIyLkMnwRAAK4UAg2XAe9hopobinOcvlyP5nY1POSi/5whIrIr0b+1rrUZc/c1Y7ZIwpRKJT7//HMkJiZi+vTp2LRpk+hrvPLKK4iNje1xbMiV2fcNB/xHALXngYsHgITbjGomlQgYE+aLI8W1yCtVMgkjIiLLcfcDhiUDl/P1UxKT54hqPszXDaG+brikakVBmQqZsQFWCpSIyDpEJ2G7d+/udayurg67d+/GN998gzfeeMMigQ0kPDwcP/30EwRBQG1trUlJWFxcHJKTk60QnYOJydInYUX7jE7CAP26sCPFtcgvU+GecZFWDJCIiJxOdFZnErZPdBIGAOlRClwquIycUiWTMCIadESvCQsPD+/1NWbMGCxevBg333wzPvroI2vE2YsgCKzYaCxT14V1zrnPL1NaNh4iIqKudWGmbdqc1rUurM5CARER2Y5FJ1FPnDgRjz/+uCUvaVULFixAbW0tvL29kZGRgcceewzx8fEmXUuj0ZjVztT2RomcBCkAVBZA01CtLw9shDGh+imIpy7Vo6WtA3KZ5eu42KT/Doz9Z/+7vzobc/vvrJ/bkBE1ERAkQM05oP4S4BMqqrlhXVhOiRI6nY4PZoloULFoElZeXg6JxPELLgYGBmLBggVIS0uDl5cXCgsLsWbNGsydOxcbN25EYmKi6GsWFBSYFZO57QeS5B0N94ZiFP/wCZRh2Ua10el08JILaGzXYdu+Yxjh52K1+Kzdf0fH/rP/zszZ+++03BXAsBR94aji/UDKPaKajwnzhUwioKqhDZdUrQhTuFslTCIiaxCdhP3000+9jrW3t+PMmTN49913MXHiRIsEZk3Z2dnIzr6aiIwfPx5Tp07FzJkz8dZbb2H16tWir5mcnAypVCq6nUajQUFBgcntjSVcvgn46T3ECGXQpaUZ3S499yfsO1eDNo8QpKVFWTwuW/XfUbH/7D/7b3r/De1pEIvJ6kzC9opOwtzlUowK9UFBuQo5JUomYUQ0qIhOwn73u9/1GvLX6fT7SE2aNAnPP/+8ZSKzsYiICIwdOxZ5eXkmtZdKpWb9EWVu+wHFTgV+eg+S4n2AiJ+TGumHfedqUFBRb9X4rN5/B8f+s//sv/P236lFZwEHVpi1LkyfhNVhRoq46YxERPYkOgnrq/CGq6srwsPDERgYaJGg7EWn0w2K6ZQmGT4Z+j1ZzgANlYB3iFHNkiP0+4rll6msGBwRETklw7qw2guAqly/rYoI6VEKfHzoInJKldaJj4jISkQnYRkZGdaIw+5KS0tx/PhxTJo0yd6hWIeHf7c9WYwvB5waoQAAFFY2cENMIiKyLDcfIDQNqDiuHw1LnSuquaE4x4lyFdrVWqsUkCIisgbRv62Kiopw5MiRPt87cuQIiouLzY3JaHv27MGOHTvw/fffAwDOnTuHHTt2YMeOHWhpaQEALF26FElJSSgvL+9qN2/ePKxcuRK7du3CwYMH8eGHH+K+++6DIAhYvHixzeK3ORNK1Q/zdUOwtyu0OuDninorBUZERE6rq1S9uG1UACA6wAMKDxe0qbU4fZn3KCIaPEQPayxbtgzR0dF9joh9//33KCoqwj/+8Q+LBDeQl156qUdyZUjAAP2m0hEREdBqtdBoNF3r1gAgPj4e27dvxwcffIC2tjb4+/tjwoQJeOSRRxATE2OT2O0iJhs4uFL8fmERCuw6VYm8UiXGRxtX3p6IiMgo0VnAj2+ZtC5MEASkRSrww5lq5JQokdI5e4OIyNGJTsIKCgpwzz19VzAaP348tm3bZnZQxvruu+8GPGfZsmVYtmxZj2NLly61VkiOLWoiIEiBuiJAWQooIo1qlhrhi12nKrkujIiILC9qQue9qVjUvckgPdKvMwmrw+8nRVslRCIiSxM9HbGhoQEeHh59vufm5gaVin+oOyw3HyAsXf998T6jm6VEKgAABeX8b0tE1J/Gxka89tpr+MMf/oAJEyYgISEBK1asMLp9TU0NnnnmGWRmZiI1NRVz587FwYMHrRixA3D1NuneZJAepQAA5LI4BxENIqKTsJCQEOTn5/f5Xn5+PoKCgswOiqzIhHVhKeH6ColFV5qgaumwRlREREOCUqnE559/jvb2dkyfPl1U2/b2dsybNw8HDx7Es88+i3feeQcBAQGYP3/+NddiDxld68LET0lM7XxQWFzTjNqmdgsGRURkPaKTsOnTp2PNmjU4dOhQj+OHDx/Ge++9h5tuusliwZEVGG50RfuAbuvk+uPnKUeUv370s4BTEomIrik8PBw//fQTPvnkEzzxxBOi2m7atAmFhYV48803MWvWLEyePBlvv/02oqOjsXz5citF7CCip+hfi8SPhPm6u2BEkCcAILe0zpJRERFZjegk7NFHH0VYWBgeeOAB3HbbbV2v8+bNQ1hYGBYtWmSNOMlSIicAEhegvky/L4uRUjr3C8srU1opMCKiwU8QBAiCYFLbXbt2ISYmBunp6V3HZDIZZs2ahfz8fFRWVloqTMcTOQGQyABVCVB3UXRzQ6n6nBKlhQMjIrIO0YU5vL298dlnn2HdunXYt28fKioq4Ofnh0WLFuH3v/89PD09rREnWYrcA4gYD5Qc0M+9DxhhVLPUCAW+yr+EfCZhRERWcfbsWYwdO7bX8YSEhK73Q0JCRF1To9GYFIuhnantRZO5QxJ2HYSyI9Be2ANd2m9ENU+N8MG/jgE5JXUWidnm/Xcw7D/73/3V2Zjbf2PbmbTzrqenJx599FE8+uijpjQne4vJ1idhRXuBsfOMapLcORLGColERNahVCrh6+vb67jhmFKpFH3NgoICs2Iyt70YYW5xCMUR1OVsQzFGi2rr0axfr3y8uBbHc3IgMXE08pds2X9HxP6z/87M2v03KQkD9FUSc3NzUVdXh6lTp/Z54yAHFZMF7Fl2dV2YETerMeG+EATgkqoVVQ2tCPZ2s0GgRETOpb+pjKZMc0xOToZUKhXdTqPRoKCgwOT2JvG5Gzi3Hv71P0ORmmrUvclgjEaL537YjeYODbzD4xAX7GVWKHbpvwNh/9l/9t/0/hvaD8SkJGzVqlV477330NraCkEQ8K9//Qu+vr74/e9/j8mTJ+Ohhx4y5bJkKxHjAZkb0FQFVJ8BghMHbOLlKsPIIC+crWpEfqkK05OYhBERWZJCoehztMuw9YspDzulUqlZf0SZ216U4RMBiQuE+nJI60sB/xijm0qlUqRE+OJwUS3yy+qRGGqZB8M27b8DYv/Zf/bfev0XXZhj/fr1WLVqFebMmYN3330Xum4V9qZNm4YffvjBkvGRNchcgchM/fdi9guLUAAA14UREVlBfHw8CgsLex03HIuLi7N1SLYl9wAixum/N2m/sM7iHNwvjIgGAZOSsHnz5uG5557DlClTerw3fPhwXLwovqoR2UHXfmF7jG6SGmmokMh1YUREljZ9+nRcuHABeXl5XcfUajW2bt2K1NRU0UU5BiVDqXoT9gszbNqcU8Iy9UTk+EQnYaWlpcjKyurzPU9PT9TX15sdFNmAIQkr3g9otUY1MYyEFZSreoyAEhHRVXv27MGOHTvw/fffAwDOnTuHHTt2YMeOHWhpaQEALF26FElJSSgvL+9qN2fOHMTFxWHx4sXYtm0bDhw4gMcffxxFRUX485//bJe+2Fy0+L0sDdI7N20urGxAY5vawoEREVmWSSXqr1y50ud75eXlCAgIMDsosoGwdEDuBbTUAZUngNCUAZuMCvWGi1RAbVM7yupaENm5gTMREV310ksv9UiuDAkYAOzevRsRERHQarXQaDQ9HmjJ5XKsW7cOy5cvx8svv4yWlhaMGjUK7733HjIyMmzeD7uIzACkcqChQr+XpZHbqABAsI8bwhXuKFe2IL9MiUkjAq0YKBGReUQnYRMnTsT777+PG2+8Ea6urgD0FZvUajU2btzYa4oiOSipCzB8EnD2W/3ceyOSMFeZFInDfFBQrkJ+mYpJGBFRH7777rsBz1m2bBmWLVvW63hgYCBeffVVa4Q1OLi464tHXfxR1F6WBmlRCpQrW5BbyiSMiByb6OmIjz32GCoqKjBjxgwsW7YMgiDgk08+wT333IOLFy/ikUcesUacZA1d0z72Gt0kpWu/MKUVAiIiIqdnWBdWZEJxjs4piTklSsvFQ0RkBaKTsOHDh2Pjxo2IjY3Fxo0bodPp8OWXX8LPzw8bNmxAWFiYNeIka+haF/YjoDFu/rwhCctjEkZERNZgeEBYvF/8ujBDhcQSJdcuE5FDM2mfsJEjR+Kf//wn2tvbUVdXB19fX7i5cd+oQWdYMuDmC7SqgEt5QMTYAZsYinOcKK+HVquDRCJ+81AiIqJrihgPSF2BxstAzTkg0PjS/KPDfOAiFXClsY1rl4nIoYkeCetOLpcjJCSECdhgJZF2m5JoXKn6uGAvuLlI0NimxoUrjVYMjoiInJKLm75AByB6vzA3FymSQn0AALncL4yIHJhRI2FbtmwRddFf/epXJoRCdhGdBZz+Sn+jy3piwNNlUgnGhPni6MU65JWqMDLY2wZBEhGRU4nO0t+XivYB4/4gqml6lB/yylTIKVFiZiqXSBCRYzIqCXvmmWeMvqAgCEzCBhPDurCSQ4C6HZDJB2ySEqHA0Yt1yC9T4u6xEVYOkIiInE73TZt1OkAwfup7epQC6w4AOaXctJmIHJdRSdju3butHQfZS/AowCMQaL4ClB8Dhk8csElqZGeFxHKVtaMjIiJnFDEOkLkBTVXAlUIgKMHopmmdFRJ/Lq9Hm1oDV5nUSkESEZnOqCQsPDzc2nGQvQgCEJMF/PyFvlS9EUmYoTjHyYp6dGi0cJGatbSQiIioJ5mrfl1Y0V79tEQRSViUvwf8PeWobWrHyYr6roqJRESOxOS/nhsbG7F//3589dVX+PHHH9HYyCINg1ZXOWDjFkBHB3jAx02GNrUWZy43WDEwIiJyWtGd0+VF7hcmCELXfmEszkFEjsqkEvX//Oc/sXLlSrS2tkKn00EQBLi5ueGxxx7DAw88YOkYydpipupfSw8DHS2Ai3u/pwuCgJQIBfafu4L8MhXGhPvaIEgiInIqZq4L2326CjklSjww2UrxERGZQfRI2JYtW7B8+XKMHz8er7/+OtavX4/XX38dGRkZeO2110RXUiQHEDAC8A4FNO1A6RGjmhg2bc7nps1ERGQN4WMBmbt+zXL1aVFN0yI7N21mcQ4iclCik7B169bhjjvuwJo1a3Dbbbdh7NixuO222/Duu+9ixowZ+PDDD60RJ1mTIFytkli016gmhiQsr4zFOYiIyApkciAqU/998X5RTVMifSEIQGltC640tlkhOCIi84hOwi5cuIBZs2b1+d6sWbNw/vx5s4MiOzAkYUauCzMU5yisbEBLu8ZKQRERkVMzrFk28gGhgY+bC+KCvQAAuSVKCwdFRGQ+0UmYm5sbVKq+Rz9UKhXc3NzMDorswHCjKz8GtA1cbCPU1w2BXq7QaHU4eYmjYUREZAVdhaP2A1qtqKbpnJJIRA5MdBI2duxYrFy5EpWVlT2OV1dXY9WqVRg3bpzFgiMb8hsOKIYDWrV+4+YBCIKAVMOUxFImYUREZAXh1wEuHkBLLVB9SlTTtCgFACCHI2FE5IBEV0d84okncO+99+Lmm2/GxIkTERQUhOrqahw6dAgymQwrV660RpxkCzFZQM5F/bSPuJsGPD0lQl99isU5iIjIKqQuQNQE4Px3+lL1IaONbpremYTllSqh0eoglRhfXZGIyNpEj4TFxcXhX//6F2688UYUFBRg8+bNKCgowI033ohNmzZh5MiR1oiTbMFQqt7Y4hyRnRUSyzkSRkREViJyL0uDuGBveMqlaGrX4FwV9zIlIsdi0j5hMTExeP311y0diyiNjY145513cPr0aZw8eRJ1dXVYuHAhFi1aZFT7mpoaLF++HN9//z1aW1uRmJiIxx9/HBMnTrRy5A7McKO7nA+01AHufv2entpZnONCdRPqWzvg4+Zi5QCJiMjpGApHXfxRvy5MYtzzY6lEQGqkAgfO1yCnpA4Jw7ytGCQRkTiiR8IchVKpxOeff4729nZMnz5dVNv29nbMmzcPBw8exLPPPot33nkHAQEBmD9/Po4cMW6frCHJJxQIiAN0WuDigQFP9/eUI8JPv7HzCZaqJyIiawhNBeRe+oeDVT+LaprOdWFE5KBMGgk7efIktm3bhoqKCrS19dx/QxAErF692iLB9Sc8PBw//fQTBEFAbW0tNm3aZHTbTZs2obCwEJ9++inS09MBAJmZmZg9ezaWL18u6lpDTkwWUHNWP/c+ccaAp6dGKFBW14K8MhUmjQy0QYBERORUpC5A1ETg3E79vWlYstFNuWkzETkq0SNhW7Zswd13342PPvoIx48fR2FhYa8vWxAEAYJg2iLbXbt2ISYmpisBAwCZTIZZs2YhPz+/V+VHpyJy0+bkzgqJLM5BRERWEz1F/ypy0+a0SAUA4GxVIxpaOywcFBGR6USPhK1evRpTp07Fq6++Cl9fX2vEZHVnz57F2LFjex1PSEjoej8kJETUNTUa0zYsNrQztb3FRU6CFACqfoamvhLw7H90a0yYfo59XpnSpD44XP9tjP1n/7u/Ohtz+++sn5tTiulcs3xxP6DVABKpUc2CvF0R6e+O0toW5JepMJkzNojIQYhOwqqqqvDCCy8M2gQM0K8n6yt+wzGlUin6mgUFBWbFZG57SxrlHQuPhgso3vMJlGHX93uurkMLAUCFshV7Dh2Dr5txN8ZfcqT+2wP7z/47M2fvPxlhWCog9wZaVUDlCf06MSOlR/qhtLYFOSV1TMKIyGGITsJGjRo1JKbr9TeV0ZRpjsnJyZBKxScgGo0GBQUFJre3BqFyOnBkDWJQBl1a2oDnx/64D+erm6BVRCItMVjUz3LE/tsS+8/+s/+m99/QnpyAVAYMnwSc/Y9+XZiIJCwtUoGteRUszkFEDkV0EvbUU09hyZIlGDVqFBITE60Rk9UpFIo+R7tUKn2FP1NG+aRSqVl/RJnb3qJirweOrIGkeB9gREypEQqcr25CQUUDpo8ONelHOlT/7YD9Z//Zf+ftPxkpeoo+CSveD0xaaHQzQ4XE3FIldDqdyevJiYgsSXQSlpaWhptvvhl33nkngoKCeiUsgiBg69atFgvQGuLj4/ssIGI4FhcXZ+uQHMvwyYAg0VdJrL+kL13fj5QIX2zOKUcBN20mIiJr6VoXdkDUurCkMB/IpRLUNLWjtLYFUQEeVgySiMg4oqsjrlmzBu+++y78/PwQFhYGhULR42swrBWbPn06Lly4gLy8vK5jarUaW7duRWpqquiiHEOOuwIYlqL/vnjfgKendFafyi/TP2UkIiKyuGEpgKsv0KYCLuUNfH4nV5kUo8N9ALBUPRE5DtEjYR999BHuvvtu/OUvf7H79JE9e/agpaUFTU1NAIBz585hx44dAICpU6fC3d0dS5cuxZYtW7Bz506Eh4cDAObMmYMNGzZg8eLFePLJJxEQEIANGzagqKgIa9eutVt/HEpMNnApV1+qPuXX/Z6aFOoDmUTAlcZ2VKhaEa5wt02MRETkPCRS/bqwwu36KYnh1xndNC1SgZwSJXJKlJidFm7FIImIjCM6CWtqasIdd9xh9wQMAF566SWUl5d3/XvHjh1dSdju3bsREREBrVYLjUbTY4RGLpdj3bp1WL58OV5++WW0tLRg1KhReO+995CRkWHzfjikmGzgwNtG7Rfm5iJFwjBv/FxRj/xSJZMwIiKyjpisziRsHzD5MaObpUf5Ye2PxcgpVVovNiIiEUQnYddddx3Onz+PiRMnWiMeUb777rsBz1m2bBmWLVvW63hgYCBeffVVa4Q1NERNACQyQHkRqLsI+A3v9/SUCF/8XFGPvDIVbks2rTgHERFRvwybNl88CGjU+qqJRkjvnDZ/skKF1g4N3Fzs/yCZiJyb6DVhzz77LD799FPs2rUL7e3t1oiJHIGrNxDWOdXDmHVhEQoA+nVhREREVhGSDLgpgPYGUevCIvzcEejlig6NDj9X1FsvPiIiI4keCbv77ruhVquxaNEiCIIANze3Hu8LgoBjx45ZLECyo5hsoOyIfkpi+m/7PTUlQl+QpaBMBa1WB4mEJYCJiMjCJBJ9Bd8zX+sfEEaMNaqZIAhIi1Rg16lK5JTUYexwPysHSkTUP9FJ2C233MI9NpxFTBaw72/6jTF1OqCf/+7xId5wlUnQ0KZGUU0TRgR52TBQIiLH0NTUhDfffBPbt2+HSqVCbGwsHnroIcyYMaPfdps3b8aSJUv6fG///v0ICgqyRriDU0zW1SRsyuNGN0uP0idhuVwXRkQOQFQSptFo8Mc//hH+/v6DohQ9mSkyE5DKgYYKoOY8EDjymqe6SCUYHeaD4yVK5JcpmYQRkVNatGgRCgoK8OSTTyI6OhpfffUVnnjiCWi1WsycOXPA9q+88gpiY2N7HFMoFFaKdpAyrAsrOQRoOgCpi1HNDJs255QorRMXEZEIotaE6XQ6zJgxA7m5uVYKhxyKizsQ0VktsnjgKomGdWF5pdy0mYicz549e/Djjz/ihRdewL333osJEybg5ZdfxuTJk/Haa69Bo9EMeI24uDikpaX1+HJxMS7JcBrBowF3P6C9EajINbpZSoQCEgEoV7agqr7VevERERlBVBImk8kQGBjIDXmdSUy2/tWIUvWpkZ3rwsqZhBGR89m5cyc8PDxw66239jh+1113oaqqCnl5xheSoH4Y1oUBRhWOMvBylSE+xBsAWKqeiOxOdHXEGTNmYMuWLVYIhRxSTJb+1bAurB+GkbCfK1RQa7RWDoyIyLGcPXsWI0aMgEzWc6Z/QkJC1/sDWbBgAUaNGoWMjAwsXLgQhYWFVol10DM8IBSRhAGckkhEjkN0YY7ExER88803uP/++3HzzTcjKCioV6GOm2++2WIBkp2FjwNk7kDzFaDqFBCSdM1TYwI84e0qQ0ObGoWVjUgK87FhoERE9qVUKhEREdHruGENtVKpvGbbwMBALFiwAGlpafDy8kJhYSHWrFmDuXPnYuPGjUhMTDQpJmOmQPbXztT2Vhc5CVIAupJD0La3Gr0uLDXcFxtRipySun775vD9tzL2n/3v/upszO2/se1EJ2FPP/00AKCyshJHjhzp9b4gCDh16pTYy5KjksmB4ROB89/pnzj2k4RJJAKSI3xx4HwN8suUTMKIyOn0Vz24v/eys7ORnZ3d9e/x48dj6tSpmDlzJt566y2sXr3apHgKCgpMamep9laj0yJF7guXdhXO7vkMTf5jjGrm1qwGAOSV1OHY8RxIB9hOxWH7byPsP/vvzKzdf9FJ2EcffWSNOMiRRWfpk7CivUDmH/s91ZCE5ZWpcG+GjeIjInIACoWiz9EulUq/TlZsVeGIiAiMHTvWrLVkycnJkEqlottpNBoUFBSY3N4WJOeygdPbEO9SCV1a/3tZGqRodXjuh91obFPDI3QERoX2/bBwMPTfmth/9p/9N73/hvYDEZ2EZWTwL2unEzNV/1q8H9BqAMm1/weZ2rkuLL9Maf24iIgcSHx8PL766iuo1eoe68IM67ri4uJEX1On00EiEb18u4tUKjXrjyhz21tV7FTg9DZISn4EpE8Z1UQqBdIiFdh/7gryyusxJqL/TZsduv82wP6z/+y/9fpv8m/2hoYG7Nu3D1u3bu16ykdDVGgqIPcGWpXA5f4z+5QI/ZPeM5cb0NrhnHOJicg5TZ8+Hc3Nzfj22297HP/iiy8QHByM1NRUUdcrLS3F8ePHRbdzGtGdhaNKDgPqNqObGYpz5LI4BxHZkeiRMABYtWoV3nvvPbS2tkIQBPzrX/+Cr68vfv/732Py5Ml46KGHLB0n2ZNUBkRPBgp36NeFhaVd89RwhTsCPOWoaWrHyUv1uC6q/6eMRERDxdSpUzF58mS8+OKLaGxsRFRUFL7++mvs27cPy5cv73qiunTpUmzZsgU7d+5EeHg4AGDevHkYN24cEhMT4enpicLCQrz//vsQBAGLFy+2Z7ccV1AC4BkENFUD5cf165eN0FUhkWXqiciORI+ErV+/HqtWrcKcOXPw7rvv9tgzbNq0afjhhx8sGR85CsMTxwH2CxMEoWs0LJ83OCJyMitWrMCsWbPw9ttvY/78+cjLy8Prr7+OWbNmdZ2j1Wqh0Wh63D/j4+Oxfft2PPXUU5g/fz7ef/99TJgwAf/+978RHx9vj644PkEAoqfovxdRqj4tUv9w8FxVI1QtHdaIjIhoQKJHwtavX4958+bhqaee6lWCcfjw4bh48aLFgiMHYtiT5eIBQNPRbznglAgFvj9TjXxu2kxETsbT0xPPPfccnnvuuWues2zZMixbtqzHsaVLl1o7tKEpegrw8xf6JGyqcevC/D3lGB7ggYs1zcgrVSI7PsjKQRIR9SZ6JKy0tBRZWVl9vufp6Yn6+nqzgyIHFDIGcPcD2huBitx+T02N7BwJK2MSRkREVhTd+YCw9Ii4dWGRCgBALmdsEJGdiE7CvL29ceXKlT7fKy8vR0BAgNlBkQOSSK5O+yja0++pKZ0VEs9XN6KxTW3lwIiIyGkFxgFeIYC6FSg7anSz9M71yjklddaKjIioX6KTsIkTJ+L9999Hc3Nz1zFBEKBWq7Fx40ZMmTLFogGSAzE8cRxg7n2glyvCFe7Q6YACjoYREZG1mLgurHtxju5r84iIbEV0EvbYY4+hoqICM2bMwLJlyyAIAj755BPcc889uHjxIh555BFrxEmOwLAurOTQgNM+ksMNUxKVVg6KiIicWlcStt/oJonDfCCXSaBs7kBxTfPADYiILEx0EjZ8+HBs3LgRsbGx2LhxI3Q6Hb788kv4+flhw4YNCAsLs0ac5AiCEgDPYKOmfaRwXRgREdlC93VhHa1GNZHLJF0PC3NLOSWRiGzPpH3CRo4ciX/+859ob29HXV0dfH194ebmZunYyNEIAhCTBZz4t75UffTka56a2rkuLI8jYUREZE0BIwCvYUDjZaDsJ/19ygjpkQocu1iHnBIl7kyPsHKQREQ9iR4JW7JkCUpLSwEAcrkcISEhXQlYeXk5lixZYtkIybHEGLcubEznE8ayuhbUNBpfsYqIiEgUwwNCQOS6MENxDqUVgiIi6p/oJOyLL75AXV3fQ/d1dXXYsmWLuTGRIzNs2lx6BGi/9jx6X3cXxAZ6AgD3CyMiIuvqqt4rYtPmzuIcpy7Vo7VD0//JREQWJjoJ649KpYJcLrfkJcnR+McCPhGAtgMoPdzvqSkRnevCSpmEERGRFRkeEJYf7fcBYXdhvm4I9naFWqvDCT4sJCIbM2pN2E8//YTDh6/+wb1p0ybs3bu3xzltbW3YvXs3RowYYdkIybEYpn3kbdSvCxsx7ZqnpkQosCW3AgXlStvFR0REzsc/FvAJB+rLgbIjQOz1AzYRBAHpUQr85+dK5JQoMS7a3/pxEhF1MioJO3z4MFauXAlA/0tr06ZNfZ4XFhaG//mf/7FcdOSYYrL1SdgAc+9TOysk5pWpoNPpIAiCLaIjIiJnY9gvLP8zfal6I5IwQL8u7D8/VyKHFRKJyMaMSsLmz5+P3/zmN9DpdJg0aRL++c9/Iikpqcc5crkcnp6eVgmSHEzXtI/jQGs94ObT52lJob6QSgRUN7Thcn0rQn3dbRgkERE5legsfRImZl1YpAIAi3MQke0ZlYS5ubl1VUDcvXs3goKCuPbLmSkiAb8YoK4IKDkIxN/S52nuciniQ7xx6lI98kpVTMKIiMh6DMU5yo8B7U2AfOAHwykRvpAIwCVVKy6rWjHMl9vtEJFtiC7MER4ezgSMrpYDLtrb72kp4YZNm5VWDoiIiJyaXzTgG2lU4SgDD7kMicP0szm4aTMR2ZLoJKyjowPvvPMObr/9dqSlpWHUqFE9vn45TdGampqa8Ne//hVTpkxBcnIyZs+eja+//nrAdps3b0ZCQkKfX9XV1TaIfAiImap/HSgJizQkYaw8RUREVmRYFwbo14UZKb2zVD2nJBKRLRk1HbG7119/HevWrUN2djamT59u11GxRYsWoaCgAE8++SSio6Px1Vdf4YknnoBWq8XMmTMHbP/KK68gNja2xzGFQmGlaIcYw43ucgHQXAt49F1VKjVCAUA/EsbiHEREZFXRhuq94taFrT9cwiSMiGxKdBK2fft2PProo1i4cKE14jHanj178OOPP+Lvf/877rjjDgDAhAkTUFFRgddeew233347pFJpv9eIi4tDcnKyLcIderyHAYEJwJUzwMUfgVF9J70Jw7whl0lQ36pGcU0zYgJZvIWIiKzE8ICw4jjQ1gi4eg3YJD3KDwCQX66EWqOFTGrRLVSJiPok+jeNSqXCuHHjrBGLKDt37oSHhwduvfXWHsfvuusuVFVVIS8vz06ROZGudWHXfuLoIpUgKVQ/357rwoiIyKr8hgOKKECrBkoPGdUkNtATPm4ytHZocfpyg5UDJCLSE52EjR8/HqdPn7ZGLKKcPXsWI0aMgEzWczAvISGh6/2BLFiwAKNGjUJGRgYWLlyIwsJCq8Q6ZMVk618HWBeWGsF1YUREZCOGbVSMXBcmkQhI6xwNyylVWikoIqKeRE9HfO655/DII48gLCwM119/vd3WhCmVSkRERPQ67uvr2/X+tQQGBmLBggVIS0uDl5cXCgsLsWbNGsydOxcbN25EYmKi6Hg0Go3oNt3bmdreriInQQoA1aegUV0CvIL7PG1MuH4kLK9U2aufg7r/FsD+s//dX52Nuf131s+NBhCdBeSuF7UuLD1Sgb2F1cgpqcPvJgy3YnBERHqik7DZs2dDrVZj8eLFEASha/8wA0EQcOzYMYsF2J/+ijz09152djays7O7/j1+/HhMnToVM2fOxFtvvYXVq1eLjqWgoEB0G0u2t5dRPiPgUX8eF/esR134tD7PkTeoAQAFZUocO54DqaT3f5vB2n9LYf/Zf2fm7P0nC+taF5YDtDUArt4DNknrrJCYy5EwIrIR0UnYLbfc4hAV7hQKRZ+jXSqVfsqbYUTMWBERERg7dqzJa8mSk5MHLATSF41Gg4KCApPb25tQdTNweDWiUYrhaWl9npOi1WHp97vQ1K6BV9hIJAy7ekMc7P03F/vP/rP/pvff0J6oB0Wkfs+wumKg5BAQd9OATdI6K/leqG6Csrkd3q7O9/9HIrIt0UnYsmXLrBGHaPHx8fjqq6+gVqt7rAszrOuKi4sTfU2dTgeJxLSqSFKp1Kw/osxtbzexU4HDqyEp3gdcI36pFBgT7ovDRbU4UdGApHBFH+cM0v5bCPvP/rP/ztt/soLoLH0SVrTXqCTMz1OO2EBPXLjShNxSJbJGBlg/RiJyaoO2Duv06dPR3NyMb7/9tsfxL774AsHBwUhNTRV1vdLSUhw/flx0O6c3fBIgSIDa84Cq/JqnpUYqAAB5rJBIRETWJrI4B3B1SiL3CyMiWzBqJOznn38WddHRo0ebFIwYU6dOxeTJk/Hiiy+isbERUVFR+Prrr7Fv3z4sX76866nq0qVLsWXLFuzcuRPh4eEAgHnz5mHcuHFITEyEp6cnCgsL8f7770MQBCxevNjqsQ8pbr5AaJp+T5bifUDqvX2elsIKiUREZCuGdWGXcoFWlf5eNYD0SAU2Hy9nhUQisgmjkrC7777bqHVgOp0OgiDg1KlTZgdmjBUrVuCNN97A22+/DaVSidjYWLz++uuYMWNG1zlarRYajQY6na7rWHx8PLZv344PPvgAbW1t8Pf3x4QJE/DII48gJibGJrEPKTHZ+iSs6NpJWGrnfPvTl+vRptbAVcapR0REZCW+4YB/LFB7Qb8uLP6WAZsYNm3OK1VCq9UNcDYRkXmMSsJeeeUVa8dhEk9PTzz33HN47rnnrnnOsmXLeq1jW7p0qbVDcy4xWcCPbwJFewCdDugjYY/wc4efhwvqmjtw6lID0jqnJxIREVlFdJY+CSvaa1QSljDMG24uEqhaOlBc02SDAInImRmVhN15553WjoMGs6iJgEQGqEr1C6H9e48mCoKAlAgF9hRWI79MySSMiIisKzoLOP6h0evCXKQSpIQrcKS4FjmlKowYtKvmiWgw4K8YMp/cEwgfp/+++NqbY6ZyXRgREdmKYV3Y5XygRWlUE+4XRkS2wiSMLCOmc/Pror3XPCWlc11YPiskEhGRtfmEAgEjAZ0WKDloVJN0QyXfUj4sJCLrYhJGlhHTWQ64aJ9+XVgfDBUSz1U1oqlNbavIiIjIWUV3uzcZwVCc43RlA1rVWmtFRUTEJIwsJCIDkLoCjZeBK2f7PCXYxw3DfNyg1QEnyvmUkYiIrMwwJbGfqfLdDfN1Q6ivGzRaHc7X8WEhEVkPkzCyDBc3ICpT/31xf1MSuS6MiIhsxDASdrkAaK41qomhcNTXZ5uQU8Jy9URkHUzCyHKiB14XlmqYb891YUQ0BDU1NeGvf/0rpkyZguTkZMyePRtff/21UW1ramrwzDPPIDMzE6mpqZg7dy4OHjRuLRNdg3cIEBgPQGf0urCJIwIAAIfL2zDn3UPI+L/dePpf+dh5shIt7RorBktEzsSoEvVERonJBr6HvhywVgtIeuf4HAkjoqFs0aJFKCgowJNPPono6Gh89dVXeOKJJ6DVajFz5sxrtmtvb8e8efNQX1+PZ599FgEBAVi/fj3mz5+PtWvXIiMjw4a9GGKis4Arhfp1YYkzBjz9N5nD4esmw+cHziCvSo0rjW347GgpPjtaCleZBFlxgZg+KgQ3jApGsLebDTpAREMRkzCynPDrABdPoLkGqDoJDBvT65SUcAUAoKS2GXVN7fBxk9o4SCIi69izZw9+/PFH/P3vf8cdd9wBAJgwYQIqKirw2muv4fbbb4dU2vfvvE2bNqGwsBCffvop0tPTAQCZmZmYPXs2li9fjk2bNtmsH0NOTBZw9J9GrwuTSgTckRKKCG0lksak4HipCjtPVmLXqUqU1bVg16kq7DpVBUA/dfGmpBBMHxWC+BAvCIJgzZ4Q0RDC6YhkOVIXYPhE/ffXuNn5erggOsADAJDP4hxENITs3LkTHh4euPXWW3scv+uuu1BVVYW8vLxrtt21axdiYmK6EjAAkMlkmDVrFvLz81FZWWm1uIe84Z3FOSpPGL0uzEAuk2DyyEC8OGs09j01DTsez8Kfb47vmlqfW6rE8v+cwS1v7kX28u/x4taf8eO5K+jQsLIiEfWPI2FkWdFZwLld+nVhEx7u85SUCAWKa5pRUKbElBH+Ng6QiMg6zp49ixEjRkAm63lrTUhI6Hr/uuuuu2bbsWPH9jrevW1ISIjomDQa09YwGdqZ2t6huPtDEpQIofo0NBf2AqOuPS3U4Fr9jwvyRNzUWDw8NRZV9a347kw1dp+qwo/na1Ba24J1B4qx7kAxvN1kmBofiBsTg3F9fBB83F2s0jVrGVL//U3A/rP/3V9NbT8QJmFkWYZNm4t/BLQaQNJ76k1KhC+25lUgj+vCiGgIUSqViIiI6HXc19e36/3+2hrOE9u2PwUFBSa1s1R7RxHpmYDg6tOoObYFpW2RRrcbqP+JLkBiihQPJgUiv7IdP1W04dilNqha1fgq/zK+yr8MqQAkBckxLswV40JdMcxr8PzpNVT++5uK/R8a/W/X6NDUrkVjh/61oV2LpnYdGju0+uPtOjR1dL62a9Gi1uH2OA8A1u3/4PlNQINDaCrg6gu0qYBLefp1Yr9gmMaRzwqJRDTE9LcmaKD1Qua0vZbk5ORrrkPrj0ajQUFBgcntHY7rnUDxlwhqPI2AtLQBTzel/xMAPARAq9Uhr0yF3af1a8fOVjWioKodBVXtWJvbgPgQL9yYGIzpo4KREu4LicTx1pENuf/+IrH/jtf/NrUW9S0dULV0QNnS0fW9qqUD9S1qqFoN3xveV3e932bCxuu5l9vxp1mZZv3+HAiTMLIsiRSIngyc+Ua/LqyPJGx0mA8kAlBZ34bK+lY7BElEZHkKhaLPESuVSj/q39dIlyXa9kcqlZr1R5S57R1G5ywNofoUpK11gGegUc1M6b9UCoyLCcC4mAA8fdsoXKxp0hfzOFmJI8W1KKxsRGFlI1bvuYBAL1dMHxWMG0eFYMrIQLjLHeuzHjL//U3E/lu2/+1qbWdi1N6VIKlaOqBq7oCqW9LU6/2WDrR2mLfOUiIAPu4u8DXiy9tNClldidX/+zMJI8uLztInYUV7gcmLe73tIZchLtgbZyobkF+mQpAdQiQisrT4+Hh89dVXUKvVPdaFFRYWAgDi4uL6bWs4rztj2pIRPAOA4NFA1c/6bVRG/8pmP3p4gCcenBKDB6fEQNXcgR8Kq7DzZCX2nKnGlcY2fPpTKT79ieXvaXC4mkhdHXn6ZcKkbO77vZYO89aYCQLg43Y1WVJ4uBiXWHm4wEsuM3rUWaPRIDe31KxYjcEkjCzPsC7s4kFA06GvmvgLKRG++iSsXIUbmYUR0RAwffp0fP755/j2229x++23dx3/4osvEBwcjNTU1H7bvvTSS8jLy+s6T61WY+vWrUhNTTWpKAf9QvQUuyRh3fl6uGB2Wjhmp4WjXa3FkaJa7DpViZ0nK1GuZPl7sh2dTof6FjVqmtpQ19yOmsZ21Da1o7a5HTUNbbhQroL0xHHUt6p7JFPNZm5YLgiAt6sMvh6diZS7HL7u106mFJ3n+bi7wNvV+ERqMGASRpYXnAS4+wMttUD5cSAqs9cpKZEKbDpWhoIyFW4MGlxVo4iI+jJ16lRMnjwZL774IhobGxEVFYWvv/4a+/btw/Lly7umtSxduhRbtmzBzp07ER4eDgCYM2cONmzYgMWLF+PJJ59EQEAANmzYgKKiIqxdu9ae3Ro6YrKAI+8avV+YtcllEkyJC8SUuEC8MDMJpy83YFfnfmR5ZSrkliq7SuBH+rtj+qgQ3DQqBONj/OEi5Q5D1FOHRou6pnbUNLV3vdZe46umqR3K5naotboBrtpyzXe83WQ9kiTD1y+TKUOSdXWq39BKpMzBJIwsTyLR3+xOfqmfkthHEpYaoV/fUFBeD10ay9QT0dCwYsUKvPHGG3j77behVCoRGxuL119/HTNmzOg6R6vVQqPRQKe7+geQXC7HunXrsHz5crz88stoaWnBqFGj8N577yEjI8MeXRl6hk8GIADVp4HGasDLcaZhCIKAUaE+GBXqg0U3xqGyvhW7T1Vh16lK7D93BaW1LVj7YzHW/qgvfz8tIRg3jgrG9QnB8B1k5e9pYDqdDs3tml6JU21TG2qbOjpfe77X0Ko26Wd5ucrg5+kCf09XBHjK4echh5+HDC3KK0iMjYLC07VXouXt5gIpEymzMQkj64jJ1idhxXuBqf+v19uJw3wgl0qgbOlAZZNz7kNBREOPp6cnnnvuOTz33HPXPGfZsmVYtmxZr+OBgYF49dVXrRmec/PwB0LGAJUF+tGwMXfZO6JrCvFxw32ZUbgvMwrN7WrsO3sFu05W4rvTVahpasfWvApszauATCIgI8ZfP0qWFIJIfw97h0590Gp1ULZ09EiiBhqxMqWin0SAPonylMPfU65Pqjpf/fv48vOQw82ld+EJ/ZqoXKSlRTl1YRJrYxJG1hHduS6s5DDQ0Qq49FxgLJdJMCrUG3llKpyr7bBDgERE5HSip3QmYfsdOgnrzkMuwy2jh+GW0cOg0eqQW6rErlOV2HWyEmerGnHgfA0OnK/BX746iYQQb0xPCsb0USFIjVBw2peVtKn1o1Q1je2oa27v8X1NUztqG/VrqwwJlbK5HQPO/OuDq0zSlUj1Tqpc4d85gmVIqnzdOUI1mDAJI+sIjAO8hgGNl4Gyn/TTE38hJUKBvDIVztcxCSMiIhuIyQIOr3aYdWFiSSUCxg73w9jhfnj61kQUX2nSJ2SnKvFTcR3OVDbgTGUDVn1/vqv8/fRRIZjsgOXvHYFWq0ND29XCE/Wt+op+dU3t+PlcI7ZfOo26ZrV+BKu5cySrsR1NJhan8HGTIcDLFX4e3ab/9TNS5SGXsiDLEMYkjKxDEPQ3u4JN+nVhfSZh+nVhh8rb8K9jZbhh1DAEebvaOlIiInIWwycBEIArhUDDZcB7mL0jMkt0oCfmZ8ViflYslM3t+OFMNXae6l3+3s1Fgikjg3BTUjBuSAwZUvfa1g5NV/KkatEnVPWtPUukGzbu7Treqt+bqqFNDV2/I1SN13xHJhG6Eig/Dzn8va5+H+DVmUh1HjdM/WNBFeqOSRhZT0y2Pgm7xhPHCbEBkAhAVZMGT28+AeAEUiN8cUNiCG5IDNZv6sxhdSIishR3P2BYMnA5Xz8lMXmOvSOyGIWHHL9KD8ev0vXl7w8X1XRWW6zqLH+vHzEThAKkRSq61pHFBdu3/H2v0ageSdQvkqeuESt1179NWTv1S64ySY/Kft6uMqCtASMihyHAy7XP6X8+bjKOUpFZmISR9UR3jn6VHQXamwC5Z4+3I/098NWiyVi7KxenlFKcqKhHXpkKeWUqvLGrEMHerpiWEIwbRgVjyshAeLryf65ERGSmmOzOJGzfkErCupPLJMiKC0JWXBBenKXDqUsNXUlYfpkKOSVK5JRYrvy9KaNRhvcGHo0aWPe9p7pv5uvj5tJ5TNaVZPm4Xz3Hx10GHzeXXsUprhamSGRhCrIa/lVL1uMXDfhGAaoSoOQQMPLGXqckhHjj3tHeSEtLw5WmDvxwpgq7T1Vh/7krqGpow2dHS/HZ0VLIpRJkxvrjhsRg3JAYjOEBnr1/HhER0UCipwAHV+pHwpyAIAhICvNBUpgPHrsxDpdVrdh9Wl/Y48fzNX2Wv58aH4jLZa0oVJehsU1jl9Go7omT7y8Tpx7/Hnqb+JJzYBJG1mNYF5a7Xr8urI8krLsQHzfMHR+FueOj0KbW4PCFWnx3ugrfna5CSW0z9p29gn1nr+ClbScxIsizMyELwbhoP86zJiIi40RNBAQJUHMOqL8E+ITaOyKbGubrht9kDsdvMoejqU1f/n73qd7l7/WURl/X0qNRRFah0wHNtUBDBVDf7avr35cgab6CYZGzgbQ0q4bCJIysKyZbn4SJrETlKpMiOz4I2fFBeGFmEs5XN+G70/qbxE/FdThf3YTz1UV4b18RvN1kyI4Pwg0Jwbg+IQgBXkNnwTEREVmYuwIYlgJcytWPhqXcY++I7MbTVYZbxwzDrWMM5e/rsPNkFQ6ev4LWlmaEBiig8OBoFA0SGjXQWPmLpMqQZF0C6sv1D140bf1eRgAgb75s9XCZhJF1GdaFVeQArSrAzVf0JQRBwMhgL4wM9sJD2SOgaunAvrPV+O5UFX4orEZtUzu+zr+Er/MvQRCAtEgFbkwMxrTEYCSF+nDhLBER9RST1ZmE7XXqJKw7ffl7f4wd7t9tTVQa10SRY2hv7kykfjly1S3JaqwEdEZOjfUIBHzCrn55G74PhcZzGErKmuFv3R4xCSMr8w0H/EcAteeBiweAhNvMv6S7C+5ICcMdKWHQaHXIK1Piu1P6aYsnL9V3LTj+27eFCPV1w/UJwbgxMRiTRgbAQ87/yRMROb3oLODACqdZF0bksHQ6oKWuZ4L1i+mBqC8HWpXGXU8iA7xD9V89kqxQwCdcP/3YOxSQ9TNrSqMBynMt0bt+8S9Ssr6YLH0SVrTPIklYd1KJgOui/HBdlB/+fEsCLqla8P3panx3uhL7z13BJVUrNh4pwcYjJZDLJJg0IgA3JAZjWkIwIv09LBoLERENEoZ1YbUXAFW5/oEhEVmWVgM0Vg08PVDdYtz1XDz6GLn6RZLlGQRIBkedgEGdhDU1NeHNN9/E9u3boVKpEBsbi4ceeggzZswYsG1NTQ2WL1+O77//Hq2trUhMTMTjjz+OiRMn2iByJxOTDRxbpy/OYWWhvu64LzMK92VGobVDg4MXavD9aX3FxXJlC344U40fzlQD+BnxIV5de5JdF6WAjMU9iIicg5sPEJoGVBzXj4alzrV3RESDS0drZ2J16dpJVsNlQKcx7nru/ldHqn4xPRA+4foky81XXwFmiBjUSdiiRYtQUFCAJ598EtHR0fjqq6/wxBNPQKvVYubMmdds197ejnnz5qG+vh7PPvssAgICsH79esyfPx9r165FRkaGDXvhBAzrwioL9BVpPKw9y1bPzUWKaQn6Ua+XZulwtqoRu09V4fvTVTh6sRaFlY0orGzEP/ach6+7C6bGB+HGUcGYGh8EhYfcJjESEZGdxGR1JmF7mYQRdddWD7eGIuB8TR+FLjpHsFpqjbuWILnG9MBuSZZ3KODibt0+OaBBm4Tt2bMHP/74I/7+97/jjjvuAABMmDABFRUVeO2113D77bdfczHppk2bUFhYiE8//RTp6ekAgMzMTMyePRvLly/Hpk2bbNYPp+AVDASNAqpP6askJs22eQiCICA+xBvxId54+PoRUDa3Y09hNb47XYU9hdVQNnd0leWVCMB1UX64YZR+T7KEEG8W9yAiGmqis4Af3+K6MHJe6nag5ixQeRKo+ln/WvkzpPVlGG1Me5nbtUetDKNansGAdNCmG1Y1aD+VnTt3wsPDA7feemuP43fddReefPJJ5OXl4brrruuz7a5duxATE9OVgAGATCbDrFmz8Prrr6OyshIhISFWjd/pxGTrk7Ai+yRhv6TwkGN2Wjhmp4VDrdEip1Sp35PsVBXOVDbg6MU6HL1Yh9d2nEG4wh3TEoNwY2IIJo4I4F4mRN1otTo0tqvR0KpGfUvH1de2jp7HWtWob+1+TP99tDewIVVn726QM4qaAAhSoK4YUJYCikh7R0RkHTqdfvSq8mf9V9VJfcJ1pRDQdvTZRO3iDakiAoLvL5KqriQrDHD3G1LTA21t0CZhZ8+exYgRIyCT9exCQkJC1/vXSsLOnj2LsWPH9jrevS2TMAuLyQKOvGuTdWFiyaQSjI/2x/hofzx9ayLK6prxfecm0QfO16Bc2YJPDpXgk0MlcHORYPKIQExL1I+ShSmcb/ichg6dToc2tRb1LR2ob1WjobXba4u6K1HqmTx1+3drBxrb1NCZkUNpNRJotLrBezOiwcvVGwi/Dij7ST9LI+0+e0dEZL5WFVB1qnfC1abq+3y5NxCSBAQnASGjgeAkaAITkXemmFsUWNmgve8plUpERET0Ou7r69v1fn9tDeeJbXstGo2RCw+v0c7U9oNG5ERIIEC4cgYaVQXgpU9yHbH/oT6uuC8jEvdlRKKlvbO4x5lqfHemGpdVrdh9ugq7T1cBABKHeWNaQhCmJQQhLVIBqciNKh2x/7bE/pvXf7VGi4a2bqNQhu87k6SGFvXVEanW3uc1tHagQ2OZUSi5VICXmwt83GTwdpPBu9v3Pm4u8HaTwavb9z5uMnjKJWi6XAQBOpM+A2f93w1ZUPSUziRsP5MwGlw0HcCVs51JVreES1Xa9/kSGRAQ1yvhgiKq92gWf7faxKBNwgD0u05noDU85rTtS0FBgeg2lmw/GIzyGQGP+nO4uOcT1IXf2OM9R+6/P4C7hwN3RfniosoTxy614dilNhTWdOD05QacvtyA1XsuwFsuIH2YK8aFuSItxBWecuOrLTpy/23B2fqv0+mg1gHtah1a1Tp8vf84mjt0aOrQdr7q0Nyu1b92XH3t/l5zhw6tFkqgBAAeLkLnlwSehle5/tXDRYDnL149XAR4yiVdbeSSa/3u1HR+ddOu/9IAcJNJnO6/PzmQ6Cxg/xv6qfJEjqhrKmHPdVv9TSWEd5g+yQpJAoI7XwPj+98bi2xu0CZhCoWizxErlUo/3NrXSJcl2l5LcnKySUO2Go0GBQUFJrcfTITqW4BD5xCtK8XwtDQAg6//6f+/vTuPjqJKGz/+7SV7QkJIApGAWSB7JmxZZFVAZR1ARd5z3h+ggphhQEbQ1wH1HXBQQAZRwgBiFNHX4cAocFiVTQVUgsLAZEBI2DdlT0ICWbq7fn9UdyedjZClm06ezzl1urvqVvW93Z1+8tS9dRsYbr5/o7CE3TnX2HXsCntyrpFfZGD3uSJ2nytCp9XQ7UE/Ho4Kom9UIBGBXlX+g+ps7W9o91P7TSaFIoORolITRaVG82KiyGDkTqmJYvPjO6VG9b7BxJ0SI0UGI8Xm9UXm9UUl5tvSctsqHNvUgJdBebjorL1Lll4onwq9UD42vVBl63zcXfBy1aG9x17chlDf99+yvxB11i5F7SHIOwc3z0LLBx1dI9GcFeWbhxL+p2wY4ZUj6hDDqrj6QFCMOeEy92wFxdhtFmpRP06bhEVGRrJp0yYMBoPNdWHZ2dkAdOzYscZ9LeXKq82+1dHpdPX6J7K++zuF8D6w7+9oz+yBCm11xvYHtvDgya7teLJrO0qNJg6cvan+JtmxK5y4UkDm6Ztknr7JvK+O087fg37RrXkkOoiUMP9Kk3s4Y/sbUlXtVxSFUqMlMTJSVGKy3r9TLsmxSZhKjeZkqPK2ykmS7bFKDCbHtF0Dvh4u+Hi4VJEome+X29bCMtTPoyzZcnHy37hr7p9/4UBu3tC2K5zPVK8LkyRM2IOxFK6fqHzdVt65qstrdBDQsWwYYU1DCYXTcNokrH///qxZs4Zt27YxaNAg6/p169YRFBREYmJijfvOmjWLw4cPW8sZDAY2bNhAYmKiTMrRWNo/ZJ6J6nSTm4nKRaclNbwVqeGtmD4ohnPXb7Pr2GV2Hb/KvpPXOX/jDp/8cIZPfjiDp6uOHh0C6BcdRO+OrSodS1EUTAoYTQomRcFoUjAqCkajemsyPzYYy7art2AwmTCZUMubypaajlO5HBhNJnN5tYfIUP4YprJjmcrdr/hcBpPlObCWK38ck6JQajSRm3cL3d4fKvdCGdQ6OIKrToubixYPFx3uLjrcXbTmW/Oi1+LhqsNdb95mva/Do2JZ8+Pyx/Jw0eHmosNFC0ezDtO5c2dJQoRwlNCe5iRsL3T+f46ujWhKFEX9ba2K121dywZjSdX7+Dxge91W6zgZSthEOW0S1qdPH3r06MHMmTMpKCigffv2bN68mT179jB//nzrPzQzZsxg/fr1bN++nbZt2wLw1FNP8Y9//IMpU6Ywbdo0WrVqxT/+8Q9Onz7NihUrHNmsps29BTzQGS7+3ORnomrfypNneoTxTI8wCosNfH/iGt8cV2dcvJxfzPajl9l+9DIAHnoNyvptNslT81PNuHYzjQbc9Tpz4qOtNsGplDiZ93GrlDjp8HDV4ma9b3vce51gpa6MRqP8Bp0QjhbaC/YsUK8LUxTpWRB1YxlKaLluy5J4FeVWXd7V25xolbtuKyhWhhI2I06bhAGkp6ezcOFCFi1aRG5uLuHh4bz77rsMHjzYWsZkMmE0GlHKzaHs6urKJ598wvz585k9ezZ37twhJiaGDz/8kOTkZEc0pfkI660mYaebdhJWnpebnsfi2vBYXBsUReHIpXz1N8mOXeHwhVzuGBSg9omXVgM6rQatRoNeq0Gr1aDTatBp1Pt68zadttyisZQDnVaLrtwxqipnPa6mmmNoNOpxtFjLld/Hcozyz2FdV+44KAqXzp8jumMEXu4uNj1Fao+TDndXLa46rSQrQojG0S4FtC6Qf0H9zTD/MEfXSNzPjAbzUMIK123l1jCUsFWHyhNl+LYHrXMPJRf149RJmJeXF6+//jqvv/56tWXmzp3L3LlzK60PCAhg3rx5jVk9UZWwXrD3XfX3wurz40JOSqPREN/Wl/i2vrzYryPXbt1h38F/Ex8bi6uL3jYx0mjQ6SxJC9aEqCklI0ajkUPKFTpFBcpwPCGEY7h6Qkg3OPejOkpDkjABZUMJrx23TbiuHa9hKGFw5eu2AiLBxd2+dRdOwamTMOGE2qWWnXG8cQr8Qh1dI4dq6elKsLeedv6ekoQIIYSjhPY0J2F7ocsYR9dGOILJBL/9G07sQHvqWxIvHkJXeqvqsq7e6iyEQbHQOl6GEoo6kSRM2JerJ4QkwbkfzNeFhTq6RkIIIZq70F6we37ZdWGieSi4Cqe+gRM74MROuH0NUH87UQ8oGh2aVh1shxG2jpOhhKJBSBIm7C+st5qEnd4NnUY7ujZCCCGau3bJoHOFW5dklEZTZiyFCz+pCdeJHfDrIdvtrt4Q1gdT+CMcK/QhqsdQdG5eDqmqaPokCRP2F9YbvpsrZxyFEELcH1w81FEaZ7+XURpNTe55OGlOuk59B8X5ttvbJECH/uoSkgx6VxSjkTuHDoFeruUSjUeSMGF/Id3UL7bCK+oFrkIIIYSjhfZSk7DTe2SUhjMrvaO+jyd2qYlXxf8zPPwhoq+adEX0BR/5bVjhGJKECfvTu0H7VDj1LZoze8Glm6NrJIQQorkL7QnfoU7OIaM0nIeiwLUcNeE6uVN9/wxFZds1WrWXs0N/6NAPgjuBVibCEo4nSZhwjNBe5iRsN3SUJEwIIYSDhSSBzg0KflN/B0rcv4ry4fR35mu7dkJehd/o8nlATbg69IfwPuDR0jH1FKIGkoQJxwjrA/xVHTLQ4U+Oro0QQojmzsVdnaDjzB40Z78HXSdH10hYlJs+npO74HwmmAxl23Wu8GD3smu7AqOhCf2mpmiaJAkTjvFAJ3D1RnPnJh75p4Aujq6REEKI5i60lzoxx5k9ENHJ0bVp3gqvqQmXJfEqvGq73T+iLOkK7QGuMouhcC6ShAnH0LmoZ61ytuFz7V/AU46ukRBC1FthYSHvvfceW7duJS8vj/DwcCZMmMDgwYPvuu/atWuZPn16ldv27t1LYGBgQ1dXVBTaE0DtCQuf5ODKNDNGg3n6ePO1XZcOAeWuzXP1VmdX7tAPIvqBf5ijaipEg5AkTDhOaC/I2Ubg2Y1ovvEE/1DwbQd+7cE3RJ3AQwjRdJmMTW4ChMmTJ5OVlcW0adMIDQ1l06ZNTJ06FZPJxNChQ2t1jDlz5hAeHm6zzs/PrxFqKyoxz96rKbyCe8E5oLOja9S02UwfvxuK82y3t04ou7arXQroXR1TTyEagSRhwnE69Iftb+BeeAH2LqiwUQM+bcqSMj9Lcta+7LGLh0OqLYRATZ5Kb0NRnnqRfHG++b55sT7Or/axrqSAaN8oSNwLOuefrey7777j+++/Z8GCBQwZMgSA1NRULl26xDvvvMOgQYPQ1aKdHTt2JCEhobGrK6qid1OvCzu9m7a/fIjG5SL4toUWbaFFMHi3kUSgPkqLzNPH76xm+viWFaaPb+OYegphB5KECcdpHYvx/63n15838YCXEW3eefWsWO45MNyBW7+qy4X9Ve/vFWhOzCyJWvtyj9uBm4992yOEMzGWmpOnvOqTpbslVoqxASpiajIX0G/fvh1PT08GDBhgs/6JJ55g2rRpHD58mC5d5PrX+15EXzi9G7/LP8D2Hypv9wqEFg+oM/C1CDbflr8fDG4tmsznul4URZ1p8sQOdTnzvRrfLTRaaNut7NquBzrJ9PGi2ZAkTDhWWG8u57UguFOnsjPhigK3r0Pu2bKkLM98a3lccku9SLfwKlw8UPWxPVqWS8oeLNebZr718LNXK4VoWIoCJQXV9DLlVtMLVaFs6e2GqYtGB+4twN1X/cfT3bdssT6uuL0FuLXA6OrDseNn6aTRNkxdHCwnJ4eIiAj0etvQGhUVZd1emyQsLS2NGzdu4OPjQ3JyMi+++CKRkZF1qpPRWLdE2bJfXfd3at3Go+g8uJ7zMwFuJWgLfjOfFPwNjbGkLPb8erjaQyiu3uATDD7BKD7B5qTNct+crHkF3rcJR73e/+J8OL0Hzcmd6pJ33maz4hOMEtEXJaIfhD1sG4sV4D74zDXrzz/S/vq2v7b7SRIm7j8aDXgFqEvbrpW3K4r6j2buOdvELO98WeJWlAt3bqpLdYHSrUWFnrR2tkmbp7+cyRQNz2SEkkJ1KcrHM/cYnMqF0oK7DN/Ls+2hUkwNUx8Xr+oTpbslVm4t1BnJ6vp3YjSC5vzdyzmJ3NxcQkJCKq339fW1bq9JQEAAaWlpdOrUCW9vb7Kzs1m+fDmjRo1i1apVREdH33OdsrKy7nmfhtzfabkmQVwSF8qvU0zoS/JwKbqGa9E1XO5cw7XoKi5F18rWFV1DX1qApqQArufA9Ryq++tQNFpK3VpR4h5AqUegemteStwDKfUIoMQ9AEXnuOuja/X+KyY88k/ie+UnWlzZj/fNI2jK9ZKbtC4U+CeQH5REXmAyRT6h6ndGCXD8TGNVvUE028+/mbS/cdsvSZhwPhqN2svl0RKCE6suU5RfoffsrO3j29fUf2Qv/0ddquLiWU2SZh726B0kSVpTZyhRe5wsSVNJYYXHtblf4XG5oTg6IKY+9dPqq0mcfGvsgbJJqHQSBqqSmZnJmDFjalV2/fr1xMSo76Smhu+EmrYB9O7dm969e1sfJyUl0adPH4YOHcr777/P0qVLa1Wf8hISEmp1HVpFRqORrKysOu/v7OrTfmNJoXU4vSb/V7h1qdJ9Ci6jUUy4Fl3Ftegq5P5S7fEUdz/bnjRzz5ri84D5fjB4NOxJw7u2v/AamlPfwsmdaE7tQlNh+njFPxwlop/a2/VgD7xcvfACghusho1LPv/S/vq037L/3Uj0FU2Tewtwj4PWcVVvLymEvAvletMqDHks+E0drnX1mLpURe+uzuJY3XVpPm3u26EmTY6iQOmduidG1W0zlTZenTVaFFdvSjVuuPgEoHGvIXGyJlYVtrl4yImARhIWFsbs2bNrVTY4WP3X0s/Pr8rerrw8dcY3S4/YvQgJCaFr164cPlz90Lea6HS6ev0TVd/9nV2d2u/RQl2CoqovYzRA4RXI/xXyL6qJWf6lslvL/dLbaIpy1dEdV45W26uGzs32mjSf4LLJRCzr6jCpiLX9RgNc/Lns2q6K08e7eJVNH9+hHxr/8Orr6kTk8y/tb8z2SxImmidXLwiMUpeqlBapSVpeVUMez6kB0lCkXnB8/UTVx9C6qLNqVZzV0ZKktWgL90uYUhTzYgIq3jeZpxGveL+mfarbX7E9ltGAR242nL2t9hDVJ2kq/w9BQ9O5qZ8ZV2/zrVctHt/lvt4Nk8lE1qFDdOrUqVkHuvtRUFAQI0eOvKd9IiMj2bRpEwaDwea6sOzsbECd9bAuFEVBq20a180JM53ePJnHA0AVw+7BPPQ+z5yQXVITtlvmpM3Sq5b/qzqyw1gMN8+oS7U05klFqplMpEVbNXlzbwGAy50raP71qfpDyae+q2L6+PgK08fLz8oIcS8kCROiKi7uENBBXapiKFEDYcUJQyzXpeVdVHtRagqKGh3aFsHEmvRofzQHr2qTGKic0JhqSHyoJgmq5r6D6IBYgD0NeFCXuiRJd9mmc2nACoqmqn///qxZs4Zt27YxaNAg6/p169YRFBREYmI1w6drcP78eQ4ePEj37t0bsqrCGWg06qQVHn7QOrb6coZic3JmScwu2SZpll41U6na+1Z4pcZJRXD1Ruvegt/lX7Jd79ESwh8pmz6+hbMMLhTi/iRJmBB1oXcF/zB1qYrRoAa9itelWRO182AqRZN3AQ+AW/asfGPRqNMNa8y3aCrcN2+zrtegoKFU0eLi1RJNnXuWyj128QTpMRAO0qdPH3r06MHMmTMpKCigffv2bN68mT179jB//nyb3s4ZM2awfv16tm/fTtu2bQF45pln6NatG9HR0Xh5eZGdnU1GRgYajYYpU6Y4qlnifqd3g5ah6lIdk0mdddiapF0qS9yswyF/VXu7StSJRRS00LYLmo6PmqeP7yxD7IVoQJKECdEYdHrz0MN28GAVZ7BNJii4jPHGaU4eO0JEhw7odPq7JDBQOZmpKenR3EO5e92nckJVFyajUYbjiSYlPT2dhQsXsmjRInJzcwkPD+fdd99l8ODBNuVMJhNGoxFFKeuJjoyMZOvWrXz88ccUFxfj7+9PamoqEydOJCysmhM+QtSGVgvegepS3YRWAMUFcOs3jLcuk/VbCQnJveW7WYhGIkmYEI6g1apDObyCuHXdDcI6lf1OmhDCaXl5efH666/z+uuv11hu7ty5zJ0712bdjBkzGrNqQtydmze4dYCWYRhvHHJ0bYRo0mTcjhBCCCGEEELYkSRhQgghhBBCCGFHkoQJIYQQQgghhB1JEiaEEEIIIYQQdiRJmBBCCCGEEELYkSRhQgghhBBCCGFHkoQJIYQQQgghhB1JEiaEEEIIIYQQduS0P9ZcWFjIe++9x9atW8nLyyM8PJwJEyYwePDgu+67du1apk+fXuW2vXv3EhgY2NDVFUIIIYQQQgjAiZOwyZMnk5WVxbRp0wgNDWXTpk1MnToVk8nE0KFDa3WMOXPmEB4ebrPOz8+vEWorhBBCCCGEECqnTMK+++47vv/+exYsWMCQIUMASE1N5dKlS7zzzjsMGjQInU531+N07NiRhISExq6uEEIIIYQQQlg55TVh27dvx9PTkwEDBtisf+KJJ7hy5QqHDx92UM2EEEIIIYQQomZO2ROWk5NDREQEer1t9aOioqzbu3TpctfjpKWlcePGDXx8fEhOTubFF18kMjKyTnUyGo312q+u+zs7ab+0v/xtcyPtr1/7m+vrJoQQwvk5ZRKWm5tLSEhIpfW+vr7W7TUJCAggLS2NTp064e3tTXZ2NsuXL2fUqFGsWrWK6Ojoe65TVlbWPe/TkPs7O2m/tL85k/Y37/YLIYRofhyehGVmZjJmzJhalV2/fj0xMTEAaDSaasvVtA2gd+/e9O7d2/o4KSmJPn36MHToUN5//32WLl1aq/oAKIoCQGxsbK2uQ6vIaDRy9OjROu/v7KT90n5pv7S/vt+flu9hUcbymsgojbqR9kv7y982N9L+hhmlcbfY5PAkLCwsjNmzZ9eqbHBwMKDOYFhVb1deXh5Q1iN2L0JCQujates9X09mMpkAOHr06D0/Z3n13d/ZSful/c2ZtL9+7bd8D4syltdERmnUj7Rf2t+cSfvr1/67xSaHJ2FBQUGMHDnynvaJjIxk06ZNGAwGm+vCsrOzAXXWw7pQFAWt9t7mKtHr9SQkJKDVau/aAyeEEKLhKIqCyWSqdH2wkNgkhBCOUtvY5JSRq3///qxZs4Zt27YxaNAg6/p169YRFBREYmLiPR/z/PnzHDx4kO7du9/TflqtFldX13t+PiGEEKKxSGwSQoj7m1MmYX369KFHjx7MnDmTgoIC2rdvz+bNm9mzZw/z58+3ubZgxowZrF+/nu3bt9O2bVsAnnnmGbp160Z0dDReXl5kZ2eTkZGBRqNhypQpjmqWEEIIIYQQohlwyiQMID09nYULF7Jo0SJyc3MJDw/n3XffZfDgwTblTCYTRqPR5uK4yMhItm7dyscff0xxcTH+/v6kpqYyceJEwsLC7N0UIYQQQgghRDOiUWRaKSGEEEIIIYSwm3ubhUIIIYQQQgghRL1IEiaEEEIIIYQQdiRJmBBCCCGEEELYkSRhQgghhBBCCGFHkoQ1orVr1xIVFWVdYmNj6dmzJy+99BJnzpyxKfvzzz/z2muv8cQTTxAfH09UVBQXLlxwTMUbSG3bbzQaWbFiBePGjaN3794kJiYycOBA/va3v5Gfn++4BjSSiq9LxSUzM9PRVayzr776iqioKLZs2VJp2+9//3uioqLYs2dPpW39+/dnxIgRAHzzzTf8z//8D0OHDiUuLo6oqKhGr3dDqW/7CwoKWLp0KaNHj6ZHjx507tyZoUOHsnz5coqLi+3RhHppiPd/4cKFDB8+nOTkZBISEujXrx9vvPEGFy9ebPT6NxcSmyQ2VUVik8SmiiQ2NW5sctop6p3JnDlzCA8Pp7i4mIMHD7Js2TIyMzPZunUrvr6+AOzbt48ff/yRmJgYvLy82L9/v4Nr3XDu1v6ioiLS09MZMmQII0eOpGXLlhw9epSlS5fyzTff8OWXX+Lu7u7oZjQ4y+tSUYcOHRxQm4aRnJyMRqNh3759Nj+knpubS3Z2Np6enmRmZtKrVy/rtt9++43z58/z7LPPArB9+3YOHz5MTEwMLi4uHDlyxO7tqKv6tv/SpUusXLmSYcOG8cwzz+Dp6cmBAwdYvHgxP/zwAytWrECj0TiiabXSEO9/fn4+gwcPJiIiAi8vL06cOMHSpUvZtWsXmzZtomXLlnZvV1MlsUliU1UkNqkkNklsauzYJEmYHXTs2JGEhAQAUlJSMBqNpKens2PHDp588kkAJk6cyKRJkwD46KOPmlSgu1v73d3d2blzp80HOCUlheDgYKZMmcLXX3/NsGHDHFX9RlP+dWkq/P396dixY6XP708//YRer+fJJ5+sdDZ13759gPqeA8yePRutVu2kf/PNN50q0NW3/SEhIezatQtPT0/r9oceeggPDw/eeecdDhw4QLdu3Rq/IXXUEO//X/7yF5vtltdlwoQJ7Ny5k6eeeqoRW9C8SGyS2FQViU0qiU0Sm6BxY5MMR3QAy5fb9evXressf9jNQcX263S6Ks8g/O53vwPUsxHCeaSkpHD69GmuXLliXZeZmUl8fDx9+vThyJEjFBQUWLft378fnU5n/QJ39r+F+rTf09PTJshZONPfQn3f/6r4+/sDoNfLecPGJLFJYlNTJrFJYtP9Fpuc+xPlpCzj6UNDQx1bEQepbfstZyGceQhETUwmEwaDwWYxGo2Orla9paamAticccrMzCQ5OZkuXbqg0Wg4cOCAzbbY2Fh8fHzsXtfG0Bjtd6a/hYZqv8FgoKioiKNHj/L2228TGhrKo48+ap9GNFMSmyQ2gcSm8tskNklsaszYJEmYHVi+0AoLC9mzZw9Lly4lKSmJvn37OrpqdlGX9l++fJkFCxYQHx/PI488Ysfa2s/TTz9NXFyczdIUhoAkJSWh1WqtX3Q3b94kJyeHpKQkvLy8iI2NtX5x//rrr1y4cMHa3d8UNHT7jx07RkZGBo8++ijR0dF2aUN9NET7r169SlxcHImJiYwYMQKj0cinn36Kl5eX3dvTlElskthUFYlNEpskNtknNsnYDjt4+umnbR5HRESwZMmSZjO05l7bn5uby/PPP4+iKLz33ntOPwSgOvPmzSMiIsJm3f18YWtt+fr6Eh0dbR1f/dNPP6HT6ejSpQugfhFavugsZZpSoGvI9l+4cIG0tDTatGnD7Nmz7VD7+muI9rds2ZIvvviCkpISTp06RUZGBmPGjOGzzz4jKCjIjq1p2iQ2SWyqisQmiU0Sm+wTm5rmN8h9Zt68eXzxxResXLmSUaNGcfLkSaZOneroatnNvbQ/Ly+P5557jsuXL/Pxxx/Trl07O9fWfiIiIkhISLBZ4uPjHV2tBpGSksKZM2e4fPkymZmZxMXFWc8UJScn88svv3Dr1i0yMzPR6/V07drVwTVuWA3R/osXLzJmzBh0Oh0rV67Ez8/Pzq2ou/q2X6/Xk5CQQNeuXRk5ciQrV67kwoULLF++3BHNabIkNklsqorEJolNEpvsE5skCbMDyxdaamoqb775JiNHjmTPnj189dVXjq6aXdS2/Xl5eTz77LNcuHCBFStWOEX3tqia5ezR/v372b9/P0lJSdZtli+1n376iczMTBISEprcMLP6tv/ixYuMHj0agE8//ZQ2bdrYqeYNo6Hf/zZt2hAUFFTpN6xE/UhsktjU3EhsktgE909skiTMAV555RV8fX1ZtGgRJpPJ0dWxu6rabwly58+f56OPPiI2NtbBtRT1kZSUhE6n4+uvvyYnJ4fk5GTrNh8fH2JiYli/fj0XL15sUsM9LOrT/kuXLjF69GhMJhMrV66kbdu29q5+vTX0+3/27Fl+++03HnzwwcasdrMnsUliU1MnsUli0/0Um5rHwO/7jK+vLxMmTGD+/Pls3LiRYcOGcePGDevFgtnZ2QDs3r0bf39//P39bT4ozq5i+x9//HHGjRvH0aNHmTFjBkajkUOHDlnL+/v70759e8dVuJHk5ORUOeNU+/btrdOeOitvb29iY2PZsWMHWq22Upd+UlISK1euBCqPub548SJZWVkAnDt3DsB6Zrpt27ZOcYF4Xdt//fp1xowZw9WrV3nrrbe4fv26zXThbdq0cYozj3Vt/7Fjx5gzZw6PP/447dq1Q6vVkp2dzSeffIKfnx/PPfecXdvR3EhsktgEEpskNklsAvvEJknCHGT06NF8/vnnLFmyhCFDhpCTk8OUKVNsysyaNQtQx6l+9tlnjqhmoynf/s6dO1u/2N56661KZUeMGMHcuXPtXcVGN3369CrXz549m5EjR9q5Ng0vJSWFrKwsYmJi8Pb2ttmWlJTEJ598gouLC507d7bZlpmZWem1sfxtONNnoS7tP3HiBOfPnwfUs/IVTZo0icmTJzduxRtIXdofEBBAUFAQK1as4OrVqxgMBtq0acPDDz9MWloawcHB9m5GsyOxSWKTxCaJTRKb7BObNIqiKPVqjRBCCCGEEEKIWpNrwoQQQgghhBDCjiQJE0IIIYQQQgg7kiRMCCGEEEIIIexIkjAhhBBCCCGEsCNJwoQQQgghhBDCjiQJE0IIIYQQQgg7kiRMCCGEEEIIIexIkjAhhBBCCCGEsCNJwoTTWbt2LVFRUdYlNjaWnj178tJLL3HmzBlHVw+AZcuWsWPHjkrrMzMziYqKIjMz0wG1Uu3atYu0tDS6d+9OfHw8ycnJjB07lg0bNlBaWuqwelVU1Wv15z//mb59+zbq816+fJn09HR++eWXRn0eIUTTIrGpfiQ21UxiU9Ojd3QFhKirOXPmEB4eTnFxMQcPHmTZsmVkZmaydetWfH19HVq3Dz74gMcff5z+/fvbrI+Li2P16tV06NDB7nVSFIUZM2awdu1a+vTpw5///GeCg4O5desWmZmZzJo1i5s3bzJ27Fi71622Jk6cyJgxYxr1Oa5cucLixYtp27YtMTExjfpcQoimR2LTvZHYVDsSm5oeScKE0+rYsSMJCQkApKSkYDQaSU9PZ8eOHTz55JMOrl3VvL296dSpk0OeOyMjg7Vr1zJ58mQmTZpks61v376MHz+es2fP2rVORUVFuLu717p8+/btG7E2QghRfxKb7o3EJtFcyXBE0WRYgt7169dt1mdlZZGWlkZycjIJCQkMHz6cLVu22JS5ceMGM2fOZNCgQXTu3JmHHnqIMWPG8PPPP1d6npKSEhYvXszAgQNJSEggJSWF0aNHc/DgQQCioqK4ffs269atsw5LGT16NFD9kI+dO3cyatQoEhMT6dy5M88++yz/+te/bMqkp6cTFRVFTk4OU6dOpWvXrnTv3p3p06dz69atGl+b0tJSMjIyCA8P549//GOVZQIDA+nWrZv1cW5uLjNnzqRXr17Ex8fTr18/Fi5cSElJic1+xcXFLFiwgL59+xIfH0+vXr2YNWsW+fn5NuX69u3LCy+8wLZt2xg+fDgJCQksXrwYgJMnTzJu3DgSExNJSUnhf//3fyksLKxUx6qGfERFRfHmm2+yfv16Bg4cSGJiIr///e/55ptvbMqdPXuW6dOn89hjj5GYmEivXr1IS0vj+PHj1jKZmZk89dRTAEyfPt36/qWnp1vL1ObzJIQQFhKbqiexSWJTcyY9YaLJuHDhAgChoaHWdfv27WP8+PEkJiYyc+ZMfHx82LJlCy+99BJFRUU88cQTgPqlDjBp0iQCAgK4ffs227dvZ/To0XzyySekpKQAYDAYGD9+PAcOHGDMmDGkpqZiNBo5fPgwv/76KwCrV69m7NixpKSkMHHiREA9y1idjRs38vLLL9OzZ08WLFhASUkJGRkZ1ucuH3wAJk+ezKBBg3jqqafIzs5mwYIFgDoEpjr/+c9/yM3NZeTIkWg0mru+lsXFxYwZM4bz588zefJkoqKi+Pnnn1m+fDm//PILy5cvB9RhJBMnTmTfvn1MmDCBbt26cfz4cdLT0zl06BCrV6/G1dXVetwjR45w8uRJ/vCHPxASEoKHhwfXrl1j9OjR6PV6/vKXv9CqVSs2btzIX//617vW0+Lbb78lKyuLF198EU9PTzIyMpg0aRJfffUV7dq1A9ShHH5+fkybNg1/f3/y8vJYt24dTz/9NOvWrSM8PJy4uDjmzJnD9OnT+cMf/sDDDz8MQJs2bYDaf56EEMJCYpPEJolNokqKEE7myy+/VCIjI5VDhw4ppaWlSkFBgbJ7926lR48eyn//938rpaWl1rIDBgxQhg8fbrNOURTlhRdeUHr06KEYjcYqn8NgMCilpaXK2LFjlT/+8Y/W9evWrVMiIyOVNWvW1FjHTp06Ka+++mql9fv27VMiIyOVffv2KYqiKEajUenZs6cyZMgQm7oUFBQoDz30kDJq1CjrukWLFimRkZHKhx9+aHPMmTNnKgkJCYrJZKq2Pps3b1YiIyOVVatW1Vhvi1WrVimRkZHKli1bbNYvX75ciYyMVPbu3asoiqLs3r27yjpZnm/16tXWdY888ogSExOjnDp1yqbs/PnzlaioKOWXX36xWf/ss8/avFaKoiivvvqq8sgjj9iUi4yMVLp3767cunXLuu7q1atKdHS08sEHH1TbRoPBoJSUlCiPPfaY8vbbb1vX//vf/1YiIyOVL7/8stI+df08CSGaPolNEpvKk9gk7kaGIwqn9fTTTxMXF0eXLl0YP348LVq0YMmSJej1agfv2bNnOXXqFEOHDgXUM4WWpXfv3ly9epXTp09bj7dq1SpGjBhBQkICsbGxxMXF8eOPP3Ly5ElrmT179uDm5tZg4/pPnz7NlStXGDZsGFpt2Z+jl5cXjz32GIcPH+bOnTs2+1Q15KG4uLjSUJf62LdvH56engwYMMBmveVs2o8//mgtV369xcCBA/H09LSWK1/XsLAwm3WZmZl07NiR6Ohom/VDhgypdX1TUlJszugGBATQqlUrLl68aF1nMBhYtmwZgwYNIj4+ntjYWOLj4zlz5ozNe1yde/08CSGaJ4lNKolNEptEzWQ4onBa8+bNIyIigsLCQrZs2cLq1auZOnUqGRkZAFy7ds1abt68eVUe4+bNmwCsWLGCuXPn8l//9V9MmTKFli1botVqef/99zl16pS1/I0bNwgKCrIJSvVhef7AwMBK24KCgjCZTOTn5+Ph4WFd7+fnZ1POMqSiqKio2ucJDg4GyobF3E1ubi4BAQGVhoe0atUKvV5vHSKTm5uLXq/H39/fppxGoyEgIMBazqKqdubm5hISElJpfUBAQK3qCpVfE1Bfl+LiYuvjuXPn8vnnn/P888+TlJSEr68vGo2G119/3aZcde7l8ySEaL4kNqkkNklsEjWTJEw4rYiICOsFz6mpqZhMJv75z3/y1VdfMWDAAFq2bAnACy+8wKOPPlrlMSxnvjZs2EBycjKzZs2y2V7xAlx/f38OHDiAyWRqkGBnqePVq1crbbty5QparZYWLVrU+3ni4+Px8/Nj586dTJs27a5j7/38/Dh8+DCKotiUvX79OgaDwVpvPz8/DAYDN27csAl2iqJw7do16/tjUdXz+vn5WYNIeVWtq48NGzYwfPhwpk6darP+5s2btXqN7+XzJIRoviQ21Z7EJolNzZkMRxRNxiuvvIKvry+LFi3CZDIRHh5OaGgox44dIyEhocrFMkxAo9HYXKQLcOzYMQ4dOmSzrlevXhQXF7N27doa6+Lq6lrj2T+LsLAwWrduzaZNm1AUxbr+9u3bbNu2jU6dOtmcaawrFxcXxo8fz6lTp/j73/9eZZnr169z4MABAB566CFu375d6Uc9169fb91e/nbDhg025b7++mtu375t3V6TlJQUcnJyOHbsmM36TZs23b1h90Cj0eDi4mKz7ttvv+Xy5cs266o7e3svnychhLCQ2FQ9iU0Sm5oz6QkTTYavry8TJkxg/vz5bNy4kWHDhjFr1iyef/55xo0bx4gRI2jdujV5eXmcPHmSI0eOsGjRIgAefvhhlixZwqJFi0hKSuL06dMsWbKEkJAQjEaj9TmGDBnC2rVrmTlzJqdPnyYlJQVFUTh8+DAREREMHjwYgMjISPbv38+uXbsIDAzEy8uL8PDwSnXWarW88sorvPzyy7zwwguMGjWKkpISPvroI/Lz85k2bVqDvT6WQJeenk5WVhZDhgyx/iDmTz/9xJo1a5g8eTJdu3Zl+PDhfP7557z66qtcvHiRyMhIDhw4wAcffECfPn3o3r07AD169KBnz5787W9/o6CggC5dunD8+HEWLVpEbGwsw4YNu2u9xo4dy5dffsmECRP405/+ZJ2BqvxQm4bw8MMPW2eaioqK4siRI3z00UfW2aUs2rdvj7u7Oxs3biQiIgJPT0+CgoJo3bp1rT9PQghhIbGpZhKbJDY1V5KEiSZl9OjRfP755yxZsoQhQ4aQmprKP//5T5YtW8bbb79Nfn4+fn5+REREMHDgQOt+aWlp3Llzhy+++IKMjAw6dOjAzJkz2bFjB/v377eW0+v1fPjhh3zwwQds3ryZlStX4uXlRXR0NL169bKWe+2115g1axZTp07lzp07JCcn89lnn1VZ56FDh+Lh4cHy5ct56aWX0Ol0JCYm8umnn9KlS5cGe200Gg1z5syhf//+rFmzxvp6WOr/8ssvWy9idnNz49NPP2XhwoVkZGRw8+ZNWrduzXPPPWfzY5oajYYlS5aQnp7O2rVrWbZsGX5+fgwbNoypU6dWOoNblcDAQP7v//6Pt956i5kzZ+Lh4UH//v154403rNMoN4TXXnsNvV7P8uXLuX37NrGxsaSnp/P+++/blPPw8ODtt99m8eLFjBs3jtLSUiZNmsTkyZNr/XkSQojyJDZVT2KTxKbmSqOU72cWQgghhBBCCNGo5JowIYQQQgghhLAjScKEEEIIIYQQwo4kCRNCCCGEEEIIO5IkTAghhBBCCCHsSJIwIYQQQgghhLAjScKEEEIIIYQQwo4kCRNCCCGEEEIIO5IkTAghhBBCCCHsSJIwIYQQQgghhLAjScKEEEIIIYQQwo4kCRNCCCGEEEIIO/r/4v170c8TUDAAAAAASUVORK5CYII=",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA04AAAHaCAYAAAA3yBn9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACcYUlEQVR4nOzdd3yUVdr/8c89k0baTOikQEKoQgoqVUARxMLasaxr37WtsLu6PpZV1/L81rb77LoCKriWVdeGCpZVLFhApUNC6NJTINQUSJ+Z3x+ThIQEkklmck8y3/frlVdm7jbXGTT3XHPOuY7hcrlciIiIiIiIyAlZzA5ARERERETE3ylxEhERERERaYISJxERERERkSYocRIREREREWmCEicREREREZEmKHESERERERFpghInERERERGRJihxEhERERERaYISJxERERERkSYocRIREREREWmCEicREREREZEmBJkdgASebdu28fbbb7NixQry8vIoKSkhMjKSpKQkRowYwUUXXUS/fv189voDBw6s99xisRAdHc2gQYO48sormTJlis9e+/gYLBYLX3/9NXFxcY0ed8EFF7Bt2zYAXn31VcaMGdPgmKysLN566y2WL1/O/v37CQoKIi4ujrFjx3LjjTfSo0ePk8ZwIk8++SSXXXaZJ83y2LZt23jrrbdYtmwZe/bsoby8HLvdzimnnMI555zDRRddRGhoaIPzWtpmEZHG6L6k+1LNa2/evPmEx5x99tnk5uaycOFC4uPjW/xauoe1X4bL5XKZHYQEBpfLxT//+U9efPFFXC4XqamppKSkEBUVRXFxMRs2bGDt2rU4nU7+8Y9/cP755/skjpo/jtOmTQOgqqqKHTt28PXXX+NwOLj55pu57777fPLadWMICgqiqqqKadOmMX369AbHrFq1imuuuab2uONvUC6Xi7/97W/861//IigoiDFjxjBgwAAqKytZs2YNa9eupVOnTjz11FOcd955jcYAx96H402aNInBgwd7qcUNzZw5k1mzZuF0OklPTyclJYWIiAgOHDjAypUr2blzJ0OGDOHDDz+sPae1bRYRqUv3pfoxBPJ9qS0SJ93DOgCXSBv55z//6RowYIDr7LPPdmVmZjZ6TF5enuvRRx91vfvuuz6LY8CAAa4BAwY02P7TTz+5Bg4c6Bo0aJArJyfHZ69fE8O4ceNcl156qeuss85yORyOBsfcf//9riFDhrh+85vfuAYMGOD68ccf6+2fMWOGa8CAAa4JEya4tmzZ0uD8BQsWuFJSUlyDBw92/fTTT43G0Nj70Baef/5514ABA1xnnnmmKyMjo9Fjvv/+e9d1111Xb1tr2ywiUpfuS/VjCOT7UnNee8KECa4BAwa4srOzW/Qauoe1f5rjJG1i9+7dzJ49m5CQEF566SVSU1MbPa5Xr1488sgjDbriP/zwQ6ZPn87EiRNJTU3l1FNP5eqrr2b+/Plei3H06NH07dsXp9NJVlYW27ZtY+DAgVx//fUnPOfCCy9kyJAh7N+/H4CcnBwGDhzI/fffz7Zt2/jd737HqFGjGDRoEMuWLWtw/tSpU8nLy+PHH3+st/3IkSMsWLCAs88+my5dujQ4Lzs7mxdeeIHg4GBeeOEF+vfv3+CYc889lwceeACHw8Gjjz6K0+n09C3xiZycHGbNmkVwcDBz5swhLS2t0ePGjx/Pv/71r9rn7bnNIuJ/dF/Sfakt6f3pGJQ4SZv48MMPqaqq4rzzzqNv375NHh8UVH/63aOPPkpubi7Dhw/nhhtu4IILLiAnJ4f77ruPv//9716L01Vn5GpycjIjR45k2bJl7Nixo8Gxq1atYsuWLUycOJFu3brV27dr1y6uuuoq9uzZw0UXXcTUqVOJiIhocI0LL7yQTp06MXfu3HrbP/nkE0pKSpg6dWqjcda8nxMnTjzpmPArrriCbt26sXPnTpYvX37StreVDz/8kMrKSiZPnsyAAQNOemxISEi989prm0XE/+i+pPtSW9L70zGoOIS0idWrVwMwcuTIFp3/6aef0rt373rbKioq+PWvf83LL7/MNddcQ8+ePVsV49KlS9m5cyeGYTB06FAArrnmGpYtW8Z7773XYHz5u+++C8BVV13V4FqrV6/mtttu4+677z7pa0ZFRXHuuefy3//+l0OHDtG5c2cA5s6dS2xsLGPHjuWzzz5rcN6qVasAOOOMM056/aCgIEaOHMmnn37K6tWrGTVqVINjZsyY0WBbXFyczybgrly5EnB/k+oJb7ZZRET3pcYF4n2pqdeuUVRU1OLr6h7WMShxkjZx4MABALp3795g37Zt2xr8Ee7Vq1e9b7WOvzmBuzfi2muvZfny5SxdupRLLrnEo5hq/jjWTMJduHAhTqeTG2+8sXbS56RJk+jevTvz5s3jrrvuqu0BKSwsZMGCBfTu3bvRikJdu3Y94eTW411xxRXMnz+fjz76iJtuuomNGzeyfv16pk2bhsXSeKdwzfvZnJtyzTH79u1rdP/MmTMbbBsxYoTPblA1sXtaNcibbRYR0X3pxALtvtTUa3uD7mEdgxInaRM1Qw0Mw2iwb8eOHQ3+UJ166qn1blB5eXm89NJLLFmyhD179lBWVlbv+Pz8/NrHjX1bdOmllzaogFPzmoZhEB0dXfuaF198ce0xQUFBXHnllcycOZMvv/ySX/ziFwDMmzeP8vJyrrzyykbbNGjQoHrDzE7m9NNPJykpiffff5+bbrqJ9957D4vFwuWXX37Cc072fh6v5pgTHXuyCkIn09z3+XiexN7S8xpr8+zZs/nyyy/ZsWMHISEhpKenc/fddzc5XFBEOibdl04s0O5LzX3tmqp6dTX33uLN90fMo8RJ2kTXrl3Zvn17vRtJjUmTJtX+ocrJyWHixIn19mdnZzN16lSKioo4/fTTGTt2LJGRkVitVnJzc5k3bx4VFRW1x5/om6rj/3A29w/zlVdeyYsvvsi7775be4N67733CA4OPuFNpGvXrs26do2pU6fy17/+lSVLlvDpp58yZswYYmNjT3h8t27d2L59O3v37m3y2jXHHD/evbWa+z4fr3v37s2Ova7Wtnn58uVcc801pKSk4HK5eO6557jpppv473//i91u9ygWEWn/dF86uUC6L7VGc+8t/vD+SOspcZI2ceqpp9YOXTjRxNITefXVVykoKGh04btPP/2UefPm1dvW0m+qTqRHjx6cffbZfPnll2zfvp2DBw+ybds2pkyZUjv2+3iefkt06aWX8uyzz3L//fdTVFTU5Ht02mmnsWzZMn766SeuuOKKEx7ncDhqqyadeuqpHsXUlJa+z6eddhpLly5l6dKlJ429sfNa0+aXX3653nHPPPMMp59+OqtXr+bss8/2sBUi0t7pvnRygXRfao3m3lv84f2R1lNVPWkTl112GVarlS+++ILt27d7dO6uXbsAmDx5coN9bVVx5pprrgHc3+i98847QOOTb1uqS5cunHXWWezdu5eYmJgG324er+b9/Oqrr9i6desJj/vggw/Yt28fSUlJjBgxwmvxtsZll11GcHAwX3zxxUljB+p9Y+vtNh89ehSn00l0dLTnjRCRdk/3pZMLpPuSN53o3qL3p2NQ4iRtok+fPtx2221UVFRwyy23sHbt2kaPKy4ubrAtLi4OoMF6E4sXL+b999/3frCNGD16NElJScybN48vv/ySpKSkFldiOpH77ruPWbNmMWfOnCbHoSckJHDbbbdRWVnJ7bff3ugf4a+//pq//OUvWK1WHnnkkRNO6G1r8fHxTJs2jcrKSm699VaysrIaPW7RokX85je/qX3u7Tb/5S9/YfDgwQwbNqz1jRKRdkf3paYFyn3Jm050b9H70zFoqJ60md/97nc4nU5mz57NFVdcQWpqKikpKURFRVFYWMju3btZunQphmFw2mmn1Z53zTXX8OGHH/KHP/yByZMn06NHD37++WcWL17M+eef32hZVF+4+uqrefLJJ2sfe1tCQgIJCQnNPn769OmUlpby6quvcvHFFzN27Fj69etHVVUVa9asITMzk7CwMP7v//7P49Lfvnb77bdTVVXFrFmzmDp1KsOGDWPo0KFERERw4MABVq5cyc6dO2vL79bwVpuffvppVq1axdtvv43VavV1c0XET+m+dHKBdF/yhqbuLYH+/nQESpykzRiGwV133cWFF17IO++8w7Jly/joo48oKysjMjKSxMREbr75Zi655BL69etXe96gQYN4/fXXefbZZ1m0aBFVVVUMGjSImTNnEhUV1WY3qEsvvZSnn36a4OBgj0vM+oLFYuH+++/nggsu4D//+Q8rVqxgyZIlWK1W4uLiuPnmm7nhhhtavY6Ir0ybNo3zzz+ft956i2XLlvHhhx9SUVGB3W5n0KBB/OY3v6lXSQq80+Ynn3yS//73v/z73//26AOBiHQ8ui95V3u/L7VGc+4tgfz+dBSGq+6S1CJyQkuWLOHGG2/k4osv5plnnjE7HGmB//f//h+fffYZb7zxBsnJyWaHIyLSKrov+QfdWwKHepxEmulf//oXANdee63JkUhLPProo3z88cfMmjWL6Oho9u/fD0B4eDgREREmRyci4jndl8yne0tgUY+TyEls2rSJhQsXsn79ehYuXMjEiRN5/vnnzQ5LWmDgwIGNbp82bRrTp09v42hERFpG9yX/ontLYFGPk8hJbNiwgeeee47IyEguuOACHnnkEbNDkhYyY30PERFv033Jv+jeEljU4yQiItJC999/f4PFTut69913SU9Pb7uARETEZ5Q4iYiItNDu3bs5dOhQg+233347ISEhfPvttyp5LyLSQWionoiISAv17t2b3r1719u2fPlyDh8+zB133KGkSUSkAwnIxMnpdFJVVYXFYsEwDLPDEREJGC6XC6fTSVBQEBaLxexwfOL999/HMAwuv/zyZp+j+5KIiHmae28KyMSpqqqKrKwss8MQEQlYKSkphISEmB2G1xUXF/PFF18wevRojxZY1n1JRMR8Td2bAjJxqskkU1JSWjSMwuFwkJWV1eLz2zu1X+1X+9X+1v797Ki9TZ9++illZWVMnTrVo/M66vshItKeNPW3OCATp5phEFartVUffFp7fnun9qv9ar/a31IddTja+++/j91u55xzzvHovJr3Q1/otYzar/ar/YHbfvDel3pN3ZsCMnESERHxtk2bNrFu3Tquv/76Fg9D1Bd6raP2q/1qf+C2H3z/HmhsgIiIiBe8//77AFxxxRUmRyIiIr6gxElERKSVKioq+OSTT0hNTWXAgAFmhyMiIj6gxElERKSVvv76awoKCtTbJCLSgSlxEhERaaX333+f8PBwLrjgArNDERERH1FxCBERkVZ65ZVXzA5BRER8TD1OIiIiIiIiTVDiJCIiIiIi0gQlTiIiIiIiIk0wPXE6cuQIzzzzDDfffDOjRo1i4MCBzJgxo9Fj169fz4033siwYcM4/fTTmTZtGtnZ2W0csYiIiIiIBBrTE6eCggLee+89KioqmDRp0gmP27ZtG9dddx2VlZU8++yzPPHEE+zcuZNrrrmGQ4cOtWHEIiIiIiISaEyvqhcXF8eKFSswDINDhw4xd+7cRo977rnnCAkJYfbs2URGRgIwZMgQzj33XF5++WX+53/+py3DFhERERGRAGJ6j5NhGBiGcdJjqqqq+O6775g8eXJt0gTupGvkyJF8/fXXvg5TREREREQCmOmJU3Ps3r2bsrIyBg4c2GDfgAED2LVrF+Xl5W0Sy5b8Ym58bSVbDla0yeuJiIg0xVj3AcnL/wRlRWaHIiLSYZk+VK85CgoKALDb7Q322e12XC4XhYWFdO/e3aPrOhwOj2NZtGUfi38+gKM0jMvP8vz8jqDmfWvJ+9cRqP1qf93fgaa17Q/U983XjHVzsecvxblxPpx+k9nhiIh0SO0icapxsiF9TQ33a0xWVpbH51iK3T1b2w5Xtuj8jkTtV/sDmdof2O33N65up2D8/CXkrlbiJCLiI+0icarpaTp8+HCDfQUFBRiGQXR0tMfXTUlJwWq1enROUmkljy9aSP5RB/HJA+ka1cnj123vHA4HWVlZLXr/OgK1X+1X+1ve/przxbu+PZLARMCRvap9jMEXEWmH2kXi1Lt3b8LCwtiyZUuDfVu2bKFPnz6EhoZ6fF2r1erxjb9zpJU+XcLZdbCEjXuPcpY9sumTOqiWvH8didqv9qv9gdt+f/Pfg7FMBKwHNkLFUQiJMDskEZEOp118MRUUFMSECRP46quvOHLkSO32vLw8li1bxjnnnNOm8aTG2QBYm1PYpq8rIiLSmF4Jfdnj6owFJ+zJNDscEZEOyS8Sp++//54FCxbw7bffArB161YWLFjAggULKC0tBWD69OmUlpZy++238/333/PVV19x2223ERMTw80339ym8abGuxOnrFwlTiIiYr60eBsZzmT3k5yV5gYjItJB+cVQvccee4zc3Nza5zVJE8DChQuJj48nOTmZN954g7/97W/8/ve/x2q1MmrUKGbNmkXnzp3bNN6UOPd8KiVOIiLiD1LjbbzmTOZ86woqs1cSbHZAIiIdkF8kTt98802zjhs6dCivvfaab4NphlN6RWMB9haVs6+ojO7RYWaHJCIiAaxbVCg7gvsD4FDiJCLiE34xVK+9iQgNIi7anXNqnpOIiPiDss4DcboMwo7mwpF9ZocjItLhKHFqoX6d3d/nrc0pMDcQERERIL5LND+74txPcleZG4yISAekxKmFkmOqe5w0z0lERPxAv5hgMpz93E9UIEJExOuUOLXQsR6nQlwul8nRiIhIoEvuHEymy11Zr2L3CpOjERHpeJQ4tVCiLZhgq8GhoxXkFpSaHY6IiAS4iGALB6KHAmDkrQGn0+SIREQ6FiVOLRRsNRjQIwpQgQgREfEPkb1TKHWFEFxZBIe2mR2OiEiHosSpFVLj3AvhZqpAhIiI+IGhCV1Y50p0P1GBCBERr1Li1Aq1C+Gqx0lERPxAapyNTKd7npNLBSJERLxKiVMrpMa7e5yycgpxOlUgQkREzHVKryjW4l4IVwUiRES8S4lTK/TvHklokIXi8ip2HjxqdjgiIhLgQoOtHO2aCkDwvvVQVW5yRCIiHYcSp1YIsloYEuserqcCESIi4g969B7IAVc0Flcl7M0yOxwRkQ5DiVMrpcbbASVOIiLiH9ITYmrnOalAhIiI9yhxaqWaeU5rVVlPRET8QGrCsQIRThWIEBHxGiVOrVTT47Qur5AqhxYbFBERc/XrFskGi7tARJUKRIiIeI0Sp1bq2zWCyNAgyiqdbN1/xOxwREQkwAVZLTh6nQpASOEOKDlkckQiIh2DEqdWslgMhlav57Q2W/OcRETEfMm949nh7OF+krfa3GBERDoIJU5ekFZTICK3wNQ4REREANIS7GS4+rmf5CpxEhHxBiVOXpBSWyBCPU4iImK+tHh7bYEIhwpEiIh4hRInL6jpcdq4p4jyKoe5wYiISMBL6NyJbSGDAHBmrwSXy+SIRETaPyVOXhAf04mY8GAqHS427y02OxwREQlwhmEQGp9GhctKcNlBKNhtdkgiIu2eEicvMAyDlOpep0wN1xMRET9wSkI3Nrr6uJ9oIVwRkVZT4uQlqXHueU5ZWghXRCTgrFy5kltuuYXhw4eTmprK5MmTmTVrlqkxpcbbyaie56TESUSk9YLMDqCjSFWBCBGRgPTJJ59w7733cv755/P0008THh5OdnY2+fn5psaVmmDjM2cy8BWO7JVYTY1GRKT9U+LkJWkJdgC25BdTWuGgU4huUSIiHV1+fj5//vOfueqqq3j00Udrt48aNcq8oKp1jwojL2IIVAJ7MsBRCdZgs8MSEWm3NFTPS3pEh9E9KhSnC9bnqddJRCQQzJ07l5KSEm655RazQ2lU596DKXKFY3WUwb6NZocjItKuKXHyotSahXA1XE9EJCCsWLECu93O9u3bufjiiznllFMYPXo0f/7znzly5IjZ4ZGS0JlMZ1/3E81zEhFpFQ3V86LUeBtfb8xnrQpEiIgEhPz8fEpLS/n973/PbbfdRnp6OllZWcyYMYOff/6Zt956C8Mwmn09h6NlawHWnHf8+UNjo8hw9WMc63DmrMA17PoWXd/fnaj9gULtV/vr/g5ErX0PmnueEicvUoEIEZHA4nK5KC8vZ9q0adx6660AjBw5kuDgYJ544gmWLFnCmDFjmn29rKysVsVz/PmuSidrqyvrlWz9kc0ZGa26vr9r7fvX3qn9an+g8/V7oMTJi2qG6m0/cJSiskqiwzQJV0SkI7Pb7QCMHTu23vbx48fzxBNPsH79eo8Sp5SUFKxWz4sLORwOsrKyGj3/ucU5cBQijuwifXAyhEZ5fH1/d7L2BwK1X+0P5PZD69+DmvObosTJizpHhBAf04mcw6WsyylkTL+uZockIiI+NHDgQDIa6cVxuVwAWCyeTSW2Wq2t+uDT2Pm9eyeRs6Er8cYBrPlZkDSuxdf3d619/9o7tV/tD+T2g+/fAxWH8LK0mgIRuRquJyLS0U2ePBmARYsW1dte8zwtLa3NYzpeWoJdBSJERLxAPU5elhJv479Ze1QgQkQkAIwdO5YJEyYwa9YsnE4n6enprFu3jpkzZzJhwgROP/10s0MkNd7GZ85+TLEux5W7kuaXqhARkbqUOHlZTYGIzGz1OImIBIJnn32WmTNn8t577zFr1iy6d+/OjTfeyLRp08wODYDBvaL5q9EPAEf2Kt34RURaSH8/vWxonDtxyi0o5eCRcrpEhpockYiI+FJYWBj33HMP99xzj9mhNCos2Epl91QcBw2CjuRB0R6I7mV2WCIi7Y7mOHlZdFgwfbtFAJrnJCIi/mFAQk+2uBLcTzTPSUSkRZQ4+UBNgYgsreckIiJ+IC3BTkb1ek5KnEREWkaJkw+kxNUshFtgbiAiIiK4v9DLcLnnOblyVpocjYhI+6TEyQfSEmoSJ/U4iYiI+fp1j2SztT8AztzV4HSaHJGISPujxMkHTullw2ox2Fdczt7CMrPDERGRAGe1GITFDqHEFYq18ggc/NnskERE2h0lTj7QKcRK/+6RAGRquJ6IiPiBlITOZLmS3E80XE9ExGNKnHykZj0nFYgQERF/oAIRIiKto8TJR1KrK+upx0lERPxBWrydzOrEyanESUTEY0qcfKS2JHluIS6Xy9xgREQk4MXHdGJH6CAAjL3roLLU5IhERNoXJU4+MrBnFCFWCwUllWQf0s1JRETMZRgGPRL6sd9lw3BVwd4ss0MSEWlXlDj5SEiQhcG9ogBYm1tgbjAiIiJAakIMGU73ek4qECEi4hklTj6UEq/1nERExH+kxdtUIEJEpIWUOPlQbYGI7AJT4xAREQH3fSnTVV0gIkeJk4iIJ5Q4+VBNSfJ1uYU4nSoQISIi5uoWFcr+qCEAWAp2wNGDJkckItJ+KHHyoX7dIukUbOVohYPtB46YHY6IiAh9E2LZ5uzlfpK32txgRETaESVOPhRktTA0LhrQPCcREfEPaQl2MqqH66lAhIhI8ylx8rGUODugxElERPxDarztWGU9FYgQEWk2JU4+lpZQU1mvwNxAREREgJQ4G2vrFojQIu0iIs2ixMnHUuLcidP6vCIqHU6ToxERkUAXFRZMeZdTKHcFYSk7BId3mB2SiEi7oMTJxxK7RBAVFkR5lZMt+cVmhyMiIsIpCV3Z4Ep0P8lVgQgRkeZQ4uRjFotR2+uUpXlOIiLiB9IT7FoIV0TEQ+0qcdqwYQO//e1vGTt2LGlpaZx33nnMnDmT0tJSs0M7qdqFcJU4iYiIH0iNP5Y4uVRZT0SkWYLMDqC5tm7dytVXX01SUhJ/+tOfiImJYeXKlTz//POsX7+eF154wewQTyiteiHcrNwCcwMREREBBveKYr1RXVlvTyY4KsEabG5QIiJ+rkWJ088//8zq1avJz8+nrKyMmJgY+vXrx/Dhw4mMjPR2jAB88sknlJeXM2PGDHr37g3A6NGj2b9/P++++y6FhYXYbDafvHZrpVQnTpv2FFNW6SAs2GpyRCIiEshCg6yE9xxAwYEI7I6jkL8OYoeZHZaIiF9rduJUWFjIu+++y7vvvkteXh6uRsqXBgUFMX78eK677jpGjx7t1UCDg93fhB2fmEVFRWGxWGr3+6M4eye6RIRw8GgFG/cUMax3jNkhiYhIgEtNsJO5L5kzrWvd85yUOImInFSzEqfXX3+dWbNmAXDBBRcwYsQIhgwZQufOnQkNDaWwsJDs7GwyMjJYuHAhN998M2PGjOHPf/4zffr08Uqgl1xyCf/+97959NFH+Z//+R9iYmJYsWIF7777Lr/61a8IDw/3+JoOh6NFsdSc58n5Q+Oi+X7LATKzD5MaF92i1/UXLWl/R6L2q/11fwea1rY/UN83f5QWbydjZTJnstZdWW+42RGJiPi3ZiVOb7zxBg888ABTpkxptGena9eudO3alWHDhnHTTTexe/duXnjhBT7//HNuv/12rwQaHx/PO++8w7Rp05g0aVLt9uuuu44HH3ywRdfMyspqVUyenN89yF3A4ru1O0gJO9yq1/UXrX3/2ju1X+0PZIHe/o4gLcHOZ073PCdXzkoMk+MREfF3zUqcPv/8c4KCmj8dqnfv3jz55JNe/WYxJyeHO+64gy5duvDcc8/RuXNnMjMzeeGFFygpKeGJJ57w+JopKSlYrZ7PN3I4HGRlZXl0/qGwfczdsJrc0iDS09M9fk1/0pL2dyRqv9qv9re8/TXni/mSu0Xyc1B/95MDW6CsEML8c66wiIg/aFY29PPPPzN48GCPL+7NDxX/93//x5EjR5g/f37tsLzhw4cTExPDn/70Jy655BJGjBjhcXwtirGq3OPz06rnNW3bf4SyKhcRoe2moOEJtfj96yDUfrVf7Q/c9ncEVotBXFxvsnO7kWDZD3lroO9ZZoclIuK3mrWO06WXXspll13GW2+9RXFxsa9jatTGjRtJTk5uMJcpJSUFcCd3bWLLl1ieiqPrrk89Oq17VBi9bGE4XbA+r8hHwYmIiDRfWoKdDJcWwhURaY5mJU633XYbhw4d4vHHH2fs2LHcc889LF261Nex1dO9e3e2bt3K0aNH623PyMgAoEePHm0TyJG9GC4nnXO+8vjUlDj3EIi1OQVeDkpERMRzqfG22oVwyV1tbjAiIn6uWYnTXXfdxbfffsucOXOYMGECX375JTfddBMTJ07k+eefZ8+ePb6OkxtuuIHDhw9z880389lnn7FkyRJefPFFnnzySfr168f48eN9HgMAfc4AIOLwRqgs8ejUtAQ7AJk5hd6OSkRExGNp8XYy6hSIoJGlRkRExK1ZiROAYRiMHz+eZ599lh9++IEHH3wQm83Gc889x6RJk/j1r3/NggULqKys9EmgEydO5LXXXiMyMpInnniC22+/nXnz5nH11Vfz5ptvEhIS4pPXbaBzX1zRsVhcVZC9zKNTa3qcstTjJCIifiA+phN7Og2gymXBOLIXivLMDklExG+1qEJBdHQ01157Lddeey2bNm3igw8+4NNPP+Wuu+7CbrezZMkSb8cJwKhRoxg1apRPrt1shoGrzziMrHcxdv4A/Sc1fU611Hh34rTzYAmFJZXYwv130V4REen4DMNgYEJ3Nu9IYIixyz3PyRZndlgiIn6p2T1OJzJo0CAuuugizj77bAAKCgpae0n/lzgWAGPnYo9Os4eH0KeLu7hFVq6G64mIiPlS6wzXI3elucGIiPixFtfEPnToEB9//DEffPABW7duxWq1MmHCBKZOnerN+PySK3Gc+0HeGigvhtCoZp+bEmdj18ESMnMKGNu/q48iFBERaZ60BBufu5L5FQtVIEJE5CQ8SpycTieLFi3igw8+4LvvvqOyspLExETuvvtuLr30Urp2DZBEwN6b8k49CS3dC7uXQv9zmn1qWrydT9fuIUsFIkRExA+kxtt5sqZARN5qDKcDLFqjS0TkeM1KnHbs2MEHH3zARx99xIEDBwgLC+MXv/gFl19+OaeffrqvY/RLxV3TCc1eADsWeZQ4pcSrJLmIiPiPrpGhlEX35UhZGJEVR2H/ZuhxitlhiYj4nWYlTueffz4AqampTJ8+nSlTphAREeHTwPxdcZd0umYvAA/nOQ2Ns2EYkFdYxv7icrpFhfooQhER8bVly5Zx/fXXN7rv3XffJT09vW0DaqGU3p3J2tSX0dYN7gIRSpxERBpoVuJ0ww03MHXqVPr37+/reNqN4q7D3A/2ZEJZIYTZmnVeZGgQyd0i2brvCFm5BZw9qI0W7hUREZ+5++67GTlyZL1t7ememRZvJ2NjMqPZ4C4Qcep1ZockIuJ3mpU4PfDAA41u3759O4cPH2bw4MGEh4d7NTB/V9mpG67OyRiHtsGun2Dg+c0+NzXextZ9R8jMLlTiJCLSAfTp06fd9C41JjXezmvOZPeT3FXmBiMi4qdaVI58/vz5jB8/nilTpnDttdeyY8cOAH7/+9/z3nvveTVAf+aqLkvODs+G66XF2wGVJBcREf+QEm9jrcudOLnyN0BFickRiYj4H4/LkX/++efcf//9nHXWWYwfP57HH3+8dt+QIUP4/PPPufLKK70apN/qMxZW/xt2LvLotLoFIlwuF4Zh+CI6ERFpI48//jh33303YWFhDBs2jDvuuKNFxZMcDkeLXr/mvJae3ynIILJbH/YWxtCTwzhy10Bvkxec90Br29/eqf1qf93fgai170Fzz/M4cZozZw6XXXYZTzzxBA6Ho17i1LdvX9544w1PL9lu1fY47V0HJYcgvHOzzjulVzRBFoMDRyrYU1hGrL2TD6MUERFfiYqK4vrrr2fkyJHY7XZ27drFyy+/zPXXX8/s2bMZN26cR9fLyspqVTytOT+uUxWZh5PpaV1J3opP2HcorFWxmKG17197p/ar/YHO1++Bx4nTtm3buOeeexrdZ7fbKSgoaG1M7UdkD+g6EA5shl0/wuALm3VaWLCVAT2i2LCniLU5BUqcRETaqVNOOYVTTjlWge7000/nnHPO4cILL+Svf/2rx4lTSkoKVqvnayg5HA6ysrJafD7AhLLdZOT041zrSuLYQ2w7mrPljfa3Z2q/2h/I7YfWvwc15zfF48SpU6dOFBcXN7ovPz8fm6151eU6jKRx7sRpx+JmJ07gXql9w54iMnMKOW9oLx8GKCIibSk6OpqzzjqLd955h7KyMsLCmt9zY7VaW/XBpzXnp/eO4anqeU5G3mos7fADWGvfv/ZO7Vf7A7n94Pv3wOPiEMOGDeM///kPLperwb4PP/yQESNGeCWwdiOx+ttED9dzSomzA5CVowIRIiIdTc09sj3NYR3UK4pNRl+cLgOjYDcc2W92SCIifsXjxOnOO+8kIyODqVOn8sYbb2AYBl9++SW33347K1eu5Pbbb/dFnP6rJnHatwGOHmj2aanHFYgQEZGOobCwkO+++47BgwcTGtp+FjkPDbLSu1dPtrpi3RtUllxEpB6PE6eUlBReeuklSkpKeOqpp3C5XMyePZsdO3YwZ84cBgwY4Is4/VdEF+g+xP3Yg16ngT2jCAmyUFRWxa6DKvsqItIe/fGPf+Rvf/sbCxYsYNmyZbz33ntcddVVHDx4kHvvvdfs8DyWGm8nU+s5iYg0yuM5TgCjRo3i888/Z/fu3Rw4cICYmBiSkpK8HVv7kTQO9q13z3MacmmzTgm2WjilVzQZ2QVk5hSQ2DXCx0GKiIi3DRw4kM8++4x33nmHkpISbDYbp512Gs888wypqalmh+ex1HgbmSuSuYJFkLvS7HBERPxKixKnGr1796Z3797eiqX9ShwHy170eJ5TWryNjOwC1uYUcnF6nI+CExERX7n11lu59dZbzQ7Da9IT7Lzm7AeAK3cVhssF7WieloiILzVrqN5nn33m8YXz8/NZtSpAuvkTzwAMOLAFivc2+7SUeDugAhEiIuIf+naLJCc4kTJXMEZZIRzabnZIIiJ+o1mJ0+OPP87FF1/M3LlzOXLkyEmPXbduHY899hjnnnsumzZt8kqQfq9TDPRMcT/e+UOzT0urLhCxLq8Qh1MFIkRExFxWi8Hg+C6sc1UPv8/RcD0RkRrNGqr31VdfMWPGDP7yl7/w+OOP1y7416VLF0JCQigsLCQ7O5uMjAz2799P//79mTFjhscL/7VrSeNh71rYsQhSpjbrlL7dIokIsXK0wsG2/UcY0CPKx0GKiIicXFq8nczdyZxu2eIuEJF2ldkhiYj4hWYlTlFRUfzpT3/izjvv5MMPP+T7779n/vz5lJaW1h6TkJDAuHHjuPDCCxk1apTPAvZbieNgyUyP5jlZLQZD4mws33GIzOwCJU4iImK61Hg7X9RW1lOPk4hIDY+KQ9hsNm666SZuuukmAIqLiykrK8NutxMcHOyTANuNPqPBsLjHgxfmgq15xR7S4t2JU1ZuIVecnuDjIEVERE4uLcHGUy534uTam4VRVQ5B7Wc9KhERX/F4Hae6oqKi6Natm5ImgDAb9Ep3P/ag16mmQESmCkSIiIgfiLN3oqRTPAddURiOCshfZ3ZIIiJ+oVWJkxwnqXpO147mJ041BSI25hVRUeX0RVQiIiLNZhgGqQl1FsLNCZAKuSIiTVDi5E2J492/dy5q9im9O4dj6xRMhcPJlvxiHwUmIiLSfGl1E6dcJU4iIqDEybt6jwJLEBTshsO7mnWKYRikVvc6ZeYU+DA4ERGR5kmLt5PpUuIkIlKXEidvCo2E2FPdjz2Y51STOGkhXBER8Qep8TYyanqcDv4MpYfNDUhExA8ocfK2FsxzSomzAyoQISIi/qFLZCiRMd3Z6ezh3pC3xtyARET8gMeJ0//+7/+yfft2X8TSMSRWJ047F4PL1axT0hLcPU5b8ospq3T4KjIREZFmqzdcTwUiREQ8T5zmz5/PlClTuOmmm/j6669xNTM5CBgJI8ESDEW57jWdmqFndBhdI0NxOF2szyvycYAiIiJNS0uoM1xP85xERDxPnBYvXsxDDz3E/v37mTZtGmeffTZz5szh0KFDvoiv/QkJh/jh7sfNnOdkGEZtWfK1KhAhIiJ+IDX+uMp6+qJURAKcx4lTeHg4v/rVr/j000959dVXGTJkCP/85z8566yzuP/++8nKyvJFnO1LS+Y5qUCEiIj4kaFxNtaTSKXLCkf3QWG22SGJiJiqVcUhRo8ezcyZM1m4cCHDhg3jo48+4sorr+SKK67gm2++8VaM7U9L5jnF2wGVJBcREf8QGRpEn+6d2ejq7d6g4XoiEuBalTiVlZUxd+5cbr/9dpYtW0ZycjJ33nknDoeDO++8k1mzZnkrzvYlfjhYQ+FIPhzY0qxTanqcth84SnFZpS+jExERaZZ6w/VyVpobjIiIyVqUOO3evZsnn3yS8ePH88gjj9CzZ09eeeUVPv30U6ZNm8aHH37ILbfcwptvvunteNuH4DBIGOF+vGNRs07pGhlKnL0TLhesy1WBCBERMV9agp0MZz/3k9zV5gYjImIyjxOn3/zmN5x33nm8//77XHzxxSxYsIAXX3yRMWPG1DtuwoQJHD4cwAvmJY13/27JQri5BT4ISERExDNp8TYyqkuSu/ZkgKPK3IBEREwU5OkJ2dnZPPDAA1x22WVERESc8Lj+/fvz+uuvtyq4dq12ntMP4HSCpekcNSXexufr9mohXBER8QuDekaTY4mjyNWJ6MoS2L8ReqaYHZaIiCk8Tpy++OKLZh0XGRnJiBEjPA6ow4g7DYLDoeSg+0bTY0iTp9QUiFBJchER8QchQRYGxdpZu7cvY63r3QUilDiJSIBqVXEIOYmgEPdiuNDssuRD49xD9bIPlXL4aIWvIhMREWm2tHgbmS4thCsi4nGP09lnn41hGI3us1gsREVFkZKSwvXXX09ycnKrA2zXksbB9m/d85xG3d7k4bZOwSR1jWDHgaOszS3kzAHd2iBIERGRE0uNt/PFsuoCETlKnEQkcHnc4zRixAhcLhf5+fnExcWRlpZGbGws+fn5OBwOevXqxVdffcXll1+uxXATawpEVM9zaobaAhEariciIn4gPcFGRnVJctf+jVB+xOSIRETM4XHiNHbsWEJCQvjqq694/fXX+fvf/84bb7zBl19+SUhICJMmTeKLL74gMTGRGTNm+CLm9iM2HUIioawA8puXRKZUD9dTgQgREfEHfbtGUhrajTxXZwyXE/ZkmB2SiIgpPE6cXnzxRaZPn06vXr3qbY+NjeXOO+9kzpw5REVFceONN5KRkeGtONsnazD0Hu1+3Mx5TmkJdkAFIkRExD9YLAYpcbY66zlpuJ6IBCaPE6ddu3YRGRnZ6L7o6Ghyc3MBiIuLo7S0tHXRdQRJNWXJm5c4DYmNxmJAflE5+UVlPgxMRESkeVITbGQ6VSBCRAKbx4lTbGws8+bNa3TfBx98UNsTVVBQgM1ma110HUHNek67fmrWwoHhIUH07x4FwFoN1xMRET+QFm8/1uOkAhEiEqA8rqr361//mj//+c9cffXVnHfeeXTt2pUDBw6wYMECMjMzefzxxwFYtmwZQ4cO9XrA7U6vNAi1QXkh7M10r+/UhNR4G5vzi8nKKeCcU3q0QZAiIiInlpZgJ8uVhMNlYC3KgeK9ENXT7LBERNqUx4nTlVdeicvlYsaMGTz11FO127t27cpjjz3GFVdcAcDtt99OSEiI9yJtryxW6DMGtnzunufUzMRp7qocFYgQERG/EGsLIzwymp8r4hlkZLuH6w2aYnZYIiJtyqPEyeFwsHv3bs4//3yuvPJKtm/fTkFBAXa7nb59+9Zb36lr165eD7bdShrnTpx2Loaxf2jy8NR4OwBZuYW4XK4TrpslIiLSFgzDIDXeTsbWZAZZlDiJSGDyaI6Ty+ViypQprFmzBsMwSE5O5rTTTiM5OVkf7k+mdp7TEnBUNnn4oF5RBFsNDh2tIOewCmyIiIj50uLtZLpUIEJEApdHiVNQUBBdu3bF5XL5Kp6OqcdQ6BQDlUchb02Th4cGWRnUMxpQgQgREfEP9SvrrW72wu4iIh2Fx1X1pkyZwvz5830QSgdmsUCfM9yPdyxq1ikp8e6KhGtzC3wUlIiISPOlxdvZ7Eqg1BUC5UVwcKvZIYmItCmPi0MMGjSIzz77jOuvv57JkyfTrVu3BsP0Jk+e7LUAO4yk8bDpU/c8p/H3NHl4WryNt5bB2mz1OImIiPk6R4QQ2zmSrCNJjDA2u4frdRtgdlgiIm3G48TpvvvuAyA/P5/ly5c32G8YBhs3bmx9ZB1N0nj3793LoKocgkJPenhNgYh1uYU4nS4sFs0hExERc6XG28nY0I8Rls2QuxLSf2l2SCIibcbjxOn111/3RRwdX7dBENENju53f0vXZ8xJD+/fPZKwYAvF5VXsOHiU5G6RbRSoiIhI49Lj7WSsU4EIEQlMHidOI0aM8EUczbZy5Upmz55NRkYG5eXl9OzZk4svvpg777zT1LiaZBiQOBbWz3Ov59RE4hRktTAk1saqXYfJyilU4iQi0k7MnTuXhx56iPDwcNasabogUHuSGm/j3zWV9faug8oyCA4zNygRkTbicXGIGsXFxSxevJiPP/6YwsK2mYfzySefcN111xEVFcXTTz/NnDlzuOWWW9pPlb+asuQ7Fzfr8JQ4d4GIzJwCHwUkIiLelJ+fz9NPP0337t3NDsUnhsbZyKMr+13R4KyEvVlmhyQi0mY87nECmDVrFi+99BJlZWUYhsH777+PzWbjhhtu4IwzzuDWW2/1dpzk5+fz5z//mauuuopHH320dvuoUaO8/lo+UzPPKXt5s76lS0uorqynkuQiIu3CI488wumnn47dbueLL74wOxyviwgNon/3aDIPJTPJusY9XC9huNlhiYi0CY97nP7zn/8wa9Yspk6dyuzZs+v19kyYMIHvvvvOm/HVmjt3LiUlJdxyyy0+uX6b6NIPInuCoxxyGhbWOF5KnB2A9XmFVDm0XoaIiD/76KOPWL58eb0v9zqi1HgbGc5+7ie5K80NRkSkDXnc4/Sf//yHG2+8kXvvvReHw1FvX58+fdi1a5fXgqtrxYoV2O12tm/fzm9/+1t+/vlnbDYb55xzDvfeey+RkZ7PATo+fk/Pa8n5RuJYLOvex7n9e1y9zzjpsX1iwogMDeJIeRWb9xYxqGdUi+L1tta0vyNQ+9X+ur8DTWvb31Hft4MHD/LEE0/wxz/+kZ49e5odjk+lJtj5co0KRIhI4PE4ccrOzmbcuHGN7ouIiKCoqKjVQTUmPz+f0tJSfv/733PbbbeRnp5OVlYWM2bM4Oeff+att95qsJ5UU7KyWjc2uyXnd7H0IRE4uv4LttgvaPL4xGgL6/bDf5dkUZYU7nmQPtTa96+9U/vV/kAW6O0/3mOPPUZSUhLXXHNNq65jxhd6nkqJjeKvzr7uJ4e24yjeD+Gdff66J6MvNNT+ur8DTaC3H9ruSz2PE6eoqCgOHDjQ6L7c3Fy6dOni6SWbxeVyUV5ezrRp02rnUI0cOZLg4GCeeOIJlixZwpgxJ69Ud7yUlBSsVqvHsTgcDrKyslp2fm8brP0/Igs2kT5kAASfPBkavXcz6/bvoMBiIz19iMex+kKr2t8BqP1qv9rf8vbXnN+RfPHFF3zzzTfMnz/f4y/wjmfGF3qeqnS6KLFEss3Zi2TLHrb/8D5F3c2tuFujo/235Sm1X+0PdL5+DzxOnEaPHs2//vUvJk6cSGioexFXwzCoqqri7bffZuzYsV4PEsButwM0uP748eN54oknWL9+vceJk9VqbdUHnxad3zUZouMxinKw5q6A5LNPenh6Qgywg3V5RX73Ia217197p/ar/Wp/4La/xtGjR3n88ce57rrr6N69e+2oi8rKSgCKiooICgoiPLx5IwZM+UKvBYYuX0Lm3mSS2UNyWAGu9HSfv+bJ6AsNtV/tD9z2Q9t9qedx4vS73/2OqVOnMmXKFCZNmoRhGLz55pts3LiRvLw8nn32WY+DbY6BAweSkZHRYHtNcQqLpcWV1duWYUDSOMh8272eUxOJU2q8u7Lexj1FlFc5CA0KzP8hRET80eHDhzlw4ACvvPIKr7zySoP9w4cPZ+LEiTz//PPNup4pX+i1QFq8ncy8ZC6z/oAlbzX4yYe1QE/o1X61P5DbD75/DzzONvr06cPbb79N3759efvtt3G5XHz00UfExMTw1ltvERsb64s4mTx5MgCLFi2qt73meVpamk9e1yc8WM8pPqYTMeHBVDpcbNpT7OPARETEE926deP1119v8DN27FhCQ0N5/fXX+cMf/mB2mF6XGm8nw1mnQER7WU9RRKQVWrSOU79+/Xj55ZepqKjg8OHD2Gw2wsJ8u3L42LFjmTBhArNmzcLpdJKens66deuYOXMmEyZM4PTTT/fp63tVUnXilLsayosh9MTV8gzDICXezqIt+1mbW0hagr1tYhQRkSaFhoYycuTIBtvnzZuH1WptdF9HkJZgZ6OrDxWuIEJKDkLBLohJNDssERGfatX4tpCQEHr06OHzpKnGs88+yw033MB7773HLbfcwttvv82NN97Ic8891yav7zX23mDvAy4H7F7a5OFp1cP11mYX+DgwERGRpvXtGkFoaCc2uPq4N+RoPScR6fha1OOUk5PD559/Tl5eHmVlZfX2GYbBE0884ZXgjhcWFsY999zDPffc45Prt6mkcbBmF+xYBP3POemhqfF2ALJyC9sgMBERaa2nnnqKp556yuwwfMZiMRgaZyNjdzLplm3uERQpU80OS0TEpzxOnL777jumTZuG0+mkc+fOhISE1Nvf2lKsASNxPKx5s1nznGoKRGzJL6akoorwkBbluyIiIl6TlmAnc2fNPCf1OIlIx+fxJ/B//OMfnHrqqfzjH//w2ZpNAaFmntOeTCgrhDDbCQ/tER1Gj+hQ8ovKWZ9XxPBEcxcaFBERSYu38Yyrn/vJnkxwVII12NygRER8yOM5Trt27eKWW25R0tRa0bHQORlcTtj1U5OHp8TZAVibo+F6IiJivrQEOztdPSh0RUBVGezbYHZIIiI+5XHiFBsbS0lJiS9iCTw1vU47mh6uV1sgIqfAhwGJiIg0Ty9bGF0iO5Hp7OveoAIRItLBeZw43XbbbbzyyiuUlpb6Ip7AUrue06KTHwekVpchz1KPk4iI+AHDMEiLt5HhqpnntNrcgEREfMzjOU5ZWVkcPHiQc845h5EjRxITE9PgmIceesgrwXV4NYnT3nVQcgjCTzx3KSXO3eO0/cBRCksrsXXSOHIRETFXWoKdzC0qECEigcHjxOnNN9+sffzf//63wX7DMJQ4NVdUD+g6EA5shl0/wuALT3ho54gQEjp3IvtQKetzCxnTr2sbBioiItJQaryN153VBSL2b4ayIgiLNjcoEREf8Thx2rRpky/iCFxJ49yJ047FJ02cAFLj7GQfKiUzR4mTiIiYLzXezgFs5Li6Em8cgD0ZkDTe7LBERHzC4zlO4mW185yav56TCkSIiIg/6BwRQu/O4WQ4q4frqUCEiHRgzUqcVqxYwdGjR5s87tChQ7z//vutDiqg1CRO+zbA0QMnPTSlNnFSgQgREfEPqfE2MmqG6+WuMjcYEREfalbidP3117Nt27ba506nk6FDh7JhQ/01G7Kzs3n44Ye9G2FHF9EFug9xP26i1yklzoZhQG5BKQePlLdBcCIiIieXnmAn06nKeiLS8TUrcXK5XA2eV1VVNdguLdTM9ZyiwoLp2zUCgLW56nUSERHzpcbbWedKpAoLFOdBUZ7ZIYmI+ITmOPkDj+Y52QFYm63ESUREzDc0LppyI4wtzgT3Bg3XE5EOSomTP0g8AzDgwBYo3nvSQ2sKRGTlFvg+LhERkSaEhwQxoEcUGc6+7g0qECEiHZQSJ3/QKQZ6prgf7/zhpIfWJE6ZOYUaKikiIn4hNd5GhksFIkSkY2v2Ok7bt2/HarUC4HA4arcdf4y0UNJ42LsWdiyClKknPOyUXjasFoP9xeXsLSqjl61TGwYpIiLSUGq8nTdWVReIyMsApwMsVlNjEhHxtmYnTg888ECDbffee2+95y6XC8MwWh9VIEocB0tmNjnPqVOIlf7dI9m0t5i1OYVKnERExHTpCXb+7IqnhFDCK4rdQ8+7DzY7LBERr2pW4vTkk0/6Og7pMxoMCxzaDoW5YIs74aFp8fbqxKmAc4f0bMMgRUREGhrYM4qgoCDWOvsyyrLRPVxPiZOIdDDNSpwuvfRSX8chYTbolQ55q929TmlXn/DQ1AQb767M1kK4IiLiF4KtFobERpORl+xOnHJWwrBrzQ5LRMSrVBzCnzRzPafUODsAWbkqECEiIv4hLd5OhlMFIkSk41Li5E8Sx7t/71x00sMG9owixGqhoKSS7EOlbRCYiIjIyaXG28h0VheIyF8Plbo/iUjHosTJn/QeBZYgKNgNh3ee8LCQIAuDe0UBkJlT0DaxiYiInERagp09dGafyw4uB+zJNDskERGvUuLkT0IjIfZU9+OmhuvF2wFYq8RJRET8QFKXCKJCg8mo6XXScD0R6WCUOPmbmnlOTZQlT6leCFcFIkRExB9YLAYp8TYlTiLSYXmUOJWVlXH11Vfz008/+SoeSaxTIOIkhR/Sqnuc1uUW4nCqQISIiJgvLcFOhqu6QETOSnODERHxMo8Sp7CwMLZs2YLVqtXAfSZhJFiCoTjPvabTCfTrHkmnYCtHKxzsOHCkDQMUERFpXFq8jSxnX/eTgl1w9IC5AYmIeJHHQ/WGDRvG2rVrfRGLAISEQ/xw9+MdJ66uZ7UYDI2LBiAzW8P1RETEfKnxdooJZ6sr1r1Bw/VEpAPxOHG67777ePfdd5k/fz5Hjx71RUzSzHlOKhAhIiL+pJctjG5RoVrPSUQ6pCBPT7jqqquorKzkgQce4IEHHiAsLAzDMGr3G4bBqlX6Q9kqiePg+6ePzXOq8/7WlVpTICJXPU4iImI+wzBIi7eRsSWZqdZFSpxEpEPxOHE699xz6yVK4gPxw8EaCkf3wYEt0G1go4fV9DhtyCui0uEk2KoiiSIiYq60eDtfbqpTWe8kXwCKiLQnHidOTz31lC/ikLqCwyBhhHuo3o5FJ0ycEruEExUWRHFZFVvyixkSa2vjQEVEROpLTbDznKs3FQQTUnrYXeioS7LZYYmItJq6KPxV0nj375PMczIM49hwPa3nJCIifiA1zkYlQaxz9nFv0HA9EekgPO5xqrFlyxa2bdtGeXl5g32XXHJJa2IScCdO3/4Fdv4ATidYGs9xU+Pt/Lj1IGtzCvnliDaOUURE5DgxESH06RJORmE/TrVsdSdOqVeaHZaISKt5nDiVlpZyxx13sHTpUgzDwFW9SGvdeU9KnLwg9lQIDoeSg7B/I/QY0uhhqXE1PU4FbRiciIjIiaXG28k4XGeek4hIB+DxUL3nn3+e3Nxc3nzzTVwuFzNnzuTVV1/lnHPOoU+fPsybN88XcQaeoBDoPcr9eMeJh+ulJtgB2Ly3mLJKRxsEJiIicnJp8TYyXdWJ0561UFVhbkAiIl7gceK0cOFCbrnlFoYNGwZAr169GD16NM899xxDhgzhrbfe8nqQASux6fWcYm1hdIkIocrpYuOeojYKTERE5MTSEuzscvWgkEhwlEP+OrNDEhFpNY8Tp9zcXPr27YvVasUwDEpLS2v3XXjhhSxcuNCrAQa02gIR1fOcGqECESIi4m+GxEZjMQzWODRcT0Q6Do8Tp6ioKEpKSgDo0qULu3btqt1XVVVVu0+8oFc6hERBWQHkZ53wsJr1nJQ4iYiIPwgPCWJAj6hjw/WUOIlIB+Bx4jRw4EB27twJwMiRI5k9ezYrV65k7dq1zJo1i0GDBnk7xsBlDYI+o92PTzbPKV4FIkREzLBx40ZuvfVWzjrrLFJTUxkxYgRXXXUVH330kdmhmS4t3s4apxInEek4PK6qd/nll9f2Mv3hD3/gmmuu4brrrgMgOjqaOXPmeDfCQJc4Dn7+0j3Pacy0Rg9JqU6ctu4/wtHyKiJCW1xlXkREPFBUVETPnj2ZMmUKPXr0oLS0lE8++YR7772X3Nxcfvvb35odomlSE2z838rqxOnAFigtgE52M0MSEWkVjz9hX3DBBbWPExIS+OKLL2pLkw8bNgy73e7N+CSpukDErp/AUeXuhTpO96gwetnC2FNYxrrcQkb27dLGQYqIBKaRI0cycuTIetsmTJhATk4O7733XkAnTmnxdg4RTTY9SCAf8tZA8gSzwxIRaTGPh+odLzw8nLPPPpsJEyYoafKFnqkQZoPyItibecLDVCBCRMR/xMTEYLVazQ7DVAN7RhEaZGGNo697g4briUg7pzFd/s5ihT5nwObP3POc4k5r9LDUeDtfrM9nba4SJxGRtuZ0OnE6nRQVFfH555/zww8/8PDDD3t8HYejZevx1ZzX0vN9wQKc0iuKzLxkLrIuwZWzEqeP4vPH9rcltV/tr/s7ELX2PWjuec1KnAYNGoRhGM26oGEYbNiwoVnHSjMljnMnTjsXw9g/NHqICkSIiJjn0Ucf5d133wUgODiYBx98kKuvvtrj62RlnbiCaluc7229QitZ4+wHQNWupaxdswaa+XmiJfyt/W1N7Vf7A52v34NmJU533nlnsxMn8YHaeU5LwFEJ1uAGh6TG2d2HHCyhsKQSW3jDY0RExDduv/12rrjiCg4dOsQ333zD//7v/1JaWsqvf/1rj66TkpLSoiF+DoeDrKysFp/vKxPJ409bC6jCSnD5YdL7dgNbvNdfx1/b31bUfrU/kNsPrX8Pas5vSrMSp+nTp3scgHhR9yHQqTOUHnJPrk0Y0eAQW3gwfbqEs+tgCWtzCxjXv5sJgYqIBKbY2FhiY2MBOPPMMwH4+9//zqWXXkrnzp2bfR2r1dqqDz6tPd/bhvWOoZwQNrl6M9TYgXXPGujcx2ev52/tb2tqv9ofyO0H378HrS4OIW3AYoHEM9yPdyw64WFaCFdExD+kpqZSVVVFdna22aGYKrFLBFFhQWSoQISIdAAeF4eYP39+k8dccsklLQhFTipxPGz8xD3Pafw9jR6SGmfjk8w8zXMSETHZsmXLsFgsJCQkmB2KqSwWg9R4G5k7krmWhUqcRKRd8zhxuv/++xvdXncOlBInH6iZ57R7GVSVQ1Bog0NUklxEpG09/PDDREZGkpKSQteuXTl8+DALFizgs88+49e//rVHw/Q6qrR4O19ucxeIIG/NCdckFBHxdx7/5Vq4cGGDbYcPH2bhwoV89tln/OMf//BKYHKcboMgohsc3e/+xq7PmAaHDImzYRiwp7CMfcVldI8KMyFQEZHAkZ6ezocffsi8efMoLi4mPDycQYMG8cwzz3DxxRebHZ5fSI2386IrlqN0IqKyBA5shh5DzA5LRMRjHidOcXFxjW4bOnQoVVVVvP766zz11FNeCU7qMAxIHAvr57nXc2okcYoMDaJft0h+3neErJxCJg5W4iQi4kuXX345l19+udlh+LW0BBtOLKx1JjHasgFyVipxEpF2yavFIUaPHs0333zjzUtKXYnVw/V2Lj7hISoQISIi/qRndBjdo0Jr13PSPCcRaa+8mjjl5uZisahQn88kjXf/zl4OlWWNHqKFcEVExJ8YhkFqvJ1MZ7J7gxInEWmnPB6qt2LFigbbKioq2Lx5M7Nnz2b06NFeCUwa0aUfRPaEI3shZ/mxRKqOugUiXC6XFi4WERHTpSfYeH1jdY/Tvg1QcRRCIswNSkTEQx4nTtddd12DD+MulwuAMWPG8PDDD3snsmaYO3cuDz30EOHh4axZs6bNXtc0huGurpc11z3PqZHEaXCvaIIsBgePVpBXWEacvZMJgYqIiByTGm9nHzHsM7rQ3XUQ9mQ2OldXRMSfeZw4vf766w22hYaGEhcXR9euXb0SVHPk5+fz9NNP0717d44cOdJmr2u6xOrE6QTznMKCrQzsGcX6vCLWZhcocRIREdPVjIZYXdWX86wH3QUilDiJSDvjceI0YsQIX8ThsUceeYTTTz8du93OF198YXY4badmPaeclVBRAiHhDQ5Jjbe5E6fcQs5P6dXGAYqIiNRnDw8hsUs4GQXJnGddoXlOItIueVzJYceOHSxfvrzRfcuXL2fnzp2tjalJH330EcuXL+fRRx/1+Wv5nZgkiI4HZyVkL230kGOV9QraLi4REZGTSI23k+lSgQgRab887nF66qmnSExMbLTn6dtvv2XHjh28+OKLXgmuMQcPHuSJJ57gj3/8Iz179mzVtRwOR6vOa+n5rWUkjsWy9h2c2xfhSjyzwf6hvaIAd4GIqqoqrxeIMLv9ZlP71f66vwNNa9sfqO+buEdD/COzL04MLIXZUJwPUT3MDktEpNk8TpyysrK44oorGt03fPhwPvnkk1YHdTKPPfYYSUlJXHPNNa2+VlZWlqnnt1QXS28SgZINX7C584UN9lc5XYRYoLisis9/WEVslMf/zM1iVvv9hdqv9geyQG+/eC49wc5ROrGDeJLJhrzVMPB8s8MSEWk2jz9RFxcXEx7ecF4NQFhYGIWFvlt49YsvvuCbb75h/vz5XulFSUlJwWq1enyew+EgKyurxee3WmIXyHiGiILNpA9OhtCoBocMWb6ENdmFVEXHkp4W69WXN739JlP71X61v+XtrzlfAs+QWBtWi8Gqqr4kB2W75+oqcRKRdsTjxKlHjx6sXbuWMWMaVsNZu3Yt3bp180pgxzt69CiPP/441113Hd27d6eoqAiAyspKAIqKiggKCjphUtcYq9Xaqg8+rT2/xbokgr0PRsEurLkroP85DQ5JjbezJruQdXnFXHqqb2I0rf1+Qu1X+9X+wG2/eK5TiJX+3SPJ2N+PK/le85xEpN3xuDjEpEmTmDNnDkuX1i9MsGzZMl566SXOOafhh3hvOHz4MAcOHOCVV15h+PDhtT+ffvopJSUlDB8+nHvuuccnr+2Xaqrr7VjU6G4ViBAREX+TnmAn01ldICJvNTid5gYkIuIBj3uc7rzzTn744QduuukmEhMT6dmzJ3v37mXnzp3069eP6dOn+yJOunXr1ugaUnPmzGHFihW89NJLxMTE+OS1/VLieFjz5gnXc0pLcK+ZsS63CIfThdXi3QIRIiIinkqNt/P+ingqCCGkrBAObYOu/c0OS0SkWTxOnKKionj33Xd57bXXWLx4MXl5ecTExDB9+nRuuOEGIiIifBEnoaGhjBw5ssH2efPmYbVaG93XodX0OO3JhLJCCLPV3901kogQK0crHGzdd4SBPRvOgxIREWlLaQk2qghiHUmcymb3cD0lTiLSTrSo3FpERAR33nknd955p7fjkeaKjoXOye5v63b91GCCrdViMDTOxrIdh1ibU6DESURETDegRxShQRZWV/Xl1KDN7gIRaVebHZaISLN4PMepRnFxMYsXL+bjjz/2aSW9pjz11FOsWbPGtNc3Ve08p8aH66XGu3uh1uaY9+8jIiJSI9hqYUhsNBnOfu4NKhAhIu1IixKnWbNmMW7cOG655Rbuu+8+cnJyALjhhhuYM2eOVwOUk0isTpx2qkCEiIi0D2kJdjJc1QUi9mZBVbm5AYmINJPHidN//vMfZs2axdSpU5k9ezYul6t234QJE/juu++8GZ+cTE3itHcdlBxqsLumx2njnmIqqlS5SEREzJcWbyfH1Y1CIxqcle7kSUSkHWhR4nTjjTfy0EMPMXbs2Hr7+vTpw65du7wWnDQhqgd0HQi4YNePDXb37hyOPTyYCoeTzXuL2z4+ERGR47i/1DNY7ajuddJwPRFpJzxOnLKzsxk3blyj+yIiImoXppU2cpJ5ToZhkBJXPc8pt6ANgxIREWlcYpcIosOCWKPESUTaGY8Tp6ioKA4cONDovtzcXLp06dLqoMQDtfOcmigQka0CESIiYj6LxSA13k5mzTynnJXmBiQi0kweJ06jR4/mX//6FyUlJbXbDMOgqqqKt99+u8HwPfGxmsRp3wY42jChrS0QkavESURE/ENago0MZ3XidGhbo/N0RUT8jceJ0+9+9zvy8vKYMmUKTz31FIZh8Oabb3LFFVewa9cufvvb3/oiTjmRiC7QfYj7cSO9TjU9TlvyiymtcLRlZCIiIo1KjbdTSCS5ll7uDXmrzQ1IRKQZPE6c+vTpw9tvv03fvn15++23cblcfPTRR8TExPDWW28RGxvrizjlZE4yz6lndBjdokJxOF1s2KNeJxERMV9a9WiIFZV93RtylTiJiP8LaslJ/fr14+WXX6aiooLDhw9js9kICwvzdmzSXInjYNmLjfY4GYZBapyNhZv2sTankNP6dDYhQBERkWN62sLoER1KxtFkLrH+qAIRItIutGgB3BohISH06NFDSZPZEs8ADDiwBYr2NNh9bCFc9TiJiIh/SI23k+msUyCizrqQIiL+qFk9TvPnz/foopdcckkLQpEW6xQDPVNg71rY+QOkXlFvd2pCdWW9nAITghMREWkoLd7GjA19qCKIoJIDULAbYvqYHZaIyAk1K3G6//77m31BwzCUOJkhaXx14rSoYeJUvZbT9gNHKS6rJCos2IwIRUREaqUl2CknhJ8tiQx2boXclUqcRMSvNStxWrhwoa/jkNZKHAdLZjZaIKJLZChx9k7kFpSyLreI0claa0tERMyVGmcHYHlFEoODtroLRAy93NygREROolmJU1xcnK/jkNbqMwYMKxzeAYU5YIuvtzs13kZuQSlrcwqUOImIiOls4cEkdY0g81Ay8JUKRIiI32txcYgjR47www8/8Omnn/Ljjz9y5MgRb8YlngqLhth09+NGep1UIEJERPxNaryNTFd1gYi8DHBUmhqPiMjJtKgc+csvv8zMmTMpKyvD5XJhGAZhYWH87ne/46abbvJ2jNJciePc39jtXAzpv6y3q2Yh3LW5BSYEJiIi0lBqvJ2PM3pRYokgvOoo7NsIvVLNDktEpFEeJ07z58/nr3/9K+PHj+fSSy+le/fu7Nu3j/nz5/PMM88QExOj4hBmSRoHPz7baI/T0OoCEdmHSjl0tILOESFtHJyIiEh96Qk2XFjIciUzkrXuL/+UOImIn/J4qN5rr73GL37xC+bMmcP555/Paaedxvnnn8/s2bOZMmUK//73v30RpzRHwiiwBEHhbji8s94uW6dg+naNACArV8P1RETEfKf0smG1GKyoTHJvyF1pbkAiIifhceK0fft2Lrrookb3XXTRRWzbtq3VQUkLhUZC3Gnux430OqXUDNfLLmjDoERERBrXKcTKgB5RZDj7uTfkrjY3IBGRk/A4cQoLC6OwsPEei8LCQsLCwlodlLRC4jj3750nLhCRqQIRIiLiJ9ITbGQ6qwtE7NsI5cXmBiQicgIeJ06nnXYaM2fOJD8/v972/fv3M2vWLE4//XSvBSctkFSdOO1YDC5XvV01BSKyVCBCRET8RGq8nf3Y2W/tDrjc1fVERPyQx8Uh7r77bq6++momT57M6NGj6datG/v372fp0qUEBQUxc+ZMX8QpzZUwEqwhUJwHh7ZDl+TaXUNio7EYkF9UTn5RGT2i1TsoIiLmSqseDbGmqi+TjX3uAhE1XwKKiPgRj3uc+vfvz/vvv8/EiRPJysriww8/JCsri4kTJzJ37lz69evniziluYI7Qfxw9+Mdi+rtCg8JYkCPKEDrOYmIeMOSJUt44IEHOO+880hPT2fcuHHccccdrFu3zuzQ2o0BPSIJC7awskoFIkTEv7VoHaekpCT+/ve/ezsW8ZbEcbDrR/c8p9Prr6uVEmdj095i1uYUcM4pPUwKUESkY3j77bcpKCjg+uuvp1+/fhw6dIhXX32Vq666in/961+MHj3a7BD9XpDVwpBYGxm7VSBCRPxbixIn8XNJ4+D7p47NczKM2l2pCXbmrspRj5OIiBc88sgjdOnSpd62cePGMXnyZGbPnq3EqZnS4u28sysJJxYsRblQtAeie5kdlohIPS1KnDZs2MAnn3xCXl4e5eXl9fYZhsELL7zgleCkheKHQ1AYHN0HB7ZAt4G1u1KrF8Jdm1OAy+XCqJNUiYiIZ45PmgAiIiJITk5mz549JkTUPqUl2HiFMHZZ+5Dk2OGe5xT9C7PDEhGpx+PEaf78+TzwwANYLBY6d+5McHBwvf36IO4HgkIhYYR7jtOORfUSp0G9ogi2GhwuqSTncCkJncNNDFREpOMpLi5mw4YNjBo1yuNzHQ5Hi16z5ryWnm+2Ib3c829XVCaRZNmBM2clrgHnN/v89t7+1lL71f66vwNRa9+D5p7nceL0wgsvcOaZZ/L0009js9k8DkzaSOJ4d9K0czGMuKV2c2iQlUE9o8nKLWRtTqESJxERL3vssccoLS3l9ttv9/jcrKysVr12a883i8vlIiLYYLWjL1davuHI5u/4ufOFHl+nvbbfW9R+tT/Q+fo98Dhx2rdvH4888oiSJn+XNA6+BXb+AE4nWI4VUEyNt1UnTgVMSdUYchERb3n22Wf55JNPePjhhxk6dKjH56ekpGC1Wj0+z+FwkJWV1eLz/cGwjBVkbHMXiIgq+pn0tFQwmlf8tyO0vzXUfrU/kNsPrX8Pas5viseJ0+DBgxssfit+KPZUCA6HkoOwfyP0GFK7Ky3ezn+W7VaBCBERL5o5cyYvvPACd911F9dee22LrmG1Wlv1wae155spPSGGF7bGUWGEEVJxBOvh7fWGmjdHe26/N6j9an8gtx98/x54vI7Tvffey5w5c9i0aZMv4hFvCQqB3tXj63csrrcrJd7dW7gutxCn09XWkYmIdDgzZ85kxowZTJ8+vUVD9MQ9GsKBlc2W6oXbc7Sek4j4F497nNLT05k8eTKXXnop3bp1azBkzzAMPv74Y68FKK2QOA62feOe5zTq2I28f3f3YoPF5VXsOHiU5G6RJgYpItK+zZo1ixkzZnDHHXcwbdo0s8Npt9IS7AAsKU8kJWi9u7LesF+ZG5SISB0eJ05z5sxh9uzZdO7cmdjY2AZV9cSPJI13/z5unlPNYoOrdh1mbU6BEicRkRZ65ZVXeO655xg3bhxnnXUWGRkZ9fanp6ebEld71CM6jJ7RYWQcqe5xylWPk4j4F48Tp9dff53LL7+cxx9/PODHUfq9XukQEgVlBZCfBb3SanelxrsTp8zsQi4dFm9aiCIi7dm3334LwOLFi1m8eHGD/Zs3b27rkNq11HgbGRvcBSLIXw+VpRDcydygRESqeZw4HT16lF/84hdKmtoDaxD0GQ0/f+me53Rc4gSQlasCESIiLfXGG2+YHUKHkpZg58sNXSiyxhDtOAx7s9zrEoqI+AGPi0OceuqpbNu2zRexiC8kjnP/3ln/m9DUeDsA6/MKqXI42zgoERGRhtLi7YDBWqp7nVQgQkT8iMeJ04MPPsg777zD119/TUVFhS9iEm9Kqk6cdv0Ejqpjm7tEEBUaRFmlk5/3HTEpOBERkWNqqr4uKUtyb8hdZWI0IiL1eTxU7/LLL6eqqorp06djGAZhYWH19huGwapV+kPnN3qmQpgNygphbybEnQaAxWIwNM7Gku0HWZtTwOBe0SYHKiIigc7WKZikrhFkHlKBCBHxPx4nTueeey6GYfgiFvEFixX6nAGbP3PPc6pOnABSE2oSp0KuGm5ijCIiItXS4m18c6Cv+8nhnXD0IER0MTUmERHwMHFyOBzcdtttdO7cucH6TeLHEse5E6edi2HsH2o3p8bZAVibowIRIiLiH1Lj7czPiGBPUAK9qrIhbzX0P8fssEREPJvj5HK5mDJlSoN1KsTP1c5zWgKOytrNNZX1Nu0torzKYUZkIiIi9dQshLvaUd3rpAIRIuInPEqcgoKC6Nq1Ky6Xy1fxiC90HwKdOkPlUchbU7s5PqYTMeHBVDpcbNpTbGKAIiIibkNiowmyGCytUIEIEfEvHlfVmzJlCvPnz/dBKOIzFgsknuF+vGNR7WbDMGrLkq/NKWj7uERERI4TFmxlQI8oMp01BSJWgb6wFRE/4HFxiEGDBvHZZ59x/fXXM3nyZLp169agWMTkyZO9FqB4SeJ42PiJe57T+HtqN6fF2/h+y37NcxIREb+RlmDngz29qTKCCSo9BId3QOe+ZoclIgHO48TpvvvuAyA/P5/ly5c32G8YBhs3bmx9ZOJdNfOcdi+DqnIICgUgpbbHSYmTiIj4h7R4G28vD2ZHUDL9KzdB7molTiJiOo8Tp9dff90XcYivdRsEEd3g6H73sIc+Y4BjBSJ+3ldMSUUV4SEe/ychIiLiVTXDyJdXJNLf2OQuEJEy1dygRCTgefwpecSIEb6IQ3zNMCBxLKyf517PqTpx6hEdRo/oUPKLylmfV8TwxM4mByoiIoFuQI9IwoItLK/sy69CUIEIEfELHheHqFFcXMzixYv5+OOPKSzUMK92IbF6uN7OxfU213yzl5ld0LbxiIiINCLIamForI1MV3WBiD2Z9ZbTEBExQ4sSp1mzZjFu3DhuueUW7rvvPnJycgC44YYbmDNnjlcDFC9KGu/+nb0cKstqN6dVD9fLylUCLCIi/iEtwc5OV09KrFHgKIf8dWaHJCIBzuPE6T//+Q+zZs1i6tSpzJ49u96aThMmTOC7777zZnziTV36QWRP9w0o51hhDxWIEBERf+Oeg2uwyTLAvUHD9UTEZC1KnG688UYeeughxo4dW29fnz592LVrl9eCEy8zjGPV9XYcG66XGufucdpx4CiFpRoKISIi5kur/lLvp7I+7g05SpxExFweJ07Z2dmMGzeu0X0REREUFRW1OijxoUbmOcVEhJDQuRMA6zRcT0RE/ECfLuHYOgWz2lFdhlw9TiJiMo8Tp6ioKA4cONDovtzcXLp06dLqoMSHanqcclZCRUnt5toCETkFbR+TiIjIcQzDIDXeRqazukDEgS1Qpi/3RMQ8HidOo0eP5l//+hclJcc+dBuGQVVVFW+//XaD4XviZ2KSIDoenJWQvbR2c81wvSzNcxIRET+RFm/nIDYOBfcEXJC3xuyQRCSAeZw4/e53vyMvL48pU6bw1FNPYRgGb775JldccQW7du3it7/9rS/iZMmSJTzwwAOcd955pKenM27cOO644w7WrVOVHY+caJ6TCkSIiIifSUuwA7CW/u4NGq4nIibyOHHq06cPb7/9Nn379uXtt9/G5XLx0UcfERMTw1tvvUVsbKwv4uTtt98mNzeX66+/njlz5vDggw9y6NAhrrrqKpYsWeKT1+ywGpnnNDQuGsOA3IJSDhwpNykwERGRY2qWy/ixtLd7Q+5qE6MRkUAX1JKT+vXrx8svv0xFRQWHDx/GZrMRFhbm7djqeeSRRxrMnxo3bhyTJ09m9uzZjB492qev36HU9DjlrobyYgiNIiosmL5dI9i2/yhZOYVMGNTd3BhFRCTgdY8Oo5ctjDVFye5PLDkrweVyj54QEWljHvc4PfDAA2RnZwMQEhJCjx49apOm3NxcHnjgAe9GWK2xohMREREkJyezZ88en7xmh2XvDfY+4HLA7mPznNI0XE9ERPxMaryNda4knIYVjuyFojyzQxKRAOVxj9O8efP45S9/SUJCQoN9hw8fZv78+Tz55JNeCa4pxcXFbNiwgVGjRrXofIfD0arzWnq+PzASx2LJ2IVz+/e4+p4NwJDYKD5cA5nZh0/ato7Q/tZQ+9X+ur8DTWvbH6jvm7RcarydL9bnkxuSREL5VshdCbY4s8MSkQDUoqF6J1JYWEhISIg3L3lSjz32GKWlpdx+++0tOj8rK6tVr9/a883U2ehNElC64Us2db0UgE6lFQCs3nmQNWvWYDQxFKI9t98b1H61P5AFevul7aRXF4hY5ehLAlvdBSJOudjcoEQkIDUrcVqxYgXLli2rfT537lwWLVpU75jy8nIWLlxIcnKydyM8gWeffZZPPvmEhx9+mKFDh7boGikpKVitVo/PczgcZGVltfh8v9C3O6x5kvCin0kf1BfCohlY4eDh776moNxJz76D6WVrfN5ah2h/K6j9ar/a3/L215wv0lxD42oKRCRySTAqECEipmlW4rRs2TJmzpwJuNdsmjt3bqPHxcbG8uc//9l70Z3AzJkzeeGFF7jrrru49tprW3wdq9Xaqg8+rT3fVDEJ0KUfxsGtWHOWwsDziexkZUCPKDbuKWJdXjHxnSNOeol23X4vUPvVfrU/cNsvbcfWyV28KPNg9RezeWvA6QCL/vsTkbbVrMTpN7/5Db/61a9wuVyMGTOGl19+mVNOOaXeMSEhIUREnPyDtjfMnDmTGTNmMH369BYP0ZNqiePg4Fb3ek4DzwfcpV837ikiK7eA84b2NDlAERER93pOHx2Io8IaTkjFEdi/GXqc0vSJIiJe1KyqemFhYcTExNC5c2cWLlzI8OHDiYmJqffTFknTrFmzmDFjBnfccQfTpk3z+et1eDVlyXceG3aZUr1mhirriYiIv0iNt+HEwrbgmoVwV5obkIgEJI+LQ8TFmVPJ5pVXXuG5555j3LhxnHXWWWRkZNTbn56ebkpc7VrNQrh7s6DkEIR3rleS3OVyNVkgQkRExNfSqgtELC9PZDCZ7gIRp15vblAiEnA8TpwqKyt56aWX+PTTT8nLy6O8vLzefsMw2LBhg9cCrPHtt98CsHjxYhYvXtxg/+bNm73+mh1eZHfoNgj2b4KdP8ApFzGgRxQhVguFpZXsPlRCny6+70kUERE5mVN6RRNkMfipPIkbQnAnTiIibczjxOnvf/87r732GuPHj2fSpEltVn78jTfeaJPXCTiJ46oTp8VwykWEBFkYHBtNZnYBmTmFSpxERMR0YcFWBvaMIjOvukBE/gaoKIGQcHMDE5GA4nHi9Pnnn3PnnXdqjlFHkTQOVrzkLhBRLTXORmZ2AVk5BVyUFmticCIiIm5pCXbeyutCcXA3oir3w55M6DPa7LBEJIA0qzhEXYWFhZx++um+iEXM0Ges+/f+jXBkP+CehAuQqQIRIiLiJ9Kq700brTUFIjRcT0TalseJ0/Dhw9m0aZMvYhEzRHSBHtULCO909zrVTMJdn1uIw+kyKTAREZFjUquLF/1U2se9QZX1RKSNeZw4PfTQQ7z//vt8+eWXVFRU+CImaWs11fWqE6fkbpGEh1g5WuFg+/4jJgYmIiLi1r97JJ2CrSyr7OveoB4nEWljHs9xuvjii6mqquL3v/89hmEQFhZWb79hGKxapT9m7UrSOFj2Qu08J6vFYGisjeU7D5GZU0j/HlEmBygiIoEuyGphaFw063Ym4cLAKNjtHmIe2c3s0EQkQHicOJ177rla26ej6TMGMODgz1C0B6J7kRLvTpyycgqYelq82RGKiPitI0eO8Pzzz7Np0yY2bNjA4cOHmTZtGtOnTzc7tA4nNd7Oip2H2R/Wh+5lO929TgPPMzssEQkQHidOTz31lC/iEDN1ioFeqe4KRTt/gNQrVCBCRKSZCgoKeO+99xg0aBCTJk1i7ty5ZofUYdXMwc1y9WMiO5U4iUib8jhxkg4qcVx14rQIUq8grXoS7oY9RVQ6nARbPZ4OJyISEOLi4lixYgWGYXDo0CElTj5UU1lvUUlvJlpRgQgRaVPNSpzWr1/v0UWHDBnSomDEREnjYcnM2nlOfbqEEx0WRFFZFZv3FjM0zmZygCIi/knD19tO787h2MODWVmaDFbcPU4uVX8VkbbRrMTp8ssvb9aNweVyYRgGGzdubHVg0sZ6jwbDCod3QGEOhi2e1Hg7P2w9QFZuoRInERExnWEYpMbb+WlLAg5LCNayQji4DWKSzA5NRAJAsxKnJ5980tdxiNnCoiE23f3t3Y7FkP5LUuJt/LD1AGtzCvjliN5mRygi0uE5HI5WndfS89uTlNhoFm3ZT3ZofxJL1+PMXoEj2n2PCoT2NyaQ/v0bo/YHdvuh9e9Bc89rVuJ06aWXtigIaWcSx7kTp53uxKlmLHlmtgpEiIi0haysLFPPbw+iKssAWF7eh0TWc2DtF2Q7BwCB0f6TUfvV/kDn6/dAxSHkmKRx8OOztfOcUqoLRGzJL6as0kFYsNW82EREAkBKSgpWq+d/ax0OB1lZWS0+vz2JSy7nqR+/5YfyvlwZDN3Kd2FPSQmY9jcmkP79G6P2B3b7ofXvQc35TVHiJMckjAJLEBTuhsM7ibX3oWtkCAeOVLBhTxGn9o4xO0IRkQ7NarW26oNPa89vD3raw+llC2NNUTIARv46rK4qIDDafzJqv9ofyO0H378HqjEtx4RGQtxp7sc7FtdOwgXI0npOIiLiJ9Li7WS7ulMWbAdHBezzrPqviEhLKHGS+hLHuX/vrB6uF1ezEG6BSQGJiPi/77//ngULFvDtt98CsHXrVhYsWMCCBQsoLS01ObqOJzXBBhhsCx4IgJG7ytyARCQgaKie1Jc0Dhb/zT3PyeUiLcGdOKnHSUTkxB577DFyc3Nrn9ckTQALFy4kPj7erNA6pPTq0RBLK5IYwjLIXQ2Jw80NSkQ6PCVOUl/CSLCGQHEeHNpOSpz7Zr91/xGOlFcRGar/ZEREjvfNN9+YHUJAGVpd9XVxSW9+HVLd45Robkwi0vFpqJ7UF9wJ4qu/tduxiG5RocTawnC5YF2uep1ERMR80WHB9O0WQaazLwDGoa1YK4pNjkpEOjolTtLQ8fOc4jVcT0RE/Et6vJ3DRFMQ5h4ZEV642eSIRKSjU+IkDSVVJ07V85xqKuupQISIiPiL1Oov9TZZ+gMQcXijmeGISABQ4iQNxQ+HoDA4ug8ObCGtpiS5huqJiIifSE2wA/BDaSIAEQWbzAtGRAKCEidpKCgUEka4H+9YVFuSfNfBEgpKKkwMTERExO2UXtEEWQx+KusDQMThTeBymRyViHRkSpykcYnj3b93LsYWHkxil3BAvU4iIuIfwoKtDOoVxXpXIk4jiOCKw1CYY3ZYItKBKXGSxtXMc9r5AzidpFQP11urAhEiIuIn0uLtlBNCfqd+AFgW3Aulh02OSkQ6KiVO0rjYUyE4HEoOwv6NpFVPws3MLjA3LhERkWo1c3DfCL0KpyUY4+cvYPZ4yF1lbmAi0iEpcZLGBYVA71HuxzsW185z0lA9ERHxF6kJ7nvTvw+ewoYznsMVkwgFu+Hlc2HZHM15EhGvUuIkJ1ZnPaehcTYsBuwpLGN/cbm5cYmIiAD9u0cRHmLlaIWDrZZknL/5DgZfCM5K+Px/YO6NUFZkdpgi0kEocZITS6opEPEDEcEW+nWPBNTrJCIi/sFqMRga6+51+vlQBYRFw5VvwHlPgSUINsyHOWfC3ixzAxWRDkGJk5xYr3QIiYKyAsjPIiXODqhAhIiI+I+ahXC3HapybzAMGHUH3LQAbAlwaDu8NBFWvaaheyLSKkqc5MSsQdBntPvxjsWkVY8lX6seJxER8RNp1Qvhbj1UWX9HwnC4bRH0Pxcc5fDJ72HebVB+pO2DFJEOQYmTnFydeU7HCkQU4dK3diIi4gdqKuvtLKikvMpZf2d4Z/jlOzDpMTCssPZdeOls2Lep7QMVkXZPiZOcXM16Trt+YnCPcIIsBoeOVrC/xHny80RERNpAQudOxIQHU+WCrzfmNzzAYoGxf4AbP4WoXnBgM7w0ATLfafNYRaR9U+IkJ9czFcJsUF5E2IF1DOoVBcC2w5VNnCgiIuJ7hmEwJrkLAL97J5NfzlnKsu0HGx7YZwzcthj6ngWVJe5hex9Ph8rStg1YRNotJU5ychYr9DnD/XjH4toCER9vPsr3W/bjcGrInoiImOuxi07h3OROBFsNlmw/yFVzljaeQEV2g2s/hLP+BBiw+nX41yQ4sNWUuEWkfVHiJE2rM89p4qDuAGw5VMnN/17F+Ge+5Z9f/0xegb6xExERc8SEh3DrqTa+uXs8147qffIEymKFs+6D6+dDRDfIXwdzzoJ1H5oVvoi0E0qcpGm185yWMGlgZz6bfgYX9AsnOiyI3IJS/vH1FsY+/Q03vbqcBev2UunQ/CcREWl7sfZO/L9LUvjufyY0nUD1Pcs9dK/PGVBRDO/fBJ/9D1RpkXcRaZwSJ2la9yHQqTNUHoW8NQzsGcWvh0Wz5P4JPHtVOiOTOuN0wbeb93P7m6sY89Q3PL1gEzsPHDU7chERCUBxzU2gonvB9R/D2Lvdz5fPgVfOhcM7TYtdRPyXEidpmsUCiTXznBbVbg4LtnLJsDjevW003/zxTG47sy9dI0PYX1zOC99t46y/fccv5yzlo4xcyiodJgUvIiKBqlkJlDUIJj0C18yFTjGQtwZmj4dN/zU7fBHxM0qcpHkSx7t/71zc6O6+3SJ54PzB/HT/RF689lTOHNANw4Al2w/y+3cyGPXkQh77ZD2b9xa3YdAiIiLNTKAGTHYP3YsfDmWF8M418MWD4FAVWRFxU+IkzVMzz2n3spOO/w4JsnDe0F78++YR/HDf2fx+Yn9ibWEUlFTy6o87OffZRVz6/I+8u2I3R8ur2ih4ERGRZiRQh8Lhxs9g9DT3CUtmwqsXQGGOuYGLiF9Q4iTN022Qu/pQVSnkrW7WKXH2Ttx1zgAW33c2r940nHOH9CDIYrBmdwH3fZDFiL98zQMfZpGZXYDLpbLmIiLSNk6aQL2ymmX974ar/gOhNshZDi+Og5+/NjtsETGZEidpHsOoLUtunGC43olYLQYTBnZn9nWn89MDZ3PfeYNI7BLO0QoHby/fzcWzfuSC537g3z/tpLBEQyJERKRtnDSBWtyVjAs+gl7pUHoI/nM5LPxfcGi0hEigUuIkzZdUkzj90OJLdI8K446zkvn2nrN4+5ZRXJweS0iQhY17injk4/WMeOJr7n43g2XbD6oXSkRE2sSJEqhL3s7jOv6XvQOvcx+4+G/wxiVQvNfUeEXEHEqcpPlqCkTkrMBwVLTqUoZhMDq5C/+8ehjL/zSRRy48hYE9oiivcvLhmlyumrOUiX//njmLtnHgiNbUEBER32ssgVq8o5hRmefzz5gHcARFuIskvTgOtn9vdrgi0saUOEnzdUmGqF4YjnIiDq/32mXt4SHcdEYSC/4wjnm/HcNVpycQHmJl+/6jPPHZJkY/uZDf/mcV32/Zj9OpXigREfGtxhKof+xJYdLRx9kdlARH98HrF8N3T4NTy22IBAolTtJ8deY5xW553b2mk9PpxcsbDOsdw9NTU1n+4CSevCyFtHgblQ4Xn2Xt5YZXljPumW95buHP7Cks9drrioiINOb4BCrHEss5Rx7hnaqzABd89wS8eTkc2W92qCLSBpQ4iWdOuQiAqIOZWN+8BGacCov/DsX5Xn2ZyNAgfjmiNx9NG8tnvxvHDaP7EB0WRG5BKX//agtnPPUNN7+2gi/W76XS4b3kTURE5Hh1E6grRvXjYddt3F1xOyWuUNj+LRWzzoBdP5kdpoj4mBIn8czgC3H85lv297kQV0gkHN4BCx+Dvw+Gd34FW770+rCFU2KjeezioSx/cBL/uCqNEUmdcbrgm037uO2NVYx56hueXrCJXQePevV1RURE6qqbQIWPuJbLq/6Xn51xhJTm43h1Crs/fsKrIzFExL8EmR2AtEO90tidehedr34e66aPYdW/3etcbPrU/RMdD8Oudf/YE7z2smHBVi4dFs+lw+LZvv8I767I5v1VOewvLueF77bxwnfbGJPchauGJ3DukJ6EBVu99toiIiI1ahKo3LP68fLCdNIyH+Niy4/0Xv00qzd8h/PiFzh9cLLZYYqIl6nHSVouJMKdHP3mK/jtUhj1W+gUA0U58P1T8GwKvDkVNnwMDu+uz9S3WyQPXDCYJQ9M5IVfncqZA7phGPDTtoP8/p0MRj25kMc+Wc+W/GKvvq6IiEiNOHsn/nz5SE6/633mJ9xLuSuYU8uW0fOdyTw86zWWbT9odogi4kXqcRLv6D4YznsSJj7i7nVa9Zq7ZOvWr9w/Ed0h/Ro49Xp3dT4vCQmycH5KL85P6UXO4RLeW5nD3JXZ7Cks49Ufd/Lqjzs5tbedq4f35hdpvQgP0X/yIiLiXXEx4cT9+kH2bZmM5f0bia/I4eF9d/PEy6v4Z59r+P2kAYzs28XsMEWkldTjJN4VHAYpU+HGT2H6ahh7lztpOroPfnzWXUzitV/A2rlQWebVl46PCefucwbww31n8+qNwzl3SA+sFoPVuwu494O1jPjLQv40L4u1OQVaXFdERLyu+4DhdL37J0r7/4IQw8Gjwa9zbfaf+c2cb7jmpaXqgRJp5/T1u/hOl2SY9ChMeBC2LHDPhdr6tbsnaudi97C+1KvhtBvcPVZeYrUYTBjUnQmDurOvuIz3V+Xw7opsdh0s4a1lu3lr2W5O6RXN1SMSuDg9DlunYK+9toiIBLgwG52ueROWz8H1xYNcwHKGWHbx2+2/56ptBxmT3IXfT+yvHiiRdqhd9TgdPXqUv/zlL4wdO5aUlBQuvvhi/vvf/5odljTFGgyDL4Rr34c/ZMGZ97sLSJQehmUvwPOj4F+TYPUbUOHdynjdo8L47Vn9+PaPZ/HWLSO5OD2WkCALG/YU8eeP1jPyia+5+70Mlu84pF4oERHxDsOAkbdh3PwF2HrTx8hnftijXBe8kJ+2HeCqOUvVAyXSDrWrHqfp06eTlZXFH//4RxITE/n000+5++67cTqdXHjhhWaHJ81hT4AJD8CZ98K2b9xzobYsgJwV7p8FD7iH+p12A8QO89rLWiwGY5K7Mia5K48erWB+Ri7vLM9mc34xH67O5cPVufTtFsHVwxO4/NR4ukSGeu21RUQkQMWfBrd9D/N/S/CWz/lf68tM7bqb6/ddw0/bDvKTeqBE2pV2kzh9//33/Pjjj/zf//0fv/jFLwAYNWoUeXl5PPPMM1xwwQVYrSo/3W5YrND/HPdPcT5kvgWrX4dD22HVq+6fnqnuYhKpV0KYzWsvHRMRwk1nJHHjmETWZBfw7vJsPlmbx/b9R3nis0389YvNTD6lJ1cNT2Bsv65YLIbXXltEOp6jR4/y7LPP8vnnn1NYWEjfvn259dZbmTJlitmhiT8I7wy/fBt+mgFfP0ra4a9Y2X0nL3R/mBnrgpVAibQj7Wao3ldffUV4eDjnnXdeve2XXXYZ+/btIzMz06TIpNWieriLSExbBTd8AkOngjUE9q6Fz+6Bvw2EeXfAriXgxeF0hmFwau8Ynp6ayrI/TeTJy1JIi7dR6XDx36w9XP/KcsY98y3PLfyZPYWlXntdEelYpk+fzvz585k2bRovvfQSKSkp3H333XzyySdmhyb+wjDgjN/BTZ9BVCzBh3/md9tuY/mUfVw7qjfBVoOfth3UED4RP9duepx+/vlnkpOTCQqqH/LAgQNr95966qlmhCbeYrFA0nj3T8khWPuuu6DE/o3uHqnMt6DrQHcvVNovIcJ738pFhQXzyxG9+eWI3mzIK+LdFbuZtyaX3IJS/v7VFp79egsTBnbnquEJnNlf3waKiJtGQ4hHeo+C2xfDh7fCtoXEfPl7/t+wa/ntHx7n+R/zeHdFtnqgRPxYu0mcCgoKiI+Pb7DdZrPV7veUw+FoUSw157X0/PauTdofaoPht8Lpt0DuCozVr2NsmI9xYDN8+SCuhY/hGjgF16nXQ+I4MLzXeTqwRwR//sVg7j13AAvW5/PuimyW7zzMwk37WLhpH90iQ+gc6iJy2VKsFgOLxcBquH9bDGofW6ufW4yax9X7qx/XbrNUn1NznkH1tYw616L6/MavW7vtRLEYdfZbDAzD/TrH4jp2jWNxNR4LLieHyxzkF5YQFBSEgfvLVIth1D4G97UMA4zqx9TZX/dYw2hfQyED9f9/l8uFy9X69ne09+1koyH++Mc/kpmZqS/1pL6IrvCr9+GH/4Nvn4A1bxKbu4b/d+W/ueOsCbzw3VYlUCJ+qt0kTnDyD1gt+fCVlZXVmnBafX5713btD4Hev8HS65d0zv2Grrv/S0ThFowN82DDPMrDe3Gg9wUcSDiPqjDv3lgSgfuGh5I7qCsLd5Ty7c5S9h+pYP8R4GCBV1+r3flkv9cuZVT/YFSPHzaObTOqk6zG99WcZ5xkH1iqdzS2r+5r1N1X8yelZoqbgVG7zwWw8LvakaMu9xZcrup9dR673AfUeeyqt73mV8Pj3NdtfPuJzned5FrHP3Y14/WPtaeuSwZGcB2B/fevhrdHQ+gLvZZpl+0/426IG47lw1sw9q3HNecsek35B49deDm3jUvixe+3896qnNoEanTfzvzu7H6MSOrc4FLtsv1epPYHdvuh7b7UazeJk91ub7RXqbCwEDjW8+SJlJSUFg2hcDgcZGVltfj89s7U9g8/A3gYx561GGtex1g3l9CSPcRtepnYza9B/3Nxnno9JE90F6DwknRgyjioqHKyfMdBNmzZRnzv3oAFh8uFy+XC4XThcLlwOsHpcuGsee6i9rHDWf2tvdOFs/q500Xt42PXos757mseO//Y6ziqX8dZfU7dWGq2OV11Xqv6ueME8Tmr4zlRfM46bfBm8fa6H9adNRvq7W3OFaStlFW5Wv33s6Pw9mgIfaHXOu2v/VEEjXmevqv/H1EHMzDm3cK+1Z+wf8hvuaxPCOO6dWXepiMs3F7Kku2HWLJ9OSndQ7jilEiGdAtpcLX2137vUvsDu/3g+/eg3SROAwYM4NNPP6WqqqreN3tbtmwBoH///h5f02q1tuqDf2vPb+9MbX/8MPfPuX+BDfNh1b8xspfCls+wbnFPvmXYtXDqdWDv7bWX7WS1MrZ/NyKP5pKeEhuQ//4Oh4OMjAzS09OxWCzHelaqkzAXrtqeGKfrWJJV87imJ8Xpqh7+Vb2vtoejOlGruabLVdN74zpuH1B7neprOpvx+rXXOfb6ruMe13v94+KocjjYuXMHfZP6YrVaanumjLq9WnWHItbpqeK454Zh1Dn/2DBH4yTX4fjrNtIj5tF1qp80N15cTnZsXh/wf//q8uZoCH2h1zLtvv0jzsT5/VMYP/yd7rs+plv5LpxTX4WYRM4ZA3kFpbU9UFn7Ksjad6heD1S7b38rqf0dp/0ul4visioKSispKKmksLSSwyUVFNZ77v5dUFpJYYn7t9Pp4s7TIrlh8uk+/VKv3SROkyZN4r333uPLL7/kggsuqN0+b948unfvTlpamonRiWlCwiH9GvfPvk3ukuaZb0NxHix6Bhb9FZLPdheUGHgBBDX8hk5aru4H/+qP2h2ew+Ego2IP6YO7t/sbVEsE8lCQxnh7NIS+0Guddtt+qxUm/RkSx8CHt2LszcT60gS4ZBYMvpCELpH85bJUfnt2/9o5UDU9UGOSuzB9QjIhtOP2e4na7z/tdzpdFJdXUVBSQUF1clP7uKSSgtIKCkvcSVHdBKiwtBKH0/NRJBYDSqucPn8P2k3idOaZZ3LGGWfw6KOPcuTIEXr37s1///tfFi9ezF//+le/+Q9FTNR9EJz3BEx6BDZ96q7It+N72LbQ/RPRzV2N79QboGs/s6MVkQ7AF6MhJID1mwS3LYb3b4bspfDutTDqTpj0KASFEGfvxP+7JIU7zurXoIjEwC7B9NuUQWiwldAgCyFWCyFBFkKDrIQEuR/XbHNvr//8+H2159XZHlRdXEgCh9NZ0wNUweESd/JT0/tzuDoRKqxOig7XeVxYWkkL8p9anYKt2MODsYeHYO8UXP04GFunEGLqPLaHBxMTHkJMeBDZP2/wXsNPoN0kTgAzZszgH//4B8899xwFBQX07duXv//971pkUOoLCoWhl7t/Dm2H1W9Axn/gSD789Jz7p89YOO0GGHwhBHcyO2IRaac0GkK8zhYHN34KCx9336+WzoKc5TD1VbAnADSaQG0+WMnmg3t9GpphUCchOy7xOkGyFnqC5KzmeWi959b6zxs9pv5jJXLN43C6KC6rrO39OVzi7vEpqO7xKTjB48LSylYtoRkeYsXeKRhbeMOEx97JnfTYqh/bq4+J7hRMWPBxHSJOJ5QXuperKTkEJQeh9BDsPQglh3A6KtkbMbZ1b1IztKvEKSIigoceeoiHHnrI7FCkvejc190DNeFB+PkLdy/U1q9g1w/unzA7pF7lTqJ6DDE7WhFpZzQaQnzCGgyT/xd6j4b5t0POCpg9Di6dDQPOrT2sJoG6bVwSb32zhq49Y6lyugsZVTiclFc5qag69rvC4aSiylHncf395cdtr3A46w2bcrmgvPq4YjPel0a4EykDi8tJyOff1C6xUbv0hUHtciD1n9d5bKnZd+w4S/UcUEtjxxuNHG+pOb76XE52TDOvadS/psXS+PG4nOTkHOX7gz9TVOao7QlyD4HzTgIUEWLFHh6Crbr3p37CU7dn6FhSZAsPJjSokb+BTgeUFrgTn5JcdyJUcBD2VCdENclRaZ3npYfA5TxhfBag8+By4JyWN7IZ2lXiJNJi1iAYNMX9U5gLa96ENW9AYTYsn+3+iTvdnUANuQxCI82OWMS3HFVQVgClh6tvYIfdP2V1HtfdXr3PUl5MbOJlkD7T3Pj9iEZDiM8MusA9dG/ujZC3Gt66EsbeBRMect/XqsXaOzGpbzjp6YleT9YdTtexBMvhaJBsNUjA6iZeVQ53Ald5bHvDY467hsNJeaWjQQJX87jquPFfFQ4nFTVTLysqvNr29qfpdDYyNKg2+WkwFK6TOxmKOS75sXcKISToBOtlOqqq7xF1kpxDB+s8P3ysd6g2CTpMi6vhhkRCeGfo1BnCu7gfh3fBGdmTA0HD6NWyqzabEicJPLY4OOs+GH8PbP/W3Qu1+TPIXen+WfCAe5jfaTdA7KnUqX4g4l9cLqg4elyy01QiVP28omXfFxtAUKW/fNfsHzQaQnwqpg/cvAC+fNj9Jd8P/4Ddy2DqKxDt64+J7kXRO4VY6RRiBYJ9/npNcThdVNbrTXNQVlFF1voNDBg4CAzjWHVUV82SHMcqv9Ys0VF3n7N6KY/a5UROcHxN9dYTnt/g9erup3bJj5rjayq+nuyYJq/pcuFwOjl8uIDEXt2IiQitHg5XJwGqHh5n6xR84gQIwFFZv6fn4CHIPlid+Byu0xtUJxEqK2z5P2aoDcJj3AlQvUSoYWLkft7ZPR2jES6HA0dGRstjaSYlThK4LFb3RNx+k+DIPsh4y12V79A2WP1v90+PFHdFvtQroZPd7Iilo3JUuW8+TfX6NLbdWdm61w61QScbdIo59hNmr/PcXm+7IzSa3dv20XAJThHxmaBQuOAZ6DMaPpoOu3+CF8fC5S+5K8cGEKvFwGqx1psD43A4KLQFM6hnVEAOjz22TMiQY+2vKq9OcvLg6CHYf4IhcLVJ0CEoL2p5EGH245KcJpKgTjHtstKxEicRgMjuMPYPcMbvYdeP7l6oDR9BfhZ8/j/w1cNwyiXuXqi4EWZHK/7I5YLKEo+HvlFa0LqbFYAluH7ic1yyc8LtYbZ6w32axeEAY3/r4hWRlhlyKfRMhfducN+f3rgMzrwPxv7R7MgE3AUMnJXgqHD33jhqHlfUeVxnm7Oy8e2Opq5R/bj6tSxVFfQ/tA/LSsexJKjiSAsbYbjvETVJTt3enkYToy7u+4mn95J2KjBaKdJchgGJY90/5z8NWXPdSdS+9bD2HVj7DpbO/UgO7oplc2f3HwqLFSxBYFT/tliP23b888aOCcI9O7Xu88a2VZ9X75jjt9Vc13LcMXW31X3tk3Tb+4LTCS6He3Jovd++3O5s5LiWbTcclSTu2YVlk9Gwl8jRyvH1odHu5OZEyc6JEqHgcA0pFQkUXZLhN1/Bgvth1Wvw/VNYdi8hqP/0touhZkVwXO6/l7U/dZ7X7nPV315v3/Hn0Pj2BudQf7ujisgDm2H7Yfff63qJxskSkwpwVp08uXE0tr/O47rJj7Oq7f4N6jCA6EZ3WKuToLq9Pcc/Pz4Jsrk/I0ijlDiJnEh4Zxh5G4y4FXJXuW9Q6z7EOLQVO1sh3+wAvcU4lkidMNk79txiWDiltBTLTyFNJBonSGzaOQvQ5aQHBHvW61P7uAW9PyISmII7wYX/hN5j4NM/YOz4niE5q7GsiWskoXHV/33CpMXV+PGNndPSif0+YgUGAiwxOZAGDLCGVP8EN/I4+LjHJzjWcrJjgnEaVnbl5tN7YBrWyG7HeodCbW3/5WgHp7u0SFMMA+JPd/+c9ySOLV+SvXUDveNjsdRLGKrcjxs8r2p8m8t53DGNbGvWMY76r3OiY07IdezazXk7gE4ALR0F0OQL1O1Bsx7rFWuw3dLM4zw5v+ntTizkHSwmNvkULOGdGyZBIRHq/RGRtpF2FfRKw/Xe9QQd2Az7N5kdURMM999Hw+L+oc7j2u3GSfbV3X7sWi4slFVUEBYehRFUnVhYmkpKgk+erDS4RmPHNJH0tFHPjcvh4JAlg94D0iEA53i1JSVOIp4IjYJTLuFgRSIJ6ent5w9UzTeHjSZcdZ9XnWCbs/a5o6qCbdu2kdx/IFZrcP3kolWJjAnDBlvA5XCQn5FBr/b07y8iHVf3QThv+Y6t379Dv75JWK1BzUo2GiYnxyUvTSYuTV3v+O2Gz75UcjocbMjIID09PSCLQ0jbUeIkEggM41iC0loOB8WFNuiTrsRBRMQfBIVypEsaJKXr77KID/n/17siIiIiIiImU+IkIiIiIiLSBCVOIiIiIiIiTVDiJCIiIiIi0gQlTiIiIiIiIk1Q4iQiIiIiItIEJU4iIiIiIiJNUOIkIiIiIiLSBCVOIiIiIiIiTVDiJCIiIiIi0gQlTiIiIiIiIk1Q4iQiIiIiItIEJU4iIiIiIiJNUOIkIiIiIiLShCCzAzCDy+UCwOFwtOj8mvNaen57p/ar/XV/Bxq1v3Xtrzmv5u+wuOm+1Dpqv9pf93egCfT2Q9vdmwxXAN69KioqyMrKMjsMEZGAlZKSQkhIiNlh+A3dl0REzNfUvSkgEyen00lVVRUWiwXDMMwOR0QkYLhcLpxOJ0FBQVgsGi1eQ/clERHzNPfeFJCJk4iIiIiIiCf0dZ+IiIiIiEgTlDiJiIiIiIg0QYmTiIiIiIhIE5Q4iYiIiIiINEGJk4iIiIiISBOUOImIiIiIiDRBiZOIiIiIiEgTlDgd58MPP2TgwIG1P6eccgpjx47lrrvuYufOnfWOXblyJQ8++CCXXXYZQ4cOZeDAgeTk5JgTuJc0t/0Oh4NXX32VX//614wfP560tDTOP/98/va3v1FUVGReA3zk+Pfl+J9ly5aZHWKLLViwgIEDB/LZZ5812HfRRRcxcOBAFi9e3GDfpEmTuPTSSwH49ttvuffee7nwwgsZMmQIAwcO9Hnc3tLa9h85coQXXniB6667jjPOOINhw4Zx4YUXMmfOHMrLy9uiCa3ijX//f/zjH1xyySWMGDGClJQUJk6cyMMPP0xubq7P4w8Uujfp3tSYjnpv0n1J9yV/vS8FtersDuzJJ5+kb9++lJeXs3r1al588UWWLVvG559/js1mA2Dp0qUsWbKEwYMHExERwfLly02O2nuaan9ZWRkzZszgF7/4BVdccQUxMTFs2LCBF154gW+//ZYPPviAsLAws5vhdTXvy/H69etnQjTeMWLECAzDYOnSpVxwwQW12wsKCtiyZQvh4eEsW7aMcePG1e77/+3de1BU5/3H8TcXEwENiIg4XmogLnLZ4g0WL1Sl3kMK1ltnOkC9ITFQK+oYkrYB67XWSQOUIMEqWsfRKDpirCZoM9ppWAyp1hJRAmiFJIgIoqJcz+8PZs/PDSAosCh8XzM7js954Hyfs2fPZ56zzy7ff/89N2/eZPHixQB89tlnXLp0CTc3N3r16kVOTo7Jx/Gs2jv+b7/9ltTUVAIDA/nVr36FtbU12dnZJCQk8K9//Yvdu3djZmbWFUNrk454/isrK3n99ddxcXHBxsaGb775hg8//JCzZ89y4sQJ+vXrZ/JxdVeSTZJNzelu2SS5JLn0vOaSTJxaMGLECLRaLQA6nY76+nri4+PJyMhg3rx5AKxcuZKIiAgAdu3a1a3CqbXx9+7dmzNnzhideDqdjkGDBrFq1SpOnz5NYGBgV5XfaR4/Lt2Fvb09I0aMaHL+XrhwAUtLS+bNm9fkrmVmZibQ+JwDbNy4EXPzxjewN2zY8EIFVHvHP2TIEM6ePYu1tbW6ffz48VhZWfHHP/6R7Oxsxo0b1/kDeUYd8fy/9957RtsNxyUsLIwzZ84wf/78ThxBzyLZJNnUnO6WTZJLkkvPay7JUr02MlyQysrK1DbDC7In+OH4LSwsmp2t//jHPwYaZ/7ixaHT6SgsLOTWrVtqm16vx9PTk8mTJ5OTk8P9+/fVbVlZWVhYWKgX3hf9tdCe8VtbWxuFk8GL9Fpo7/PfHHt7ewAsLeX+XGeSbJJs6q4klySXnsdcerHPKhMyrA8fPnx41xbSRdo6fsOM/0VdHtCahoYG6urqjB719fVdXVa7+fr6Ahjd3dHr9fj4+DBmzBjMzMzIzs422ubu7k7fvn1NXmtn6Izxv0ivhY4af11dHY8ePeLrr79m8+bNDB8+nOnTp5tmED2UZJNkE3TPbJJcklyC5y+XZOLUAsNF6MGDB5w/f54PP/wQb29v/P39u7o0k3iW8ZeUlLBjxw48PT2ZOnWqCas1nYULF+Lh4WH06A7LI7y9vTE3N1cvUOXl5eTl5eHt7Y2NjQ3u7u7qBfe7776jqKhIfTu8O+jo8efm5pKSksL06dMZOXKkScbQHh0x/tLSUjw8PPDy8mLu3LnU19ezd+9ebGxsTD6e7kyySbKpOd0xmySXJJeex1ySNRQtWLhwodH/XVxcSExM7DHLTp52/BUVFSxfvhxFUfjzn//8wr9F3pJt27bh4uJi1PY8f8CyrWxtbRk5cqS6ZvjChQtYWFgwZswYoPECZrhAGfp0p4DqyPEXFRURHh6Ok5MTGzduNEH17dcR4+/Xrx+HDx+mpqaGgoICUlJSCAkJYd++fTg6OppwNN2bZJNkU3O6YzZJLkkuPY+51D2vIB1g27ZtHD58mNTUVBYtWkR+fj5RUVFdXZbJPM347969y5IlSygpKeGvf/0rQ4cONXG1puPi4oJWqzV6eHp6dnVZHUKn03H9+nVKSkrQ6/V4eHiod2V8fHy4cuUK9+7dQ6/XY2lpydixY7u44o7VEeMvLi4mJCQECwsLUlNTsbOzM/Eonl17x29paYlWq2Xs2LEsWLCA1NRUioqKSE5O7orhdFuSTZJNzemu2SS5JLn0vOWSTJxaYLgI+fr6smHDBhYsWMD58+c5depUV5dmEm0d/927d1m8eDFFRUXs3r37hXj7VzTPcKcmKyuLrKwsvL291W2Gi9GFCxfQ6/VotdputwSrveMvLi4mODgYgL179+Lk5GSiyjtGRz//Tk5OODo6NvkbQ6J9JJskm3oSySXJJXi+ckkmTm20bt06bG1tiYuLo6GhoavLMbnmxm8Ipps3b7Jr1y7c3d27uErRHt7e3lhYWHD69Gny8vLw8fFRt/Xt2xc3NzeOHTtGcXFxt1oOYdCe8X/77bcEBwfT0NBAamoqgwcPNnX57dbRz/+NGzf4/vvv+dGPftSZZfd4kk2STd2Z5JLk0vOWSz1jUXQHsLW1JSwsjO3bt5Oenk5gYCB37txRP7R27do1AM6dO4e9vT329vZGT/CL7ofjnzlzJkuXLuXrr7/mnXfeob6+nosXL6r97e3tGTZsWNcV3Eny8vKa/aaiYcOGqV9z+aLq06cP7u7uZGRkYG5u3uQtb29vb1JTU4Gm64iLi4u5fPkyAP/73/8A1DvAgwcPfiE+pPys4y8rKyMkJITS0lI2bdpEWVmZ0VdDOzk5vRB3+Z51/Lm5uWzZsoWZM2cydOhQzM3NuXbtGnv27MHOzo4lS5aYdBw9jWSTZBN032ySXJJcet5ySSZOTyE4OJj9+/eTmJhIQEAAeXl5rFq1yqhPbGws0Lj2ct++fV1RZqd5fPyjR49WL0ibNm1q0nfu3Lls3brV1CV2uujo6GbbN27cyIIFC0xcTcfT6XRcvnwZNzc3+vTpY7TN29ubPXv20KtXL0aPHm20Ta/XNzk2htfGi3QuPMv4v/nmG27evAk03v3+oYiICCIjIzu38A7yLON3cHDA0dGR3bt3U1paSl1dHU5OTkyZMoXw8HAGDRpk6mH0OJJNkk3dOZsklySXnqdcMlMURXnmnxZCCCGEEEKIHkA+4ySEEEIIIYQQrZCJkxBCCCGEEEK0QiZOQgghhBBCCNEKmTgJIYQQQgghRCtk4iSEEEIIIYQQrZCJkxBCCCGEEEK0QiZOQgghhBBCCNEKmTgJIYQQQgghRCtk4iRMIi0tDVdXV/Xh7u7OpEmTWL16NdevX+/q8gBISkoiIyOjSbter8fV1RW9Xt8FVTU6e/Ys4eHhTJgwAU9PT3x8fAgNDeX48ePU1tZ2WV0/1Nyxevvtt/H39+/U/ZaUlBAfH8+VK1c6dT9CiO5Fsql9JJueTLKp+7Hs6gJEz7JlyxacnZ2prq7mq6++IikpCb1ez9///ndsbW27tLadO3cyc+ZMpk2bZtTu4eHBwYMHee2110xek6IovPPOO6SlpTF58mTefvttBg0axL1799Dr9cTGxlJeXk5oaKjJa2urlStXEhIS0qn7uHXrFgkJCQwePBg3N7dO3ZcQovuRbHo6kk1tI9nU/cjESZjUiBEj0Gq1AOh0Ourr64mPjycjI4N58+Z1cXXN69OnD6NGjeqSfaekpJCWlkZkZCQRERFG2/z9/Vm2bBk3btwwaU2PHj2id+/ebe4/bNiwTqxGCCHaT7Lp6Ug2iZ5KluqJLmUIqrKyMqP2y5cvEx4ejo+PD1qtlqCgIE6ePGnU586dO8TExDBnzhxGjx7N+PHjCQkJ4csvv2yyn5qaGhISEpg9ezZarRadTkdwcDBfffUVAK6urlRVVXH06FF1yUZwcDDQ8nKIM2fOsGjRIry8vBg9ejSLFy/m3//+t1Gf+Ph4XF1dycvLIyoqirFjxzJhwgSio6O5d+/eE49NbW0tKSkpODs789ZbbzXbZ8CAAYwbN079f0VFBTExMfj5+eHp6clPf/pT3n//fWpqaox+rrq6mh07duDv74+npyd+fn7ExsZSWVlp1M/f358VK1bw6aefEhQUhFarJSEhAYD8/HyWLl2Kl5cXOp2O3//+9zx48KBJjc0th3B1dWXDhg0cO3aM2bNn4+Xlxc9+9jP+8Y9/GPW7ceMG0dHRzJgxAy8vL/z8/AgPD+fq1atqH71ez/z58wGIjo5Wn7/4+Hi1T1vOJyGEMJBsaplkk2RTTybvOIkuVVRUBMDw4cPVtszMTJYtW4aXlxcxMTH07duXkydPsnr1ah49esTPf/5zoPFCDBAREYGDgwNVVVV89tlnBAcHs2fPHnQ6HQB1dXUsW7aM7OxsQkJC8PX1pb6+nkuXLvHdd98BcPDgQUJDQ9HpdKxcuRJovJvXkvT0dNauXcukSZPYsWMHNTU1pKSkqPt+PDAAIiMjmTNnDvPnz+fatWvs2LEDaFwe0pL//ve/VFRUsGDBAszMzFo9ltXV1YSEhHDz5k0iIyNxdXXlyy+/JDk5mStXrpCcnAw0LrFYuXIlmZmZhIWFMW7cOK5evUp8fDwXL17k4MGDvPTSS+rvzcnJIT8/nzfffJMhQ4ZgZWXF7du3CQ4OxtLSkvfee4/+/fuTnp7OH/7wh1brNPj888+5fPkyv/71r7G2tiYlJYWIiAhOnTrF0KFDgcZlDnZ2dqxZswZ7e3vu3r3L0aNHWbhwIUePHsXZ2RkPDw+2bNlCdHQ0b775JlOmTAHAyckJaPv5JIQQBpJNkk2STaJZihAmcOTIEUWj0SgXL15Uamtrlfv37yvnzp1TJk6cqPzyl79Uamtr1b6zZs1SgoKCjNoURVFWrFihTJw4Uamvr292H3V1dUptba0SGhqqvPXWW2r70aNHFY1Goxw6dOiJNY4aNUpZv359k/bMzExFo9EomZmZiqIoSn19vTJp0iQlICDAqJb79+8r48ePVxYtWqS2xcXFKRqNRvnoo4+MfmdMTIyi1WqVhoaGFuv55JNPFI1Goxw4cOCJdRscOHBA0Wg0ysmTJ43ak5OTFY1Go/zzn/9UFEVRzp0712xNhv0dPHhQbZs6dari5uamFBQUGPXdvn274urqqly5csWoffHixUbHSlEUZf369crUqVON+mk0GmXChAnKvXv31LbS0lJl5MiRys6dO1scY11dnVJTU6PMmDFD2bx5s9r+n//8R9FoNMqRI0ea/Myznk9CiO5Pskmy6XGSTaI1slRPmNTChQvx8PBgzJgxLFu2jFdeeYXExEQsLRvf/Lxx4wYFBQW88cYbQOMdOcPjJz/5CaWlpRQWFqq/78CBA8ydOxetVou7uzseHh588cUX5Ofnq33Onz/Pyy+/3GHr1AsLC7l16xaBgYGYm///S8jGxoYZM2Zw6dIlHj58aPQzzS0HqK6ubrIMpD0yMzOxtrZm1qxZRu2Gu1ZffPGF2u/xdoPZs2djbW2t9nu81ldffdWoTa/XM2LECEaOHGnUHhAQ0OZ6dTqd0Z1TBwcH+vfvT3FxsdpWV1dHUlISc+bMwdPTE3d3dzw9Pbl+/brRc9ySpz2fhBA9k2RTI8kmySbxZLJUT5jUtm3bcHFx4cGDB5w8eZKDBw8SFRVFSkoKALdv31b7bdu2rdnfUV5eDsDu3bvZunUrv/jFL1i1ahX9+vXD3NycDz74gIKCArX/nTt3cHR0NAqS9jDsf8CAAU22OTo60tDQQGVlJVZWVmq7nZ2dUT/DcoNHjx61uJ9BgwYB/79kpDUVFRU4ODg0WTrRv39/LC0t1eUjFRUVWFpaYm9vb9TPzMwMBwcHtZ9Bc+OsqKhgyJAhTdodHBzaVCs0PSbQeFyqq6vV/2/dupX9+/ezfPlyvL29sbW1xczMjN/+9rdG/VryNOeTEKLnkmxqJNkk2SSeTCZOwqRcXFzUD936+vrS0NDAxx9/zKlTp5g1axb9+vUDYMWKFUyfPr3Z32G4w3T8+HF8fHyIjY012v7DD4Ha29uTnZ1NQ0NDhwSUocbS0tIm227duoW5uTmvvPJKu/fj6emJnZ0dZ86cYc2aNa2uJbezs+PSpUsoimLUt6ysjLq6OrVuOzs76urquHPnjlFAKYrC7du31efHoLn92tnZqRf+xzXX1h7Hjx8nKCiIqKgoo/by8vI2HeOnOZ+EED2XZFPbSTZJNvVkslRPdKl169Zha2tLXFwcDQ0NODs7M3z4cHJzc9Fqtc0+DG+hm5mZGX1QFCA3N5eLFy8atfn5+VFdXU1aWtoTa3nppZeeeJfN4NVXX2XgwIGcOHECRVHU9qqqKj799FNGjRpldEfvWfXq1Ytly5ZRUFDAX/7yl2b7lJWVkZ2dDcD48eOpqqpq8ocSjx07pm5//N/jx48b9Tt9+jRVVVXq9ifR6XTk5eWRm5tr1H7ixInWB/YUzMzM6NWrl1Hb559/TklJiVFbS3dJn+Z8EkIIA8mmlkk2STb1ZPKOk+hStra2hIWFsX37dtLT0wkMDCQ2Npbly5ezdOlS5s6dy8CBA7l79y75+fnk5OQQFxcHwJQpU0hMTCQuLg5vb28KCwtJTExkyJAh1NfXq/sICAggLS2NmJgYCgsL0el0KIrCpUuXcHFx4fXXXwdAo9GQlZXF2bNnGTBgADY2Njg7Ozep2dzcnHXr1rF27VpWrFjBokWLqKmpYdeuXVRWVrJmzZoOOz6GcIqPj+fy5csEBASof2TwwoULHDp0iMjISMaOHUtQUBD79+9n/fr1FBcXo9FoyM7OZufOnUyePJkJEyYAMHHiRCZNmsSf/vQn7t+/z5gxY7h69SpxcXG4u7sTGBjYal2hoaEcOXKEsLAwfvOb36jfXPT4MpSOMGXKFPUbilxdXcnJyWHXrl3qtxIZDBs2jN69e5Oeno6LiwvW1tY4OjoycODANp9PQghhINn0ZJJNkk09lUycRJcLDg5m//79JCYmEhAQgK+vLx9//DFJSUls3ryZyspK7OzscHFxYfbs2erPhYeH8/DhQw4fPkxKSgqvvfYaMTExZGRkkJWVpfaztLTko48+YufOnXzyySekpqZiY2PDyJEj8fPzU/u9++67xMbGEhUVxcOHD/Hx8WHfvn3N1vzGG29gZWVFcnIyq1evxsLCAi8vL/bu3cuYMWM67NiYmZmxZcsWpk2bxqFDh9TjYah/7dq16gdpX375Zfbu3cv7779PSkoK5eXlDBw4kCVLlhj9gUIzMzMSExOJj48nLS2NpKQk7OzsCAwMJCoqqsmd0uYMGDCAv/3tb2zatImYmBisrKyYNm0av/vd79SvzO0I7777LpaWliQnJ1NVVYW7uzvx8fF88MEHRv2srKzYvHkzCQkJLF26lNraWiIiIoiMjGzz+SSEEI+TbGqZZJNkU09lpjz+fq4QQgghhBBCiCbkM05CCCGEEEII0QqZOAkhhBBCCCFEK2TiJIQQQgghhBCtkImTEEIIIYQQQrRCJk5CCCGEEEII0QqZOAkhhBBCCCFEK2TiJIQQQgghhBCtkImTEEIIIYQQQrRCJk5CCCGEEEII0QqZOAkhhBBCCCFEK2TiJIQQQgghhBCt+D8R/wkWPB7dJAAAAABJRU5ErkJggg==",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA04AAAHaCAYAAAA3yBn9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACWMklEQVR4nOzdeXzU1dn//9dnJpmE7PvKEkgCISQsKpsSXEEtWmvV2p9Wq/Z2aQW9axdrq7X6vau2t7XeAqXgvrRWrYpL3cEluAAiSyAsYQmQhISEbCRknZnfH5OExASSSWYymcz7+XjMY5bPMteZQE6u+ZxzHcNut9sRERERERGREzJ5OgAREREREZGhTomTiIiIiIhIL5Q4iYiIiIiI9EKJk4iIiIiISC+UOImIiIiIiPRCiZOIiIiIiEgvlDiJiIiIiIj0QomTiIiIiIhIL5Q4iYiIiIiI9EKJk4iIiIiISC/8PB2AyIlMmDABgJ07d55wn3POOYfi4mJWrVrFyJEj+3RsYWEhN9xwA8XFxdx8883ccccdrF27lmuvvZYZM2bw/PPP9/heRUVFnHvuuSQnJ7N69eqO161WK6+++ipvvvkmu3btor6+nrCwMGJiYpg8eTLnnHMO5557bpe4+urBBx/k+9///kn3ee+991i/fj3bt29nx44d1NfXc/HFF/Pwww879V6usGfPHv75z3+ydu1aDh06RFNTExEREWRmZjJv3jy++93vEhAQ0O24vLw8/vnPf7Ju3TrKy8vx8/MjOTmZOXPmcN111xEfHz/obRER+Tb1S97TLw3kZ+Us9WG+Q4mT+JS8vDxuuukmqqurueeee/jRj340oPNZrVZuvvlmcnNzCQsL48wzzyQhIYGamhr279/PG2+8wd69ezs6qIULF3Y7x7PPPsvRo0e59tprCQsL67Jt4sSJvcawbNkyduzYQVBQEAkJCezdu3dAbeqvJUuWsHTpUmw2G1OnTuXSSy8lODiYiooKvv76a+6++25efPFFXnvttY5j7HY7Dz/8ME888QR+fn6cfvrpXHDBBbS0tLBx40aeeuopXnzxRR566CEuuOACj7RLRMSd1C95L/VhvkeJk/iMNWvWsGjRIlpaWnjkkUe48MILB3zOt99+m9zcXDIyMnjhhRcIDQ3tsr2mpoZt27Z1PF+0aFG3c7z++uscPXqUH//4x/36xuuuu+4iISGBMWPGsG7dOq699lrnGzJAy5YtY/HixSQmJvJ///d/TJkypds+n332GU888USX15YuXcoTTzxBcnIyy5cvJz09vcv2999/n1/96lfccccdhIeHM3v2bLe2Q0RkMKlf8m7qw3yP5jiJT3jrrbe45ZZbMJlMPPHEEy7pnAC++eYbAC699NJunRNAeHg4p59+ukve60RmzZpFSkoKhmG49X1OpKioiKVLl+Lv78+KFSt6TJoA5s6d2yVxOnjwIMuWLcPf359ly5Z163AAzj//fO666y6sVit/+MMfsNlsbmuHiMhgUr/k3dSH+SYlTjLsPfPMM/zqV78iIiKCF154gVmzZrns3FFRUYBjfLqveu2112hpaWH+/PmMHz/+pPtaLJYux7W2tnLuueeedIz9FVdcQWxsLIWFhaxbt85lcYuIeIr6Je+nPsw3aaieDHmLFy8+4bba2tqTHvvwww/z+OOPk5KSwhNPPMGoUaNcGtv555/P448/zr/+9S/q6uo499xzycrKcvn7DGVff/01gNNDEDZs2ADAGWeccdL9/Pz8mDlzJm+//TbffPONS//AEBHpD/VL3mMgP6uTUR/mm5Q4yZC3ZMmSfh/7+OOP4+/v75bOCSAjI4OHH36Y//mf/+Gtt97irbfeAiAiIoIZM2Zw+eWXc+aZZ7r8fYeSiooKAKerBrUfl5CQ0Ou+7fscPnzYyehERFxP/ZL3GMjP6mTUh/kmJU4y5PWllOiJzJkzhzVr1vCLX/yCJ554olt1IFe44IILOPfcc1m7di0bNmxg+/btbNiwgQ8++IAPPviAyy67jD/+8Y/9Huvd07dll1566YBKp7ryfex2O4DT7XPmuPZ9Ou+7fPlyPvjgA/bt24fFYmHq1KnccccdvQ4XFBEZKPVLQ7tf6szZn1Vf+5aB9mHinZQ4ybC2bNkybr/9dlavXs2Pf/xjnnzyyY7x352ZTI7pfiebuHmyX5L+/v7MmTOHOXPmAI5ysO+//z6/+93vePXVVznnnHM477zz+tWGnr4tmzFjhss7qP6+T1xcHHv37qW0tNSp94uNje3zce37xMbGdry2bt06rrrqKrKzs7Hb7Tz22GNcf/31/Oc//yEiIsKpWEREBov6paH3Pp31tW8ZaB8m3knFIWRYs1gsLF68mAsvvJD8/HyuvfZaysvLu+3XXnmourr6hOeqqqoC6NO3g2azme985zv8+Mc/BuCrr77qR/QOO3fu7HabOXNmv8/n6vc59dRTAefb2H7cF198cdL9rFYra9euBeCUU07peP3JJ5/ksssuY/z48UyYMIE///nPVFZWdlSUEhEZitQvDb336ayvfctA+zDxTkqcZNjz8/PjL3/5C5deeikFBQX86Ec/6vYN0dixY7FYLBQWFnZ0RN+2ceNGwLlV1oODg4Hj3woOR9///vfx9/fn/fffZ/fu3Sfdt7m5uctxZrOZDz/88KTHvfrqqxw+fJixY8cyY8aME+5XX1+PzWZzy7AXERFXUr/kPU7Ut7i6DxPvoMRJfILZbObBBx/kyiuvpLCwkKuvvpqioqKO7QEBAVx44YW0trby5z//uVuHUlpaypNPPgnA9773vY7X3377bT7//PMeh1KUl5fzyiuvAHDaaae5oVVDw8iRI1m4cCEtLS3cdNNN5OXl9bjfZ599xn/91391PB81ahQ333wzLS0t3HLLLT12PB999BF//OMfMZvN3HvvvR1DV3ryxz/+kYkTJzJt2rSBN0pExM3UL3mHE/Utru7DxDtojpP4DMMwuP/++wkMDOTZZ5/l6quv5tlnnyUlJQWA3/zmN2zZsoXXXnuNTZs2ccYZZxAcHExJSQmrVq2ivr6eG264oUsp0c2bN/Pcc88RGxvLKaec0jHuuqioiE8//ZTGxkbOPfdcLrjgAre166OPPuKjjz4C6BjusWnTJn7zm98AEBkZyZ133um29we45ZZbaG1tZenSpVx++eVMmzaNrKwsgoODqaio4Ouvv6awsJCsrKwuxy1atIiGhgaefvppLrnkEubMmUNaWhqtra1s3LiRzZs3ExgYyF/+8peTljv/05/+xIYNG3jxxRcxm81ubauIiKuoXxraeutbXNWHifcw7LpWK0NU+9CDvlTEWbVqVZfJor0d+9e//pW///3vxMbG8vTTT3es+F1XV8fzzz/Phx9+SGFhIU1NTYSHh5Odnc2VV17JOeec0+U8hw4dYvXq1XzxxRfs3r2b8vJympubiYiIYOLEiVx00UVcfPHFJ/2W6URt6KvFixeftNxqcnIyq1evdvq8/bFnzx7++c9/snbtWkpKSjo+i4yMDM4//3wuueSSLovgttuyZQv/+Mc/WL9+PRUVFZjNZpKTk8nJyeHHP/7xScu9Pvjgg/znP//h2WefJTU11Z3NExEfp36pb4ZCvzSQnxU417cMpA8T76LESUS81v/8z//wzjvv8PzzzytpEhERl1DfIieioXoi4pX+8Ic/8Oabb7J06VLCwsI6hoMEBQV1TH4WERFxhvoWORldcRIRr3SiKlILFy5k0aJFgxyNiIgMB+pb5GSUOImIiIiIiPRCdRFFRERERER6ocRJRERERESkF0qcREREREREeqHESUREREREpBc+WY7cZrPR2tqKyWTCMAxPhyMi4jPsdjs2mw0/P7+TLsDpa9QviYh4Tl/7Jp9MnFpbW8nLy/N0GCIiPis7OxuLxeLpMIYM9UsiIp7XW9/kk4lTeyaZnZ2N2Wx2+nir1UpeXl6/j/d2ar/ar/ar/QP9/amrTV2pXxoYtV/tV/t9t/0weH2TTyZO7cMgzGbzgP6BDfR4b6f2q/1qv9rfXxqO1pX6JddQ+9V+td932w/u75v0lZ+IiIiIiEgvlDiJiIiIiIj0QomTiIiIiIhIL5Q4iYiIiIiI9EKJk4iIiIiISC+UOImIiIiIiPRCiZOIiIiIiEgvlDiJiIiIiIj0QomTiIiIiIhIL5Q4iYiIiIiI9EKJk4iIiIiISC+UOImIiIiIiPRCiZOIiIiIiEgvlDg56/B2TP+4jOCqfE9HIiIiAoCx9VVS1/0WGms9HYqIyLClxMlZez7G2PsxcXtf9XQkIiIiABh5LxFR9hXGjrc8HYqIyLClxMlZMeMBCKrZ7eFAREREHOzR6Y4HZXmeDUREZBhT4uSsxMkABNQXQXOdh4MREREB4rMBMEqVOImIuIsSJ2eFxGEPScDADmXbPB2NiIgI9gTHl3qU5oHN5tlgRESGKSVO/WBPaP9mb4uHIxEREQFi0rGZ/DGa66C60NPRiIgMS0qcnPTFngoe3x3qeKLESUREhgKzPw2hYx2PNVxPRMQtlDg5affhOr5pHg1oLLmIiAwdDeFpjgeH9KWeiIg7KHFyUmZiGNvsKY4nh7dDa7NH4xEREQE4FtaWOOlLPRERt1Di5KTMpDBKiKXGHoRha4HyHZ4OSUREhGPtV5w0jFxExC2UODkpyOJHamwo+bYUxwvqoEREZAhoCEvFjgFHD0FduafDEREZdpQ49cOkpDC22cc4nmgsuYiIDAE2vxEQlep4oi/1RERcTolTP2Qlh7FNV5xERGSIsSdkOR6obxIRcTk/TwdQV1fH3/72N3bs2EF+fj5VVVUsXLiQRYsWdexjtVp57rnnWLNmDQUFBdTU1JCUlMS5557LTTfdRFhY2KDGnJ0UzsvtBSLaFxs0KQcVEREPS5gM+StVIEJExA08/td+dXU1L7/8Ms3NzZx33nk97tPY2MjixYtJTk7mt7/9LStWrOAHP/gBL7/8Mv/f//f/0djYOKgxT0wMZa89iUa7PzTXQdW+QX1/ERGRntjj2644aRi5iIjLefyKU3JyMuvXr8cwDCorK3nllVe67RMYGMiqVauIjIzseG3mzJkkJiZy++238/7773PJJZcMWszBAX7Eh1rY0TSKqcZeOLQZolMH7f1FRER6lDDZcX9kNzTXgyXYs/GIiAwjHr/iZBgGhmGcdB+z2dwlaWo3ebKjgygtLXVLbCeTGul/vLLeoc2D/v4iIiLdhMRBSDxgh7Jtno5GRGRY8fgVp4H46quvAEhLS+vX8Vartd/HjYv0Z2vxWADshzZj6+e5vFH759bfz8/bqf1qf+d7XzPQ9vvq5zaoEibD7g8dBSJGzfB0NCIiw4bXJk5lZWX85S9/ISsri7PPPrtf58jL6//k2XGR/rxqc5Qkby3ayJaNG6GXK2fDzUA+v+FA7Vf7fZmvt39IS8h2JE6a5yQi4lJemThVV1dz4403YrfbefTRRzH1s6JddnY2ZrPZ6eOsVisN32xmJ6NptZvwb65mamo8hCX1Kw5vY7VaycvL6/fn5+3UfrVf7e9/+9uPFzdKbJvnpMp6IiIu5XWJU01NDTfccANlZWU8++yzjBo1qt/nMpvN/f7DZ4S/iaToSPbUJjHBKMJ8eBtE9j8WbzSQz284UPvVfrXfd9s/pLUXiDicD9ZWMHtdVy8iMiR51W/Tmpoarr/+eoqKinjmmWfIyMjwaDyTksLYVpPCBIocY8knXODReERExDW+/PJL3nzzTTZu3EhpaSmhoaFkZWVx6623kpWV1bHfb37zG15//fVux48dO5b33ntvMEM+LnIsWEIcy2UcKYC4iZ6JQ0RkmPGaxKk9aTp48CBPPfUUmZmZng6JrOQwtm0bw/fNa1RZT0RkGHnxxReprq7m2muvJS0tjcrKSp5++mmuvPJKnnjiCWbPnt2xb2BgIM8++2yX4wMDAwc75ONMJojPgoNfOeY5KXESEXGJIZE4ffrppzQ0NFBfXw/A7t27O76pO/PMMzEMg5/85Cfk5+fz29/+FqvVyqZNmzqOj4qKYvTo0YMed1ZSGEvsKY4npZqEKyIyXNx7771ER0d3eS0nJ4f58+ezfPnyLomTyWRi6tSpgxxhLxInOxKn0i0w5UpPRyMiMiwMicTpvvvuo7i4uOP5e++915E4rVq1CjhewemPf/xjt+MvvfRSHnrooUGItKtJSWFsa6usR/UBaKiCEd3XmxIREe/y7aQJIDg4mNTUVA4dOuSBiJyUkO2415d6IiIuMyQSp9WrV/e6z86dOwchEueEBvoTHRPPwdpYRpnKHRWMxs71dFgiIuIGR48eJT8/n1mzZnV5vbGxkTPOOIPKykpiY2M577zzuO2224iIiPBMoHC8QERpHtjtPrdchoiIOwyJxMmbZSWHs60mhVGUO+Y5KXESERmW7rvvPhoaGrjllls6XsvIyCAjI4P09HQA1q1bx7PPPsuXX37Jv//9b4KDg516j4EuLNxxfPR4TCY/jIYqrFUHIHxkv87rLbQwtdrf+d7X+Hr7YfAWZ1fiNEDZyWFs3ZrCBeb1WmxQRGSYevTRR3nrrbe45557ulTVu+6667rsd8YZZ5CZmcltt93GK6+80m17bwa6xlXn4yeGjCaodi/7vnyDmoQzBnReb+Hra4Sp/Wq/r3P3Z6DEaYCyksJ5XAUiRESGrSVLlrBs2TJ+/vOf86Mf/ajX/efNm0dQUFCXIkZ9NdCFhTsfb+yfCVv2Mm5EHfahVrzCxbQwtdqv9vtu+2HwFmdX4jRAk5LD2WZLAcBesQuj+RhYgjwblIiIuMSSJUtYvHgxixYt6jJErzd2ux2TyeT0+w10YeEuxydOhi0vYirbCj7yx5SvL8ys9qv9vtx+cP9n4PxvdekifIQ/I6KSKLeHYdhtjpXaRUTE6y1dupTFixfz05/+lIULF/b5uPfee4+GhgamTJnixuj6ILFTgQgRERkwXXFygayREeRvT+FM8xZHgYiRp3k6JBERGYCnnnqKxx57jJycHM4666xuw+6mTp1KcXExv/jFL1iwYAGjR4/GMAzWr1/Ps88+S3p6OldccYVngm8X3zYXq+YAHKuEoCjPxiMi4uWUOLlAdnI42/JTOJMtmuckIjIMfPzxxwDk5uaSm5vbbfvOnTsJCQkhJiaGp59+miNHjmC1WklOTuaaa67hlltuISjIw8O2R0RAxBio3g9lW1X1VURkgJQ4uUB2cjj/bJvnpMp6IiLe7/nnn+91n/DwcJYsWTII0QxAQrYjcTq0RYmTiMgAaY6TC0xKCmObfQwA9sP5YG31cEQiIiJAYts8K81zEhEZMCVOLhARZMEWkcJR+wiM1kao2OXpkERERBxXnEDDyEVEXECJk4tkjYxku32044k6KBERGQoS2irrle+ElkbPxiIi4uWUOLlIVqf1nDi02aOxiIiIABCWBCOiwG7VchkiIgOkxMlFspPD2WZPcTxRgQgRERkKDEPrOYmIuIgSJxfJSjp+xcleugXsds8GJCIiAprnJCLiIkqcXCQy2MKx8DSa7H4YTbVQVejpkERERCBBlfVERFxBiZMLTUyOZpd9pOOJvtkTEZGhoOOK01awWT0bi4iIF1Pi5ELZIzsXiFDiJCIiQ0BMOviNgJZ6qNzn6WhERLyWEicXyupcIEJXnEREZCgwmSE+0/G4VFVfRUT6S4mTC2V3KkluU0lyEREZKhJUWU9EZKCUOLlQVLCF2rDx2OwGproyqDvs6ZBERESOlyTXMHIRkX5T4uRiqSPj2WdPcDxRByUiIkNBxxUnLZchItJfSpxcLCup80K4mzwZioiIiENcJhgmqC+HujJPRyMi4pWUOLlYVufKeioQISIiQ4ElCKLTHY81GkJEpF+UOLlYdnI4W9uuONlK1DmJiMgQkdhpuJ6IiDhNiZOLxYQEUBGSAYCpeh801ng4IhERETothKvESUSkP5Q4ucHokSMptkc7npRu9WwwIiIioJLkIiIDpMTJDbKTw8nXPCcRERlK2hOnyr3QWOvZWEREvJASJzfITg5nm32M44km4YqIyFAQHA1hyY7HZds8G4uIiBdS4uQGk5LDOirrWQ9t9mwwIiIi7TTPSUSk35Q4uUFcaCBlweMBMMp3QmuThyMSERGh60K4IiLiFCVObhKXnEqVPQSTvRUO53s6HBERkeNXnDSMXETEaUqc3CRrZATbbJrnJCIiQ0j7Wk7lO6C12bOxiIh4GSVObuIoEJHieKJ5TiIiMhREjIGAcLA2Q8VOT0cjIuJVlDi5SXZyONtsYwEViBARkSHCMDoViNB6TiIizlDi5CZxYYGUBKU7npRtA5vVswGJiIjA8eF6GkYuIuIUJU5uFJ6cwTF7AObWBjiy29PhiIiI6IqTiEg/KXFyo0kjo9huH+14om/2RERkKOgoSZ4HdrtnYxER8SJKnNzIMc8pxfGkVPOcRERkCIidAGYLNNVAVaGnoxER8RpKnNyoc2U9a4muOImIyBBg9oe4iY7HGq4nItJnSpzcKD4sgOJAR4EI+6HNGhIhIiJDQ8c8J32pJyLSV379OaigoIBvvvmGsrIyGhsbiYyMJC0tjenTpxMSEuLqGL2WYRiMSJ5Ey34z/k3VUFMEEaM8HZaIiPi6hCnAC7riJCLihD4nTjU1Nbz00ku89NJLlJSUYO/h6omfnx9z587lmmuuYfbs2S4N1FtljIxld2EyE40Djm/2lDiJiIintV9xUuEiEZE+61Pi9Nxzz7F06VIAvvOd7zBjxgwmTZpEVFQUAQEB1NTUcPDgQTZt2sSqVau44YYbOP300/n973/PmDFjTnruuro6/va3v7Fjxw7y8/Opqqpi4cKFLFq0qNu+27Zt43//93/ZvHkzZrOZWbNmceeddzJq1NBNRrLa5jlN5ICjg8pY4OmQRETE1yVkOe6PlkB9BQTHeDYeEREv0Kc5Ts8//zx33XUXa9as4d577+XCCy9k9OjRhISE4O/vT0xMDNOmTeP666/nhRde4P333ycuLo53332313NXV1fz8ssv09zczHnnnXfC/fbs2cM111xDS0sLjz76KA888ACFhYVcddVVVFZW9r3Fg8xRWc+RPFpLNnk2GBEREYCAUIga53iseU4iIn3SpytO7777Ln5+fZ8ONXr0aB588EGsVmuv+yYnJ7N+/XoMw6CyspJXXnmlx/0ee+wxLBYLy5cv75hHNWnSJM4//3yefPJJfvWrX/U5vsGUGB7IgYB0sIG1ZDNmTwckIiICjvWcKvc65jmlnuPpaEREhrw+XXEqKCjo18nN5t7TBMMwMAzjpPu0trbyySefMH/+/C7FJ5KTk5k5cyYfffRRv+IbDIZh4JfkWGzQUn8I6o94OCIRERE0z0lExEl9uox06aWXkpmZyeWXX87FF19MaGiou+Pq4sCBAzQ2NjJhwoRu28aPH8/nn39OU1MTAQEBTp23L1fETnZcX49PHZnAvgPxjDWVYS3ZCOPO7tf7DhXOtn+4UfvV/s73vmag7ffVz21ISpziuFdlPRGRPulT4nTzzTfzxhtvcP/99/OnP/2JefPmcfnllzNr1ix3xwc45kEBREREdNsWERGB3W6npqaGuLg4p86blzewzqKvxwc3NbLNnsJYyjj0zfuU1UYO6H2HioF+ft5O7Vf7fZmvt39YaL/idKQAmo+BJciz8YiIDHF9Spx+/vOf89///d/k5uby2muv8cEHH/Cf//yHpKQkLrvsMi699FISExPdHetJh/T1NtyvJ9nZ2X0aTvhtVquVvLy8Ph8fO6aBf61L4SLzWhIoJ3HqVKffcyhxtv3Djdqv9qv9/W9/+/EyBIQmQHAc1B+Gw/kw8jRPRyQiMqT1ueKDYRjMnTuXuXPnUltby5tvvslrr73GY489xtKlS5k1axZXXHEF5557Lv7+/i4Nsv1KU1VVVbdt1dXVGIZBWFiY0+c1m80D+sOnr8ePig5mvyUV7NBasoXAYfLH1kA/P2+n9qv9ar/vtn/YSMiGPavg0GYlTiIivehTcYhvCwsL40c/+hGvvfYaK1eu5KqrriI/P5+f//znzJ0719UxMnr0aAIDA9m1a1e3bbt27WLMmDFOz28aTIZhdIwlD6jZC011Ho5IREQESHQUL9I8JxGR3vUrceosIyOD7373u5xzjqOUaft8JFfy8/Pj7LPP5sMPP6Su7njSUVJSwtq1a5k3b57L39PVxoxOocwegYEdyrZ5OhwRERFHSXLQWk4iIn3Q98WZvqWyspI333yTV199ld27d2M2mzn77LO5/PLLnT7Xp59+SkNDA/X19QDs3r2b9957D4AzzzyTESNGsGjRIi6//HJuueUWbrzxRpqbm3nssceIjIzkhhtu6G8zBo1jIdwU4s2bHB3U6JmeDklERHxde+JUtg2srWDu958FIiLDnlO/IW02G5999hmvvvoqn3zyCS0tLaSkpHDHHXdw6aWXEhMT068g7rvvPoqLizuev/feex2J06pVqxg5ciSpqak8//zzPPzww9x+++2YzWZmzZrF0qVLiYqK6tf7Dqas5HBW2lM4h01YizdqIVwREfG8qHHgHwwt9XBkN8RleDoiEZEhq0+J0759+3j11Vd54403qKioIDAwkIsuuojLLruM004b+GTS1atX92m/rKwsnnnmmQG/nyeMjBzBPr9UAJqLNjPCw/GIiIhgMkFCFhxc6xgNocRJROSE+pQ4XXjhhQBMnjyZRYsWsWDBAoKDg90a2HBjGAb2hMlQCpbKHdDaDH4WT4clIiK+LmHy8cRp8g88HY2IyJDVp8Tpxz/+MZdffjnp6enujmdYix89gZpDQYRzDMp3HK9mJCIi4intC+EeUoEIEZGT6VNVvbvuuqvHpGnv3r1s2LCBY8eOuTyw4Sh7ZAT5thTHE1UwEhGRoaBzSXK73bOxiIgMYf0qR75y5Urmzp3LggUL+NGPfsS+ffsAuP3223n55ZddGuBwkp0czjb7GACsJZs9HI2IiAgQOxEMMzRUQm1x7/uLiPgopxOnd999l9/85jdkZmZyzz33YO/07dSkSZN49913XRrgcDIqagR72wpENB7Y6OFoRETkRL788kvuuusuLrjgAqZOnUpOTg4//elP2bp1a7d9t23bxnXXXce0adM47bTTWLhwIQcPHvRA1P3kHwixbUUhtBCuiMgJOZ04rVixgu9///v8/e9/58orr+yybdy4cezevdtlwQ03hmHQGucYS26p2AY2m4cjEhGRnrz44osUFxdz7bXXsmLFCn73u99RWVnJlVdeyZdfftmx3549e7jmmmtoaWnh0Ucf5YEHHqCwsJCrrrqKyspKD7bASZrnJCLSK6dXutuzZw+//OUve9wWERFBdXX1QGMa1qLGTKKxzJ9A6zGo2gfRqZ4OSUREvuXee+8lOjq6y2s5OTnMnz+f5cuXM3v2bAAee+wxLBYLy5cvJyQkBHCMvjj//PN58skn+dWvfjXosfdL4mTY8i/NvxUROQmnrziNGDGCo0eP9ritrKyM8PDwAQc1nE0aGc0O+yjHk0Oa5yQiMhR9O2kCCA4OJjU1lUOHDgHQ2trKJ598wvz58zuSJoDk5GRmzpzJRx99NGjxDlj7FSclTiIiJ+R04jRt2jT+8Y9/dJnb1O61115jxowZLglsuMpODu+orKcCESIi3uPo0aPk5+d3VJk9cOAAjY2NTJgwodu+48ePZ//+/TQ1NQ12mP3TnjhVH4CGao+GIiIyVDk9VO/WW2/lqquu4vLLL+fiiy/GMAw++OADFi9ezNdff80rr7zijjiHjTHRQTznNw5YTcOBbwjp9QgRERkK7rvvPhoaGrjlllsAOoamR0REdNs3IiICu91OTU0NcXFxfX4Pq9Xar9jaj+vv8VjCMIWPwqg56PhSL2VO/87jIQNuv5dT+9X+zve+aKCfQV+Pczpxys7O5vHHH+e+++7joYceAmD58uWMGTOGFStWMH78eGdP6VMMw6A5JhsqwO/wVseaGYbh6bBEROQkHn30Ud566y3uuecesrKyumwzTvI7/GTbepKXN7CqdgM5ftyI0UTWHKTkm/c4XO2dX+sN9PPzdmq/2u/r3P0ZOJ04AcyaNYt3332XAwcOUFFRQWRkJGPHjnV1bMNWWMoUWstNBDZXwtFDEJbk6ZBEROQElixZwrJly/j5z3/Oj370o47X2680VVVVdTumuroawzAICwtz6r2ys7Mxm81Ox2i1WsnLy+v38QBGzRwo/ZxkcyVJU6f26xye4or2ezO1X+335fbDwD+D9uN706/Eqd3o0aMZPXr0QE7hkyaMjGPPuiQmGEWO0q9KnEREhqQlS5awePFiFi1a1DFEr93o0aMJDAxk165d3Y7btWsXY8aMISAgwKn3M5vNA/rDZ0DHJ00FwFS2Fbz0j6+Bfn7eTu1X+325/eD+z6BPxSHeeecdp09cVlbGhg0bnD7OF2Qnh7PNngKoQISIyFC1dOlSFi9ezE9/+lMWLlzYbbufnx9nn302H374IXV1dR2vl5SUsHbtWubNmzeY4Q5c4mTHffkOaPWSohYiIoOoT4nT/fffzyWXXMIrr7zSpXPoydatW7nvvvs4//zz2bFjh0uCHG5SooPZbRoHQP3+bzwcjYiIfNtTTz3FY489Rk5ODmeddRabNm3qcmu3aNGijoIRn376KR9++CE333wzkZGR3HDDDZ5rQH+EJcOISLC1wuHtno5GRGTI6dNQvQ8//JDFixfzxz/+kfvvv5/MzEwyMzOJjo7GYrFQU1PDwYMH2bRpE+Xl5aSnp7N48WJycnLcHb9XMpkMGqMnQSWYyjSRT0RkqPn4448ByM3NJTc3t9v2nTt3ApCamsrzzz/Pww8/zO23347ZbGbWrFksXbqUqKioQYt3R+lR/lNQT/Zke/9H2RkGJEyGfZ861nNqG7onIiIOfUqcQkND+e1vf8utt97Ka6+9xqeffsrKlStpaGjo2GfUqFHk5ORw8cUXM2vWLLcFPFwEjZ4KlRDSUAwNVY5v+UREZEh4/vnn+7xvVlYWzzzzjPuC6YNHPtzFqh1HmTyhlO9NG9n/EyVkOxKnQ1oIV0Tk25wqDhEeHs7111/P9ddfDzgWA2xsbCQiIgJ/f3+3BDhcpaeM4uA3sYwylUNpHoyd6+mQRETES42LDWHVjnI+21U+sMQpcYrjvlSjIUREvq1Pc5xOJDQ0lNjYWCVN/ZClAhEiIuIiOWnRAHy++wh2u73/J0rIdtyXbQWbzQWRiYgMHwNKnKT/xkYHU2A41r6qL1T1QRER6b/TxkRiMUHZ0SYKDp+8iNNJRaeDXyA010HVPtcFKCIyDChx8hCTyaA+ahIAdo0lFxGRAQjwNzMx1gLAZ7vK+38isx/EZToeH9JoCBGRzpQ4eZBl1DQAQuv2QfMxD0cjIiLebGq8Y7Hd3IKKgZ2ofT0nzXMSEelCiZMHjR07jnJ7GCZscDjf0+GIiIgXm5LguOK0dt8RGlus/T9R+zynUo2GEBHpTImTB2WPjCDflgKATQUiRERkAEaH+REbEkBji41v9lf1/0QJqqwnItITpxOn//f//h979+51Ryw+Z2xMCLtMjgIRR1UgQkREBsAwDOakO6rrfTaQ4XrxmYABdWVwtMw1wYmIDANOJ04rV65kwYIFXH/99Xz00UcDK3vq48wmg9oIxyRclSQXEZGBmpMWA0BuwQAKRFiCISbd8VhXnUREOjidOOXm5nL33XdTXl7OwoULOeecc1ixYgWVlZXuiG/Y80+eCkBozS6wtno2GBER8WpnpDquOG0rqaWirqn/J+qY56Qv9URE2jmdOAUFBXH11Vfz9ttv8/TTTzNp0iT+7//+j7POOovf/OY35OXp2ylnJI/L5Kh9BP72ZqjY5elwRETEi8WGBjAxMQyAz3cPYLhegirriYh824CKQ8yePZslS5awatUqpk2bxhtvvMEPfvADrrjiClavXu2qGIe17FGRbLePBsCmNTNERGSA5qa3D9cbSOLUdsVJ6wyKiHQYUOLU2NjIK6+8wi233MLatWtJTU3l1ltvxWq1cuutt7J06VJXxTlspcaGsBNHgYjafSoQISIiA5OTHgs45jn1ex5yYltlvcq90HTURZGJiHi3fiVOBw4c4MEHH2Tu3Lnce++9JCQk8NRTT/H222+zcOFCXnvtNW688UZeeOEFV8c77JhNBjUREwFoLdrk2WBERMTrnZYSSYCfibLaJgoO1/XvJMExEJoE2KFsm0vjExHxVn7OHvBf//VffPHFF4wYMYLvf//7XHPNNYwePbrbfmeffTYrVqxwSZDDnTlpKtRCSPV2sNvBMDwdkoiIeKlAfzMzxkaRW1DBZ7vKGR8f2r8TJWTD0RLHPKfRs1wbpIiIF3L6itPBgwe56667+Oyzz/jd737XY9IEkJ6eznPPPTfgAH1B7LjJNNn9CLTWQVWhp8MREREvN7djuN4A5jklthWI0PxbERGgH1ec3n///T7tFxISwowZM5wOyBdljY5hl30k2UYhtkObMUWN9XRIIiLixXLGx8A7sHbfEZparQT4mZ0/SUdJchWIEBGBARaHENdIiw1hR1uBiJq9KhAhIiIDMyE+lNjQABpbbGworOrfSdpLkh/eDtYW1wUnIuKlnL7idM4552CcYA6OyWQiNDSU7Oxsrr32WlJTUwccoC/wM5uoCsuAuo9pUoEIEREZIMMwyEmL4bWNxXxWUMHpaTHOnyRiDASEQVMtlO+EhCzXByoi4kWcvuI0Y8YM7HY7ZWVlJCcnM2XKFJKSkigrK8NqtZKYmMiHH37IZZddpsVwnWC0lX4Nrsz3cCQiIjIc5IxvX8+pvH8nMJk6DddTfy4i4nTiNGfOHCwWCx9++CHPPfccjzzyCM8//zwffPABFouF8847j/fff5+UlBQWL17sjpiHpejUU7DZDUJbKqDusKfDERERL3dG21WmbSW1HKlr6t9JNM9JRKSD04nT3//+dxYtWkRiYmKX15OSkrj11ltZsWIFoaGhXHfddWzatMlVcQ57GaMT2WdPAMBWogpGIiIyMHGhgUxMDANgze5+Vtdrn+ekK04iIs4nTvv37yckJKTHbWFhYRQXFwOQnJxMQ0PDwKLzIenxIWxvKxBRrQIRIiLiAnPT24fr9Tdx6nTFyW53UVQiIt7J6cQpKSmJ119/vcdtr776aseVqOrqasLDwwcWnQ/xN5uoCJ0AQOOBbzwcjYiIDAdz0o/Pc7L3J/GJzQCTPzTWQPUBF0cnIuJdnK6q95Of/ITf//73/PCHP+SCCy4gJiaGiooK3nvvPTZv3sz9998PwNq1a8nKcm0Fnvz8fJYsWcKWLVs4evQoiYmJXHTRRfzkJz9hxIgRLn0vT7AnTIY9EHhkm6dDERGRYWB6ShQBfibKapsoOFzH+PhQ507gZ4G4DMdQvdItEDnGPYGKiHgBpxOnH/zgB9jtdhYvXsxDDz3U8XpMTAz33XcfV1xxBQC33HILFovFZYHu3r2bH/7wh4wdO5bf/va3REZG8vXXX/O3v/2Nbdu2sWzZMpe9l6dEjDsV9kBUU5Hj271AXbETEZH+C/Q3M2NsFLkFFeQWVDifOAEkTGlLnPJg4sWuD1JExEs4lThZrVYOHDjAhRdeyA9+8AP27t1LdXU1ERERjBs3rsv6TjEx/Vgz4iTeeustmpqaWLx4MaNHjwZg9uzZlJeX89JLL1FTU+P1QwPHj02h2B5NsnEEe2keRsocT4ckIiJebm56bFviVM5P5ox1/gTt85wOqbKeiPg2p+Y42e12FixYwMaNGzEMg9TUVE499VRSU1NPuCiuq/j7+wN0K0wRGhqKyWTq2O7NxseHst2eAkDVHhWIEBGRgWtfz+mrvUdoarU6f4JEVdYTEQEnEyc/Pz9iYmL6N8F0gL73ve8RFhbGH/7wBw4ePEhdXR0ff/wxL730EldffTVBQUGDHpOr+ZtNlAc7CkTU71eBCBERGbgJ8aHEhgbQ2GJjQ2GV8yeIb5uvXFsExypdG5yIiBdxeo7TggULWLlyJWeddZYbwjmxkSNH8q9//YuFCxdy3nnndbx+zTXX8Lvf/a5f57Ra+/HNW6fj+nv8ybTEZcF+sJRvdcv5XcGd7fcGar/a3/ne1wy0/b76uXmSYRjkpMXw2sZiPiuo4PQ0J4fSB4ZB5Fio2ucoEDHuLLfEKSIy1DmdOGVkZPDOO+9w7bXXMn/+fGJjY7sN05s/f77LAmxXVFTET3/6U6Kjo3nssceIiopi8+bNLFu2jGPHjvHAAw84fc68vIENOxjo8T2pszgWwY1u2MfmDeuwm11XYMPV3NF+b6L2q/2+zNfb721yxjsSpzW7y4EM50+QONmROB1S4iQivsvpxOnOO+8EoKysjHXr1nXbbhgG27dvH3hk3/KXv/yFuro6Vq5c2TEsb/r06URGRvLb3/6W733ve8yYMcOpc2ZnZ2M2m52OxWq1kpeX1+/jT8YvJoWqXSFEGnVMTvTHSJrq0vO7gjvb7w3UfrVf7e9/+9uPl8F1RttVpq3FtRypayI6JMC5EyRkQ/4bmuckIj7N6cTpueeec0ccvdq+fTupqand5jJlZzuq/RQUFDidOJnN5gH94TPQ43syMTmSr+0pnG5spWbfRqJHnebS87uSO9rvTdR+tV/t9932e5u40EAmJoax/VAta3ZXcMnUZOdOkDDFcV+qynoi4rucTpycTU5cJS4ujoKCAurr6wkODu54fdOmTQDEx8d7JC5Xs/iZKA0aD41bOVr4DdFzPR2RiIgMBznpMWw/VEtuQX8Sp7aS5BW7oPkYWLy/IJOIiLOcqqrX2dGjR8nNzeXNN9+kpqbGlTH16Mc//jFVVVXccMMNvPPOO3z55Zf8/e9/58EHHyQtLY25c4dPhtEc66hg5H9Y3+yJiIhr5KQ7huvlFpQ7Xx03NAGCY8Fug8OuH44vIuIN+pU4LV26lJycHG688UbuvPNOioqKAEdys2LFCpcG2O7cc8/lmWeeISQkhAceeIBbbrmF119/nR/+8Ie88MILWCxDt4iCs4JTTgEgpr4AbKpAJSIiAzc9JYoAPxNltU3sPlzn3MGGcfyqU+lm1wcnIuIFnB6q949//IOlS5dy1VVXkZOTw80339yx7eyzz+aDDz7gpptucmmQ7WbNmsWsWbPccu6hZEz6ZI59FkAQTdgrCjDi+lEBSUREpJNAfzMzxkaRW1DBZwUVpMeHOneChMmwZ7UKRIiIz3L6itM//vEPrrvuOu6++27mzJnTZduYMWPYv3+/y4LzVROSIthhHw1A5Z6vPRyNiIgMF3PTYwHHcD2ntV9xOqRh5CLim5xOnA4ePEhOTk6P24KDg6mtrR1wUL4uwM9MyYjxANTs3eDhaEREZLiY0zbP6au9R2hqdXIoeGJbZb2ybRpGLiI+yenEKTQ0lIqKih63FRcXEx0dPeCgBJpiJgFgKtOQCBERcY2MhFBiQgJobLGxobDKuYOjxoF/ELQ2wJHd7glQRGQIczpxmj17Nk888QTHjh3reM0wDFpbW3nxxRe7Dd+T/hkxuq1ARN0OcLb6kYiISA8Mw2Bue3W93T1/CXpCJjPEO6q+ap6TiPgipxOn2267jZKSEhYsWMBDDz2EYRi88MILXHHFFezfv5+f/exn7ojT5yRPOIUWu5kQ21HsNQc9HY6IiAwTOeOPlyV3Wsc8J1XWExHf43TiNGbMGF588UXGjRvHiy++iN1u54033iAyMpJ//vOfJCUluSNOnzMhOYbddscChZV7NM9JRERc44w0R+K0tbiWI3VNzh2cONlxrytOIuKDnC5HDpCWlsaTTz5Jc3MzVVVVhIeHExgY6OrYfFqgv5miwHQmNh+gavfXRJ96qadDEhGRYSAuNJCMhFB2lB5lze4KLpma3PeDO9Zy2uIYRm4Y7glSRGQI6tcCuO0sFgvx8fFKmtzkWFSm40GpSr+KiIjrzB3fXpbcyXlOcZPAMMOxI3D0kBsiExEZuvp1xamoqIh3332XkpISGhsbu2wzDIMHHnjAJcH5usBR06AUImu3ezoUEREZRnLSY1jx2V7WFFRgt9sx+nrlyD8QYifA4XzHek5hGp4vIr7D6cTpk08+YeHChdhsNqKiorBYLF229/mXr/QqYcJ0WA/R1nLs9RUYwTGeDklERIaB6SlRBPiZKK1tZPfhOtLjQ/t+cEK2I3EqzYMJF7gvSBGRIcbpxOmvf/0rp5xyCn/961+1ZpObTRiTTKE9gRSjlMo9XxM9WR2UiIgMXKC/mRljo8gtqOCzggonE6fJsOUlKFVlPRHxLU7Pcdq/fz833nijkqZBEOhv5oAlFYAjBes9HI2IiAwnOen9LEveUSBClfVExLc4nTglJSV1WfxW3KsuchIAtkMqECEiIq6Tk+4oEPHV3iM0tVr7fmB74lRVCI01rg9MRGSIcjpxuvnmm3nqqadoaGhwRzzyLf4jpwIQXq0CESIi4joZCaHEhATQ2GJjw/6qvh8YFAXhoxyPddVJRHyI03Oc8vLyOHLkCPPmzWPmzJlERkZ22+fuu+92SXACceOnwzcQ31qEvekoRoAT49BFRKRf6urq+Nvf/saOHTvIz8+nqqqKhQsXsmjRoi77/eY3v+H111/vdvzYsWN57733BivcfjEMg7npMby2sZjcggpOT3WiAFHCZKg56EicUua4L0gRkSHE6cTphRde6Hj8n//8p9t2wzCUOLnQ+HGplNkjiDeqObJ3E9ETczwdkojIsFddXc3LL79MRkYG5513Hq+88soJ9w0MDOTZZ5/t9po3yBnfnjiVc+cFGX0/MCEbdv7HUZJcRMRHOJ047dixwx1xyAmMsJjZ4p9GfOvXHN61TomTiMggSE5OZv369RiGQWVl5UkTJ5PJxNSpUwcvOBc6I81xlWlrcS1H6pqIDgno24GJkx33GqonIj7E6TlOMvhqIyYC0Fqs0q8iIoPBMAyfWJcwLjSQjATHEPA1uyv6fmB7gYjy7dDa5IbIRESGnj5dcVq/fj2ZmZkEBwefdL/KykpWr17N5Zdf7pLgxMGcNAUqniesepunQxERkW9pbGzkjDPOoLKyktjYWM477zxuu+02IiIinD6X1epEdbsejuvP8XPSotlRepTcXeVclJ3Qt4NCkjAFRmA0VmMtzT9+BcpDBtL+4UDtV/s73/uigX4GfT2uT4nTtddey0svvcTkyY5fjDabjcmTJ/Pyyy+TmZnZsd/Bgwe55557lDi5WEz6dNgCSc2F0NoMfhZPhyQiIkBGRgYZGRmkp6cDsG7dOp599lm+/PJL/v3vf/f6heO35eUNbOhbf45PMjmuGK3efoiNG1v7fKUtPTiFsMZNHFz/H46Mtjn9vu4w0M/P26n9ar+vc/dn0KfEyW63d3ve2tra7XVxj7Txk6i1BxFmHKOycAtRaad5OiQREQGuu+66Ls/POOMMMjMzue2223jllVe6be9NdnY2ZrPZ6TisVit5eXn9Oj6jxcqfvlhFZYONkOR00uNC+nScUX46HNnEaEsNozw8x2sg7R8O1H6135fbDwP/DNqP743TxSFk8AUF+LPJL5Wp1jxKd65T4iQiMoTNmzePoKAgNm3a5PSxZrN5QH/49Of4YLOZGWOjyC2o4PM9lWQkhvftwMQpAJjK8mCI/LE20M/P26n9ar8vtx/c/xmoOISXqA53lIltKtrk2UBERKRXdrsdk8l7uticdEd1vdyC8r4flNBeWW8r2IbGUD0REXfynt/qPs5o+2YvuFIFIkREhrL33nuPhoYGpkyZ4ulQ+iwnPRaAtXsraWrt4+TqmHQwB0DzUaja58boRESGhj4P1du7d2/Hpa/2yhN79+7tto+4R1TqabANkpt2O77Z86JvMkVEvNGnn35KQ0MD9fX1AOzevZv33nsPgDPPPJPKykp+8YtfsGDBAkaPHo1hGKxfv55nn32W9PR0rrjiCk+G75SMhFBiQgKoqGtiw/4qTk+N6f0gsz/EZ0LJRsd6TtGp7g9URMSD+pw43XXXXd1e+/Wvf93lud1u94l1Lzxh3MRpNL7hT7DRSGXRTqJGT/R0SCIiw9p9991HcXFxx/P33nuvI3FatWoVoaGhxMTE8PTTT3PkyBGsVivJyclcc8013HLLLQQFBXkqdKcZhsHc9Bhe21hMbkFF3xIncAzXK9kIpVtg0vfcGqOIiKf1KXF68MEH3R2H9CJ4RCA7zClk2Aoo2bFWiZOIiJutXr26132WLFkyCJEMjjkdiVM5d16Q0beD2hfCLVUZZBEZ/vqUOF166aXujkP6oDIsA6oLaDywEbjO0+GIiMgwMifNcZVpa3EtR+qaiA4J6P2gtvm3HNrixshERIYGTZTxIrZ4xzd7gUdUIEJERFwrLiyQjIRQAD7fc6SPB2UCBtSVQt1h9wUnIjIEKHHyIhHjHOs3JTXsBC0+LCIiLjZ3vKO6Xu6uPpYlDwiB6DTH41JddRKR4U2JkxcZk3kaVrtBFLVUlu73dDgiIjLMHF/PqQJ7X7+ga5/npOF6IjLMKXHyIqGh4RwwjwKgePtXHo5GRESGm+kpUVj8TJTWNrL7cF3fDkpsXwhXBSJEZHhT4uRlKkImAFC/f6OHIxERkeEm0N/MzLFRAHxWUNG3gzoq6+mKk4gMb04lTo2Njfzwhz/kiy++cFc80gtrnKODCqjY6uFIRERkOGofrremoI/znBLarjgd2QNNfbxKJSLihZxKnAIDA9m1axdms9ld8UgvQseeCkD8sV0ejkRERIajnHRHgYiv9lbS1Grt/YCQOAhJAOxQpqqvIjJ8OT1Ub9q0aWzZosvxnjJq0kwAkuyHqTqi0q8iIuJaGQmhxIQE0NBiZcP+qr4d1DHPSX8fiMjw5XTidOedd/LSSy+xcuVK6uvr3RGTnERYRCyHjDgADuSrQISIiLiWYRhdquv1ieY5iYgPcDpxuvLKKyktLeWuu+7itNNOY9q0aZxyyikdt1NPPdUdcUonZcGOAhFH933j4UhERGQ4Oj7Pqa+Jkyrricjw5+fsAeeffz6GYbgjFumjltgsqMvFv1wdlIiIuN6cNEfitLWkhiN1TUSHBJz8gPYrTmX5YG0Bs7+bIxQRGXxOJ04PPfSQO+IQJ4SMOQX2QVzdTk+HIiIiw1BcWCAZCaHsKD3K53uO8N0pSSc/IHIsWEKh+ShUFEB85uAEKiIyiLSOkxdKzpwFwGhbEVXV1Z4NRkREhqW54x3V9XJ39aEsuckECVmOx5rnJCLDlNNXnNrt2rWLPXv20NTU1G3b9773vYHEJL0Iix1FJeFEGTXs376eyNnzPB2SiIgMM3PSYljx2V5yCyqw2+29D9NPmAwHvnTMc5ryw8EJUkRkEDmdODU0NPDTn/6Ur776CsMwsNvtAF1+obozcfr6669Zvnw5mzZtoqmpiYSEBC655BJuvfVWt73nkGMYlAaNJ+rYemr2bgAlTiIi4mIzxkZh8TNRWtvInvI60uJCT35Ae0nyQ5vdH5yIiAc4PVTvb3/7G8XFxbzwwgvY7XaWLFnC008/zbx58xgzZgyvv/66O+IE4K233uKaa64hNDSUP/3pT6xYsYIbb7yxI3nzJY0xjiER5jIViBAREdcL9Dczc2wUAJ/t6kN1vY6S5Hngg/2yiAx/TidOq1at4sYbb2TatGkAJCYmMnv2bB577DEmTZrEP//5T5cHCVBWVsbvf/97rrzySh555BHOOeccZs2axRVXXMHChQvd8p5DWdBox+cfrQIRIiLiJsfXc+rDPKfYiWDyh8ZqqDno3sBERDzA6cSpuLiYcePGYTabMQyDhoaGjm0XX3wxq1atcmmA7V555RWOHTvGjTfe6Jbze5ukjBkAjLUWUlPX0MveIiIizstJdxSI+GpvJU2t1pPv7GeB2AzHY63nJCLDkNNznEJDQzl27BgA0dHR7N+/n9NOOw2A1tbWjm2utn79eiIiIti7dy8/+9nPKCgoIDw8nHnz5vHrX/+akJAQp89ptfbSCfRyXH+Pd4XghDTqGUGw0cDW/A1MO3X2oL33UGi/J6n9an/ne18z0Pb76ufmrTISQokJCaCirokN+6s4PTXm5AckToayPDi0BTIWDE6QIiKDxOnEacKECRQWFjJ37lxmzpzJ8uXLGTNmDBaLhaVLl5KRkeGOOCkrK6OhoYHbb7+dm2++malTp5KXl8fixYspKCjgn//8p9ML8+blDewbsYEeP1DBfilktG6ncMNHGOYRg/7+nm6/p6n9ar8v8/X2+wrDMMhJj+H1jcWsKajoPXHqmOekkuQiMvw4nThddtll7N+/H4D//u//5qqrruKaa64BICwsjBUrVrg2wjZ2u52mpiYWLlzITTfdBMDMmTPx9/fngQce4Msvv+T000936pzZ2dmYzWanY7FareTl5fX7eFfZtmEylGwnsukgU6dOHbT3HSrt9xS1X+1X+/vf/vbjxXu0J065BRX8+oJedk5oq6ynoXoiMgw5nTh95zvf6Xg8atQo3n///Y7S5NOmTSMiIsKV8XVoP++cOXO6vD537lweeOABtm3b5nTiZDabB/SHz0CPH6jA0dOg5CWiand4JA5Pt9/T1H61X+333fb7kjlpjqtMW0tqOFLXRHRIwIl3bl8Et+YgHKuEoKhBiFBEZHA4XRzi24KCgjjnnHM4++yz3ZY0gWOIYE/aS5GbTANuitdJGO8oEJFq3UvNsWYPRyMiIsNRXFggGQmh2O3w+Z4jJ985MBwiUxyPddVJRIYZr8k25s+fD8Bnn33W5fX251OmTBn0mDwtbHQ2LfgRZhxj966tng5HRESGqY6y5Lv6UJZc85xEZJjq01C9jIyMPhdeMAyD/Pz8AQXVkzlz5nD22WezdOlSbDYbU6dOZevWrSxZsoSzzz67o7KfT/GzUGIZy5jmAip3fw1TT/F0RCIiMgzlpMfyeO4+1uyuwG63n/xvgoQpsP0tXXESkWGnT4nTrbfe6nTFOnd49NFHWbJkCS+//DJLly4lLi6O6667zicXwG1XH5UJpQVYSzZ7OhQRERmmZoyNwuJn4lBNI3vK60iLCz3xzu1XnA7pipOIDC99SpwWLVrk7jj6JDAwkF/+8pf88pe/9HQoQ4b/yKlQ+gYRNds9HYqIiAxTgf5mZo6NIreggs92VZw8cUpsq6xXsQtaGsB/8JfLEBFxB6+Z4yQ9i0ufDsDY1j3UNrZ4OBoRERmuOuY5FfQyzyk0EYKiwW6Fw64fui8i4ilOlyNfuXJlr/t873vf60co0h/hKdOwYRBvVPP17j2cluWeBYhFRMS3zUmLBXbw1d5KmlqtBPidoBy9YTjWc9r7sWOeU/KpgxqniIi7OJ04/eY3v+nx9c5zoJQ4DaKAEA77jySh5SAVu9eDEicREXGDjIRQYkICqKhr4pv91cxOjT7xzoltiZPmOYnIMOJ04rRq1apur1VVVbFq1Sreeecd/vrXv7okMOm72oiJJJQfpKV4M3CNp8MREZFhyGQyyEmP4fWNxeQWlJ88cUpom+ekynoiMow4PccpOTm52y0rK4vbb7+d+fPn89xzz7kjTjkJc5JjDavQKo0lFxER9zk+z6ni5Du2J05lW8FmdXNUIiKDw6XFIWbPns3q1atdeUrpg5i2AhEpLbupa2r1cDQiIjJczUlzJE5bS2o4Utd04h2jU8E/CFqOQeXeQYpORMS9XJo4FRcXYzKpUN9gCx/rWPw3xShjx76DHo5GRESGq7iwQDISQrHb4fM9R068o8kM8ZMcjw9pnUERGR6cnuO0fv36bq81Nzezc+dOli9fzuzZs10SmDghOJpKcyxR1nJKd30NGWM9HZGIiAxTOekx7Cg9ypqCcr47JenEOyZkQ9F6KN0C2ZcPXoAiIm7idOJ0zTXXdKmgB2C32wE4/fTTueeee1wTmTilKnwiUZXlbQUirvB0OCIiMkzlpMfyeO4+cgsqsNvt3f4m6KACESIyzDidOPVU/CEgIIDk5GRiYmJcEpQ4z5Q4GSo/I6hym6dDERGRYWzG2CgsfiYO1TSyp7yOtLjQnndsT5wObQG73bG+k4iIF3M6cZoxY4Y74pABikw7DbbB6Kbd1De1Ehzg9I9WRESkV4H+ZmaOjSK3oILPdlWcOHGKzwTDBMcq4GgphCUObqAiIi7mdCWHffv2sW7duh63rVu3jsLCwoHGJP0Q0VYgIs0oZntRuYejERGR4ay9ul5uwUn6G/8REDPe8bhUC+GKiPdzOnF66KGHelwEF+Djjz/moYceGnBQ0g/hI6kzheJvWCne+Y2noxERkWEsJz0WgK/2VtLUepJ1mjrmOSlxEhHv53TilJeXx/Tp03vcNn36dLZu3TrgoKQfDIPK0AwAGg9s9HAwIiIynGUkhBITEkBDi5Vv9lefeMeEbMf9ISVOIuL9nE6cjh49SlBQUI/bAgMDqampGXBQ0j+2tm/2RhxRgQgREXEfk8kgJ70Pw/USVVlPRIYPpxOn+Ph4tmzp+ZujLVu2EBsbO+CgpH8ix50KQHJTAceaWz0cjYiIDGfHE6eKE+/UPlSvah806otVEfFuTidO5513HitWrOCrr77q8vratWt5/PHHmTdvnsuCE+eEj3MUiJhoHGB7cZWHoxERkeGsvUDE1pIaKuube94pKArCRjoel2k0hIh4N6drVt96662sWbOG66+/npSUFBISEigtLaWwsJC0tDQWLVrkjjilL6LTaDICCaKRA7u2cOrYcz0dkYiIDFNxYYFkJISyo/Qon++u4OIpST3vmJANtUWOeU5jTh/cIEVEXMjpK06hoaG89NJLLFy4kPDwcEpKSggPD2fRokX861//IiQkxB1xSl+YzBwJSQegXgUiRETEzTTPSUR8Sb9WSQ0ODubWW2/l1ltvdXU8MkDWuGw4mkdAuaobioiIe+Wkx/J47j5yCyqw2+0YhtF9p46S5JsHNzgRERdz+opTu6NHj5Kbm8ubb76pSnpDSNhYR4GIpMZdNDSfZG0NERGRAZoxNgqLn4lDNY3sKa/reaf2kuSHd0DrCeZCiYh4gX4lTkuXLiUnJ4cbb7yRO++8k6KiIgB+/OMfs2LFCpcGKM5pT5wyjf3klyihFRER9wn0NzMjJQqAz3adoLpexGgIDAdbC5TvGMToRERcy+nE6R//+AdLly7l8ssvZ/ny5djt9o5tZ599Np988okr4xMnGfGZtGIm0qijcO9OT4cjIiLDXPs8pzW7T5A4GUan4Xqa5yQi3qtfidN1113H3XffzZw5c7psGzNmDPv373dZcNIPfgFUBo0F4Oi+DR4ORkTEO9XV1fHnP/+ZG264gVmzZjFhwgQWL17c477btm3juuuuY9q0aZx22mksXLiQgwcPDnLEnpOT7li/8cs9R2hqPcEQ8Y7Eqed1IEVEvIHTidPBgwfJycnpcVtwcDC1tbUDDkoGpiXWMZ7c77AKRIiI9Ed1dTUvv/wyzc3NnHfeeSfcb8+ePVxzzTW0tLTw6KOP8sADD1BYWMhVV11FZWXlIEbsORkJocSEBNDQYuWb/dU979Q+z+mQEicR8V79KkdeUdHz5fji4mKio6MHHJQMTEjKKQDEN+yisUUFIkREnJWcnMz69et54YUXuOOOO06432OPPYbFYmH58uWceeaZzJ8/n+XLl1NVVcWTTz45iBF7jslk9F6WvHNJcpttkCITEXEtpxOn2bNn88QTT3Ds2LGO1wzDoLW1lRdffLHb8D0ZfGFjHYnTJGMf2w/pCqCIiLMMw+i5tHYnra2tfPLJJ8yfP7/LGobJycnMnDmTjz76yN1hDhlz0toTpxPMc4oZD+YAaD4K1YWDF5iIiAs5vY7TbbfdxuWXX86CBQs477zzMAyDF154ge3bt1NSUsKjjz7qhjDFGUbbWPIko5I1+wqZNjrSwxGJiAw/Bw4coLGxkQkTJnTbNn78eD7//HOampoICAjo8zmt1v6NEmg/rr/HD9Tp4xz9zNaSGsprG4gKtnxrDxOmuIkYhzZhLdkM4WNc+v6ebr+nqf1qf+d7XzTQz6CvxzmdOI0ZM4YXX3yRBx98kBdffBG73c4bb7zBzJkzefjhh0lKSnI6WHGxwDCqAkYS2VRE7b5v4Mxpno5IRGTYqa6uBiAiIqLbtoiICOx2OzU1NcTFxfX5nHl5A6s6N9DjB2J0uB8Halp5cfUGzhg1otv2Mf5JxLCJw5s/pKRptFti8GT7hwK1X+33de7+DJxOnADS0tJ48sknaW5upqqqivDwcAIDA10dmwxAY2wWFBVhKtNEXBERdzrZkL7ehvt9W3Z2Nmaz2ekYrFYreXl5/T7eFeYd2sGTawo52BLC1KnZ3bYbLWfBgXdIoJy4qVNd+t5Dof2epPar/b7cfhj4Z9B+fG/6lTi1s1gsxMfHD+QU4iZBo6dB0XvE1u2kscVKoL9v/kcSEXGX9itNVVVV3bZVV1djGAZhYWFOndNsNg/oD5+BHj8QZ46P48k1hazZfQSTydQ9aUyaAoBRmue2GD3Z/qFA7Vf7fbn94P7PoE+J08qVK5066fe+971+hCKuFDb2VPgCMo1CdpYeZcqoCE+HJCIyrIwePZrAwEB27drVbduuXbsYM2aMU/ObvN2MsVFY/EwcqmlkT3k9aXEhXXeInwQYcPQQ1JVDSKxH4hQR6a8+JU6/+c1v+nxCwzCUOA0BRqLjm72xRikv7z+kxElExMX8/Pw4++yz+fDDD/nVr37VUVmvpKSEtWvXct1113k2wEEW6G9mRkoUa3ZXkFtQ3j1xCgiFqHFQucexEG7auZ4JVESkn/qUOK1atcrdcYirhcRR5x9DSEsFlXu/gTkTPR2RiIhX+fTTT2loaKC+vh6A3bt389577wFw5plnMmLECBYtWsTll1/OLbfcwo033khzczOPPfYYkZGR3HDDDZ4M3yNy0mPaEqcKrj9jbPcdEie3JU55SpxExOv0KXFKTk52dxziBseiJxFS+qnjmz2u9nQ4IiJe5b777qO4uLjj+XvvvdeROK1atYqRI0eSmprK888/z8MPP8ztt9+O2Wxm1qxZLF26lKioKE+F7jE56bE8+O4OvtxzhKZWKwF+35prkJAN215v65dERLxLv4tD1NXVsWnTJqqrq4mMjGTKlCldFgAUzwsYNRVKPyWmbmfPHZiIiJzQ6tWr+7RfVlYWzzzzjHuD8RIZCaHEhARQUdfEN/urmZ0a3XWHBMcwckpVNllEvE+/Eqcnn3ySJUuW0NjYiN1uxzAMAgMDue2227j++utdHaP0U1jKKbAeJrKPXaV1ZI8M93RIIiIyjJlMBnPSolm5qYQ1u8u7J06JjgXaqSiA5nqwBA9+kCIi/WRy9oCVK1fyv//7v0yfPp1HHnmEf/zjHzzyyCPMmDGDP//5z05X4BP3aS8QMcE4yLaDFR6ORkREfEFOuqNaXm5BD/1OSByExAN2KMsf3MBERAbI6cTpmWee4aKLLmLFihVceOGFnHrqqVx44YUsX76cBQsW8Oyzz7ojTumPyBQazSFYDCuH9272dDQiIuIDctJjAMgrrqGyvrn7DgltV51K1S+JiHdxOnHau3cv3/3ud3vc9t3vfpc9e/YMOChxEcOgPtJRTc9Wog5KRETcLy4skIyEUOx2+Hx3D1edErId95rnJCJexunEKTAwkJqamh631dTUEBgYOOCgxHX8R04DIKp2B82tNg9HIyIivqD9qlNuQXn3je3znA6psp6IeBenE6dTTz2VJUuWUFZW1uX18vJyli5dymmnneay4GTgQlNOASDD2MeusqMejkZERHzBnLZ5TmsKKrDb7V03tg/VO5wP1tZBjkxEpP+crqp3xx138MMf/pD58+cze/ZsYmNjKS8v56uvvsLPz48lS5a4I84evfLKK9x9990EBQWxcePGQXtfb9JeICLT2M/bRVVkJauynoiIuNeMlCgsfiZKahrZU15PWlyn5Uoix4IlBJrr4EgBxGmBdhHxDk5fcUpPT+ff//435557Lnl5ebz22mvk5eVx7rnn8sorr5CWluaOOLspKyvjT3/6E3FxcYPyfl4rZjwtRgAhRiMl+1TBSERE3G+ExcyMFMcCwN2G65lMEJ/leKzheiLiRfq1jtPYsWN55JFHXB2LU+69915OO+00IiIieP/99z0ay5Bm9qMuYjyRVXm0Fm8GvuPpiERExAfkpMewZncFuQUVXH/G2K4bEyfDwa+gdAtMudIzAYqIOMnpK05DwRtvvMG6dev4wx/+4OlQvIJfkmO4XnjNdlqsKhAhIiLu176e01d7j3QvTtRRWU9XnETEe/TrilN+fj5vvfUWJSUlNDU1ddlmGAbLli1zSXA9OXLkCA888AC/+MUvSEhIGNC5rFbrgI7r7/GDLWj0VNj2Ahn2fewoqSEzKWxA5/O29rua2q/2d773NQNtv69+br4oIyGUmBALFXXNfHOgilnjoo9v7FjLKQ/sdjAMzwQpIuIEpxOnlStXctddd2EymYiKisLf37/LdsPNv/zuu+8+xo4dy1VXXTXgc+XlDWwNiYEeP1iCjo5gIjDJVMiTX+XRPC7YJef1lva7i9qv9vsyX2+/9M5kMpiTFsPKTSXkFpR3TZziJoLJDxqqoKYIIkZ5LlARkT5yOnFatmwZZ555Jn/6058IDx/cCm3vv/8+q1evZuXKlS5J0LKzszGbzU4fZ7VaycvL6/fxg65lPLY1i4gxasHeytSpUwd0Oq9rv4up/Wq/2t//9rcfL74hJz22LXGq4Ffnd9rgFwCxGVC21XHVSYmTiHgBpxOnw4cPc++99w560lRfX8/999/PNddcQ1xcHLW1tQC0tLQAUFtbi5+fH0FBQX0+p9lsHtAfPgM9ftCYQ6kNHUvY0T20FG3CbD7HNaf1lva7idqv9qv9vtt+6Zv2hXDzimuorG8mKthyfGNCdlvitAUyVLhIRIY+p4tDTJw4sdvit4OhqqqKiooKnnrqKaZPn95xe/vttzl27BjTp0/nl7/85aDH5S3a13MKrcqnVQUiRERkEMSFBZKREIrdDp/vrui6sfM8JxERL+D0Fadf//rX3HXXXUycOJGMjAx3xNSj2NhYnnvuuW6vr1ixgvXr1/P4448TGRk5aPF4m+Axp8Cu15hAIQWH65iYOLACESIiIn0xJy2GHaVHWVNQwcVTko5vaK+sp7WcRMRLOJ04TZ06lfnz53PppZcSGxvbbcieYRi8+eabLguwXUBAADNnzuz2+uuvv47ZbO5xmxxnaitJPsko5MviGiVOIiIyKHLGx/LEmn3kFpRjt9uPz1FuT5xqDjiKRIzQl58iMrQ5PVRvxYoVLF++nMjISJKSkoiIiOhyG+y5T9JHbR3UKFM5u/cf9HAwIiLiK2akRGHxM1FS08ie8vrjG0ZEQMQYx2MN1xMRL+D0FafnnnuOyy67jPvvv39ITAx+6KGHeOihhzwdxtA3IpL6oGSCjxXTcHATcLqnIxIRER8wwmJmRkoUa3ZXkFtQTlpcyPGNCdlQvd+ROI2d67kgRUT6wOkrTvX19Vx00UVDImkS59jjHRNxgytVIEJERAZPe3W93IJvFYhoK1ykeU4i4g2cTpxOOeUU9uzZ445YxM2CxkwDYLx9X9fhEiIiIm6Ukx4LwFd7j9Dc2umLu/Z5ThqqJyJewOnE6Xe/+x3/+te/+Oijj2hubnZHTOImpsTjBSLyims8HI2IiPiKjIRQYkIsHGu28s2BquMb2kuSl++AlkbPBCci0kdOz3G67LLLaG1tZdGiRRiGQWBgYJfthmGwYcMGlwUoLpTo6KDSjGL+fbAMTh3p4YBERMQXmEwGc9JiWLmphNyCcmaNi3ZsCEuCEVHQUAmH8yH5FM8GKiJyEk4nTueff/7xUqLiXUITabJEEdBcydEDm4FTPR2RiIj4iJz02LbEqYJfnd/2omE4vtTb+4ljuJ4SJxEZwpxKnKxWKzfffDNRUVEqO+6NDIPW+GwCDn5KYMU2rDY7ZpOSYBERcb/2AhF5xTVU1TcTGWxxbEjIbkucVCBCRIY2p+Y42e12FixYwKZNm9wUjrjbiNGOb/PG2/ayp7zOw9GIiIiviAsLJCMhFLsdPt/TqbpeQltlPRWIEJEhzqnEyc/Pj5iYGOx2u7viETcztc1zyjQVslUFIkREZBDNSWsrS76rc+LUXllvK9isHohKRKRvnK6qt2DBAlauXOmGUGRQtFXWyzAOsrXoiIeDERERX5Iz3lGWPLeg/PiXsDHp4DcCWuqhcp8HoxMROTmni0NkZGTwzjvvcO211zJ//nxiY2O7FYuYP3++ywIUF4scS4tfMIGt9VTv3wZM8XREIiLiI2akRGHxM1FS08ie8nrS4kLAZIb4TCjeAKWbISbN02GKiPTI6cTpzjvvBKCsrIx169Z1224YBtu3bx94ZOIeJhMtMZPwL12Hf/lWFYgQEZFBM8JiZkZKFGt2V5BbUO5InMCxnlPxBsc8p6zLPBukiMgJOJ04Pffcc+6IQwZR4KipULqOdNte9lXUkRYX6umQRETER+Skx7BmdwVrCiq4/oyxjhfb5zkdUmU9ERm6nE6cZsyY4Y44ZBCZkhzD8yYZ+8krrlHiJCIig2ZOegy8C1/uPUJzqw2Ln6lj/q0q64nIUOZ0cYh2R48eJTc3lzfffJOaGlVn8yoJjsp6k0yFbC3Sz05ERAbPxIQwYkIsHGu28s2BKseLcZlgmKD+MBwt9WyAIiIn0K/EaenSpeTk5HDjjTdy5513UlRUBMCPf/xjVqxY4dIAxQ1iM7AZfoQZxyg7sNPT0YiIiA8xmYzjZckLyh0vWoIgOt3xWFedRGSIcjpx+sc//sHSpUu5/PLLWb58eZc1nc4++2w++eQTV8Yn7uBnoTk6w/HwcB42m9blEhGRwZOT3l6WvNN6Tm3rDHJoswciEhHpXb8Sp+uuu467776bOXPmdNk2ZswY9u/f77LgxH0sI6cBkGrdy74j9R6ORkREfElOuuOKU15xDVX1zY4XOxbC1RUnERmanE6cDh48SE5OTo/bgoODqa2tHXBQ4n7HC0QUsrVY85xERGTwxIUFMiE+FLsdPt/TdtWpbf4tpaqsJyJDk9OJU2hoKBUVFT1uKy4uJjo6esBBySDoVCAiTwUiRERkkLVfdcrd9a3EqXIvNB31UFQiIifmdOI0e/ZsnnjiCY4dO9bxmmEYtLa28uKLL3YbvidDVPwk7BjEG9UcOFDo6WhERMTH5Ixvn+dU7pgvHRwNYcmOjaVbPRiZiEjPnE6cbrvtNkpKSliwYAEPPfQQhmHwwgsvcMUVV7B//35+9rOfuSNOcbWAEJrDxwFgKlOBCBERGVwzUqKw+JkoqWlkT3nbXNuOeU4ariciQ4/TidOYMWN48cUXGTduHC+++CJ2u5033niDyMhI/vnPf5KUlOSOOMUN/Ec65jmNa93D/spjvewtIiLiOiMsZmakRAGwpr0sueY5icgQ5tefg9LS0njyySdpbm6mqqqK8PBwAgMDXR2buJkpcQpse41MUyF5xTWMjQn2dEgiIuJD5qTHsGZ3BbkFFVx3xtjjV5wOKXESkaHH6StOd911FwcPHgTAYrEQHx/fkTQVFxdz1113uTZCcZ+2NTNUWU9ERDyhvUDEl3uP0NxqO76WU/kOaG32YGQiIt05nTi9/vrrVFVV9bitqqqKlStXDjQmGSwJjqF6Y01l7D5Q4uFgRETE10xMCCMmxMKxZivfHKiCiDEQEA7WZqjY6enwRES6cDpxOpmamhosFosrTynuFBxNS3AiALbSLY6qRiIiIoPEZDKYk+a46rSmoAIMQwvhisiQ1ac5TuvXr2ft2rUdz1955RU+++yzLvs0NTWxatUqUlNTXRuhuJU5aQoUHGJsyx72HzlGiuY5iYjIIMpJj2XlphJyC8r55fkTHInT/jWOeU5Tr/J0eCIiHfqUOK1du5YlS5YAjjWbXnnllR73S0pK4ve//73rohO3MyVNhYL3mGTaz9aSGiVOIiIyqOa0zXPaUlxDVX0zke3znHTFSUSGmD4lTv/1X//F1Vdfjd1u5/TTT+fJJ58kMzOzyz4Wi4XgYP3R7XU6FYhYWVzDRZNVTl5ERAZPfFggE+JD2Vl2lM/3VHBR56F6drtj+J6IyBDQp8QpMDCwo3LeqlWriI2N1Vym4aJtzYw0o5gdReXARM/GIyIiPicnPYadZUfJ3VXBRZMmgtkCTTVQvR8iUzwdnogI0I/iEMnJyUqahpPwkbQGROBvWGkq3qYCESIiMuhyxscCsGZ3BXaTH8S1fYmn9ZxEZAhxegHclpYWHn/8cd5++21KSkpoamrqst0wDPLz810WoLiZYTgWwi38lDEtezhY2cDo6CBPRyUi4hXWrl3Ltdde2+O2l156ialTpw5uQF5qRkoUFj8TxdUN7K2oJzUhGw5tdgzXy/yup8MTEQH6kTg98sgjPPPMM8ydO5fzzjtPV5+GAVPSZCj8lElGIXnFNUqcREScdMcddzBz5swur6Wnp3soGu8zwmJmekokn+8+Qu6uclITpgAvQKmuOInI0OF04vTuu+9y6623snDhQnfEI57QthDuJFMhH5XUsGByoocDEhHxLmPGjNHVpQHKSY91JE4FFVx3ttZyEpGhx+k5TjU1NZx22mnuiEU8pa2y3kTjANuKKj0cjIiI+KKctrLkX+49QnNMW+Xe2mKoP+LBqEREjnM6cZo+fTo7duxwRyziKdFp2PxGEGQ0cbR4hwpEiIg46f777yczM5NTTjmFn/zkJ3z99deeDsnrTEwIIybEwrFmKxvLWiFqnGODhuuJyBDh9FC9u+++m5/97GckJSVx1llnaY7TcGAyQ/wkKP6aUU27KapqYFSU5jmJiPQmNDSUa6+9lpkzZxIREcH+/ft58sknufbaa1m+fDk5OTlOnc9qtfYrjvbj+nv8UHFGajRvbD7Ep7sOMz0+G1PlXmwlm7CnzD3pccOl/f2l9qv9ne990UA/g74e53TidMkll9Da2srtt9+OYRgd6zu1MwyDDRs2OHta8TBT4hQo/ppJpkK2FtcocRIR6YPMzMwuC8KfdtppzJs3j4svvpj//d//dTpxyssb2JyegR7vaaMsDQB8sPkgV4+JIRmo3vEZ+4JOnji18/b2D5Tar/b7Ond/Bk4nTueffz6GVvEefhLbCkQYhXxRXMOF2SoQISLSH2FhYZx11ln861//orGxsdsXjCeTnZ2N2Wx2+j2tVit5eXn9Pn6oSBzXyJL1n7CnuoWQC8+BHU8S2VREeC+FN4ZL+/tL7Vf7fbn9MPDPoP343jidOD300ENOByNeoK1AxCTTfpYXVXs2FhERL9c+V9TZLxrNZvOA/vAZ6PGelhQZzIT4UHaWHWVdw0jmAcaR3ZitTWDpfSSEt7d/oNR+td+X2w/u/wycLg4hw1RcJnbDj0ijjiMle1UgQkSkn2pqavjkk0+YOHEiAQEBng7H67RX11tVZILgOLDb4HC+h6MSEenjFadt27Y5ddJJkyb1K5iT+fLLL3nzzTfZuHEjpaWlhIaGkpWVxa233kpWVpbL38/n+AVgj52AcXgbyY0FlNQ0khwxwtNRiYgMab/4xS9ITEwkKyuLyMhI9u/fz1NPPcWRI0c0QqOfcsbH8sSafeQWVGBPzsbYswoObYaRWgpFRDyrT4nTZZdd1qfhBna7HcMw2L59+4AD+7YXX3yR6upqrr32WtLS0qisrOTpp5/myiuv5IknnmD27Nkuf09fY0qcAoe3MclUSF5RjRInEZFeTJgwgXfeeYd//etfHDt2jPDwcE499VT+/Oc/M3nyZE+H55VmpERhMZsorm6gOnMikazSQrgiMiT0KXF68MEH3R1Hr+69916io6O7vJaTk8P8+fNZvny5EidXSJwMm//JJGM/m4truCArwdMRiYgMaTfddBM33XSTp8MYVkZYzEwfG8nnu4+wuWUUZ4HWchKRIaFPidOll17q7jh69e2kCSA4OJjU1FQOHTrkgYiGoQTHt6OZpkJeKK7xcDAiIuKrctJj+Xz3ET6ojHckTmXbwNoKZqdrWomIuIxXF4c4evQo+fn5pKenezqU4SEhG4Bk4whFRQdVIEJERDyivUDEmwcDsPsHQ2sjHNnt4ahExNd59Vc39913Hw0NDdxyyy39Ot7XV2jvxj8YIyIFU3UhiY0FFFXWk9TDPKdh2/4+UvvV/s73vmawVmcX3zYxIYyYEAsVdc3UxWcQWr7BMc8pLsPToYmID/PaxOnRRx/lrbfe4p577ul3VT1fX6G9J+NGjCayupBJRiFvf76ZGcknXrhxOLbfGWq/2u/LfL394l4mk8EZaTG8samE3aZxTGMDlG6GyVd4OjQR8WFemTgtWbKEZcuW8fOf/5wf/ehH/T6Pr6/Q3hOj7kw49BmTTIXsCohm6tTuwyCHc/v7Qu1X+9V+96/OLpKTHssbm0r4vD6RaaDKeiLicV6XOC1ZsoTFixezaNGifg/Ra+frK7T3KGkqAJOMQl4vqT1p+4Zl+52g9qv9ar/vtl/cr32e0/uVcSy0AIe2gN0OfVgeRUTEHbyqOMTSpUtZvHgxP/3pT1m4cKGnwxmeEh2V9cYapewuKlOBCBER8Yj4sEAmxIeyyzYSm2GGhkqoLfF0WCLiw7zmitNTTz3FY489Rk5ODmeddRabNm3qsn3q1KkeiWvYCYnDHpKAqa6U2GO7KattIiH8xPOcRERE3CUnPYadZUcpCxhDYuNex3pO4cmeDktEfJTXJE4ff/wxALm5ueTm5nbbvnPnzsEOadgyEidDQSmTTIXkFdcocRIREY+Ykx7DE2v2sal5NInsdcxzmnChp8MSER/lNYnT888/7+kQfEfCZCj4gElGIVuLa5iXGe/piERExAfNHBuNxWzi66aRXOgPHNrs6ZBExId51RwnGSRt85wmmRyJk4iIiCeMsJiZPjaSfPsYxwulWzwbkIj4NCVO0l2CI3EabxSxvajCw8GIiIgvy0mPZZutLXGqPgAN1R6NR0R8lxIn6S4yBXtAGAFGKxH1ezlc2+jpiERExEflpMdQSwjF9ljHC1rPSUQ8RImTdGcYGAnHh+vlabieiIh4yMSEMKKDLWxtv+qkxElEPESJk/SsbZ5TprFfiZOIiHiMyWQwJz2GfJvmOYmIZylxkp4lTgFUIEJERDwvJz2WbfYUxxNdcRIRD1HiJD1LOH7FaVtRtWdjERERn5bT6YqTvXwHtDZ5OCIR8UVKnKRnMeOx+wUSYjQSULef8qPqpERExDPiwwIJjUuhyh6CYWuFw9s9HZKI+CAlTtIzsx9GXCYAk4z9Gq4nIiIeNWd8p7LkmuckIh6gxElOLFGV9UREZGjISY8hv22ek/2QEicRGXxKnOTE2kuSG0qcRETEs2aOjWYnYwFoLNrk2WBExCcpcZITa6usl2kqZKsKRIiIiAeNsJgxJ2cD4Hd4G9hsHo5IRHyNEic5sbhM7IaJWKMWa20pFXUqECEiIp6TmjGNRrs//tZjULXP0+GIiI9R4iQnZgnCiBkPQJZpnwpEiIiIR50xPoEd9lEAtBRv9nA0IuJrlDjJyXWa56TESUREPCkzMYw95lQADu9a5+FoRMTXKHGSk+uorLdfBSJERMSjTCYDa1wWAE1FuuIkIoNLiZOcXFuBCMcVp1oPByMiIr4uJn06ABG1WgRXRAaXEic5uQRHBaNRpnKOVpdTWd/s4YBERMSXTZo2C5vdIMpWRc3hg54OR0R8iBInObkRkRAxGtBwPRER8bz46GiKzMkA7Nz0pYejERFfosRJetdWICJTBSJERGQIqI2YCEDlnvUejkREfIkSJ+ld+zwn034lTiIi4nEjRk0FwL98G3a73bPBiIjPUOIkvetUklxD9URExNNGTpwJwNjWPeyrqPdwNCLiK5Q4Se/aSpKnGcVUVFVTdUwFIkRExHMCRk4FIMUo48vt+z0bjIj4DCVO0rvQRAiKwWzYyTAOsq1EZclFRMSDQmKps8RiMuwc3K6FcEVkcChxkt4ZRqeFcLWek4iIeJ4t3rFcRmvxFlqsNg9HIyK+QImT9E2neU5bSzTPSUREPCs05RQA0mx72XSw2rPBiIhPUOIkfdNWWS/TVKiheiIi4nFG20iITNN+cguOeDgaEfEFSpykb9oSpwzjIMWVddQ1a1iEiIh4UNtIiAnGQb4sKPVwMCLiC5Q4Sd9EjgVLKIFGC6lGCXurWjwdkYiI+LKIMdgsoQQYrRw7tJ2j+kJPRNxMiZP0jckECVmAY57TV8WNHG1U8iQiIh5iMmFqH65HIXllWipDRNxLiZP0XcLxynrv72lg+gOruebJtTz3ZSEl1Q0eDk5ERHxOgqOyXqZpP5vLmjwcjIgMd36eDkC8SNs3e/OjynimwUzRUSu5BRXkFlTw+ze2kZUcxryJCczLjGdiYiiGYXg4YBERGdY6Kr7uZ3lZE3a73cMBichwpsRJ+q6tgxrVvIf/Oz+G8FHjWb2znA/zy/h6fxVbi2vZWlzLXz/aRXLECOZlxjM/M57pY6PwN+vipoiIuFinK07lx6y8uO4gF2QnERsa4OHARGQ4UuIkfRebASZ/jMYaLA2ljI2Zxk3xYdw0N5UjdU2s2nGYD/PLyC0op7i6gWe+KOSZLwoJC/TjnIw45mUmcOaEWEIC9M9ORERcoK1fCrfVM9Ko4J4387nnzXwyE8PIGR/DmemxnJoSSYCf2dORisgwoL9gpe/8LBA3EUq3EFRdAFzYsSk6JIAfnDaKH5w2ioZmK2t2V/Bhfimrth/mSH0zKzeVsHJTCRazidmp0czLjGdeZjzxYYGea4+IiHg3PwvEZUBpHtePPMRrralsO1RLfttt+ad7GeFvZua4KOamxzJ3fAypsSEaSi4i/aLESZyTOBlKtxC/9xWMjZEwbq6jVHmnTmiExdyRGFltdr45UMVH+WV8mF/G3op6Pt1Vzqe7yrl75VamjAxv2zeB8fHqzERExEkJU6A0jwsjS7juytOpamjl890VfLqrnNyCCsqPNvHJznI+2VkOQFJ4IDnpseSMj2FOWgwRQRYPN0BEvIUSJ3FOylzY+AIhVdvg7dsdr4UlQ8qc47dOiZTZZDA9JYrpKVHc9Z2J7D5cx4f5ZXyYX8rGg9VsLqphc1END3+wi9FRQR0J12ljIvHTvCgREelN2zynoJoCAGJCArhkajKXTE3Gbrezo/QouQWOJGrtvkpKahp56euDvPT1QQwDJo+M4Mz0GHLGxzJ1VITm5IrICSlxEudM/gHWkAQOf/USCY27MYq/gdpi2PKS4wYnTaTS4kJIiwvhp2elcvhoI6u3t82L2l3BgcpjPLlmH0+u2UdEkD/nZMQxPzOenPRYgjUvSkREetJW8TWoZk+3TYZhMDExjImJjvm4Dc1W1hVW8tmucnILytlVVsfmg9VsPljNY6t3Exrgx+zUaHLGxzI3PYYx0cGD3RoRGcL016g4xzAgZQ4l1SHETZ2K2doIB9dB4RrHrXhDnxOpuNBAfjhjND+cMZpjza18tquCD/PLWL2jjKpjLbz2TTGvfVOMxc/EnLQY5mXGc+7EOOJCNS9KRETaxDsWZ7c0HsZ6rBJCY0+46wiLmTPHx3LmeMc+pTWNfNZ2NWpNQTlVx1r4IL+MD/LLABgTHUROegxz02OZnRpNaKC/+9sjIkOWEicZGEswpJ7tuAE01/crkQqy+HFBVgIXZCXQarWxYX+VY0jf9jL2HznG6h2HWb3jMIYBU0dFdJQ61yRfEREfFxiGPXIsRtU+TP/6IYya6Ri+lzgZYsaD+cTJTkJ4YEdhI6vNzraSGnILHPOjvtlfxf4jx9h/5AAvfHUAs8nglNERzE2PJWd8LNnJ4ZhN6n9EfIkSJ3EtFyRSfpFjmTkumpnjovndgokUtM2L+iC/jM0Hq9l4wHH783s7GRsT3DEv6pTRkerERER8kD19Psa65RjFX0Px18c3mAMc1WATsiFxiuM+PgsCQrqdw2wymDwygskjI7j17DTqmlr5cs+RjvlR+yrqWV9YxfrCKv7y4S4igvw5Iy2Guekx5KTHkhQxYhBbLCKeoMRJ3GuAiZSRMofxcWMZHx/KrWenUVbbyEfbHRX6vth9hH0V9az4bC8rPttLdLClbb0ox7yoERat2yEi7ldfX8+jjz7Ku+++S01NDePGjeOmm25iwYIFng7NZ9jnP0B+4KlkRDRjKtsKpXmOW1MtHNrkuG18vm1vA6LGOa5IJWQ7qvIlZENofJdzhgT4dXwxB3Cw8phjWN+uCj7fU0H1sRb+s+UQ/9lyCHDM4c1Jj2Hu+Fhmjo0iyKI/sUSGG6/6X63OaRgYYCIVnzKHq2eM5eqZY6hrauWzXeVt86Ic60W9sqGIVzYUEehvYk5aLPMz4zlnYhwxIVpFXkTcY9GiReTl5fGLX/yClJQU3n77be644w5sNhsXX3yxp8PzDYZBQ3ga9ilTwdz2pZnNBtX7oXSLI4k61HZ/tAQq9zhu214/fo6Q+LZEavLxK1SRY8HkqLI3KiqIq2eO4eqZY2i12thcVM2nuyrILShn88Fqdh+uY/fhOp7+vBCL2cRpKZHMHR9LTnoMExPCMGlEhIjX86rESZ3TMDSARCokZQ7fSZnDd7Km0GKzs76wsq3UeRlFVQ18tL2Mj7aXYRhw6ujIjm8Ox8V2H6IhItIfn376KZ9//jl/+ctfuOiiiwCYNWsWJSUl/PnPf+Y73/kOZrOufnuEyQRRYx23zEuOv15XDmWdEqnSLVBRAHVlsLsMdn90fF9LiGNoX/ucqYRsiMvEzy+AU8dEceqYKO6YN57qY818secIn+0q57Nd5ZTUNPLFniN8secID73rKJGekx7TdoslNlRf5ol4I69JnNQ5+Yh+JlL+KXM4PWUOp58xh98vOIsdZXUdSVRecQ1f76/i6/1VPPjuDlJjg5mXmcC8zHimjYrQt4Ai0m8ffvghQUFBXHDBBV1e//73v88vfvELNm/ezCmnnOKh6KRHIbEQcg6knnP8teZ6KMtvuzrVllCVbYPmOjj4lePWzuQHMRM6DfXLJiIhm+9kJ/Kd7ETsdjt7K+rbSp5X8OWeI1TUNfH6xmJe31gMwMTEMOaOd1TrO3VMJIH++vtFxBt4TeKkzslH9SORMsKSmZgyh4kpc7jt6jkcMp3CR9sP80F+GV/tPcKe8nr2fLqHv3+6h5iQAM6b6JgXdUZajDovEXFKQUEBqamp+Pl17U4nTJjQsd2ZvslqtfYrjvbj+nu8txtw+82BkHSK49bO1gpHdmOU5kFZnuO+dAtGQxUc3ua4bX6xY3d7+ChImIw9PouUhMmkTMzm2pnTaLLa+eZAFWsKKsgtOMK2Q7Vsb7st/3Qvgf4mZo6NIifNcUUqNTbY6Wqx+vn7SPvtNrC2gLXZ8e/T2gzWFlqbG/Cv3U9jiT8mkwm73Y7dZsMGbY/t2LBjswHYsVlt2Nu32e3Y7HbsdrDh2NeOHVvbvd1G273jHLTd2+20HXf8HLSdp/M57XZbx750Pq/9+Ps79gfa7u12W8c+tD1vP7/NTlvstk7nAMMSRGTsyAH/Du2N1yROru6cQB1Uf3m0/eZASJnruAG0HIOi9RiFazD2fw7FGzC+lUglhCVx9Zg5XD3lDOrOn8XHh4P5aEc5n+wqp6KuiX+tP8i/1h9khL+ZnPQYzpsYx9kTYokKtvQYgn7+vtF+u92O1ea4tXa6Nbe0cqTBSlFlPSaT6XiH09ExOO5tnX6h2wGbra0jgU4dDp1eO35Mx7HQ5fz2TsfY7ADt+7a/1v7+dOq0uh5j79LhccKYOtpho1N8jg5unH8L2W7unLxFdXU1I0eO7PZ6eHh4x3Zn5OXlDSiegR7v7dzT/nSISYeY78MkO/6N5QTV7GZE7R6CagoIqt1DwLFDGDUHoeYgxs7/dBzZ6h9Ga3gqaWFpJIencfGUNA6fkszmCiubSpvYVNZMdaONT3dV8OmuCgCiR5iYEh/A1AQLk+MCCA0w9TlS/fydaL/dimFrxbC1YNismOwtbc9bMeyO1xzbWrBbW7FZW7C13dutrdhtLdhbHfdYWx2JjK0Fu82KYW0BWwuGvf0cju0meysmWwuGvRVT+3N7K+a2W/tjP1ox26340dJ239p2s/XYFDMwGeBTV3yK3uvt2JvJC3BvauM1iZOrOydQBzVQQ6f94RC5ACIXYGQ1ElKVT+iRTYQc2Uxw1XZMtSUYeS9D3suEARcGxjInegrV2VP4xshk9ZEo1pc0UdFg7Vj40ARkxPgzPTmQGUkBJIR0/68ydNrvXja7HasNWtvurTY7VjusXrsJq83xx7jVTqfHbfvZjx/b9fHx16xtf5hb7Y5znuhxz+9zPJbO79PTa7Z+vKcjMTmJt8sH5fN3loENP2yYsWJuu3c8b3ts2DBhw69je/s+x5/7Gd23mbDjhxUDO5ujpzI6XAuBtjvZ1QFnrxxkZ2f3a9i51WolLy+v38d7u8Fv//yu799YA2VbMUq3QGnbfcVO/FpqCavYSFjFxo59M/0COSsuE3tSFvZTstnvn8rqqjg+2VfPusIqjjTYWF3YwOrCBgwDspPC2+ZGRTN1VAT+5u6J1HD8+Vtbmmmqq6KpvoqWuipaj9XQ2lCN7Vg19sZaaKzBaKrB1HwUU1Mt1vpKAv0MDFtLW1LSgsnW0pGstCcnfvYWzLRiordf8kOfzW7Qgh/Nbb+lbTh+39g5/nvH3vFau+770Hkf4/jz9v2Mb+9vGB3n67rN6Nje7dxGD+c5wb7dXusSU9fnRtu5W81BRI+dMuDfob3xmsQJXNs5gTqo/hr67Z/V8cjecgzrt65IWRrLiS7+iOjij0gFLg9Lwj7pDIojTuODY2m8utef/NI68itayK9o4dnNR0mPC3EM6ZsYR2ZCCNu2be21/VabnVarjZa2+1abnRZr58c2Wq2O+5PuY7Mf3+9bz1u7vEenc9oc9602W9v5Oj222Whp7frccUzb+3bat8Vq6z2BOCE7ZmyYsLf9Ord3PDZhb3vevv1bzw07RqdtXY8/+fksHcd3Pb/j8Qnej2+9n+nE72c2bPhjw2w4EhQ/o+3WKTHpSFwMR7LRkbgY30piuiQ4ju3t28x2K2bsbdsdXWL7vib78f1M2DDbrZjaEpzBUGKeTkz2O27tnLxFREREj1/c1dTUAMe/3Osrs9k8oN+rAz3e23ms/cFRMG6u49autQkObz9egKKtRLrRXAcl32CUfAPAOGAcBv8VnUZrdhYHAtL4sj6JN0qjWVfux5biGrYU17D0kz2EBPgxOzWauW1lz8dEB3cJw93tt9vtNFttNLbYaGyx0tBspbHVcd/QYqWpxUZDi5WGplaam45ha6iGxpq2JKcWU1Mt5uZa/FqOYmk5iqX1KAHWOgKtdQTZ6giy1xNsryfUfowgowkLEOq21nTVajfR4rjG03bvRytmmu3HHx9PUvywGn5YDX9shhmryb/tsR92kz82kx82kz92kwVMftjNFuxmfzD5OxZkNlswmf3Bz4JhtmCY/TH8LJj8AjD5+2P2s2Bqu/n5B2D2D8DPz4LZ34LZEoC/fwD+lgD8/f3xNxuYsbNjez5TJmfj52fGZBiYDDAZBkbbfftr/fl72RtYrVbKN21y+/8Br0mcXN05gTqogfKK9ptDIe0cxw2g+RgUdZojVfQ1Rm0JxtZXGMUr/AT4SVgy9VNmscmcxb8rU3jrQAAFh+soOFzHsk/3EhNiIdBkw2/15x1JzPEE5XgS1P+EwzkGNiy0EkAzgbQQYLTd00wgzQQYLQTQQhjNBNBCoOG4D6ClY3tgD9sCjGYC/I9vC6CZQMNxb+6ccBjdEyDzCYYT+Jxv/xvw5Bechskxqd0wO+5N5rabX6fXO29ruzc67WMyYzf50RB1lnf8/x8E48eP5+2336a1tbXLUPJdu3YBkJ6e7qnQxNP8AiBpquPWzmaDqn3dS6TXlcKRAvyOFLQlUnA1YI2Opyx4PHmtY/ioKo51jSP5KL+ZD/PLABgdFUROegxz0qIJbLJRWd9Msw1HQtPiuDV0JDg2GtsSnI7X25Odb73e1NyCvbke/5aj+DXXOhKc1joCrEcJ5RihHCPMOEYY9YQaxwhre57Q6XWLMYAvcjr9bV9nD+QoQdQZwRwzgjlmCqHBHEKTOZgmv1Ca/UJp8Q+ltglCwqMw/AIwzBZMfo5kxOxnaUtK2hIP/wDMba+b/S34tSci/n74m034mw0C/Extj02Emk1YzCYsfo5tZpMx5JIPq9VKSYCJ8BH++r3sZl6TOKlzEpewBMG4sxw36DGRoraY4NpXOYNXOQP4S3QSxeGn8mnLBP5ROprtddE4fqu3djm1GSuBNBPSnpS0JSEdiYfRTLCphSBTK0GmFkYYrQQZzYwwtRLYlrwEGq2djnMkKRaaHfd2x2N/e9vN1oxf22OvZ5hOcjPcsN3c7+NtQFV1LZExsZg6Egq/7smIUwmK3/HEpuNm+tYxAzmX+VtDH/rPZrVSvWmTS841HJx33nm8/PLLfPDBB3znO9/peP31118nLi6OKVOmeDA6GXJMJohOddwmXXr89brDjmSqc4n0I3sw15eRVF9GErmcDxAAzeZg9phSWNc4kq01Y9i0LoVX1ibTjD+8uRpw9Eedk5sw49i3njcQTj2jurze/rieUBowGd/6psfUdnOCDRON5mCazKE0+YXS4h9Cq38YVksotoAw7AHhEBiOERiOOSgc04gI/IIjsARHEhAcSUBIBEEWCyG9VL+1Wq1s2rSJqVOnKnEQt/KaxEmdk7hFHxIp09ESRh0t4Ue8xY8MaI6Mo8HuT6DJhsnWhMnahKm1EcPu5LdrbdViXHpxxjCD/wjHN51+gcdv/u2PA8CvbXvHfp329w/selwP+1lN/mzfWcDEzEmYzX7OJS0mc8/7eBG71Urhpk1ETJ16fKFN8VlnnnkmZ5xxBn/4wx+oq6tj9OjR/Oc//yE3N5f//d//1R9x0jchcZB2nuPWrqkODufDoc3Hk6myfCzWeiZatzHRvM1RFQBoxcxBWwyBRgth1BNsNLkkLJvJgtUShi0grC3BCYPACMxBEZgCwzBGhENgBASGQ9s+jpvjsckSQpBhEOSSaEQ8z2sSJ3VOMij6kEhZGg7Tc729TswBnRKPQCeSmJ72O9lr30pszIPwX9pqpam4EaLGKXEQARYvXsxf//pXHnvsMaqrqxk3bhyPPPIICxYs8HRo4s0CQmDUDMetnbUVKnZ1mjfluErl11jNWFNZ93NYQk6Y1PT8ekSX103+gc5eZBIZ1rwmcQJ1TuIBPSRS1pJNFOzaRXpmNmZLUPckxhzgGI4hIj4hODiYu+++m7vvvtvTochwZ/aD+EzHbcqVjtfsdqxVB9i9fhVpk6ZiDoo8nvwMxpdpIj7Eq/5HqXMSj7MEwaiZ1B8JgMSpuuIiIiKeZRgQPpK6mCmQOEX9kogb6WtxERERERGRXihxEhERERER6YUSJxERERERkV4ocRIREREREemFEicREREREZFeKHESERERERHphRInERERERGRXihxEhERERER6YUSJxERERERkV4ocRIREREREemFEicREREREZFeKHESERERERHphRInERERERGRXihxEhERERER6YWfpwPwBLvdDoDVau3X8e3H9fd4b6f2q/2d732N2j+w9rcf1/57WBzULw2M2q/2d773Nb7efhi8vsmw+2Dv1dzcTF5enqfDEBHxWdnZ2VgsFk+HMWSoXxIR8bze+iafTJxsNhutra2YTCYMw/B0OCIiPsNut2Oz2fDz88Nk0mjxduqXREQ8p699k08mTiIiIiIiIs7Q130iIiIiIiK9UOIkIiIiIiLSCyVOIiIiIiIivVDiJCIiIiIi0gslTiIiIiIiIr1Q4iQiIiIiItILJU4iIiIiIiK9UOL0La+99hoTJkzouGVmZjJnzhx+/vOfU1hY2GXfr7/+mt/97nd8//vfJysriwkTJlBUVOSZwF2kr+23Wq08/fTT/OQnP2Hu3LlMmTKFCy+8kIcffpja2lrPNcBNvv25fPu2du1aT4fYb++99x4TJkzgnXfe6bbtu9/9LhMmTCA3N7fbtvPOO49LL70UgI8//phf//rXXHzxxUyaNIkJEya4PW5XGWj76+rqWLZsGddccw1nnHEG06ZN4+KLL2bFihU0NTUNRhMGxBU//7/+9a9873vfY8aMGWRnZ3Puuedyzz33UFxc7Pb4fYX6JvVNPRmufZP6JfVLQ7Vf8hvQ0cPYgw8+yLhx42hqauKbb77h73//O2vXruXdd98lPDwcgK+++oovv/ySiRMnEhwczLp16zwctev01v7GxkYWL17MRRddxBVXXEFkZCT5+fksW7aMjz/+mFdffZXAwEBPN8Pl2j+Xb0tLS/NANK4xY8YMDMPgq6++4jvf+U7H69XV1ezatYugoCDWrl1LTk5Ox7bS0lIOHjzI9ddfD8CHH37I5s2bmThxIv7+/mzbtm3Q29FfA21/SUkJzz77LJdccgnXXXcdQUFBbNiwgSVLlvDFF1/w9NNPYxiGJ5rWJ674+dfW1rJgwQJSU1MJDg5m9+7dLFu2jNWrV/P2228TGRk56O0artQ3qW/qyXDrm9QvqV8aqv2SEqcTSE9PJzs7G4CZM2ditVpZvHgxH330EZdddhkAP/vZz1i4cCEATz755LDqnHprf2BgIKtWreryD2/mzJkkJiZy++238/7773PJJZd4Kny36fy5DBdRUVGkp6d3+/e7fv16/Pz8uOyyy7p9a/nVV18Bjp85wP/8z/9gMjkuYN9///1e1UENtP0jR45k9erVBAUFdWyfPXs2I0aM4M9//jMbNmzgtNNOc39D+skVP/977723y/b2z+Wmm25i1apVXH755W5sgW9R36S+qSfDrW9Sv6R+aaj2Sxqq10ftv5COHDnS8Vr7f0hf8O32m83mHrP1yZMnA47MX7zHzJkz2bdvH4cPH+54be3atWRlZXHmmWeybds26urqOratW7cOs9nc8YvX2/8vDKT9QUFBXTqndt70f2GgP/+eREVFAeDnp+/n3El9k/qm4Ur9kvqlodgvefe/qkHUPj48JSXFs4F4SF/b357xe+vwgN7YbDZaW1u73KxWq6fDGrBZs2YBdPl2Z+3atcyYMYNTTjkFwzDYsGFDl22ZmZmEhoYOeqzu4I72e9P/BVe1v7W1lcbGRvLz83nggQdISUlh3rx5g9MIH6W+SX0TDM++Sf2S+iUYev2SEqcTaP8lVF9fT25uLsuWLWP69Omcc845ng5tUPSn/WVlZfzlL38hKyuLs88+exCjHTw/+MEPmDRpUpfbcBgeMX36dEwmU8cvqKqqKgoKCpg+fTrBwcFkZmZ2/MI9dOgQRUVFHZfDhwNXt3/Hjh088cQTzJs3j4yMjEFpw0C4ov3l5eVMmjSJKVOmcOmll2K1WnnuuecIDg4e9PYMZ+qb1Df1ZDj2TeqX1C8NxX5JYyhO4Ac/+EGX56mpqfztb3/zmWEnzra/urqaG2+8EbvdzqOPPur1l8hP5E9/+hOpqaldXhvKEyz7Kjw8nIyMjI4xw+vXr8dsNnPKKacAjl9g7b+g2vcZTh2UK9tfVFTELbfcQkJCAv/zP/8zCNEPnCvaHxkZyb///W+am5vZu3cvTzzxBNdeey3PP/88cXFxg9ia4U19k/qmngzHvkn9kvqlodgvDc/fIC7wpz/9iX//+988++yzXHnllezZs4c77rjD02ENGmfaX1NTww033EBZWRlPPfUUo0aNGuRoB09qairZ2dldbllZWZ4OyyVmzpxJYWEhZWVlrF27lkmTJnV8KzNjxgy2b9/O0aNHWbt2LX5+fpx66qkejti1XNH+4uJirr32WsxmM88++ywRERGD3Ir+G2j7/fz8yM7O5tRTT+WKK67g2WefpaioiBUrVniiOcOW+ib1TT0Zrn2T+iX1S0OtX1LidALtv4RmzZrF/fffzxVXXEFubi7vvfeep0MbFH1tf01NDddffz1FRUU8/fTTXnH5V3rW/k3NunXrWLduHdOn///t3XlMFOcfBvBnEQ/wYEUuo1IF3ZVjg6iwilCRWhWLBVuPJs1CFARUqBU1ivaAtorGGiNLCSDGq8SgFQwoVYvW2CayKhZKrSgFpJa2ihyiopzz+4Ps/NwCLipCK88nIYR33t35zuywT97Zd2ZdxGXaN6NLly5Bo9FAoVC8clOwXnT7y8vLoVKpAAAHDhyAlZVVN1XeNbr69beysoKFhUWb7xiiF8NsYjb1Jswl5hLw78olDpw6ad26dTAxMUFsbCxaWlp6upxu1972a4Pp1q1b2LNnD+zt7Xu4SnoRLi4u6NOnD06dOoWioiK4urqKywYPHgw7OzscO3YM5eXlr9R0CK0X2f4///wTKpUKLS0t2L9/P0aMGNHd5b+wrn79y8rK8Pfff+O11157mWX3eswmZtOrjLnEXPq35VLvmBTdBUxMTBAcHIzt27cjMzMTvr6+qKqqEi9au3HjBgDg/PnzMDU1hampqc4L/F/3z+2fPXs2AgMD8euvv2Ljxo1obm5GXl6e2N/U1BTW1tY9V/BLUlRU1O6diqytrcXbXP5XDRo0CPb29sjOzoaBgUGbj7xdXFywf/9+AG3nEZeXl6OgoAAA8PvvvwOAeAZ4xIgR/4mLlJ93+ysrK+Hv74+Kigps3rwZlZWVOreGtrKy+k+c5Xve7S8sLERMTAxmz56NUaNGwcDAADdu3MC+ffsglUqxdOnSbt2O3obZxGwCXt1sYi4xl/5tucSB0zNQqVRISUlBfHw8fHx8UFRUhFWrVun0iY6OBtA69/LgwYM9UeZL8+T2Ozs7i29ImzdvbtN3/vz52Lp1a3eX+NJFRka22/7FF19g4cKF3VxN11MqlSgoKICdnR0GDRqks8zFxQX79u1D37594ezsrLNMo9G02Tfa/43/0rHwPNv/22+/4datWwBaz37/U1hYGMLDw19u4V3kebbfzMwMFhYW2Lt3LyoqKtDU1AQrKyt4enoiNDQUw4cP7+7N6HWYTcymVzmbmEvMpX9TLkkEQRCe+9FERERERES9AK9xIiIiIiIi0oMDJyIiIiIiIj04cCIiIiIiItKDAyciIiIiIiI9OHAiIiIiIiLSgwMnIiIiIiIiPThwIiIiIiIi0oMDJyIiIiIiIj04cKJukZaWBrlcLv7Y29vD3d0dq1evxs2bN3u6PABAQkICsrOz27RrNBrI5XJoNJoeqKrV2bNnERoaCjc3Nzg6OsLV1RUBAQHIyMhAY2Njj9X1T+3tqw0bNsDLy+ulrvf27dtQq9W4du3aS10PEb1amE0vhtn0dMymV49hTxdAvUtMTAxsbGxQX1+PK1euICEhARqNBt9++y1MTEx6tLbExETMnj0bM2fO1Gl3cHBAamoqxo4d2+01CYKAjRs3Ii0tDdOnT8eGDRswfPhw3L9/HxqNBtHR0aiurkZAQEC319ZZK1asgL+//0tdx507dxAXF4cRI0bAzs7upa6LiF49zKZnw2zqHGbTq4cDJ+pW48aNg0KhAAAolUo0NzdDrVYjOzsb7777bg9X175BgwZhwoQJPbLu5ORkpKWlITw8HGFhYTrLvLy8EBQUhLKysm6t6fHjxxgwYECn+1tbW7/EaoiIXhyz6dkwm6i34lQ96lHaoKqsrNRpLygoQGhoKFxdXaFQKODn54esrCydPlVVVYiKisLcuXPh7OyMqVOnwt/fH5cvX26znoaGBsTFxcHb2xsKhQJKpRIqlQpXrlwBAMjlctTV1SE9PV2csqFSqQB0PB3izJkzWLx4MZycnODs7IwlS5bgp59+0umjVqshl8tRVFSEiIgITJo0CW5uboiMjMT9+/efum8aGxuRnJwMGxsbrFy5st0+5ubmmDx5svh3TU0NoqKi4OHhAUdHR7zxxhvYuXMnGhoadB5XX1+PHTt2wMvLC46OjvDw8EB0dDRqa2t1+nl5eSEkJASnT5+Gn58fFAoF4uLiAADFxcUIDAyEk5MTlEolPvnkEzx8+LBNje1Nh5DL5fjss89w7NgxeHt7w8nJCW+//Ta+//57nX5lZWWIjIzErFmz4OTkBA8PD4SGhuL69etiH41GgwULFgAAIiMjxddPrVaLfTpzPBERaTGbOsZsYjb1ZvzEiXrUH3/8AQAYPXq02JaTk4OgoCA4OTkhKioKgwcPRlZWFlavXo3Hjx/jnXfeAdD6RgwAYWFhMDMzQ11dHb777juoVCrs27cPSqUSANDU1ISgoCDk5ubC398fU6ZMQXNzM/Lz8/HXX38BAFJTUxEQEAClUokVK1YAaD2b15HMzEysXbsW7u7u2LFjBxoaGpCcnCyu+8nAAIDw8HDMnTsXCxYswI0bN7Bjxw4ArdNDOvLLL7+gpqYGCxcuhEQi0bsv6+vr4e/vj1u3biE8PBxyuRyXL19GUlISrl27hqSkJACtUyxWrFiBnJwcBAcHY/Lkybh+/TrUajXy8vKQmpqKfv36ic979epVFBcXY/ny5Rg5ciSMjIxw9+5dqFQqGBoa4tNPP8WwYcOQmZmJzz//XG+dWufOnUNBQQE++OADGBsbIzk5GWFhYTh58iRGjRoFoHWag1QqxZo1a2Bqaop79+4hPT0dixYtQnp6OmxsbODg4ICYmBhERkZi+fLl8PT0BABYWVkB6PzxRESkxWxiNjGbqF0CUTc4evSoIJPJhLy8PKGxsVF48OCBcP78eWHatGnC+++/LzQ2Nop958yZI/j5+em0CYIghISECNOmTROam5vbXUdTU5PQ2NgoBAQECCtXrhTb09PTBZlMJhw+fPipNU6YMEFYv359m/acnBxBJpMJOTk5giAIQnNzs+Du7i74+Pjo1PLgwQNh6tSpwuLFi8W22NhYQSaTCbt379Z5zqioKEGhUAgtLS0d1nPixAlBJpMJhw4demrdWocOHRJkMpmQlZWl056UlCTIZDLhxx9/FARBEM6fP99uTdr1paamim0zZswQ7OzshJKSEp2+27dvF+RyuXDt2jWd9iVLlujsK0EQhPXr1wszZszQ6SeTyQQ3Nzfh/v37YltFRYUwfvx4ITExscNtbGpqEhoaGoRZs2YJW7ZsEdt//vlnQSaTCUePHm3zmOc9nojo1cdsYjY9idlE+nCqHnWrRYsWwcHBARMnTkRQUBCGDBmC+Ph4GBq2fvhZVlaGkpISzJs3D0DrGTntz+uvv46KigqUlpaKz3fo0CHMnz8fCoUC9vb2cHBwwIULF1BcXCz2+eGHH9C/f/8um6deWlqKO3fuwNfXFwYG//8XGjhwIGbNmoX8/Hw8evRI5zHtTQeor69vMw3kReTk5MDY2Bhz5szRadeetbpw4YLY78l2LW9vbxgbG4v9nqx1zJgxOm0ajQbjxo3D+PHjddp9fHw6Xa9SqdQ5c2pmZoZhw4ahvLxcbGtqakJCQgLmzp0LR0dH2Nvbw9HRETdv3tR5jTvyrMcTEfVOzKZWzCZmEz0dp+pRt9q2bRtsbW3x8OFDZGVlITU1FREREUhOTgYA3L17V+y3bdu2dp+juroaALB3715s3boV7733HlatWoWhQ4fCwMAAu3btQklJidi/qqoKFhYWOkHyIrTrNzc3b7PMwsICLS0tqK2thZGRkdgulUp1+mmnGzx+/LjD9QwfPhzA/6eM6FNTUwMzM7M2UyeGDRsGQ0NDcfpITU0NDA0NYWpqqtNPIpHAzMxM7KfV3nbW1NRg5MiRbdrNzMw6VSvQdp8Arfulvr5e/Hvr1q1ISUnBsmXL4OLiAhMTE0gkEnz00Uc6/TryLMcTEfVezKZWzCZmEz0dB07UrWxtbcWLbqdMmYKWlhYcOXIEJ0+exJw5czB06FAAQEhICN588812n0N7hikjIwOurq6Ijo7WWf7Pi0BNTU2Rm5uLlpaWLgkobY0VFRVtlt25cwcGBgYYMmTIC6/H0dERUqkUZ86cwZo1a/TOJZdKpcjPz4cgCDp9Kysr0dTUJNYtlUrR1NSEqqoqnYASBAF3794VXx+t9tYrlUrFN/4ntdf2IjIyMuDn54eIiAid9urq6k7t42c5noio92I2dR6zidnUm3GqHvWodevWwcTEBLGxsWhpaYGNjQ1Gjx6NwsJCKBSKdn+0H6FLJBKdC0UBoLCwEHl5eTptHh4eqK+vR1pa2lNr6dev31PPsmmNGTMGlpaWOH78OARBENvr6upw+vRpTJgwQeeM3vPq27cvgoKCUFJSgq+++qrdPpWVlcjNzQUATJ06FXV1dW2+KPHYsWPi8id/Z2Rk6PQ7deoU6urqxOVPo1QqUVRUhMLCQp3248eP69+wZyCRSNC3b1+dtnPnzuH27ds6bR2dJX2W44mISIvZ1DFmE7OpN+MnTtSjTExMEBwcjO3btyMzMxO+vr6Ijo7GsmXLEBgYiPnz58PS0hL37t1DcXExrl69itjYWACAp6cn4uPjERsbCxcXF5SWliI+Ph4jR45Ec3OzuA4fHx+kpaUhKioKpaWlUCqVEAQB+fn5sLW1xVtvvQUAkMlkuHjxIs6ePQtzc3MMHDgQNjY2bWo2MDDAunXrsHbtWoSEhGDx4sVoaGjAnj17UFtbizVr1nTZ/tGGk1qtRkFBAXx8fMQvGbx06RIOHz6M8PBwTJo0CX5+fkhJScH69etRXl4OmUyG3NxcJCYmYvr06XBzcwMATJs2De7u7vjyyy/x4MEDTJw4EdevX0dsbCzs7e3h6+urt66AgAAcPXoUwcHB+PDDD8U7Fz05DaUreHp6incoksvluHr1Kvbs2SPelUjL2toaAwYMQGZmJmxtbWFsbAwLCwtYWlp2+ngiItJiNj0ds4nZ1Ftx4EQ9TqVSISUlBfHx8fDx8cGUKVNw5MgRJCQkYMuWLaitrYVUKoWtrS28vb3Fx4WGhuLRo0f45ptvkJycjLFjxyIqKgrZ2dm4ePGi2M/Q0BC7d+9GYmIiTpw4gf3792PgwIEYP348PDw8xH6bNm1CdHQ0IiIi8OjRI7i6uuLgwYPt1jxv3jwYGRkhKSkJq1evRp8+feDk5IQDBw5g4sSJXbZvJBIJYmJiMHPmTBw+fFjcH9r6165dK15I279/fxw4cAA7d+5EcnIyqqurYWlpiaVLl+p8QaFEIkF8fDzUajXS0tKQkJAAqVQKX19fREREtDlT2h5zc3N8/fXX2Lx5M6KiomBkZISZM2fi448/Fm+Z2xU2bdoEQ0NDJCUloa6uDvb29lCr1di1a5dOPyMjI2zZsgVxcXEIDAxEY2MjwsLCEB4e3unjiYjoScymjjGbmE29lUR48vNcIiIiIiIiaoPXOBEREREREenBgRMREREREZEeHDgRERERERHpwYETERERERGRHhw4ERERERER6cGBExERERERkR4cOBEREREREenBgRMREREREZEeHDgRERERERHpwYETERERERGRHhw4ERERERER6fE/i7omVFhM0k0AAAAASUVORK5CYII=",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0MAAAHaCAYAAADCNpJNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACZyUlEQVR4nOzdd3jUVdr/8fd3Jo30BAKk03tIgFAFFLBj74+7tnVtq+7+dPexrPpYtqH7rPoI6IrdVbGLq6tYsKF0JCH0HlIgENJ7MjO/P76ZkJAAmZSZJPN5XVeumXzLzH0Gzcmdc859DIfD4UBERERERMTLWDwdgIiIiIiIiCcoGRIREREREa+kZEhERERERLySkiEREREREfFKSoZERERERMQrKRkSERERERGvpGRIRERERES8kpIhERERERHxSkqGRERERETEKykZEhERERERr6RkSEREREREvJKPpwOQnmf48OEAbN++vdPfw8lisRAaGsqIESO44oormDt3bqe9d+P3t1gsfP3118TGxrZ43bnnnsvu3bsBeOWVV5g2bVqL12VkZPDWW2+xZs0aDh8+jI+PD7GxsUyfPp3rr7+efv36HTeG4/nb3/7GJZdc4kqz2mT37t289dZbrF69mgMHDlBdXU14eDijRo3ijDPO4IILLsDf37/ZfW1ps4hIW6hfOqon90ut+XeePXs2OTk5LFu2jLi4uDa9j/qvnkXJkHRrd9xxBwB1dXXs3buXr7/+mlWrVrFp0ybuvffeTn1vHx8f6urq+PDDD7nzzjubnV+/fj27d+9uuK4lDoeD//3f/+XFF1/Ex8eHadOmcfbZZ1NbW8uGDRt4+eWXWbx4MfPmzePss89u8TWcn8GxRo4c2fbGtdKCBQtYuHAhdrudlJQULr74YoKCgsjPz2fdunU8+OCDLF68mA8//LDhno5os4hIV6V+ybP9UmdS/9VDOUQ62LBhwxzDhg3zyHusWLHCMXz4cMeIESMc2dnZnfr+M2bMcFx88cWO0047zWGz2Zpdc9999zlGjx7t+PWvf+0YNmyY46effmp2zfz58x3Dhg1zzJo1y7Fjx45m55cuXepISkpyjBw50rFixYpmMXT253wizz77rGPYsGGOU0891ZGWltbiNd9//73jmmuuaXKsPW0WEWkL9Uumnt4vteb9Z82a5Rg2bJgjKyvL5ddX/9Uzac2QdLrs7GyGDx/OfffdR3Z2NnfddReTJ08mKSmJSy65hGXLlnXYe02dOpVBgwZht9vJyMhg9+7dDB8+nGuvvfa495x//vmMHj2aw4cPN4t39+7d/Pa3v2XKlCmMGDGC1atXN7n3sssuIzc3l59++qnJ8bKyMpYuXcrs2bPp3bt3i++blZXFc889h6+vL8899xxDhw5tds1ZZ53F/fffj81m45FHHsFut7v6kXSK7OxsFi5ciK+vL4sWLSI5ObnF62bOnMmLL77Y8H13brOI9Bzql3pev9TZ9Nn0XEqGxG1ycnK4/PLLycnJ4cILL+Tcc89l586d3H777axcubLD3sfhcDQ8Hzx4MJMnT2b16tXs3bu32bXr169nx44dzJkzh6ioqCbnMjMzufLKKzlw4AAXXHABl112GUFBQU2uOf/88+nVqxfvvfdek+OffPIJFRUVXHbZZceN88MPP6Suro45c+accJ715ZdfTlRUFPv27WPNmjUnbLu7fPjhh9TW1nLmmWcybNiwE17r5+fX5L7u2mYR6XnULzWln9HHp8+m59KaIXGbNWvWcOeddzaZS3zeeefx61//mpdeeompU6e2+z1WrVrFvn37MAyDMWPGAHD11VezevVq3n333Wbztd955x0Arrzyymav9fPPP3PLLbdw9913H/f9QkJCOOuss/jPf/5DQUEBkZGRALz33nvExMQwffp0PvvssxbvXb9+PQCnnHLKCdvk4+PD5MmT+fTTT/n555+ZMmVKk/Pz589vdk9sbGynLlJdt24dgMv/Zh3VZhGRjqB+qanu3C+d7P2dSkpK2vSa6r96LiVD4jaxsbHcdtttTY7NmDGDmJgYMjIy2vSazh94zoWqy5Ytw263c/311zdUiTn99NPp27cvH330EXfddVfDSEVxcTFLly4lISGhxWo6ffr0Oe4i0MYuv/xylixZwscff8wNN9zA1q1b2bx5M3fccQcWy/EHX/Pz8wHo37//Sd/Dec2hQ4eanVuwYEGzY5MmTerUTscZu6sVczqqzSIiHUH9UlPduV862fu3l/qvnkvJkLjNyJEjsVqtzY7379+ftLS0Jsda+qvOxRdf3KwMpvMHnmEYhIaGMn78eC677DIuvPDChmt8fHy44oorWLBgAV9++SXnnXceAB999BHV1dVcccUVGIbR7P1GjBjRZIrX8aSmpjJw4EDef/99brjhBt59910sFguXXnrpCe9zTpto6b2P5bympWvbUyq2tZ/zsVyJva33tdTm559/ni+//JK9e/fi5+dHSkoKd99990mn6omItET9UlPduV9q7fs7S2s31pq+paM+G+l6lAyJ24SEhLR43MfHp9kiw+P9VenYH4at/YF7xRVX8M9//pN33nmnodN599138fX1PW7n0KdPn1a9NpgLVv/+97+zcuVKPv30U6ZNm0ZMTMwJ74mKimLPnj0cPHjwpK/vvObY+ePt1drP+Vh9+/ZtdeyNtbfNa9as4eqrryYpKQmHw8EzzzzDDTfcwH/+8x/Cw8NdikVERP1SU925X2qP1vQtXeGzkc6hZEi6pI7eGK9fv37Mnj2bL7/8kj179nDkyBF2797N3LlzG+ZTH8uVv+hcfPHFPP3009x3332UlJSccIGq04QJE1i9ejUrVqzg8ssvP+51NputoVrQ+PHjWx1Ta7T1c54wYQKrVq1i1apVJ4y9pfva0+aXXnqpyXVPPPEEqamp/Pzzz8yePdvFVoiItJ76paO6Yr/UHq3pW7rCZyOdQ9XkxGtcffXVgPmXt7fffhtoeYFqW/Tu3ZvTTjuNgwcPEhERwZw5c056zyWXXILVauWrr75i165dx73ugw8+4NChQwwcOJBJkyZ1SLztdckll+Dr68sXX3xxwtgBampqmtzXkW0uLy/HbrcTGhrqeiNERDxM/VLX1FLfos+m51IyJF5j6tSpDBw4kI8++ogvv/ySgQMHMnny5A57/XvvvZeFCxeyaNGiVs3pjo+P55ZbbqG2tpZbb721xR+uX3/9NX/5y1+wWq08/PDDJ1z46k5xcXHccccd1NbWcvPNNx93ofEPP/zAr3/964bvO7rNf/nLXxg5ciTjxo1rf6NERNxM/VLX1FLfos+m59I0OfEqV111FX/7298annek+Ph44uPjXbrnzjvvpLKykldeeYULL7yQ6dOnM2TIEOrq6tiwYQPp6ekEBATwj3/8o0NKvHakW2+9lbq6OhYuXMhll13GuHHjGDNmDEFBQeTn57Nu3Tr27dvXUErWqaPa/Pjjj7N+/XoWL17c4gJoEZHuQP1S13KivsXbP5ueSsmQeJWLL76Yxx9/HF9fXy666CJPh4PFYuG+++7j3HPP5c0332Tt2rWsXLkSq9VKbGwsv/rVr7juuutaVcrTE+644w7OOecc3nrrLVavXs2HH35ITU0N4eHhjBgxgl//+tdNKihBx7T5b3/7G//5z3947bXXXO7oRUS6EvVLXcfJ+hZv/mx6MsPReFtkkR5u5cqVXH/99Vx44YU88cQTng5H2uDPf/4zn332Gf/6178YPHiwp8MREWkX9Utdg/oW76WRIfEqL774IgC//OUvPRyJtMUjjzzCv//9bxYuXEhoaCiHDx8GIDAwkKCgIA9HJyLiOvVLnqe+xbtpZEh6vG3btrFs2TI2b97MsmXLmDNnDs8++6ynw5I2GD58eIvH77jjDu688043RyMi0jbql7oW9S3eTSND0uNt2bKFZ555huDgYM4991wefvhhT4ckbeSJ/SdERDqa+qWuRX2Ld9PIkIiIiIiIeCUVQBcREREREa+kZEhERERERLxSj1kzZLfbqaurw2KxYBiGp8MREfEaDocDu92Oj4+Pdlw/hvomERHPaG3f1GOSobq6OjIyMjwdhoiI10pKSsLPz8/TYXQp6ptERDzrZH1Tj0mGnBlfUlISVqvV5fttNhsZGRltvr+7U/vVfrVf7W/vz0+NCjWnvql91H61X+1X+zu7b+oxyZBz+oHVam3XfzDtvb+7U/vVfrVf7W8rTQNrTn1Tx1D71X61X+1vq5P1TfoznoiIiIiIeCUlQyIiIiIi4pWUDImIiIiIiFdSMiQiIiIiIl5JyZCIiIiIiHglJUMiIiIiIuKVlAyJiIiIiIhXUjIkIiIiIiJeScmQiIiIiIh4JSVDIiIiIiLilZQMiYiIiIiIV1IyJCIiIiIiXknJkIiIiIiIeCUlQ4DD4eDeDzJ4f2uZp0MRERExFedgWXwloXmrPB2JiEiPpWQIKK2u4/2fc3h7Uxll1XWeDkdERASy12Ds+or+uxZ7OhIRkR5LyRAQGuBLdFgADmBzbomnwxEREYGoEQAEFu8Eu83DwYiI9ExKhuolx4UBkJ5d7OFIREREgD7DcPgGYrVVwZFdno5GRKRHUjJUb2x9MrQxu8izgYiIiABYrNA/CQDjQJpnYxER6aGUDNUbq5EhERHpYhzRyeYTJUMiIp1CyVC9MTFhGEBuURWHS6s9HY6IiAhEjwPAOJDu4UBERHomJUP1QgJ8iA31ATRVTkREuoaGkaGDG1VEQUSkEygZamRopC8A6VlFng1EREQEoPdQbNYAjNoKyN/p6WhERHocJUONDKlPhtK0bkhERLoCi5WKsKHmc60bEhHpcEqGGmk8MuRwODwcjYiICEeTodwNng1ERKQHUjLUSEKYD35Wg+LKWjKPVHg6HBERESrChplPctM8GoeISE+kZKgRX4vBqJhQANJVREFERLqAivD6ZEhFFEREOpySoWM07DeUpXVDIiLieVXB8Th8g0BFFEREOpySoWMkx4UDGhkSEZEuwrBC/yTzudYNiYh0KCVDx0iuHxnalFNMrc3u4WhEREQa7TekinIiIh1KydAxEiMDCQ3wobrOzvaDpZ4OR0REBKLHmY8qoiAi0qGUDB3DYjFIjg8HNFVORES6hoaRIRVREBHpUEqGWnC0iEKRZwMREREB6D0EGooo7PB0NCIiPYaSoRY0FFFQRTkREekKLFZwjg5pqpyISIdRMtSClPppcjsPlVJeXefZYERExO1Wr17N8OHDW/xKS0vzTFAxKeajKsqJiHQYH08H0BX1DQ0gOiyAA8VVbMopZvKg3p4OSUREPODuu+9m8uTJTY4NHTrUM8FEp5iPqignItJhukQytGXLFhYsWMDGjRspLS0lOjqa8847jxtvvJFevXp5JKbkuHAOFB8kPbtIyZCIiJdKTEwkJSXF02GYYuoryh3MAFsdWLtEFy4i0q15/Cfprl27uOqqqxg4cCB//OMfiYiIYN26dTz77LNs3ryZ5557ziNxJceHs3TzQa0bEhGRrqH3EPALhpoys4hCv1GejkhEpNvzeDL0ySefUF1dzfz580lISABg6tSpHD58mHfeeYfi4mLCwsLcHldyvPmeaaooJyLitR577DHuvvtuAgICGDduHLfddhupqakuv47N1rZy2M77bDYbWK1Y+idh7F+JPednHH2Gt+k1u5Mm7fdCar/a3/jR27S3/a29z+PJkK+vLwDBwcFNjoeEhGCxWBrOu1tSbBiGATlFlRwurSYqxN8jcYiIiPuFhIRw7bXXMnnyZMLDw8nMzOSll17i2muv5fnnn2fGjBkuvV5GRka74nHeH+cTSz8gP+Nrshwj2/Wa3Ul7P7/uTu1X+71ZZ7ff48nQRRddxGuvvcYjjzzCf//3fxMREcHatWt55513+MUvfkFgYKBH4goJ8GVwVDC7DpWxMbuIOSP7eSQOERFxv1GjRjFq1NFpaKmpqZxxxhmcf/75/P3vf3c5GUpKSsJqtboch81mIyMjo+F+w3oG7HmfqNpseneVtUyd6Nj2exu1X+1X+9vefuf9J+PxZCguLo63336bO+64g9NPP73h+DXXXMMDDzzg8ut1yFSEemNjQ9l1qIy0/YWcNqxPm163u9BQrNrf+NHbqP3umYrQ3YWGhnLaaafx9ttvU1VVRUBAQKvvtVqt7fplpuH+2PEAGAc3YcXhNUUU2vv5dXdqv9qv9nde+z3+UzQ7O5vbbruN3r1788wzzxAZGUl6ejrPPfccFRUV/PWvf3Xp9TpqKgJAbyoA+HFrFqf1KW/X63YXGopV+72Z2u/d7W8Nh8MBgGEYnglARRRERDqUx5Ohf/zjH5SVlbFkyZKGKXETJ04kIiKCP/7xj1x00UVMmjSp1a/XUVMRACx9inlhw0r2FjtITk72XOfnBhqKVfvVfrW/s6cidHfFxcV89913jBw5En9/D60jtVggOhkyfzI3X1UyJCLSLh5PhrZu3crgwYObrQ1KSkoCYOfOnS4lQx02FQEYHRuOn9VCUWUtOcXVJPYOavPrdhcailX71X61X+D3v/890dHRjBkzhoiICDIzM3n55Zc5cuQI8+bN82xw0SlmMnQgDcb9wrOxiIh0cx5Phvr27cvOnTspLy8nKOhospGWlgZAv36eK1zg52NhVEwoaVlFpGUVeUUyJCIiMHz4cD777DPefvttKioqCAsLY8KECTzxxBOMHTvWs8HFpJiPuWmejEJEpEfweDJ03XXXcfvtt/OrX/2K6667joiICNLT03n++ecZMmQIM2fO9Gh8KfHhpGUVkZ5VzIUpsR6NRURE3OPmm2/m5ptv9nQYLYsZZz4ezABbndcUURAR6Qwe/wk6Z84cXn31VV544QX++te/UlpaSv/+/bnqqqu4+eab8fPz82h8Y+PMzVfTs4s8GoeIiAgAkYPBLwRqSiF/O/Qb7emIRES6LY8nQwBTpkxhypQpng6jRcnx4QBsyimm1mbH12rxbEAiIuLdLBaIHltfRCFNyZCISDvoN/uTGNg7iJAAH6rr7OzIK/V0OCIiIkenyh1I82gYIiLdnZKhk7BYDJLjwgFIzyr2bDAiIiJgVpQDs7y2iIi0mZKhVkiOr183lFXk2UBERETgaEW5g5vMIgoiItImSoZaoWFkSEUURESkK3AWUairNIsoiIhImygZaoWU+iIKO/JKKa/WX+BERMTDLBaITjafa6qciEibKRlqhb6hAfQPDcDuMKvKiYiIeJw2XxURaTclQ63UsG5IU+VERKQrUEU5EZF2UzLUSs79htKzNTIkIiJdgLOi3MEMFVEQEWkjJUOtlNJQXrvIo3GIiIgAEDmovohCFRze5uloRES6JSVDrTQmLgzDgOzCSvLLqj0djoiI9HC5RZX86rV1rD9Q1fIFFsvRdUOaKici0iZKhlopNMCXwVHBAGzUuiEREelk6VlFfL8jnw+2lh//IlWUExFpFyVDLnDuN5SWpXVDIiLSuUbHmIV7dhfWUl1ra/kiZxEFVZQTEWkTJUMuaKgop3VDIiLSyeIjexEV7E+dHTJySlq+yJkM5W1SEQURkTZQMuQC58hQenYRDofDs8GIiEiPZhgG4xPDAVi/v7DliyIGgn+oiiiIiLSRkiGnnPX4l+0/4SUjokPws1ooqqglq6DSTYGJiIi3mpAQDsDPmUUtX2CxaN2QiEg7KBkCqCnH8vKZDF9xF9iPMy8b8PexMjImFIA0FVEQEZFONiExAoCf9xcef0aCKsqJiLSZkiEAnwDwD8a3uhDyNp/w0pQ4rRsSERH3GBUdip8FCipq2ZN/nKpyzs1XVURBRMRlSoYALFaImwSAsX/FCS9Njg8HlAyJiEjn8/OxMCTSF4D1+46zbshZROFgBthq3RSZiEjPoGSoniNhKgDG/pUnvM6ZDG3KLabWZu/ssERExMsN7+MHwPrMkxRRsFWriIKIiIuUDNVzJEwzn2StghNUihvYO4gQfx+qau3syCt1U3QiIuKtRvQ2R4bWZRa0fEGTIgpp7glKRKSHUDLkFDMOu8UXo/wwHNl93MssFoOxDfsNafNVERHpXM6Rod2Hyyksr2n5ImcRBVWUExFxiZIhJx9/ysNHmM9Ptm6ofr+hjaooJyIinSzEz8KQqCDgBFPlnEUUVFFORMQlSoYaKYscaz7JbF0RhTQVURARETcYn2CW2F53vGSooYjCJhVREBFxgZKhRsp6J5lPTpIMpdQnQzvySqmoqevkqERExNtNSAwH4OfjJUORg8A/zCyicGir+wITEenmlAw1UhYxGodhgaJMKMk97nX9QgPoHxqA3QGbckrcGKGIiHgj5+ar6dlF1NS1UMnUMCC6fnaDpsqJiLSakqFG7L5B0K91o0PJ8dp8VURE3GNA70B6B/lRXWdnU+5xivc4p8qpopyISKspGTqGI2GK+aSV+w2lqYiCiIh0MsMwGF8/OnT8zVdTzEdVlBMRaTUlQ8dwbr560pGh+opyGhkSERF3cE6VO+5+Q86KcnmbVURBRKSVlAwdK75+ZOjQFqg4TocDJMWZ0+SyCys5UlbtjshERMSLpTpHhjKLcLS0ObiKKIiIuEzJ0LGC+0LvoebzrNXHvSw0wJfB9fs+bMzW5qsiItK5xsSG4We1kF9Wzf6CiuYXGAbEJJvPNVVORKRVlAy1JLGVU+W035CIiLhJgK+1YVbCuuOtG9LmqyIiLvFpy007d+7k559/Ji8vj6qqKiIiIhgyZAgTJ04kODi4o2N0v4Rp8PPrJy2ikBIfzoc/55CuIgoiIuIGqYkRrM8sZF1mIZdOiGt+gSrKiYi4pNXJUHFxMe+88w7vvPMOubm5Lc5X9vHxYebMmVxzzTVMnTq1QwN1K+fIUO4GqCkHv6AWL2tcRMHhcGAYhpsCFBERb+SsKHfczVedFeXyNkNdDfj4uScwEZFuqlXJ0Ouvv87ChQsBOPfcc5k0aRKjR48mMjISf39/iouLycrKIi0tjWXLlvGrX/2KadOm8T//8z8kJiZ2agM6RXgihMRAaS5kr4NBp7Z42YjoEPysFgoraskqqCShd6CbAxUREW/irCi341ApxZW1hPXybXpBxEAICIOqYji8FaKTPRCliEj30ao1Q//617+4//77+fHHH3n44Yc555xzSEhIIDg4GF9fX/r06cO4ceO44YYbeOONN/jiiy/o27cvn3/+eWfH3zkMAxKnmc9PMFXO38fKyOgQQPsNiYhI5+sT7M/APkE4HPDz/hZGhwzj6LohTZUTETmpViVDn3/+ORdddBG+vr4nvxhISEjgb3/7GzfddFO7gvMoF4soaL8hERFxhwmt3XxVRRRERE6qVcnQzp072/TiVqu1Tfd1CQn1I0PZa0+4eZ1z3dBGjQyJiIgbtHrzVZXXFhE5qVYlQxdffDGXXHIJb731FqWlpZ0dU9cQNQICwqG2Ag6kH/cy58hQRk4xdTa7e2ITERGv5dx8NT2rmNqW+p1jiyiIiMhxtSoZuuWWWygoKOCxxx5j+vTp/OEPf2DVqlWdHZtnWSyQcPKpcoP6BBHi70NVrZ0deWVuCk5ERLzV4Khgwnr5UllrY+uBkuYXOIso2GrMIgoiInJcrUqG7rrrLr799lsWLVrErFmz+PLLL7nhhhuYM2cOzz77LAcOHOjsOD2jFUUULBaDsfHmJnjab0hERDqbxWIcnSrX0rqhJkUUNFVOROREWpUMARiGwcyZM3n66af58ccfeeCBBwgLC+OZZ57h9NNP58Ybb2Tp0qXU1h5/fU230zgZsh9/Clzj/YZEREQ6W0MRhZPtN6SKciIiJ9TqZKix0NBQfvnLX/Lhhx+yZMkSrr76arZs2cJdd93FzJkzOzpGz4lOBt9AqCyEw9uOe9nY+mQoTcmQiIi4QeMiCi1tgk7MOPNRFeVERE6oTclQYyNGjOCCCy5g9uzZABQVFbX3JbsOqy/EpZrP9x9/3VBKfRGFHXmlVNTUuSEwERHxZslx4fhYDPJKqskpqmx+gXOanIooiIicUJuToYKCAl599VXOP/98rrjiCj7++GNmzZrFwoULOzI+z0s8xXzMPP66of5hAfQL9cfugM25LSxmFRER6UC9/KyMjjXXq7Y4VS5igFkR1VYDh7a4NTYRke7Ex5WL7XY7P/zwAx988AHfffcdtbW1DBgwgLvvvpuLL76YPn36dFacnuOsKLd/JTgc5sLUFiTHhfPlljzSs4qYOCDSjQGKiIg3Sk2MID2riHX7CrkwJbbpScMw1w3t+c6cKudcQyQiIk20Khnau3cvH3zwAR9//DH5+fkEBARw3nnncemll5KamtrZMXpW3ESw+EBJDhTth4jEFi9LjjeTIa0bEhERd5iQGMFLP+5l3fGKKESnmMlQ7gaYcL0bIxMR6T5alQydc845AIwdO5Y777yTuXPnEhQU1KmBdRl+gWaHkrPO3G/oOMmQc92QymuLiIg7ODdf3X6whNKqWkICfJteoIpyIiIn1ao1Q9dddx2ffPIJ7777LldccYX3JEJOic6pcscvopAUZ87dziqo5EhZtTuiEhERN3nvvfcYPnw448aN83QoDfqGBhAf2Qu74zjVTJ0V5fI2Q536JRGRlrQqGbr//vsZOnRos+N79uxh/fr1VFRUdHhgXUoriiiEBvgyKMpMEjdmF7sjKhERcYO8vDwef/xx+vbt6+lQmklNNNeotrj5aniiWUTBXqsiCiIix9GmanJLlixh5syZzJ07l1/+8pfs3bsXgN/97ne8++67HRpglxA/2Xw8shPKDh/3shTtNyQi0uM8/PDDpKamcsopp3g6lGZOuPmqs4gCaKqciMhxuJwMff7559x3332MGjWKhx56qMlmb6NHj+bzzz/v0AC7hMBI6DvKfL7/+KNDyfXrhjZq3ZCISI/w8ccfs2bNGh555BFPh9IiZzK0YX8hdTZ78wu0+aqIyAm5nAwtWrSISy65hH/+859ceeWVTc4NGjSIXbt2dVhwXYqzxHbm8dcNJTcUUShueUdwERHpNo4cOcJf//pXfv/739O/f39Ph9OiYf1CCPH3obzGxva80uYXODdf1ciQiEiLXNpnCGD37t384Q9/aPFceHg4RUVF7Y2pa0qcButeOmERhZHRIfhaDQrKa8gurCQ+MtCNAYqISEd69NFHGThwIFdffXW7X8tms7XrvhPdn5IQzvKd+azde4QR/YKbnuw3FivgyNuMvboCfPzbFIentKb9PZnar/Y3fvQ27W1/a+9zORnq1asXpaUt/PUJc5FpWFiYqy/ZPThHhg5mQFUJBIQ2u8Tfx8qo6FDSs4tJyypSMiQi0k198cUXfPPNNyxZsgTjOJttuyIjI6PT7o/1qwLg67S9JAUcs3bI4SDZNxSf2hJ2/PgxFeHD2hWHp7T38+vu1H6135t1dvtdTobGjRvHm2++yVlnndXs3IcffsikSZM6JLAuJyzWrMxTlAnZa2DI6S1elhwfTnp2MelZRZyfHOPmIEVEpL3Ky8t57LHHuOaaa+jbty8lJSUA1NbWAlBSUoKPjw+Bga3/g1dSUhJWq9XlWGw2GxkZGSe8vzzkCG9vXsueUkhJSWl23rJlPOz5juGhFThaON+Vtab9PZnar/ar/W1vv/P+k3E5Gbr99tu5+uqrueyyyzj//PMxDIMvv/yS+fPns27dOt577z2Xg+02EqeZyVDmyuMnQ3HhQKY2XxUR6aYKCwvJz8/n5Zdf5uWXX252fuLEicyZM4dnn3221a9ptVrb9cvMie6fkBiJ1WKQW1TFobIaosN6Nb0gZhzs+Q7LgXTopr9Qtffz6+7UfrVf7e+89rucDCUlJfHCCy/w6KOPMm/ePACef/55EhMTWbRoEcOGdc8h+FZJmArpi09SRMGcJpiRU0ydzY6PtU3Vy0VExEOioqJ4/fXXmx1ftGgRa9eu5YUXXiAiIsIDkbUsyN+HkdEhbMopYX1mIeeNbSEZAlWUExFpgcvJEMCUKVP4/PPP2b9/P/n5+URERDBw4MCOjq3rSZxmPuasN3fzbmEh6qA+wQT7+1BWXceOvDJGxTRfWyQiIl2Xv78/kydPbnb8o48+wmq1tnjO01ITI9mUU8K6fYWcN/aYKdrOinJ5W47bd4mIeKt2DVskJCQwfvx470iEAHoPgaAosFVDzs8tXmKxGIyNM0eHtN+QiIi4wwk3Xw1PgF4RYK+FvM1ujkxEpGtrVTL02WefufzCeXl5rF+/3uX7ujTDOFpV7gQlto/uN1TU+TGJiIhbzJs3jw0bNng6jBY5k6EtB0oor65retIwjo4OaaqciEgTrUqGHnvsMS688ELee+89ysrKTnjtpk2bePTRRznrrLPYtm1bhwTZpTinyp1o3VBcOABpWcVuCEhERLxdTHgvYsICsNkdLf8hzrluSJuviog00ao1Q1999RXz58/nL3/5C4899hijRo1i1KhR9O7dGz8/P4qLi8nKyiItLY3Dhw8zdOhQ5s+fz4wZMzo7fvdzjgxlrQG7DSzNq1uk1I8M7cgrpaKmjkC/Ni3NEhERabUJAyLJTc9l/b5Cpg3u0/RkTIr5mNs1R7ZERDylVb+lh4SE8Mc//pHbb7+dDz/8kO+//54lS5ZQWVnZcE18fDwzZszg/PPPZ8qUKZ0WsMf1TwK/EKgugbxNEJ3c/JKwAPqF+pNXUs3m3BImDoj0QKAiIuJNUhMj+CQ9l3UtrRtyTpM7tFVFFEREGnFpyCIsLIwbbriBG264AYDS0lKqqqoIDw/H19e3UwLscixWSJgMu7429xtqIRkCGBsXzldb8kjPKlIyJCIinc65bujn/YXY7Q4sFuPoyfAE6BUJlQVmEYXY8R6KUkSka2lXNbmQkBCioqI6JBFat24dN910ExMnTmTs2LGceeaZLFy4sN2v2ylaUUTBOVUuLauo8+MRERGvN6J/CIF+Vkqr6thxqLTpScPQVDkRkRZ0iR1BP/nkE6655hpCQkJ4/PHHWbRoETfddBMOh8PTobWscRGF48ToLKKwMVtFFEREpPP5WC2MSwgHjlNiWxXlRESa8fjK/ry8PP7nf/6HK6+8kkceeaTheJdedxQzHqx+UH4YjuyGPkOaXZJUv9fQ/oIKCspriAzyc3eUIiLiZSYkRvLTriOs31fILyYnNj2pinIiIs14fGTovffeo6KigptuusnTobSebwDEpprPjzNVLqyXL4OiggDtNyQiIu6RWr9uqMUiCs5pcoe2Qm2V+4ISEenCPD4ytHbtWsLDw9mzZw+/+c1v2LlzJ2FhYZxxxhncc889BAcHu/R6NputTXE472vt/Ub8FCz7V2DftwJH8i9avGZsbBh7DpeTllnIzCG92xSXu7ja/p5G7Vf7Gz96m/a231s/t64oJSEcwzBnJRwqraJvSMDRk2HxR4soHNoMsRM8F6iISBfh8WQoLy+PyspKfve733HLLbeQkpJCRkYG8+fPZ+fOnbz11lsYhnHyF6qXkZHRrnhae39oXV+GArW7vmNTWlqL1/Q2ygFYviWLmb1PvFltV9Hez6+7U/vVfm/m7e3vCUIDfBneL4RtB0tZv6+Qc5Kij540DHOq3O5l5lQ5JUMiIq4nQ3/605/4xS9+waBBgzokAIfDQXV1NXfccQc333wzAJMnT8bX15e//vWvrFy5kmnTprX69ZKSkrBam2+EejI2m42MjIzW3189CMeaP+JfcYCUQX0hNKb5Nb2LeGnDKvaV2ElOTnYpqXM3l9vfw6j9ar/a3/b2O++XriF1QISZDGUekwyBOVVu9zIVURARqedyMrRkyRLeeustpkyZwi9+8QvmzJnTrl/yw8PDAZg+fXqT4zNnzuSvf/0rmzdvdikZslqt7fplptX3B0ZAvzFwcCPW7NWQdFmzS0bHhuNrNSioqOVASQ3xkYFtjstd2vv5dXdqv9qv9ntv+3uK1MRI3li1/8Sbr6q8togI0IYCCsuXL+fBBx/k8OHD3HHHHcyePZtFixZRUFDQpgCGDx/e4nFnWW2LxeM1Ho4v8RTzcf/KFk8H+FoZGR0KqIiCiIi4h3Pz1c25xVTVHrOey1lRTkUURESANiRDgYGB/OIXv+DTTz/llVdeYfTo0fzf//0fp512Gvfdd5/LUyXOPPNMAH744Ycmx53fJycnuxqi+yTWb76a2XIyBEf3G0rX5qsiIuIGcRG96BviT63N0bzvCYuDwN5grzOLKIiIeLl2DbtMnTqVBQsWsGzZMsaNG8fHH3/MFVdcweWXX84333zTqteYPn06s2bNYuHChTz77LOsWLGCRYsW8eSTTzJr1ixSU1PbE2LnSqhPhg5tgYqWR8aS48MBSM/S5qsiItL5DMMgdYA5OrR+f+GxJzVVTkSkkXYlQ1VVVbz33nvceuutrF69msGDB3P77bdjs9m4/fbbWbhwYate5+mnn+a6667j3Xff5aabbmLx4sVcf/31PPPMM+0Jr/MF94XeQwAHZK1u8ZKUeHPz1YycYupsdjcGJyIi3mpCYiQA6/e1tN+QNl8VEXFqU2nt/fv38+abb/LRRx9RVlbGzJkzueeeexoKHdxxxx08+eSTvPHGG9x+++0nfb2AgAD+8Ic/8Ic//KEt4XhWwlQ4sgsyV8Dwc5qdHtQnmGB/H8qq69h5qKxhDZGIiEhncW6+un5/IXa7A4ulUaEj5+arqignIuL6yNCvf/1rzj77bN5//30uvPBCli5dyj//+c9mFd9mzZpFYWELf5HqaU5SRMFiMUiKNUeHtG5IRETcYVRMKAG+FooqatmTf8w+d85pciqiICLiejKUlZXF/fffzw8//MADDzxAQkJCi9cNHTqU119/vd0BdnnOIgq5G6CmosVLGtYNqaKciIi4ga/V0lDAZ92xU+UaF1HIUxEFEfFuLidDX3zxBddccw1BQUEnvC44OJhJkya1ObBuIzwRQmLMTiV7bYuXONcNqYiCiIi4S0MRhWP3GzKMo+uGDqiIgoh4ty68iU83YRhHR4eOM1XOOTK0Pa+Uyhpbi9eIiIh0pFRnEQVtvioiclwuF1CYPXs2hmG0eM5isRASEkJSUhLXXnstgwcPbneA3ULiNNj0gVlEoQX9QwPoG+LPodJqNucWkzog0s0BioiItxmfYI4M7ckv50hZNb2D/Y+edBZRyE13f2AiIl2IyyNDkyZNwuFwkJeXR2xsLMnJycTExJCXl4fNZiM6OpqvvvqKSy+91OUNWLuthPriEdlrwVbb7LRhGA2jQ2kqoiAiIm4QFujL0L7BQAujQ85pcoe3Qm2lmyMTEek6XE6Gpk+fjp+fH1999RWvv/46Tz75JP/617/48ssv8fPz4/TTT+eLL75gwIABzJ8/vzNi7nqiRkBAONRWwIGNLV6S0lBEQeuGRETEPY67big0FgL7qIiCiHg9l5Ohf/7zn9x5551ER0c3OR4TE8Ptt9/OokWLCAkJ4frrryctLa2j4uzaLBZzvyGAzJ9avMRZ1UfltUVExF0mHG/dkGE0miqndUMi4r1cToYyMzMJDg5u8VxoaCg5OTkAxMbGUlnpRUPvJymikBRnVpTbX1BBQXmNu6ISEREv5tx8dWNOMdV1xxTwaagol+beoEREuhCXk6GYmBg++uijFs998MEHDSNGRUVFhIWFtS+67qTx5qt2e7PTYb18GdTHLEe+UfsNiYiIGyT2DqRPsB81dXY25RwzTbuhopyKKIiI93I5GbrxxhtZunQpV111Fa+++iqffvopr776KldddRVfffUVv/71rwFYvXo1Y8aM6fCAu6zoZPANhMpCyN/e4iUNm69qvyEREXEDwzAaqso123zVOU3u0BYVURARr+Vyae0rrrgCh8PB/PnzmTdvXsPxPn368Oijj3L55ZcDcOutt+Ln59dxkXZ1Vl+IS4W9P5gltvuObHZJclwYH23IIV0jQyIi4iapAyL4cktey0UUgqKg/LBZRCEu1TMBioh4kEvJkM1mY//+/ZxzzjlcccUV7Nmzh6KiIsLDwxk0aFCT/Yf69OnT4cF2eQnTjiZDE29sdvroyFARDofjuPs1iYiIdJTGRRSa9D2GYU6V2/WVWURByZCIeCGXpsk5HA7mzp3Lhg0bMAyDwYMHM2HCBAYPHqxf7KFpEQWHo9npkdGh+FoNjpTXkF2oKQkiItL5xsSG4udj4Uh5DfuOVDQ92VBRLs3dYYmIdAkuJUM+Pj706dMHRwu/6AsQNxEsPlCSA0X7m50O8LUyMjoUQFPlRETELfx9rIyNNQsardtX0PSkKsqJiJdzuYDC3LlzWbJkSSeE0gP4BR2tznOcEttj60tsa78hERFxlwnH23zV2Wcd2qoiCiLilVwuoDBixAg+++wzrr32Ws4880yioqKaTZE788wzOyzAbidxKuSsM9cNJV/V7HRyXDhvsF8V5URExG1SEyN5nj0tFFGIOVpE4eAmiJ/omQBFRDzE5WTo3nvvBSAvL481a9Y0O28YBlu3bm1/ZN1VwjRYMd9MhlqQUl9EISOnmDqbHR+ry4NzIiIiLplQv/nqzkNlFFXUEB5YX+3VMMypcju/NKfKKRkSES/jcjL0+uuvd0YcPUfCFPPxyE4oOwzBUU1OD4oKJtjfh7LqOnYdLmNE/1APBCkiIt4kMsiPQVFB7Dlczs/7C5k9ot/Rk9EpZjKkIgoi4oVcToYmTZrUGXH0HIGR0HeUuYnd/pUw6oImp60Wg6TYMFbuOUJ6VpGSIRERcYsJCRHsOVzOun3HJEMNFeU2eCQuERFPavMcrdLSUpYvX86///1viou1/qWJhEYltlvg3G8oTeuGRETETVLriyisO3bdkLOi3OFtKqIgIl6nTcnQwoULmTFjBjfddBP33nsv2dnZAFx33XUsWrSoQwPslhKnmY/HXTekinIiIuJezs1X07OKqLXZj54IiYagvuCwmUUURES8iMvJ0JtvvsnChQu57LLLeP7555vsOTRr1iy+++67joyve3KODB3cCFUlzU6PjQsHYHteKZU1NjcGJiIi3mpwVBDhgb5U19nZnNuobzIMTZUTEa/VpmTo+uuv58EHH2T69OlNziUmJpKZmdlhwXVbYbEQngAOO2Q3r7gXHRZAVIg/NruDzbmaKiciIp3PMAwmJNRPlTt281XnfkPafFVEvIzLyVBWVhYzZsxo8VxQUBAlJc1HQrxS4inmY2bzdUOGYZBcPzqUnq1kSERE3OO4m6861w2popyIeBmXk6GQkBDy8/NbPJeTk0Pv3r3bHVSPcJIiClo3JCIi7pZav25oXWZhk2nuDdPkDm+Fmgr3ByYi4iEuJ0NTp07lxRdfpKLi6A9LwzCoq6tj8eLFzabOeS1nEYXsdVBX3ey0s6JcenaR+2ISERGvNjYuDF+rweHSarILG1WOayiiYIc8FVEQEe/hcjL029/+ltzcXObOncu8efMwDIM33niDyy+/nMzMTH7zm990RpzdT+8hEBQFtmrI+bnZ6bGx4QBkHqmgsLzGzcGJiIg3CvC1MibWnJmwLrPRuiHD0FQ5EfFKLidDiYmJLF68mEGDBrF48WIcDgcff/wxERERvPXWW8TExHRGnN2PYTSaKte8xHZYoC+D+gQBGh0SERH3OVpE4dh1Qynmo4ooiIgX8WnLTUOGDOGll16ipqaGwsJCwsLCCAgI6OjYur/EabD132YRhRZqToyNC2NPfjnpWcWcNryv++MTERGvkzogghd/3Nu8iIKzopzKa4uIF2nTpqtOfn5+9OvXT4nQ8ThHhrJWg735fkJaNyQiIu7m3Hx1e14pJVW1R084p8kd3qYiCiLiNdo0MpSdnc3nn39Obm4uVVVVTc4ZhsFf//rXDgmu2+ufBH4hUF1iLkiNTm5y2pkMbcwuwuFwYBiGB4IUERFvEhXiT2LvQDKPVLBhfxGnDosyT4RGQ3A/KMsz+6z4SZ4NVETEDVxOhr777jvuuOMO7HY7kZGR+Pn5NTmvX+gbsVjNzmT3MnOq3DHJ0KjoUHwsBvllNeQUVRIXEeihQEVExJtMSIgg80gF6/cVHE2GwJwqt/MLc6qckiER8QIuJ0NPPfUU48eP56mnntKeQq2ROM1MhvavgCm3NjkV4GtlZHQoGTnFpGcVKxkSEekitm7dylNPPcWOHTsoKCggICCAgQMHcvXVV3PhhRd6Orx2mzAggg835LCupc1Xd36hinIi4jVcToYyMzOZP3++EqHWcu43lLkSHA6zylwjyfFhZjKUXcTcsdEeCFBERI5VUlJC//79mTt3Lv369aOyspJPPvmEe+65h5ycnG6/jYRz89W0rCLqbHZ8rPVLiFVRTkS8jMvJUExMTJMNV+UkYsaD1Q/KD0HBHug9uMnp5Lhw3mA/aVlFnolPRESamTx5MpMnT25ybNasWWRnZ/Puu+92+2RoaN9gQgN8KKmqY9vB0oa9hxoqyh3eBjXl4BfksRhFRNzB5Wpyt9xyCy+//DKVlZUnv1jANwBiJ5jPM39qdjqlvohCRnYxdTa7GwMTERFXRUREYLVaPR1Gu1ksBuMTnfsNNdp8NTQagvuDww4HN3koOhER93F5ZCgjI4MjR45wxhlnMHnyZCIiIppd8+CDD3ZIcD1GwlTYv9KcKjf+2ianBkUFE+RnpbzGxq7DZYzoH+qhIEVE5Fh2ux273U5JSQmff/45P/74Iw899JDLr2OzNd9ewZX72nr/iYyLD+e77YdZu6+Aa6YkNBy3RCdj7DyIPednHLGpHf6+rujM9ncHar/a3/jR27S3/a29z+Vk6I033mh4/p///KfZecMwlAwdK/EU+PFJs4jCMawWg6S4MFbtKWBjVrGSIRGRLuSRRx7hnXfeAcDX15cHHniAq666yuXXycjIaFcc7b2/JWG11QCs2nWItLS0huPRRj9igMLN37DPr2tUlOuM9ncnar/a7806u/0uJ0Pbtm3rjDh6tvhJYFigcB+UHDCnITSSHB/Oqj0FpGUXccXEeM/EKCIizdx6661cfvnlFBQU8M033/CnP/2JyspKbrzxRpdeJykpqU3T62w2GxkZGW2+/0SG1dTxp+XLOFJpp++A4cSE9zJPBJ4DO14nsno/4SkpHfqerurM9ncHar/ar/a3vf3O+0+mTZuuiosCQqHfGDi40RwdGnNpk9MpceEApKuIgohIlxITE0NMTAwAp556KgBPPvkkF198MZGRka1+HavV2q5fZtp7f0tCelkZHRPKxuxiNmSXEN872DwRNx4AI38HVltVlyii0Bnt707UfrVf7e+89reqgMLatWspLy8/6XUFBQW8//777Q6qR2oosd18qlxyfRGFbQdLqar1znmhIiLdwdixY6mrqyMrK8vToXSICfVFFNY3LqIQ0r9REQXvnp4jIj1fq5Kha6+9lt27dzd8b7fbGTNmDFu2bGlyXVZWVpsWlnqFhKnmY+bKZqeiwwKICvHHZnewObfYzYGJiEhrrV69GovFQnx8z5jS7EyGmm++mmI+avNVEenhWjVNzuFwNPu+rq6u2XE5AefI0KEtUFkIvY5W4TMMg+S4cL7emkdaVjETEls/9UJERDreQw89RHBwMElJSfTp04fCwkKWLl3KZ599xo033ujSFLmuzLn56tYDJZRV1xHsX/9rQcw42LFUm6+KSI+nNUPuEtwXeg+BI7tg/2oYfnaT08lxYXy9NU/rhkREuoCUlBQ+/PBDPvroI0pLSwkMDGTEiBE88cQTXHjhhZ4Or8P0DwsgNrwXOUWVpGcVccqQPuYJ5+arGhkSkR5OyZA7JUw1k6HMn5onQ/XrhtKzi9wfl4iINHHppZdy6aWXnvzCHiB1QAQ5aZWs21d4NBlyTpPL3w415V2iiIKISGdo1Zoh6SDOqXL7m68bGhsXBkDmkQqKKmrcGZWIiHixo+uGjimiEBKtIgoi0uO1emRoz549DWXtnDu67tmzp9k1cgLOZCh3A9RUgF9gw6nwQD8G9glib3456dnFnDosykNBioiIN3EmQxv2F2GzO7BaDPNEdAqUHjCnyiVM8Vh8IiKdqdXJ0P3339/s2D333NPke4fDgWEY7Y+qpwpPhJAYKM2FnHUwcGaT08lxYWYylFWkZEhERNxiRP9Qgv19KKuuY0deKSOjQ80TMSmw43PzD3giIj1Uq5Khv/3tb50dh3cwDEicCps+MEtsH5sMxYezJC1XRRRERMRtrBaDcQnhLN+Zz7rMwkbJ0DjzURXlRKQHa1UydPHFF3d2HN4jwZkM/dTsVOMiChplExERd5mQGMHynfms31fANVMSzYPOinL5O6C6DPyDPRafiEhnUQEFd3OuG8peC7baJqdGRYfiYzHIL6shp6jSA8GJiIg3anHz1ZB+KqIgIj2ekiF3ixoJAeFQWwEHNjY5FeBrZUR0CADpWcUeCE5ERLzRuIQILAZkF1aSV1J19ISmyolID6dkyN0sFnOqHMD+Fc1OJ8eFA7BR+w2JiIibBPv7MKK/uVZofePRIW2+KiI9nJIhT0isT4Yym+835Fw3lKYiCiIi4kapA+qnyu1rlAw5N19VRTkR6aGUDHlCgnPz1RVgtzc5lVKfDGXkFGOzO9wcmIiIeCvnuqH1jTdfPbaIgohID+NSMlRVVcVVV13FihXNp3eJC6KTwacXVBZC/vYmpwZHBRPkZ6WixsauQ+p4RETEPZzJ0ObcEiprzM3VzSIKMYBDRRREpEdyKRkKCAhgx44dWK3WzorHO/j4QfxE83lm08TSajFIigsD0H5DIiLiNrHhvegfGkCd3dF0qramyolID+byNLlx48axcePGk18oJ9YwVa6FdUP1RRTSVERBRETcxDAMJtSvG/p5f+N1Q6ooJyI9l8vJ0L333ss777zDkiVLKC8v74yYvENDEYUV4Gi6Nqhh81WNDImIiBulOvcb2tfCuiFVlBORHsjH1RuuvPJKamtruf/++7n//vsJCAjAMIyG84ZhsH79+g4NskeKmwgWHyjJgaL9EJHYcMqZDG0/WEpVrY0AX01LFBGRzne0iEIhdrsDi8U4Ok0ufwdUl4J/iOcCFBHpYC4nQ2eddVaT5EfayC/ILKSQs96cKtcoGYoJC6BPsD/5ZdVszi1p6JxEREQ608joUHr5WimpqmPX4TKG9QuB4L5mEYXSXLOIQuI0T4cpItJhXE6G5s2b1xlxeKfEaWYylLkCkq9qOGwYBinxYXy99RDpWUVKhkRExC18rRZS4sNZuecI6zMLzWQIzHVD23PNqXJKhkSkB9E+Q57UiiIK6SqiICIibnTCzVdVREFEehiXR4acduzYwe7du6murm527qKLLmpzQO+99x4PPvgggYGBbNjQw8t4JkwxH/N3QNlhCI5qOKUiCiIi4gkn3HxV5bVFpIdxORmqrKzktttuY9WqVRiGgaO+ElrjdURtTYby8vJ4/PHH6du3L2VlXrDhaGAkRI2Ew1vN0aFRFzScGlu/19C+IxUUVdQQHujnqShFRMSLjEuIwDDM/udwaTVRIf6NiijsVBEFEelRXJ4m9+yzz5KTk8Mbb7yBw+FgwYIFvPLKK5xxxhkkJiby0UcftTmYhx9+mNTUVE455ZQ2v0a3k9jyVLnwQD8G9A4EID272N1RiYiIlwrr5cuwvmaysz6zfqpccF8IjQUcZhEFEZEewuVkaNmyZdx0002MG2duwhYdHc3UqVN55plnGD16NG+99VabAvn4449Zs2YNjzzySJvu77acyVDmimannFPlNmqqnIiIuFGLm69qqpyI9EAuT5PLyclh0KBBWK1WDMOgsrKy4dz555/PAw88wGOPPebSax45coS//vWv/P73v6d///6uhtSEzWZr131tvb/N4iZhBRwHN2KvKGoy9SApNpSP03JJyyrs9Lg81v4uQu1X+xs/epv2tt9bP7eeLDUxgrdW72+6+WrMONj+H22+KiI9isvJUEhICBUVFQD07t2bzMxMUlNTAairq2s454pHH32UgQMHcvXVV7t877EyMto3fN/e+9tiTK/++FceZM/3b1PSd2LD8cDKGgDW7z3Chg0b3LK/kyfa35Wo/Wq/N/P29stRziIKm3JKjm7+rYpyItIDuZwMDR8+nH379jFz5kwmT57M888/T2JiIn5+fixcuJARI0a49HpffPEF33zzDUuWLOmQX/aTkpKwWq0u32ez2cjIyGjz/e1h7DsVMt5hsO8hHCkpDcdH1Nr4n+++pqjaTr+BI4gJ79VpMXiy/V2B2q/2q/1tb7/zfuk5EiIDGzb/zsgpZuKAyKPT5FREQUR6EJeToUsvvZTMzEwA/t//+39cffXVXHPNNQCEhoayaNGiVr9WeXk5jz32GNdccw19+/alpKQEgNraWgBKSkrw8fEhMDCw1a9ptVrb9ctMe+9vkwGnQMY7WLJWQaP3DrJaGREdwqacEjJyS4nvHdzpoXik/V2I2q/2q/3e2345yjAMUhMjWLr5IOv2FZrJUHAUhMZBSTYc2Gj2XSIi3ZzLydC5557b8Dw+Pp4vvviiocz2uHHjCA8Pb/VrFRYWkp+fz8svv8zLL7/c7PzEiROZM2cOzz77rKthdi/OIgrZ66CuGnz8G04lx4WzKaeE9Kwizk2K9lCAIiLibVIHmMlQQ0U5MKfKlWSbU+WUDIlID9DmTVedAgMDmT17dpvujYqK4vXXX292fNGiRaxdu5YXXniBiIiI9obY9fUeAkFRUH7YrNLj3IwVMxl6c/V+0lRRTkRE3Mi5bujn/YU4HA5zKnt0Cmz7VBXlRKTHaHcy1B7+/v5Mnjy52fGPPvoIq9Xa4rkeyTDMBGjrJ5D5U9NkqL68dkZOMTa7A6ul84soiIiIjI4Jw9/HQkF5DXvyyxkcFWxWlANVlBORHqNVydCIESNaXdzAMAy2bNnSrqC8UsK0+mRoJcw4enhI32AC/axU1NjYfbiMYf20YFVERDqfn4+F5Lhw1uwrYP2+wvpkKMU8eWQXVJVAQKhHYxQRaa9WJUO33367W8o6O82bN4958+a57f26BOe6oazVYLeBxVzEbLUYJMWGsXpvAWlZRUqGRETEbSYMiDCTocxCrpgYD0F9jhZROLgRBkz3dIgiIu3SqmTozjvv7Ow4pH8S+IVAdQnkbYbosQ2nUuLDWb23gPSsIq5IjfdgkCIi4k1S69cNrctsvPlqipkM5aYpGRKRbs/i6QCknsUK8ZPM5/tXNjnlXDeUnl3k3phERMSrjU8wk6Hdh8spLDc3AtfmqyLSk7hcQGHJkiUnveaiiy5qQyhC4lTYvcwsojD5lobDzmRo24HSozuBi4iIdLKIID8GRwWx+3A56zMLOX1UP4hWEQUR6TlcTobuu+++Fo83XlOkZKiNEurXDWWuBIfDrDIHxIQF0CfYj/yyGjbnljSUOxUREelsqYmR7D5czjpnMtRQRGGniiiISLfncjK0bNmyZscKCwtZtmwZn332GU899VSHBOaVYieA1Q/KD0HBHug9GDATzeS4cJZtO0R6VpGSIRERcZsJAyJ4Z10WPzs3Xw3qA2HxUJylIgoi0u25vGYoNja22deYMWP43e9+x5lnntniJqrSSr4BZkIEkLmiySnnVLmNWjckIiJu5CyikJ5dRE2d3TwYnWw+aqqciHRzHVpAYerUqXzzzTcd+ZLeJ2Gq+XjcIgrFbg5IRES82cA+QUQG+VFdZ2dTbn0f5Jwql7vBY3GJiHSEDk2GcnJysFhUoK5dnPsNZf7U5HByXBgAe/PLKaqocXdUIiLipQzDaKgqt35f/VS5mPoiCqooJyLdnMtrhtauXdvsWE1NDdu3b+f5559n6tSpHRKY14qfBBhQuA9KDkBoNADhgX4M6B3IviMVbMwuZuawKI+GKSIi3iN1QARfb81jXWYBNzHoaEW5I7tUREFEujWXk6FrrrmmSeU4AIfDAcC0adN46KGHOiYybxUQZm7AenAj7F8BYy5tOJUcH86+IxWkZxUpGRIREbdxrhtan1mEw+HACOp9tIjCgXQYOMPDEYqItI3LyVBLBRL8/f2JjY2lT58+HRKU10ucZiZDmSubJENj48L5OC1Xm6+KiIhbjYkNw89qIb+smv0FFST2DjLXDRVnmVPllAyJSDflcjI0adKkzohDGkuYCqv/2ayiXEq8uW4oLavY/MvcMSN0IiIinSHA18qY2FB+3l/Eun2FZjIUnQJbP1FFORHp1lyudrB3717WrFnT4rk1a9awb9++9sYkziIKh7ZAZWHD4dExYVgtBvll1RworvJQcCIi4o1SB0QCsM6535AqyolID+ByMjRv3rwWN14F+Pbbb5k3b167g/J6wX2h9xDAAftXNxwO8LUyon8IAOlZRZ6JTUREvJJzw++GzVedRRQKdkOVtn0Qke7J5WQoIyODiRMntnhu4sSJbNq0qd1BCY32G2p589U0rRsSERE3ciZDOw6VUlxZC0G9ISzBPHlgowcjExFpO5eTodLSUgIDA1s8FxAQQHGx/jrUIRr2G2q6+WpKXDigkSEREXGvPsH+DOgdiMMBP+93TpVLNh81VU5EuimXk6F+/fqxcWPLfwHauHEjUVEq+dwhnCNDuT9DTUXDYefIUEZ2MTa7wwOBiYiIt5qQaK4b0uarItJTuJwMnX766SxatIhVq1Y1Ob569WpeeOEFzjjjjA4LzqtFDICQaLDXQc66hsND+gYT6GelvMbG7sNlnotPRES8TuoAc6rcuswC80B0ivmoinIi0k25XFr79ttv58cff+SGG25gwIAB9O/fn4MHD7Jv3z6GDBnCnXfe2Rlxeh/DMKfKbfrAnCo3cCYAVovBmNgw1uwtIC2riGH9QjwcqIiIeAvn5qvpWcXU2uz4xhxTRCEgzIPRiYi4zuWRoZCQEN555x3uuOMOwsLCyM3NJSwsjDvvvJO3336b4ODgzojTOx2niEJK/VS5jSqiICLSKVauXMn999/P2WefTUpKCjNmzOC2227z+iJBg6OCCevlS2Wtja0HSiAwEsKdRRTSPRuciEgbuDwyBBAUFMTtt9/O7bff3tHxSGPOIgpZa8FWC1ZfAJIbiiioWIWISGdYvHgxRUVFXHvttQwZMoSCggJeeeUVrrzySl588UWmTp3q6RA9wmIxGJ8QzrfbD7NuXyFj48LNqXJF+82pcvWzGEREuos2JUNgVpVLS0ujsLCQU089lbAwDY13uKiREBAOVUVm2dK4CQAkx5uf9dYDJVTV2gjwtXouRhGRHujhhx+md+/eTY7NmDGDM888k+eff95rkyEwN1/9dvth1mcW8qvpA83NV7f+W0UURKRbcnmaHMDChQuZMWMGN910E/feey/Z2dkAXHfddSxatKhDA/RqFgskTDGfN5oqFxveiz7BftTZHWw5UOKh4EREeq5jEyEwZ0UMHjyYAwcOeCCirsO539C6zAIcDsfRinIqry0i3ZDLI0NvvvkmCxcu5Oqrr2bGjBnccsstDedmzZrFl19+yc0339yhQXq1xGmwY6lZRGGaWZzCMAyS48JZtu0Q6VlFjE+I8HCQIiI9X2lpKVu2bGHKlCku32uz2dr0ns772np/ZxgTHYKPxSCvpJqsI+XE9k3CClCwB1t5IQSEdth7dcX2u5Par/Y3fvQ27W1/a+9rUzJ0/fXXc8899zR7k8TERDIzM119STmRhPp1Q/tXgt1ujhZh7jfkTIZERKTzPfroo1RWVnLrrbe6fG9GRka73ru993e0AWE+7Cqs5cPlacxI6MWYXv3xrzzIrh8/oKzPuA5/v67WfndT+9V+b9bZ7Xc5GcrKymLGjBktngsKCqKkRNO2OlR0Mvj0gsoCyN8BfUcAMDbOXDeUnq0iCiIine3pp5/mk08+4aGHHmLMmDEu35+UlITV6vr6TpvNRkZGRpvv7ywzcraya0Um+YSRkjIKy86JsO0ThgaW4khJ6bD36artdxe1X+1X+9vefuf9J+NyMhQSEkJ+fn6L53JyclqcZy3t4OMHcamwbzlk/tSQDDkryu3NL6e4opawQF8PBiki0nMtWLCA5557jrvuuotf/vKXbXoNq9Xarl9m2nt/R5s4sDevrMhk/f4iM67Y8bDtEywHN0InxNnV2u9uar/ar/Z3XvtdLqAwdepUXnzxRSoqKhqOGYZBXV0dixcvZvr06R0aoHC0xPb+lQ2HIoL8SOwdCMDGnCIPBCUi0vMtWLCA+fPnc+edd7ZpelxP5dx8dfvBEkqras2KcqCKciLS7bicDP32t78lNzeXuXPnMm/ePAzD4I033uDyyy8nMzOT3/zmN50Rp3dzJkOZK5scPrrfUJF74xER8QILFy5k/vz53Hbbbdxxxx2eDqdL6RsaQHxkL+wOSMsqMvcaAijYA5VFHoxMRMQ1LidDiYmJLF68mEGDBrF48WIcDgcff/wxERERvPXWW8TExHRGnN4tbiJYfKAk29zYrl5yfDgAadp8VUSkQ7388ss888wzzJgxg9NOO420tLQmXwIT6iuZrttXCIGREJ5onjiQ7sGoRERc06ZNV4cMGcJLL71ETU0NhYWFhIWFERAQ0NGxiZNfkFlIIWe9OToUngBASv3mq2lZRTgcDgzD8GSUIiI9xrfffgvA8uXLWb58ebPz27dvd3dIXc6EAZEsSctlfWaheSAmBYoyzalyg071ZGgiIq3WpmTIyc/Pj379+nVULHIiCVPrk6GfIPlKAEbHhGG1GOSXVXOguIqY8F4eDlJEpGf417/+5ekQujznuqEN+wups9nxiU6BLR9r81UR6VZalQwtWbLEpRe96KKL2hCKnFDiKbByQZMiCgG+Vob3C2HLgRLSs4qUDImIiNsM6xdCiL8PpdV1bM8rZXRM/f5CuWkejUtExBWtSobuu+++Vr+gYRhKhjpDQv2O5/k7oDwfgvoA5rqhLQdKSMsu4pykaA8GKCIi3sRqMUhJCGf5znzWZxYyOjnZPFG4FyoLoVeEZwMUEWmFViVDy5Yt6+w45GQCIyFqJBzeao4OjTwfMNcNLV4DG1VEQURE3Cw1MZLlO/NZt6+Qa6cOMIsoFGWaRRQGnebp8ERETqpVyVBsbGxnxyGtkTjVTIYyVzQkQ86Kchk5xdjsDqwWFVEQERH3SB1gjv4cLaIwzkyGctOUDIlIt+ByaW2nsrIyfvzxRz799FN++uknysrKOjIuaUmCc7+hFQ2HhvYNIdDPSll1HXsO699ARETcJyU+HKvFIKeokgPFldp8VUS6nTZVk3vppZdYsGABVVVVDSWdAwIC+O1vf8sNN9zQ0TGKU+JU8/HgRqguBf8QrBaDMbFhrNlbQFpWEUP7hXg2RhER8RpB/j6MjA5hU04J6zMLOc+5+aoqyolIN+HyyNCSJUv4+9//zsSJE3nyySd58803efLJJ5k0aRJPPPGEy5XnxAVhceYeQw47ZK1pOJxSP1UuPbvIM3GJiIjXarL5qnNkqHCfWURBRKSLczkZevXVVznvvPNYtGgR55xzDhMmTOCcc87h+eefZ+7cubz22mudEac4OafKNSqxPTbO3Hw1XUUURETEzSYMiATq1w31ioCIAeaJA+meC0pEpJVcTob27NnDBRdc0OK5Cy64gN27d7c7KDkB51S5RuuGkuPCAdh6oISqWpsHghIREW/l3Hx1y4ESyqvroGGqXJrHYhIRaS2Xk6GAgACKi1segSguLiYgIKDdQckJOEeGstdBXTUAcRG96B3kR53dwdYDJR4MTkREvE1MeC9iwgKw2R3mdO2GzVe1bkhEuj6Xk6EJEyawYMEC8vLymhw/fPgwCxcuJDU1tcOCkxb0GQqBfcBW3dDRGIbRUGI7PavIc7GJiIhXapgq13jdkCrKiUg34HI1ubvvvpurrrqKM888k6lTpxIVFcXhw4dZtWoVPj4+LFiwoDPiFCfDMKfKbf3EnCqXMAUwp8p9s+0Q6dlaNyQiIu41ISGcT9JzWZdZCNOSzYPOIgq9Ijwam4jIibg8MjR06FDef/995syZQ0ZGBh9++CEZGRnMmTOH9957jyFDhnRGnNJYC0UUkuOdRRSKPBCQiIh4s9T6kaGf9xdi9w+HiIHmCa0bEpEurk37DA0cOJAnn3yyo2OR1nIWUdi/Cuw2sFgbiijsyS+nuKKWsEBfz8UnIiJeZUR/cwPw0qo6dhwqZURMChTuNafKDZ7l6fBERI7L5ZEh6QL6JYFfMFSXQN5mACKC/EjsHQjAxpwiDwYnIiLexsdqYVxCOFBfYlsV5USkm2jTyNCWLVv45JNPyM3Npbq6usk5wzB47rnnOiQ4OQ6rD8RPht3LzKly0WMBGBsXTuaRCtKzipgxNMrDQYqIiDeZkBDBT7uOsH5fIb+YmGIeVEU5EeniXE6GlixZwv3334/FYiEyMhJf36bTsQzD6LDg5AQSp5rJUOYKmHwLAMlxYXySnqsiCiIi4nbOinLrMgvhghTzYFEmVBRAYKTnAhMROQGXk6HnnnuOU089lccff5ywsLDOiElao3ERBYcDDIOU+vLaaVlFOBwOJaYiIuI24xLCMQzYX1DBobpe9I0YWL9uKF3rhkSky3J5zdChQ4e49tprlQh5WuwEsPpBWR4U7AFgdEwYVovB4dJqDpZUeThAERHxJqEBvgzvFwIcs9+QpsqJSBfmcjI0cuTIZhuuigf4BkDMePN55goAevlZGzoildgWERF3Sx1g7im0PrMQYsaZB7X5qoh0YS4nQ/fccw+LFi1i27ZtnRGPuCKxpf2GwgFIy9K6IRERca8JiWYytE4V5USkm3B5zVBKSgpnnnkmF198MVFRUc2myxmGwb///e8OC1BOIHEa/Phkw8gQQEp8GIvXaGRIRETcLzXRLJSwObeYqqgpBICKKIhIl+byyNCiRYt4/vnniYiIICYmhvDw8CZfWkvkRvGTAMNcoFpyADDLawNk5BRjszs8F5uIiHiduIhe9A3xp9bmIP2wAyIHmSc0VU5EuiiXR4Zef/11Lr30Uh577DGsVmtnxCStFRAG/cfAwQzYvwLGXMrQvsH08rVSVl3HnsNlDK1fQyQiItLZDMMgdUAEn2UcZP3+QiZHp5hFfnLTYPBsT4cnItKMyyND5eXlnHfeeUqEuorEU8zHTHPdkI/VQlKsOTqn/YZERMTdxifUF1FoXFFOI0Mi0kW5nAyNHz+e3bt3d0Ys0hYJU83HJkUU6pMhrRsSERE3S63ffHX9/kLs/VPMgyqvLSJdlMvJ0AMPPMDbb7/N119/TU1NTWfEJK5wVpTL2wyVhcDRinLp2UWeiUlERLzW6JhQAnwtFFXUss9viHmwaL9ZREFEpItxec3QpZdeSl1dHXfeeSeGYRAQENDkvGEYrF+/vsMClJMI7guRg6FgN+xfDcPPJrm+iMLWAyVU1doI8NWURhERcQ9fq4XkuHBW7y1gzQEbgyIHmeuGDqRp3ZCIdDkuJ0NnnXUWhmF0RizSVolT65OhFTD8bOIietE7yI8j5TVsPVDCuPr52yIiIu6QOiCC1XsLWJ9ZyFUx4+qLKGxQMiQiXY5LyZDNZuOWW24hMjJSJbS7ksRTYMMbDUUUDMNgbFwY324/THpWkZIhERFxK+fmq+szC2FqCmz6QJuvikiX5NKaIYfDwdy5c0lLS+ukcKRNnEUUcjdAbSXQeN2QKsqJiIh7OSvK7ckvpzhitHlQFeVEpAtyKRny8fGhT58+OBwdt5nnypUruf/++zn77LNJSUlhxowZ3HbbbWzatKnD3qPHixgAIdFgr4XsdYCKKIiIiOeEB/oxtG8wAOtrEsyDKqIgIl2Qy9Xk5s6dy5IlSzosgMWLF5OTk8O1117LokWLeOCBBygoKODKK69k5cqVJ38BAcM4OjqUuQKgoYjCnsPlFFfWeigwERHxVqkDzNGh1QfqzEI/oBLbItLluFxAYcSIEXz22Wdce+21nHnmmURFRTUrqHDmmWe2+vUefvhhevfu3eTYjBkzOPPMM3n++eeZOnWqqyF6p8RpsPlDs4gCEBnkR0JkIPsLKsjILmb60D4eDlBERLzJ+IQIFq/JOrr5asFuc6rckDmeDk1EpIHLydC9994LQF5eHmvWrGl23jAMtm7d2urXOzYRAggKCmLw4MEcOHDA1fC8l3O/oay1YKsDqw/J8eHsL6ggPbtIyZCIiLiVc/PVjTnF1I0Zi8+mDzQyJCJdjsvJ0Ouvv94ZcTRRWlrKli1bmDJlSqe/V48RNRICwqGqCA6mQ+wEkuPC+CQ9l7SsIg8HJyIi3mZA78CGbR52+w5jOEBuuqfDEhFpwuVkaNKkSZ0RRxOPPvoolZWV3HrrrS7fa7PZ2vSezvvaen9XYImfjLHzC+z7fsLRP4WkmFAA0vYXUVdXd8L9oXpC+9tD7Vf7Gz96m/a231s/NzkxwzCYkBjBl1vyWFEeYyZDxfuh/AgENZ8VIiLiCS4nQ06lpaWkpaVRWFjIqaee2mH7Dj399NN88sknPPTQQ4wZM8bl+zMyMtr1/u2935P6+SQSB5RsXMrugFOoq7NjMeBwWTXfrPyZ3oHWk75Gd25/R1D71X5v5u3tl46XOsBMhlbm1HFD5OD6dUMbYMjpng5NRARoYzK0cOFCXnjhBaqqqjAMg/fff5+wsDCuu+46TjnlFG6++eY2BbNgwQKee+457rrrLn75y1+26TWSkpKwWk/+S/+xbDYbGRkZbb6/S+hTA1sXEVaylZTksWBYGL7yJ7YeLKUuLI6U0f2Oe2uPaH87qP1qv9rf9vY77xc5VuPNVx0jx2EU7DY3X1UyJCJdhMvJ0JtvvsnChQu5+uqrmTFjBrfcckvDuVmzZvHll1+2KRlasGAB8+fP584772zT9Dgnq9Xarl9m2nu/R8VOAJ9eGJUFWAt2Q98RpCSEs/VgKRm5JZw7NuakL9Gt298B1H61X+333vZLxxsTG4afj4Uj5TUUhI2iN2jzVRHpUlzeZ+jNN9/k+uuv58EHH2T69OlNziUmJpKZmelyEAsXLmT+/Pncdttt3HHHHS7fL/V8/CAu1Xy+v+l+Q+kqoiAiIm7m72NlbKw5jT7DNsA8mJvmsXhERI7lcjKUlZXFjBkzWjwXFBRESUmJS6/38ssv88wzzzBjxgxOO+000tLSmnyJi5wltjPNDWuT48MB2JhdjN3u8FBQIiLirSbUb776bUn97ITiLLOIgohIF+DyNLmQkBDy8/NbPJeTk9PivkEn8u233wKwfPlyli9f3uz89u3bXQ3RuyXUb1KbaY4MDe0bTC9fK2XVdezJL2NI3xAPBiciIt4mNTGS59nDiuwa6D0EjuxSEQUR6TJcToamTp3Kiy++yJw5c/D39wfM8pl1dXUsXry42dS5k/nXv/7laghyIvGTwOIDJdlQtB+f8ASSYsNYs6+AtKxiJUMiIuJW4xPCAdh5qIyacWPxO7JLRRREpMtweZrcb3/7W3Jzc5k7dy7z5s3DMAzeeOMNLr/8cjIzM/nNb37TGXFKa/kFQXSy+bx+qtzYOHO+ttYNiYiIu/UO9mdQnyAAMv2HmQdzN3gwIhGRo1xOhhITE1m8eDGDBg1i8eLFOBwOPv74YyIiInjrrbeIiTl5xTLpZM6pcs4iCg3rhoo8E4+IiHg1Z4ntdTWJ5oED6R6MRkTkqDbtMzRkyBBeeuklampqKCwsJCwsjICAgI6OTdoqcRqsXNCwbiilPhnacqCE6job/j4qnSsiIu6TOiCC99Zn88WRvvwX1BdRyIegPp4OTUS8nMsjQ/fffz9ZWVkA+Pn50a9fv4ZEKCcnh/vvv79jIxTXOUeG8ndAeT5xEb2IDPKj1uZg64FSz8YmIiJexzkytCq3FkfvoeZBldgWkS7A5WToo48+orCwsMVzhYWFLFmypL0xSXsFRkLUSPP5/pUYhkGy1g2JiIiHDOoTTHigL1W1dgrDR5kHD2jdkIh4nsvJ0IkUFxfj5+fXkS8pbZXoLLHddL8hJUMiIidXVlbGE088wa9+9SumTJnC8OHDmT9/vqfD6rYsFoMJCebo0A7LYPOgRoZEpAto1ZqhtWvXsnr16obv33vvPX744Ycm11RXV7Ns2TIGDx7csRFK2yRMg3UvNyuikKYiCiIiJ1VUVMS7777LiBEjOP3003nvvfc8HVK3N2FABMu2HeKninimgJIhEekSWpUMrV69mgULFgDmnkLH6xRiYmL4n//5n46LTtrOOTJ0IB2qS0mOCwdgz+FyiitrCevl67nYRES6uNjYWNauXYthGBQUFCgZ6gCpiZEA/DsvirsxMEqyVURBRDyuVcnQr3/9a37xi1/gcDiYNm0aL730EqNGjWpyjZ+fH0FBQZ0SpLRBWByEJUDxfshaQ+SQOcRH9iKroJJNOcWcMkSdj4jI8RiG4ekQepyxcWH4Wg0yyyzURQ/Ct3C3OTo0VJuviojntGrNUEBAABEREURGRrJs2TImTpxIREREky8lQl1Q4jTzcX/9uqH60aE0rRsSERE3C/C1MjrGLOZzIKi+yI82XxURD3N5n6HY2NjOiEM6Q+JU2Ph2QxGFlPhwPt14QEUURETczGazteu+tt7f1UxICCctq4gM2wASAEfuBuwnaFtPa7+r1H61v/Gjt2lv+1t7n8vJUG1tLS+88AKffvopubm5VFdXNzlvGAZbtmxx9WWlMyTUjwzlrIO66qMV5VREQUTErTIyMjx6f1cRaa8CYGl+H+YCtZlryUhLO+l9PaX9baX2q/3erLPb73Iy9OSTT/Lqq68yc+ZMTj/9dJXS7sr6DIXAPlCRD7kbGB2TitVikFdSzcHiKvqHBXg6QhERr5CUlITVanX5PpvNRkZGRpvv72piB1fz95Xf8m1ZPA5/A7+qQ6QMjYWgqBav72ntd5Xar/ar/W1vv/P+k3E5Gfr888+5/fbbueOOO1wOStzMMCBhCmz7FDJXEJgwhWH9Qth6oIS0rCLODuvv6QhFRLyC1Wpt1y8z7b2/q+gfHkhCZCD7C6AidBBBJbux5mXA0DNOeF9PaX9bqf1qv9rfee13edPV4uJiUlNTOyMW6QyJp5iPDUUUzMWrmionIiKekJpobr6632+oeUD7DYmIB7mcDE2cOJFt27Z1RizSGZz7De1fDXbb0XVDKqIgInJC33//PUuXLuXbb78FYNeuXSxdupSlS5dSWVnp4ei6rwkDzGRoXW2ieUAV5UTEg1yeJvfggw/ym9/8hpiYGE477TStGerq+iWBXzBUF8OhLSTHmZ1PRnYxdrsDi0V7aYiItOTRRx8lJyen4XtnIgSwbNky4uLiPBVat+bcfPXLwmiusQAH0jwaj4h4N5eToQsvvJC6ujp+97vfYRgGAQFNF+EbhsH69es7LEBpJ6sPxE+C3d9A5gqGpY4mwNdCaXUde/LLGdI32NMRioh0Sd98842nQ+iRhvYNJiTAh/VVCTgCDIySHCg7DMEtF1EQEelMLidDZ511lnbm7m4SpzUkQz6TbyEpNoy1+wpJzypSMiQiIm5lsRiMT4jg+x11FAcNILx8rzk6dJIiCiIincHlZGjevHmdEYd0Jud+Q/tXgsNBcly4mQxlF3HpBE3zEBER90pNjOD7HYfZYRnCJPaa64aUDImIB7hcQEG6odgJYPWDsjwo2KMiCiIi4lHOIgorKur/IKeKciLiIa0aGdq8ebNLLzp69Og2BSOdxDcAYsZD1irIXEFy4qUAbDlQQnWdDX8f761dLyIi7pcSH47VYvBTRTz/zx8VURARj2lVMnTppZe2ap2Qw+HAMAy2bt3a7sCkgyVONZOh/SuJH/dLIgJ9KayoZeuBUlLqR4pERETcIdDPh1HRoWzOGYADZxGFQxDc19OhiYiXaVUy9Le//a2z45DOlngK/PgUZK7AMAyS48P5bvthNmYXKRkSERG3m5AYQUZOMYcDEulbtc+cKjfsTE+HJSJeplXJ0MUXX9zZcUhni58EGFC4F0oPkhxnJkNpWUVcO9XTwYmIiLdJHRDBqyv2sck+kNnsM6fKKRkSETdTAQVvERAG/ceYzzNXNIwGqYiCiIh4woREs4jCjw1FFDZ4MBoR8VZKhryJs8R25grGxoUBsPtwOSVVtR4MSkREvFF0WC9iw3ux0TbQPKCKciLiAUqGvEli/Xy4/SvpHexPfGQvADKyiz0YlIiIeKsJiRFscZhFFCjNhdI8T4ckIl5GyZA3cY4M5W2GyiKS48IBSNNUORER8YDUARFUEECOT4J5QCW2RcTNlAx5k5B+EDkYcEDW6oZkSOuGRETEE5zrhn6uTTQPaKqciLiZkiFv45wql7mC5PoiChs1TU5ERDxgRP9QgvysbKirT4Y0MiQibqZkyNs0KqIwJjYUiwEHS6o4WFzl2bhERMTrWC0G4xIiyLA7iyioopyIuJeSIW/jHBnK3UCgUcuwfiEAbMzR6JCIiLifs4iCHQuUHlARBRFxKyVD3iZiIIREg70Wstc17DekqXIiIuIJziIKmUaseUBT5UTEjZQMeRvDgISjJbad64bSlQyJiIgHpMSHYzHg5zoVURAR91My5I0Sj64bclaU25hdjN3h8FxMIiLilUICfBneP5QM+yDzgNYNiYgbKRnyRs6Roaw1DIsKIMDXQll1HbmlNs/GJSIiXik1sVERBU2TExE3UjLkjfqOgoAwqC3H51AGY2LCANhVWOvhwERExBulDohgiyMRW0MRhYOeDklEvISSIW9ksRwdHco8um5oV4GSIRERcb8JiRFUEsBue4x5QOuGRMRNlAx5qxaKKOw4UoND64ZERMTNYsN70T80gAyHpsqJiHspGfJWjYoojIszp8ntLqzjikWr+Xb7ISVFIiLiNoZhMKHxuiGNDImImygZ8lbRKeDTCyoLiLdlcffpQ/G1wM/7i7jhlbWcv+BHlm46iN2upEhERDrfhMQINqqinIi4mZIhb+XjB3Gp5vP9K7h91mCeOzeKG6cPoJevlU05Jdz6xnrO/r8f+DgtB5uSIhER6URHiygYUHZQRRRExC2UDHmzhqlyKwGI6GXlj+eM4Kf7ZnPHrCGE+PuwI6+M372dxulPfs+767Kotdk9GLCIiPRUI6NDMXwD2WWPNQ9oqpyIuIGSIW/WqIhCY5FBfvzhrOH8eN9sfn/GMMIDfdmbX84972/ktL9/x79WZVJVqz2JRESk4/haLSTHh5Hh0FQ5EXEfJUPeLG4iGFYozoKirGanw3r5cuecofx072z+eO4I+gT7k1NUyUNLNjHziW95cfkeKmrqPBC4iIj0RKmJkdp8VUTcSsmQN/MPhuhkAIxjRocaC/L34eaZg/nx3lk8duFoYsICOFRazZ//s5Xpj3/Lwm93UVKlPYpERKR9JgxQRTkRcS8lQ97OuW4o6/jJkFOAr5Vrpw7gu/+exeOXJpHYO5CC8hr+/sV2Tpn3DU9+uZ3C8ppODlhERHqq8QkRbCURm8NZROGAp0MSkR5OyZC3q0+GTjQydCw/HwtXTkxg2d2n8vSVKQzpG0xpVR3PfLOLUx7/hr99tpVDpVWdFbGIiPRQYb18Sejbh52OOPPAgXTPBiQiPZ6SIW9XX0TByN+BT3WRS7f6WC1cNC6WL//fTJ77xXhGRYdSUWPj+R/2MOPxb3nk35vJLarshKBFRKSnGp8YwSaHOVXO0LohEelkSoa8XWAkRI0AILggo00vYbEYnJMUzX9+O52Xr09lXEI41XV2Xl2xj1P//i33f7iRzCPlHRm1iIj0UKmJEWy0KxkSEfdQMiQNo0NtTYacDMNg9oh+fHjbNN769WSmDupNrc3B4jVZzPrf77jrnTR2HSrtiIhFRKSHSh0QwSYVURARN1EyJJB4CgAh+RvA3v5S2YZhMG1IHxbfPIX3b53KacOjsDvgow05nPHUD/zmzfVszi1u9/uIiEjPkxAZSF7gMGwOA6P8EL5V+Z4OSUR6MCVDAonTcBgWAkt2Y3l2MqS9BbaO2T8odUAkr94wiU/umM5Zo/vhcMBnGQeZ+8yP3PjqWjbsL+yQ9xERkZ7BMAySBvRvKKIQWLTDwxGJSE+mZEggLBbH+c9Q6xeGUbgXltwGCydB+tsdlhQlxYXx/DWpfPH/ZnJBcgwWA5ZtO8TFz67gly+uZtWeIzgcjg55LxER6d4mJB7dbyiwWMmQiHQeJUMCgCP5ajbNeQv77IehVyQU7IaPboFnJ8PGd8Fu65D3Gd4/hGf+axzLfn8aV6TG4WMx+HFXPlctWsUVz6/k+x2HlRSJiHi5CQMiyKivKNdv97sYXz0IJbkejkpEeiIlQ9LA7tMLxym/g/+XAXMehl4RcGQXfHgTPDsFMt7vsKRoYJ8gnrgsme/++zSumZKIn4+FtfsKue7lNVy48Ce+3HwQu11JkYiINxoTE8anxqlssA/BaqvCsupZ+L9k+OR3ULDH0+GJSA+iZEia8w+GGXebSdHshyAgHPJ3wAc3wrNTYdMHYLd3yFvFRQTyp4vGsPyeWfx6+kB6+VrZmF3Mzf9azzn/t5x/p+diU1IkIuJV/HwsDImL4eKaR3k38VEcCdPAVgPrX4X5E+D9GyFvs6fDFJEeQMmQHJ9/CMz8g5kUzXoQAsIgfzu8/yt4bhps/qjDkqJ+oQE8eN4ofrx3FrfPGkywvw/b80r57eINnPHk97y3LotaW8e8l4iIdH3jEyMAgwUHRvLGyGc5csW/YeiZ4LDDpvfNfuitqyBrradDFZFuTMmQnFxAKJz632ZSdNofwT8MDm+F966Hf06HLR93WFLUO9if/z5rBD/dO5u7zxhGeKAve/LL+e/3N3La37/jjVWZVNV2zFQ9ERHpumaP6IthwP6SOh76eAsTXi/jvILf8kbyGxQNPA8HBuz4HF46HV49D3Z/A1pzKiIuUjIkrRcQBqfdC/9vI5x6L/iHwqHN8O618PwM2PLvDkuKwgJ9+e2cofx472zuP2cEfYL9yCmq5MElmzj179/y0o97qajpmEp3IiLS9UwaGMnS307n6jHBjIsPwzBgU04JD662kLL1ai73fYa1EXOxW3xh33L418XwwizY+kmH9UUi0vMpGRLX9QqHWX80k6KZ/w1+IZC3Cd69BhbNhK2fdthf54L9fbjl1MH8eO9sHr1gNNFhAeSVVPOnT7cw4/FvWfjtLkqrajvkvUREpGsZ0jeYS0cG8/6tU1nzx9N54rKxnDW6H4F+VtaV9ubyA7/glIonec1+DtWGP+RugHd+aRb9SX8bbOofROTElAxJ2/WKgNkPmknRjN+DXzAczIB3fgHPz4Rtn3VYUhTga+W6aQP4/r9nMe+SJBIiAzlSXsPfv9jOKfO+4cmvdlBUUdMh7yUiIl1PVIg/V6TG8/w1qfz80Bm8esNEfjklASMslodrrmFq5f8xv+4iShyB5vrWj26h5qkUHGtegNpKT4cvIl2UkiFpv8BImPM/5pqi6XeDbxAc3Ahv/xcsOg22L+2wpMjPx8JVkxL45ven8tSVyQyOCqKkqo5nlu3klHnf8LfPt3K4tLpD3ktERLqmAF8rpw3vy58vSuKn+2bz2W9ncMMZqXwdfTOnVD/D47VXcdgRil9ZNsZnf6D08VHs/ujPVJUVejp0EelifDwdAEB5eTlPP/00n3/+OcXFxQwaNIibb76ZuXPnejo0cUVgJJz+MEy9A1Y8A2tegANpsPhKiBkPp90PQ88Aw2j3W/lYLVw8Lo4Lk2NZuvkg87/ZxdYDJTz//R5e/Wkf/zUpgVtOHUR0WK/2t0tERLoswzAYFRPKqJhQ7pwzlEOlVXy7bTIPb76W6D3vc4Pxb+Lq8glJ/zvFac/yVcTF1E28mVPGDqdvSICnwxcRD+sSydCdd95JRkYGv//97xkwYACffvopd999N3a7nfPPP9/T4YmrgnrDGY/CtDvhp/+DtS9C7s/w1uUQm2omRUPmdEhSZLEYnJsUzTlj+vPNtkPM/2YXaVlFvLpiH2+uzuSyCfHcdupgEnoHdkDDRESkq+sbEsCVExO4cmICVbVTWLXzD6xa+SapWa8ywMjh/KI3qPjyPRZ/Ppuf+v4X40aPYs7IfoyMDsHogH5JRLoXjydD33//PT/99BP/+Mc/OO+88wCYMmUKubm5PPHEE5x77rlYrVYPRyltEtQHzvwTTPst/PQ0rH0JctbBm5dC3CQ47T4YPLtDkiLDMJgzsh+zR/Rlxe4jzP9mJ6v2FLB4zX7eXZfFhckx/GbWEIb0DW5/u0REpFsI8LVy2qhYGHUPDvvv2b/iPfxXPU2/sq3c6PM51xz5kg++nclvvj6PmtCBzBnZjzkj+zJlUG8CfPW7h4g38Piaoa+++orAwEDOPvvsJscvueQSDh06RHp6uocikw4THAVn/QV+lw5TbgefAMheA29cAi+fDbu/7bA1RYZhcMqQPrx981Teu3Uqpw6LwmZ38OGGHM546ntuf+tntuSWdMh7iYhI92FYrCRMv4p+v18Jv/yQmrhp+Bk2/svnW5b5/YH7K55g3eofuP6VtYz/01fc8q91vLsui/wyrUMV6ck8PjK0c+dOBg8ejI9P01CGDx/ecH78+PGtfj2brW0bcjrva+v93Z1b2h/YB874E0y5HWPF/2GsfxUjaxX86yIc8VOwn3ofDJjRISNFAOPjw3j5uglszC7m2e9289XWQ/xn4wH+s/EAc0ZEcftpg0mODwf076/2q/2NH9t6f0+itaw9mGHAkDn4DZkD+1fDj09i3bGU862rON+6ih+NCTxZdT5fbB7GF5vzMAxIiQ/n9PpRo+H9NJ1OpCfxeDJUVFREXFxcs+NhYWEN512RkZHRrnjae39357b297sS39lz6L9rMX0yP8WStQrrGxdRGjmW3OHXU9YnpUPf7tYxFs6J780HW8tZmVXFsm2HWbbtMMn9/Lh0ZDCjo/wA/fur/Wq/mLSW1UskTIar3zG3hfjxKdj8EdMd65nuv56s0PG84LiQ1w8PYcP+IjbsL+LvX2wnNrwXp4/sy5yR/Zg8KBJ/H02nE+nOPJ4MASf8C4urf31JSkpq0xojm81GRkZGm+/v7jzW/imn4yjJxf7T0xgbXiekYCPDV96NI3G6OVKUOK3D3ioFuPBU2Jtfzj+/38OStFzS82pIzysgNTGc8b3tDEyIw9fHitVimF+GgcVi4GMxsBgGPlbzsfH5hucNx8BqsWC1YN5jOfoaVufrNDrWFf7CqP/+299+h8NBnd1Bna3+0W7HZndQa3NQZ7PXH3PUH7NTZ6t/fsx15jHzXJ3NTm2j6xruqb+urvHzRu/rvKeu/p46e9MYGr5vdC7Sz8ZrN02nl79vmz+/nkJrWb1Q/yS47GWY9YC5xjVtMfElP/MYP/NQwlhWxl7HawVJ/Li7gJyiSl5bmclrKzMJ8rMyc1gUc0b2Y9bwKHoH+3u6JSLiIo8nQ+Hh4S2O/hQXFwNHR4hay2q1tquTau/93Z1H2h8RD+f9A2bcBcufhJ9fx8j8Eevr58HAmXDaHyFxaoe93ZB+ofzvFSn87vRhPP/Dbt5dm826zCLWZQI/b+mw92ktw+A4SVXrjrUm4bLU39vSMfN6B/mHS4jK3YlhGDg4uozLgaPZki6Hw4Gj4bl5zdHnR4/T6PjJrm14xSbHHc5DjeJpepxGcTa8VguxN34Nmh13UFRcTODPPx9NWOyNkhNbo4TlBElOd5ZlgYo6B8GB3vvzz+lEa1l///vfk56e7tL0belGeg+GC+bDqffBygWw/lV8D21k5qHfM7PPMKov+i3LA2bx9fYClm07xOHSaj7fdJDPNx3EMGB8QgRzRvbl9JH9GNo3uEv8sUtETszjydCwYcP49NNPqaura7JuaMeOHQAMHTrUU6GJu4XFwXlPwvS7YPk/YMMbsPcH82vQaWZSlDC5w94uPjKQP1+UxJ2zh/Lyj3tYvzOX4JBQ7ICt/hfehi+H89gx5xwO7Hbqf0E+es7uMI85z53o92SHA+rqRxU8bsc+T0fgYUc6/BV9rQY+Fgs+FnNk0cfa6HnD8aPHfC0WrA3nzXO+VgOrxYJvfbJ79JiBr9W83rf+uHms/vpj3tt5/bHvbzEclB7YS+8gvw5vf3fU0WtZQetZ28pj7Q/uD2f8GU65C2PN8xhrX8DI34H/p3cwJyyO2VPvxHbOL9h0uJZl2w7xzbZDbDlQyvrMQtZnFvLE0u3ER/Ri9oi+zBkRxcQBkfj5uF6zSv/+an/jR2/jrvWsHk+GTj/9dN59912+/PJLzj333IbjH330EX379iU5OdmD0YlHhMfD+U/DjLvhh/+FtDdhz3fm1+DZZlIUP7HD3q5faAD3nDWctH6VpKSkdMrImMPRPHlqSKJaOGZ3HB1taHLMZr6GMxlzHmty/THH7PZjzjU6Zq+PqbbOzsG8PPr164fFYv4l08BoqGVhQKPnTY87vznRNQ3PG/2V9KTXNjre+N6m1zQ6btTHU/+NcfQpzu+O9z4Oh52srCwGD0zE18faJIHwPSbB8LEce6xRgmGxNEk6rJbu8Vdhm81GWtF+T4fRZXT0WlbQetb28mj7w8/FctqpRGV+Qr897+FbnI2x9F5s38wjatClzBlwAbOmB5NfEcC6A9Wsy61i06EasgqPTqcL9DFI7u9Paow/E/r7E+LvWmKkf3+135vYHQ4qah2U19rp08va6e33eDJ06qmncsopp/DII49QVlZGQkIC//nPf1i+fDl///vfvXrKmtcLT4ALnmmUFL0Fu78xv4acbiZFcRM8HWWrGPXrjY7+D9e1/ru22WykpVWSkjLcK/+fs9lspFnzSUmO8cr2S3MduZYVtJ61rbpU+yeeArUPY09/C2PFM/gWZxG37UVi976LY+JNOCbdwunT+gBQXl3HT7uP8M22Q3y7/TD5ZTWszK5iZXYVlvrpdLNHRDFnRF8GRwUd97+pLtV+D1D7u3f762x2SqrqKK6spbCihuKKWooqzS/n8+LKWooq6h/rjxdX1TZMZR8d5ctHd57Wrp+fJ+PxZAhg/vz5PPXUUzzzzDMUFRUxaNAgnnzySZUwFVPEALhwAcz4vZkUpS+GXV+bX0PPhNPuh1jN3xeRjtHRa1lB61nbq8u03xoMk2+G1Btg0wew/EmM/O0YP/4DVj0LE66DaXcSGhbHOUkxnJMUg93uID27iGVbD/H11jy2HSxlXWYh6zILeeKLHST2DmTOiH6cPrIvEwdG4mttPmrUZdrvIWq/Z9tfXWejuFECU1RRS1FFTUMiU1RZczShafR9aVVdu963l6+VQRG+nd7+LpEMBQUF8eCDD/Lggw96OhTpyiIHwkULj44UbXwbdn5pfg07G067D2LGeTpKEenmtJZVTsrqC8lXQdIVsP0/5jrX3A2w+p+w9iVIvhJOuQv6DMFiMRiXEMG4hAj+cNZwsgsr+GbbIb7eeohVu4+QeaSCl3/ay8s/7SUkwIdTh0Vx+sh+nDY8ihB/700ApGM5HA6qau0NiYqZvNQ/rzzme+eoTUUNRZW1VNS0b81SSIAP4YG+hPfyIzzQl7Bevub3AT709y2nr1FEb4qJcBQSUltAUO0R/KvysVQcJis4BZjZIZ/B8XSJZEjEJb0Hw8XPwcw/wPdPQMa7sGOp+TX8XDMpitZaM5HjqquG8nyoyIeKIxilhwnOL8csQC9ayyqtZrHAyPNhxHmw51uzIuq+5WYBoA1vwqgLzT/gNeqT4iICuXbqAK6dOoCy6jp+3HmYr7ce4ttthzhSXsOnGw/w6cYDWAyYkBhBCFX0z9yMv68VPx8L/lYLfj71X1YLfj7WJt/7+xx7/pjnjY51le0dpPUcDgflNTaKKloejXEePzoV7ej3NXX2Nr+vYUBYL18iAv2OJjO9fAlv/H2gL+EBvkT6VBLpKCLMVkhQ7RGsFYehLA/KDpmPJYcg9xCUHwbHiROtPqHZwMNtjrs1lAxJ99V7MFzy/NGkaNP7sP0z82vEeWZS1D/J01GKdC6HA6pL6pObAjPBKTeTHPP5kYakp+F4TVmTl7AAwwHb5DMhvHnhAG+jtaziMsMwC/wMng1Za8ykaMfnsGWJ+TXkDHOq9zHbRAT7+3D2mGjOHhONze4gLauIZVvzWLb1ENvzSlm7r9C8cF9Wp4XtTI78j02emnxvbZpoHee6ls77Os8d97Ut+FuPJnRtKTzjLAZ0bKGgxoWLzMfGxxrdU3/eeb/N7mj2mmbF2EbnjylmZGv0HnXH3t/sPWnh/savSX0xJDu5hwtxrF5lTlOrT3zaU33Wx2I0Gp3xI7yXL2GNRm2OPecc0Qmx1mApP2QmNOWHmiY3+fXHnd/bql2IyIDA3hDcD4L7Nvrqh71XH3ZW9mFMm1vbOkqGpPvrMxQufQFm/jf88ARkvA/bPjW/Rp5v7hfRv7P/VxLpILY6qCw4JqFpKdFplNzYa11/H4uP2QEF9sER2Js8awxRwf06vj3dlNaySpvFT4Kr34aDm+DHp2Dzh7DrK/MrYZqZFA2ZA8eMyFgtBhMSI5iQGME9Z48gq6CC77cfYuueTPpE9afW7qCmzk6NzW4+1tmpbvT82HPO59V1dmrqbA3fN/492uGA6vprSt38MR2P1WI0GcWqravF8tk3zZKUxglMz9c8ufDzsRBRn6iENYzSHDNSc+y0tEA/gvysR0cD62rM0ZnyQ1CWVZ/g5EGhM9lpNKJT4+J/If5hDUkNwVGNkp1+5ldQ/bGgPua00xY4bDbq0tJc/Kxcp2RIeo6oYXDpi2ZS9P3jsOlD2PqJ+TXqQjMp6jfK01GKt6mpaDQyc+wojXPkplHSU1XUtvfxC4bASAjsY3Yugb3Nr4bnxxwPCGv4Zcxus5GTlkaU4fo+KD2V1rJKu/UfA5e9BLP+CCueMSui7l8Bb66A/mPN6XMjLwBLyyON8ZGB/NekeNL8jpCSMqTDRiTrbMckVMdJolo81yipaikZq7Udm4Qd/7Ub39+Yze6g0m6jsrbx9KmadrXZuWm5xUL9o9HoWKMNyBufN5pvcN7kdZoda/w6BlaDFo41fi2wWizmY6P7G8dm4ODIoVyShg0mMti/SYIT4Huc/x7sdrNPKcurT3IOQV6jUZzGIziVBa59kD4BR5OZRiM4DY9BjUZ2fHu169/MnZQMSc8TNRwue/loUrT5I9jyMWz5N4y+yEyK+o7wdJTSHdntZrLSZGTmeIlO/TW1FW14IwN6RdQnL33MJMf5vMVEp3e36nhEvErvwXD+/8Gp98LKhbDuZTi4Ed67HnoPMTcaT7oCfNyz6bGP1YKP1UJgF9lj2eFwUGtzNEuUamw2Kqvr2L5jO6NGjMDXx9osufBpZZLSXZnbXhSRMqov1toyKM+DwjzIOk5yU9a6dThNWHyaJjGNR2+OTXL8Q5qNaPYESoak5+o7Ei5/FWbeA9/PMxOizR/B5iUw5hKzY4oa7ukoxd1sdWaCUlsJdZXmY3U5IYc3YGzaDVWFxyQ6BU2fu9LJOFn96hOZ+hGahkTmmETHebxXxHH/Wiwi3VRoDJz1F3Oa3Op/wurn4cgu+Ph2+PZvMO1OGH8t+AV6OlK3MgwDPx8DPx8L+Dc9Z7PZqDnky/D+Id1rrZ7dZvYzNRXmGk3n89ry+mPlR5/X1l/T8Ly84dFSU86YogNYPivqsHU4DceC6r/vFWEWAvFiSoak5+s3Cq543Zy//f08c9rcpg/MaXRJl5lJUcQgT0fp3ez2+sSkyuwE6qqOJizOr7rKpt83OVZx9N7aykb3t3DM3nzfAyswzJV4/UNbmIJ2gkTHL7hH/jVNRNogMNKcOjftTlj3CqxcACXZsPRe+OHvMOU2mPhr6BXu6Uh7Nme/06qEpdz8vvF5Z+LSkLw0ep26qg4J0eCY/LAD1uFIc0qGxHv0HwNXvgEHNprT57Z9ChnvwaYPMMZcRkhQKmSWg9UHDIv5hVH//NjHxucsjc4d7/wx10IL9x7vPg/9Eu1wgK2mlYnGiRKVRglLXVXz5KWuqsM6DtcY4BsIvgE4fHtRZfchIDIOI6iF9TWNk57A3m6bziIiPZh/CJzyW5h0M6S9CT89DUX74Zs/wU//ZyZEk27xdJSe5XBg2KrN0fq6yhYSlmOTmJYSlpZHXdo2hdlVBvgFmX2NX1Cj54HmH8mcz32D6o8FHX3uG4jNpxc7s/MZOm461tD+mg7dSZQMifeJHgtXvQkH0uG7ebD9MywZ7zKMd2GVp4M7jhMmYI0eT5iAHZOsNXpuAUZVVmD5wV6fpNR3OnigSo/VH3wD6hOVXuDTy3xs/NVwLLD+2paOneR+H/8mBQS2pKWRkpLSvaZiiEj35xsAE2+E8deZsxZ+fBIOb4Mfn8Sy6llG9YrGsqrR+IDDATjqHznOc0fTa3E+tPZaV97jeOfb+h5H+x0rMB7gsxN+gu3nG9jmhAW/4KbnGx/zCWjfHzRtNsrL0yA8AdQ3dRolQ+K9opPhvxZD7gYcP/yDquyNBPj7YeAAh938odz4seG4/ZjzznOOls81vretGl6ncxjACf/eZFiOJhfHSzx8AlxLRo53v9bKiIg3svpA8pWQdLm5X97yf2Dk/kyv0r10mbrXnuQTcEzy0ULy0mLCcpIkxqeX16+Z8XZKhkRixmG//DX3jAwcm2CdMMnqwCSs4VzL72uz1bFr916GjEzC6h/cPJmx+mrNi4iIO1gsMPI8GDEXW84Gdm9az+Ahg7FarPU/h+t/FjufN/xsbun5sddy4vMnfN3WvG8bX+s419rsdjZu3cHY8ZOx+mp6snQOJUMi7mQYYHTBkQ+bjbLiMIhN0VC8iEhXYBgQnUxpngMGpnjnz2abDbtPtmYMSKfSuKCIiIiIiHglJUMiIiIiIuKVlAyJiIiIiIhXUjIkIiIiIiJeScmQiIiIiIh4JSVDIiIiIiLilZQMiYiIiIiIV1IyJCIiIiIiXknJkIiIiIiIeCUlQyIiIiIi4pWUDImIiIiIiFdSMiQiIiIiIl5JyZCIiIiIiHglJUMiIiIiIuKVfDwdQEdxOBwA2Gy2Nt3vvK+t93d3ar/a3/jR26j97Wu/8z7nz2E5Sn1T+6j9an/jR2+j9runbzIcPaT3qqmpISMjw9NhiIh4raSkJPz8/DwdRpeivklExLNO1jf1mGTIbrdTV1eHxWLBMAxPhyMi4jUcDgd2ux0fHx8sFs2+bkx9k4iIZ7S2b+oxyZCIiIiIiIgr9Cc8ERERERHxSkqGRERERETEKykZEhERERERr6RkSEREREREvJKSIRERERER8UpKhkRERERExCspGRIREREREa/kFcnQhx9+yPDhwxu+Ro0axfTp07nrrrvYt29fk2vXrVvHAw88wCWXXMKYMWMYPnw42dnZngm8g7S2/TabjVdeeYUbb7yRmTNnkpyczDnnnMP//u//UlJS4rkGdJJjP5djv1avXu3pENts6dKlDB8+nM8++6zZuQsuuIDhw4ezfPnyZudOP/10Lr74YgC+/fZb7rnnHs4//3xGjx7N8OHDOz3ujtLe9peVlfHcc89xzTXXcMoppzBu3DjOP/98Fi1aRHV1tTua0C4d8e//1FNPcdFFFzFp0iSSkpKYM2cODz30EDk5OZ0ev7dQ36S+qSXqm9Q3HUt9U+f2TT5tvrMb+tvf/sagQYOorq7m559/5p///CerV6/m888/JywsDIBVq1axcuVKRo4cSVBQEGvWrPFw1B3nZO2vqqpi/vz5nHfeeVx++eVERESwZcsWnnvuOb799ls++OADAgICPN2MDuf8XI41ZMgQD0TTMSZNmoRhGKxatYpzzz234XhRURE7duwgMDCQ1atXM2PGjIZzBw8eJCsrixtuuAGAr776ivT0dEaOHImvry+bN292ezvaqr3tz83N5bXXXuPCCy/k+uuvJzAwkPXr17NgwQJWrFjBK6+8gmEYnmhaq3TEv39JSQlz585l8ODBBAUFsWvXLp577jm++eYbPv30UyIiItzerp5KfZP6ppaobzKpb1Lf1Nl9k1clQ0OHDiUpKQmAyZMnY7PZmD9/Pl9//TWXXnopAL/5zW+44447AHjppZd6VIdzsvYHBASwbNmyJv8hTZ48mejoaH73u9/xxRdfcOGFF3oq/E7T+HPpKSIjIxk6dGiz/37Xrl2Lj48Pl156abO/Lq5atQow/80B/vznP2OxmIPHjz32WLfqcNrb/ri4OL755hsCAwMbzk+dOpVevXrxxBNPsH79elJTUzu/IW3UEf/+Dz/8cJPzzs/l5ptvZtmyZVx22WWd2ALvor5JfVNL1DeZ1Depb4LO7Zu8Yprc8Th/yBw5cqThmPN/MG9wbPutVmuLGfXYsWMBMzuX7mPy5Mns3buXQ4cONRxbvXo1Y8aM4dRTT2Xz5s2UlZU1nFuzZg1Wq7XhB2l3/3+hPe0PDAxs0tk4daf/F9r779+SyMhIAHx8vOrvaG6nvkl9U0+mvkl9U1frm7r3f1Ht5JxvPWDAAM8G4iGtbb8zK+/OQ/MnYrfbqaura/Jls9k8HVa7TZkyBaDJX2BWr17NpEmTGD9+PIZhsH79+ibnRo0aRUhIiNtj7Qyd0f7u9P9CR7W/rq6OqqoqtmzZwl//+lcGDBjAGWec4Z5GeCn1TeqbQH1T43Pqm9Q3dWbf5FXJkPMHS3l5OcuXL+e5555j4sSJzJ4929OhuUVb2p+Xl8c//vEPxowZw6xZs9wYrftcccUVjB49uslXT5iaMHHiRCwWS8MPnMLCQnbu3MnEiRMJCgpi1KhRDT9ADxw4QHZ2dsMwdE/Q0e3ftm0bL774ImeccQYjRoxwSxvaoyPaf/jwYUaPHk1ycjIXX3wxNpuN119/naCgILe3pydT36S+qSXqm9Q3qW9yT9/kVXMdrrjiiibfDx48mGeffdZrpny42v6ioiJuuukmHA4HTz/9dLcfmj6exx9/nMGDBzc51pUXILZWWFgYI0aMaJh/u3btWqxWK+PHjwfMH0jOHzjOa3pSh9OR7c/OzubWW2+lf//+/PnPf3ZD9O3XEe2PiIjg/fffp6amhj179vDiiy9y7bXX8q9//Yu+ffu6sTU9m/om9U0tUd+kvkl9k3v6pp75E+Q4Hn/8cd5//31ee+01rrzySnbv3s3dd9/t6bDcxpX2FxcX86tf/Yq8vDxefvll4uPj3Ryt+wwePJikpKQmX2PGjPF0WB1i8uTJ7Nu3j7y8PFavXs3o0aMb/nIyadIktm7dSmlpKatXr8bHx4cJEyZ4OOKO1RHtz8nJ4dprr8VqtfLaa68RHh7u5la0XXvb7+PjQ1JSEhMmTODyyy/ntddeIzs7m0WLFnmiOT2W+ib1TS1R36S+SX2Te/omr0qGnD9YpkyZwmOPPcbll1/O8uXLWbr0/7d35zFRXW0YwB8QF3BhRDajUgWdkWWCqDCKUJFaFYsFW5cmzUAUBFSoFTWKdoG2isYaI0MJIMatxKAVDChVi9bYJjIoFkqtKAWkSltFFlFR1vv9QeZ+TgFFQajO80uI8dwzc99z5zJPzr1nhpO9XVqP6Oz47927hyVLluDWrVvYu3fvK3HbldqnuZqSk5ODnJwcODs7i9s0by4XL16EWq2GXC5/7ZY/dXX85eXlUCqVAIADBw7A0tKyhyrvHt39+ltaWsLc3LzN38ChrmE2MZt0DbOJ2QT8d7JJpyZD/7Zu3ToYGxsjJiYGLS0tvV1Oj2tv/JqwuXnzJvbs2QM7O7terpK6wtnZGX369MGpU6dQVFQEFxcXcdvgwYNha2uLY8eOoby8/LVahqDRlfH/9ddfUCqVaGlpwf79+zFixIieLr/Luvv1Lysrwz///IM33njjZZat85hNzKbXHbOJ2fRfyibdWJDcAWNjYwQFBWH79u3IyMiAj48PqqqqxA91Xb9+HQBw/vx5mJiYwMTEROsFe9X9e/yzZ89GQEAAfv/9d2zcuBHNzc3Iy8sT+5uYmMDKyqr3Cn5JioqK2v2GHisrK/HrGl9VgwYNgp2dHbKysqCvr9/mVrOzszP2798PoO2a3PLychQUFAAA/vzzTwAQr9SOGDHilfgg74uOv7KyEn5+fqioqMDmzZtRWVmp9TXHlpaWr8SVuBcdf2FhIaKjozF79myMGjUK+vr6uH79Ovbt2weJRIKlS5f26Dh0DbOJ2QQwm5hNzCagZ7JJpydDAKBUKpGcnIy4uDh4e3ujqKgIq1at0uoTFRUFoHUd48GDB3ujzJfmyfE7OTmJbzCbN29u03f+/PnYunVrT5f40kVERLTb/tVXX2HhwoU9XE33UygUKCgogK2tLQYNGqS1zdnZGfv27UPfvn3h5OSktU2tVrc5NprfjVfpXHiR8f/xxx+4efMmgNar1P8WGhqKsLCwl1t4N3mR8ZuamsLc3Bx79+5FRUUFmpqaYGlpCQ8PD4SEhGD48OE9PQydw2xiNjGbmE3Mpp7JJj1BEIQujYaIiIiIiOgVpNOfGSIiIiIiIt3FyRAREREREekkToaIiIiIiEgncTJEREREREQ6iZMhIiIiIiLSSZwMERERERGRTuJkiIiIiIiIdBInQ0REREREpJM4GaIXlpqaCplMJv7Y2dnBzc0Nq1evxo0bN3q7PABAfHw8srKy2rSr1WrIZDKo1epeqKrV2bNnERISAldXVzg4OMDFxQX+/v5IT09HY2Njr9X1b+0dqw0bNsDT0/Ol7vf27dtQqVS4evXqS90PEb1emE1dw2x6OmbT68egtwugV190dDSsra1RX1+Py5cvIz4+Hmq1Gt9//z2MjY17tbaEhATMnj0bM2fO1Gq3t7dHSkoKxo4d2+M1CYKAjRs3IjU1FdOnT8eGDRswfPhw3L9/H2q1GlFRUaiuroa/v3+P19ZZK1asgJ+f30vdx507dxAbG4sRI0bA1tb2pe6LiF4/zKbnw2zqHGbT64eTIeqycePGQS6XAwAUCgWam5uhUqmQlZWF999/v5era9+gQYMwYcKEXtl3UlISUlNTERYWhtDQUK1tnp6eCAwMRFlZWY/W9PjxYwwYMKDT/a2srF5iNUREXcdsej7MJtJVXCZH3U4TPpWVlVrtBQUFCAkJgYuLC+RyOXx9fZGZmanVp6qqCpGRkZg7dy6cnJwwdepU+Pn54dKlS23209DQgNjYWHh5eUEul0OhUECpVOLy5csAAJlMhrq6OqSlpYnLJZRKJYCOlyKcOXMGixcvhqOjI5ycnLBkyRL88ssvWn1UKhVkMhmKiooQHh6OSZMmwdXVFREREbh///5Tj01jYyOSkpJgbW2NlStXttvHzMwMkydPFv9fU1ODyMhIuLu7w8HBAW+99RZ27tyJhoYGrcfV19djx44d8PT0hIODA9zd3REVFYXa2lqtfp6enggODsbp06fh6+sLuVyO2NhYAEBxcTECAgLg6OgIhUKBzz77DA8fPmxTY3tLEWQyGb744gscO3YMXl5ecHR0xLvvvosff/xRq19ZWRkiIiIwa9YsODo6wt3dHSEhIbh27ZrYR61WY8GCBQCAiIgI8fVTqVRin86cT0REGsymjjGbmE26jHeGqNvdunULADB69GixLTs7G4GBgXB0dERkZCQGDx6MzMxMrF69Go8fP8Z7770HoPXNFQBCQ0NhamqKuro6/PDDD1Aqldi3bx8UCgUAoKmpCYGBgcjNzYWfnx+mTJmC5uZm5Ofn4++//wYApKSkwN/fHwqFAitWrADQetWtIxkZGVi7di3c3NywY8cONDQ0ICkpSdz3kyEAAGFhYZg7dy4WLFiA69evY8eOHQBal2Z05LfffkNNTQ0WLlwIPT29Zx7L+vp6+Pn54ebNmwgLC4NMJsOlS5eQmJiIq1evIjExEUDr8oYVK1YgOzsbQUFBmDx5Mq5duwaVSoW8vDykpKSgX79+4vNeuXIFxcXFWL58OUaOHAlDQ0PcvXsXSqUSBgYG+PzzzzFs2DBkZGTgyy+/fGadGufOnUNBQQE++ugjGBkZISkpCaGhoTh58iRGjRoFoHWJgUQiwZo1a2BiYoJ79+4hLS0NixYtQlpaGqytrWFvb4/o6GhERERg+fLl8PDwAABYWloC6Pz5RESkwWxiNjGbqF0C0Qs6evSoIJVKhby8PKGxsVF48OCBcP78eWHatGnChx9+KDQ2Nop958yZI/j6+mq1CYIgBAcHC9OmTROam5vb3UdTU5PQ2Ngo+Pv7CytXrhTb09LSBKlUKhw+fPipNU6YMEFYv359m/bs7GxBKpUK2dnZgiAIQnNzs+Dm5iZ4e3tr1fLgwQNh6tSpwuLFi8W2mJgYQSqVCrt379Z6zsjISEEulwstLS0d1nPixAlBKpUKhw4demrdGocOHRKkUqmQmZmp1Z6YmChIpVLh559/FgRBEM6fP99uTZr9paSkiG0zZswQbG1thZKSEq2+27dvF2QymXD16lWt9iVLlmgdK0EQhPXr1wszZszQ6ieVSgVXV1fh/v37YltFRYUwfvx4ISEhocMxNjU1CQ0NDcKsWbOELVu2iO2//vqrIJVKhaNHj7Z5zIueT0T0+mM2MZuexGyiZ+EyOeqyRYsWwd7eHhMnTkRgYCCGDBmCuLg4GBi03ngsKytDSUkJ5s2bB6D1ypnm580330RFRQVKS0vF5zt06BDmz58PuVwOOzs72Nvb48KFCyguLhb7/PTTT+jfv3+3rfsuLS3FnTt34OPjA339//9aDBw4ELNmzUJ+fj4ePXqk9Zj2bsXX19e3WYLRFdnZ2TAyMsKcOXO02jVXly5cuCD2e7Jdw8vLC0ZGRmK/J2sdM2aMVptarca4ceMwfvx4rXZvb+9O16tQKLSucJqammLYsGEoLy8X25qamhAfH4+5c+fCwcEBdnZ2cHBwwI0bN7Re44487/lERLqJ2dSK2cRsoqfjMjnqsm3btsHGxgYPHz5EZmYmUlJSEB4ejqSkJADA3bt3xX7btm1r9zmqq6sBAHv37sXWrVvxwQcfYNWqVRg6dCj09fWxa9culJSUiP2rqqpgbm6uFQ5dodm/mZlZm23m5uZoaWlBbW0tDA0NxXaJRKLVT3Or//Hjxx3uZ/jw4QD+v1zjWWpqamBqatpm2cKwYcNgYGAgLt2oqamBgYEBTExMtPrp6enB1NRU7KfR3jhramowcuTINu2mpqadqhVoe0yA1uNSX18v/n/r1q1ITk7GsmXL4OzsDGNjY+jp6eGTTz7R6teR5zmfiEh3MZtaMZuYTfR0nAxRl9nY2IgfTJ0yZQpaWlpw5MgRnDx5EnPmzMHQoUMBAMHBwXj77bfbfQ7NlaD09HS4uLggKipKa/u/PyhpYmKC3NxctLS0dEvoaGqsqKhos+3OnTvQ19fHkCFDurwfBwcHSCQSnDlzBmvWrHnm2myJRIL8/HwIgqDVt7KyEk1NTWLdEokETU1NqKqq0godQRBw9+5d8fXRaG+/EolEfDN/UnttXZGeng5fX1+Eh4drtVdXV3fqGD/P+UREuovZ1HnMJmaTLuMyOep269atg7GxMWJiYtDS0gJra2uMHj0ahYWFkMvl7f5obl/r6elpfZgSAAoLC5GXl6fV5u7ujvr6eqSmpj61ln79+j31apjGmDFjYGFhgePHj0MQBLG9rq4Op0+fxoQJE7SuvL2ovn37IjAwECUlJfjmm2/a7VNZWYnc3FwAwNSpU1FXV9fmj/MdO3ZM3P7kv+np6Vr9Tp06hbq6OnH70ygUChQVFaGwsFCr/fjx488e2HPQ09ND3759tdrOnTuH27dva7V1dDXzec4nIiINZlPHmE3MJl3GO0PU7YyNjREUFITt27cjIyMDPj4+iIqKwrJlyxAQEID58+fDwsIC9+7dQ3FxMa5cuYKYmBgAgIeHB+Li4hATEwNnZ2eUlpYiLi4OI0eORHNzs7gPb29vpKamIjIyEqWlpVAoFBAEAfn5+bCxscE777wDAJBKpcjJycHZs2dhZmaGgQMHwtrauk3N+vr6WLduHdauXYvg4GAsXrwYDQ0N2LNnD2pra7FmzZpuOz6awFGpVCgoKIC3t7f4h+0uXryIw4cPIywsDJMmTYKvry+Sk5Oxfv16lJeXQyqVIjc3FwkJCZg+fTpcXV0BANOmTYObmxu+/vprPHjwABMnTsS1a9cQExMDOzs7+Pj4PLMuf39/HD16FEFBQfj444/Fb+x5cglId/Dw8BC/mUcmk+HKlSvYs2eP+G08GlZWVhgwYAAyMjJgY2MDIyMjmJubw8LCotPnExGRBrPp6ZhNzCZdxckQvRRKpRLJycmIi4uDt7c3pkyZgiNHjiA+Ph5btmxBbW0tJBIJbGxs4OXlJT4uJCQEjx49wnfffYekpCSMHTsWkZGRyMrKQk5OjtjPwMAAu3fvRkJCAk6cOIH9+/dj4MCBGD9+PNzd3cV+mzZtQlRUFMLDw/Ho0SO4uLjg4MGD7dY8b948GBoaIjExEatXr0afPn3g6OiIAwcOYOLEid12bPT09BAdHY2ZM2fi8OHD4vHQ1L927Vrxw6b9+/fHgQMHsHPnTiQlJaG6uhoWFhZYunSp1h/F09PTQ1xcHFQqFVJTUxEfHw+JRAIfHx+Eh4e3uaLZHjMzM3z77bfYvHkzIiMjYWhoiJkzZ+LTTz8Vv/61O2zatAkGBgZITExEXV0d7OzsoFKpsGvXLq1+hoaG2LJlC2JjYxEQEIDGxkaEhoYiLCys0+cTEdGTmE0dYzYxm3SVnvDkfVciIiIiIiIdwc8MERERERGRTuJkiIiIiIiIdBInQ0REREREpJM4GSIiIiIiIp3EyRAREREREekkToaIiIiIiEgncTJEREREREQ6iZMhIiIiIiLSSZwMERERERGRTuJkiIiIiIiIdBInQ0REREREpJP+B2A8YDnahdCzAAAAAElFTkSuQmCC",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA04AAAHaCAYAAAA3yBn9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC2PUlEQVR4nOzdd3yUVdr/8c/MpEESkpCEkIq0UFOQFlhBEazYy+qja13ddde27q5rY3fVn6uoz6qPiC7YG6xiQUVFERsqXVMoEpqkkZCQTHrP/P6YzJCQOklmJuX7fr14Zbjvc0+uM5Z7rvuccx2DxWKxICIiIiIiIm0yujsAERERERGR3k6Jk4iIiIiISAeUOImIiIiIiHRAiZOIiIiIiEgHlDiJiIiIiIh0QImTiIiIiIhIB5Q4iYiIiIiIdECJk4iIiIiISAeUOImIiIiIiHRAiZOIiIiIiEgHPNwdgAwc48aNA8BoNPLFF18QGRnZaruzzz6b/fv3A/Dyyy8ze/bsVts999xzPPXUUwB8+umnjBo1qt3f25ZHHnmEiy66qMP4V61axaJFi5gzZw4vvPBCq21+97vf8c033/Dggw9y2WWXAVBUVMQXX3zB119/TXp6Onl5eXh6ehIbG8tFF13ExRdfjNHY8hnGqaeeSnZ2dqu/JyQkhO+//77DmPuC/fv3s2LFCjZv3szhw4eprq4mMDCQiRMnctppp3Heeefh7e3d4rq0tDRWrFjBli1byM/Px8PDg8jISE466SSuvfZawsLC3NAbEekrdE/SPakp2z+XPXv2tNnG9hmsX7+eqKioLv8u3b/6LiVO4lIeHh7U1dXx3nvvceutt7Y4v337dvbv329v1xaLxcI777yDwWDAYrGwatUq7rrrrnZ/9y233NLq8QkTJnQq9ksvvZQvv/ySL7/8kjfffJMrr7yy2fkVK1bwzTffcMopp9hvUABr167l/vvvJzQ0lJkzZxIREUFBQQHr1q1j0aJFfPvttzz99NMYDIYWv9Pf359rrrmmxfHBgwd3Kube7plnnmHp0qU0NDSQmJjIhRdeiK+vLwUFBWzbto1FixaxcuVK3nvvPfs1FouF//3f/+WFF17Aw8OD2bNnc+aZZ1JbW8tPP/3ESy+9xMqVK1m8eDFnnnmmG3snIr2d7km6J7mS7l/9gEXERWJjYy1z5syxXHjhhZZTTjnFUl9f36LN3XffbZk0aZLlhhtusMTGxlq+//77Vt/r22+/tcTGxloWLVpkmTVrliUpKclSXV3d5u+NjY3tkT4UFBRYkpKSLAkJCZb9+/fbjx84cMCSkJBgmTlzpiU/P7/ZNT/88INl3bp1lrq6umbHjxw5Yjn55JMtsbGxlk8//bTF75o3b55l3rx5PRJ3b/Tss89aYmNjLSeffLIlOTm51TbffPON5aqrrmp2bMmSJZbY2FjLvHnzLOnp6S2uWbt2rSUuLs4yYcIEyw8//OCU2EWk79M9Sfekpjrzz2XevHmW2NhYS2ZmZpd+h+5ffZ/WOInLXXLJJeTk5LQY1i8rK2Pt2rWceuqpBAcHt/seq1atAqxP3M4991wKCwv54osvnBazTXBwMP/v//0/KisrufPOO6mrq6Ouro4777yTyspKHnroIUJCQppdM2vWLBYsWIDJZGp2PDQ0lMsvvxyALVu29Eh8n3zyCVdccQVTp04lPj6ec845h//85z9UV1c3a/fHP/6RcePG8frrr7d4j6eeeopx48bxj3/8o0diak1WVhZLly7F09OT5cuXk5CQ0Gq7uXPnNpuCkpmZyXPPPYenpyfPPfccY8eObXHNGWecwT333EN9fT33338/DQ0NTuuHiPR9uidZDeR7kivo/tU/KHESlzv33HMZNGiQ/UZj89FHH1FRUcEll1zS7vUFBQV8+eWXjB49mvj4ePtc8LfffttpMTe1YMECLr74Ynbs2MHSpUtZunQpaWlpXHTRRSxYsMCh9/L09ASs00VaU1NTwwcffMB//vMfXn31VTZt2kR9fX2rbR9//HHuuOMODh48yLnnnsuVV16JxWLhySef5Prrr6empsbe9uGHHyYiIoLHHnuMXbt22Y9v3LiRZcuWERsby7333utQXxzx3nvvUVtby+mnn05sbGy7bb28vJpdV1dXx/z589tdJ3DppZcSGhrKL7/80mNfAESkf9I96ZiBek9yBd2/+getcRKX8/f354wzzuDjjz+msLCQoUOHAtYndhEREZx00kl88sknbV5v+9J9wQUXANYFnRMnTmTTpk1kZmYSHR3d6nVLlixpcSwyMrJTi3CPd++997J582aWLVtmf5/77rvPofeoq6tj9erVAMyZM6fVNvn5+fztb39rdiwqKopHHnmEGTNm2I9t376dF154gcjISFatWmV/OvqXv/yFP/7xj3zzzTe8+OKL/OEPfwAgMDCQf//731x11VXccccdvPfee1RVVXHnnXfi7e3Nk08+iY+Pj0P9ccS2bdsA65NPR2zfvh2AX/3qV+228/DwYObMmaxZs4Yff/yRpKSkrgUqIv2e7klWA/me1FRr/1xsSkpKuvy+un/1D0qcxC0uvfRSVq9ezQcffMB1113H7t272blzJ7fcckur1XxsLI2Lbk0mE+eff779+EUXXcRDDz3EqlWr+POf/9zqtc8880yLYzNmzOjSTcrPz4+bb76Ze+65B4D7778fPz8/h97j3//+N+np6cydO7fVm9RFF13E1KlTGTt2LL6+vmRmZvLGG2/w9ttvc+ONN/LWW28xfvx4AHvxhD/84Q/NppR4eHhw9913s2HDBt555x37TQrgxBNP5Pbbb+ff//43//jHPygqKiI/P59//etfjBkzxuHPxBEFBQUADlcOsl03fPjwDtva2hw5csTB6ERkoNE9aWDfk5pq7Z9LT9D9q39Q4iRuMW3aNEaOHMk777zDddddx9tvv43RaOTiiy9u97pNmzaRkZHBnDlzmn3pPuecc3j00Ud57733uO2221qdZtBeiVGb1p40XXjhhS3KjlZVVfH888/b//7ZZ58xd+7cDt/f5pVXXuGll15i5MiRPProo622Ob7iUmxsLA8++CC+vr689NJLLFmyhKVLlwKwe/duAGbOnNnifUaNGsXw4cPJysqipKSEIUOG2M/deOONbN68mTVr1gDWz7GjaSnH6+xn1pTFYgFotWpTexy5ztamadtly5bx+eefc/DgQby8vEhMTOTPf/5zh9MFRaR/0z1pYN+TmupMOfKmOntf6e79S3oHJU7iNpdccgmPP/44GzduZM2aNcyePZuIiIh2r3nrrbcAWjyRCwoK4tRTT+Wzzz7jq6++4rTTTutSTG09ATz+f7iPP/44Bw4c4Oqrr2br1q288847LFiwgHnz5nX4O1599VUeeeQRRo8ezauvvmqfFtJZl19+OS+99JJ9uhtAaWkpQItFwDahoaHk5ORQWlra7CZlMBg47bTT+O677wBaLTPbkc5+Zk0NGzaMAwcOkJub69DvCg0N7fR1tjahoaH2Y1u2bOGKK64gLi4Oi8XC008/zXXXXcfHH39MYGCgQ7GISP+ie9LAvSd1R2fvK929f0nvoMRJ3ObCCy/kqaee4u6776akpKTDp0pNqxTdcccd3HHHHa22e+utt7p8k+rME8DvvvuON998k9jYWO68805++eUXLr74Yv7+97/z0UcfERQU1Oa1L774Io899hixsbG88sorHVZqao3tmoqKCvsxf39/wDoVICYmpsU1+fn5zdrZ/PLLLzz66KMEBARQWlrKokWLWLVqVasbzralM5/Z8aZOncqmTZvYtGkTl156qUPXbd68mR9++KHd6+rr69m8eTNgnf5h8+KLLzZr99hjjzFt2jR+/PFHTj31VAd7ISL9ie5JA/ee1B2dva909/4lvYOq6onbBAcHc8opp5Cbm0tQUBDz589vt/37779PbW0tkyZN4pJLLmn1T1BQEN9//32bu5t3l9ls5p577sHDw4PHH38cLy8vYmNjuf3228nPz+f+++9v89ply5bx2GOPMWHCBF599dUu3aAAUlJSAJotOLZtmGj7n21Thw4dIjc3l6ioqGZP9mpqarjjjjuorKzkySef5He/+x179uzh4Ycf7lJcjrjooovw9PTks88+Y9++fe22bVp56aKLLsJkMrFu3bp2r3v33Xc5cuQII0eObLZg+Xjl5eU0NDQ0+1xEZGDSPWng3pN6Ulv3lZ6+f4mbuG0HKRlwbJsNNpWRkWFZt26dJSUlpdnxu+66q8Vmg2eccYYlNja2Rdum/vd//9cSGxtreeqpp5r93p7abPD222+3xMbGWp5//vlmx+vr6y1XXHGFJTY21vLRRx+1uO6ZZ56xxMbGWi688EJLUVFRh78nPT291XY5OTmW008/3RIbG2t57rnn7Me3b99u31Tv6NGj9uN1dXWWP/zhD5bY2FjLs88+2+y9HnzwQUtsbKzlf//3f+1tL7/88jY3P+xpzz33nD3m1NTUVtu0tgHuU089ZYmNjbXMnz/fsnfv3hbXrFu3zhIfH9+pDQRvu+02y/nnn99iI0gR6f90T9I9qame2gC3vftKT96/xD00VU/cKjo6us1SrU1t3ryZgwcPEhsbS3x8fJvtLr30Up5//nneffddbrnllhYb/HXH6tWr+fTTT5k+fTrXX399s3NGo5HFixdz3nnn8eCDDzJ9+nT7QuH333+fp59+GpPJxLRp01rd4O/4ErRr165l+fLlzJw5k6ioKHsFo6+//prq6mpOPvnkZjGceOKJ3HDDDbzwwgucc845nHHGGQwaNIgNGzaQnp7O1KlT+e1vf2tv/8UXX/DGG28wZcoUbr/9dgBMJhNPPPEEF1xwAYsWLWLy5MlOmxMOcNNNN1FXV8fSpUu55JJLmDJlCpMnT8bX15eCggK2bdvGL7/8wuTJk5tdd+utt1JZWcnLL7/M+eefz0knncSYMWOoq6vjp59+IiUlBR8fH/7973+3W+780UcfZfv27axcubJH/z0Rkb5L9ySrgXhP6gkd3Vd66v4l7qPESfoE20aCHa2HiYmJYcaMGWzevJlvvvmmx9at5OTk8NBDD+Hn58ejjz7aanna6Oho7r33XhYtWsR9993HCy+8AEBWVhZgnbf86quvtvr+x5egnTlzJgcPHmTXrl0kJydTWVmJv78/U6dO5fzzz+f8889vUW3nzjvvZOLEibzxxhusXr2auro6YmJi+NOf/sT1119v30g2JyeHe++9lyFDhvDvf/+7WbWn8PBw/vWvf3HzzTfz5z//mTfffNO+IaIz3HLLLZx11lmsWLGCzZs3895771FTU0NgYCDjx4/nhhtuaFbiF6xfCO6++27OPvts3nzzTbZu3crGjRsxmUxERkZy/fXXc80117Rb8vWRRx7h448/5tVXX+3UlyQRkaZ0T+qf96Tu6Mx9pSfuX+JeBoulsT6iiMgA8NBDD/HJJ5/w+uuvM3r0aHeHIyIifZzuKwOHRpxEZMC4//77+fDDD1m6dClDhgyxV3YaPHgwvr6+bo5ORET6Gt1XBhaNOInIgDFu3LhWj99yyy3ceuutLo5GRET6Ot1XBhYlTiIiIiIiIh1w+1S9srIynn32WX7++Wd27dpFUVFRiyy9vr6e1157je+++469e/dSXFxMREQE8+fP53e/+532YBEREREREady+wa4ZrOZt99+m5qaGhYsWNBqm6qqKpYsWUJkZCT33nsvy5cv59e//jVvv/02//M//0NVVZWLoxYRERERkYHE7SNOkZGRbN26FYPBQGFhIatWrWrRxsfHh/Xr1xMUFGQ/NnPmTMLDw7n99tv57LPPWpQsFhERERER6SluT5yOr/vfGpPJ1CxpsrFtOpebm9vjcYmIiIiIiNi4PXHqjk2bNgEwZswYh65raGigrq4Oo9HYqcRNRER6hsVioaGhAQ8Pj1Y37RyodF8SEXGfzt6b+mzilJeXx7///W8mT57MvHnzHLq2rq6OtLQ0J0UmIiIdiYuLw8vLy91h9Bq6L4mIuF9H96Y+mTiZzWZuvPFGLBYLTz31lMNPLW3tJ06ciMlkcvj319fXs2vXri5f39ep/+q/+q/+d/f/nxptas72ecTFxXX5c01LS+vy9X2d+q/+q/8Dt//Q/c/Adn1H96Y+lzgVFxdz/fXXk5eXx6uvvkp0dLTD72GbBuHl5dXlD7c71/d16r/6D+q/+t+9/39qOlpzts/DZDJ169+r7l7f16n/6r/6P3D7D93/DDq6N/WpxKm4uJjrrruOrKwsXnnlFcaPH+/ukEREREREZADoM4mTLWnKzMzkpZdeYuLEie4OSUREREREBohekTh98803VFZWUl5eDsC+fftYu3YtACeffDIGg4Hf/va37Nq1i3vvvZf6+nqSk5Pt1w8dOpSYmBh3hC4iIiIiIgNAr0icHnjgAbKzs+1/X7t2rT1xWr9+PYC92tC//vWvFtdfeOGFLF682AWRioiIiIjIQNQrEqcvv/yywzZ79uxxQSQiIiIiIiItqR6siIiIiIhIB5Q4iYiIiIiIdECJk4iIiIiISAeUOImIiIiIiHRAiZOIiIiIiEgHlDiJiIiIiIh0QImTiIiIiIhIB5Q4iYiIiIiIdECJk4PS80q59pVtpB+tcXcoIiIiAHyYksPD3xVRWlXr7lBERPotJU4O+m5vARv2FvBheoW7QxEREQHgw5TDbD9czSdpue4ORUSk31Li5KDYMH8ADhTpqZ6IiPQO48L8AEjJKnZzJCIi/ZcSJwfFRQYAkFdej7lC0/VERMT9EqIDASVOIiLOpMTJQQGDPRkRPBiAHTklbo5GREQEEqKsD/XS80qpqKlzczQiIv2TEqcuiIscAkCqnuyJiEgvEDbEh6GDjDRYYEe2HuqJiDiDEqcusE3XS9PNSUREeomxQz0BSM4scnMkIiL9kxKnLjiWOGnESUREegdb4pSSqXuTiIgzKHHqgkkRQzAAh4uryC+tdnc4IiIiTUaczO4NRESkn1Li1AV+3h5E+psA2KFRJxER6QVGB3liMEC2uZIjpVXuDkdEpN9R4tRFo21TIrLM7g1EREQEGORpZEyodT+nVE3XExHpcUqcumh0kDVxSlNlPRER6SUSo61rcDVdT0Sk5ylx6iJb4pSaXYzFYnFzNCIiIhDfuJ+TZkOIiPQ8JU5dNDLQE5PRQH5pNXklKhAhIiLulxgVCFhHnBoa9FBPRKQnKXHqIm8PA2OHNc4l15M9ERHpBcaG+eHjaaS0qo6DR8vdHY6ISL+ixKkb4iKHAJCqdU4iItILeJqMTI5onK6ndU4iIj1KiVM32DbCTVVJchER6SUSowMBFYgQEelpSpy6wZY4pWWZVSBCRER6hYTGxEkjTiIiPUuJUzeMG+6Pp8lAUUUtWUWV7g5HRETEPuK063AJVbX17g1GRKQfUeLUDd4eRsYPt65zStN0PRER6QWiggYR7OtFbb2F3YdL3B2OiEi/ocSpm+K0Z4aIiPQiBoPBPl1P65xERHqOEqduirevc9KIk4iI9A6JWuckItLjlDh1k23EKS27WJsNiohIr2AvEKGHeiIiPUaJUzfFhvnj7WHdbPBQYYW7wxERESGh8aHewYJyzBU1bo5GRKR/UOLUTZ4mIxMjbBvhmt0bjIiICBA42IuRIb6ARp1ERHqKEqceoHVOIiLS29g3ws0wuzUOEZH+QolTD4iLCgQgVYmTiIj0Egmq+ioi0qOUOPWA+Mab046cYupVIEJERHqBhCaV9SwW3ZtERLrLw90B9AejQ/0Y5GmioqaeA/lljA3zd3dIIiLSCRs3buTDDz/kp59+Ijc3F39/fyZPnszNN9/M5MmTO7z+6NGjPP7443z11VdUVVUxfvx4/vSnPzFr1iwXRN++iRFD8DQZOFpeQ1ZRJdFDB7s7JBGRPk0jTj3AZDQwOdJWIELT9URE+oqVK1eSnZ3N1VdfzfLly7nvvvsoLCzksssuY+PGje1eW1NTw7XXXsvGjRu57777ePbZZwkODuaGG25gy5YtLupB27w9TEwMt96btBGuiEj3acSph8RHBbL1lyLSsou5eGqUu8MREZFO+Oc//0lwcHCzY3PmzOH0009n2bJl7Y4crVq1ivT0dP773/8yZcoUAGbOnMn555/P448/zqpVq5wae2ckRgeSklVMcqaZcxMi3B2OiEifphGnHhKvRbgiIn3O8UkTgK+vL6NHj+bw4cPtXvvFF18wcuRIe9IE4OHhwXnnnUdqaip5eXk9Hq+jmq5zEhGR7lHi1EPiGkuS78opoba+wc3RiIhIV5WWlrJr1y7Gjh3bbru9e/cybty4Fsdtx/bu3euU+BxhS5x25BTr3iQi0k2aqtdDTgj2xd/bg9LqOvbmldk3xRURkb7lgQceoLKykptuuqnddmazmYCAgBbHbcfMZrPDv7u+vt7ha5ped/z1MYE+DPHxoKSqjt05xUzqp/emtvo/UKj/6n/TnwNRdz+Dzl6nxKmHGI0GJkcGsPHAUdKyzUqcRET6oKeeeoqPPvqIv//9752qqmcwGLp0ri1paWkOX9PR9SMDjKRUwccbd1A7un9X1uvu59fXqf/q/0Dn7M9AiVMPio+2Jk6pWcVcNt3d0YiIiCOeeeYZnnvuOe644w5+85vfdNg+MDCw1VGl4mJrddXWRqM6EhcXh8lkcvi6+vp60tLSWr3+pPy9pOTt5yj+JCbGOfzefUF7/R8I1H/1fyD3H7r/Gdiu74gSpx4UHxkIqCS5iEhf88wzz7BkyRJuvfXWDqfo2cTGxpKent7iuO1YR2ukWmMymbr1xae166fEBAGQml3c779Udffz6+vUf/V/IPcfnP8ZqDhED7JV1vs5t4TquoE7z1REpC9ZunQpS5Ys4Q9/+AO33HJLp69bsGABBw4cICUlxX6srq6ODz/8kISEBMLCwpwRrsNsBSL2HimjrLrOvcGIiPRhbk+cysrKeOyxx7j++utJSkpi3LhxLFmypNW2O3fu5Nprr2XKlClMmzaNW265hczMTBdH3LaooEEEDvaktt7CntxSd4cjIiIdeOmll3j66aeZM2cOp5xyCsnJyc3+2Nx7771MnDiR7Oxs+7FLLrmEsWPHcvvtt/PRRx/xww8/8Kc//YmDBw/y17/+1Q29aV2ovzeRgYOwWCBVW2aIiHSZ26fqmc1m3n77bcaPH8+CBQva3DBw//79XHXVVUyYMIGnnnqK6upqnn76aa644go++OADhg4d6uLIWzIYDMRFBrBhbwGpWcXERwW6OyQREWnHV199BcCGDRvYsGFDi/N79uwBoKGhgfr6eiwWi/2cl5cXr7zyCo8//jgPPfQQlZWVTJgwgeeff54ZM2a4pgOdlBgdSLa5kpTMYmaPDnF3OCIifZLbE6fIyEi2bt2KwWCgsLCwzcTp6aefxsvLi2XLluHn5wfApEmTOOOMM3jxxRe58847XRl2mxKiAtmwt4A0rXMSEen1Xn/99U61W7x4MYsXL25xPCQkhEcffbSnw+pxidGBfJx2mOTMIneHIiLSZ7l9qp7BYOiwZGtdXR1ff/01p59+uj1pAmvSNXPmTL744gtnh9lpcY3rnFI0HUJERHoJ2zqnlEw91BMR6Sq3jzh1RkZGBlVVVa3u0B4bG8v3339PdXU13t7eDr1vT280CDAp3B9oXIRbWcMgr/5X3WSgb7Sm/qv/TX8ONK7aZFB61uTIIZiMBnJLqsgtrmJ4gI+7QxIR6XP6ROJk2ycjMDCwxbnAwEAsFgvFxcUMGzbMofd1xkaDFouFQG8j5uoGPtywnXHBXt36Hb3ZQN9oTf1X/weygd7/vmawlwexYf7sPlxCcqaZMwOGuzskEZE+p08kTjY9vUO7MzYaBJiStp2v9uRTNTiMxMQRDr9/bzfQN1pT/9V/9d/5mwxKz0uMDmD34RJSssycOVmJk4iIo/pE4mQbaSoqarmo1Ww2YzAYGDJkiMPv64yNBsE6l/yrPfnsyCnp11+sBvpGa+q/+q/+D9z+90WJ0YGs3JJJcobZ3aGIiPRJbi8O0RkxMTH4+Pi0uUP7iBEjHF7f5Ey2jXBTVVlPRER6CVuBiLTsYuobLO03FhGRFvpE4uTh4cG8efNYt24dZWVl9uM5OTls3ryZ0047zY3RtTQ50po47c/XLu0iItI7jB3mz2AvE2XVdezPL+v4AhERaaZXJE7ffPMNa9eutW9EuG/fPtauXcvatWuprKwE4NZbb6WyspKbbrqJb775hnXr1vH73/+eoKAgrr/+eneG38Iwfx/CA3ywWGBntkadRETE/UxG6ybtAMmZZvcGIyLSB/WKNU4PPPAA2dnZ9r/bkiaA9evXExUVxejRo3n99df53//9X26//XZMJhNJSUksXbqUoUOHujZgS8dTHOIiAzhcXEVadjEzRwW7ICgREZH2JUYHsvlgISmZZn49Ldrd4YiI9Cm9InH68ssvO9Vu8uTJvPLKK84NpiMHvsb43ysJmnQ7JCa22SwhOpDPd+VpnZOIiPQaiY3rnDTiJCLiuF4xVa9PKTyAoaaMkMy17TazTYdI01Q9ERHpJWwFIn7OLaWqVpsRi4g4QomTo6JmAOBbtAsa2i78YEucDhaUU1xZ65LQRERE2hMe4MMwf2/qGyzs0IM9ERGHKHFy1LAJWLz9MdVXQt6uNpsF+XoRPXQQgG5OIiLSKxgMBvuok6briYg4RomTo4wmiJoOgCFrc7tN4yMDAe3nJCIivYdtnVOK7k0iIg5R4tQFlugk64vMDhKnKNs6J7OTIxIREemcYwUiitwbiIhIH6PEqQss0TMBMGRuarddXGPipBEnERHpLeKiAjAYILOwkqNl1e4OR0Skz1Di1BURJ2IxGDGU5IA5s81mkxsLRGQV6eYkIiK9wxAfT0aH+gGQkmV2bzAiIn2IEqeu8PKlImCs9XU70/WG+HgyKsQXUFlyERHpPRKiAgFIztS9SUSks5Q4dVFZ0GTri4yN7bazTddL03Q9ERFxEsOG/yVu3aXtzoJoKjHaem9SZT0Rkc5T4tRFZUNtiVNHBSICAUjViJOIiDiJ4XAqXlVHMez+oFPtE6ODAEjJNGOxWJwZmohIv6HEqYvsidORnVDVdlIUrxEnERFxMkvUNAAMHVR7tRk33B8vDyPFlbUcOlrhzNBERPoNJU5dVOcTjCXoBLA0QNbWNttNDB+C0QC5JVUcKalyXYAiIjJgWGJmWV9kboJOjCB5eRiZHDEE0HQ9EZHOUuLUDZYoa1ny9qbr+Xp7MGaYtXqRypKLiIhThCfQYPTGUHEUCvZ26pIE+35OZufFJSLSjyhx6o6YxsSpo/2cIgMBrXMSEREnMXlRHjTB+jrjh05dkqjESUTEIUqcusE+4pS1Depr22x3bJ2T2QVRiYjIQHSsaFH7D/NsbInTrpwSauoanBSViEj/4dGVi/bu3cuPP/5IXl4eVVVVBAUFMWbMGKZPn46fn19Px9h7hY4DnwBrcYjcNIg8sdVm9sQpuxiLxYLBYHBllCIiMgCUDY2zvjjUuRGnmKGDCRrsSVFFLT/nltirwIqISOs6nTgVFxfz1ltv8dZbb5GTk9Nq+VIPDw/mzp3LVVddxaxZs3o00F7JYIToJNj7mXUj3DYSpwnhQ/AwGigoqyGnuIrIwEEuDlRERPq7sqCJWAxGDOZDUJIDQyLabW8wGEiIDuTrPfkkZ5qVOImIdKBTU/Vee+01Tj/9dF588UXmzp3LE088weeff862bdtIS0vju+++Y+XKlfzlL3+hpKSE66+/nt/+9rccOnTI2fG7n22dUzsb4fp4mogN8wc0XU9ERJyjwdMXwjq3ObtNQmOypHVOIiId69SI0+uvv84999zDwoUL8fT0bHE+JCSEkJAQpkyZwnXXXUdGRgbPPfccn376KTfddFOPB92r2ErAZmy2loBtYxpefFQAuw6XkJpVzJmTw10YoIiIDBSWmCQMuanWdU6TL+6wfWJMIKDESUSkMzqVOH366ad4eHR+OVRMTAyPPPII9fX1XQ6sz4iYAkZPKMsF8yEIOqHVZnFRAfx3ayZpqqwnIiJOYolOgi3L4ZBjI04H8ssprqwlYFDLh6MiImLVqal6e/d2bk+I45lMpi5d16d4DoKIROvrdioZ2W5OqVnFra4PExER6bboJOvPvB3WwkUdGOrrRczQwQCkaa9BEZF2dSpxuvDCC7noootYsWIFpaWlzo6p74lpvFG1kzjFhvnjZTJSXFlLRmGFiwITEZEBxX84BI0ELJC5tVOXHNvPqch5cYmI9AOdSpx+//vfU1hYyIMPPshJJ53EX//6VzZt6tw+EQOC7Qlf5uY2m3h5GJkQbi0QkaqneiIi4iwjZlt/dnIj3AR74qR7k4hIezqVON1xxx189dVXLF++nHnz5vH5559z3XXXMX/+fJ599lkOHz7s7Dh7t+jGynpHdkFl20/s4prs5yQiIuIUnZgF0dSxESezppKLiLSjU4kTWPd7mDt3Lk899RTfffcd9913HwEBATz99NMsWLCA3/72t6xdu5ba2lpnxts7+YVC8Bjr63amRsRHBgKQqpLkIiLiLDGNI05Z26CuusPmkyJsew1Wk1Nc5eTgRET6rk4nTk0NGTKE3/zmN7z33nusXr2aK664gl27dnHHHXcwd+7cno6xb7BP12v7CV98tHXEaUd2CQ0NeqonIiJOEDwaBodAfTXkJHfY3MfTxPjGqeTJGWbnxiYi0od1KXFqavz48Zx33nmceuqpAJjN5u6+Zd9k3wi37cRpTKgfPp5GyqrrOHi03EWBiYjIgGIwNJmu17l1TrbpeimaESEi0qbOb850nMLCQj788EPeffdd9u3bh8lkYt68eVxyySU9GV/fYdsIN3s71NWAh1eLJh4mI5MiAth+qIjULDOjQ/1cHKSIiAwII2bDz2s6vc4pISqQN8jQRrgiIu1wKHFqaGjg22+/5d133+Xrr7+mtraWE044gT//+c9ceOGFhISEOCvO3i94DAwOhoqjkJsKUdNabRYXaUucirlwSpSLgxQRkQGhaYGIhgYwtj/BZEpMIGDdy6muvgEPU7cnpIiI9DudSpwOHjzIu+++ywcffEBBQQE+Pj6cc845XHzxxUyb1nqCMOAYDNbqens+gYyNbSZO8bbKeipJLiIizjI8ATx9ocoM+T9D2MR2m48K8cPP24Oy6jr2HiljQvgQ18QpItKHdCpxOuusswCIj4/n1ltvZeHChfj6+jo1sD4pJqkxcdoEs29ttUl8VCAAO3NK9FRPREScw+RhfYB38BvrOqcOEiej0UB8VAA/7D9KcqZZiZOISCs69a39mmuu4aOPPuLtt9/m17/+tZKmtjTdCLeNvTBGhfji62Wisrae/fkqECEiIk5i3wjXsf2cUrTOSUSkVZ1KnO655x7Gjh3b4viBAwfYvn07FRUVPR5YnxSRCCZvKM+HwgOtNjEaDUyOtE7XU/UiERFxGgc3wk1oshGuiIi01KV5YqtXr2bu3LksXLiQ3/zmNxw8eBCA22+/nbfffrtHA+xTPLwh8kTr63ZuVFrnJCIiThc1HQwmKM4Ec2aHzac0Jk7peaWUV9c5OTgRkb7H4cTp008/5e6772bixIn8/e9/x9JkStqkSZP49NNPezTAPie6cT+ndjbCjWtc55SarcRJREScxMsXwhOsrzsx6jRsiA/hAT40WGCH7k8iIi04nDgtX76ciy66iP/85z9cdtllzc6NGjWKffv29VhwfVInpkYkNI447T5cQk1dgyuiEhGRgci+zsmxjXA1XU9EpCWHE6f9+/ezcOHCVs8FBgZiNpu7G1PfZhtxKkiHisJWm8QMHcwQHw9q6hpIzyt1YXAiIjKgdHGdk9bgioi05HDiNGjQIEpLW/+yn5eXR0BAQLeD6tMGD4WQcdbXmZtbbWIwGOxlyVO1zklERJzFVu31yK42H+Y1ldB4b0rJ1L1JROR4DidOU6ZM4c0332y2tsnmvffeY8aMGT0SWJ8W0zjqlLGxzSZxtgIR2WYXBCQiIm0pKyvjscce4/rrrycpKYlx48axZMmSTl373nvvMW7cuFb/5OfnOznyTvALheDGqriZWzpsHh8VgNEA2eZKjpRWOTk4EZG+pVMb4DZ18803c8UVV3DJJZdw7rnnYjAY+Pzzz1myZAnbtm1j1apVzoizb4mZBT++BhmtjzgBxDeWJNeIk4iIe5nNZt5++23Gjx/PggULunQfe+SRRxg1alSzY4GBgT0UYTfFJMHRvdZ1TuPObLepr7cHY4f5syevlJTMYk6b6OOiIEVEej+HE6e4uDief/55HnjgARYvXgzAsmXLGDFiBMuXLyc2NrbHg+xzbOuccn6E2irwbHnjiW+cR74nt5Sq2np8PE0uDFBERGwiIyPZunUrBoOBwsLCLiVOY8eOJS4uzgnR9YARs+Gn1x3aCHdPXinJmUWcNjHMycGJiPQdDidOAElJSXz66adkZGRQUFBAUFAQI0eO7OnY+q6ho8A31LoR7uHkY4tzm4gI8CHY14uj5TX8nFtqr2QkIiKuZTAY3B2Cc9nuQdk/Qm0leA5qt3lCdCBvbcvUOicRkeN0KXGyiYmJISYmpqdi6T8MBuuNavdH1id8rSROBoOBuKgAvt6TT2qWWYmTiEgfdtNNN1FYWIi/vz8zZszgtttu69IMjPr6+i79ftt1rV4/JAaj33AMZbnUZ247VqK8DXER/oC1JHltbR1GY+9PLNvt/wCg/qv/TX8ORN39DDp7XacSp08++YSzzz7boQDy8vLIyspi6tSpDl3Xb0Q3SZzaEB9pS5z0VE9EpC8KCQnhpptuIjExET8/P9LT01m+fDmXXXYZK1euZPz48Q69X1paWrfiaev6kf7jGFqWS+6W98ktGtzue9Q3WPAyQVl1HZ98t52oId16xupS3f38+jr1X/0f6Jz9GXTq/4YPPvggy5Yt4ze/+Q1nnXUWfn5+bbbdsWMH7777Lu+//z533nnnwE2cbKNMmZvBYrGOQh0nrrHsa5oSJxGRPmnu3LnMnTvX/vfp06dz8sknc+655/J///d/PPfccw69X1xcHCaT42te6+vrSUtLa/N6Q81ZcPgbImp/YXhiYofvF79tM9sOFVHjH05iYqTD8bhaR/3v79R/9X8g9x+6/xnYru9IpxKndevWsWTJEv71r3/x4IMPMnHiRCZOnEhwcDBeXl4UFxeTmZlJcnIy+fn5jB07liVLljBnzhyHA+83hseDxyCoLISCvRDacspGfGNJ8r1HSqmoqWOwV995qiciIq2Liopi6tSppKSkOHytyWTq1hefNq8/wTo9z5C1FZMBMLb/O6bEBLLtUBGpWSVcOq3vTMnv7ufX16n/6v9A7j84/zPo1Dd1f39/7r33Xm6++Wbee+89vvnmG1avXk1lZaW9TXR0NHPmzOHcc88lKanlmp6esGvXLp555hlSU1MpLS0lPDycc845h9/+9rcMGtT+YleX8/CCyKlw6Dvrfk6tJE5hQ3wIG+JNXkk1u3JKmHbCUDcEKiIiPc1isWA0OrxVovOETQYvf6gugbydEB7fbvOExnW3KVlm58cmItJHODTEERAQwHXXXcd1110HQGlpKVVVVQQGBuLp6emUAG327dvH5ZdfzsiRI7n33nsJCgpi27ZtPPvss+zcudPh6RAuETPTmjhlboap17TaJC4ykLySPFKyipU4iYj0A5mZmfz444/Mnt1+EQaXMpogegbsX29de9tR4tQ4lXz34RJtmSEi0qhbc8P8/f3x9/fvqVja9dFHH1FdXc2SJUvslfxmzZpFfn4+b731FsXFxQQEBLgklk6LmWX92V6BiKgAvtidR5qe6omIuM0333xDZWUl5eXlgPVh3dq1awE4+eSTGTRoEPfeey+rV69m3bp1REZa1/1ce+21TJs2jfHjx+Pr60t6ejovvPACBoOB22+/3W39aVXMrMbE6QeY+bt2m0YFDSLEz4uCshp2HS7hxJggFwUpItJ79ZlFNbYRreMLU/j7+2M0Gp0+4tUlUdMBAxTuh7Ij4DesRZO4xnVOqdkqECEi4i4PPPAA2dnZ9r+vXbvWnjitX7+eqKgoGhoaqK+vx2Kx2NvFxsby6aef8tJLL1FdXc3QoUNJSkrij3/8Y+/b33BEk4d5bRQtsjEYDCREBbL+5yOkZJqVOImI0IcSpwsuuIBXX32V+++/nzvvvJOgoCC2bt3KW2+9xZVXXsngwe2XV22NU/bLaMrLH2PoeAz5u6k/tBHGn9OiyaRw64jdgfxyzOXV+Pv0/n8kA32/APVf/W/6c6Bx1V4Zrvbll1922Gbx4sUsXry42bF7773XWSH1vMipYPSE0sNQ9AsMbT+xS4y2Jk7JmWaXhCci0tv1/m/pjaKiovjvf//LLbfcwoIFC+zHr7rqKu67774uvaez9stoKmbwGELZTf72j8iuimq1TehgI/kVDXzw7XYmD/PuVkyuNND3C1D/1f+BbKD3v0/yHAQRUyBri3XUqYPEyV4gQomTiAjQhxKnrKws/vCHPxAcHMzTTz/N0KFDSUlJ4bnnnqOiooKHH37Y4fd01n4ZTRmMC+HQR4RVHyC0jb0zpu76ibU786gcNIzExF42taMVA32/APVf/Vf/nb9XhjhJTFJj4vQDJP5Pu01tBSJ+OVpBUXkNQb5eLghQRKT36jOJ07///W/KyspYvXq1fVre9OnTCQoK4t577+WCCy5gxowZDr2n0/bLaOoE65xyw+FUTA011id+x4mPDmTtzjzSckr61Bexgb5fgPqv/qv/A7f/fdaI2fDD0+0WLbIJGOzJqBBfDhSUk5Jl5pRxLdfpiogMJA5vMvH//t//48CBA86IpV27d+9m9OjRLdYyxcXFAbB3716Xx9QpgSPAPxwaaiH7x1abxEcGApCWpQIRIiLiRNEzrT8L0qG8oMPmx6br6f4kIuJw4rR69WoWLlzIddddxxdffNGsupAzDRs2jH379tlLxdokJycDEBYW5pI4HGYwHLtRZWxstUlcpLWyXkZhBeaKGldFJiIiA83goRA6wfq6E6NOiY2JU3JmkRODEhHpGxxOnDZs2MCiRYvIz8/nlltu4dRTT2X58uUUFhY6Iz67a665hqKiIq6//no++eQTNm7cyH/+8x8eeeQRxowZw9y5c536+7slJsn6M3Nzq6cDBntyQrB1JC1NZclFRMSZbPekNh7mNWUfccoqdtmDUhGR3srhxGnw4MFceeWVrFmzhpdffplJkybxf//3f5xyyincfffdTlv0O3/+fF555RX8/Px4+OGHuemmm3j//fe5/PLLeeONN/Dy6sWLVpsmTg0NrTaJa1yEm6rpeiIi4kwjZlt/diJxmhDuj5fJSGF5DZmFlU4OTESkd+tWcYhZs2Yxa9YscnNzueuuu/jggw/44IMPmDx5Mn/4wx849dRTeypOAJKSkkhKSurR93SJsDjw9IWqYsj/GcImtmgSHxnARyk5pGaZXR+fiIgMHLaHeYdToKYcvHzbbOrtYWJCxBBSMs0kZ5mJCXZ8z0QRkf7C4RGnpqqqqli1ahU33XQTmzdvZvTo0dx8883U19dz8803s3Tp0p6Ks28zeUDUVOvrzNbnlMdFWdc5qUCEiIg4VUA0DImEhjrI2tZh88TG+1NyhtnJgYmI9G5dSpwyMjJ45JFHmDt3Lv/85z8ZPnw4L730EmvWrOGWW27hvffe48Ybb+SNN97o6Xj7rhhrWXIyWl/nNDkyAIMBcoqryC+tdmFgIiIyoBgMTe5JnSgQERMIQIpmRIjIAOfwVL0bbriBH374gUGDBnHRRRdx1VVXERMT06LdvHnzWL58eY8E2S90UFnPz9uD0aF+7DtSxo7sYuaN134ZIiLiJDFJsOMd60a4HbBthLsju5ja+gY8Td2arCIi0mc5nDhlZmZyzz33cNFFF+Hr2/a86LFjx/Laa691K7h+JWo6GIxgPgSlueA/vEWT+MgA9h0pIzVLiZOIiDiRrUBE5laor7NOKW/DyBBfhvh4UFJVx57cUiY3bqEhIjLQOPzY6LPPPuOqq65qN2kC8PPzY8aMGV0OrN/xGQJhk6yv25gaYVvnpAIRIiLiVKETwCcAasshN7XdpgaDwV6WPDnT7PzYRER6KY23u1K0be+M1hOneFvilK39MkRExImMxg7vSU0lKnESEXF8qt6pp56KwWBo9ZzRaMTf35+4uDiuvvpqRo8e3e0A+5WYJNj6fJuV9SaGB2AyGsgvrSavpJrhAT4uDlBERAaMmCTY+5l17e2sP7bb1JY4pShxEpEBzOERpxkzZmCxWMjLyyMyMpKEhAQiIiLIy8ujvr6e8PBw1q1bx8UXX+y0zXD7LPveGanWvTOOM8jLxNhhfoCm64mIiJM13Qi3g1kOtql6+/LLKK2qdXJgIiK9k8OJ00knnYSXlxfr1q3jtdde44knnuD111/n888/x8vLiwULFvDZZ59xwgknsGTJEmfE3HcFRMGQKLDUt7l3hm26Xlq29nMSEREnipgCJm8oz4fCA+02DfHzJipoEBaL9hsUkYHL4cTpP//5D7feeivh4eHNjkdERHDzzTezfPly/P39ufbaa0lOTu6pOPuPmMay5Jmt7+cU11j2NUU3JhERcSYPb4hs3Jz9UCfKktvWOWlGhIgMUA4nTocOHcLPz6/Vc0OGDCE7OxuAyMhIKisruxddf9TBpoPxjWVe07LMKhAhIiLOFeNAgYjGB3vJGWbnxSMi0os5nDhFRETw/vvvt3ru3XfftY9Emc1mAgK010MLto1wM7dAQ32L0+PD/fE0GSiqqCWrSImniIg4kf1hXscjTokxgQCkaMRJRAYoh6vq/fa3v+Uf//gHl19+OWeeeSYhISEUFBSwdu1aUlJSePDBBwHYvHkzkydP7vGA+7ywSeDlDzWlcGQXDI9rdtrbw8T44UNIyy4mLbuY6KGD3RSoiIj0e9EzAIN1jVNpHviHtdl0coS18mteSTW5xVWq/CoiA47DidOvf/1rLBYLS5YsYfHixfbjISEhPPDAA1x66aUA3HTTTXh5efVcpP2F0QTR02H/l9apEcclTmDdCDctu5jUrGLOjgtv5U1ERER6wKBA6wO9vB3W6nqTLmi7qZeJcWH+7DpcQnJmEWcG6P4kIgOLQ4lTfX09GRkZnHXWWfz617/mwIEDmM1mAgMDGTVqVLP9nUJCQno82H4jOulY4jTjxhan4yMDWIFKkouIiAvEzGpMnDa1mziBtUCENXEq5szJSpxEZGBxaI2TxWJh4cKF/PTTTxgMBkaPHs3UqVMZPXp0m5viSitsi3HbrKx3rCR5Q4MKRIiIiBPZC0R0Yp1TtPX+lJxZ5MyIRER6JYcSJw8PD0JCQlTtrbuipoHBBMWZUJzV4nRsmD9eHkZKq+o4VFjhhgBFRGTAsBWIyE2D6tJ2myZGBwHWvZzq9WBPRAYYh6vqLVy4kNWrVzshlAHEy/fY2qZWSsB6moxMDB8CaLqeiIg4WUAkBMaApQGytrbbdMwwP3y9TJTX1LPvSJmLAhQR6R0cTpzGjx/PTz/9xNVXX80bb7zBZ599xueff97sj3SC7QlfG9P1EmzT9bQRroiIOFvMbOvPQxvbbWYyGuzTyVMyzU4OSkSkd3G4qt5dd90FQF5eHlu2bGlx3mAwsHv37u5H1t/FzITNz7W56WBcVCBwiNRsJU4iIuJkMUmQ+l9rZb0OJEQHsulAIclZZn49PdoFwYmI9A4OJ06vvfaaM+IYeKIbF+Pm7bDOKff2b3Y6vvGJ3o5s6zxyk1HFN0RExElGNI44ZW2DuhrwaHs7kSnRgQAkZ5idH5eISC/icOI0Y8YMZ8Qx8AwJh8ARYD5knVM++tRmp0eH+jHI00RFTT0H8ssYG+bfxhuJiIh0U0gsDBoKlYWQm2otYtSGhMbEaU9eKZU19QzyMrkoSBER93J4jZNNaWkpGzZs4MMPP6S4WNPJusReArblOieT0cDkSFuBCH2+IiLiRAbDsXvSofbLkg8f4sMwf2/qGyzsyNH9SUQGji4lTkuXLmXOnDnceOON3HXXXWRlWUtqX3PNNSxfvrxHA+zXomdaf7Yxpzw+KhCw7uckIiLiVLaiRW2svbUxGAwkNo46qUCEiAwkDidOb775JkuXLuWSSy5h2bJlzfZ0mjdvHl9//XVPxte/2W5SWdugvq7Fads6J5UkFxERp7MnThuhoaHdprbpeslKnERkAHF4jdObb77Jtddey9/+9jfq6+ubnRsxYgSHDh3qseD6vdDx4BMAVcWQlwYRU5qdjou0Jk47c0qorW/A09TlmZUiIiLtC08Aj0HWdU5H90LouDabTlHiJCIDkMPfxDMzM5kzZ06r53x9fSkpKel2UAOG0QhRjcU2WlnndEKwL/7eHlTXNbA3TxsNioiIE3l4HSsK0cE6p8lRARgMkFVUSUFZtQuCExFxP4cTJ39/fwoKClo9l52dTXBwcLeDGlBsi3EzW84pNxoNTG4cdUrLNrswKBERGZA6uc5piI8no0P9AK1zEpGBw+HEadasWbzwwgtUVFTYjxkMBurq6li5ciUnnXRSjwbY79kr622CJuvFbOKjbeucVCBCRESczH5P6ngjXBWIEJGBxuHE6bbbbiMnJ4eFCxeyePFiDAYDb7zxBpdeeimHDh3ij3/8ozPi7L8iTgSjB5QeBnNGi9PxkYGAKuuJiIgLRM8Ag9G6x2BJTrtN7QUi9GBPRAYIhxOnESNGsHLlSkaNGsXKlSuxWCx88MEHBAUFsWLFCiIiIpwRZ//lNRjCE62vM1uuc7JV1tt9uITquvoW50VERHqMtz8Mj7O+7mDUaUqTESdLKzMmRET6G4er6gGMGTOGF198kZqaGoqKiggICMDHx6enYxs4YpIge5v1JhX/62anooIGETjYE3NFLXtyS+17O4mIiDhFzGw4nAKHNsLki9tsNm64P14eRoora/nlaAUjQ3xdGKSIiOt1q761l5cXYWFhSpq6y74RbssRJ4PBYC9LrnVOIiLidE3X3rbD02RkcsQQAJIzi5wdlYiI23VpxCkrK4tPP/2UnJwcqqqqmp0zGAw8/PDDPRLcgGG7SR3ZBZVmGBTY7HRCVCAb9haQpsRJRESczVZZL29Hq/ekphKjg/gxw0xKZjEXTolySXgiIu7icOL09ddfc8stt9DQ0MDQoUPx8vJqdt5gMPRYcAOG3zAYOgoKD0DWVhh7WrPTcY3rnFJVIEJERJzNP6zde1JTCY2VX7URrogMBA4nTk8++SQnnngiTz75pPZs6knRSdabVMamFjcpW4GI9LxSKmvqGeRlckeEIiIyUMTMst6TDv3QbuI0JToIgF051gJG3h66P4lI/+XwGqdDhw5x4403KmnqafaNcFuucxo+xIcQP2/qGyzsOlzi4sBERGTA6eRGuNFDBzHU14ua+gZ+PlzqgsBERNzH4cQpIiKi2ea30kNsiVPWNqivbXbKYDDYR53SsswuDkxERAYcW+KUvR3qqttsZjAYSIjSdD0RGRgcTpx+//vf89JLL1FZWemMeAau4LEwKAjqKuFwaovT8VrnJCIirhI8GnxDob4acn5qt2lCk/2cRET6M4fXOKWlpXH06FFOO+00Zs6cSVBQUIs2ixYt6pHgBhSj0brOKf1TyNwEUVObnT424qTESUSkJ5WVlfHss8/y888/s2vXLoqKirjlllu49dZbO3X90aNHefzxx/nqq6+oqqpi/Pjx/OlPf2LWrFlOjtyJDAbrTIjdH1nXOdlmRbTCljhpxElE+juHE6c33njD/vrjjz9ucd5gMChx6qqYmdbEKWMjzLq52anJjXs57csvo6y6Dj/vLlWSFxGR45jNZt5++23Gjx/PggULWLVqVaevramp4dprr6WkpIT77ruP4OBg3nzzTW644QZefvllZsyY4cTInSxmtjVx6mCdU2LjxuwHCsoprqglYLCnC4ITEXE9h799//zzz86IQ8A64gTWjXAtFusTv0bD/H0ID/DhcHEVO7OLmTlKxTlERHpCZGQkW7duxWAwUFhY6FDitGrVKtLT0/nvf//LlClTAJg5cybnn38+jz/+uEPv1evYixZtgoYG68yIVgT5ejEieDCHjlaQmm1mzthQFwYpIuI6Dq9xEieKmAImLyg/AkUHW5yOaxx1StM6JxGRHmMwGLq8B+EXX3zByJEj7UkTgIeHB+eddx6pqank5eX1VJiuNzwePH2hqhjyd7fbNNE2XS/D7Py4RETcpFOJ09atWykvL++wXWFhIe+88063gxqwPH2syRO0OjXCNo88VeucRER6hb179zJu3LgWx23H9u7d6+qQeo7JA6KnW19nbGy3aULjdL0UVX4VkX6sU1P1rr76at566y3i4+MBaGhoID4+nrfffpuJEyfa22VmZvL3v/+dSy65xDnRDgTRM617OWVsgsQrmp3SiJOISO9iNpsJCAhocdx2zGw2O/R+9fX1XYrDdl1Xr2+LIToJ44GvafjlBywnXtdmu7hIfwB+yjBTV1fX5RG8rnJW//sK9V/9b/pzIOruZ9DZ6zqVOFkslhZ/r6ura3FcekDMLPjh6VY3wrUlTgcLyimurCVgkBbgioi4W3tJgqMJRFpaWrdi6e71x/OvCSEWqNu/gbTk5Dbb1dVbMBngaHkN6374kWG+ph6No7N6uv99jfqv/g90zv4M+lxptm3btrFs2TKSk5Oprq5m+PDhnH/++dx8880dX9wXRM+0/sz/GSoKYfBQ+6kgXy+ihw4is7CSHdnF/GpMiJuCFBERgMDAwFZHlYqLrTMDWhuNak9cXBwmk+NJR319PWlpaV2+vk01Y7FsvhuvqiMknhAMgdFtNp2w6Qd25JRQNySSxLjhPRdDJzit/32E+q/+D+T+Q/c/A9v1HelTidNHH33E3/72N8466yweffRRBg8eTGZmZt9efHs832DrZrhH90LmFhh3ZrPT8ZGBZBZWkpqlxElExN1iY2NJT09vcdx2bOzYsQ69n8lk6tYXn+5e38KgIRCeANnbMWVvgeAT2mw6JSaIHTklpGYXc25iZM/F4IAe738fo/6r/wO5/+D8z6DPVNXLy8vjH//4B5dddhlPPPEEp556KklJSVx66aXccsst7g6vZzUtAXucONtGuNlmFwYkIiKtWbBgAQcOHCAlJcV+rK6ujg8//JCEhATCwsLcGF0PiWncyPfQD+02sxUwSsnUOlwR6Z86PeJ04MABewZnW0B14MCBFm2cZdWqVVRUVHDjjTc67Xf0GjFJ8NPrrVbWi29MnFRZT0Sk53zzzTdUVlbaK8ju27ePtWvXAnDyySczaNAg7r33XlavXs26deuIjLSOqFxyySWsWLGC22+/nb/85S8EBwezYsUKDh48yMsvv+y2/vSomFmw8ZmON8KNPlbAqK6+AQ9Tn3k2KyLSKZ1OnO65554Wx/72t781+7vFYnFaJZ2tW7cSGBjIgQMH+OMf/8jevXsJCAjgtNNO429/+xt+fn4Ov2dvq15kFzkdE2DJ/pGG6grw8Lafmjjc2s+sokrySyoZ6uvlnBjaMdCrt6j/6n/TnwONqyoXudoDDzxAdna2/e9r1661J07r168nKiqKhoYG6uvrmxVG8vLy4pVXXuHxxx/noYceorKykgkTJvD8888zY8YMl/fDKWyzIPJ3t1h729SoED/8vT0ora4jPa+MiRFDXBikiIjzdSpxeuSRR5wdR4fy8vKorKzk9ttv5/e//z2JiYmkpaWxZMkS9u7dy4oVK/p89SI7i4V4r0A8a8zs/fYdyodOanY6ws9ETlk9H2z4iSnDvdt4E+cb6NVb1H/1fyDrb/3/8ssvO2yzePFiFi9e3OJ4SEgIjz76qDPC6h18QyAkFgrSrRVfx53VajOj0UB8dADf7ztKSpZZiZOI9DudSpwuvPBCZ8fRIYvFQnV1Nbfccgu/+93vAJg5cyaenp48/PDDbNy4kdmzZzv0nr2uelETxr2/gj0fE+tzFEtiYrNz09JT+DDlMOXeISQmjnbK72/PQK/eov6r/+q/8ysXSS8Tk2RNnDI2tpk4ASRGB/L9vqMkZ5j5nxkxLgxQRMT5+kxVvcDAQABOOumkZsfnzp3Lww8/zM6dOx1OnHpd9aKmYpJgz8cYs7bCcb8jPiqQD1MOsyOnxK1f3AZ69Rb1X/1X/wdu/wecmNnw42twaGO7zRKiAgFIyTI7PyYRERfrMys3x40b1+px21xzo7HPdKVzbFWMMjfBcRsN2yoXpalAhIiIuIJtnVPOT1Bb2WazxMb7U3peKeXVdS4ITETEdfpMtnH66acD8O233zY7bvt7QkKCy2NyqvAE8PCBiqNwdF+zUxPDh2A0QG5JFUdKqtwUoIiIDBhBJ4B/ODTUQvb2NpsNG+JDRIAPDRZrdT0Rkf6kzyROJ510EvPmzWPp0qU8++yz/PDDDyxfvpwnnniCefPmMW3aNHeH2LM8vCDiROvr40rA+np7MGaYtbqeypKLiIjTGQzHRp0yOpiu1zjqlJxpdm5MIiIu1mcSJ4CnnnqKa665hrfffpsbb7yRlStXcu211/L000+7OzTnaG8j3MhAAFL1RE9ERFzBvhFu+4lTon0jXLNz4xERcTGHikNUVVVx7bXXcttttzlciKEn+Pj48Ne//pW//vWvLv/dbmF/utf6Rrjv/phFmhbgioiIK9jX3m6Bhnowtl4cJEGJk4j0Uw6NOPn4+JCenq5KSq4SNd368+g+KC9odio+6tgO7ZbjikeIiIj0uLBJ4D0Eakohb0ebzeIiAzAaIKdY63BFpH9xeKrelClTSE1NdUYscrzBQyF0gvV15uZmpyaED8HDaKCgrIbDxboxiYiIkxlNED3D+rqVmRA2vt4exIb5A1rnJCL9i8OJ01133cVbb73F6tWrKS8vd0ZM0lTMTOvP4xbj+nia7DemVE3XExERV7BNIT/0Q7vNbPs5KXESkf7E4cTpsssuIzc3l3vuuYdp06YxZcoUTjzxRPufqVOnOiPOgSvats5pc4tTtul6qqwnIiIuEdO4vjmj5R6DTSXGBALaCFdE+heHikMAnHHGGRgMBmfEIq05ftNBz0H2U3FRAfx3a6b2yhAREdeIPBGMnlCWC0W/wNCRrTazjTilZhbT0GDBaNT3BhHp+xxOnBYvXuyMOKQtQSeAXxiU5VmTpxHHqhnab0xZ1gIRSmhFRMSpPAdZk6fMzdYp5G0kTrFhfgzyNFFaXceBgjLGDPN3caAiIj2vT+3jNCAZDBBtW+fUfDFubJg/XiYjxZW1ZBZWuiE4EREZcDqxEa6HyUhcpHU6eXKmZkWISP/g8IiTTXp6Ovv376e6urrFuQsuuKA7McnxYmbB7g9bJE5eHkYmhPuTklVMSpaZmODBbgpQREQGjJjZ8P3/dbgRbkJ0AFt+KSQ5s4hLpka5KDgREedxOHGqrKzkD3/4A5s2bcJgMNj3EGo6TUyJUw+zVdbL3AwNDWA8NlAYFxVASlYxadnFnJsQ4aYARURkwLCVJD+617rHoG9Iq80So4OAg6RoxElE+gmHp+o9++yzZGdn88Ybb2CxWHjmmWd4+eWXOe200xgxYgTvv/++M+Ic2IbHg+dgqDJDQXqzU/GRgYBKkouIiIs03WOwnel6CdHWqXq7D5dQVVvvishERJzK4cRp/fr13HjjjUyZMgWA8PBwZs2axdNPP82kSZNYsWJFjwc54Jk8IbKxzPtxN6n4xhvTjuwSGhraLg0rIiLSY0bMsv5sZyPcyMBBhPh5U9dgYWdOiYsCExFxHocTp+zsbEaNGoXJZMJgMFBZeawowbnnnsv69et7NEBpZFuMm9l8P6cxoX74eBopq67j4FFtSCwiIi4Q05g4tbMRrsFgILHx4V6KNsIVkX7A4cTJ39+fiooKAIKDgzl06JD9XF1dnf2c9DB7FaPmT/c8TEYmRVhvTGnaCFdERFzBljgdToGath/a2bbNSFbiJCL9gMOJ07hx4/jll18AmDlzJsuWLWPbtm2kpqaydOlSxo8f39MxCkDUdMAARQehNK/ZKVvJV+3QLiIiLhEYDUOiwFIPWVvbbJYYEwjo/iQi/YPDidPFF19Mebn16dKf/vQnKisrueqqq7jsssvIycnh7rvv7vEgBfAJgLBJ1teZzUed4qM04iQiIi7WiXVO8Y0jToeOVlBYXuOCoEREnMfhcuRnn322/XV0dDSfffaZvTT5lClTCAwM7Mn4pKmYJMjbARmbYeL59sO2G9POnBLq6hvwMGlfYxERcbKYJEhb1W5lvYBBnowK9eVAfjkpWWbmjRvmwgBFRHpWt79hDx48mFNPPZV58+YpaXK26NZ3ax8V4ouvl4nK2nr256tAhIiIuEDMbOvPzK1QX9dms8TGh3sqECEifZ2GJvoS20a4ualQc6wIh9FoYHLjOift5yQiIi4ROh58AqG23HpfakNCdCCgAhEi0vd1aqre+PHjMRgMnXpDg8HArl27uhWUtCEgGoZEQkk2ZG+HkXPsp+KjAth8sJDUrGIunRbtxiBFRGRAMBqt0/XS11pnQkSe2GqzxMbEKSXTjMVi6fT3CRGR3qZTidPNN9+s/9H1BgYDRM+Ene9ZF+M2SZziGqdCpGarQISIiLhI08Rp1s2tNhkf7o+XyUhRRS0ZhRWMCPZ1cZAiIj2jU4nTrbfe6uw4pLNikqyJ03GV9RIaK+vtPlxCTV0DXh6ahSkiIk5m3wh3I1gs1gd8x/H2MDExYgjJmWaSM81KnESkz9K3677GthFu5lZoqD92eOhghvh4UFPXQHpeqZuCExGRASViCpi8oaIAju5vs9mx6XqaFSEifZfD5chXr17dYZsLLrigC6FIpwybBF5+UF0MR3bD8MmAdW1ZfFQg3+0rIC272F4sQkRExGk8vCFyKmT8YP0TMqbVZon2AhFFLgxORKRnOZw4tbXBbdM1UEqcnMjkAVHT4MDX1ul6jYkTQFxUAN/tKyA1y8z/zIhxX4wiIjJwjJjVmDhtghOvbrWJrbLejpwSausb8NR+gyLSBzmcOK1fv77FsaKiItavX88nn3zCk08+2SOBSTtiZlkTp4zNMP0G++F4e0lyTYUQEREXsa9z+qHNJicEDyZgkCfFlbX8fLiUuCjNihCRvsfhxCkyMrLVY5MnT6auro7XXnuNxYsX90hw0oboxv2cMpoXiLDdiPbkllJVW4+Pp8nVkYmIyEATPQMwQNFBKM0F/+EtmhgMBhKiA/k2PZ/kLLMSJxHpk3p0rHzWrFl8+eWXPfmW0pqoaWAwQnEGlOTYD0cGDiLY14u6Bgs/56pAhIiIuIBPAIQ1Ths/7oFeU4mNyVKKNsIVkT6qRxOn7OxsjEbNW3Y6b38YHmd93eQmZTAY7E/x0rLMbghMREQGpBGN0/UyNrbZJDEmEIBkJU4i0kc5PFVv69atLY7V1NSwZ88eli1bxqxZs3okMOlAdBIcTrEmTpMvsh+Ojwzg6z35pGQVc5UbwxMRkQEkJgm2LG83cYpv3Kh9f34ZJVW1DPHxdFFwIiI9w+HE6aqrrmpWQQ/AYrEAMHv2bP7+97/3TGTSvpiZsGVZi41w4xpvTGkqECEiIq5iKxCRmwZVJeAzpEWTED9vooIGkVVUSVpWMb8aE+LiIEVEusfhxOm1115rcczb25vIyEhCQvQ/QZeJbtwINzcNqkut0/eA+MapenuPlFJRU8dgL4f/EYuIiDhmSAQEjgDzIcjaCmPmt9osMTqQrKJKkjPNSpxEpM9x+Fv1jBkznBGHOCogEgJirAUisrbB6HkAhA3xIWyIN3kl1ezKKWHaCUPdHKiIiAwIMbOsiVPGxnYTpzWph7XOSUT6JIcrORw8eJAtW7a0em7Lli388ssv3Y1JOiumsSx55uZmh+MiAwHt5yQiIi5kLxDRTmW9xo1wkzPN9mn+IiJ9hcOJ0+LFi1vdBBfgq6++0h5OrhTTOF3vuJuUbbpeqirriYiIq9jWOWVthbqaVptMigjAZDSQX1pNbkmVC4MTEek+hxOntLQ0pk+f3uq56dOns2PHjm4HJZ1kW+eUtRXq6+yHbSXJU7M14iQiIi4SEguDhkJdlbXqaysGeZkYF2Zdk5ucYXZhcCIi3edw4lRaWsrgwYNbPefj40Nxsb6su8ywCeA9BGrK4MhO++H4SGvidCC/nNKqWndFJyIiA4nBcGzUKeOHNpvZ93PSrAgR6WMcTpzCwsJITU1t9VxqaiqhoaHdDko6yWiC6MZiHRnH1jkF+3kTGTgIgB3ZJe6ITEREBqLOrHNq3DZDI04i0tc4nDgtWLCA5cuXs2lT8/8pbt68meeff57TTjutx4KTTrBN1ztu00HbOqe0bLOLAxIRkQErpkni1NDQahPbiFNadjH1DSoQISJ9h8PlyG+++Wa+++47rrvuOk444QSGDx9Obm4uv/zyC2PGjOHWW291RpzSlrYq60UF8OmOXFXWExER1wlPAI9BUFkIBekwbHyLJqND/fD1MlFeU8++I2WMG+7vhkBFRBzn8IiTv78/b731FrfccgsBAQHk5OQQEBDArbfeyn//+1/8/PycEae0JXIqGD2gJBvMmfbD8SpJLiIirmbyhKhp1tfHzYSwNzEa7EWMkjOLXBWZiEi3OTziBODr68vNN9/MzTff3NPxiKO8fGF4POT8aJ0aERgNQFxjgYiMwgrMFTUEDvZyZ5QiIjJQjJgNv2ywJk7Trmu1SWJ0EJsOFJKcWcxlrRfqFRHpdRwecbIpLS1lw4YNfPjhh6qk5262/Zwyj607CxjsyQnB1uqHaSpLLiLSpvLycv71r39x0kknERcXx/nnn8/HH3/c4XXvvfce48aNa/VPfn6+CyLvpWJaX3vbVGK0bcTJ7IKARER6RpdGnJYuXcrzzz9PVVUVBoOBd955h4CAAK655hp+9atf8bvf/a6n45T2xCTBpmebVdYDiIsK5JejFaRmFTNnrKodioi05tZbbyUtLY2//OUvnHDCCaxZs4Y///nPNDQ0cO6553Z4/SOPPMKoUaOaHQsMDHRStH1A1HQwmMCcAcXZEBDZoklidBAA6XmlVNTUMdirS19HRERcyuERpzfffJOlS5dyySWXsGzZMiyWYxVx5s2bx9dff92T8Uln2Crr5e2AqmOjS7b9nNK0zklEpFXffPMN33//Pf/85z+5/PLLSUpK4qGHHuJXv/oVjz32GPX19R2+x9ixY0lMTGz2x9PT0wXR91Le/jA8zvq6jVGn4QE+hA3xpr7Bws4cbZshIn1DlxKna6+9lkWLFnHSSSc1OzdixAgOHTrUY8FJJ/mHQdAJgAWyttoP2xbfpmqTQRGRVq1bt47Bgwdz5plnNjt+0UUXceTIEVJSUtwUWR9nL0ve3nS9QED7OYlI3+Hw2HhmZiZz5sxp9Zyvry8lJa57crRq1SoWLVrE4MGD+emnn1z2e3ulmFlQ9It1ut6YBQBMjgzAYICc4iryS6sJ9fd2b4wiIr3M3r17GT16NB4ezW+H48aNs58/8cQT232Pm266icLCQvz9/ZkxYwa33XYbsbGxXYqnMyNc7V3X1et7XPRMTJufw3JoIw1txBQfGcBnO/P4KbOo23H3uv67mPqv/jf9ORB19zPo7HUOJ07+/v4UFBS0ei47O5vg4GBH37JL8vLyePTRRxk2bBhlZWUu+Z29WvRMSFnZ7Omen7cHo0P92HekjB3ZxcwbP8yNAYqI9D5ms5moqKgWxwMCAuzn2xISEsJNN91EYmIifn5+pKens3z5ci677DJWrlzJ+PEt9zDqSFpamsPX9OT1PcWj2o8EgCO7SNv6HfWeLbcq8a2uBmDr/iMkJyf3yO/tLf13F/Vf/R/onP0ZOJw4zZo1ixdeeIH58+fj7W0dwTAYDNTV1bFy5coW0/ec5Z///CfTpk0jMDCQzz77zCW/s1ezVTHK3g71tda9NLA+0dt3pIzULCVOIiKtMRgMXTo3d+5c5s6da//79OnTOfnkkzn33HP5v//7P5577jmHY4mLi8NkMjl8XX19PWlpaV2+3hks20ZjKNxPXGAljG353WB0VR0PfPsF+RUNRI2ZQIhf12dF9Mb+u5L6r/4P5P5D9z8D2/UdcThxuu2227jkkktYuHAhCxYswGAw8MYbb7B7925ycnJ46qmnHA7WUR988AFbtmzhk08+ccnv6xNCxoFPIFSZITcNIq1TS+KiAnjvp2zSss3ujE5EpFcKDAxsdVTJts2GbeSps6Kiopg6dWqX10aZTKZuffHp7vU9KmYWFO7HlLUZxp/Z4nSgr4kxoX7sPVJGWnYpCyYO7vav7FX9dwP1X/0fyP0H538GDheHGDFiBCtXrmTUqFGsXLkSi8XCBx98QFBQECtWrCAiIsIZcdodPXqUhx9+mL/85S8MHz7cqb+rTzEardP1wLoRbqP4xgIRKVnFzSogiogIxMbGsn//furq6podT09PB6wV8xxlsVgwGru8TWL/MaLzBSJSVMRIRPqALm2cMGbMGF588UVqamooKioiICAAHx+fno6tVQ888AAjR47kiiuu6PZ79ZtFuI0MUTMw7v0MS8ZGGmb8HoBxw/wwGQ3kl1aTU1TB8IDu/3Pqrf13FfVf/W/6c6Bx1QJcV1mwYAFvv/02n3/+OWeffbb9+Pvvv8+wYcNISEhw6P0yMzP58ccfmT17dk+H2vfYKutlb4faKvBsef9JiA5k1fYsbYQrIn1Ct3ac8/LyIiwsrKdi6dBnn33Gl19+yerVq9udd95Z/WURro1fdTDjgLoD35H600/Q+BlF+Zs4VFzHh98lMyOy5xLc3tZ/V1P/1f+BrL/0/+STT+ZXv/oV999/P2VlZcTExPDxxx+zYcMGHn/8cfuUj3vvvZfVq1ezbt06IiOtG7pee+21TJs2jfHjx+Pr60t6ejovvPACBoOB22+/3Z3d6h2GjgLfYVB+BHJ+OjYC1YR9xCnTTEODBaOx+/d2ERFn6VTitHr1aofe9IILLuhCKO0rLy/nwQcf5KqrrmLYsGH2sue1tbUAlJSU4OHhweDBnZ8j3Z8W4QJQOw7LpjvxrC4k8YSgxr2dYMaBNA5tz6bMK5jERMennRyv1/bfRdR/9V/9d/4CXFdasmQJTz75JE8//TRms5lRo0bxxBNPsHDhQnubhoYG6uvrm015jo2N5dNPP+Wll16iurqaoUOHkpSUxB//+EdGjhzpjq70LgaDtXDR7g+t0/VaSZzGDffH28NISVUdvxwtZ1Roy+p7IiK9RacSp7vvvrvTb2gwGJySOBUVFVFQUMBLL73ESy+91OL89OnTmT9/Ps8++2yn37NfLcIFMPlBRCJkbcWUvRVCRgMQHx3Equ3Z7Mgp6dF4e13/XUz9V//V//7Rf19fXxYtWsSiRYvabLN48WIWL17c7Ni9997r7ND6vhGzjyVOrfA0GZkcGcD2Q0UkZ5qVOIlIr9apxGn9+vXOjqNDoaGhvPbaay2OL1++nK1bt/L8888TFBTkhsh6mZgkyNpqvUklXA5YS5IDpGaZsVgsPTLNUUREpEO2rTIyNkNDg7WQ0XESowPZfqiIlEwzF53Yck8tEZHeolOJk20+tzt5e3szc+bMFsfff/99TCZTq+cGpOgkYIn1JtVofLg/niYDRRW1ZBVVEj20+yVfRUREOhQWB15+UF0MR3bB8MktmiQ0rnNKzip2cXAiIo7pcr3UsrIyvvvuO9asWcP3339PWVlZT8YlXWUrSZ6/GyqLAPD2MDFuuD8Aadm6MYmIiIuYPCBquvV1G9P1EqMCAdidU0J1Xe+quigi0lSXEqcXX3yROXPmcOONN/LXv/6VG264gTlz5vDyyy/3dHwdWrx4MT/99JPLf2+v5RcKwWOsrzO32A/HN96YUvVET0REXCmm/f2coocOYqivFzX1Dew+XOrCwEREHONw4rR69Woef/xxpk+fzhNPPMGbb77JE088wYwZM3jsscccrsAnThBtm1PeZCPcxnVOadlmNwQkIiIDlq2a3qGN0MpG7AaDgYTGzdqTM4pcGZmIiEMcTpxeeeUVzjnnHJYvX85ZZ53F1KlTOeuss1i2bBkLFy7k1VdfdUac4oiYxul6mcfWOcVF2QpEFNPQ0PLGJSIi4hSR08DoAaU5UJzZapPEaGtxpxTNihCRXszhxOnAgQOcd955rZ4777zz2L9/f7eDkm5qult7XQ0AsWH+eHkYKa2q41BhhRuDExGRAcVrMIQnWl8fan26XkK09eFeSqbZNTGJiHSBw4mTj48PxcWtPxEqLi7Gx8en20FJNwWPgcHBUFcFh1MA614ZE8OHANay5CIiIi5jL0veRuLUuA73QEE5xRW1LgpKRMQxDidOU6dO5ZlnniEvL6/Z8fz8fJYuXcq0adN6LDjpIoPhWHW9zGPrnGxzyNM0FUJERFxpxGzrzzYSpyBfL04Itm6VkaKHeyLSS3VqH6em/vznP3P55Zdz+umnM2vWLEJDQ8nPz2fTpk14eHjwzDPPOCNOcVRMEuz5xFogYvatAMRFBQKHSFVJchERcSVb0aL8n6GiEAYPbdEkITqQX45WkJxpZm5sqIsDFBHpmMMjTmPHjuWdd95h/vz5pKWl8d5775GWlsb8+fNZtWoVY8aMcUac4qimlfUaqxjFN4447cwupl4FIkRExFV8gyFknPV1k4qvTSU2boSrdU4i0ls5POIEMHLkSJ544omejkV6UkQimLyhogAKD0DwaEaH+jHI00R5TT0H8ssYG+bv7ihFRGSgiEmCgj3W6Xrjz25xOsGWOGWZsVgsGAwGFwcoItK+Lm2AK32AhzdEnmh93Tin3GQ0MDnSViBC0/VERMSFOtgId2L4EDxNBgrKasgqqnRhYCIindOlEaddu3bx0UcfkZOTQ3V1dbNzBoOB5557rkeCk26Knmm9QWVsgim/ASA+KpCtvxSRll3MxVOj3BygiIgMGLaNcHOSoabCWqa8CR9PExPCh5CaVUxKlpnooYNbvoeIiBs5nDitXr2ae+65B6PRyNChQ/H09Gx2XkPrvUjMLPj+qWYb4cbbN8I1uycmEREZmAJHgH84lB627jM4ck6LJglRgaRmFZOcYeac+Ag3BCki0jaHE6fnnnuOk08+mUcffZSAgABnxCQ9JXqG9WdBOpQfBd9g4iIbC0TklFBX34CHSbM1RUTEBQwG6wO9ne9ZZ0K0kjglRgfy+qZDKkkuIr2Sw9+ajxw5wtVXX62kqS8YPPRYFaPGUacTgn3x9/aguq6B9LwyNwYnIiIDjn2d0w+tnrYViEjLLqa2vsFFQYmIdI7DidOECRNabH4rvZhtt/bGjXCNRgOTG0ed0rLNbgpKREQGJNs6p8wtUF/X4vSoEF/8fTyoqm0gPa/UxcGJiLTP4cTpb3/7G8uXL+fnn392RjzS02Ka7OfUKD7ats5JlfVERMSFhk0E7yFQUwZHdrY4bTQaSIgKBCAlU/coEeldHF7jlJiYyOmnn86FF15IaGhoiyl7BoOBDz/8sMcClG6Knmn9mfMT1FaBpw/xkYGAdSqEiIiIyxhN1vvSvnVwaCOEJ7RokhAdwHf7CkjOLOKKmTFuCFJEpHUOjzgtX76cZcuWERQUREREBIGBgc3+aO1TLzN0FPgOg/oaOJwMHKust/twCdV19W4MTkREBhz7TIjW93NKjA4CNOIkIr2PwyNOr732GhdffDEPPvggJpPJGTFJTzIYIGYm7P7IepOKSSIqaBCBgz0xV9SyJ7eU+MZpESIiIk43Yrb1Z8ZGsFis96kmEhqnk6cfKaWsug4/7y5tOSki0uMcHnEqLy/nnHPOUdLUl0Tbnu5ZK+sZDAZ7WXKtcxIREZeKOBFMXlCWB0UHW5we5u9DZOAgLBZI0z1KRHoRhxOnE088kf379zsjFnEWW/nXzM3QYC3valt8q5uSiIi4lKcPREyxvj7U+nQ926iT9nMSkd7E4cTpvvvu47///S9ffPEFNTU1zohJelp4PHgMgspCOLoXgLjGdU6pKhAhIiKuZt/PqY3EqfHhXnKG2TXxiIh0gsMThy+++GLq6uq49dZbMRgM+Pj4NDtvMBjYvn17jwUoPcDkCZFT4dB31rLkoePsBSLS80qpqq3Hx1NTL0VExEViZsH3T7VTICIQ0IiTiPQuDidOZ5xxBobjFnJKHxCTZE2cMjfD1GsYPsSHED9vCsqq2ZlTwtQRQe6OUEREBoqYxq0yju6DsnzwC212enJkAEYDHC6uIq+kirAhPq28iYiIazmUONXX1/P73/+eoUOHqux4X3Nc+VeDwUB8VABf/nyEtCyzEicREXGdQUHWzXCP7LLelyae1+y0r7cHsWH+/JxbSnKmmTMmDXdToCIixzi0xslisbBw4UKSk5OdFI44TdR0wACFB6DsCHBsPyetcxIREZezr3Pa1Opp+3S9TLNr4hER6YBDiZOHhwchISFYLBZnxSPOMijQ+nQPrNP1OJY4qbKeiIi4XAcFImyJU7ISJxHpJRyuqrdw4UJWr17thFDE6Wxzyhuf7k1u3MtpX34Z5dV17opKREQGohGNidPhFKgua3E6oTFxSs0qpqFBD2xFxP0cLg4xfvx4PvnkE66++mpOP/10QkNDWxSLOP3003ssQOlB0Umw7SV74jTM34fwAB8OF1exI7uYmaOC3RygiIgMGAFREBANxZmQvQ1GndLs9NhhfgzyNFFWXcf+/DLGhvm7J04RkUYOJ0533XUXAHl5eWzZsqXFeYPBwO7du7sfmfQ8W4GIwylQUwFeg4mLDOBwcRVpSpxERMTVYmZBWqZ1I9zjEicPk5G4qAC2HCwkOdOsxElE3M7hxOm1115zRhziCoEx4B8OpYch50c44STiowL4fFceqVrnJCIirhaTBGlvt7vOyZY4XTot2sXBiYg053DiNGPGDGfEIa5gMED0TNi12jpd74STiG/cnT1NlfVERMTVbAUisrZCfa11w/YmtBGuiPQmDheHsCktLWXDhg18+OGHFBfrS3efYbtJNVbWi2ssEHGwoJziylp3RSUiIgNR6HjwCYTaCshNbXHaViDi58OlVNXWuzY2EZHjdClxWrp0KXPmzOHGG2/krrvuIisrC4BrrrmG5cuX92iA0sNslfUyN0NDA0G+XkQPHQTATo06iYiIKxmNx9bfHmo5XS8iwIcQP2/qGizszNE9SkTcy+HE6c0332Tp0qVccsklLFu2rNmeTvPmzePrr7/uyfikp4XFgacvVBVD/s8AxEcGApCidU4iIuJq7eznZDAYmuznpHuUiLhXlxKna6+9lkWLFnHSSSc1OzdixAgOHTrUY8GJE5g8IGqa9XWmtSx5nG0j3Gyzm4ISEZEBy544bQJLy/2aEqOt9yhthCsi7uZw4pSZmcmcOXNaPefr60tJSUm3gxIns02LaNzPKb4xcVJlPRERcbmIRPDwgYoCOLqvxenE6CAAUpQ4iYibOZw4+fv7U1BQ0Oq57OxsgoO1F1CvF924zqkxcZrcWCAiq6iSwvIad0UlIiIDkYc3RE61vm5lup5tVkRGYYXuUSLiVg4nTrNmzeKFF16goqLCfsxgMFBXV8fKlStbTN+TXihqOhiMYD4EJYcZ4uPJqBBfQGXJRUTEDWzT9VopEBEwyJNRodZ7lEadRMSdHE6cbrvtNnJycli4cCGLFy/GYDDwxhtvcOmll3Lo0CH++Mc/OiNO6Uk+QyBskvX1ceucUnVTEhERV2unQATQpECE2TXxiIi0wuHEacSIEaxcuZJRo0axcuVKLBYLH3zwAUFBQaxYsYKIiAhnxCk9Ldq2zqn5fk6pGnESERFXi55hnQlRdBBKc1ucVuIkIr2BR1cuGjNmDC+++CI1NTUUFRUREBCAj49PT8cmzhSTBFuftz/ds20ymKYCESIi4mq2mRC5adb70qQLm522JU4pWWYsFgsGg8ENQYrIQOfwiNM999xDZmYmAF5eXoSFhdmTpuzsbO65556ejVCcw1ZZLzcNqsuYGD4EowFyS6o4UlLl3thERGTgaWed0/jhQ/AyGTFX1JJRWNHivIiIKzicOL3//vsUFRW1eq6oqIjVq1d3NyZxhYAoGBIFlnrI3o6vtwdjhvkBKhAhIiJu0M46Jy8PIxMjhgCarici7uNw4tSe4uJivLy8evItxZmO288pLjIQgBRN1xORAaS8vJx//etfnHTSScTFxXH++efz8ccfd+rao0ePcvfddzNz5kwSEhK47LLL2Lix9QIH0gFb4pS3A6pa7gmpdU4i4m6dWuO0detWNm/ebP/7qlWr+Pbbb5u1qa6uZv369YwePbpnIxTniUmCHe/YK+vFRwXw7o9ZpGWZ3RuXiIgL3XrrraSlpfGXv/yFE044gTVr1vDnP/+ZhoYGzj333Davq6mp4dprr6WkpIT77ruP4OBg3nzzTW644QZefvllZsyY4cJe9ANDwiHoBCj6BbK2wJgFzU4rcRIRd+tU4rR582aeeeYZwLpn06pVq1ptFxERwT/+8Y+ei06cy7YRbuZWaKgnvrEkeVp2sRbfisiA8M033/D999/z73//m3POOQeApKQkcnJyeOyxxzj77LMxmUytXrtq1SrS09P573//y5QpUwCYOXMm559/Po8//nib90ppR8wsa+J0aGObidPOnBJq6hrw8ujRSTMiIh3qVOJ0ww03cOWVV2KxWJg9ezYvvvgiEydObNbGy8sLX19fpwQJsHHjRj788EN++ukncnNz8ff3Z/Lkydx8881MnjzZab+3XwubBF7+UFMKeTuZED4JD6OBgrIaDhdXERE4yN0Riog41bp16xg8eDBnnnlms+MXXXQRf/nLX0hJSeHEE09s9dovvviCkSNH2pMmAA8PD8477zyeeOIJ8vLyCAsLc2r8/U7MLEhZaZ9C3tSI4MEEDvbEXFHLz7klxEcFuj4+ERnQOpU4+fj42CvnrV+/ntDQUJevZVq5ciVms5mrr76aMWPGUFhYyMsvv8xll13GCy+8wKxZs1waT79gNEH0dNj/JWRuxic8ntgwf3YdLiE1q1iJk4j0e3v37mX06NF4eDS/HY4bN85+vq3Eae/evUydOrXF8abXOpo41dfXO9T++Ou6en2vETUDE2DJ3kZDTSWYmn/XiI8M4Nu9Bfx0qIhJ4f724/2m/12k/qv/TX8ORN39DDp7ncP7OEVGRjocTE/45z//SXBwcLNjc+bM4fTTT2fZsmVKnLoqOsmaOGVsghk3Eh8V0Jg4mTlz8nB3Ryci4lRms5moqKgWxwMCAuzn27vW1s7Ra9uSlpbm8DU9eb3bWSzEewXgWVPM3m9WUT50UrPTYZ6VAHyVeoDJPoUtLu/z/e8m9V/9H+ic/Rk4nDjV1tby/PPPs2bNGnJycqiurm523mAwsGvXrh4L0Ob4pAnA19eX0aNHc/jw4R7/fQPG8ZX1ogL479ZMlSQXkQGjvfWcHa317M61rYmLi2tzTVV76uvrSUtL6/L1vYlx70mw52NifY5iSUxsdq7I5wirdv1IZoWJxCbn+lP/u0L9V/8Hav8tFgvFlbVU1dSR+0t6t/8f2hGHE6cnnniCV155hblz57JgwQK3lh8vLS1l165dJCUluS2GPi9qGhhMUJIFxVkkNM4ZT81SgQgR6f8CAwNbHRkqLrY+PGptRKknrm2LyWTq1hef7l7fK4yYDXs+xpi5GY7ry5QRQwHYn19OeW0DQ3w8m53vF/3vBvVf/e8P/bdYLJRW15FfWk1BaTX5ZU1/1pBfVm09V2b9U1tvAeCW6QEkJjr3M3A4cfr000+5+eabueWWW5wRj0MeeOABKisruemmm7p0/YCfSw5g8sE4PA7D4WQafvmB0eMvxMtkoLiyll8KyogZOrjFJf2q/12g/qv/TX8ONK6aR+4qsbGxrFmzhrq6umbrnNLT0wEYO3Zsu9fa2jXVmWulHbb9nDI3QUMDGI9Vzwv28yZ66CAyCytJzSzmpLEhbgpSRBxV3pgMNU+EqhsToZpmf6+pa3DovYf5exM62PmVNh1OnIqLi5k2bZozYnHIU089xUcffcTf//73LlfVG/BzyRtF+YwijGQKflpDZt1oYoZ4sK+olo++T+FX0W0XiOgv/e8q9V/9H8j6S/8XLFjA22+/zeeff87ZZ59tP/7+++8zbNgwEhIS2r32gQceICUlxd6urq6ODz/8kISEBFXU66rwePAcDJVFULAHhk1odjoxOojMwkpSssxKnETcrLKmnoKyao40jgDlt/qzhvzSaiprHXtw5u/tQYi/N6F+3oT4exHq502ovzchx/0M9vPCwwDJycnO6WQTDidO06dP5+eff3br9LhnnnmG5557jjvuuIPf/OY3XX4fzSVv5HUOHHyP0MoDBCcmMvPQTvZtyaTEI4jExPEtmve7/jtI/Vf/1f+u97+z88hd5eSTT+ZXv/oV999/P2VlZcTExPDxxx+zYcMGHn/8cXsf7733XlavXs26devsRZIuueQSVqxYwe23385f/vIXgoODWbFiBQcPHuTll192Z7f6NpOndRr5wW8hY2OLxCkhKoCPUnK0Ea6Ik1TX1duTnWMjQq0nRGXVdQ699yBPE6H+1oTnWELkY0+MbIlSqL83Pp6dv8e4ajaDw4nTokWL+OMf/0hERASnnHKKy9c4PfPMMyxZsoRbb721y1P0bDSXvNGI2QAYjuzEVFtOQnQQb27JZEdOSbv96zf97yL1X/1X//tH/5csWcKTTz7J008/jdlsZtSoUTzxxBMsXLjQ3qahoYH6+nosFov9mJeXF6+88gqPP/44Dz30EJWVlUyYMIHnn3+eGTNmuKMr/UfMLGvidGgjTLu+2SnbRrjJmWatxRXppJq6Bo6W29YIVTVbK3T81LmSKseSIW8PY6sjQaF+Xi2O+3o7nHr0Kg5Hf/7551NXV8ftt9+OwWCw7+9kYzAY2L59e48F2NTSpUtZsmQJf/jDH3rFGqt+Y0g4BI4A8yHI2kp89HQAdmSX0NBgwWjUTUlE+i9fX18WLVrEokWL2myzePFiFi9e3OJ4SEgIjz76qDPDG5hs65xa2Qh3cmQAJqOB/NJqbdYuApRW1ZGcW83+H7M5Wl7bYmQov6wac0WtQ+/paTI0GwE6lvx4Eerv0/jTeszP22PAPMBwOHE644wz3PLhvPTSSzz99NPMmTOHU045pcU8xsTjSpaKg2KSrIlT5mbGzJ2Hj6eRsuo6Dh4tZ3Son7ujExGRgSRqurXia3EGFGdBwLG9tnw8TYwf7s/OnBKSM81KnGRAyiys4IvdeazffYTNB482VpYravcak9FAiJ9Xi5GhYyNE3oQ2Tp0bMmjgJEOOcDhxau2Jmyt89dVXAGzYsIENGza0OL9nzx5Xh9S/RM+E1LcgYxMeJiOTIgLYfqiItKxiJU4iIuJa3n7WIhE5P1lHneIuaXY6MTqQnTklpGSaOTsu3E1BirhOfYOF5Mwivth9hPW780jPK2t2PszXRGx4IKH+PvaRoOMTo8BBnppF1E19ZqLh66+/7u4Q+jfbtIisbVBfR1ykNXFKzSrmgimR7o1NREQGnphZjYnTxhaJU0J0IG9uzlCBCOnXyqrr+DY9ny925/H1nnwKy2vs50xGA9NGBLFgQhjzxoVQnLWXxMTEfrP2tFOqy6D8CJTlQ20lhgafjq/ppk4lTjt37nToTSdNmtSlYMSNQseDTwBUFUNeGvFRoQCkZpndG5eIiAxMMbNg07PWAhHHsRWISMsupr7B0uK8SF+VWVjB+t15rP/5CJsOHLVv7grg7+PBKeOGsWDCME6ODSVwsLVAW319PclZ7oq4h9WUQ1meNRkqP3Lc68Y/9mSp3H6ZCQiZdAucON2p4XUqcbr44os7Nc/RVt1m9+7d3Q5MXMxotE7X2/s5ZGwmftSVAOzMKaGuvgEPk/M3FRMREbGLadz25Mgu655Og4Lsp0aH+uHn7UFZdR17j5QyNtTXTUGKdI91Cp7ZmiztPsKevNJm50eG+DJ//DBOnTCM6ScMxbMvfh+rKT8u6TnudXn+sQSpSTLUKZ6DwTcUS2AMpSGJTgm/qU4lTo888oiz45DewJ44bWTUjN/j62WivKae/fnljBvu7+7oRERkIPEbBsFj4Og+yNwCsWfYT5mMBuIiA9h44CjJGWYlTtKnlFXXsSE9n/U/H+Grn49wtMkUPKMBpp0wlAUThjF/QljvXWduS4bsSY/tdeMokf31EceTIY9B1v/+/YaBXxj4hh77u6/tZ6j1nLf182mor6eqt2yAe+GFFzo7DukNbE/3MjdjNFhLvm4+WEhqllmJk4iIuF5MkjVxytjYLHECSIwJZOOBo6Rkmbl0qtbiSu+WVVTB+t1H+GJ3HpsPFFJT32A/5+/jwcmxoSyYEMYp445NwXO5morWR4RavM6HmrKO36+ppsmQLfmxJ0DHJUheftBLK/r1meIQ4gIRJ4LRE0oPgzmD+Chr4pSWXcyl06LdHZ2IiAw0MbPhpzdaXeeUEBUIwE8ZZtfGJNIJDQ0WkrOOTcH7Obf5FLwRwYOZPz6MBROGMX2kE6fg2ZOhxpGhNl93NRlqHPnxHdbkdWjLBKkXJ0OOUOIkx3gNhvAEyN4GGZuIi5oDQEpWsZsDExGRAck2EyLnR6itAs9jVbNsBSLS80qpqKlzQ3AizZVX17FhbwHrd+fx1Z4jFJQdNwVvxFDmTxjG/AnDGB3q13P7JOXtZHj6GxgOv3lsipwtKaop7fj6pjx8miQ9YdZkqNkIUf9LhhyhxEmai0myJk6Zm4hPOgeA3YdLqKlrwMujDy5IFBGRvmvoKOsXtfIj1uRpxGz7qeEBPgwf4kNuSRU7c0rwdGOYMnBlmytZvzuPL3YfYdP+o82n4Hl7MHdcKAsmDOOU2GEE+fbgFLzaStj5Pmx7GVPWFtqdrNosGWpjrZDttbf/gEuGHKHESZqLSYKNz0DGZkYsHMwQHw9KqupIzytlcmSAu6MTEZGBxGCAEbNg1wfWdU5NEieAhOgAcndWkZxZzHQtxRUXaGiwkJJltq9XOn4KXszQwcyfMIwFE8KYfsLQnn/onL8Htr0MKSusW8gAFqMH5mEzCRiThHFIeMt1Q0qGeowSJ2kueqb155FdGKqKiY8K5Lt9BaRlFytxEhER14tpTJwObYQ5zU8lRgfx2c48UrOKmT7BPeFJ/1deXcd3+6xT8L78OZ+Csmr7OaMBpo4IYv6EMOaPH8aYYT04Bc+mrhp2fQjbX4ZD3x87HhgDJ15DQ8IVHNh3mMTERBhIG+C6gRInac5vmHVqROEByNpKXFQ03+0rIDWrmP+Z4e7gRERkwImZZf2ZuQUa6sF47IthQrT1gV5ylhkmBLo+Num3cppMwdt44Cg1dcem4Pl5W6vgzZ8wjFPGDWNoT07Ba+rofmuylLwCKo5ajxmMEHsWTLseRs+z/vdQXw8cdk4M0owSJ2kpZpY1ccrYRHzkZABSs8zujUlERAamsMnWRejVxXBkNwyfbD8VHxWIwQA55iqKqurdGKT0dQ0NFlKzi+3J0u7DJc3ORw8d1FgFL4wZI50wBc+mrgb2fGydjnfwm2PHh0TCiVfDlKsgQOX33UWJk7QUPROS37RW1jvxLwDsyS2lqrYeH08NAYuIiAuZPCB6Buz/0rrOqUni5OftwdhhfqTnlbGvsJZ5bgxT+p6Kmjq+21vA+t1H+HLPEfJLm0/BOzEmiFMb1yuNdcYUvKaKfoHtr1rL75cfaTxogLGnWUeXxpxm/W9B3Er/BKQlW/nX7O1E+nsQ7OvF0fIafs4ttZd/FRERcZmYWccSpxk3NjuVEBVIel4Zewtr3RSc9CWHiyv5YvcR1u/O44f9LafgzY0NYf74MOaNd+IUPJv6Okhfa52Ot289YGkMJMw6sjT1Gus6Juk1lDhJSyGxMGgoVBZiyE0jLiqAr/fkk5ZlVuIkIiKuZ1vndGgjWCzNKoQlxgSyansW+5Q4SSsaGiykNZmCt+u4KXhRQYNYMCGM+ROGMXNksGu2XinOgh9fgx9fh9KcY8dHzYNp18G4s8GkAvu9kRInaclgsE7XS/8UMjYSH3kaX+/JJ1Ub4YqIiDtETgWjp/VLpjkDgkbYTyVEBQKwt7CWhgaLiooJFTV1fL/vKOt357H+5+ZT8AwGmBIdyPwJ1vVKsWFOnoJn01AP+76wrl3a+xlYGke6BofAlCvhxGsgeLTz45BuUeIkrYtpTJwyNxEXdymAEicREXEPr8EQkQhZW63T9ZokTuOG++PjaaSitoGfMs3MGBXivjjFbY5W1LNicwZf7snnh/1HqW4yBc/Xy8Tc2FDmTwjjlHGhhPh5uy6w0lzryNKPr0Jx5rHjJ8yxji6NPwc8XBiPdIsSJ2mdbVpExmbizxwCwN4jpVTU1OFt0iZqIiLiYjFJxxKnhMvthz1NRuIiA9j6SxG/Xr6ZuMgAzokPZ2F8OFFBg90YsDhbZmEFn+44zMeph0nJKgby7eciAwexYMIw5k8IY+aooXh7uHAosqEBDn4N216Cnz8BS2PFx0FBkHAFTL0WQmNdF4/0GCVO0rrwRDB5QfkRwupyCBviTV5JNbtySpgSrY1wRUTExWJmwQ9LrOucjnPvWeO5/73t7MivJS27mLTsYh759GcSowPtSVR4wCA3BC09LbOwgk/SDvNJmi1ZsjIAidEBLJg4nPkThjEuzN81U/CaKsuH5Ddg+yvWKnk20UnWyngTzwdPH9fGJD1KiZO0ztMHIqZA5mbI3ExcZCx5Jdbd2ZU4iYiIy0U3Vnwt2APlR8E32H4qPiqAf8wdSvTYiazbfYQ1KYfZdPAoyZlmkjPNPPTxbqafEMQ58RGcFTecYf768tqXZBZW8HFjstR02YDRADNGDuWsScOJtOQzb9ZUTK5e5GaxwC8brGuXdn8EDY1FSrwDIOEymHodhE10bUziNEqcpG0xSdbEKWMj8VHT+WJ3HmnZWuckIiJu4BsMIeOsiVPmJhi/sEWTYF8vrpw5gitnjuBIaRWfpuWyJjWHrb8U2f/c/9FOZo4cak2iJg8n2JXrXaTTMo4eS5aafvcwGmDmyGDOjg/nzEnDCfX3pr6+nuTkQtcGWFEIySuso0tH9x47HjnVmixNvgi8fF0bkzidEidpW3QS8H+QsZm406yjTClZZreGJCIiA9iIWdbEKWNjq4lTU8P8fbhm9glcM/sEcour+DjtMGtSc/gpw8ymA4VsOlDIPz/cyezRwSyMC+fMycMJHOzkfXukXYeOltuTpR3Zx8qGGw2QNCqYs+PCOaMxWXILi8X6QHnbS7BzNdQ3Vuvz8oO4S63FHsIT3BObuIQSJ2lb9Ezrz4I9JAy1Lmw8kF9OaVWdG4MSEZEBK2aW9Ql/xiaHLhse4MNvTxrJb08aSVZRBR+nHubjxmlfG/YWsGFvAYtW7+CksSEsjAvn9EnDCRikfXRc4ZeCY8nSzpzmydKs0ceSJZdWwjtepRlS37JOx8vffez48Hjr2qW4S8Db323hiesocZK2+QZbN8MtSGdoYTKRgYPINleyM6cYzQ4XERGXs1V8zfkJaiqsZcodFBU0mN+fPJrfnzyaQ0fLWZN6mDWph9l9uISv9+Tz9Z587nt/B3NjQzgnPoIFE8Pw89bXpZ50sKCcT9Ks1fCabkhrMhqYZR9ZCnPvNEqLBbK3W5OlHe9CXaX1uMcgiLvYmjBFnNhsM2bp//R/Amlf9EwoSIeMTcRHnUe2uZK07BKm68GKiIi4WmAM+EdYN8LN3g4j53Tr7UYE+3LzvDHcPG8M+/PL+DjVOp0vPa+ML3Yf4YvdR/D2MDJv3DAWxoczf8IwBnvpq1NXHMgvsyZLabnsPi5Zmt04snT6RDcnSwDVpZD6Nmx/GXLTjh0fNtG6din+1zAo0G3hiXvpv35pX0wS/PS6tbLeqKv4dEcuadnFTB/v7sBERGTAMRis65x2vGtd59TNxKmp0aF+3DZ/LLfNH0t6XilrUnJYk3qYAwXlrN2Zy9qduQzyNHHqhGGcGx/OKeOG4ePp4gpufcz+/DI+aZwW+XNuqf24LVmyTYsc6tsL1pYdTrGuXUp7B2rKrMdM3jDpQuvoUvQMjS6JEifpgG1aRPaPJMy27oGRll0C44e4MSgRERmwYpokTk4SG+bPn08fxx2nxbL7cClrUq1JVEZh4/qo1MP4eplYMDGMc+IjmBsb4toNVnuxfUfK7PssNU2WPIwGZo8JYWHccE6fOJyg3pAs1ZRb/13a9jLk/HjsePBYa7KUcDkMHuq++KTXUeIk7Rs6CgaHQEUBCaZfAMgorKC0xs+9cYmIyMBke6CXuQXq68DkvK8yBoOBiRFDmBgxhDvPGEdadjFrGhOnbHMlHyTn8EFyDv7eHpw2KYxz4yP41ZgQvDyMToupN9p3pJSPU3P5JO0we/KaJ0u/GmMruBHWe6oW5u20Jkupb0F147RBoydMPM+aMI34lUaXpFVKnKR9BoN1ut7Pa/A7so0TguP55WgFB4pq6bkJEiIiIp00bIJ1c9HqYsjbARGJLvm1BoOB+KhA4qMCuees8fyUaWZNinVkJbekivd+zOa9H7MJGOTJmZOGc05COLNGBeNh6p9J1N68Uns1vPS8MvtxD6OBk8aG2Ncs9ZpkqbbSWkJ8+8vWkuI2QSOtZcQTrwTfELeFJ32DEifpWGPiRMYm4qLm8svRCjZmVfHrmnr8BmlqgoiIuJDRZF1vsm+ddbqeixKnpgwGAyfGBHFiTBCLFk5g26EiPk7N4eO0XArKqnlrWyZvbctkqK8XZ04ezjnx4cwcGYzJ2LdHMdLzSvk41Zos7T1yLFnyNBk4aYwtWRpOwOBeVMo9P92aLCWvgCqz9ZjRA8adbR1dGnkyGPtncis9T4mTdCw6yfozczNTZwfwUUoO6w5U8qvHvuaSqVFcOTOGUaGauiciIi4yYtaxxCnpD24NxWg0MGPkUGaMHMo/zp3E5oNHWZN6mLU7ciksr2HF5gxWbM4g1N+bsycPZ2F8BNNGBGHsA0mUxWIhPa/MPrK077hkac7YUM6OC+e0CWG9K1mqq4bdH1mn4x367tjxgBiYejVMuQr8h7svPumzlDhJx8ITwMMHKo5yxdgaKs6I5ZUN+zlSUcuL3x3kxe8OctKYEH6TFMOCCWH9dlqCiIj0ErZ1Toc2Wvfb6SWs1eJCmD06hAfPm8TGA0dZk3KYtTtzyS+t5tWNh3h14yGGD/Hh7LhwzkkIZ0p0IIZetJ7GYrGwJ6/UXg1vf365/ZyXycicxml4CyaG9b5NggsPwE+vQfKbUHHUesxghNgzraNLo0+1jliKdJESJ+mYhxdEToVD3+OVvYXfz72Saf7FlAyKZMXWLL7ac4Tv9hXw3b4CwoZ4c/n0GP5nRgzDA7RNroiIOEHEiWDygvIj1i/LgSe4O6IWPExG5owNZc7YUP7fBZP5fl8Ba1IP8/nOXHJLqnjp+4O89P1BIgMHsTA+nHPiw4mLDHBLEmWxWPg5t7Rxn6XDHDguWZobeyxZGuLTy5IliwX2f8nYjY9g+mj7seP+ETD1GuvoUkCk++KTfkWJk3RO9Ew49D1kbIaEKzEZDMwbP4wFk8LJLKxgxZYM3t6aSV5JNf+3fi/PfLWP0yaE8ZukEcweHdwnpiSIiEgf4eljTZ4yN1mn6/XCxKkpLw8j88YPY974YVTXTebb9ALWpObwxa48ss2VLP/2AMu/PUDM0MGcEx/OwvhwJoYPcWoSZbFY2H241F46/EBBk2TJw8jcsaEsjB/O/Am9MFmyObgBvvoXpoyNDAEsGDCMWWAdXRp7ulMrLsrApH+jpHNibOucNrU4FT10MHedOZ4/LRjL2h25vLkpgy2/FNo3DBwZ4suVM2O4dGp075oDLSIifdeIWccSp/j/cXc0nebtYeK0iWGcNjGMqtp6vt5zhI9SD/Pl7iNkFFbw7Nf7efbr/YwK8eWc+HDOSYggNsy/R363xWJh1+GSxmQpl4PHJUsnx4ayMC6c+ROG4d9bkyWwPsT96iE4+C0AFpM3R2LOIeScv2MKHunm4KQ/U+IknRM9w/rz6D4oz2+1ibeHifMTIzk/MZKfc0t4c1MG7/+UzcGCch76eDePf7aHcxMiuCppBAnRga6LXURE+p+YWcCTkNHygV5f4eNp4szJ4Zw5OZyKmjrW7z7CmtQcvtqTz4GCcp7+ch9Pf7mP2DA/FsZFcE5COKMdLMZksVjYmVNiH1n65WiF/ZyXh5FTYkNZGB/OqeN7ebIEkL0dvnoY9n1h/bvRE6ZeS8Ov/kTW/jxCAmPcG5/0e0qcpHMGBUHoBMjfbd10kPbnC48fPoT/d8Fk7jprPKt/yuaNTYf4ObeUd7Zn8c72LOIiA/hNUgznJUQyyEsLNUVExEHRMwCD9YFe2RF3R9Ntg708ODchgnMTIiirruOLXXmsSc3hm/R80vPKSM9L58kv0pkQPsQ6EhUfzohg31bfy5Ys2arhHWqSLHl7GDllnLUa3vwJYfh594Gvgrlp1oRpzyfWvxtMMOVKmHsnBMZAfT2Q59YQZWDoA/+1SK8RMxPyd2PI2gwhF3XqEj9vD36TNIIrZ8bwY0YRb2zK4OPUw6RlF3PXu2k89PHuxpLmIxgzTCXNRUSkkwYFwbCJcGRn44am0e6OqMf4eXtwwZRILpgSSXFlLZ/vzOXjtMN8t7eA3YdL2H24hMc/20NcZADnxIdz1qQwLBYLadnFrN15hE/SDpNR2DxZmjduGGfHhzN//DB8+0KyBHDkZ/j6Ydj1gfXvBiPEXwYn/w2GjnJvbDIg9ZH/cqRXiJkF21/BkLGp04mTjcFgYOqIoUwdMZRFCyewansWb24+RGZhJS9//wsvf/8Ls0YFc9WsEZw2MQxPlTQXEZGOjJgFR3ZiyNwIw/pP4tRUwCBPLp0WzaXToikqr+GznbmsST3MD/sLSMsuJi27mEc+/ZkAbyPF1cdGXXw8jZw6fhhnx4Uzb1wfSpYACvbBN4sh7R3AAhhg8kVw8t0QGuvu6GQA60P/FYnbRc+0/jycgqG+ustvE+znzU0nj+Z3c0bxzd583tx0iC9/PsLGA0fZeOAow/y9uXx6NP8zM4bwgEE9FLyIiPQ7MbNg6wsYMjbDsF+7OxqnC/L14vIZMVw+I4aCsmrW7shlTWoOmw8WUlzdwCBP07FkaXwog7362Ne8ol/gm8cg5b9gqbcem3AunHIvhE10a2gioMRJHBF0AviFYSjLw9e8B5jZrbczGg3MGzeMeeOGkW2uZOXmDP67NYMjpdU8/eU+nvlqHwsaS5qfNCZEJc1FRKQ5W8XX3FSMdZXujcXFQvy8+U3SCH6TNILDReV8vimFi06Ziv8gb3eH5rjiLPj2cfjpDWiosx6LPRPm3QvhCe6NTaQJJU7SeQaD9Sa16wNCD30IJfMhqGcq2EQGDuKvZ4zjtvlj+WxnLm9sOsTmg4V8viuPz3flcULwYK5oLGke5OvVI79TRET6uIAoCIjBUJyB7/9v787joqr3x4+/ZgFZVJYUIREVEpBFcGFxX3JfUiu1uqm3NPWa3r5p3dLqe7WvqS3ebuJXzUvXrMyvlugv99xK6wqaJuGCuKLghiguoCwz5/fHcUYGRkG2EXg/H4/PY+Bzzpn5fGZ7z/ucz/mca0eA9rZukU141HcgxKNO9TvCdPMi7P4H7F8Khjy1zq8HdH8HvNvZtm1CWFHNPmHC5pp3hSP/D/f0HSiftQLfbhD+JwgcAPZO5b57e73WPKtQyqWbLI9PJe5AOmcyc5i9MZlPfkxhYCsvXoxuSusmrja5wroQQohHiE80JJ2l7tUkW7dElFb2FfjlU9gXCwV31LqmnaDHO9C0g23bJsQDSOIkHk7bP2PU2ZP9yxLqXf0DTu1Ui309CBkKYS+oQawCEhr/RvWYOTiEv/UN5IfE83y9J5UjF24QdyCduAPpBD9enxejmzI4/PHqt5dNCCFExWjaHpJWSeJUHeRchf/EQMLnkH/34rvekWrC1Lxrhfx2EKIyya9N8XC0OpSwF0hRgghv6oouaRUkfgtZZ+HAV2px91UTqLAR6vUVysm5jp7nI314LqIJv5/L4pv4VNb/cYHD528wLS6J2RuO8nSbxrwY3ZQWFXR1dSGEENWEjzo8z/naUTDkg06uDfjIuXMd9iyE+IWQe0Ote7y1OiTviZ6SMIlqQxInUXZuzaD7NOj6Fpz9Dxz8Fg6vhaunYOcstTTvoiZRQU+BvfUL9ZWWRqOhjY8bbXzceG9AEN/tP8fyhLOkZuawbE8qy/akEtXcnRejm9In2BN7vUxpLoQoWXZ2Nv/85z/ZtGkT169fx9fXl3HjxjFgwIASt42Li2PatGlWl/3yyy80bNiwopsrimoQgOLohu72NYw7P1AvjNowQH6MPwpyb0HCYvUo050sta5RiDrpQ0B/eY1EtSOJkyg/rRaadVJLv4/g6Do4uBzO7IbTu9Sy8Q0IGgLhz4NPB3WbcnBztmdcFz/GdvLllxNX+Do+le1HL5Fw+ioJp6/SoO69Kc0bu8qU5kKI+5s8eTJJSUlMnTqVZs2asX79eqZMmYLRaGTQoEGluo85c+bg62t5QU5XV9dKaK0oRqtFad4NzZE1aPfMhz3zwd0PAvtD4EDwjgCtHIWqUnk56vlLv/4TcjLVugYB6s7WloPL/RtACFupVolTefYKiipSp66aHIU/D9dS4Y+VahJ17Qwc/EYtrk0h/AUIe049alUOWq2GLv4N6eLfkPNZt/m/vWdZse8cGTdzWbDzBAt/OkGPQA9ejG5KlxYNZUpzIYSFn3/+mV9//ZV58+YxcOBAAKKjozl//jwfffQR/fv3R1eKoV8tWrQgNDS0spsr7kMZ9Bmp+ub43D6E5tTPcPWkepTjPzHg3BAC+qlJVPOuYOdg6+bWXPl3YP+X8Ms/4Nbdi/G6+0G3tyHkGUlgRbVXrRKnitgrKKqQW1Po+jfo8iacjVcTqMNrISsVfpqjlqad1CQraDDUKd/5SY+7OjKldwCTn2zBj4cv8U18KntOZbLt6GW2Hb2Mj7s6pfnwdk1wlynNhRDA1q1bcXJyom/fvhb1Tz/9NFOnTiUxMZE2bdrYqHWi1OzrcqXpQLzD30VXkAMntsOxjZCyGbIz7p2Da+cMLXpCwADw7w2ObrZuec1QkKfuGN31CdxIV+tcfdSh/K2eA121+rkpxH1Vm3dyRe0VFDag0aizHjVtrw7lS16vJlGnfobUX9Sy8U01eQp7Hpp1LtdhfDudlgGtvBjQyosTl2/yTfxZVh9I4+zVHOZuSuYfW1MYEOrFi9E+tPFxkynNhajFjh8/jp+fH3q9ZTgMCAgwLy9N4jRhwgSuXr1KvXr1iIyM5K9//Sv+/v6V0mZRgjr1IHiIWgz5kPorJG9Qy410OPL/1KLVQ9OO6pGowP7qNaHEwzEUwB//Bz9/qE4SBVC/MXR5A8JfBL3spBQ1S7VJnGSvYA1h7wSthqvlehok/h8kroDME+pt4gpwaaIO4wt7Hh7zK9fDPeFRjxlPBfO3vgGsSzzP1/GpHEq/wZrf01nzezotverzYrQPQ8Ib41yn2nwchBAVJCsrC2/v4j+YXVxczMsfpEGDBkyYMIHw8HDq1q1LSkoKS5YsYcSIEaxYsYLAwMCHao/BYHio9YtuV9btq7v7918LTTurpfccuJiIJnkDmpRNaC4fgdM/q2XTmyieYSgB/VECBoBHy2o1cUGVv/5GA5rDcWh2fYTm6kkAlLqNUDq+jtJmFOgdTA2rkubI+7929x/K/xyUdrtq80uxovYKikeIi7e6V6rzVEjbpx6FOrQGrp+DXR+rxae9mkAFDwWH+mV+KCd7PSMi1GF6iWnX+SY+lXWJ5zl64QbvrDnEnI3JDG2tTmke4ClTmgtRHSUkJDBq1KhSrbt27VpatmwJ8MCjziUdke7SpQtdunQx/x8REUHXrl0ZNGgQn332GYsWLSpVe0ySksp3LaLybl/dlar/bgMgagD22em4XvwPrhd/oe7Vw2guJqK5mAg/zyHXyYssz05keXbklnswaKrHiJZKf/0VI64XdvH4sWU43koFIN/ehYtPPE9G06dQ9A5wKLly2/AA8v6v3f2Hyn8Oqk3iVN69gtbInr2yqZT+P95WLb0+QHNsI5o/VsCpn9Cc3QNn96BsegslcABK2PPQrEu5TjANfbweHz4dwrS+/sT9fp7lCWc5k5nD1/GpfB2fSkQzN16IbEKfYE/qWJnSXF5/6X/h29qmqvbqlUXz5s2ZNWtWqdb18vIC1JnvrMWP69evA/dizMPw9vambdu2JCYmPvS2oaGhZRp2bjAYSEpKKvP21V3Z+h8OqJNLGbMz0BzfgubYJji1kzo5F2h06jsanfoOxekxlBZ91CNRvt3A7tGbqbXSX39FgZRNaH+ei+bSIbXKwRWl/WS0ka/wuH1dHq/4Ry01ef/X7v5D+Z8D0/YlqTaJE5Rvr6A1smevfCqv/34Q9C52zcfjnr6Nx879iOOtVDSHvodD35Pn0JBM715kNulNbt3yXWC3jTOEd69H0uU6bDmZw77zuew7c419Z65Rv84hejZ3pJevIx7OxT8q8vpL/yuDoigUKGAwKhgUMBjBoChFbgsvV28LjApGBQqMYFQUi9sH35dp3cL3UfT23voK0LO5I/Dovf4eHh4MGzbsobbx9/dn/fr1FBQUWIxoSElJAdTZ8spCURS0ZThXU6fTleuHT3m3r+7K3P/6ntB2tFrysuHkDvWcqGOb0ORkokn8Vr3Yu50T+PVQz4vy7wNO7hXfiXKo8NdfUeDENtj5AZz/Xa2rUx/av4om+i9oHB5+x0Jlkvd/7e4/VP5zUG0Sp8rYKyh79sqmavvfC5S5GM4fQJO4As3h1djfycDrxLd4nfgWxTsCpdXzKMFDoRxf4G2A0cDF63dY+ds5Vu5L49LNXOKSs1lzLJtu/g35U5QPXVo0AMUor7+N+68oCgajQoFRId+gUGA0YjD9bTDerTdSYFDXKTCqf+cb1eWGQtup9eqtwbSdUVHr7/5duD6vwEDGlUzqu7jdTVju3Z/h7v3nG+/9bbovUzuKrltgVO4VgxGjYpOn9KEYFYUxfSMqda9eVenZsyerVq3ixx9/pH///ub6NWvW4OHhQVhY2EPf57lz5zhw4AAdOnSoyKaKqmLvDC0HqcVQoF7gPXkDJG+E62fVCY6S16vD95p2gMAB6sVc3ZrauuUV69TPasJ0LkH9384ZosZDh8mPXMIoRFWpNolTZewVlD175VOl/feJVEvfOZCyCQ6ugBPb0KTtQ5O2D7ZMU4NX+J/Ar3uZh/I1dndmSu9AJj/pz7Yjl/gmIZVfT2Sy81gGO49l4O3myHMR3nDzDhf0GeY9yoqVH7sKxSutr2elztqKVtcr2+OWpx1Go5HTqTkcupNuPuJhSjwKJw33EhejRUJjUXf31pxwFElmDIWSHXPd3cTD9m5X2SNpNGCn1aLTatDrNNjp1L/ttBp0Ok2hZVr0d9fRazXotVrz3zqtFjudRt3OtL1OXcf0t7V19KZy9751WnDLvVhjvv+6du1Kx44dmTFjBrdu3cLHx4cNGzawe/duPv74Y4s+Tp8+nbVr17J161YaN24MwJ///GfatWtHYGAgzs7OpKSkEBsbi0aj4bXXXrNVt0RF0emheRe19J0LF5PuzdB3KUm90PuZ3bD5bfAMvTtD3wBoFFKtJpewkLpHTZjO7Fb/1ztAxFjo9Do4N7Bt24SwsWqTOFXGXkFRDdk5qBNFBA+Fmxfhj1Vw8FvIOAqH49RSz0udtS/sBfB4uBmtzA+j09Iv1It+oV6czLjFtwln+e63c6Rdu80nPx5XV9pzsOL6VR3tP2LrFhRjSgRMyYXFj/67CYY5qbi73E5nqruXdJi31VkmEnqtBp0Grly+hHfjx7HX6yySjqL3fS+J0Vq0o2hSoy+y7b37VNv8KF242WAwcPBghq2bUaFiYmL49NNPmT9/PllZWfj6+vKPf/yj2MXVjUYjBoPBYoeCv78/mzZt4t///je5ubm4u7sTHR3NxIkTad68eVV3RVQmjQa8Wqml+zT1wu7JG9XrRaX+qiZVF5PUaxS6+KgJVOAAdZKj6nAdo7T9sHOWOkwRQGcPbV+CzlOgnqdt2ybEI6IafJJVD7NXUNQS9Tyh41/VYQMXDqoJVNJ3cPMC/PqZWh5vA+EvqFcsL+PQAr+GdXlvYBBv9A5g3R/nWZ94noxr16lbty4aCv2gLfLb1tpP3aI7IDVW1rK2k7Ks2xVfx3Kl0rSx6HqKAtm3bvCYmyt2ep1FcmJKXEw/+vU6LXZFEpCidYWPeBReVjipMC0rnIgUrrPTadFqynau48NSE4dswsN9q/f3jqEA8nMg/7Z6W3Cn0P+3LZcVutXk38FJH4R6Yn3N4OzszLvvvsu77777wPXmzp3L3LlzLeqmT59emU0TjzK3ZtB+olqyM+H4FvVI1Int6pC+hEVqcXQD/35qEuXXQ70sx6PkQiLsnK1eLBjU61u1HqnOeivXthLCQrVJnKD0ewVFLaPRwOOt1dJ7FqRsUa8HlbIFzh9Qy5bpENDv7lC+J8u098/RXsfwdk14pvXjHDx4kPDw8Or9w7mM1MSh9va/0hmNUFA4ebljJYm5f2JTct3dv435ZWqeFmjcoC10f75i+y1Edeb8mLqTLvwFyMuBUzvNk0tw+6o6sUTit6B3vDu5RH/w72vboW+XjsBPs+HoOvV/jU69/EfXN9WkUAhRTLVKnEq7V1DUYvo6EPSUWm5dVo9AHfwWLh26d7V4Zw91KF/4C9Ao2NYtFtWFooAhD+7cxO52BmSeBGPuQyQvpUxsCu5Uccc06kxhdo6Fbh2s1Kl/G/WOpOmDCKjiVgpRbdg73RumZyhQJ1dI3qBOKJGVCsc2qEWjVYfxmSaXcK+ioZ1XjqvDCQ/FoZ7dqoHQYdDt7XJfdF6Imq5aJU5CPJS6HtD+VbVc+EM9CvXHSsi+DHsWqMUrTD0KFfKsusdQVE+mpMaUfOTlFElOiiQqedkPWPaAbRUjOqAVwLYq6JfewTJ50TtaJDHWEpuS64os09d5qJPYFYOB2wcPVl6fhahJdHpo1lEtfT6AS4fvHonaoA6RS/1VLVumg0fwvYTLK6ziJ5e4egp+/kiNg4pRrQsaAt2mlfl8YCFqG0mcRO1gOqG350w4sVU9CpWyWQ1cFxJhyzvqNTnC/wQteoHOztYtrjmKJjXFEhcrCYpF8nIb8rOxODJjbbnph0AVMGr0aOyd0FgkIw5lSGIekNjoHcp1oWchxCNGowHPELV0ewuyzqpD+ZLXw5lf4fJhtez6COp730uimnYoX0zKOgu7Pobfl4Ny9wLUAf3VhMmrVcX0TYhaQhInUbvo7e8Fo+wrkPS9Ou78QuK9a3M4Nbg3lM8z1NYtrnymc2rycu4lKKa/zQlKjrlOk5tN4/OpaM7XLTKhgLXkx3SkxlB1/dHq1euNFE5M7IsmJ9aWF05mnC3XL7TcoK3DwaTDco6XEKJ8XH3U6yJFjYecq3D8RzUGndgON9Jg7+dqcXBRz4cKHKCeo1unbunu/8Z52D0P9i+7d07jEz2h+3Ro3Lby+iVEDSaJk6i9nBtA9AS1XDqsHoX6Y5U6lC9+oVoahaoJVOgwqNvQNu1UFDVBsUhssoscecm5V3ff5fdJjAoe7npEWqDME9NqdOrFJc1JSaFkxd7ZypEXpyLLCtffZ9vKPlpoqMIkUAhROzi5Q9hzasm/rV58Nnm9ekQq54o6vO6PlaCro16rMHCAOlOftbh06zL88ins+wIMuWpd8y7Q/V3wiarafglRw0jiJASok0T0+QB6zlD39iV+qwasS0nqxXW3vgcteqtJlF9Py21NQ9FKTFZKudzaulYvT1sJ9IWPrpiOxDgXOurijFHvwOWsW3g0bobW3tnqURnLxKZQ8iNDIIUQ4sHsHCGgr1qMBji39+6IiA1w7bQ6zDxlM6ABn2h12J1/P3R519FsmwG/xd6NG6iTT3R/B5p3tmWPhKgxJHESojCd3b2AlXMVDq1Wj0SdP6Be5PDYRrQOrgRrndDuNNxLbKpqKJqujtVk5t5QNGfriU+x5Va21zuCVltiExSDgfSDB2kYHg4yVE0IISqPVgdN26ul9yzISL6XRJ3/Hc7ugbN70G19j1YaPVqlQN2ucVs1YfLrUfGTTAhRi0niJMT9OLlD5CtquZx89zocK9HcuogDWda30dqVI5m5/1Ee83KZLEAIIWonjQY8Wqqly5twPc08uYRy5he0xgIUz1Zout+d7EgSJiEqnCROQpSGRyD0eh96/DeGtN84nnKMFkHh6BzqWk4uIEPRhBBCVAUXb/POPWP2VZL37iCw82B0eolDQlQWSZyEeBg6PXhHkH3FTp1SVoaqCSGEsDUHF+7Ub65eVFcIUWnkEyaEEEIIIYQQJZDESQghhBBCCCFKIImTEEIIIYQQQpRAEichhBBCCCGEKIEkTkIIIYQQQghRAkmchBBCCCGEEKIEkjgJIYQQQgghRAkkcRJCCCGEEEKIEkjiJIQQQgghhBAlkMRJCCGEEEIIIUogiZMQQgghhBBClEASJyGEEEIIIYQogSROQgghhBBCCFECSZyEEEIIIYQQogR6WzfAFhRFAcBgMJRpe9N2Zd2+upP+S/8L39Y20v/y9d+0nel7WKgkLpWP9F/6X/i2tqnt/Yeqi00apRZGr7y8PJKSkmzdDCGEqLVCQ0Oxt7e3dTMeGRKXhBDC9kqKTbUycTIajRQUFKDVatFoNLZujhBC1BqKomA0GtHr9Wi1MlrcROKSEELYTmljU61MnIQQQgghhBDiYcjuPiGEEEIIIYQogSROQgghhBBCCFECSZyEEEIIIYQQogSSOAkhhBBCCCFECSRxEkIIIYQQQogSSOIkhBBCCCGEECWQxEkIIYQQQgghSiCJUxFxcXEEBASYS1BQEJ06deL111/nzJkzFuv+9ttvvPPOOzz99NOEhIQQEBBAWlqabRpeQUrbf4PBwNKlSxkzZgxdunQhLCyMfv368cknn3Djxg3bdaCSFH1eipaEhARbN7HMNm/eTEBAABs3biy27KmnniIgIIDdu3cXW9azZ0+GDh0KwM6dO/nb3/7GoEGDCA4OJiAgoNLbXVHK2/9bt26xaNEiRo4cSceOHWndujWDBg1iyZIl5ObmVkUXyqUiXv9PP/2UIUOGEBkZSWhoKE8++STvvfce6enpld7+2kJik8Qma2pqbJK4JHHpUY1L+nJtXYPNmTMHX19fcnNzOXDgAIsXLyYhIYFNmzbh4uICQHx8PHv27KFly5Y4Ozuzd+9eG7e64pTU/zt37hATE8PAgQMZNmwYbm5uHDlyhEWLFrFz505Wr16Ng4ODrbtR4UzPS1FPPPGEDVpTMSIjI9FoNMTHx9O/f39zfVZWFikpKTg5OZGQkEDnzp3Nyy5evMi5c+d46aWXANi6dSuJiYm0bNkSOzs7Dh8+XOX9KKvy9v/8+fMsW7aMwYMH8+c//xknJyf279/PggUL+M9//sPSpUvRaDS26FqpVMTrf+PGDQYMGICfnx/Ozs6cOHGCRYsWsWPHDtavX4+bm1uV96umktgkscmamhabJC5JXHpU45IkTvfRokULQkNDAYiKisJgMBATE8O2bdt45plnAJg4cSKTJk0C4IsvvqhRwamk/js4OLB9+3aLN15UVBReXl689tprbNmyhcGDB9uq+ZWm8PNSU7i7u9OiRYti7999+/ah1+t55plniu21jI+PB9TXHGDWrFloteoB7Pfff79aBajy9t/b25sdO3bg5ORkXt6+fXscHR356KOP2L9/P+3atav8jpRRRbz+f//73y2Wm56XcePGsX37dp599tlK7EHtIrFJYpM1NS02SVySuPSoxiUZqldKpi+kzMxMc53pA1kbFO2/Tqezmq23atUKUDN/UX1ERUVx+vRpLl++bK5LSEggJCSErl27cvjwYW7dumVetnfvXnQ6nfmLt7p/FsrTfycnJ4vgZFKdPgvlff2tcXd3B0Cvl/1zlUlik8SmmkriksSlRzEuVe93VRUyjQ9v1qyZbRtiI6Xtvynjr67DA0piNBopKCiwKAaDwdbNKrfo6GgAi707CQkJREZG0qZNGzQaDfv377dYFhQURL169aq8rZWhMvpfnT4LFdX/goIC7ty5w5EjR5g9ezbNmjWjV69eVdOJWkpik8QmqJmxSeKSxCV49OKSJE73YfoSys7OZvfu3SxatIiIiAh69Ohh66ZVibL0/9KlS8ybN4+QkBC6d+9eha2tOsOHDyc4ONii1IThEREREWi1WvMX1LVr1zh+/DgRERE4OzsTFBRk/sK9cOECaWlp5sPhNUFF9z85OZnY2Fh69epFYGBglfShPCqi/xkZGQQHBxMWFsbQoUMxGAx89dVXODs7V3l/ajKJTRKbrKmJsUniksSlRzEuyRiK+xg+fLjF/35+fixcuLDWDDt52P5nZWXxyiuvoCgK//znP6v9IfL7+fDDD/Hz87Ooe5RPsCwtFxcXAgMDzWOG9+3bh06no02bNoD6BWb6gjKtU5MCVEX2Py0tjQkTJuDp6cmsWbOqoPXlVxH9d3Nz4/vvvycvL49Tp04RGxvLqFGj+Prrr/Hw8KjC3tRsEpskNllTE2OTxCWJS49iXKqZ3yAV4MMPP+T7779n2bJljBgxgpMnTzJlyhRbN6vKPEz/r1+/zssvv8ylS5f497//TZMmTaq4tVXHz8+P0NBQixISEmLrZlWIqKgozpw5w6VLl0hISCA4ONi8VyYyMpKjR49y8+ZNEhIS0Ov1tG3b1sYtrlgV0f/09HRGjRqFTqdj2bJluLq6VnEvyq68/dfr9YSGhtK2bVuGDRvGsmXLSEtLY8mSJbboTo0lsUlikzU1NTZJXJK49KjFJUmc7sP0JRQdHc3777/PsGHD2L17N5s3b7Z106pEaft//fp1XnrpJdLS0li6dGm1OPwrrDPtqdm7dy979+4lIiLCvMz0ZbRv3z4SEhIIDQ2tcUOwytv/9PR0Ro4cCcBXX32Fp6dnFbW8YlT06+/p6YmHh0exawyJ8pHYJLGpNpG4JHEJHq24JIlTKb355pu4uLgwf/58jEajrZtT5az13xSYzp07xxdffEFQUJCNWynKIyIiAp1Ox5YtWzh+/DiRkZHmZfXq1aNly5asXbuW9PT0GjUcwqQ8/T9//jwjR47EaDSybNkyGjduXNXNL7eKfv1TU1O5ePEiTZs2rcxm13oSmyQ21WQSlyQuPWpxqXYMiq4ALi4ujBs3jo8//ph169YxePBgrl69aj5pLSUlBYBdu3bh7u6Ou7u7xQtc3RXtf58+fRgzZgxHjhxh+vTpGAwGDh48aF7f3d0dHx8f2zW4khw/ftzqTEU+Pj7maS6rq7p16xIUFMS2bdvQarXFDnlHRESwbNkyoPg44vT0dJKSkgA4e/YsgHkPcOPGjavFScpl7X9mZiajRo0iIyODDz74gMzMTIupoT09PavFXr6y9j85OZk5c+bQp08fmjRpglarJSUlhS+//BJXV1defvnlKu1HbSOxSWIT1NzYJHFJ4tKjFpckcXoII0eOZPny5SxcuJCBAwdy/PhxXnvtNYt1Zs6cCahjL7/++mtbNLPSFO5/69atzV9IH3zwQbF1hw4dyty5c6u6iZVu2rRpVutnzZrFsGHDqrg1FS8qKoqkpCRatmxJ3bp1LZZFRETw5ZdfYmdnR+vWrS2WJSQkFHtuTJ+N6vReKEv/T5w4wblz5wB173dRkyZNYvLkyZXb8ApSlv43aNAADw8Pli5dSkZGBgUFBXh6etKtWzcmTJiAl5dXVXej1pHYJLGpJscmiUsSlx6luKRRFEUp89ZCCCGEEEIIUQvIOU5CCCGEEEIIUQJJnIQQQgghhBCiBJI4CSGEEEIIIUQJJHESQgghhBBCiBJI4iSEEEIIIYQQJZDESQghhBBCCCFKIImTEEIIIYQQQpRAEichhBBCCCGEKIEkTqJKxMXFERAQYC5BQUF06tSJ119/nTNnzti6eQAsXryYbdu2FatPSEggICCAhIQEG7RKtWPHDiZMmECHDh0ICQkhMjKS0aNH88MPP5Cfn2+zdhVl7bl6++236dGjR6U+7qVLl4iJieHo0aOV+jhCiJpFYlP5SGx6MIlNNY/e1g0QtcucOXPw9fUlNzeXAwcOsHjxYhISEti0aRMuLi42bdvnn39Onz596Nmzp0V9cHAwK1eu5IknnqjyNimKwvTp04mLi6Nr1668/fbbeHl5cfPmTRISEpg5cybXrl1j9OjRVd620po4cSKjRo2q1Me4fPkyCxYsoHHjxrRs2bJSH0sIUfNIbHo4EptKR2JTzSOJk6hSLVq0IDQ0FICoqCgMBgMxMTFs27aNZ555xsats65u3bqEh4fb5LFjY2OJi4tj8uTJTJo0yWJZjx49GDt2LKmpqVXapjt37uDg4FDq9X18fCqxNUIIUX4Smx6OxCZRW8lQPWFTpkCVmZlpUZ+UlMSECROIjIwkNDSUIUOGsHHjRot1rl69yowZM+jfvz+tW7emffv2jBo1it9++63Y4+Tl5bFgwQL69etHaGgoUVFRjBw5kgMHDgAQEBBATk4Oa9asMQ/ZGDlyJHD/4RDbt29nxIgRhIWF0bp1a1566SV+//13i3ViYmIICAjg+PHjTJkyhbZt29KhQwemTZvGzZs3H/jc5OfnExsbi6+vL6+++qrVdRo2bEi7du3M/2dlZTFjxgw6d+5MSEgITz75JJ9++il5eXkW2+Xm5jJv3jx69OhBSEgInTt3ZubMmdy4ccNivR49ejB+/Hh+/PFHhgwZQmhoKAsWLADg5MmTjBkzhrCwMKKiovjv//5vsrOzi7XR2nCIgIAA3n//fdauXUu/fv0ICwvjqaeeYufOnRbrpaamMm3aNHr37k1YWBidO3dmwoQJHDt2zLxOQkICzz77LADTpk0zv34xMTHmdUrzfhJCCBOJTfcnsUliU20mR5yETaWlpQHQrFkzc118fDxjx44lLCyMGTNmUK9ePTZu3Mjrr7/OnTt3ePrppwH1ixhg0qRJNGjQgJycHLZu3crIkSP58ssviYqKAqCgoICxY8eyf/9+Ro0aRXR0NAaDgcTERC5cuADAypUrGT16NFFRUUycOBFQ9+bdz7p163jjjTfo1KkT8+bNIy8vj9jYWPNjFw4YAJMnT6Z///48++yzpKSkMG/ePEAdHnI/hw4dIisri2HDhqHRaEp8LnNzcxk1ahTnzp1j8uTJBAQE8Ntvv7FkyRKOHj3KkiVLAHWIxcSJE4mPj2fcuHG0a9eOY8eOERMTw8GDB1m5ciX29vbm+z18+DAnT57kL3/5C97e3jg6OnLlyhVGjhyJXq/n73//O4899hjr1q3jf/7nf0psp8lPP/1EUlISf/3rX3FyciI2NpZJkyaxefNmmjRpAqjDHFxdXZk6dSru7u5cv36dNWvWMHz4cNasWYOvry/BwcHMmTOHadOm8Ze//IVu3boB4OnpCZT+/SSEECYSmyQ2SWwSVilCVIHVq1cr/v7+ysGDB5X8/Hzl1q1byq5du5SOHTsqf/rTn5T8/Hzzun379lWGDBliUacoijJ+/HilY8eOisFgsPoYBQUFSn5+vjJ69Gjl1VdfNdevWbNG8ff3V1atWvXANoaHhytvvfVWsfr4+HjF399fiY+PVxRFUQwGg9KpUydl4MCBFm25deuW0r59e2XEiBHmuvnz5yv+/v7Kv/71L4v7nDFjhhIaGqoYjcb7tmfDhg2Kv7+/smLFige222TFihWKv7+/snHjRov6JUuWKP7+/sovv/yiKIqi7Nq1y2qbTI+3cuVKc1337t2Vli1bKqdOnbJY9+OPP1YCAgKUo0ePWtS/9NJLFs+VoijKW2+9pXTv3t1iPX9/f6VDhw7KzZs3zXUZGRlKYGCg8vnnn9+3jwUFBUpeXp7Su3dvZfbs2eb6P/74Q/H391dWr15dbJuyvp+EEDWfxCaJTYVJbBIlkaF6okoNHz6c4OBg2rRpw9ixY6lfvz4LFy5Er1cPfqampnLq1CkGDRoEqHvkTKVLly5kZGRw+vRp8/2tWLGCoUOHEhoaSlBQEMHBwezZs4eTJ0+a19m9ezd16tSpsHHqp0+f5vLlywwePBit9t5HyNnZmd69e5OYmMjt27cttrE2HCA3N7fYMJDyiI+Px8nJib59+1rUm/Za7dmzx7xe4XqTfv364eTkZF6vcFubN29uUZeQkECLFi0IDAy0qB84cGCp2xsVFWWx57RBgwY89thjpKenm+sKCgpYvHgx/fv3JyQkhKCgIEJCQjhz5ozFa3w/D/t+EkLUThKbVBKbJDaJB5OheqJKffjhh/j5+ZGdnc3GjRtZuXIlU6ZMITY2FoArV66Y1/vwww+t3se1a9cAWLp0KXPnzuW5557jtddew83NDa1Wy2effcapU6fM61+9ehUPDw+LQFIepsdv2LBhsWUeHh4YjUZu3LiBo6Ojud7V1dViPdNwgzt37tz3cby8vIB7Q0ZKkpWVRYMGDYoNnXjsscfQ6/Xm4SNZWVno9Xrc3d0t1tNoNDRo0MC8nom1fmZlZeHt7V2svkGDBqVqKxR/TkB9XnJzc83/z507l+XLl/PKK68QERGBi4sLGo2Gd99912K9+3mY95MQovaS2KSS2CSxSTyYJE6iSvn5+ZlPuo2OjsZoNPLdd9+xefNm+vbti5ubGwDjx4+nV69eVu/DtIfphx9+IDIykpkzZ1osL3oSqLu7O/v378doNFZIgDK1MSMjo9iyy5cvo9VqqV+/frkfJyQkBFdXV7Zv387UqVNLHEvu6upKYmIiiqJYrJuZmUlBQYG53a6urhQUFHD16lWLAKUoCleuXDG/PibWHtfV1dX8xV+Ytbry+OGHHxgyZAhTpkyxqL927VqpnuOHeT8JIWoviU2lJ7FJYlNtJkP1hE29+eabuLi4MH/+fIxGI76+vjRr1ozk5GRCQ0OtFtMhdI1GY3GiKEBycjIHDx60qOvcuTO5ubnExcU9sC329vYP3Mtm0rx5cxo1asT69etRFMVcn5OTw48//kh4eLjFHr2ysrOzY+zYsZw6dYr//d//tbpOZmYm+/fvB6B9+/bk5OQUu1Di2rVrzcsL3/7www8W623ZsoWcnBzz8geJiori+PHjJCcnW9SvX7++5I49BI1Gg52dnUXdTz/9xKVLlyzq7reX9GHeT0IIYSKx6f4kNklsqs3kiJOwKRcXF8aNG8fHH3/MunXrGDx4MDNnzuSVV15hzJgxDB06lEaNGnH9+nVOnjzJ4cOHmT9/PgDdunVj4cKFzJ8/n4iICE6fPs3ChQvx9vbGYDCYH2PgwIHExcUxY8YMTp8+TVRUFIqikJiYiJ+fHwMGDADA39+fvXv3smPHDho2bIizszO+vr7F2qzVannzzTd54403GD9+PCNGjCAvL48vvviCGzduMHXq1Ap7fkzBKSYmhqSkJAYOHGi+yOC+fftYtWoVkydPpm3btgwZMoTly5fz1ltvkZ6ejr+/P/v37+fzzz+na9eudOjQAYCOHTvSqVMnPvnkE27dukWbNm04duwY8+fPJygoiMGDB5fYrtGjR7N69WrGjRvHf/3Xf5lnLio8DKUidOvWzTxDUUBAAIcPH+aLL74wz0pk4uPjg4ODA+vWrcPPzw8nJyc8PDxo1KhRqd9PQghhIrHpwSQ2SWyqrSRxEjY3cuRIli9fzsKFCxk4cCDR0dF89913LF68mNmzZ3Pjxg1cXV3x8/OjX79+5u0mTJjA7du3+f7774mNjeWJJ55gxowZbNu2jb1795rX0+v1/Otf/+Lzzz9nw4YNLFu2DGdnZwIDA+ncubN5vXfeeYeZM2cyZcoUbt++TWRkJF9//bXVNg8aNAhHR0eWLFnC66+/jk6nIywsjK+++oo2bdpU2HOj0WiYM2cOPXv2ZNWqVebnw9T+N954w3wibZ06dfjqq6/49NNPiY2N5dq1azRq1IiXX37Z4gKFGo2GhQsXEhMTQ1xcHIsXL8bV1ZXBgwczZcqUYntKrWnYsCHffPMNH3zwATNmzMDR0ZGePXvy3nvvmafMrQjvvPMOer2eJUuWkJOTQ1BQEDExMXz22WcW6zk6OjJ79mwWLFjAmDFjyM/PZ9KkSUyePLnU7ychhChMYtP9SWyS2FRbaZTCx3OFEEIIIYQQQhQj5zgJIYQQQgghRAkkcRJCCCGEEEKIEkjiJIQQQgghhBAlkMRJCCGEEEIIIUogiZMQQgghhBBClEASJyGEEEIIIYQogSROQgghhBBCCFECSZyEEEIIIYQQogSSOAkhhBBCCCFECSRxEkIIIYQQQogSSOIkhBBCCCGEECX4/0YMJkNUsYm7AAAAAElFTkSuQmCC",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA14AAAHaCAYAAAAQZpgVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACf1UlEQVR4nOzdeXhU9d3//+eZyb6HBEISSNgJkEACsqmIC7jhUhVrb1spWm2xgrZ61632e1d/rVK1rRXRQt2touKCOyq4K7IHwhr2JRtL9j2Zmd8fJxMSCJBJMjlZXo/rmmuSs0zen0Fz8przOe9juFwuFyIiIiIiIuI1NqsLEBERERER6eoUvERERERERLxMwUtERERERMTLFLxERERERES8TMFLRERERETEyxS8REREREREvEzBS0RERERExMsUvERERERERLxMwUtERERERMTLFLxERERERES8TMFLRERERETEy3ysLkDEU0OHDgXAZrOxbNky4uPjm9zu0ksvZdeuXQC88MILnHnmmZ2ipoyMDF577TVWrVrF4cOH8fHxIT4+nrPPPpuZM2cSExNzyhpO5pFHHuHqq6/mnXfe4b777jvltjabja1bt55ymyVLlnDPPfcA8Je//IVrr732lNu3lV27dvHaa6+xcuVKcnJyqKqqIiIiguHDhzN16lSuuOIK/P39T9ivpe+riMjp6LjUPY9L7vFt3779pNucf/75ZGVlsXz5cvr06dPin6VjWNeg4CWdko+PD7W1tbzzzjvMmTPnhPVr165l165d9dt1hppcLhePP/44zz77LD4+Ppx55plcfPHF1NTUsH79ep5//nkWLVrE3Llzufjii09ax+zZs5tcPmzYsPrnk22zZs0afvzxR84555xTjjUnJ4e//OUvBAUFUV5efspt29JTTz3F/PnzcTqdpKamctVVVxEcHMyRI0dYs2YNDzzwAIsWLeKdd96p36et3lcRkVPRcal7Hpe8TcewrkXBSzqlqKgooqOjeeedd7jtttuw2RrPmn3rrbfw9fVl4sSJfPPNN52ipvnz5/Pss88SHx/PggULGDx4cKP1n376KX/4wx+48847CQ8PZ+LEiU3W0dTBtaFhw4bVH+yOd9111wHw05/+9KT7u1wu7rvvPiIiIpg6dSrPP//8KX9eW3nmmWeYN28esbGx/Otf/2LUqFEnbPPNN9/w7LPPNlrWVu+riMip6LjU/Y5L7UHHsK5F13hJpzV9+nSys7P5/vvvGy0vLS1l6dKlnH/++URFRTW5r8vl4qWXXuLSSy8lJSWFSZMm8dBDD1FSUsL555/P+eef3641HThwgGeeeQZfX1+eeeaZE36xAlx00UXcd999OBwO/vznP+N0OltU48lkZmaSnp5OTEwM55577km3e/nll/nxxx955JFHCAoKatMaTubgwYPMnz8fX19fFi5c2GToAjjnnHMaBa+O8L6KSPeh41L3OS61h47wbyBtS8FLOq3LL7+cwMBAFi9e3Gj5Bx98QHl5OdOnTz/pvg8++CAPP/wwJSUlXHfddVx22WV8//333HjjjdTU1LR7Te+88w61tbVccMEFp5wTf+2119KzZ0/27t3LqlWrWlxnU9544w3APEjb7fYmt9m1axd///vfmTFjBmPHjm3Tn38q77zzDjU1NVx44YUMGTLklNv6+fk12s/q91VEug8dl7rPcak9dIR/A2lbmmoonVZoaCgXXXQRH330Efn5+fTo0QOAxYsXExcXx9lnn83HH398wn5r1qxh0aJF9OvXj8WLFxMWFgbA73//e2688UYOHTp00ouQvVXT2rVrATjrrLNO+fo+Pj6MHz+eDz/8kHXr1jFhwoQTtpk3b94Jy+Lj47n66qtP+rqVlZW8//772Gy2k16MXFtbyx/+8AdiY2O58847T1lnW1uzZg2Ax1Mo2vJ9FRE5HR2Xus9xqaGmxudWXFzc4tfVMazrUfCSTu3aa69lyZIlvPfee9x4441s3bqVzZs3M3v27BPmsru9++67ANx66631Bzcwz5TceeedXH/99e1e05EjRwDo3bv3aV/fvc2hQ4eaXP/UU0+dsGzcuHGnPMB98sknFBcXc+655xIbG9vkNvPnz2fr1q289tprBAQEnLbOtuR+fzzt2tSW76uISHPouHSirnhcaqip8bUFHcO6HgUv6dTOOOMM+vfvz1tvvcWNN97Im2++ic1m45prrjnpPu52tGPGjDlhXWpqKj4+jf+3aOqTrKuuuuqkbWFbUpPL5QLAMIyTbuPm3uZk256qre3JuKdzuC9iPt7GjRtZsGABN954I2lpaR6/fkOevp/g2fvT0v2ael8XLFjAZ599xp49e/Dz8yM1NZU777zztNMdRaT70nHpRF3xuNRQc9rJH685x5e2/DeQjkHBSzq96dOn89hjj7FixQo+/PBDzjzzTOLi4k66fUlJCUCTFxPb7XYiIiIaLTvZJ3Wn+oXsaU09e/Zk9+7d5ObmnnQbN/c2PXv2PO22zbFz507Wr19P7969mTx58gnr3VM5+vXrx+9+97tW/7yWvJ+9evVq9vvTUGvf11WrVnH99deTkpKCy+XiySef5MYbb+Sjjz464b8TERE3HZdapzMcl1qrOccXK/8NxDvUXEM6vauuugpfX1/uvfdeiouLT3nxMkBISAgAR48ePWGdw+GgsLCw0bLt27ef8Bg/fnyb1uT+lPOHH3445XYOh4OVK1cCMHr06FNu21yvv/46cPKLl8vLy9m7dy+7du0iJSWFoUOH1j/cB6sHHniAoUOH8te//vW0P68l76f7/fnxxx89Gltr39fnnnuOa665hiFDhjB06FAeffRR8vPzWbdunUd1iEj3ouNS63SG41JrNef4YuW/gXiHgpd0elFRUZx77rnk5uYSGRnJBRdccMrt3fcKcV+02lB6enqb3NjS05quvvpq7HY7n3/+OTt37jzpdm+//TaHDh2if//+jBs3rtV1VlVV1V+8fLKDsJ+fH9OnT2/yMXz4cMA8OEyfPr3V0z1O5uqrr8bX15dPP/30lO8PQHV1daP92vJ9LSsrw+l0NroGQ0TkeDoutVxnOS61taaOL1b9G4j3aKqhdAn33HMPP/nJT+jVq1ejduJN+clPfsLbb7/NM888wwUXXEBoaChg/sH+z3/+05Ka+vbty29+8xuefvppZs2axb///W8GDRrUaJtly5bx17/+Fbvdzv/93/+d9IJoT3zyyScUFRVx3nnnnfTi5YCAgJN+Yjhv3jy2bNnCVVddddKuU22hT58+zJ49m3/+85/8+te/5l//+hcpKSknbOe+gfLLL78MtP37+te//pVhw4Z1mgO5iFhHx6WW6SzHpbbW1PHFqn8D8R4FL+kS+vbtS9++fZu17bhx47juuut44403mDZtGhdeeCG+vr588cUXhIaG0qtXrza5ONWTmgDmzJlDRUUFL7zwAldeeSVnn302gwYNora2lvXr17NhwwYCAgL4+9//3mZ3pn/zzTcB+OlPf9omr+dNs2bNora2lvnz59d/ipmcnExwcDBHjhxhzZo17N27l+Tk5Eb7tdX7+re//Y21a9eyaNGik95PRkTETcellulMx6W2cqrjixX/BuI9Cl7SLf35z39mwIABvP7667z++utEREQwdepU7rzzTs455xwSExPbvSabzca9997LpZdeyquvvsrq1atZsWIFdrud+Ph4brrpJn75y182q61sc+zatYu1a9ee9OLljmj27NlccsklvPbaa6xcuZJ33nmH6upqIiIiSEpK4uabb+bKK69stE9bvK+PPPIIH330ES+99JJHf7SIiDSXjkud87jUWqc7vrT3v4F4l+Fy96oUEfbu3ctFF13EtGnT+Mc//mF1OdIB/OUvf+Hjjz/mlVdeYeDAgVaXIyLdjI5LXZeOL92PznhJt3T48GGioqIazYWuqKjg4YcfBuDCCy+0qjTpQP785z/z/vvvM3/+fMLCwjh8+DAAQUFBBAcHW1ydiHQlOi51Lzq+dE864yXd0uOPP85HH33EuHHj6NmzJ0eOHGHFihXk5uZy7rnn8u9//1s3IRSGDh3a5PLZs2czZ86cdq5GRLoyHZe6Fx1fuicFL+mWVqxYwYsvvsjWrVspKCjAbrfTv39/LrvsMmbMmIGvr6/VJYqISDei45JI16fgJSIiIiIi4mVq9i8iIiIiIuJlCl4iIiIiIiJepq6GHnI6ndTW1mKz2XSRq4hIO3O5XDidTnx8fBp1f+vudGwSEbGGJ8clBS8P1dbWkpGRYXUZIiLdWkpKCn5+flaX0WHo2CQiYq3mHJcUvDzkTrIpKSnY7XaP93c4HGRkZLR4/86uu48f9B5o/Bp/a8bv3l9nuxrTsal1NH6NX+PX+NvjuKTg5SH3FA673d6q/zhbu39n193HD3oPNH6NvzXj13S6xnRsahsav8av8Wv8LdWc45I+MhQREREREfEyBS8REREREREvU/ASERERERHxMgUvERERERERL1PwEhERERER8TIFLxERERERES9T8BIREREREfEyBS8REREREREvU/ASERERERHxMgUvERERERERL1PwEhERERER8TIFLxERERERES9T8BIREREREfEyBa92tnJPPg99k8++o+VWlyIiIgKA8eN8+q17GBw1VpciItJlKXi1s8+35LEhr5rXVx+wuhQREREAjPX/JSprGexfYXUpIiJdloJXOxvUKwSATdnFFlciIiJSJ3oIAEbuRosLERHpuhS82llyXBgAm7OLcblcFlcjIiICrthR5hcKXiIiXqPg1c6GxITiY4OiihoO5FdYXY6IiEh98DJyNlhciYhI16Xg1c78fGwkhvsAkJFVZHE1IiIiQO+R5vPRnVBVYm0tIiJdlIKXBQZE+gIKXiIi0kEE96Q6oCcGLsjdZHU1IiJdkoKXBdzBa5OCl4iIdBDl4YPNLzTdUETEKxS8LDCwwRkvNdgQEZGOQMFLRMS7FLwskBDmg6/doKiihoMFarAhIiLWU/ASEfEuBS8L+NoNhsSEArrOS0REOob64HV4G9ToQ0ERkbam4GUR9/28FLxERKQjqAmIxhXcE1wOyNtidTkiIl2OgpdFkuPN4KUGGyIi0iEYxrG28jnplpYiItIV+VhdQGlpKU8//TTbtm1jy5YtFBQUMHv2bObMmdNou3vvvZd33333hP379+/P0qVLm/WzfvjhB/71r3+xbds2AgICOO+88/jDH/5AVFRUm4zFE8lx4cCxBhuGYbR7DSIiIg25eo/C2LVc13mJiHiB5cGrsLCQN998k6SkJKZMmcLixYtPum1AQAAvvfTSCcuaY9WqVdxyyy1MnjyZp59+mqNHj/L4448zc+ZM3n77bfz8/Fo1Dk8N7R2Kr92gsNxssNG3R1C7/nwREZHjuWLdZ7wUvERE2prlwSs+Pp7Vq1djGAb5+fmnDF42m43U1NQW/ZxHH32Ufv368eSTT+LjYw67T58+/M///A9vvfUW119/fYtetyWM2kr8fWwMiQllc3Yxm7KKFLxERMR6vUeZz4e2QG01+LTvh5IiIl2Z5dd4GYbh9Wl2eXl5ZGRkcOWVV9aHLoDRo0fTr18/li1b5tWf35Cx5jlGf3Ip7FrOyD7HphuKiIhYLiIBAsLBUW12NxQRkTZj+RkvT1RWVnLWWWeRn59Pz549mTJlCrfffjsRERGn3C8zMxOAoUOHnrBu6NChrFu3zuNaHA6Hx/sAULjffN76IcNjfw9AxsHClr9eJ+MeZ3cZb1O6+3ug8Wv8DZ9bur94iWFA7CjY84053dA99VBERFqt0wSvpKQkkpKSGDzYvM/IqlWreOmll1ixYgVvvfUWwcHBJ923sLAQgPDw8BPWRURE1K/3REZGhsf7AERURzIQqNz9I35BeQCk789n/fr13arBRkvfv66ku78HGr/GLx1Uw+DFDVZXIyLSZXSa4DVz5sxG35911lkMHz6c22+/ncWLF5+wviknCzYtCTwpKSnY7XaP93P0CYW1DxFUuofLz0rhga++pqTaRa9+ScRHBnr8ep2Nw+EgIyOjxe9fV9Dd3wONX+Nvzfjd+4sXxaaaz2qwISLSpjpN8GrK1KlTCQoKIj09/ZTbuaciNnVmq7CwsMkzYadjt9tb9kdT1ABqfUPxqSkhqHBHfYONLbklJESHeP56nVSL378upLu/Bxq/xt+dx9+hxdY12MjNAKcDbPp3EhFpC5Y312gtl8uFzXbqYQwZMgSA7du3n7AuMzOzfn27MAzKw83pkuSkkxKvBhsiItKB9BgIfiFQWwFHdlhdjYhIl9Gpg9fSpUupqKhg1KhRp9wuJiaGkSNH8sEHHzS6MDs9PZ09e/YwdepUb5faSHl4XdDLTie5LnhtPKjgJSIiHYDNBr1TzK813VBEpM10iKmGX3/9NRUVFZSVlQGwc+dOli5dCsDkyZPJz8/nrrvuYtq0aSQkJGAYBqtXr+all15i8ODBXHvttY1eb/jw4YwdO7bRzZb/93//l5tuuok77riD66+/nqNHj/L3v/+dIUOGcM0117TfYIHyiLrglZNOSqoZvDZlFeFyubpVgw0REemgYkfB/hVm8Bp1ndXViIh0CR0ieD344INkZWXVf7906dL64LV8+XJCQ0OJjo7mhRde4OjRozgcDuLj47nhhhuYNWsWQUGNbz7scDhwOp2Nlo0fP56FCxfy5JNPMmvWLAIDAzn33HO5++678fNr3xtElrnPeOVtZmhPf3xsBgXlNWQVVtAnUjdSFhERi7mv89IZLxGRNtMhgtcXX3xx2m2eeuqpZr9eU9dygdkJ8ayzzmr263hLdVAsroAIjMpCAvK3MyQmlC05xWzKKlLwEhER69U32NgITqc5/VBERFpFv0mt4L5BJajBhoiIdDzRQ8EnAKqKoWCP1dWIiHQJCl4WcfWuC17Z6ST3cQevYgsrEhERqWP3gZgR5teabigi0iYUvKzSxBkvd4MNERERyzU4TomISOspeFnEFZtqfpG3maS6Bhv5ZdVkF1VaWpeIiAigBhsiIm1Mwcsqkf0gIBwc1QQUZDI4JhSADN3PS0REOgL3B4Q5G0CzMUREWk3ByyqGceyglr2elPgwwJxuKCIiYrlew8DmCxUFUHTA6mpERDo9BS8rxaWaz9nqbCgi0lWsWLGC++67j4svvpjU1FQmTZrErbfeyqZNm07YdvPmzcycOZO0tDTOOOMMZs+ezYEDHSTk+Pib4Qs03VBEpA0oeFmpfhpHOslqsCEi0iUsWrSIrKwsZsyYwcKFC/njH/9Ifn4+1113HStWrKjfbteuXdxwww3U1NTwxBNP8PDDD7N3716uv/568vPz27Xmv368lfuWH6W8urbxCl3nJSLSZjrEDZS7LfcZr7zNDOsVgN1mcLSsmpyiSuIiAi0tTUREWub//u//iIqKarRs0qRJXHjhhSxYsICJEycC8OSTT+Ln58eCBQsICQkBYMSIEVx00UU899xz/OEPf2i3mn/YlU9mfg0rduVzYXLssRWxo2D9KwpeIiJtQGe8rBTZv3GDjV7mgVfTDUVEOq/jQxdAcHAwAwcOJCcnB4Da2lq++uorLrzwwvrQBRAfH8/48eNZtmxZu9ULkBxnXme8/kBh4xUNG2yIiEir6IyXldwNNvZ8XXedVyrbckvYlFXERSN6W12diIi0kZKSErZs2cKECRMA2L9/P5WVlQwdOvSEbYcMGcL3339PVVUV/v7+Hv0ch8PRovpG9QnjrXVZrN9f0Pg1eiZhM2wYpXk4CrMgtGsem9xjbun719lp/Bp/w+fuprXj92Q/BS+rxaXWBa/1jOwzmcVrD+qMl4hIF/Pggw9SUVHBrFmzACgsLAQgIiLihG0jIiJwuVwUFRXRq1cvj35ORkZGi+oLqawBIH1/IWvXrcduM+rXDQ9JILBkL7t/WEJxzIQWvX5n0dL3r6vQ+DX+7qw9xq/gZbWGDTZGNW6wYRjGyfcTEZFO4YknnuCDDz7gT3/6E8nJyY3Wner3fEuOASkpKdjtdo/3G15Ty/1fLKei1kVQ7ECGxYYdq2PveMjYy8DAElypqR6/dmfgcDjIyMho8fvX2Wn8Gr/G3/Lxu/dvDgUvqzXRYONIaTW5xZXEhqvBhohIZ/bUU0/xzDPP8Pvf/55f/OIX9cvdZ7oKCgpO2KewsBDDMAgLCzth3enY7fYW/eHgBwzu4cvGQ9WkHywmuU/ksZVxqZDxBra8DOjif5S19P3rKjR+jV/j9+741VzDaidrsHFQ0w1FRDqzp556innz5jFnzpz6KYZuCQkJBAQEkJmZecJ+mZmZJCYmenx9V2sNifIFYN3+48KgWsqLiLQJBS+rGcaxg1qDGylv0nVeIiKd1vz585k3bx633nors2fPPmG9j48P5513Hp9//jmlpaX1y7Ozs1m5ciVTp05tz3IBGBLlB5jXeTXSO8V8LjoAZUfbtygRkS5EwasjiEszn3PSSeljBi812BAR6Zyef/55nnzySSZNmsS5555Lenp6o4fbnDlz6htufP3113z++ef85je/ITIykptuuqnd63af8dp9pIyCsupjKwLCoMdA8+tcnfUSEWkpXePVEbgbbGSvJ3nkseClBhsiIp3Pl19+CcC3337Lt99+e8L67du3AzBw4EBeeeUVHn/8ce644w7sdjsTJkxg/vz59OjRo11rBgj1szEgOpjdR8pYf6CA85Nijq2MHQX5u8zphgPPb/faRES6AgWvjqBBg43harAhItKpvfLKK83eNjk5mRdffNF7xXgotW+4Gbz2F54YvDa/o+u8RERaQVMNOwI12BARkQ4gLSECUIMNERFvUPDqCI5rsJGsBhsiImKB0QlmG/n0/YU4nK5jK9zHqPzdUKljk4hISyh4dRQNbqTs7myoBhsiItKeBvcKIdjPTlm1gx2HSo6tCOoB4Qnm17nNu1GoiIg0puDVUbg7GzY445WRVYzL5TrFTiIiIm3HbjMY1TcCgHX7ChuvjB1pPmu6oYhIiyh4dRT1DTY2MbxXADYDjpRWkVdcZWlZIiLSvbinG554nVeq+azgJSLSIgpeHUWDBhuBhZkM7hUKaLqhiIi0L3eDjfVqsCEi0qYUvDqKkzTYUPASEZH2lFZ3xmvX4TIKyxvcSNl9jDqSCdVlFlQmItK5KXh1JI0abIQB6mwoIiLtq0ewH/2iggBYf6Dw2IrQGAjpDS4n5G6ypjgRkU5MwasjcV/nlZ1OSh+d8RIREWu4r/Nav7+w8QpNNxQRaTEFr47E3dkwbzPDewViM+BwSRV5xZXW1iUiIt1KWqI7eOk6LxGRtqLg1ZHUN9ioIrAwk0G9QgDIOKizXiIi0n7S6lrKp+8vxNnUjZQVvEREPKbg1ZGowYaIiHQASb1DCfKzU1JVy87DpcdWuKfEH94KNZqNISLiCQWvjqZRgw0zeKnBhoiItCcfu42Rddcar9vXYLphWDwERYGzFg5tsag6EZHOScGro2nQYGOkGmyIiIhF0ppqsNFwZoamG4qIeETBq6Nxn/HK28zwXkHYDDhUUsUhNdgQEZF25O5suE4NNkRE2oSCV0fTYwD4N9FgQ2e9RESkHaUlRACw41ApRRU1x1YoeImItIiCV0djGBDnbrCxXg02RETEEtEh/iT0MG+kvKHhjZTdwStvMzhqTtxRRESapODVEanBhoiIdACj6856NZpuGNm/fmYGh7dbU5iISCek4NURNWiw4Q5eG3UvLxERaWejE93XeRUeW2gYEDvS/FrTDUVEmk3BqyNq2GAjJlANNkRExBJpfc3glb6/QDdSFhFpJQWvjqhBg42gwh0M7KkGGyIi0v6SYkMJ8LVRXFnL7iMNbqSs4CUi4jGfluy0Y8cO1q1bR15eHpWVlURGRjJo0CDGjh1LSEiIR69VWlrK008/zbZt29iyZQsFBQXMnj2bOXPm1G/jcDh4+eWX+e6779ixYwdFRUXExcVxwQUX8Otf/5qwsLDT/pwbbriBVatWnbD87LPP5rnnnvOoZq9zN9jY803ddV4j2XGolIysIi4YFmN1dSIi0k342m2M7BPBqj35rNtXyKBeoeYKd/DKzQCnA2x264oUEekkmh28ioqKeOONN3jjjTfIzs7G5XKdsI2Pjw/nnHMON9xwAxMnTmzW6xYWFvLmm2+SlJTElClTWLx48QnbVFZWMm/ePC677DKuvfZaIiMj2bJlC8888wxffvklb7/9NgEBAaf9WX379uXxxx9vtCw0NLRZdba72FQzeGWvJzl+Eu+sz1KDDRERaXdpCWbwWn+ggJ+O7WsujBoEvkFQUwZHd0HPIdYWKSLSCTQreL388svMnz8fgEsvvZRx48YxYsQIevTogb+/P0VFRRw4cID09HSWL1/OTTfdxJlnnsn/+3//j8TExFO+dnx8PKtXr8YwDPLz85sMXgEBASxfvpzIyMj6ZePHjyc2NpY77riDTz/9lCuvvPK04wgICCA1NbU5Q7ZewwYbyWopLyIi1qi/kfK+wmMLbXbonQIHVprTDRW8REROq1nB65VXXuG+++5j2rRp+Pr6nrA+Ojqa6Oho0tLSuPHGG9m/fz/PPPMMn3zyCbNmzTrlaxuGcdqfb7fbG4Uut5Ejza5Kubm5zRlG59KwwUavQAwD8oqrOFRSSa/Q05/dExERaQvuGylnHiqhuLKGsIC6vwNiR9UFr3QYea1l9YmIdBbNCl6ffPIJPj7NvxwsISGBRx55BIfD0eLCmuPHH38EYNCgQc3afv/+/YwbN47S0lLi4uKYNm0at956a7OmKR6vpWNz73fa/cMTsfmHYVQVE1CwnYHRwew8XMbG/QWcl9SrRT+7I2j2+Luw7v4eaPwaf8Pnlu4v7adXaAB9IgM5WFDBxgNFnD042lyhBhsiIh5pVprasWMHw4YN8/jF7XbvXWybl5fH3//+d5KTkznvvPNOu/3o0aO55JJLGDBgAFVVVXzzzTc8++yzrF27lpdffhmbzbMGjxkZGS0tvdn7Dw4ZQFhVOgdWfUBc4JnsBD5fl0lkZXarfnZH0Nr3ryvo7u+Bxq/xS+cxOiGSgwUVrNtf0ETw2ggul9kYSkRETqpZweuqq65i+PDhTJ8+ncsvv9zyhhSFhYXccsstuFwunnjiiWaFpt///veNvp88eTLx8fH87W9/Y/ny5UydOtWjGlJSUloULB0OBxkZGc3a3zgyCVakk+BzlHOS+/HN/m0cdQR1nuvUmuDJ+Luq7v4eaPwaf2vG795f2ldaQgTvb8hm/f6CYwt7JoHdD6qKoGAv9OhvWX0iIp1Bs4LXb37zG9577z0eeugh/va3vzF16lSmT5/OhAkTvF3fCYqKirjpppvIy8vjpZdeom/fvi1+rSuuuIK//e1vpKenexy87HZ7q/5oatb+8WkA2HI2MDLZvMZtU3Zxl/hjrbXvX1fQ3d8DjV/j787j72zcDTbWHyjE5XKZ12fbfSFmBGSvN6cbKniJiJxSs+bX/f73v+fLL79k4cKFnHfeeXz22WfceOONXHDBBTz99NPk5OR4u07ADF033ngjBw8e5IUXXiApKalNXtfTaYbtpkGDjRExZoON3OJKDpdUWVqWiIh0L8Niw/D3sVFYXsPuI2XHVtRPN0y3pC4Rkc6k2YnDMAzOOeccnnjiCb777jv++Mc/Eh4ezpNPPsmUKVP41a9+xdKlS6mpqfFKoe7QdeDAAZ577jmGDx/e6td89913ARg1alSrX8sregwA/3BwVBFctIMB0cEAup+XiIi0Kz8fGynx5q1N1u8vPLZCDTZERJqt+a0KGwgLC+MXv/gFv/jFL9i2bRtvv/02H374Ib///e+JiIhgxYoVHr3e119/TUVFBWVl5qdoO3fuZOnSpYB5LZZhGPzqV79iy5Yt3H///TgcDtLT0+v379GjBwkJCfXfDx8+nLFjx/LSSy8BsGbNGp555hmmTp1K375965trvPnmm0yYMIHzzz+/JW+D9xkGxI6Evd9CTjop8SnsOlxGRlZRp+5sKCIinc/oxEjW7Ctg3f4Cpo/pYy5sGLzUYENE5JRaFLwaSkpK4oorrqC8vJx33nmHwsJCj1/jwQcfJCsrq/77pUuX1gev5cuXA8c6YP31r389Yf+rrrqKuXPn1n/vcDhwOp313/fs2RO73c7TTz9NQUEBhmGQmJjI7bffzk033dRxpxqCeSPlvd9CdjrJ8WezJD1bN1IWEZF2N7rufl7r9jVosNFrBBh2KD8KxVkQ3sea4kREOoEWB6/8/Hzef/993n77bXbu3Indbue8885j+vTpHr/WF198cdpttm/f3uzXO37bxMREFi5c6HFdHUKc2WCD7PWkDDeneWiqoYiItLe0ugYbmXkllFbVEuLvA74B0GsY5G0yz3opeImInJRHwcvpdPLNN9/w9ttv89VXX1FTU0O/fv248847ueqqq4iOjvZWnd1XwwYbvYMwDMgpquRIaRXRIf6WliYiIt1HTFgA8RGBZBVWsPFAIWcOanA/L3fwSppmbZEiIh1Ys4LXnj17ePvtt3nvvfc4cuQIAQEBXHbZZVxzzTWcccYZ3q6xe3M32KgqIqSuwUb9dV5DdZ2XiIi0n7SECLIKzRspNwpe6a+qwYaIyGk0K3hdcsklAIwcOZI5c+Ywbdo0goODvVqY1DlJg41NBxW8RESkfaUlRPLhxhx1NhQRaYFmBa9f/vKXTJ8+ncGDB3u7HmmKGmyIiEgH4G6w0ehGyr1TAANKcqAkD0JjLK1RRKSjalY7v/vuu6/J0LV7927Wrl1LeXl5mxcmDbiv88pJr7+PihpsiIhIexsRF46fj438smr2Hq079vsFQ/QQ8+vcjdYVJyLSwbWoj/qSJUs455xzmDZtGr/4xS/Ys2cPAHfccQdvvvlmmxYoHOtsmLupvsFGdl2DDRERkfbi52MjOS4MgPX7G7SVr59umN7+RYmIdBIeB69PPvmEe++9l+HDh/OnP/0Jl8tVv27EiBF88sknbVqgcKzBhqOKkKId9I82r6/TdEMREWlvo+vayq9rMnjpOi8RkZPxOHgtXLiQq6++mn//+99cd911jdYNGDCAnTt3tllxUsfdYAMaTzc8qOAlIiLty30/r3X7Co8tVPASETktj4PXrl27mDat6ft0REREUFhY2NqapClxqeZz9rHgpTNeIiLS3kYnRgCwLbeY8upac2HvFPO5cD+U51tTmIhIB+dx8AoMDKSkpKTJdXl5eYSHh7e6KGlCgwYbyWqwISIiFokNDyQ2PACnCzYcqDsOBUZAZH/zazXYEBFpksfBKy0tjVdffbXRtV1u77zzDuPGjWuTwuQ4DRtsxAQCZoONo2qwISIi7Sytvq28rvMSEWkuj4PXbbfdRnp6OtOnT+eVV17BMAw+++wzZs2axZo1a5g1a5Y36pTI/vUNNkKLdzJADTZERMQio3Wdl4iIxzwOXikpKfznP/+hvLycuXPn4nK5WLBgAXv27GHhwoUMGTLEG3WKzdaowYamG4qIiFXcDTbW7y84NgNGwUtE5JR8WrLThAkT+OSTT9i/fz9HjhwhMjKS/v37t3Vtcry4VNj7bV2DjbN5f0O2zniJiEi7GxEXhq/d4GhZNQfyK0iICjoWvI7uhMpiCAiztkgRkQ6mRTdQdktISGD06NEKXe2lyQYbxdbVIyIi3VKAr50RceZxqP5+XsHRENbH/Dpvk0WViYh0XM0KXh9//LHHL5yXl8fatWs93k9OoWGDjd5mg42swgryy6otLEpERLoj3UhZRMQzzQpeDz30EFdeeSWLFy+mtLT0lNtu2rSJBx98kIsuuoht27a1SZFSJ7I/+IeBo4qwkl30V4MNERGxSH1nw/2FxxYqeImInFSzrvH6/PPPmTdvHn/961956KGHGD58OMOHDycqKgo/Pz+Kioo4cOAA6enpHD58mMGDBzNv3jwmTZrk7fq7F5vNPKjt/Ray15Mcn8KeI2Vsyipi8pCeVlcnIiLdyOhE84zX1pxiKqodBPrZFbxERE6hWcErNDSU+++/n9tuu4133nmHr7/+miVLllBRUVG/Td++fZk0aRKXX345EyZM8FrB3V6jBhtn8cGGbDIO6oyXiIi0r7jwAGLC/MkrrmLjwULGD4g6FrwOb4PqcvALsrZIEZEOxKOuhuHh4dx4443ceOONAJSUlFBZWUlERAS+vr5eKVCO07DBxjDzwmZNNRQRkfZmGAZpfSNZujmX9QfqgldobwjuBWWHIG8z9B1rdZkiIh1Gq7oahoaG0rNnT4Wu9tSgwUZyb/OTxKzCCgrUYENERNrZ6MQIANbtq2uwYRgNphumW1KTiEhH1argJRZQgw0REekgjnU2LNSNlEVETkPBq7NxN9gAyD52Py8FLxERaW/J8eH42AyOlFZxsKDuum8FLxGRJil4dUZxqeZz9npS4sMA2KTgJSIi7cy8kbJ5HKq/n5c7eB3aCrVVFlUmItLxKHh1Rg0bbOiMl4iIWCitbrph/f28IhIgIAKcNWb4EhERQMGrc2qiwcbBAjXYEBGR9nfsRspNNdjQdEMRETePg9f/9//9f+zevdsbtUhzHddgo1+UGb501ktERNqbu8HG5uxiKmsc5kIFLxGRE3gcvJYsWcK0adO48cYbWbZs2bEuRtJ+1GBDREQ6iD6RgUSH+FPrdB273ljBS0TkBB4Hr2+//ZYHHniAw4cPM3v2bM4//3wWLlxIfn6+N+qTk2lwn5SUuuClBhsiIh1DaWkpjz76KDfddBMTJkxg6NChzJs374Tt7r33XoYOHXrC4+KLL7ag6pYxDIPRddMNjzXYSDWf8zaBo9aSukREOhofT3cICgri5z//OT//+c9ZsWIFr776Kv/617946qmnuPTSS/n5z39OSkqKN2qVhtzXeWWvJ+U8nfESEelICgsLefPNN0lKSmLKlCksXrz4pNsGBATw0ksvnbCsMxmdGMlnW/JYt6/QXNBjAPiFQnUJHMmEmOGW1ici0hF4HLwamjhxIhMnTiQ3N5d77rmH9957j/fee4/k5GRuvfVWzj///LaqU47XoMHGiOMabEQG+1lYmIiIxMfHs3r1agzDID8//5TBy2azkZqa2n7FeUFa3wjAPOPlcrkwbDaIHQn7vjenGyp4iYi0rqthZWUlixcvZtasWaxcuZKBAwdy22234XA4uO2225g/f35b1SnHa9BgI7x0F4l1DTY2Zeusl4iI1QzDwDAMq8toNyP7ROBjMzhUUkV2UaW5UNd5iYg00qIzXvv37+fVV1/l3XffpbS0lHPOOYe7776bM888E4DZs2fzj3/8g//+97/cdtttbVqw1HE32Nj7bV2DjRHsO1pORlYRkwb3tLo6ERFppsrKSs466yzy8/Pp2bMnU6ZM4fbbbyciIsLj13I4HC2qwb1fS/f3s0NS71A2ZRezZs9Reo+MxYhJwQa4ctJxtvB120trx9/Zafwaf8Pn7qa14/dkP4+D180338wPP/xAYGAgV199NTfccAMJCQknbHfeeeexcOFCT19ePOEOXjnppMSfyUcbc9RgQ0SkE0lKSiIpKYnBgwcDsGrVKl566SVWrFjBW2+9RXBwsEevl5GR0ap6WrN/n8BaNgGfr9tBH2ceASV+jACcWemkr18HRse/dWhr37/OTuPX+Luz9hi/x8HrwIED3HfffVx99dWnPCAMHjyYl19+uVXFyWnUN9hIV4MNEZFOaObMmY2+P+ussxg+fDi33347ixcvPmH96aSkpGC32z2uw+FwkJGR0eL9AS4km6W7NnKw0te8Zs2ZjOu7QOy1FaQmhEHUoBa9bntoi/F3Zhq/xq/xt3z87v2bw+Pg9emnnzZru5CQEMaNG+fpy4sn6htsZJAcY17jdSC/gsLyaiKC1GBDRKQzmjp1KkFBQaSnp3u8r91ub9UfTq3Z/4x+UYB5I+UaJwT4+kPvZDi4GnteBvQa2uK62ktr37/OTuPX+DV+746/45/3l5Nr2GCjbBcJPeoabGQVW1yYiIi0hsvlwmbrXIfovj0CiQr2o8bhYnN23XFIDTZEROp5fMbr/PPPP2mnJpvNRmhoKCkpKcyYMYOBAwe2ukA5heMabKTEj2B/vtlg4+zB0VZXJyIiLbB06VIqKioYNWqU1aV4xDAM0hIiWbY1j/X7CxiTGKngJSLSgMfBa9y4caxatYpDhw4xevRooqOjOXz4MOvXr6dXr17Exsby+eef89577/HKK6/oZsre1qDBRnL8mXyUoQYbIiIdwddff01FRQVlZWUA7Ny5k6VLlwIwefJk8vPzueuuu5g2bRoJCQkYhsHq1at56aWXGDx4MNdee62V5bfI6MQIlm3NY93+AnNBw+DlckE3arEvInI8j4PX2WefTXp6Op9//jmxsbH1y7Ozs7npppuYMmUKc+fO5YYbbmDevHnqbOhtDRtsnKsGGyIiHcWDDz5IVlZW/fdLly6tD17Lly8nNDSU6OhoXnjhBY4ePYrD4SA+Pp4bbriBWbNmERQUZFXpLZbWNxKA9fsLzQU9h4HNFyoLoXA/RCZaVpuIiNU8Dl7//ve/mTNnTqPQBRAXF8dtt93G008/zVVXXcXMmTN5+OGHT/t6paWlPP3002zbto0tW7ZQUFDA7NmzmTNnzgnbbt68mccee4wNGzZgt9uZMGEC99xzD3379m1W7T/88AP/+te/2LZtGwEBAZx33nn84Q9/ICoqqnmD74hiU83nvE0k9w4EYH9+OUXlNYQH+VpXl4hIN/fFF1+cdpunnnqqHSppP6P6hmMzIKeokpyiCmLDAyFmuHnGK2eDgpeIdGseX7m7b98+QkJCmlwXFhZW/+lefHw8FRUVp329wsJC3nzzTaqrq5kyZcpJt9u1axc33HADNTU1PPHEEzz88MPs3buX66+/nvz8/NP+nFWrVnHLLbcQFRXF008/zR//+Ed++OEHZs6cSXV19Wn377B6DDAbbNRWElG2m749zPC1KVtnvUREpH0F+fmQ1DsMaHDWS9d5iYgALQhecXFxvPvuu02ue/vtt+vPhBUWFhIeHn7a14uPj2f16tX897//5c477zzpdk8++SR+fn4sWLCAyZMnc+GFF7JgwQIKCgp47rnnTvtzHn30Ufr168eTTz7JWWedxRVXXMETTzxBZmYmb7311mn377DcDTYAstMZGR8BaLqhiIhYY3RiBADr9h1/nVe6JfWIiHQUHgevX/3qVyxdupSf/exnvPjii3z44Ye8+OKL/OxnP+Pzzz/n5ptvBmDlypUkJyef9vUMwzhpl0S32tpavvrqKy688MJGZ9vi4+MZP348y5YtO+X+eXl5ZGRkcOWVV+Ljc2x25ejRo+nXr99p9+/wGhzUkuN1nZeIiFhndIJ5ndexBhup5nN2utlgQ0Skm/L4Gq+f/vSnuFwu5s2bx9y5c+uXR0dH8+CDD9Z3YZo1axZ+fm1zE9/9+/dTWVnJ0KEn3nxxyJAhfP/991RVVeHv79/k/pmZmQBN7j906FDWrVvXJnVapokGG+psKCIiVkirC16bsoupqnXgHzMCDDuUH4GSHAiLs7hCERFreBS8HA4H+/fv55JLLuGnP/0pu3fvprCwkIiICAYMGNDozFV0dNvdR6qwsBCAiIiIE9ZFRETgcrkoKiqiV69ep9y/qamPERER9es94XA4PN6n4X4t3b9JMSnYAVfeJob1MsPnvqPl5JdWEh7YsRpseGX8nUx3fw80fo2/4XNL95eOq19UED2C/cgvq2ZLdrEZxHoOhUNbzOu8FLxEpJvyKHi5XC6mTZvGM888w+TJk9v9BsmnmpJ4uumKp9qmOfseLyMjw+N92nL/RlxOUn2CsNeWk7fuE3oFh3GozMF736xjZEzTZwGt1qbj76S6+3ug8Wv80jUZhkFa3wiWbzvEuv2FZvCKHXUseA29xOoSRUQs4VHw8vHxITo6Glc7z9F2n+kqKCg4YV1hYSGGYRAWFnba/Zs6s9XcJiDHS0lJwW63e7yfw+EgIyOjxfufjC1jNOz7jqSwCsb0H8Anm/KoCOxJauqANvsZbcFb4+9Muvt7oPFr/K0Zv3t/6djSEszgtX5/AdDfDF4bFqmzoYh0ax5f4zVt2jSWLFnCueee64VympaQkEBAQED9tVoNZWZmkpiYeNLru8C8Dgxg+/btTJ48+YT93es9YbfbW/VHU2v3P0FcKuz7DlvuRlL6nMUnm/LYnFPSYf+wa/Pxd0Ld/T3Q+DX+7jz+rs7dYEMt5UVEjvG4q2FSUhLr169nxowZ/Pe//+XTTz/ls88+a/Roaz4+Ppx33nl8/vnnlJaW1i/Pzs5m5cqVTJ069ZT7x8TEMHLkSD744ING1wekp6ezZ8+e0+7fKTRssBGvBhsiImKdkX0jsBmQVVhBXnEl9E4xVxRnQelha4sTEbGIx2e87rnnHsBs0b5q1aoT1huGwdatWz16za+//pqKigrKysoA2LlzJ0uXLgVg8uTJBAYGMmfOHKZPn86sWbO45ZZbqK6u5sknnyQyMpKbbrqp0esNHz6csWPH8tJLL9Uv+9///V9uuukm7rjjDq6//nqOHj3K3//+d4YMGcI111zjUb0dkrtdb94mknsHA2aDjaKKmg7XYENERLq2EH8fhsSEsi23hPX7C7g4ORaiBsHRnZC7AQZNsbpEEZF253Hwevnll9u8iAcffJCsrKz675cuXVofvJYvX06fPn0YOHAgr7zyCo8//jh33HEHdrudCRMmMH/+fHr06NHo9RwOB06ns9Gy8ePHs3DhQp588klmzZpFYGAg5557LnfffXebtb23VI8B4BcK1SVElu2mT2QgBwsq2JxVxJmD2q7DpIiISHOMToxkW24J6/YXmsErdpQZvHIUvESke/I4eI0bN67Ni/jiiy+atV1ycjIvvvjiabfbvn17k8vPOusszjrrLE9K6zxsNvOgtu87yEknJX4YBwsqyFDwEhERC4xOiOS1lftZt899I+VRsOltXeclIt2Wx9d4uZWUlPDtt9/y/vvvU1Ska4k6hLhU8zl7Pcl113ll6DovERGxQFpCBGAeh6prnWqwISLdXouC1/z585k0aRK33HIL99xzDwcPHgTgl7/8JQsXLmzTAsUDarAhIiIdxIDoYCKCfKmqdbI1pxh6jzRXFOyFihNvDyMi0tV5HLxeffVV5s+fz/Tp01mwYEGje3qdd955fPXVV21Zn3iiQYONlFizwcbeo+UUV9ZYV5OIiHRL7hspA6zbXwBBPSAi0VyZq3uxiUj306LgNXPmTB544AHOPvvsRusSExPZt29fmxUnHnI32KitJLJsN/ERgYDOeomIiDXSdD8vEZF6HgevAwcOMGnSpCbXBQcHU1xc3OqipIXcDTagrsGGphuKiIh13DdSXre/QYMNUPASkW7J4+AVGhrKkSNHmlyXlZVFVFRUq4uSVqhvsJFOSh93gw2FYRERaX+j+oZjGHCwoIJDJZXHpsQreIlIN+Rx8Jo4cSLPPvss5eXl9csMw6C2tpZFixadMP1Q2ll9g41jnQ11xktERKwQGuDLkF6hQN10w9i6BhtHdkBVqXWFiYhYwOPgdfvtt5Odnc20adOYO3cuhmHw3//+l2uvvZZ9+/bx29/+1ht1SnM10WBjz5EyNdgQERFLjE6MAOqmG4b0gtA4wAV5myytS0SkvXkcvBITE1m0aBEDBgxg0aJFuFwu3nvvPSIjI3nttdeIi4vzRp3SXA0abPRo0GBjs6YbioiIBdL6qsGGiAiAT0t2GjRoEM899xzV1dUUFBQQHh5OQEBAW9cmLeFusLHvO8hJJzk+iazCCjZlFTFxoK6/ExGR9uU+47XxYCE1Die+saMg8xMFLxHpdlp0A2U3Pz8/YmJiFLo6mgYNNkb2iQAgQ9d5iYiIBQZEhxAW4ENljZNtOSU64yUi3VaLzngdPHiQTz75hOzsbCorKxutMwyDhx9+uE2KkxZyN9jISSf5HDXYEBER69hsBqkJkXyTeZj1BwpIGV4XvA5thZpK8NWHtyLSPXgcvL766itmz56N0+mkR48e+Pn5NVpvGEabFSct5G6wkZtR32Bj95EySiprCA3wta4uERHplkYnRPBN5mHW7StgxoRUCIqG8iOQtxn6jLG6PBGRduFx8PrnP//J6NGj+ec//6l7dnVU7gYb1SX1DTayCivYnF3MhAH6NxMRkfZ17EbKhWAY5nTDXcshJ13BS0S6DY+v8dq3bx+33HKLQldH5m6wAXUNNsIAyDio6YYiItL+RvWNAGB/fjlHSqt0nZeIdEseB6+4uLhGN0+WDqpBg42Uuhspq8GGiIhYITzQl8G9QgD3jZQVvESk+/E4eP3mN7/h+eefp6Kiwhv1SFtxX+eVk05yvBpsiIiItY5NNyw4FrwObYHaagurEhFpPx5f45WRkcHRo0eZOnUq48ePJzIy8oRtHnjggTYpTlrB3dlQDTZERKQDSEuI4I01B1i/vwAumgD+4VBVBIe3QexIq8sTEfE6j4PXf//73/qvP/rooxPWG4ah4NURNGiwEVW+h7jwALKLKtVgQ0RELDE60fygdsOBImqdLnxiR8Leb83phgpeItINeBy8tm3b5o06pK25G2zs+65uumES2UWVbMoqUvASEZF2N6hnCKH+PpRU1bItt4Tk2FHHghc3WF2eiIjXeXyNl3QiarAhIiIdhHkj5QgA1h8obHAtshpsiEj30KzgtXr1asrKyk67XX5+Pm+99Vari5I20rDBRh8FLxERsVZaXYON9fsaNNjIzQCnw8KqRETaR7OC14wZM9i1a1f9906nk+TkZLZs2dJouwMHDvCnP/2pbSuUlnOf8crdVN9gY8+RMkqraq2rSUREuq20hme8ogaCbzDUVsCRHZbWJSLSHpoVvFwu1wnf19bWnrBcOpgeA80GG7UVRFfsJTY8AJcLNuusl4iIWGB0X/OM154jZeRXOKB3irlC0w1FpBvQNV5dmbvBBkD2+vr7eWm6oYiIWCE8yJeBPc0ZGOsb3s9LwUtEugEFr66uiQYbupGyiIhYpf46r/2FCl4i0q0oeHV1DRpsqLOhiIhYbXRd8FrX8IxX7kZwOi2sSkTE+5p9H6/du3djt9sBcDgc9cuO30Y6mAYNNpLrGmzsrmuwEeLv8W3cREREWmV0YgQAGw4U4ogajd3uD1XFULDHbLghItJFNfsv7/vuu++EZXfffXej710uF4ZhtL4qaTvuBhvVJfSs3EvvsAByiyvZkl3MuP49rK5ORES6mcG9Qgnx96G0qpbMI5UM650MWWvN6YYKXiLShTUreD3yyCPerkO8xd1gY993kJ1OcvxQcosrycgqUvASEZF2Z7cZjOobzvc7j7JufwHDYkcdC17JV1tdnoiI1zQreF111VXerkO8KS61LnitJyV+HMu25qnBhoiIWGZ0QqQZvPYV8vOBarAhIt2Dmmt0Bw0bbPQJA9RgQ0RErHPsRsrHtZTX/UFFpAtT8OoOmmiwsetwKWVVtdbVJCIi3VZa3Y2Udx8uozBkENh8oCIfig5aXJmIiPcoeHUH7gYbtRX0qtxH77AAXC7YklNsdWUiItINRQb7MSC67kbK2RXQa5i5QtMNRaQLU/DqDmw2iB1pfp2dTrL7fl4HNd1QRESskeqebri/QDdSFpFuQcGru4hLM591I2UREekAjt1IubDRtcgiIl2VR8GrsrKSn/3sZ/zwww/eqke8xX1Qy16vBhsiImI5d/BKP1CII6ZuVobOeIlIF+ZR8AoICCAzMxO73e6tesRb1GBDREQ6kCExIQT52SmtqmWXrR8YNijNg5Jcq0sTEfEKj6capqWlsXHjRm/UIt50XIONmDB/NdgQERHL+NhtjOoTAcDanCqIHmKu0FkvEemiPA5e99xzD2+88QZLliyhrKzMGzWJNxzXYCNFDTZERMRiaWqwISLdiI+nO1x33XXU1NRw3333cd999xEQEIBhGPXrDcNg7dq1bVqk27333su777570vVvvPEGqampTa575513uO+++5pc991339GzZ8+2KLFji02Ffd9DTjrJ8WNZtvUQm3Sdl4iIWKRRg42Jo2DjGwpeItJleRy8LrrookZBqz399re/5Wc/+9kJy2fNmoWfnx8pKSmnfY1HHnmEAQMGNFoWERHRViV2bO7OhtnppJylzoYiImIt9xmvnYdKKY0cQQgoeIlIl+Vx8Jo7d6436miWhIQEEhISGi1btWoVBQUF3Hrrrc1q+jF48OBmBbQuqb7BRgYpDRpslFfXEuTn8X8KIiIirRIV4k9iVBD7jpaTXpvA2QBFB6DsKARHWV2eiEib6vT38XrrrbcwDINrrrnG6lI6voYNNqr20SvUH6cLtmSrwYaIiFjDPd1wdU4t9KibkZKrs14i0vW0+DRHZmYmu3btoqqq6oR1P/nJT1pTU7OVlJTw6aefMnHiRPr27dusfWbNmkV+fj6hoaGMGzeO22+/nSFDhni50g7C3WBj3/d1DTaGsHzbITKyijijXw+rqxMRkW5odEIE767PYp27wUb+bnO64cDzrS5NRKRNeRy8KioquPXWW/nxxx8xDAOXywXQ6Lqv9gpeH374IZWVlUyfPv2020ZHRzNr1ixSU1MJCQkhMzOThQsXct1117Fo0SKSkpI8+tkOh6NFNbv3a+n+rWX0Holt3/c4s9czIm4My7cdYuPBwnarx+rxdwTd/T3Q+DX+hs8t3V+6jrQGN1J2XjAK2+Z3dZ2XiHRJHgevp59+mqysLP773//yi1/8gqeeeorg4GAWLVpEZmYmTzzxhBfKbNpbb71FREQEU6dOPe2255xzDuecc07992PHjmXy5Mlcfvnl/Otf/+KZZ57x6GdnZGR4XG9b7t9SPaoj6Q+U7/yeoAFXAbBm1yHS09PbtQ6rxt+RdPf3QOPX+EUAknqHEuhrp6SylpzAIcSDgpeIdEkeB6/ly5dzyy23kJZmdsiLjY1lxIgRTJw4kbvuuovXXnuNhx56qM0LPd62bdvYtGkTM2bMwM/Pr0Wv0adPH8aMGcOGDZ7/gk9JSWlWM4/jORwOMjIyWrx/q/UJhvUPE1yyhyvOTGbu99+RVVLLkOHJ7dJgw/LxdwDd/T3Q+DX+1ozfvb90HT52GyP7hLNyTz6rqvpwFZjTDSuLICDc6vJERNqMx39pZ2VlMWDAAOx2O4ZhUFFRUb/u8ssv549//GO7BK+33noLgGuvvbZVr+NyubDZPO8xYrfbW/VHU2v3b7GeQ8AvFKO6hLjag/QM9edwSRWZh8oYk9h+13lZNv4OpLu/Bxq/xt+dxy+NpSVEsnJPPitzDa4K72t2NszNgH5nW12aiEib8ThxhIaGUl5eDkBUVBT79u2rX1dbW1u/zpuqq6v54IMPGDlyZKsaYxw4cIB169YxatSoNqyug3M32IC6Bht19/M6qPt5iYiINUbX3c+rvsEGaLqhiHQ5HgevoUOHsnfvXgDGjx/PggULWLNmDRs3bmT+/PkeN6loiWXLllFYWHjSs133338/w4cPJysrq37ZzJkzeeqpp1i2bBkrVqzgpZde4vrrr8cwDO644w6v19yhxKaazznpJLuDV5ZayouItJXS0lIeffRRbrrpJiZMmMDQoUOZN29ek9tu3ryZmTNnkpaWxhlnnMHs2bM5cOBAO1dsLXeDjR2HSqnsmWwuVPASkS7G4+B1zTXXUFZWBsDvfvc7KioquOGGG7juuuvIzs7m3nvvbfMij/fWW28RFBTEpZde2uR6p9OJw+Go77gIMGTIED755BPuvvtubr75Zp599lkmTJjA22+/3X3aybu5b6Tc4IzXpiyd8RIRaSuFhYW8+eabVFdXM2XKlJNut2vXLm644QZqamp44oknePjhh9m7dy/XX389+fn57VixtXqG+tO3RyAuF+y0DzQXKniJSBfj8TVeDcNO3759+fTTT+tby6elpREREdGW9TXp+eefP+X6uXPnMnfu3EbL7r//fm+W1Lm4z3jlZpASGwzAjkMlVFQ7CPTTNRciIq0VHx/P6tWrMQyD/Px8Fi9e3OR2Tz75JH5+fixYsICQkBAARowYwUUXXcRzzz3HH/7wh/Ys21KjEyI5kF/BivK+JAMcyYTqMvALtro0EZE24XlXieMEBQVx/vnnc95557VL6JI2EDUI/EKgtoKY6n30DPXH6YItOZpuKCLSFgzDaHR/y6bU1tby1VdfceGFF9aHLjBD2/jx41m2bJm3y+xQRtdNN/wu1w4hMeByQt5mi6sSEWk73u8fLh2PzWZevLzve4zsdFLih/DFtkNsyipiTGKk1dWJiHQL+/fvp7KykqFDh56wbsiQIXz//fdUVVXh7+/f7Nds7Y2prbxB9cj4MKDuRsoDR2Hb+RnOrPW44sZ4/Wd3hPFbSePX+Bs+dzetHb8n+zUreCUlJZ32kzs3wzDYsmVLswsQi8Smwr7v6xpsjOWLbYfYqM6GIiLtprCwEKDJ2SIRERG4XC6Kioro1atXs1+ztfc4s/IeabVOF352KKqoYUd1T4YC+Zu/ZJ/vGe1WQ3e/R5zGr/F3Z+0x/mYFr9tuu63ZwUs6iYYNNs5Ugw0REauc6vjq6bG3tTemtvrG3qPWrmT13gIO9xzL0P2vElV9kMjUVK//3I4yfqto/Bq/xt/y8bv3b45mBa85c+Z4XIR0cGqwISJiKfeZroKCghPWFRYWYhgGYWFhHr1ma29MbfWNrUcnRLJ6bwHflfXhbMA4vBW7qxZ8mj/dsjWsHr/VNH6NX+P37vhb3VxDOqnjGmxEh6jBhohIe0pISCAgIIDMzMwT1mVmZpKYmOjR9V1dgft+Xl/l+EFgD3DWqsGGiHQZHjfXWLJkyWm3+clPftKCUqRdNWywkbOBlPhBfLn9sBpsiIi0Ex8fH8477zw+//xz/vCHP9R3NszOzmblypXMnDnT2gItMDohAoDth0qpHToSn71fmffzih9taV0iIm3B4+B1shskN5yHruDVSbgbbGSvJyV+DF9uP0yGrvMSEWkTX3/9NRUVFZSVlQGwc+dOli5dCsDkyZMJDAxkzpw5TJ8+nVmzZnHLLbdQXV3Nk08+SWRkJDfddJOV5VuiV1gA8RGBZBVWkBs8lD58pRspi0iX4XHwWr58+QnLCgoKWL58OR9//DH//Oc/26QwaQcNGmwkT1SDDRGRtvTggw+SlZVV//3SpUvrg9fy5cvp06cPAwcO5JVXXuHxxx/njjvuwG63M2HCBObPn0+PHj2sKt1SoxMjySqsIMPRjz6g4CUiXYbHwSs+Pr7JZcnJydTW1vLyyy8zd+7cNilOvKxhg404d4ONUiprHAT4dt+LK0VE2sIXX3zRrO2Sk5N58cUXvVtMJ5LWN4IPNmTzdUkcl4B5jZejBuy+VpcmItIqbdpcY+LEic0+0EgH0KDBRu/q/USH+OFwutRgQ0RELDO67jrjz7IDcPmHgaMKDm+3uCoRkdZr0+CVlZWFzaZGiZ2GzQa9RwJg5GwgOV7TDUVExFrDY8Pw87GRX+GgMmqEuVDTDUWkC/B4quHq1atPWFZdXc327dtZsGABEydObJPCpJ3EpcH+H8wbKceP4avth8k4qOAlIiLW8POxkRIfztp9BRwMGMxgVpjBK+3nVpcmItIqHgevG264oVEHQwCXywXAmWeeyZ/+9Ke2qUzaR32DjfX1DTbU2VBERKw0OiGCtfsKWF+byGDQGS8R6RI8Dl4vv/zyCcv8/f2Jj48nOjq6TYqSdtSwwUasGmyIiIj1RidEAntYXhjLTwFyM8DpAJuOSyLSeXkcvMaNG+eNOsQq7gYb1aXE1uwnKtiPo2XVbM0pJi1BN1IWEZH25z7+LD8chis4EKOmDI7ugp5DLK5MRKTlPO6EsWfPHlatWtXkulWrVrF3797W1iTtSQ02RESkg+kdHkBceAC1LhslkUnmQk03FJFOzuPgNXfu3CZvogzw5Zdf6h5enVGDGymnxOs6LxERsV5aXVv5vb6DzQU56dYVIyLSBjwOXhkZGYwdO7bJdWPHjmXTpk2tLkraWVya+ZyTXn/GKyNL9/ISERHrpPWNAGBtdV9zgc54iUgn53HwKikpISgoqMl1AQEBFBXpTEmn426wkbORlLi6Bht5JVTWOKyrSUREujX3jZQ/ze9tLsjZCHVdlEVEOiOPg1dMTAwbN25sct3GjRvp2bNnq4uSduZusFFbQVzNfnoE+1HrdLEtt8TqykREpJsaEReGn93G2vIYXDY/qCqCgr1WlyUi0mIeB68pU6awcOFCfvzxx0bLV65cyX/+8x+mTp3aZsVJOzmuwYau8xIREav5+9gZER9GDT4Uhrqv89J0QxHpvDwOXrfddhtxcXHceOONXHLJJfXPM2fOJC4ujjlz5nijTvG2JhpsbDqo4CUiItYZXddWfqfPQHOBgpeIdGIeB6/Q0FDeeOMNZs+eTXh4ONnZ2YSHhzNnzhxef/11QkJCvFGneFv9dV7HGmxs1BkvERGxUFpCBACrKvuYCxS8RKQT8/gGygDBwcHcdttt3HbbbW1dj1jF3dkwN+OEBhsBvnYLCxMRke7KfcZrWWEst/liBi+XCwzD2sJERFrA4zNebiUlJXz77be8//776mTYFbgbbNSUq8GGiIh0CHERgfQOC2CLoy8uww7lR6A42+qyRERapEXBa/78+UyaNIlbbrmFe+65h4MHDwLwy1/+koULF7ZpgdJOjmuwkawGGyIi0gGkJURQhR/5Qf3NBZpuKCKdlMfB69VXX2X+/PlMnz6dBQsW4GpwT43zzjuPr776qi3rk/bUqMFGGKAGGyIiYi33dMNthhpsiEjn5vE1Xq+++iozZ87k7rvvxuFofIPdxMRE9u3b12bFSTtr0GAjZbzOeImIiPVGJ0YA8EN5PGcB5KRbWI2ISMt5fMbrwIEDTJo0qcl1wcHBFBcXt7oosYj7jFduBsmxZnfKzLoGGyIiIlYYEReOr93gx4q+5gKd8RKRTqpF7eSPHDnS5LqsrCyioqJaXZRYpEGDjfjaA0QG+VLrdLFdDTZERMQiAb52hseFs9WViAsDSnKgJM/qskREPOZx8Jo4cSLPPvss5eXl9csMw6C2tpZFixZx9tlnt2mB0o5s9gYNNtLVYENERDqE0QkRlBPAEf8Ec0HuRmsLEhFpAY+D1+233052djbTpk1j7ty5GIbBf//7X6699lr27dvHb3/7W2/UKe2lUYMNM3htUvASERELpdU12NiMu7NhunXFiIi0kMfBKzExkUWLFjFgwAAWLVqEy+XivffeIzIyktdee424uDhv1CntpWGDDZ3xEhGRDmB0QgQAK8rizQW6zktEOiGPuxoCDBo0iOeee47q6moKCgoIDw8nICCgrWsTK5ykwUZVrQN/H7t1dYmISLcVHxFIr1B/Npb1MxcoeIlIJ9SiGyi7+fn5ERMTo9DVlUQNAt9gqCmnj+MAEUG+1DjUYENERKxjGAZpCRFsdvYzFxTuh/J8S2sSEfFUs854LVmyxKMX/clPftKCUqRDsNkhdhTs/wEjZwMp8QP4dscRMrKKGNknwurqRESkmxqdEMmnm4M57BNLz9ocs8HGgHOtLktEpNmaFbzuvffeZr+gYRgKXp1dXCrs/wGy15Mcn8a3O46owYaIiFhqdKLZYGODox9TyDGnGyp4iUgn0qzgtXz5cm/XIR1JwwYb49RgQ0RErJcSH46PzWBddQJTfFfoOi8R6XSaFbzi4+O9XYd0JA0abKTUNdjYnqsGGyIiYh3zRsphbMruZy5Q8BKRTqZFXQ0BSktLSU9Pp7CwkMjISEaNGkVISEhb1iZWqW+wUUYfxwHCA30pqqghM7eUlD7hVlcnIiLdVFrfCD482M/85uhOqCyGgDBLaxIRaa4WBa/nnnuOp556isrKSlwuF4ZhEBAQwO23386NN97Y1jUCsHLlSmbMmNHkujfeeIPU1NRT7n/06FEee+wxvvzySyorK0lKSuJ3v/sdEydO9EK1nZzNDrEjYf+K+gYb3+00G2woeImIiFVGJ0by0opwjtiiiXYegbxNkHim1WWJiDSLx8FryZIlPPbYY5xzzjlcddVV9OrVi0OHDrFkyRIeffRRIiMjvdpc484772T8+PGNlg0ePPiU+1RXVzNz5kyKi4v54x//SFRUFK+++io333wzL7zwAuPGjfNavZ1WXBrsX2Fe59UnrT54iYiIWGV0gtlgI702kSm2I+Z0QwUvEekkPA5eL774IpdddhmPP/54o+WXXHIJ//u//8tLL73k1eCVmJh42rNbx1u8eDGZmZm8/vrrpKWlATB+/HiuvPJKHnvsMRYvXuyFSjs5d4ON7PWkjPsdgDobioiIpfpEBhId4kdGRT+m2NbqOi8R6VQ8voHy7t27ueKKK5pcd8UVV7Br165WF9XWli1bRv/+/etDF4CPjw9XXHEFGzduJC8vz8LqOqgmGmxsyy2mqtZhXU0iItKtmTdSjmSTq5+5QMFLRDoRj894BQQEUFTU9JmPoqIiAgICWl3UqTz00EPceeedBAQEkJaWxq233soZZ5xxyn127NjBmDFjTlg+dOjQ+vUxMTEe1eFwtCyAuPdr6f7tJqI/Nt9gjJoyYmv21TfY2JpdREp8y6/z6jTj96Lu/h5o/Bp/w+eW7i/d1+iESF7c0t/85vA2qC4HvyBrixIRaQaPg9eYMWN46qmnGDduXKOwcvjwYebPn3/aENRSoaGhzJgxg/HjxxMREcG+fft47rnnmDFjBgsWLGDSpEkn3bewsJDw8BPDgntZYWGhx/VkZGR4vE9b7t8ehoQOIDQ/gwMrPyAx9Aw2VsAnKzfjGND6A1xnGL+3dff3QOPX+EVaIi0hgr8RST7h9HAVwaEt0Mc7f3uIiLQlj4PXnXfeyc9+9jMuvPBCJk6cSM+ePTl8+DA//vgjPj4+PPXUU96ok+HDhzN8+PD678844wymTp3K5ZdfzmOPPXbK4AXm9ISWrDuZlJQU7HbP72nlcDjIyMho8f7tycg7E1ZlkOiXz8SkeDYe2kORLYzU1OQWv2ZnGr+3dPf3QOPX+Fszfvf+0n2N7BOO3WZjo6Mf59o3QE66gpeIdAoeB6/Bgwfz1ltvMW/ePFauXElhYSERERFccMEFzJ49m/79+3ujziaFhYVx7rnn8vrrr1NZWXnSaY4RERFNntVyT5ls6mzY6djt9lb90dTa/dtFvDk905azkZFjI4E9bM4uaZO6O8X4vay7vwcav8bfnccvLRfk58Ow2FA25fXjXDboOi8R6TRadB+v/v37849//KOta2kRl8sFnPqs1ZAhQ8jMzDxhuXvZ6drRd1v1DTY21jfY2J5bQnWtEz8fj/uyiIiItIm0vpFsyqn7oFfBS0Q6iU7913NRURFfffUVw4YNw9/f/6TbTZkyhd27d7Nhw7FfzrW1tbz//vuMGjXK48Ya3UbUIPANhppy+joPEB7oS7XDSWZeidWViYhINzY6MeJYZ8O8LVBbbWk9IiLN0aIzXlu2bOGDDz4gOzubqqqqRusMw+CZZ55pk+Iauuuuu4iNjSU5OZnIyEj27dvH888/z9GjR5k7d279dvfffz9Llizh888/Jz4+HoDp06fz2muvcccdd3DXXXcRFRXFa6+9xp49e3jhhRfavNYuw2aH2JGwfwVGzgaS4/vz/c6jZGQVkdyKzoYiIiKtMTohkoOunhS5ggl3lsHhrRA7yuqyREROyePgtWTJEu677z5sNhs9evTA19e30fqWNKpojqFDh/Lxxx/z+uuvU15eTnh4OGPGjOHRRx9l5MiR9ds5nU4cDkf9FEQAPz8/XnzxRR577DH+8pe/UFFRwbBhw/jPf/7DuHHjvFJvlxGbCvtXQE46yfGp9cHrf6yuS0REuq2EHkH0CPZnU3U/zrJvhux0BS8R6fA8Dl7PPPMMkydP5m9/+1uLmlK01K9//Wt+/etfn3a7uXPnNjoD5hYdHc3f/vY3b5TWtbmv88pOJ2Ws+e+9Kavp+7iJiIi0B8MwGJ0QQcaO/pzFZl3nJSKdgsfXeB06dIgZM2a0a+gSC8Wlmc8NGmxsyzEbbIiIiFglLSGSzc5+5jcKXiLSCXgcvIYNG0ZeXp43apGOqEGDjQTnQcICfNRgQ0RELJeWEMEmV11nw7xN4Ki1tiARkdPwOHjdfffdLFy4kG3btnmjHulo3A02oK7BhqYbioiI9Ub1iWA/MZS6AqC2Eo6ceNsYEZGOxONrvFJTU7nwwgu56qqr6Nmz5wlTDg3D4P3332+zAqUDaNBgIyU+lR92mQ02fmZ1XSIi0m0F+/swpHcEm4/2Y7yxzZxuGDPc6rJERE7K4zNeCxcuZMGCBURGRhIXF0dERESjh6796oIaNNjQGS8REekoRidE6DovEek0PD7j9fLLL3PNNdfw0EMPYbfbvVGTdDSxqeZzgwYbW3NLqHE48bV36ntwi4hIJzY6IZLvV/czv1HwEpEOzuO/msvKyrjssssUurqT6MH1DTYSySI0wIfqWjXYEBERazVssOHK3QhOddwVkY7L4+A1evRodu3a5Y1apKNq2GAjO53kOE03FBER6/WPDiY/IJFKly9GdSnk77a6JBGRk/I4eP3xj3/k9ddfZ9myZVRXV3ujJumI3NMNc9JJ6WMGrwwFLxERsZBhGIxMjGarK9FckJNuaT0iIqfi8TVe11xzDbW1tcyZMwfDMAgICGi03jAM1q5d22YFSgfRoMFGyhnu4FVsXT0iIiJAWt8INu3sR5ptp3mdV8p0q0sSEWmSx8HroosuwjAMb9QiHVlTDTZyitVgQ0RELDU6MZL33TdSVoMNEenAPApeDoeD3/zmN/To0UNt47ub+gYbZfUNNkoqa8nMK2FEnP5bEBERa4zqG8Ejrn4AOLM3YHO5QB8Qi0gH5NGpCpfLxbRp00hPT/dSOdJhNWywkbNBDTZERKRDCPH3weg5jGqXHVtVIRTut7okEZEmeRS8fHx8iI6OxuVyease6cjc0w2z16vBhoiIdBjJib3IdPU1v9F0QxHpoDy+OGfatGksWbLEC6VIh9egwUZyvBpsiIhIxzA6IYJNzn7mNwpeItJBedxcIykpiY8//pgZM2Zw4YUX0rNnzxOabVx44YVtVqB0IGqwISIiHVBaQiQvuvoDX+HMSff8U2URkXbgcfC65557AMjLy2PVqlUnrDcMg61bt7a+Mul4GjbYcGUR6u9DSVUtO/JKGR4XZnV1IiLSTQ2IDmav7yAAHAfT1WBDRDokj4PXyy+/7I06pDOw2aF3Chz4EVvuBkbEJ/Lj7nw2ZRUpeImItMDKlSuZMWNGk+veeOMNUlNT27egTspmMwjqOxLHfgPfyiNQkgthsVaXJSLSiMfBa9y4cd6oQzqLuDQ48KN5I+X4kfy4O5+MrCJ+Orav1ZWJiHRad955J+PHj2+0bPDgwRZV0zmNSIxl5754hhoHzeu8FLxEpIPxOHi5lZSUkJ6eTkFBAZMnT9Z9vbqL+gYb60keMwdQZ0MRkdZKTEzU2a1WGp0YwSZXP4ZSF7yGXmx1SSIijbTo+tP58+czadIkbrnlFu655x4OHjwIwC9/+UsWLlzYpgVKB3OSBhu1Dqd1NYmISLc3qm8Em139Aag6sM7iakRETuRx8Hr11VeZP38+06dPZ8GCBY3u6XXeeefx1VdftWV90tHUN9gopx/ZhPj7UFXrZMehUqsrExHptB566CGGDx/O6NGj+dWvfsWaNWusLqnTCQvwpSh8GACu7HRrixERaYLHUw1fffVVZs6cyd13343D4Wi0LjExkX379rVZcdIBHd9gIy6RlXvM67yGxarBhoiIJ0JDQ5kxYwbjx48nIiKCffv28dxzzzFjxgwWLFjApEmTPHq944/Lnu7X0v07iqCENNgKARW5OIpzIbhns/brKuNvKY1f42/43N20dvye7Odx8Dpw4MBJDwTBwcEUF+uGul1eXGqjBhsr95idDX96hhpsiIh4Yvjw4QwfPrz++zPOOIOpU6dy+eWX89hjj3kcvDIyMlpVT2v3t1qI3cFuZ28G2HLZ/f0SinuN9Wj/zj7+1tL4Nf7urD3G73HwCg0N5ciRI02uy8rKIioqqtVFSQcXl2Y+56STMloNNkRE2lJYWBjnnnsur7/+OpWVlQQEBDR735SUFOx2u8c/0+FwkJGR0eL9O4rguFI2b+jHAHLpH1iC0cyGJV1l/C2l8Wv8Gn/Lx+/evzk8Dl4TJ07k2Wef5YILLsDf3x8wb5pcW1vLokWLOPvssz19Sels3A02cjaQfFyDDR97i/q1iIhIA+7rpw0PbwJst9tb9YdTa/e32pCYMD6yDwJ+pGzfOsLP9WwsnX38raXxa/wav3fH73Hwuv3225k+fTrTpk1jypQpGIbBf//7X7Zu3Up2djZPPPGEF8qUDqW+wUYZ/esabJRW1bLzcClJvXWdl4hIaxQVFfHVV18xbNiw+g84pXlsNoPqnilwGGy5G60uR0SkEY9PTyQmJrJo0SIGDBjAokWLcLlcvPfee0RGRvLaa68RFxfnjTqlI3E32ABsuRsYHmeGrYyDmm4oIuKJu+66i8cff5ylS5eycuVK3nzzTa677jqOHj3K3XffbXV5nVJ4/zEAhFYchIoCi6sRETmmRTdQHjRoEM899xzV1dUUFBQQHh7u0Rx06QKOa7Cxqq7BxrVqsCEi0mxDhw7l448/5vXXX6e8vJzw8HDGjBnDo48+ysiRI60ur1MaMagfB37sSV/bYcjNgP7nWF2SiAjQgjNe9913HwcOHADAz8+PmJiY+tCVlZXFfffd17YVSsdUf51XOinx4YAabIiIeOrXv/41S5YsYc2aNWzZsoUVK1bw1FNPKXS1QmqfCDa5+gFQtnettcWIiDTgcfB69913KSho+tR9QUEBS5YsaW1N0hnUdzbcSEqc2WBjS12DDREREauEB/mSEzQUgOI9Cl4i0nG0aQu6oqIi/Pz82vIlpaNqosFGZY2TnYdLra5MRES6OVdv84yh3+HufV8iEelYmnWN1+rVq1m5cmX994sXL+abb75ptE1VVRXLly9n4MCBbVuhdEzuBhsHfqxrsJHIqj35ZBwsUmdDERGxVI9BY2EfRFbsg6pS8A+xuiQRkeYFr5UrV/LUU08B5j1FFi9e3OR2cXFx/L//9//arjrp2NRgQ0REOqDhgweTuyyS3kYBtTkb8el3ptUliYg0L3jdfPPN/PznP8flcnHmmWfy3HPPMXz48Ebb+Pn5ERwc7JUipYNq2GAjbQ6gBhsiImK9wb1C+Ib+9KaAw5mriVXwEpEOoFnBKyAgoL5z4fLly+nZs6eu5RLzjBdAzkaSL23cYMPH3qaXD4qIiDSbzWaQHzYcStZRvk8NNkSkY/D4r+P4+HiFLjFFDwHfIKgpY4CRQ7CfncoaJ7sOl1ldmYiIdHP2+FEABB7ZZHElIiImj2+gXFNTw3/+8x8+/PBDsrOzqaqqarTeMAy2bNnSZgVKB2azQ++RdQ020hkRl8iqvflkZBUxtHeo1dWJiEg31nPweNgGMVV7oKYSfAOsLklEujmPg9c//vEPXnzxRc455xymTJmis1/dXYMGG8nxI1m112ywMX1MH6srExGRbmx4UhJH3w8lyiiheN8GwgaNt7okEenmPA5en3zyCbfddhuzZ8/2Rj3S2TRqsGH+N6EGGyIiYrWIYH9W+wwkypFO9rYfFbxExHIeB6+ioiLOOOMMb9RySitWrOD9999n/fr15ObmEhoaSnJyMrfddhvJycmn3Pedd97hvvvua3Ldd999R8+ePb1RcvfQoMFGirvBRnYxDqcLu82wri4REen2iiNGwNF0qg6st7oUERHPg9fYsWPZtm0bEyZM8EY9J7Vo0SIKCwuZMWMGgwYNIj8/nxdeeIHrrruOZ599lokTJ572NR555BEGDBjQaFlERISXKu4mGjTY6G/kEuRnp7zawa7DpQyJ0XVeIiJiHb++aXD0VULyN1tdioiI58HrgQce4Le//S1xcXGce+657XaN1//93/8RFRXVaNmkSZO48MILWbBgQbOC1+DBg0lJSfFWid1TgwYb9tx0RsQlsHpvARkHixS8RETEUrFJ4yEd+lbvxlFTjd1X16WLiHU8Dl5XXnkltbW13HHHHRiGUX9/LzfDMFi7tu3vmXF86AIIDg5m4MCB5OTktPnPEw80arCRYgavrCKuUYMNERGxUP/ByRS7gggzytmzfR39k9t3to6ISEMeB6+LLroIw+gY1+6UlJSwZcuWZk97nDVrFvn5+YSGhjJu3Dhuv/12hgwZ0qKf7XA4WrVfS/fviIyYkdgAV/Z6Roz6LQAZWYVNjrErjt9T3f090Pg1/obPLd1fpDnsdhsH/AcxonojedtWKniJiKU8Dl5z5871Rh0t8uCDD1JRUcGsWbNOuV10dDSzZs0iNTWVkJAQMjMzWbhwIddddx2LFi0iKSnJ45+dkZHR0rLbZP+OJKDEnxGAMzsdn/4HAdh0sIi169djP0lI70rjb6nu/h5o/Bq/SHuoiEqGnI04stVgQ0Ss5XHw6iieeOIJPvjgA/70pz+dtqvhOeecwznnnFP//dixY5k8eTKXX345//rXv3jmmWc8/vkpKSnY7XaP93M4HGRkZLR4/w7JmYLr+yDsNeVcOiyc+78qprzaQVj8YAb3Cmm0aZccv4e6+3ug8Wv8rRm/e3+R5gpIGA05rxFRuMXqUkSkm2tW8Nq82bNuQCNGjGhRMc311FNP8cwzz/D73/+eX/ziFy16jT59+jBmzBg2bNjQov3tdnur/mhq7f4dit0OvVPgwEr8Dm1ieGxf1uwrYEtOCUmx4SfZpQuNv4W6+3ug8Wv83Xn80n76jJgIK2GAYw+FpRVEhARaXZKIdFPNCl7XXHNNs67rcrlcGIbB1q1bW13YyTz11FPMmzePOXPmnHaK4em4XC5sNlsbVdbNxaXBgZWQvZ7k+GTW7DMbbFw9Wg02RETEOhF9hlGBP4FGFRlb1jFu3FlWlyQi3VSzgtcjjzzi7TqaZf78+cybN49bb72V2bNnt+q1Dhw4wLp16zjzzDPbqLpuLjbVfM5JJ2WU+W+zKavIunpEREQAbHZyAwfTv2ITR3esBgUvEbFIs4LXVVdd5e06Tuv555/nySefZNKkSZx77rmkp6c3Wp+amgrA/fffz5IlS/j888+Jj48HYObMmZxxxhkkJSURHBxMZmYmzz77LIZhcMcdd7TzSLqouFTzOWcjKZeY13Vtzi7G4XRht3WMLpgiItI9VfVMgf2bIKdllxeIiLSFTtNc48svvwTg22+/5dtvvz1h/fbt2wFwOp04HA5cLlf9uiFDhvDJJ5/w/PPPU1VVRY8ePZgwYQK//e1v6d+/f/sMoKuLHgK+QVBTxkBbLoG+dsqrHew5UsqgXrqRsoiIWCe0/xmwfxHRJdtwOl3Y9IGgiFig0wSvV155pVnbzZ0794SW9/fff783SpKGbMcabNhzNzAizmywsfFgkYKXiIhYKmboOPgahrKHnYeKGdK76cZPIiLepM4S0nYaXOeVHG8e1DJ0nZeIiFjMJ2YY1fgSZlSQuVW3IxARayh4SduJSzOfs9eTUhe81GBDREQsZ/flSPBgAIp2r7G4GBHprhS8pO00bLAR17jBhoiIiJWcMSMBsOdttLgSEemuFLyk7ZyiwYaIiIiVwgeeAUBcRSZFFTUWVyMi3ZGCl7Qdd4MNwJ67geFxYYCu8xIREeuF9hsDQLJtDxv2F1hcjYh0Rwpe0rYa3kjZ3WDjYLF19YiIiAD0Go4DOz2MUnbs2GZ1NSLSDSl4SdtyX+eVfayzoRpsiIiI5XwDKAodBEDJ3rUWFyMi3ZGCl7Qtd2fDnA2kxLobbBThVIMNERGxWuwoAAKOZOi4JCLtTsFL2lajBhs5BPjaKKt2sPtImdWViYhINxc+wLzOa7BjN7vV+ElE2pmCl7StBg02fPI2MjzWbLCh6YYiImI1e92sjGTbHtbtK7S2GBHpdhS8pO011WBDwUtERKzWOxkXBjFGITt377C6GhHpZhS8pO010WBDwUtERCznF0xZ6AAAyvelW1uLiHQ7Cl7S9txnvHI3khJnNtjYkl2sC5lFRMRyPn1SAYgs3kJJpW6kLCLtR8FL2p67wUZ1KYNsuQT42iitqmXPUTXYEBERawX0HQ3ACGMvGw5oNoaItB8FL2l7dp9GDTaGqcGGiIh0FHUt5ZNte1i3v8DiYkSkO1HwEu9oqsHGQQUvERGxWN0Hg32MI+zYs9faWkSkW1HwEu9Qgw0REemIAiOoCk0EoCYrHZdL1x+LSPtQ8BLvaNRgIxSAzWqwISIiHYBPH/N+Xv2qd7L7iK4/FpH2oeAl3hE9BHwCobqUwfZc/H3MBhv78sutrkxERLo5e5z7Oq+9rN9faG0xItJtKHiJd9h9IHYkAD65GxgeZzbY0HRDERGxXF2DjRGGGmyISPtR8BLvaaLBxqasYuvqERERgfrg1d+Wx7a9By0uRkS6CwUv8Z4mGmxsytYZLxERsVhwNI7QeAD8Dm+mtKrW4oJEpDtQ8BLvOVmDDXWQEhERi9nrPhwcYexho253IiLtQMFLvKfJBhsOcksdVlcmIiLdnfs6LzXYEJF2ouAl3mP3qb9RpU/eRobFmg02dhXUWFmViIhI/XT4ZGMP6QcKLS1FRLoHBS/xrjjzXilkr69vsLFbwUtERKxWd8ZroJHNtv25upGyiHidgpd4V4MGG+7gtatAFzGLiIjFQnvjConBbrjoXbmLHE2DFxEvU/AS72rQYCO5rsHGnoIanE59sigiItYyGlznlZmv2Rgi4l0KXuJdDRts+OTi52OjvNbFvvxyqysTEZHuri54JRt7yTxabXExItLVKXiJdzVosOGbt5Fhvc2zXm+vy6KgTAc5ERGxkDt42faQeVRnvETEuxS8xPsaXOeVlhABwDNf72bMXz7n2n//wL+/3sXOQyW6sFlERNpXXfAaYhwkp6iCfUc1G0NEvMfH6gKkG2jQ2XDOtX+itOAImwtsbM0tYfXeAlbvLWDuJ9tIjArigqQYpgzrxdj+PfC163MBERHxovC+EBiJb0UBgzjA+f/4hpF9wrk0JZZpKbH07RFkdYUi0oUoeIn3NWiwERHow/8kh5KamkpuSTVfbM1j2dZDrNh1lH1Hy3n++z08//0eQgN8mDykJ1OGxXDu0J5EBPlZOgQREemCDMM867X7Ky4MO8CW4gFsPFjExoNFzP1kGynxx0JYQpRCmIi0joKXeF+DBhsc3Vm/OD4ikBsm9uOGif0oq6rl2x1HWL41jy+2HeJoWTUfbszhw4052G0GYxIjmTKsFxcMi2FgzxALByMiIl1KXfD6n97ZXPfb8/hs62E+3pjDyj1HycgqIiOriL8t3UZyfFh9CEuMCra6ahHphBS8xPvcDTYOrsLI2QAMPmGTYH8fLk7uzcXJvXE4XaQfKGT51jyWbz3E9rwSVu3JZ9WefB7+eBv9o4O5IMkMYWP7ReKjKYkiItJSddd5BRXtICDEnxsmJHLDhEQOl1Tx6eZcPs7I4cfdR9mUVcymrGIeXbqdEXHHQli/aIUwEWkeBS9pH3GpcHAV5KRDrxODV0PuM1xjEiO5++IkDuSXmyFs2yF+3H2UPUfKePa7PTz73R7CAnw4d2gvLhjWi3OH9iI80LddhiMiIl1E3XT4wOJduBw1YLcD0DPUn19MSOQXExI5WlrFp5vz+DgjhxW7j7I5u5jN2cU89ul2hsWGMS2lN5emxDJAMzJE5BQUvKR91B3YjJwN0Otaj3bt2yOImWf1Z+ZZ/SmprOHbHUdYtjWPL7cdoqC8hvc3ZPP+hmx8bAZj+/XggmG9mDIsRp9CiojI6UX2x+UXgq26FNfLl8PIn8KIqyA4un6TqBB/rh+fwPXjE8gvq64/E/bDrqNszSlma04xj3+WSVLvUKalxHLpyFhNixeREyh4SftwdzbM3QgjnS1+mdAAXy5NieXSlFgcThfr9xewbOshlm/NY8ehUlbsPsqK3Uf5y0dbGdgzmCnDYrhgWAyjEyI0JVFERE5ks+EacxOsmIdxcJU5O+OTe2DgeZA8HZKmQUBY/eY9gv34n3EJ/M84M4R9viWXjzJy+WHnEbbllrAtt4S/f26GMPfxalAvhTARUfCS9lLXYMOoLsW/9CAwutUvabcZnNGvB2f068G9lySx72gZy7ceYvm2PFbuzmfX4TJ2Hd7Ngm92ExHky3l1UxLPGdKTsABNSRQREZNryp/ZFHwWyWzHtvkdc1r8zmXmwycABl8IKdeaz74B9fv1CPbjurEJXDc2gYKyaj7fksdHGTl83yCE/ePzTIbEhNRfEzY4JtS6gYqIpRS8pH00aLARXJTplR+RGBXMTWf356az+1NcWcPX2w+zfGseX24/TGF5De+uz+Ld9Vn42AzGD+hRd8+wGLUIFhFLlZWV8cQTT/DJJ59QVFTEgAED+PWvf820adOsLq1bqQnsiSt1Kpx9BxzZCZvehozFcHQHbH3ffPiHQdJlkHIN9D/XPLbViQz246dj+/LTsX0pLK/msy3mNWHf7zxCZl4pmXk7eGLZDgb3qgthI2MZohAm0q10quDVmoPT0aNHeeyxx/jyyy+prKwkKSmJ3/3ud0ycOLEdKhegvsFGkJeCV0NhAb5cPiqOy0fFUetwsnZfAcu3HWLZ1jx2Hy7j+51H+X7nUR76cAuDe4VwwTDzxs1pCZHYbYbX6xMRcZszZw4ZGRncdddd9OvXjw8//JA777wTp9PJ5ZdfbnV53VP0IDj3Hph8tzlFPuMtM4gVZ8GG18xHcE8Y/hNImQ59xoHt2HT2iCA/fnpGX356Rl+Kymv4fKsZwr7dcZgdh0r51/Id/Gv5Dgb1OnYmbEhMCIah449IV9apgldLD07V1dXMnDmT4uJi/vjHPxIVFcWrr77KzTffzAsvvMC4cePacRTdWF2DjaBC7wevhnzsNsYPiGL8gCjuv3QYe46UsXxrHsu25rF6bwE7DpWy41Ap//56Fz2C/Th3aE+mDoth0pCehPh3qv9FRKST+frrr/n+++/5+9//zmWXXQbAhAkTyM7O5tFHH+XSSy/FXtdlTyzgvsFy7CiY8iAc+NEMYVuWQNlhWP0f8xGeAMlXmyEsJtncr054kC/Tx/Rh+pg+FFXUsGyLO4QdYeehUp5cvoMnl+9gYM/g+mvCknqHKoSJdEGd5q/K1hycFi9eTGZmJq+//jppaWaTh/Hjx3PllVfy2GOPsXjx4nYbR7cWlwqY90rB5QSs+WOif3QwN08awM2TBlBUXsNXmYdYvvUQX20/RH5ZNe+sy+KddVn42W2MH9CjrkFHL/pEakqiiLStzz//nKCgIC6++OJGy6+++mruuusuNmzYwOjRrb8mVtqAzQaJZ5qPS/4Gu782pyJu+xCK9sP3T5iP6KHm9WAp10CPAY1eIjzQl2vG9OGaMX0orjwWwr7JPMKuw2XM+2In877YyYDoYyFsWKxCmEhX0WmCV2sOTsuWLaN///71oQvAx8eHK664gn/84x/k5eURExPj1foFiB6KyycQe20FjqM7IWaY1RURHuTLlanxXJkaT43DyZq9BSzbmsfyrXnsPVrOtzuO8O2OI/zf+5tJ6h3KBcPMGzen9onApimJItJKO3bsYODAgfj4ND4cDx06tH69J8HL4XC0qA73fi3dv7PzfPw2GHCe+bj077DjM2yb3oadn2Mc2Q5f/gW+/AuuuNG4RlyNa8RVEBrb6BWCfW1cOSqWK0fFUlJZwxfbDvPxply+2XGE3UfKeOrLnTz15U76RQVxSXJvLk3u7bUQpn9/jb/hc3fgcrlwOF04XFBdU0uN09Xq35/N0WmCV2sOTjt27GDMmDEnLG+4r4JXO7D7QO9kOLga44d/mfdKiR8DAeFWVwaAr93GxIFRTBwYxQPThrHrsDklcfnWQ6zZl1/foWr+l7uIDvGr65IYw6TB0QRrSqJ0Yy6XC6cLHE4XTpf5ML8Gp9OFo26Z0wkGLb+dRFdUWFhInz59TlgeHh5ev94TGRkZraqntft3di0ffyIMuRNb/18TmfsdkVlfEHZ4HUa2+XB9/idKokZREH8+BbHn4PALa+oVuDXZxi+HRrM2p4ofDlSyPreKvUfLeebr3Tzz9W56h9iZ2CeAM/sE0D/Cp81DmP79u8f4nS4XNQ6odriodriocriocbrY/c068/e2+3d63dcOJ3Xf1/1er/9932CbuuXOkyyvPyZ4sBynA8NVi81Zg91Vi91Vg1H3ta3ue3N5LXZnjfk95vc+rlp8XDX4uGqxY37vSw0+dV/7UIsfNfgZDnyppZwgsg7dQr/ePb363neavxZbc3AqLCys387TfU9Gnyq2UPw47AdXY9uwCDYsAsAVPQRX/BiIH2s+9xoGNuv/0+wfFcjNZ/fj5rP7UVBezdeZR1i+7RDfZB7hSGk1i9ceZPHag/j52JjQvwcXJPXi/KSexEUEnvJ1u/t/A51l/C6XixqHi1qnkxqHixqHk9omv3dR7XBS63BS63Sdctsap5OaGgdZOaV8l78TDOO4YOKqP1i5l7ucNAoujbdtEG6cLlx1B0bz6xNf69TbHh+UGm5rvtbJtnW5PHtvrxsRQkqK9z9Z7CxO9cezp39Yp6SktOiaMIfDQUZGRov37+zadvxnA/fiLD2EsfU9jE1vYxxcRdjRdMKOppOwaR4MvABX8jW4hlwMfsEnvMKZwBygtKqWL7Yd4pNNeXydeZjcUgfvbivj3W1lJPQI4pLkGC5J7k1yXFirQpj+/a0dv9PporLWQWWNk8oaB1W15nNFjbmsqsZBZd2yyhonlbUOqmqObVNVt8y9f2Vt3T71yxuvq65t+AGYixAqCKECX6MWP8yHb93Dzzjue2rwM2rxxVH/vS+1BBru9cc9Gw33rVtuNPze3N/XOPZ67n3thocHl+MZdY9m2hn8E/qnTvX4x7j/+2kO6/+69UBrDk5teWADfarYUrYelxCVbCO4YAshBVvwL8/BOJKJcSSzPog57AGUhw+hLHKY+YgYRk2gdz+BaI5+wK+SYMaQKLYermZNThVrsqvIK3PwzY4jfLPjCP/3AfQL9+GMOH/OiPNnYKQvtpP899Ud/htwuVzUOKHG6aoLHnVfO2Hvt+uodUJtXdiodZqfqjX1fW3dH/3Hf99w/+O/b8nrOZxQ6zJfx9nK3/ent9PbP8AyBk4CqK571OBvVBNIDYFGNb42iPYf2S3++2+OiIiIJj/8KyoqAmjyQ8NTsdvtrfrDsbX7d3ZtOv7wWJgwy3wU7DO7Im56GyNvE+xYirFjKfgGwdBLzGvCBl4APn6NXyLIzlWj+3LV6L6U1YWwjzNy+HL7Ifbnl7Pgmz0s+GaPGcJSejMtJZaU+PAWhzD9+5vjdzhddWGlYeBpEF4aBZkGgalu+4rqE/etOi4EVTRYXu1o3UwAG05CKSfcKCOMMsKNMqLrnsMpI8woJ7zu+zCjjDC/smPfU46P0TlmIjhsvrhsvjhtfrhsfjhtvrjsvrjs5vfYzfXY/XHZfcHuBz5+GHY/82u7H4ZP3aPua5uPHy67HwfzK+l/5rVe/++/0wSv1hyc2vrABvpUsaUcDgcZPkH0vuL/mb/cyo5A1lqMrDUYWWsgex32qhJC8zcSmr+xfj9XWBzEjcEVPwZXn7Fmhylf65pdjAVmYAaLnYfL+GLbIZZvO8T6/YXsLaplb1Etb20to2eIP+cN7cn5ST05a1AUQX4+Xv1vwOUypw1U15q/yKvrPtlyf11V62jw/bHtqmocx7Y/bj/3QeH4dVUn+RkN19U4vJ5e2pWPzcDHbuBjs+HrfvZp+L2Br73ua7utye/tNoPiwgKio3pgt9mwGeYymw3za8PAZjOwGRxb1+hrc729bpn5dd02dV8bNuqWGdgMJ37OKnyc1fi6qvB1VuHjfriqsTur8HFU4uOswu6swu6oxsdZic1Rhd1Rid1Zhc1Rhc1hLrPVVtZ9XYlRW1X3fOyBowrDUX3K9zGv4moiUxa06ndoVzFkyBA+/PBDamtrG02lz8w0u78OHjzYqtKkLUUmwqQ7zcehrXXt6d+Cgr31gYyACBh+BSRPh35ng63x/x/B/j71t0kpq6rly+1mCPtiW10I+3o3C77eTZ/IwPrGHKP6tDyEdWYul4uKGgcF5TUUlldTWF5DYXkNBeXV9d8XlNdQVFFdv83RkgocHyyjssZhybHLh1rCKSPaXkG0bzlR9kp62MvpYSsn0nCHpnJCXWWEUkqws5QgZymBjhICHKWt/vkuww6+gY1CCnZf8PE3nxst9zu27KTrT7d/w/V+p/8ZNh/sXvpv2eFwUJSebv48L+s0was1B6chQ4bUb9dQaw5s+lSxderHHxYDYZfCsEvNFU6nebPKg6vh4BrzcWgzRnE2FGdjbPvA3M6wQ8wI6HMG9BkL8WdA1KBG91FpL0mx4STFhvPb8wZztLSKL+tu3PxN5mEOl1bx5tqDvLn2IP4+Ns4cGMWkwdEcyS1nc1UWNU4aB6ImAsyxgOM4LkQ1CD21Tqocx08f6Hj87Db8fAwMl5MAPz987Qa+PscCijvU+Lm/ttvwbbDO1x1mfMzlPnXL/ew2fGzubdyB6Ng2vg33bfBa7m2PfX/ybXztRuv/gHG5cFSWsGn9apKTemB3VkNNBdRWQm0F1DR8rnu419dUQHVVM7Y7bpmzpm3+8VrK5gu+geATAL4BuPxCKIkeTXQ3/x3oNmXKFN58800+++wzLr300vrl7777Lr169WLUqFEWVide0WsYXPAnOP8ByFpndkbc/A6U5sG6l81HSG+zPX3ydIgf3ag9PZgh7LKRcVw2Mo7y6lq+3Ha4PoQdLKhg4Te7WfjNbuIjArk0pTeXpsSS2jeiU4awyhqHGZwqqikoaxiWahqEqGoKKxqHrJadRTpxHz+7DX9fGwG+dgJ97QTUfR3gY69fHuBrJ8BuEOrrIMIoI5xSQikjxFVGiKuUIEcpQc4SAh0l+NcW41dTgm9NMT7VxfhUF2GrKsKoKW/8gx11D0/4BkNghBniA8KPfX2aZQ6/UNI3byc1NVW/l72s0wSv1hycpkyZwoMPPsiGDRvqt6utreX9999n1KhRaqzRkdhs0HOo+Uj7hbmsqhRy0s0QllUXxkpyzJta5m6ENc+b2wWEm8064t1hbAwER7Vr+VEh/vX3a6mqdbByd37dPcMOkVVYwZfbD/Pl9sN1W2/xej0+NgM/Hxv+Pjb83A+7DT8fe/1y//plx9b7+9rws9vrl/k3Wn78a9nwb/B6jZc33tYwDBwOB+np6Z3nF7zLBbVVUF4KVcVQVWL+N1lVUvcohuqG3zfY7vjl1SXYXU5GAXxmwVjsfuATCL4BZhCqC0PHlgWanyzWB6VAD7bzb7ze/TOO+9Te6f5kUQCYPHkyZ511Fn/+858pLS0lISGBjz76iG+//ZbHHnusc/w/Ii1jGNBnjPm46K+w9zvzLNiW96A0F3582nxE9jfvD5Y8HXolnfAyQX4+TBsZy7SRsVRUOxqdCcsqrOA/3+7hP9/uIT4i0OyOODKWNAtCWHWtkyJ3OKqooaCscViqPwNVVlO/vKC8msqaln+g6Gs3iAjyIzLIl4hAPyKCfIkI8iUyyI/wuueIQF/CAuxk79tNWvIwgo0qAp2ldQGpGHtVEVQUQmURVBbWfV14bFlxg2WnOdvfLP7hEBh+mvAUeeKygPATpqo2Wxe8draj6jTBq7kHp/vvv58lS5bw+eefEx8fD8D06dN57bXXuOOOO7jrrruIioritddeY8+ePbzwwgtWDkuawz/EnHbR7+xjy4qyzLNiWWvg4FrIXm/+Atz1hflwi+xvhrA+Z5iPmJSW/2LytGwfO+cM6ck5Q3ry5ytcbM8rYfnWQ6zac5SS4hKie0Tg72tvFGiaDi72xqHo+EBzsgBkt3XvlveOWqguOS4QNRWUjntUN9jOvY8Xzhq57P4Yx4eUhmHnVGGmJdv5+J8QgqRjmDdvHv/85z958sknKSwsZMCAAfzjH/9g2rRpVpcm7cVmhwGTzcelj8PO5WYI2/4JFOyBbx4zHzHJdSHsGohIOOFlAv3s9dMMK6odfJ15iI8yclm+NY+swgqe/W4Pz363h7jwAC5OjmXayN6k9Y30qFSH01UfoAqOO+tUVOGezldz3FmqGkqralv89thtBhGBvo3CUkSQX12I8iW8LlxFBvkRHuhLZLC5TZCfvXHArCyCwv1QuNt8ProPCvfjKtyHI38/9u/LMFytDCGGvYnAFN44KJ1smX+Yfk93cZ0meEHzDk5OpxOHw4GrQZstPz8/XnzxRR577DH+8pe/UFFRwbBhw/jPf/7DuHHjrBiKtFZ4vPkY8RPze0cNHNpSN0Vxrfl8dId5wCrYAxlvmtvZ/c3rw/qcYZ4R6zPWPHh5+ZM/wzBI6h1GUu8wZp3Tv3Od8WlPTifUlJ3m7FETZ52qmzgbVVvR9vX5hYB/qPlo+PXxD78Q8wDqH2p+cOAfan7vF4LDJ9Cc0pE2Wv/+AkBwcDAPPPAADzzwgNWlSEfg4w9Jl5qPqlLIXGpOR9y5DPI2mY9lf4a+482zYCOugpATG1AF+tm5ODmWi5Njqaxx8NV2czri8q15ZBdV8vz3e3j++z3Ehgdw0YgYYqhkH9kUV9bWnX1qGKKOnaUqrmx5gDIM8ybSjYNTXVgKOnZGqtFZqmBfQv2b2Tq/qtQMVHn76gLWfvM6OvfXlYVN18VxfxDb/ZoXlJpa5hfi9b8ppPPqVMGrOQenuXPnMnfu3BOWR0dH87e//c2b5YmV7L5moIodBWNvNpdVFEDWWjOIZa0xw1hFARxcZT7cgnsem5rY5wyIGw0BJ95jRTzgdEJFPpQegrJD5nPd10bpIQbkHcC2yd4gTJUeC1C08UXNPgHHBaXjA1Eo+DUMTsdt597PL6RtriF0OMBo/2sRRaQT8g8xz3ClTIfyfNj6vtmYY+93cGCl+Vh6r3mmLHk6DLusyXtjBvjauTi5Nxcn96ayxsHXmYf5JCOHZVsPkVNUyYs/7KvbsrDZpYUG+JwkOJlnmyKDG07vM4NUaIAv9tbMxKgug8IDdUFqX91jv9k1snC/edw5naAo8wPXiMS65wQc4X3Zll1KUtoE7MFR5nFD4Um8oFMFLxGPBEbCoCnmA8xrdfJ3N75WLHcjlB2G7R+bDwAM6Jl0bHpin7Hm99399L/TCeVHjwWpssPmxeD1XzcIWWVH4CTTNWzAaSe2GPbjQlILgpL70Q5dikREvC6oB4yZaT6Ks2Hzu2YIy153bJr9h7+HIReaIWzIReZU4+ME+Nq5aERvLhphhrBvdxzho43ZZOw7REyP8Pppek0FqfBAM0CFB/riY/fCB0g1FU0HK/ej7PDpXyMwsj5QmeGqLmBFJkJ4X/OYcTyHg8rSdAiNBc1EEC9S8JLuwzAgaqD5GHWduaym0gxfDbsoFu2Hw1vNx/pXzO38QiAurW6KYl0gC+1t3VjaitNhfopamlcXmg7XPec1+LruuewwuDy8yDmwB4T0Ms8qhvSCkBicgVEcOFJM34HDsQWGNz1lT582ioicXFgcTLzNfBzdZbajz1gMRzJh6wfmwy8UkqaZ9wgbMLnJD6ECfO1MHR7D+UOj22cKfG0VFB1sPP2vPmTtN489p+MfDpGNz1gd+7pvk2f8RDoKBS/p3nwDoO848+FWknfsjFjWGrPdb3Up7P3WfLiF920cxGJHNfnpYrtzOswzU6V1AarR2ajDjZeVH/E8TAVFQXAv85qCYDNMHfvaHbJiIDi6yQO9y+HgSHo6fVJS9cmiiEhrRQ2EyXfDOX+A3AyzKcemd6DoAGx83XwERcHwn5ghrO947916pbYaig82uL5qX+NwVZLLaaeT+4U0Pkt1fLgKjPBO7SLtQMFL5HihMeanhEl1TVucDji8vUEXxTXmDTCLDpiPze+a29l8zI5T7i6K8WeYB8S2OHPjdJjT9467XqrRND/3svKjHoYpwzwoNzwz5Q5R9V/XBauThCkREbGYYUDsSPNxwZ/Na5kzFsPmJeaHbGueMx9hfcx7hKVMh94jPTtGOWqhOKvxFMCG4aok+/THH9+gxmerjg9XgZGa8SBdloKXyOnY7BAz3HyM+aW5rKrEbGHfsIti2SHzfmM56bD6P+Z2gZHHuifGn2HeCNO/bhqEsxbKT3E2quGy8qN41nTCMENSozNTTQSpkF4QFA12/SoQEekybDZImGA+Lv4b7PnKvB5s64fmGakfnjQfUYPNs2DDrzL3czrM8NRw+l/DcFWcddLrd+v5BJzQvOJYuEo0P+hTsJJuSn9tibSEfyj0P8d8gNm4o+jAsSCWtQay080uijuXmY86tvC+jKwowfZBER6FKcNWd2YqpsGZqWPXTjU6WxUUpTAlIiLmscDdaOqyCtjxmXkmLPMz87YrXz2M/auHSQmIwvZRkfmh4Clfz6+Ja6vqvo5MNI9FClYiTdJfZiJtwTCOHXySrzGX1Vab91up76K4GvJ3YxQdoH6ynmEzzzg1uk7qJNdOBUWps6KIiLScbyAMv9J8VBbBto8g4y1cu7/Cr/KouY3NF8L7HDcFsN+xr0NivHeNmEgXp+Al4i0+fubUwvjRwK/NZeX5OPK2sm1vNkljJmEP6akwJSIi7S8gHFKvh9TrcRbnsmPlZww+41zs4fE6Lol4iT6yEGlPQT0gYQKVYQPM6Rg6uImIiNWCe1LWYwSEKXSJeJOCl4iIiIiIiJcpeImIiIiIiHiZgpeIiIiIiIiXKXiJiIiIiIh4mYKXiIiIiIiIlyl4iYiIiIiIeJmCl4iIiIiIiJcpeImIiIiIiHiZgpeIiIiIiIiXKXiJiIiIiIh4mYKXiIiIiIiIlyl4iYiIiIiIeJmCl4iIiIiIiJcpeImIiIiIiHiZj9UFdDYulwsAh8PRov3d+7V0/86uu48f9B5o/Bp/w+eW7u/+XSwmHZtaR+PX+Bs+dzcaf/sdlwyXjl4eqa6uJiMjw+oyRES6tZSUFPz8/Kwuo8PQsUlExFrNOS4peHnI6XRSW1uLzWbDMAyryxER6VZcLhdOpxMfHx9sNs2Wd9OxSUTEGp4clxS8REREREREvEwfF4qIiIiIiHiZgpeIiMj/3969B0V13XEA/y5gIqBhQUQcHzWgu7y2CAqLClGJLwwGiKKd6QBVEImBWlFriE0DVkVrHBugiASLaB0Ho+iIIZqgZrRTWRQrpShKAK2QBBFBROR9+wezt66gorA8v5+ZHcdzD9zfuXv3fufcPbsQERFpGSdeREREREREWsaJFxERERERkZZx4kVERERERKRlnHgRERERERFpGSdeREREREREWsaJVzdLS0uDXC4XHzY2NnB1dcXatWtx+/Ztjb5XrlzBpk2b8MEHH8DOzg5yuRylpaW9U3g36ez4W1pakJycjMDAQLzzzjuwt7eHh4cHPv/8c9TU1PTeALTk2ePy7EOlUvV2ia/t9OnTkMvlyMjIaLft/fffh1wux8WLF9ttmzNnDnx8fAAA58+fx+9//3ssWrQItra2kMvlWq+7u3R1/LW1tdizZw/8/PwwY8YMODg4YNGiRUhMTERDQ0NPDKFLuuP53717N7y9veHs7AyFQoF3330Xn376KcrKyrRe/2DBbGI2dWSgZhNzibnUV3NJr0s/Tc8VHR0NCwsLNDQ04OrVq0hISIBKpcI333wDIyMjAEBWVhYuXboEa2trGBoaIjs7u5er7j4vG399fT1iY2Ph6ekJX19fGBsb4/r169izZw/Onz+PY8eOYejQob09jG6nPi7PmjhxYi9U0z2cnZ0hkUiQlZWFhQsXiu3V1dW4desWDAwMoFKp4ObmJm77+eefcffuXSxfvhwA8N133yE3NxfW1tYYMmQI8vPze3wcr6ur4//xxx+RkpICLy8v/OY3v4GBgQFycnIQFxeHf/7zn0hOToZEIumNoXVKdzz/NTU1eO+992BpaQlDQ0P88MMP2LNnD86dO4dTp07B2Ni4x8c1UDGbmE0dGWjZxFxiLvXVXOLES0smTZoEhUIBAFAqlWhpaUFsbCwyMzOxePFiAMDq1asRGhoKANi3b9+ACreXjX/o0KE4e/asxomrVCoxevRorFmzBmfOnIGXl1dvla81Tx+XgcLExASTJk1qd/5evnwZenp6WLx4cbu7pllZWQDannMA2LJlC3R02t6A37x5c78KuK6Of+zYsTh37hwMDAzE7dOmTYO+vj7+/Oc/IycnB1OnTtX+QF5Tdzz/n332mcZ29XEJDg7G2bNnsWTJEi2OYHBhNjGbOjLQsom5xFzqq7nEpYY9RH1Bq6ysFNvUL+jB4Nnx6+rqdni34Je//CWAtjsP1H8olUqUlJTg3r17YptKpYKdnR1mzpyJ/Px81NbWituys7Ohq6srXrj7+2uhK+M3MDDQCDe1/vRa6Orz3xETExMAgJ4e7w9qE7OJ2TRQMZeYS30xl/r3WdWPqNfHT5gwoXcL6SWdHb/6jkN/Xd7wMq2trWhubtZ4tLS09HZZXebi4gIAGneXVCoVnJ2d4ejoCIlEgpycHI1tNjY2GD58eI/Xqg3aGH9/ei101/ibm5tRX1+P69evY9u2bZgwYQLmzp3bM4MYpJhNzCZgYGYTc4m5BPS9XOLES0vUF7HHjx/j4sWL2LNnD5ycnODu7t7bpfWI1xl/eXk5du3aBTs7O8yePbsHq+05S5cuha2trcZjICzvcHJygo6OjniBq6qqQmFhIZycnGBoaAgbGxvxgv3TTz+htLRUfDt/IOju8RcUFCApKQlz586FlZVVj4yhK7pj/BUVFbC1tYW9vT18fHzQ0tKCAwcOwNDQsMfHM5Axm5hNHRmI2cRcYi71xVziGg4tWbp0qcb/LS0tER8fP2iWzbzq+Kurq7Fy5UoIgoC//OUv/f4t/ufZsWMHLC0tNdr68gdUO8vIyAhWVlbimunLly9DV1cXjo6OANougOoLnLrPQAq47hx/aWkpQkJCYG5uji1btvRA9V3XHeM3NjbG0aNH0djYiOLiYiQlJcHf3x8HDx6EmZlZD45mYGM2MZs6MhCzibnEXOqLuTQwryB9wI4dO3D06FGkpKRg2bJlKCoqQnh4eG+X1WNeZfwPHz7EihUrUF5ejr/97W8YN25cD1fbcywtLaFQKDQednZ2vV1Wt1Aqlbh9+zbKy8uhUqlga2sr3hVydnbGjRs38OjRI6hUKujp6WHKlCm9XHH36o7xl5WVwd/fH7q6ukhJSYFUKu3hUby+ro5fT08PCoUCU6ZMga+vL1JSUlBaWorExMTeGM6AxWxiNnVkoGYTc4m51NdyiRMvLVFfxFxcXLB582b4+vri4sWLOH36dG+X1iM6O/6HDx9i+fLlKC0tRXJycr94+5o6pr5TlJ2djezsbDg5OYnb1Bezy5cvQ6VSQaFQDLglZF0df1lZGfz8/AAABw4cgLm5eQ9V3j26+/k3NzeHmZlZu78xRV3DbGI2DSbMJeYS0LdyiROvHrJhwwYYGRkhJiYGra2tvV1Oj+to/Opgu3v3Lvbt2wcbG5terpK6wsnJCbq6ujhz5gwKCwvh7Owsbhs+fDisra1x4sQJlJWVDajlHGpdGf+PP/4IPz8/tLa2IiUlBWPGjOnp8rusu5//O3fu4Oeff8YvfvELbZY96DGbmE0DGXOJudTXcmlwLOruA4yMjBAcHIydO3ciPT0dXl5eePDggfihv1u3bgEALly4ABMTE5iYmGicIP3ds+OfP38+AgMDcf36dXzyySdoaWnBtWvXxP4mJiYYP3587xWsJYWFhR1+U9T48ePFryntr4YNGwYbGxtkZmZCR0en3Vv2Tk5OSElJAdB+HXVZWRny8vIAAP/9738BQLwDPWbMmH7xIe/XHX9lZSX8/f1RUVGBrVu3orKyUuOrvc3NzfvFXcbXHX9BQQGio6Mxf/58jBs3Djo6Orh16xb2798PqVSKFStW9Og4BhtmE7MJGLjZxFxiLvW1XOLEqwf5+fnh0KFDiI+Ph6enJwoLC7FmzRqNPlFRUQDa1p4ePHiwN8rUmqfH7+DgIF7Qtm7d2q6vj48Ptm/f3tMlal1ERESH7Vu2bIGvr28PV9P9lEol8vLyYG1tjWHDhmlsc3Jywv79+zFkyBA4ODhobFOpVO2Ojfq10Z/OhdcZ/w8//IC7d+8CaLv7/qzQ0FCEhYVpt/Bu8jrjNzU1hZmZGZKTk1FRUYHm5maYm5tj1qxZCAkJwejRo3t6GIMOs4nZNJCzibnEXOpLuSQRBEF47Z8mIiIiIiKil+JnvIiIiIiIiLSMEy8iIiIiIiIt48SLiIiIiIhIyzjxIiIiIiIi0jJOvIiIiIiIiLSMEy8iIiIiIiIt48SLiIiIiIhIyzjxIiIiIiIi0jJOvKhfSEtLg1wuFx82NjZwdXXF2rVrcfv27d4uDwCQkJCAzMzMdu0qlQpyuRwqlaoXqmpz7tw5hISEYPr06bCzs4OzszMCAgJw8uRJNDU19Vpdz+roWH388cdwd3fX6n7Ly8sRGxuLGzduaHU/RDSwMJu6htn0YsymgUevtwsgehXR0dGwsLBAQ0MDrl69ioSEBKhUKnzzzTcwMjLq1dr27t2L+fPnY86cORrttra2SE1NxcSJE3u8JkEQ8MknnyAtLQ0zZ87Exx9/jNGjR+PRo0dQqVSIiopCVVUVAgICery2zlq9ejX8/f21uo979+4hLi4OY8aMgbW1tVb3RUQDD7Pp1TCbOofZNPBw4kX9yqRJk6BQKAAASqUSLS0tiI2NRWZmJhYvXtzL1XVs2LBhmDx5cq/sOykpCWlpaQgLC0NoaKjGNnd3dwQFBeHOnTs9WlN9fT2GDh3a6f7jx4/XYjVERF3HbHo1zCYarLjUkPo1ddBVVlZqtOfl5SEkJATOzs5QKBTw9vZGRkaGRp8HDx4gMjISCxcuhIODA6ZNmwZ/f39cuXKl3X4aGxsRFxcHDw8PKBQKKJVK+Pn54erVqwAAuVyOuro6HD9+XFxy4ufnB+D5yznOnj2LZcuWwd7eHg4ODli+fDn+9a9/afSJjY2FXC5HYWEhwsPDMWXKFEyfPh0RERF49OjRC49NU1MTkpKSYGFhgY8++qjDPiNHjsTUqVPF/1dXVyMyMhJubm6ws7PDu+++i927d6OxsVHj5xoaGrBr1y64u7vDzs4Obm5uiIqKQk1NjUY/d3d3rFq1Ct9++y28vb2hUCgQFxcHACgqKkJgYCDs7e2hVCrxxz/+EY8fP25XY0fLOeRyOTZv3owTJ07Aw8MD9vb2eP/993H+/HmNfnfu3EFERATmzZsHe3t7uLm5ISQkBDdv3hT7qFQqLFmyBAAQEREhPn+xsbFin86cT0REasym52M2MZsGM77jRf1aaWkpAGDChAliW1ZWFoKCgmBvb4/IyEgMHz4cGRkZWLt2Lerr6/HBBx8AaLuQA0BoaChMTU1RV1eH7777Dn5+fti/fz+USiUAoLm5GUFBQcjJyYG/vz9cXFzQ0tKC3Nxc/PTTTwCA1NRUBAQEQKlUYvXq1QDa7iY+T3p6OtavXw9XV1fs2rULjY2NSEpKEvf9dOAAQFhYGBYuXIglS5bg1q1b2LVrF4C25S3P85///AfV1dXw9fWFRCJ56bFsaGiAv78/7t69i7CwMMjlcly5cgWJiYm4ceMGEhMTAbQtEVm9ejWysrIQHByMqVOn4ubNm4iNjcW1a9eQmpqKN954Q/y9+fn5KCoqwocffoixY8dCX18f9+/fh5+fH/T09PDZZ59hxIgRSE9Px5/+9KeX1qn2/fffIy8vD7/97W9hYGCApKQkhIaG4vTp0xg3bhyAtmUaUqkU69atg4mJCR4+fIjjx49j6dKlOH78OCwsLGBra4vo6GhERETgww8/xKxZswAA5ubmADp/PhERqTGbmE3MJuqQQNQPHDt2TJDJZMK1a9eEpqYmoba2Vrhw4YIwY8YM4de//rXQ1NQk9l2wYIHg7e2t0SYIgrBq1SphxowZQktLS4f7aG5uFpqamoSAgADho48+EtuPHz8uyGQy4ciRIy+scfLkycLGjRvbtWdlZQkymUzIysoSBEEQWlpaBFdXV8HT01OjltraWmHatGnCsmXLxLaYmBhBJpMJX375pcbvjIyMFBQKhdDa2vrcer7++mtBJpMJhw8ffmHdaocPHxZkMpmQkZGh0Z6YmCjIZDLhH//4hyAIgnDhwoUOa1LvLzU1VWybPXu2YG1tLRQXF2v03blzpyCXy4UbN25otC9fvlzjWAmCIGzcuFGYPXu2Rj+ZTCZMnz5dePTokdhWUVEhWFlZCXv37n3uGJubm4XGxkZh3rx5wrZt28T2f//734JMJhOOHTvW7mde93wiooGP2cRsehqziV6GSw2pX1m6dClsbW3h6OiIoKAgvPXWW4iPj4eeXtubt3fu3EFxcTEWLVoEoO2OoPrxzjvvoKKiAiUlJeLvO3z4MHx8fKBQKGBjYwNbW1tcunQJRUVFYp+LFy/izTff7LZ1+iUlJbh37x68vLygo/P/l6ChoSHmzZuH3NxcPHnyRONnOlrO0NDQ0G4ZS1dkZWXBwMAACxYs0GhX3zW7dOmS2O/pdjUPDw8YGBiI/Z6u9e2339ZoU6lUmDRpEqysrDTaPT09O12vUqnUuHNramqKESNGoKysTGxrbm5GQkICFi5cCDs7O9jY2MDOzg63b9/WeI6f51XPJyIanJhNbZhNzCZ6MS41pH5lx44dsLS0xOPHj5GRkYHU1FSEh4cjKSkJAHD//n2x344dOzr8HVVVVQCA5ORkbN++Hb/61a+wZs0aGBsbQ0dHB1988QWKi4vF/g8ePICZmZlGEHWFev8jR45st83MzAytra2oqamBvr6+2C6VSjX6qZdL1NfXP3c/o0ePBvD/JS8vU11dDVNT03ZLP0aMGAE9PT1x+Ut1dTX09PRgYmKi0U8ikcDU1FTsp9bROKurqzF27Nh27aampp2qFWh/TIC249LQ0CD+f/v27Th06BBWrlwJJycnGBkZQSKR4A9/+INGv+d5lfOJiAYvZlMbZhOziV6MEy/qVywtLcUPLbu4uKC1tRVfffUVTp8+jQULFsDY2BgAsGrVKsydO7fD36G+w3Xy5Ek4OzsjKipKY/uzH6I1MTFBTk4OWltbuyXg1DVWVFS023bv3j3o6Ojgrbfe6vJ+7OzsIJVKcfbsWaxbt+6la+mlUilyc3MhCIJG38rKSjQ3N4t1S6VSNDc348GDBxoBJwgC7t+/Lz4/ah3tVyqVisHxtI7auuLkyZPw9vZGeHi4RntVVVWnjvGrnE9ENHgxmzqP2cRsGsy41JD6tQ0bNsDIyAgxMTFobW2FhYUFJkyYgIKCAigUig4f6iUAEolE44O2AFBQUIBr165ptLm5uaGhoQFpaWkvrOWNN9544V0+tbfffhujRo3CqVOnIAiC2F5XV4dvv/0WkydP1rij+LqGDBmCoKAgFBcX469//WuHfSorK5GTkwMAmDZtGurq6tr9oc0TJ06I25/+9+TJkxr9zpw5g7q6OnH7iyiVShQWFqKgoECj/dSpUy8f2CuQSCQYMmSIRtv333+P8vJyjbbn3aV9lfOJiEiN2fR8zCZm02DGd7yoXzMyMkJwcDB27tyJ9PR0eHl5ISoqCitXrkRgYCB8fHwwatQoPHz4EEVFRcjPz0dMTAwAYNasWYiPj0dMTAycnJxQUlKC+Ph4jB07Fi0tLeI+PD09kZaWhsjISJSUlECpVEIQBOTm5sLS0hLvvfceAEAmkyE7Oxvnzp3DyJEjYWhoCAsLi3Y16+joYMOGDVi/fj1WrVqFZcuWobGxEfv27UNNTQ3WrVvXbcdHHW6xsbHIy8uDp6en+EcqL1++jCNHjiAsLAxTpkyBt7c3Dh06hI0bN6KsrAwymQw5OTnYu3cvZs6cienTpwMAZsyYAVdXV3z++eeora2Fo6Mjbt68iZiYGNjY2MDLy+uldQUEBODYsWMIDg7G7373O/Gbo55eRtMdZs2aJX5DlFwuR35+Pvbt2yd+K5Ta+PHjMXToUKSnp8PS0hIGBgYwMzPDqFGjOn0+ERGpMZtejNnEbBqsOPGifs/Pzw+HDh1CfHw8PD094eLigq+++goJCQnYtm0bampqIJVKYWlpCQ8PD/HnQkJC8OTJExw9ehRJSUmYOHEiIiMjkZmZiezsbLGfnp4evvzyS+zduxdff/01UlJSYGhoCCsrK7i5uYn9Nm3ahKioKISHh+PJkydwdnbGwYMHO6x50aJF0NfXR2JiItauXQtdXV3Y29vjwIEDcHR07LZjI5FIEB0djTlz5uDIkSPi8VDXv379evGDyG+++SYOHDiA3bt3IykpCVVVVRg1ahRWrFih8QcuJRIJ4uPjERsbi7S0NCQkJEAqlcLLywvh4eHt7tR2ZOTIkfj73/+OrVu3IjIyEvr6+pgzZw4+/fRT8SuPu8OmTZugp6eHxMRE1NXVwcbGBrGxsfjiiy80+unr62Pbtm2Ii4tDYGAgmpqaEBoairCwsE6fT0RET2M2PR+zidk0WEmEp99PJiIiIiIiom7Hz3gRERERERFpGSdeREREREREWsaJFxERERERkZZx4kVERERERKRlnHgRERERERFpGSdeREREREREWsaJFxERERERkZZx4kVERERERKRlnHgRERERERFpGSdeREREREREWsaJFxERERERkZb9D2NSEkHuTVfVAAAAAElFTkSuQmCC",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA04AAAHbCAYAAAD8lMpYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACie0lEQVR4nOzdeXhU9d3//+eZyb7vkIWEnQAJhEUWFRRFtKK1Ki5dXFutFqx37d1WW1ur96/WpYtfFi227gsqVnHHBTdcQSAQ9j2QFQLZ98zM74+TCQkJkMl2kszrcV1zzcw5c2ben7Hl5DXnc97HcLlcLkREREREROSEbFYXICIiIiIi0tspOImIiIiIiJyCgpOIiIiIiMgpKDiJiIiIiIicgoKTiIiIiIjIKSg4iYiIiIiInIKCk4iIiIiIyCkoOImIiIiIiJyCgpOIiIiIiMgpKDiJiIiIiIicgoKTiIiIiIjIKSg4iXjonHPO4ZxzzunUe+Tk5DBq1CjuvPPOLqqqY7piLCIiYi3tl0R6ho/VBUj/M2rUKABsNhsfffQRiYmJbb7uwgsvZM+ePQA89dRTnH766R36vOLiYj766CM+/fRTdu7cSWFhIb6+vowcOZLLLruMyy+/HJtNvxH0JXv27OHFF1/k22+/JT8/n9raWiIiIhgzZgznnXce3//+9/H392+1XVZWFi+++CJr1qzh8OHD+Pj4kJiYyJlnnsn111/PgAEDLBiNiFhN+yXpKPf/dnbs2HHC15xzzjnk5uayatUqkpKSOvxZ2of1fvp/rXQLHx8fnE4nr732Wpvr161bx549e/Dx6Xx2X7lyJXfffTcbN25k3LhxXHfddcyZM4ddu3Zx9913c/vtt+NyuTr9OdIzFi9ezEUXXcTzzz9PcHAwl156KT/96U8566yzyM7O5u677+aHP/xhi21cLhcPP/ww8+bN480332To0KFcc801zJs3j4CAAJ588knOP/98Vq5cadGoRMRq2i9Jb6V9WN+hI07SLaKjo4mJieG1115j/vz5rX5Ze/XVV/H19WX69Ol8/vnnnfqswYMHs2TJEmbNmoXdbm9afscdd3DFFVfwwQcf8P7773PBBRd06nOk+z322GMsWrSI+Ph4/t//+3+MHz++1Ws+//xz/vOf/7RYtmTJEv7zn/+QmJjI0qVLGTFiRIv177//Pr/5zW+44447CA8PZ/r06d06DhHpfbRfkt5K+7C+Q0ecpNvMmzePvLw8vvzyyxbLKyoqWLlyJeeccw7R0dFtbutyuXjmmWe48MILSU9PZ8aMGdx3332Ul5e3mv88ffp0Zs+e3WLnBBAbG8vVV18NwJo1azyq3eVy8fzzzzN37tymz7/33nspLy8/6XbvvvsuP/rRj5g0aRLjxo3joosu4l//+he1tbUn3GbPnj384he/YMqUKWRkZPDDH/6QL774otXrms8/b+82HR3Lpk2b+J//+R9mzJhBWloaZ555JjfeeCPvvvvuScffGTk5OSxZsgRfX18ef/zxNkMTwMyZM1sEp4MHD/LYY4/h6+vLY4891mqHA3D++edz11134XA4+POf/4zT6ey2cYhI76X9kvZLvY32YX2LgpN0m4svvpjAwECWL1/eYvlbb71FVVUV8+bNO+G29957L/fffz/l5eVcddVVXHTRRXz55ZfccMMN1NfXt7sGX19fAI+nXvzlL3/h//7v/ygtLeWqq65i7ty5fPHFF1x//fXU1dW1uc3DDz/Mr371K/bt28fFF1/Mj3/8Y1wuF//85z+58cYb29wuJyeHq6++mpKSEq666iouuOACtmzZwk033XTCnYGn23g6lldeeYWrr76ajz76iAkTJnDjjTdy1llnUVRUxLJlyzz6Hj3x2muvUV9fz5w5cxg5cuRJX+vn59diu4aGBs4999ymuehtueKKK4iNjWX//v0e/8EiIv2D9kvaL/U22of1MS6RLjZy5EjXjBkzXC6Xy/Xb3/7WNXbsWNeRI0ea1l966aWus88+2+VwOFy/+93vXCNHjnR9+eWXTevXrl3rGjlypGvOnDmu0tLSpuW1tbWuH/3oR66RI0e6Zs2adco66uvrXRdddJFr5MiRrs8//7zd9a9bt841cuRI1+zZs13FxcVNy2tqalxXXnllm5//3XffNS0vKipqUcNNN93kGjlypOvRRx9tWn7w4EHXyJEjXSNHjnQ98MADLd5r06ZNrjFjxrgmT57sKi8v79Q2no5l165drjFjxrhOO+00186dO1t9N3l5eaf49jrummuucY0cOdL1yiuvdGi7l19++ZSvveOOO1wjR450LVmypKNlikgfpP2S9ksd5R7fwoULT3ibNGmSa+TIka6DBw96/P7ah/UtOuIk3eqKK66gvr6eN954A4Bt27axZcsWLrvsshN2FHr99dcBuPXWWwkLC2ta7ufnxx133NHuz/773//Ozp07mTlzJjNmzGj3du4Th2+55RYiIiKalvv7+5/w893b3HrrrS2mefj4+HDnnXdis9l49dVXW20XGhrK/PnzWyxLT0/n4osvpqysjA8//LBT23g6lmXLltHQ0MAvfvGLNqcLxMfHtzX8LlFUVATgcdcg93YDBw485Wvdrzl06JCH1YlIf6H9kvZLHbF48eIT3k41XfJktA/rW9QcQrrV5MmTGTJkCK+++io33HADr7zyCjabjcsvv/yE22zbtg2ASZMmtVqXkZHRrukNTz/9NE8++SRDhgzhwQcfbLV+0aJFrZZdeumlJCUlsXXrVgCmTJnS5nja+nx3zVOnTm21bujQoQwcOJCcnBzKyspa7HTHjBlDSEhIq22mTJnC66+/ztatW7n00ktbrPNkG0/HkpmZCeDRDr0tJ/t+T8TV2GHKMAyPPsuT7dyvaf7apUuX8sEHH7Bv3z78/PzIyMjgjjvuOOV0QRHpm7Rf0n7J7VT7peba0468ufbuWzq7D5OepeAk3W7evHk8/PDDfP3117z99tucfvrpJCQknPD17l9u2jpB1263t/iFqi3PPPMMf/3rXxk2bBjPPPMMUVFRrV6zePHiVsumTJlCUlJShz7fvU1MTEybNcXGxpKXl0d5eXmLHdSJXu9eXlFRccJ17dnG07G4X9/Za0Wc7Ps9kbi4OPbu3UtBQYFHnxUbG9vu7dyviY2NbVq2Zs0afvSjH5Geno7L5WLhwoXccMMNvPPOO6f835qI9E3aL2m/BKfeL3VGe/ctnd2HSc9ScJJud+mll/LII49w5513UlZWdtKTb4GmX62OHDlCUFBQi3UOh4OSkpIT/gP6xBNP8NBDDzFy5EiefvrpE3ZHOtkvR6GhoR5/vnuboqIikpOTW73n4cOHW7zOzX2I/nju5W39gufJNp6Oxf36wsLCNj+7vU72/Z7IpEmT+Oabb/jmm2+44oorPNru22+/5auvvjrpdg6Hg2+//RaAiRMnNi1/4oknWrzuoYceYvLkyaxfv15Xrxfpp7Rf0n6pu7V339LZfZj0LJ3jJN0uOjqas88+m4KCAiIjIzn33HNP+vrRo0cD5sUIj5eZmUlDQ0Ob2y1dupSHHnqI0aNH88wzz5xw53QqY8aMAdpuFfvdd9+1+fnumt3/qDWXnZ1NQUEBSUlJLX7VA3PKQlu/3rk/211LR7fxdCwZGRkAJ2wh250uu+wyfH19ef/999m9e/dJX9u869Jll12G3W7nww8/POl2//3vfzl06BBDhgxpc4qIW2VlJU6ns9V/KxHpP7Rf0n6pp51o39LV+zDpXgpO0iN+97vfsWTJEh5//PEWraTb8oMf/AAwL4ba/ITLuro6/vnPf7a5zZIlS/jHP/7B2LFjefrpp9ucBtFe7nnY//rXvygpKWlaXltbyz/+8Y82t3HPjX/sscc4evRo03KHw8GDDz6I0+ls8xfN8vJylixZ0mJZVlYWb731FqGhoZx33nmd2sbTsfzwhz/Ex8eHRx99lD179rRa7+k0Ok8kJSWxYMEC6uvrufnmm8nKymrzdZ9//jk/+9nPmp4PGjSIn//859TX13PLLbe0ueP56KOP+Mtf/oLdbueee+454QngYLbJHT16NBMmTOj8oESk19J+SfulnnSifUtX78Oke2mqnvSIQYMGMWjQoHa9dsqUKVx11VW8/PLLzJ07lzlz5uDr68vHH39MaGgocXFxLU6MfP3111m4cCF2u53Jkyfz3HPPtXrPxMRELrvssnZ9/qRJk7jmmmt47rnnuOiii7jgggvw8fFh1apVhIWFtTm3eOLEifzsZz/jP//5DxdddBHnn38+gYGBrF69mp07dzJp0iR++tOfttrutNNO49VXX2XTpk1MnDiRw4cP8+677+J0OrnvvvvanJbgyTaejmX48OHcc8893HPPPfzgBz/gnHPOYfDgwRQXF5OVlUVISEib329XueWWW2hoaGDJkiXMmzePCRMmkJaWRnBwMEVFRXz33Xfs37+ftLS0FtvddtttVFdX89RTT3HJJZdw5plnMnz4cBoaGtiwYQMbN24kICCAv//97ye94vqDDz7IunXrWLZsWasLV4pI/6L9kvZLPeVU+5au2odJ91Nwkl7pz3/+M0OHDuWll17ipZdeIiIigvPOO4877riDmTNnkpKS0vTanJwcwPwV7Zlnnmnz/aZMmdLuHRTAH/7wBwYPHswLL7zQ6vMvueSSNrf5zW9+w5gxY3j++edZsWIFDQ0NJCcn8z//8z/ceOONbf6imZSUxL333svf/vY3XnrpJerq6hgzZgzz588/YQchT7fxdCxXXnklI0aM4Mknn2TNmjWsWrWKiIgIRo0a5dG5Rx21YMECvve97/Hiiy/y7bff8tprr1FXV0dERASpqan87Gc/a1W3zWbjzjvv5MILL+SFF15g7dq1fP3119jtdhITE7nxxhu57rrrTtru9a9//SvvvPMOzzzzTLv/mBIR76H9kvfulzqjPfuWrtiHSc8wXO4+iCJ9wP79+zn//POZO3fuCacn9Fc5OTmce+65XHrppTzwwANWl9Ov/H//3//Hu+++y3PPPcewYcOsLkdE+hDtl7RfOhHtW/ofHXGSXunw4cNER0e3mMdbXV3N/fffD8CcOXOsKk36mT//+c+8+eabLFmyhLCwsKZOU0FBQQQHB1tcnYj0FtoviSe0b+mfFJykV3rmmWd45513mDJlCrGxsRQVFfH1119TUFDA2Wefzfnnn291idJPLFu2DIDrr7++xfIFCxZw2223WVCRiPRG2i+JJ7Rv6Z8UnKRXOuOMM9i1axdff/01xcXF2O12hgwZwrXXXsu1116rq2ZLl+npa3uISN+k/ZJ4QvuW/knnOImIiIiIiJyCGsGLiIiIiIicgoKTiIiIiIjIKXjlOU5Op5OGhgZsNpvmJIuI9CCXy4XT6cTHx6dFdzJvp/2SiIh12rtv8srg1NDQQFZWltVliIh4rfT09DYvvumttF8SEbHeqfZNXhmc3EkyPT0du93u8fYOh4OsrKwOb9/Xafwav8av8Xf2308dbWpJ+6XO0fg1fo3fe8cPPbdv8srg5J4GYbfbO/U/sM5u39dp/Bq/xq/xd5Smo7Wk/VLX0Pg1fo3fe8cP3b9v0k9+IiIiIiIip6DgJCIiIiIicgoKTiIiIiIiIqeg4CQiIiIiInIKCk4iIiIiIiKnoOAkIiIiIiJyCgpOIiIiIiIip6DgJCIiIiIicgoKTiIiIiIiIqeg4CQiIiIiInIKCk4iIiIiIiKnoOAkIiIiIiJyCj5WFyAiItLbfP3117z55pts2LCBgoICQkNDSUtLY/78+aSlpTW97s477+T1119vtf2QIUNYuXJlT5YsIiLdTMHJQzsLy/m/t7ZwYbKLDKuLERGRbrFs2TJKSkq49tprGT58OEePHuWpp57iqquu4j//+Q/Tp09vem1AQADPPPNMi+0DAgJ6tF5j838ZtuZJSF0GwZE9+tkiIt5CwclDX+wqYvXuIzhqArjyXKurERGR7nDPPfcQHR3dYtmMGTOYM2cOS5cubRGcbDYbGRkZPVxhS0bWK0QUfo1z+5sw6TpLaxER6a90jpOHRgwIAWBvcb3FlYiISHc5PjQBBAcHM2zYMPLz8y2o6ORcMSPNB/mbrC1ERKQf0xEnD6UlhANQUOmgrLqeyBC7xRWJiEhPKC8vZ+vWrUybNq3F8pqaGs444wyOHj1KbGwss2fP5pe//CUREREef4bD4ehQba4B48xfQvM3dvg9+jL3mL1x7KDxa/zePX7o/HfQ3u0UnDwUGexHUmQgOcXVbM4rY8bInp3HLiIi1rj33nuprq7mlltuaVqWmppKamoqI0aMAGDNmjU888wzfP3117z66qsEBwd79BlZWVkdqs2/wp80gPxNZG5YB4Z3/qjX0e+vv9D4NX5v193fgYJTB6QlhDULTnFWlyMiIt3skUce4a233uKPf/xji656119/fYvXnXHGGYwZM4Zf/vKXLF++vNX6U0lPT8du9zz0OBrG4vg8ELujmoykYIhN9fg9+jKHw0FWVlaHv7++TuPX+L15/ND578C9/akoOHVAWmIYK7cUsjm31OpSRESkmy1evJjHHnuMX/3qV/zkJz855evPO+88goKCyMzM9Piz7HZ7h//wqQofTujRLOyFm2Hg2A69R1/Xme+vP9D4NX5vHj90/3eg5hAdkJ5onue0Oa/M4kpERKQ7LV68mEWLFnHbbbe1mKJ3Ki6XC5utZ3exVeHmdEHyN/bo54qIeAvLg1NFRQUPPfQQN954I9OmTWPUqFEsWrTopNu4XC5+/OMfM2rUKO67774eqvSYsQlhAGQfqaKsRt31RET6oyVLlrBo0SJuvfVWFixY0O7tVq5cSXV1NePHj+/G6lo7Fpwye/RzRUS8heVT9UpKSnjllVdITU1l9uzZLF++/JTbvPDCC2RnZ/dAdW2LDPIjLsjOoSoHm3NLOX1YjGW1iIhI13vyySdZuHAhM2bM4Oyzz2417S4jI4Pc3Fx+/etfM3fuXJKTkzEMg7Vr1/LMM88wYsQIrrjiih6tuSq8WUtypxN6+IiXiEh/Z3lwSkxMZO3atRiGwdGjR08ZnHJycvj73//OQw895NEvgF1taKQPh6ocZOUoOImI9DeffPIJAKtXr2b16tWt1u/YsYOQkBBiYmJ46qmnOHLkCA6Hg8TERK655hpuueUWgoKCerTmmpBkXD4BGHXlULwPoof16OeLiPR3lgcnwzA8ev2f/vQnzjjjDM4777xuqqh9hkX68k1uLVlqECEi0u8899xzp3xNeHg4ixcv7oFq2slmhwFjIXedOV1PwUlEpEtZHpw8sXz5cjZt2sQ777zTJe/XmYtkDY30BSArt9TrLjjm7Rda0/g1/ub33qanLjIoHeMaOB4jd53ZICLtcqvLERHpV/pMcCosLOTBBx/kN7/5DQMGDOiS9+zMRbKGNQan7CNVfLl2PcG+3jeX3NsvtKbxa/zezNvH32vFjzPv1VlPRKTL9ZngdM8995CamsqVV17ZZe/Z2YtkJUYEkFtSgy06hYyh0V1WV2/n7Rda0/g1fo2/+y8yKB3jGtjYyS8vE1wu8HA6vIiInFifCE4rV65k9erVvPjii5SXl7dYV19fT1lZGYGBgfj6+nr0vp29SFZaYji5JTVszS/nzBFxHX6fvsrbL7Sm8Wv8Gr/3jr/XihsNNl+oKYGSAxCZYnVFIiL9Rp+YX7Zr1y4aGhq48sorOe2005puAK+88gqnnXYan332WY/XlZ5oXs8pK1cXwhURkV7A7gcDxpiPNV1PRKRL9YkjTpdeeilTpkxptfzaa69l9uzZXHvttYwYMaLH60pLCAdgszrriYhIbxE/3gxN+RthzPetrkZEpN/oFcHps88+o7q6msrKSgB2797NypUrATjrrLNISkoiKSmpzW0HDBjA1KlTe6zW5tIajzjtK6qkrKaesADPpgqKiIh0ufjG85x0xElEpEv1iuB07733kpub2/R85cqVTcFp1apVJwxNVosM8iMxIpDckmo25+pCuCIi0gvEZ5j3+ZlqECEi0oV6RXD6+OOPO7Tdjh07urgSz6Unhis4iYhI7zFgLBh2qDwM5QUQFm91RSIi/UKfaA7RqxzegW3ZVQQVbwMgPck8z0kNIkREpFfwDYTYUebj/ExLSxER6U8UnDy152OM3R8yYO9ywGxJDmoQISIivUjTdD2d5yQi0lUUnDwVmwpAUMlOwJyqB8caRIiIiFhODSJERLqcgpOnEjIACKjKg+oSooLNBhEAWzRdT0REegMFJxGRLqfg5KnASFyRQ8zHjXPH0zVdT0REepOBaYABZblQcdjqakRE+gUFpw5wNc4dN9zBqalBhIKTiIj0Av6hED3cfFygo04iIl1BwakjGqfrGXkbADWIEBGRXsg9XS8v09IyRET6CwWnDnDFTzAfHDdVb68aRIiISG/R+COfznMSEekaCk4dET8OAKP0IFQWqUGEiIj0PmoQISLSpRScOsI/jJrgQebjxikQaYlhgKbriYhILzHQ/JGPkmyoLra2FhGRfkDBqYMqIxqvyt54npN7up4aRIiISK8QGAGRg83H+ZusrEREpF9QcOqgqoiR5oO89YAaRIiISC+k6XoiIl1GwamDKsPbPuK0t6iScjWIEBGR3qApOGVaWoaISH+g4NRB1eHDcRk2KM+HsnyiQ/yPNYjIU4MIERHpBXTESUSkyyg4dZDTJxBiGqfrNf6SpwYRIiLSqzResJ0ju6FGP+qJiHSGglMnNF3PSQ0iRESkNwqOgbAk83HhZmtrERHp4xScOsN9ccHG4ORuEJGVo+AkIiI9Z0dBOe/uqsTpdLVeqel6IiJdQsGpE1zuKRB5G8DlUoMIERGxxN8+2MkTmeV8sLWw9UoFJxGRLqHg1BkD0sCwQ+VhKMslOsSfhPAAQA0iRESk57ibE63NbuNCt+7g1HjBdhER6RgFp87wDYS4Mebj46brqUGEiIj0lIkpEQCszy5pvdIdnIp2QF1Vj9UkItLfKDh11nHnOalBhIiI9LQJgyIA2JpfRk29o+XKsHgIGQAuJxRu6fniRET6CQWnzkpo2VkvLUnBSUREelZSZCARATYanC42tdWgSBfCFRHpNAWnzmoenJo1iNhXVElFbYOFhYmIiLcwDINR0b4ArD9wkvOc1CBCRKTDFJw6a8BYsPlCdTGUZBPT2CDC5YItOuokIiI9ZFS0HwDrTtYgQsFJRKTDFJw6y8cfBqaZj4+/npOCk4iI9BD3EacNB4pxuY67npM7OB3aBg21PVyZiEj/oODUFY47z0kNIkREpKcNjfTF125QVFHHgaPHdc8LHwSBkeCsh0NbrSlQRKSPU3DqCmoQISIiFvOzG6QlhAFtnOdkGJquJyLSSQpOXaEpOG0Ep1MNIkRExBITkiOAE53nlGHeKziJiHSIglNXiE0FnwCoLYXifcSE+BOvBhEiItLDJiZHArDuZBfCVXASEekQBaeuYPeFgenmYzWIEBERi7gvhLujoKz1jAd3cCrYDI76ni1MRKQfUHDqKidoELFZwUlERHrIwPAAEiMCcbpg48GSlisjh4B/GDhqoWinJfWJiPRlCk5d5fjgpAYRIiJigYkp5nS99cef52SzwcBx5uO8zJ4tSkSkH1Bw6iru4JS/EZyOpiNOe9UgQkREetBEd4OI4zvrgc5zEhHpBB+rC6ioqODRRx9l+/btbN26leLiYhYsWMBtt93W9BqHw8Gzzz7LF198wa5duygtLSUhIYFzzz2Xm2++mbCwMAtH0ChmJPgGQV0FHNlNTOwo4sMDyC+tYUtuKVOHRltdoYiIeIFJjUecNhwowel0YbMZx1YmZJj3Ck4iIh6z/IhTSUkJr7zyCnV1dcyePbvN19TU1LBo0SISExP5/e9/z+OPP86VV17JK6+8wg9/+ENqamp6uOo22OzHfslTgwgREbHI6PgwAnxtlFbXs7eoouXKpgYRWeB09HxxIiJ9mOVHnBITE1m7di2GYXD06FGWL1/e6jUBAQGsWrWKyMjIpmVTp04lPj6e22+/nffff59LLrmkJ8tuW8IEOPA15K6H8VeTnhjOh1sL1SBCRER6jK/dxrikCNbsO8q67GKGx4UeWxk93JwdUV8JR/ZA7EjrChUR6WMsP+JkGAaGYZz0NXa7vUVochs3zjzJtaCgoFtq89gJOuvpiJOIiPQk9/Wc1h9/PSeb/djlMzRdT0TEI5YfceqMb775BoDhw4d3aHuHo2PTFNzbtdp+wDjsgKtgE876WsbEhwBmg4jSqlpC/Pv0193khOP3Ehq/xt/83tt0dvze+r31NPd5TidsEHHwW8jPhHFX9GxhIiJ9WJ/9S76wsJC///3vpKWlMWvWrA69R1ZWVqdqaLW9y0mGTxD2hip2fPEG1WHDiAq0cbTayZufr2dMrF+nPq+36ez319dp/Bq/N/P28fd27s56uw9VUFpVT3iQ77GV6qwnItIhfTI4lZSUcNNNN+FyuXjkkUew2To24zA9PR273e7xdg6Hg6ysrDa3t2VNhOwvSA2rxpWRwcSs9Xy0/RC1QXFkZAzuUJ29zcnG7w00fo1f4+/4+N3bS/eKDvFncHQQ+49Usf5gMbNGxR1b2Tw4OZ3m9Z1EROSU+lxwKi0t5cYbb6SwsJBnnnmGQYMGdfi97HZ7p/7waXP7xAmQ/QW2/I0w6TrGDYrgo+2H2JJf3u/+yOrs99fXafwav8bvvePvCyamRLL/SBUbso8LTrGpYPeH2jIo2Q9RQy2rUUSkL+lTPzOVlpZyww03kJOTw1NPPUVqaqrVJbWmBhEiItILuBtEtDrPye4LA8aajzVdT0Sk3fpMcHKHpoMHD/LEE08wZswYq0tqmzs4FW6GhrqmazntOVxBRW2DhYWJiIg3cTeIyDxQgsPparlS5zmJiHisV0zV++yzz6iurqayshKA3bt3s3LlSgDOOussDMPgpz/9KVu3buX3v/89DoeDzMzMpu2joqJITk62ovTWIodAQDjUlMKhrcQmZDAwLICCshq25pUxZUiU1RWKiIgXGDkglBB/HypqG9hRUM6YhLBjKxWcREQ81iuC07333ktubm7T85UrVzYFp1WrVgHHOjj95S9/abX9pZdeygMPPNADlbaDYZhHnfZ+ak7XS8ggLTGcgrIasnJLFZxERKRH2G0GGYMi+GJ3EesOFLcdnPIyweUy910iInJSHQpOu3btYv369RQWFlJTU0NkZCTDhw/ntNNOIyQkxOP3+/jjj0/5mh07dnSkVGs0D07cQHpiOB9tK2SzznMSEekTvv76a9588002bNhAQUEBoaGhpKWlMX/+fNLS0lq8dsuWLTz88MNs3LgRu93OtGnT+N3vftep5kVdZWKyGZw2ZBdzzbSUYyvixoDNB6qPQmkORFhfq4hIb9fu4FRaWsrLL7/Myy+/TF5eHi6Xq9VrfHx8mDlzJtdccw3Tp0/v0kL7lOMbRCSZv/KpQYSISN+wbNkySkpKuPbaaxk+fDhHjx7lqaee4qqrruI///lP0z5uz549XHPNNYwePZpHHnmE2tpaFi5cyI9+9CPeeOMNoqKsnWUw8UQXwvUNgLjRUJBlTtdTcBIROaV2Badnn32WJUuWAHDhhRcyZcoUxo4dS1RUFP7+/pSWlnLw4EEyMzNZtWoVN954I6effjp/+tOfSElJOcW790Pu4HRoK9TXtGgQUVnbQLB/r5ghKSIiJ3DPPfcQHR3dYtmMGTOYM2cOS5cubQpOCxcuxM/Pj6VLlzbNuBg7diznn38+TzzxBL/5zW96vPbmJjR21ss+UkVRRS0xIf7HVsaPPxacRl9kUYUiIn1Hu7rqPffcc9x111188cUX3HPPPXzve98jOTmZkJAQfH19iYmJYcKECdxwww08//zzvP/++8TFxfHee+91d/29U/ggCIoBZwMUbiEuNIABYf64XLA1v8zq6kRE5BSOD00AwcHBDBs2jPz8fAAaGhr49NNPmTNnTotp6omJiUydOpWPPvqox+o9kfBAX0bEmbWtzz7uqFN8hnmvBhEiIu3SrkMf7733Hj4+7T9KkpyczF//+lccDkeHC+vT3A0idn8IeeshaRLpiREUlhWSlVPKaYPVIEJEpK8pLy9n69atTJs2DYADBw5QU1PDqFGjWr125MiRfPnll9TW1uLv799q/Yl0dL/p3q6t7SckR7DrUAXrso9ybmrssRUD0rADrvyNOPv4/vpk4/cGGr/G3/zeG3X2O2jvdu1KQ7t27WL06NEeF+HVV5VvCk6ZAGoQISLSx917771UV1dzyy23AFBSUgJAREREq9dGRETgcrkoLS0lLi6u3Z/h7iDbUW1tH0MVAJ9vzWHOgOqm5bYGBxnYMCoK2PzNKhoCWh9l62s6+/31dRq/xu/tuvs7aFdwuvTSSxkzZgzz5s3j4osvJjQ0tFuL6hdO0CBik4KTiEif88gjj/DWW2/xxz/+sVVXPeMkrbxPtq4t6enpHfrR0eFwkJWV1eb2oYkVPPrdF+wtcTAmbRx+Ps1m6a8dAUU7SIt2wIgMjz+3tzjZ+L2Bxq/xe/P4ofPfgXv7U2lXcPr5z3/OG2+8wX333ceDDz7Ieeedx7x585qmK0gb3MHp8Daoq1KDCBGRPmrx4sU89thj/OpXv+InP/lJ03L3kabi4uJW25SUlGAYBmFhYa3WnYzdbu/UHz5tbT88LozwQF9Kq+vZeaiS8YMijq1MmABFO7AXZkHq9zr8ub1FZ7+/vk7j1/i9efzQ/d9Bu5pD/OpXv+KTTz7h8ccfZ9asWXzwwQfccMMNnHvuuTz66KNNJ8pKM2HxEDIQXE4oyFKDCBGRPmjx4sUsWrSI2267rWmKnltycjIBAQHs3Lmz1XY7d+4kJSXFo/ObuovNZjAxOQKAda0aRDReCFcNIkRETqldwQnM6QYzZ87kkUce4YsvvuAPf/gD4eHhLFy4kNmzZ/PTn/6UlStXUl9f35319i3HT9drPOqUlaPpeiIivd2SJUtYtGgRt956KwsWLGi13sfHh1mzZvHhhx9SUVHRtDwvL49vv/2W8847ryfLPalJjddzWn/89ZwUnERE2q3dwam5sLAwfvKTn/Daa6+xYsUKfvSjH7F161Z+9atfMXPmzK6use86Lji5p+upQYSISO/25JNPsnDhQmbMmMHZZ59NZmZmi5vbbbfd1tQw4rPPPuPDDz/k5z//OZGRkdx4443WDeA4Exuv59SqJfnAdPO+9CBUHunhqkRE+pZOn2iTmprK97//faqqqnjttdeaugwJJz7ipOAkItKrffLJJwCsXr2a1atXt1q/Y8cOAIYNG8Zzzz3H3/72N26//XbsdjvTpk1jyZIlREX1nktPjB8Ugc2AvNIa8kuriQ8PNFcEhEHUMDi6B/IzYfi5ltYpItKbdTg4HT16lDfffJP//ve/7N69G7vdzqxZs5g3b15X1te3JWSY90U7oba8KTjtOVxBVV0DQX5qECEi0hs999xz7X5tWloaTz/9dPcV0wWC/X1IHRjG1vwy1meXMHdc4LGV8eMbg9NGBScRkZPw6C93p9PJ559/zn//+18+/fRT6uvrGTx4MHfccQeXXnopMTEx3VVn3xQSB2FJUJYD+ZuIG3wGA8L8KSyrZWteGZN1IVwREekhk1Ii2ZpfxrrsYuaOiz+2In48bHlN5zmJiJxCu4LTvn37+O9//8sbb7xBUVERAQEBXHTRRVx++eVMnjy5u2vs2xIyzOCUtwEGn0F6YjiFZYfIyi1VcBIRkR4zMSWC577Jbt0gwj07QsFJROSk2hWcvvc989oO48aN47bbbmPu3LkEBwd3a2H9RsIE2P425K0HzAYRH207pM56IiLSoyYlmz/WbckrpabeQYBv47VOBo4z74v3QXUJBEZYUp+ISG/XruB03XXXMW/ePEaMGNHd9fQ/ahAhIiK9wKCoQGJC/CmqqGVz81kPQVEQkQwlB6AgC4bMsLZQEZFeql3tyO+66642Q9PevXtZt24dVVVVXV5Yv+EOTkf3QnVxqwYRIiIiPcEwdCFcEZHO6NB1nFasWMHMmTOZO3cuP/nJT9i3bx8At99+O6+88kqXFtjnBUVBRIr5OH8jcWEBxIX643TB1rwya2sTERGvcuoL4Wb2bEEiIn2Ix8Hpvffe484772TMmDH88Y9/xOVyNa0bO3Ys7733XpcW2C9oup6IiPQCExuD07rskhb7b+IzzHsdcRIROSGPg9Pjjz/OZZddxr/+9S+uuuqqFuuGDh3K7t27u6y4fuO44JSm4CQiIhZITwzH125QVFFLTnH1sRXuI05Fu6C2wpriRER6OY+D0549e5g7d26b6yIiIigpKelsTf3PCY44bVZwEhGRHhTga2dMgrkPanGeU0gchCYALijcbE1xIiK9nMfBKTAwkPLy8jbXFRYWEh4e3umi+h33L3klB6DyCOlJ5ne0+5AaRIiISM+alOyerqcGESIinvA4OE2YMIEXXnih5dzoRq+99hpTpkzpksL6lcAIiBpmPs7fwAA1iBAREYtMTIkATtYgQsFJRKQtHgen+fPnk5mZybx583juuecwDIMPPviAW265he+++45bbrmlO+rs+9QgQkREegF3Z71t+WVU1jab9eAOTnmZPV+UiEgf4HFwSk9P59///jdVVVU88MADuFwuli5dyr59+3j88ccZOXJkd9TZ9zUFp0xADSJERMQa8eGBJIQH4HTBxpySZisag9Ph7VBf3ea2IiLezKcjG02bNo333nuPAwcOUFRURGRkJEOGDOnq2voXNYgQEZFeYkJKJHmb8lmfXczpw2LMhWEJEBQDVUVQuBWSJllbpIhIL9OhC+C6JScnM3HiRIWm9ogfDxhQlgvlhWoQISIilnE3iFh/oOTYQsOAhAzzsS6EKyLSSruC07vvvuvxGxcWFrJu3TqPt+u3/EMgdpT5OD+TAWEBxDY2iNiWrwYRIiLSc9wXwl1/oBins/mFcNUgQkTkRNoVnO677z4uueQSli9fTkXFyS+Mt3nzZu69917OP/98tm/f3iVF9hsnahCRo+l6IiLSc8bEh+HvY6Okqp69RZXHVig4iYicULvOcfrwww9ZtGgRf/nLX7jvvvsYM2YMY8aMITo6Gj8/P0pLSzl48CCZmZkcPnyYESNGsGjRImbMmNHd9fctCRNg47Km4JSWGM7H2w+RlasjTiIi0nP8fGyMSwpn7f5i1h8oZnhciLnCHZwObYWGOvDxs65IEZFepl3BKTQ0lN///vfMnz+f1157jc8++4wVK1ZQXX2s686gQYOYMWMGF198MdOmTeu2gvu05kecXC7GqUGEiIhYZGJKpBmcsou5cvIgc2FECgSEQ00pHN52LEiJiIhnXfXCw8O54YYbuOGGGwAoLy+npqaGiIgIfH19u6XAfmVAGhh2qCiE8nzSk6IA2HWonKq6BoL8OtTkUERExGPHGkQ0uxCuYZhhad/n5nQ9BScRkSad6qoXGhpKbGysQlN7+QVB3Gjzcd4GNYgQERHLuBtE7CysoLS6/tiK+AzzXuc5iYi00Kng1BUqKip46KGHuPHGG5k2bRqjRo1i0aJFbb52y5YtXH/99UyYMIHJkyezYMECDh482MMVd5K71asaRIiIiIViQvxJiQ4CIPNgybEVahAhItImy4NTSUkJr7zyCnV1dcyePfuEr9uzZw/XXHMN9fX1PPLII9x///3s37+fH/3oRxw9erQHK+6k4zrrpbmDkxpEiIhID5vYOF1vXXaz6XruI04Fm8Gh6wyKiLhZflJNYmIia9euxTAMjh49yvLly9t83cKFC/Hz82Pp0qWEhJjdf8aOHcv555/PE088wW9+85ueLLvjjmsQka4GESIiYpGJKZG8viGXDc3Pc4oaCn4hUFcBRTthwBjrChQR6UUsP+JkGAaGYZz0NQ0NDXz66afMmTOnKTSBGbqmTp3KRx991N1ldp0BaWDzhaojUHqwKTjtOlROdZ3D4uJERMSbTEyOAGDDgRIc7gvh2mwwcJz5WNP1RESaWH7EqT0OHDhATU0No0aNarVu5MiRfPnll9TW1uLv7+/R+zocHQsq7u06tL3hgy1uDEbBRhw564hJvZiYED+KKurYnFvcNG2iN+vU+PsBjV/jb37vbTo7fm/93nqrUQNCCfazU1HbwM7CckbHh5kr4sfDga/M4JTxQ2uLFBHpJTwOTv/3f//Hj3/8Y4YOHdod9bSppKQEgIiIiFbrIiIicLlclJaWEhcX59H7ZmVldaqujm6f7DeIWDZyOHMlubXJJIcYFFXAyjVbsR0N7lRNPamz319fp/Fr/N7M28ffX/jYbYwfFMFXe46w/kBxy+AEOuIkItKMx8FpxYoVvPjii0ybNo0f//jHnHvuuaecatdVTvY5HakhPT0du93u8XYOh4OsrKwOb284z4UDbzPAkU9sRgZnFO1ifcEeSowwMjLSPX6/ntbZ8fd1Gr/Gr/F3fPzu7aX3mJQSyVd7jrAuu5gfT00xF7o7wBZsAqfTnL4nIuLlPA5Oq1ev5vXXX2fZsmUsWLCA+Ph4fvjDHzJv3jyioqK6o8amI03FxcWt1pWUlGAYBmFhYR6/r91u79QfPh3ePmkSAEZeJnabjXGDzOl5m3PL+tQfYp39/vo6jV/j1/i9d/z9ift6ThsOlBxbGD0CfALNBhFH90LMcGuKExHpRTz+CSkoKIgf//jHvP322zz11FOMHTuW//f//h9nn302d955Z7f8kpicnExAQAA7d+5stW7nzp2kpKR4fH6TpWJHg90fakvh6F41iBAREctMbPzxbl9RJUcqas2Fdh8YmGY+zs+0pjARkV6mU8fep0+fzuLFi1m1ahUTJkzgjTfe4Morr+SKK67g448/7qoa8fHxYdasWXz44YdUVFQ0Lc/Ly+Pbb7/lvPPO67LP6hE+fsd2SHkbGBDmT0yIP04XbM3X9ZxERKTnhAf5MjzO7Fjb4qhT03lOmT1ek4hIb9Sp4FRTU8Py5cu55ZZb+Pbbbxk2bBjz58/H4XAwf/58lixZ0q73+eyzz1i5ciWffPIJALt372blypWsXLmS6upqAG677Taqq6u55ZZb+Oyzz/jwww/5+c9/TmRkJDfeeGNnhmGNZtdzMgyD9ERzqqGu5yQiIj3N3ZZ8XfPrOalBhIhICx1qR37gwAFeeOEFXn/9dSoqKpg5cya//e1vOf300wFYsGAB//jHP3j++eeZP3/+Kd/v3nvvJTc3t+m5OzQBrFq1iqSkJIYNG8Zzzz3H3/72N26//XbsdjvTpk1jyZIl3XZuVbdqCk6ZAKQnhvPJjsNkKTiJiEgPm5QSySvf5bAu+wTByeWCHmoEJSLSW3kcnH72s5/x1VdfERgYyGWXXcY111xDcnJyq9fNmjWLxx9/vF3v2d5pfWlpaTz99NOelNt7uYNTfiY4naQ1nuekI04iItLT3NcQ3JRTQr3Dia/d1ng+rh/UlEJJNkQOtrZIERGLeRycDh48yF133cVll11GcPCJrzk0YsQInn322U4V16/FjDrWsejIbtKTBgGw61AFNfUOAnzVrUpERHrGsNgQwgJ8KKtpYFt+GeOSIszzcePGmD/w5W9UcBIRr+fxOU7vv/8+11xzzUlDE0BISAhTpkzpcGH9nt0H4seZj/M2MDAsgJgQPxxOlxpEiIhIj7LZjKa25OtPNF1PRMTL6Yp2VmrVIELT9URExBru6Xrr2uqs13g+roiIN/N4qt4555yDcYITRG02G6GhoaSnp3PttdcybNiwThfYryVMNO/zNgDHGkRsylFwEhGRnjWpzSNOGea9GkSIiHh+xGnKlCm4XC4KCwtJTExk/PjxJCQkUFhYiMPhID4+ng8//JDLL7+8Wy6G26+4jzgVbAJHgxpEiIiIZcYPisBmQG5JNYVlNebCAWPAsENVEZTlWVugiIjFPA5OZ555Jn5+fnz44Yc8++yz/OMf/+C5557jgw8+wM/Pj9mzZ/P+++8zePBgFi1a1B019x/Rw8EvBOqroGgn6UlmcHI3iBAREekpIf4+jBpoXlOw6aiTbyDEppqPdZ6TiHg5j4PTv/71L2677Tbi4+NbLE9ISGD+/Pk8/vjjhIaGcv3115OZmdlVdfZPNtuxaRBqECEiIhZruhBu8+l6CRnmvYKTiHg5j4NTdnY2ISEhba4LCwtrupBtYmIi1dXVnavOG7h3SI0NIjRdT0RErOI+z2ndAXXWExE5nsfBKSEhgddff73Ndf/973+bjkSVlJQQHh7eueq8QbPOekBTZ70sNYgQEZEe5g5OW3LLjk0ZbwpOmdYUJSLSS3jcVe+nP/0pf/rTn7j66qu54IILiImJoaioiJUrV7Jx40buu+8+AL799lvS0tK6vOB+p6lBRBY46puOOGXpiJOIiPSw5KggooP9OFJZx5a8UialRMGANMCA8nwoL4TQAVaXKSJiCY+D05VXXonL5WLRokU88MADTctjYmK49957ueKKKwC45ZZb8PPz67pK+6uooeAfDrWlcGgb6YkjgGMNIgJ87RYXKCIi3sIwzAvhfri1kPXZJWZw8g+BmBFQtNPsAht6ntVliohYwqPg5HA4OHDgAN/73ve48sor2bt3LyUlJURERDB06NAW13eKiYnp8mL7JcMwz3Pa9xnkbSB+YjoxIX4UVdSxLb+MCY0XJBQREekJE5PN4LQuu5ib3Avjx5vBKT8TRig4iYh38ugcJ5fLxdy5c9mwwWxkMGzYMCZNmsSwYcNOeFFcaYdm5zk1bxCh6XoiItLTmjeIcLlc5sLmF8IVEfFSHgUnHx8fYmJijv1DKl1DDSJERKSXGJcUjo/N4HB5LTnFjd1x1VlPRMTzrnpz585lxYoV3VCKF3MHp8It0FCrI04iImKZAF87YxMaL4Trbks+MN28LzkAVUctqkxExFoeN4dITU3l3Xff5dprr2XOnDnExsa2mqY3Z86cLivQK0QkQ2AUVB+Fwi2kJ44G1CBCRESsMSE5ko05pazPLuaSjEQIjIDIIVC8zzzqNGyW1SWKiPQ4j4PT7373OwAKCwtZs2ZNq/WGYbBt27bOV+ZNDMM86rRnldkgYvKEpnawahAhIiI9bVJKJE9/tb/1hXAVnETEi3kcnJ599tnuqEOagtN6DOOnpCWG89nOw2zOLVVwEhGRHuVuELEtv5yqugaC/HzM4LR1hc5zEhGv5XFwmjJlSnfUIU0NIjIBs0HEZzsP6zwnERHpcQkRgQwMC6CgrIaNB0uZPixaDSJExOt53BzCrby8nNWrV/Pmm29SWqo/7jvNHZwObYO6qmYNIsosLEpExDtVVFTw0EMPceONNzJt2jRGjRrFokWLWr3uzjvvZNSoUa1uF1xwgQVVdy33UaemBhHuluRH90CN9k0i4n08PuIEsGTJEv79739TU1ODYRi8+uqrhIeHc91113HGGWdw8803d3Wd/V9YAgTHQeUhKNzMuCSzg9HOwnI1iBAR6WElJSW88sorpKamMnv2bJYvX37C1wYEBPDMM8+0WtbXTUiO4J2sfNZnNwan4GgIHwSlB6EgCwafYW2BIiI9zOMjTi+88AJLlixh3rx5LF26tMU1nWbNmsWnn37alfV5D3eDCDAbRIQHEB3sh8PpYlu+ftkTEelJiYmJrF27lueff5477rjjpK+12WxkZGS0uKWmpvZQpd2n+RGnYxfCdU/Xy7SmKBERC3UoOF1//fXcfffdnHnmmS3WpaSkkJ2d3WXFeZ1mwckwjKbpept1npOISI8yDKPVpTa8zdiEcPx8bBRX1bOvqNJcqPOcRMSLeRycDh48yIwZM9pcFxwcTFmZjo50WLPgBGaDCNCFcEVEerOamhrOOOMMRo8ezcyZM7nvvvsoKSmxuqxO8/OxMa5xP7TOPV1PwUlEvJjH5ziFhoZSVFTU5rrc3Fyio6M7XZTXSsgw7w/vgNoKNYgQEenlUlNTSU1NZcSIEQCsWbOGZ555hq+//ppXX32V4OBgj97P4XB0qA73dh3d/kQmJEfwXXYx67KPctmEBIhLww64inbirC4DP8/G1126a/x9hcav8Te/90ad/Q7au53HwWn69On85z//4dxzz8Xf3x8wpzQ0NDSwbNmyVtP3xAOhAyE0AcrzoGAT6UnmEahdahAhItIrXX/99S2en3HGGYwZM4Zf/vKXLF++vNX6U8nKyupUPZ3d/niRjhoAvtpRQGZmAwDp/tH41R5h1xcrqIwa26Wf11ldPf6+RuPX+L1dd38HHgenX/7yl8ybN4+5c+cye/ZsDMPg+eefZ9u2beTl5fHII490Q5leJGEC7MiDvA0kJE8nKtiPo5V1bC8oJ2NQhNXViYjIKZx33nkEBQWRmZnp8bbp6enY7Z7/SOZwOMjKyurw9ieSOKyWh776hIPlDQxLHUtogC+27ZNg1weMDK3GlZHRZZ/VGd01/r5C49f4vXn80PnvwL39qXgcnFJSUli2bBl//etfWbZsGS6XizfeeIOpU6fyt7/9jYSEBI+LlWYSJ8COd1o0iPi88UK4Ck4iIn2Dy+XCZvP8Uol2u71Tf/h0dvvjDYwIYlBUIAePVrMpt5yZI2PN6znt+gBbwSboZX+kdfX4+xqNX+P35vFD938HHbqO0/Dhw3niiSeoq6ujuLiY8PDwfnHNil6hVYOIMD7feZjNOWoQISLSF6xcuZLq6mrGjx9vdSldYlJyJAePVrP+QHFjcFKDCBHxTh0KTm5+fn4MGDCgq2oRgPjG4HRkN9SUkp4YAcAmddYTEelRn332GdXV1VRWmq24d+/ezcqVKwE466yzOHr0KL/+9a+ZO3cuycnJGIbB2rVreeaZZxgxYgRXXHGFleV3mYkpkazIzGvdWe/wNqivAV/9cCoi3qFDwSknJ4f33nuPvLw8ampqWqwzDIP777+/S4rzSsHREJEMJQcgfyPpSacBahAhItLT7r33XnJzc5uer1y5sik4rVq1itDQUGJiYnjqqac4cuQIDoeDxMRErrnmGm655RaCgoKsKr1LTUw2L4SbeaAEp9OFLTwJAqOg+igc2gqJEy2uUESkZ3gcnD799FMWLFiA0+kkKioKPz+/Fuu9/YKBXSJhghmc8jaQMHiGGkSIiFjg448/PuVrFi9e3AOVWCt1YChBfnbKaxvYdaiCUQNDzctn7PnYnK6n4CQiXsLj4PTPf/6TiRMn8s9//lPXbOouCRNg6xtqECEiIpbzsdsYnxTB13uPsC672AxO8eOPBScRES/hccuf7OxsbrrpJktC09atW/nFL37BmWeeyfjx47ngggtYvHgx1dXVPV5Lt2qjQQSgBhEiImKJSSnmdL31B447z0nBSUS8iMdHnBISEqiqquqOWk5q9+7dXH311QwZMoTf//73REZG8t133/Hoo4+yZcsWHnvssR6vqdu4d0jF+6HqKOmJ4QBkqUGEiIhYYGJKBADrj28QUbgFHPVg97WmMBGRHuRxcPr5z3/Ok08+ycyZMwkMDOyOmtr01ltvUVtby6JFi0hOTgZg+vTpHD58mJdffpnS0lLCw8N7rJ5uFRgJUUPh6F7IzyQtcRoAO9UgQkRELDBhkHnEaW9RJUcr64iKHAL+4VBbCoe3w8B0iysUEel+HgenrKwsjhw5wnnnncfUqVOJjIxs9Zq77767S4prztfX/DUrJCSkxfLQ0FBsNlvT+n4jYYIZnPI2kDh0FpFBvhRX1bOjoJzxOs9JRER6UGSwH0Njg9l7uJINB4o5d/QAiB8H+1eb0/UUnETEC3h8jtPzzz9PTk4ORUVFvPPOOzz//PMtbi+88EJ31MkPfvADwsLC+POf/8zBgwepqKjgk08+4eWXX+bHP/5xv2n72qTZeU7uBhGg6XoiImKNSck6z0lEvJvHR5y2b9/eHXWcUlJSEi+99BILFixg9uzZTcuvueYa/vCHP3ToPR0OR6e26+j27TJwPHbAlbcBp8NBWkIYq3cVselgCY7Tkrrvc9uhR8bfi2n8Gn/ze2/T2fF76/fWH0xMiWT5upxmF8LNMO8VnETES3ToArhWyMnJ4dZbbyU6OpqFCxcSFRXFxo0beeyxx6iqqurQRXezsrI6VVNntz8ZWz1kYGCU5rD5208IqTPPJ1u7p4DMzIZu+1xPdOf4+wKNX+P3Zt4+fm/k7qy38WApDQ4nPu4jTgVZ4HSATeffikj/1q7gtHbtWsaMGUNwcPBJX3f06FE+/vhj5s2b1yXFNff3v/+diooKVqxY0TQt77TTTiMyMpLf//73/OAHP2DKlCkevWd6ejp2u+f/0DscDrKysjq8fbutHQ5HdpEW3UDkyPE8/PVnHCxzMHpsOv4WNojosfH3Uhq/xq/xd3z87u2l7xkeG0JogA/lNQ1sLygnLX4Y+AZDfSUU7YK4VKtLFBHpVu0KTtdeey0vv/wy48aNA8DpdDJu3DheeeUVxowZ0/S6gwcP8sc//rFbgtO2bdsYNmxYq3OZ0tPNE1J37drlcXCy2+2d+sOns9ufUuJEOLILe/5GBo08v6lBxK7DVb2iQUS3j7+X0/g1fo3fe8fvjWw2gwnJkXy+8zDrsovNc28HpsPBb8zpegpOItLPtas5hMvlavW8oaGh1fLuFBcXx+7du6msrGyxPDMzE4ABAwb0WC09Rg0iRESkF1GDCBHxZh531bPKddddR3FxMTfeeCPvvvsuX3/9Nf/617/461//yvDhw5k5c6bVJXa9ZsEJaLoQ7mYFJxERsYD7Qrjrjr8QroKTiHiBPtMc4txzz+Xpp5/m3//+N/fffz/l5eUMHDiQq6++mptvvhk/Pz+rS+x6A9PBsEFFAZTlNwUnHXESERErZAyKwDAgp7iaQ2U1xCVkmCsKNoHTCbY+83usiIjH+kxwApg2bRrTpk2zuoye4xcMsalwaCvkbSAt8WwAdhaWU9vgwN9H5xeIiEjPCQ3wZdSAULYXlLP+QDEXjB4FPgFQWwbF+yB6mNUlioh0m3YHp7179zadCOy+DsfevXtbvUa6WMKEpuCUNOp7RAT5UlJVz46CcsYlRVhdnYiIeJmJKZFsLyhnXXYxF6TFw4CxkLsO8jMVnESkX2t3cLrrrrtaLfvtb3/b4rnL5cIwjM5XJcckTIDMF5oaRKQnhpsXws0pVXASEZEeNyk5khe/PcD6AyXmgvjxjcFpI6RdbmltIiLdqV3B6a9//Wt31yEn0rxBhMvVFJzUIEJERKwwsfFCuFk5pea0cTWIEBEv0a7gdOmll3Z3HXIiA8aCzQeqiqA0Rw0iRETEUoOjg4gK9uNoZR1b8sqY2Dw4uVygmSci0k+p/U1v5xsIcaPNx3kbmq7l5G4QISIi0pMMw2BicgQA67OLIW4M2HyhuhhKD1pbnIhIN1Jw6gsSJpr3eRtIigwkIsiXeoeLHQXl1tYlIiJeyT1db/2BYvDxP/YDn6briUg/puDUFzQ7z8ndIAI0XU9ERKwxMdkMTuuyi3G5XMcuhJuXaV1RIiLdTMGpLziuQYR7up4aRIiIiBXGJ0VgtxkUltWSV1pzLDjpiJOI9GMKTn1B3Biw+0FNCRTv1xEnERGxVKCfnTHxYYB51In4DHNFfqbZIEJEpB/yKDjV1NRw9dVX89VXX3VXPdIWHz8YkGY+ztvQFJx2FKhBhIiIWGOS+zyn7GKzA6xhg8rDUF5gcWUiIt3Do+AUEBDAzp07sdvt3VWPnEiz6XpqECEiIlZr0SDCLwhiRpkrNF1PRPopj6fqTZgwgU2bNnVHLXIyahAhIiK9iLsl+da8MqrrHJCQYa5QcBKRfsrj4PS73/2Ol19+mRUrVlBZWdkdNUlb3MEpfyM4nWoQISIilkqMCGRAmD8NThebckrUIEJE+j0fTze46qqrqK+v56677uKuu+4iICAAo9lVwg3DYN26dV1apACxqeATALVlcHSvjjiJiIilzAvhRvLe5gLWHShm6hB3cMq0tC4Rke7icXA6//zzWwQl6SF2Hxg4DnLWmA0ikuYCxxpE+PvovDMREelZk1LM4LQ+uwSmp5sLy3Kh4jCExFpam4hIV/M4OD3wwAPdUYe0R8KEpuCUlD6P8EBfSqvr2VlQQXpSuNXViYiIl5mQfKxBhMsvBCN6OBzZDQUbYfhsi6sTEelauo5TX6IGESIi0oukJYbhZ7dxtLKO/UeqdJ6TiPRrHh9xctu5cyd79uyhtra21bof/OAHnalJTqRFgwgHaYnhfLG7SMFJREQs4e9jJz0pnHXZxazPLmZI/HjY/F8FJxHplzwOTtXV1dx666188803GIaBq/EK4c3Pe1Jw6iYxI8A3GOoroWhXsyNOJdbWJSIiXmticgTrsotZd6CYy8dnmAsVnESkH/J4qt6jjz5Kbm4uzz//PC6Xi8WLF/PUU09x3nnnkZKSwuuvv94ddQqAzX5sGkTeesY1ntfkbhAhIiLS0ya5L4SbXQzx48yFxfuhuti6okREuoHHwWnVqlXcdNNNTJhgThuLj49n+vTpLFy4kLFjx/Liiy92eZHSTLPznJIiAwkP9KXe4WJnQYW1dYmIiFea2NggYkdhOeVGCESkmCvyN1lYlYhI1/M4OOXm5jJ06FDsdjuGYVBdXd207uKLL2bVqlVdWqAcRw0iRESkF4kLCyApMhCXCzYeLFWDCBHptzwOTqGhoVRVVQEQHR1NdnZ207qGhoamddJN3MGpIAsc9aQpOImIiMXcR53WZRcrOIlIv+VxcBo1ahT79+8HYOrUqSxdupTvvvuOTZs2sWTJElJTU7u6Rmkuaij4h0FDDRze3nTEabOCk4iIWKTpPKcDxRCfYS5UcBKRfsbj4HT55ZdTWVkJwP/8z/9QXV3NNddcw1VXXUVeXh533nlnlxcpzdhszRpEbGgKTjsKyqlrcFpYmIiIeKuJzS6E6xzY2CDiyG6oLbewKhGRruVxO/ILL7yw6fGgQYN4//33m1qTT5gwgYiIiK6sT9qSMAH2r4a8DQyacA3hgb6UVtezs7C8aeqeiIhIT0mNDyXQ1055TQO7qwIZGZYIZbnmtPKU060uT0SkS3h8xOl4QUFBnHPOOcyaNUuhqacc1yAiLTEM0HlOIiJiDV+7jfGDzB/u1us8JxHppzodnMQCTQ0iNkNDbdNRpk05Ck4iImINNYgQkf6uXVP1UlNTMQyjXW9oGAZbt27tVFFyCpGDITDSvLjgoa2MSxwIqEGEiIhYp0WDiHEKTiLS/7QrOM2fP7/dwUl6gGGYR532fGw2iBhyNXCsQYSfjw4kiohIz5rQeMRpz+FKSiPSCAc4vB3qqsAvyNLaRES6QruC02233dbddYinmgWnQZNuUIMIERGxVFSwH0NjgtlbVMn6owHMCo6FysNwaCskTba6PBGRTtOhib5KDSJERKSXcR91WnegpNn1nDKtKkdEpEt53I58xYoVp3zND37wgw6UIh5xB6dD26C+mrTEcL7cfYSs3FJ+aG1lIiLipSalRPLf9Tlmg4hh42H3h5CXaXVZIiJdwuPgdKIL3DY/B6o7g9N3333H0qVLyczMpLa2loEDB3LJJZcwf/78bvvMXiksEdzTIAq3kJ6YAKhBhIiIWMfdIGJjTgmO08dhBzWIEJF+w+PgtGrVqlbLiouLWbVqFe+++y7//Oc/u6Swtrz11lv89re/5Xvf+x4PPvggQUFBHDx4kMLCwm77zF7L3SBi1wdmg4hhowHYnq8GESIiYo0RcSGE+vtQXtvAbp9hjAJzZkRDLfj4W12eiEineBycEhMT21yWlpZGQ0MDzz77LA888ECXFNdcYWEhf/rTn7jqqqv485//3LR82rRpXf5ZfUaz4JR82s8IC/ChrKZBDSJERMQSNptBRnIEq3cVseZoMKMCIqCmxAxPCRkWVyci0jldelhi+vTpfPzxx135lk2WL19OVVUVN910U7e8f5/UqkGEGZbUIEJERKwysUWDCF3PSUT6jy4NTrm5udhs3TNFbO3atURERLB3714uueQSxowZw/Tp0/nTn/5ERUVFt3xmr+fuWHR4O9RVkp6k4CQiItY6diHckmNHmRScRKQf8Hiq3tq1a1stq6urY8eOHSxdupTp06d3SWHHKywspLq6mttvv52f//znZGRkkJWVxaJFi9i1axcvvviixxfpdTgcHarFvV1Ht+8ywXHYQuMxyvNx5GUyNj4FgKyckm6trdeM3yIav8bf/N7bdHb83vq9eZOM5AgMAw4craIsYixhoJbkItIveBycrrnmmlYBxeVyAXD66afzxz/+sWsqO47L5aK2tpYFCxZw8803AzB16lR8fX25//77+frrrzn99NM9es+srKxO1dTZ7bvCsKAhRJTnk7f2HexxlwCwLb+Mtes34GvzLEh6qjeM30oav8bvzbx9/HJiYQG+jIwLZUdhORsdKcwAKNgMjnqw+1pdnohIh3kcnJ599tlWy/z9/UlMTCQmJqZLimpLREQEAGeeeWaL5TNnzuT+++9ny5YtHgen9PR07Ha7x7U4HA6ysrI6vH1XMsrOgsKvSLQdJv6MSYR9soqymgaCBg5jbEJYt3xmbxq/FTR+jV/j7/j43dv3dhUVFTz66KNs376drVu3UlxczIIFC7jttttavXbLli08/PDDbNy4EbvdzrRp0/jd737HoEGDLKi8d5iYEsmOwnK+OBLKDL9QqCuHop0wYKzVpYmIdJjHwWnKlCndUccpjRo1iszMzFbL3Ue7OnJuld1u79QfPp3dvkskTQLAlp+JzceHtMRwvtpzhK355YwbFNmtH90rxm8hjV/j1/j77/hLSkp45ZVXSE1NZfbs2SxfvrzN1+3Zs4drrrmG0aNH88gjj1BbW8vChQv50Y9+xBtvvEFUVFQPV947TEyOYNmaA6w7UArx4yD7S/M8JwUnEenDPE4b+/btY82aNW2uW7NmDfv37+9sTW2aM2cOAJ9//nmL5e7n48eP75bP7fXcDSKKdkFNGenqrCci0mmJiYmsXbuW559/njvuuOOEr1u4cCF+fn4sXbqUs846izlz5rB06VKKi4t54oknerDi3sXdIGJTbimOAePMhWoQISJ9nMfB6YEHHmjzIrgAn3zySbdcwwnMKXqzZs1iyZIlPProo3z11Vc8/vjj/OMf/2DWrFlMnjy5Wz631wuJhfBBgAsKNjW1JN+s4CQi0mGGYZyy4VBDQwOffvopc+bMISQkpGl5YmIiU6dO5aOPPuruMnutITHBRAb5Utfg5GDASHOhgpOI9HEeT9XLysriiiuuaHPdaaedxltvvdXpok7kkUceYfHixbzyyissWbKEuLg4rr/+ehYsWNBtn9knJGRA6UHIXU/6KPPaTtsKyqlrcOLn0z3t4UVEvN2BAweoqalh1KhRrdaNHDmSL7/8ktraWvz9/dv9nn2+22szEwZF8PGOw3xXO4jBgCt/E876OrB1/RTP3jj+nqTxa/zN771RT3V89Tg4lZeXExQU1Oa6gIAASku770hHQEAA//u//8v//u//dttn9EkJE2DbW5C3gZTTgwgN8KG8poGdheVNR6BERKRrlZSUAMeaFzUXERGBy+WitLSUuLi4dr9nf+j26jbQtxqA13a7uMzmj62+km1fvkNtaHK3fWZvGr8VNH6N39t193fgcXAaMGAAmzZtarOD3aZNm4iNje2SwsQDCeZRJvI2YBgG6Y0NIjbnlio4iYh0s5NN6fP0+oL9odurW03YEV7cvJa9FXaMhHGQs5YxEXW40jO6/LN64/h7ksav8Xvz+KHnOr56HJxmz57N448/TkZGBtOmTWta/u233/Lvf/+befPmefqW0lnuBhHF+6C6uCk4ZeWWcrWlhYmI9F/uI03FxcWt1pWUlGAYBmFhnl0Wol90e200ISUKu82goLSGqtQ0gnPWYivcBBlXddtn9qbxW0Hj1/i9efzQ/d+Bx8Fp/vz5fPHFF9xwww0MHjyYgQMHUlBQwP79+xk+fHib17iQbhYUBZGDoXg/5GWSlmjOt1eDCBGR7pOcnExAQAA7d+5stW7nzp2kpKR4dH5TfxPk58Po+FA255axyzaMDFCDCBHp0zzuHBAaGsrLL7/MggULCA8PJy8vj/DwcG677TZeeumlFp2FpAc1m67nbkm+raCceofTwqJERPovHx8fZs2axYcffkhFRUXT8ry8PL799lvOO+88C6vrHSYlm23Jv6lJMhfkb4LG6y+KiPQ1Hh9xAggODmb+/PnMnz+/q+uRjkqYAFteNxtEnNmyQcTYBJ3nJCLiqc8++4zq6moqKysB2L17NytXrgTgrLPOIjAwkNtuu4158+Zxyy23cNNNN1FXV8fChQuJjIzkxhtvtLL8XmFiSiTPfJ3NB4ciucXuB7Wl5uyIqCFWlyYi4rEOBScwu+tlZmZSXFzMWWedRXi4/ji3VNMRp0wMwyAtIZyv95oNIhScREQ8d++995Kbm9v0fOXKlU3BadWqVSQlJTFs2DCee+45/va3v3H77bdjt9uZNm0aS5YsISoqyqrSe42JjUecNuVX4UwZiy1/A+RnKjiJSJ/UoeC0ZMkS/v3vf1NTU4NhGLz66quEh4dz3XXXccYZZ3DzzTd3dZ1yKu4GEaUHoLKI9CQzOGXllnLVaZZWJiLSJ3388cftel1aWhpPP/109xbTRyVFBhIb6s/h8lqKQlOJy99gnuc09lKrSxMR8ZjH5zi98MILLFmyhHnz5rF06VJczeYqz5o1i08//bQr65P2CgiD6BHm47zMpjbkWTlqECEiItYwDKPpPKdtNB5lUoMIEemjOhScrr/+eu6++27OPPPMFutSUlLIzs7usuLEQ2oQISIivczElAgAvqhINBfkb1SDCBHpkzwOTgcPHmTGjBltrgsODqasrKzTRUkHNQtOKVFmg4i6Bic7C8utrUtERLzWpBTziNM7hZG4bD5QdQTKck+xlYhI79OhduRFRUVtrsvNzSU6OrrTRUkHNQtONpvZIAJ0PScREbHO2IRw/Ow28iqhPmqkuVDT9USkD/I4OE2fPp3//Oc/VFVVNS0zDIOGhgaWLVvWavqe9KCB6WDYoDwPygtIT2o8z0nBSURELBLga2dsYhgAeYHmBdrJy7SuIBGRDvI4OP3yl78kLy+PuXPn8sADD2AYBs8//zxXXHEF2dnZ/OIXv+iOOqU9/EMg5thOqalBRK6mT4qIiHXcDSKynIPNBTriJCJ9kMfBKSUlhWXLljF06FCWLVuGy+XijTfeIDIykhdffJGEhITuqFPaq60GEfllahAhIiKWmdh4ntMnZY1/Iyg4iUgf1KHrOA0fPpwnnniCuro6iouLCQ8PJyAgoKtrk45ImAAbXzQbRJwVRKi/D+W1DewqrGBMQpjV1YmIiBdyN4h4vygal7+BUVEA5QUQOtDiykRE2s/jI07N+fn5MWDAAIWm3qR5gwiDpnnlahAhIiJWGRAWQGJEIJWuAKrDh5kL8zdZW5SIiIfadcRpxYoVHr3pD37wgw6UIl1iYBoYdqg8BGV5pCeG883eo2zKLeHK0wZZXZ2IiHipiSmR5JZUc8BvBKnsNqfrjZxjdVkiIu3WruB05513tvsNDcNQcLKSbyDEjYHCLMjbQFqieQRKDSJERMRKE5MjeGtjHusbUkgFyM+0uCIREc+0KzitWrWqu+uQrpSQ0RScxo2fBRxrEOFr79TsTBERkQ5xn+f0YfFAfgRqECEifU67glNiYmJ31yFdKWECbHjObBAxSw0iRETEeqPjwwjwtfFdTRIEAKUHofIIBEdbXZqISLt0+PBDRUUFX3zxBW+//TZffvklFRUVXVmXdIYaRIiISC/ja7cxLimCcoIoD0o2FxboqJOI9B0dakf+xBNPsHjxYmpqanC5XBiGQUBAAL/85S+54YYburpG8dSAsWDzheqjUHKgqUFEVm6pGkSIiIhlJqVEsmbfUfb6DGc8B8zpesPOsbosEZF28Tg4rVixgocffpiZM2dy6aWXEhcXx6FDh1ixYgUPPfQQkZGRag5hNR9/MzzlZ0LeetISpwCQpSNOIiJioYnJ5nlOa2oHMR50npOI9CkeB6enn36aiy66iL/97W8tln/ve9/jf//3f3nmmWcUnHqDhAmNwWkD6RnnAWaDiAaHEx81iBAREQtMTI4A4NPyBG7yA/IyrSxHRMQjHv8FvXfvXr7//e+3ue773/8+e/bs6XRR0gWanec0ODqYEH8fahuc7Dqkc9FERMQa0SH+DI4OYotzsLmgeB9Ul1hZkohIu3kcnAICAigtbXvKV2lpKQEBAZ0uSrpAU3DaiA0XYxu76WXlaLqeiIhYZ2JKJCWEUuofby4oyLK2IBGRdvI4OE2aNInFixdTWFjYYvnhw4dZsmQJkydP7rLipBPiRoPdH2pLoXgf6YnhgM5zEhERa7mv57TTGGou0HlOItJHeHyO0x133MHVV1/NnDlzmD59OrGxsRw+fJhvvvkGHx8fFi9e3B11iqfsvjAwHXK/M89zSpoOKDiJiIi13A0ivq5K5DQbCk4i0md4fMRpxIgRvPrqq5x77rlkZWXx2muvkZWVxbnnnsvy5csZPnx4d9QpHdHsPCf3ESd3gwgRERErjBwQSoi/D+sbUswFCk4i0kd06DpOQ4YM4R//+EdX1yJdLXEirMVsEHGe2SCioraBXYcqGB0fZnV1IiLihew2g4xBEWzZPcRcULQT6irBL9jawkRETkF9qfsz9xGn/I3YcB5rEKHpeiIiYqGJKZEcJoJSnxjApQYRItIndOiI09atW3nrrbfIy8ujtra2xTrDMHjssce6pDjppJiR4BsEdRVwZDfpieF8u+8om3NLuXLyIKurExERL+W+ntMW12BOp8icrpc8zdqiREROwePgtGLFCu666y5sNhtRUVH4+vq2WG8YRpcVJ51ks0P8eDjwdWODiBmAjjiJiIi1JjQ2iFhbm8zpPt/pPCcR6RM8Dk6PPfYYZ511Fg8++CDh4eHdUVO7LV++nLvvvpugoCA2bNhgaS29VsKEpuCUNvkiALbmmQ0ifOyaqSkiIj0vPNCXkQNC2Hx4sLlAwUlE+gCP/3I+dOgQ1157reWhqbCwkAcffJC4uDhL6+j1mnXWGxJtNoiobXCy61CFtXWJiIhXm5gcyWZnY4OIQ9ugvsbagkRETsHj4DR69OhWF7+1wj333MPkyZM544wzrC6ld2tqELEJm8vBGDWIEBGRXmBiSiT5RFFmhIPLAYe2WF2SiMhJeRycfvvb3/L444+zffv27qinXd544w3WrFnDn//8Z8tq6DOihoFfKDRUQ9EOxjVez2mzgpOIiFjIvBCuwUbHYHNBXqaF1YiInJrH5zhlZGQwZ84cLr30UmJjY1tN2TMMgzfffLPLCjzekSNHuP/++/n1r3/NwIEDu+1z+g2bDRIyYP/qxgYRswAdcRIREWsNjQkmIsiXTXUpzLBt1HlOItLreRycHn/8cZYuXUpUVBQJCQmtuup1t3vvvZchQ4bwox/9qNPv5XA4OrVdR7fvaUb8eGz7V+PMXc+YyRcDsC2/jNq6+g41iOhr4+9qGr/G3/ze23R2/N76vUlrNpvBhEERbN7VeJ6TgpOI9HIeB6dnn32Wyy+/nPvuuw+73d4dNZ3Q+++/z8cff8yKFSu6pO15VlbnLrjX2e17SmRtJEOB6t1fUjJwF4E+BtX1Tt75Yh0p4R0Pvn1l/N1F49f4vZm3j1+6xqSUSF7eOdh8cmgrNNSBj5+lNYmInIjHwamyspKLLrqox0NTZWUl9913H9dccw1xcXGUlZUBUF9fD0BZWRk+Pj4EBQW1+z3T09M7NA6Hw0FWVlaHt+9xyeGw/v8IKt/HxHFjSf+ujjX7i6kPjScjI8njt+tz4+9iGr/Gr/F3fPzu7UXAPM/pb644ygki1FEFh7dD/DiryxIRaZPHwWnixIns2bOH6dOnd0c9J1RcXExRURFPPvkkTz75ZKv1p512Gueeey6PPvpou9/Tbrd36g+fzm7fY2KGQUA4Rk0p9iM7SU+KYM3+YrbmlWM/zQvG3000fo1f4/fe8UvXGD8oApthkOUYzOn2reZ0PQUnEemlPA5Of/jDH/jlL3/JwIEDmTlzJn5+PXNIPTY2lmeffbbV8scff5y1a9fy73//m8jIyB6ppc8xDLMt+d5PzQYRiecBahAhIiLWCvb3YXR8GJsPDeF0tkJ+JnCN1WWJiLTJ4+B0+eWX09DQwG233YZhGAQEBLRYbxgG69at67IC3fz9/Zk6dWqr5a+//jp2u73NddJMs+CUNnUeAFvzy2hwODvUIEJERKQrTEyOZHOBGkSISO/ncXA6//zzu6Qxg/Qw94Vw8zYwNCaYYD87lXUOdh+uIHVgmLW1iYiI15qUEsnCbwebTwo2g6MB7B7/eSIi0u08+pfJ4XDw85//nKioqFbXb7LKAw88wAMPPGB1Gb2fOzgVbsXmqGVsYjhr9h0lK6dUwUlERCwzMTmSfa6BVLgCCGmohiO7IG601WWJiLTi0Rwtl8vF3LlzyczM7KZypNuED4KgaHDWw6EtpCeawXezznMSERELDYoKJDokkK2uFHOBpuuJSC/lUXDy8fEhJiYGl8vVXfVId3E3iADIXd8UnNQgQkRErGQYBhOTI9jiHGwuUHASkV7K464Ac+fOZcWKFd1QinS7pvOcMklrDE7uBhEiIiJWmZQSyWanGkSISO/m8dmXqampvPvuu1x77bXMmTOH2NjYVs0i5syZ02UFShc6QYOIPYcrGTUw1NraRETEa01KieS/LjM4ufI3YTidYFPHVxHpXTwOTr/73e8AKCwsZM2aNa3WG4bBtm3bOl+ZdD13cDq8DVtDNWMTwlmz/yhZuaUKTiIiYpm0xHAO2BKpcfkSUFcOR/dCzHCryxIRacHj4NTWRWiljwiNh5ABUFEIBVmkJTYGp5wS5k1Ksro6ERHxUgG+dlITothWmMIEY7d5IVwFJxHpZTwOTlOmTOmOOqQnuBtE7FwJeRtIT7oIUIMIERGx3sTkSDbnD2aCbbd5nlP6PKtLEhFpocMTiMvLy1m9ejVvvvkmpaX6w7vPSJho3udtaOqspwYRIiJitUkpkWx2qUGEiPReHQpOS5YsYcaMGdx000387ne/IycnB4DrrruOxx9/vEsLlC7WrEHEkJgQgv3s1NQ72XO40tq6RETEq01MiWBzY0tyV/5G0KVPRKSX8Tg4vfDCCyxZsoR58+axdOnSFtd0mjVrFp9++mlX1iddLSHDvC/aib2+grEJup6TiIhYLz48kIrQ4dS57Bg1JVCSbXVJIiItdCg4XX/99dx9992ceeaZLdalpKSQna1/6Hq1kDgISwJckL+p6XpOmxWcRETEYmmD49jhGmQ+0XQ9EellPA5OBw8eZMaMGW2uCw4OpqysrNNFSTdzH3XK20B6UhigI04iImK9Scm6EK6I9F4eB6fQ0FCKioraXJebm0t0dHSni5Ju1uw8p6YGEXllOJyaTy4iItaZlBLJFtdgAFx5Ck4i0rt4HJymT5/Of/7zH6qqqpqWGYZBQ0MDy5YtazV9T3qh4xpEBPnZqa53sOdwhbV1iYiIVxsdH8YOYygAjrwNahAhIr2Kx8Hpl7/8JXl5ecydO5cHHngAwzB4/vnnueKKK8jOzuYXv/hFd9QpXckdnI7uwV5bytgEc7rephxN1xMREev4+djwSxxHg8uGT/URKM+3uiQRkSYeB6eUlBSWLVvG0KFDWbZsGS6XizfeeIPIyEhefPFFEhISuqNO6UpBURCRYj7O36gGESIiHfTtt98yatSoNm+ZmZlWl9cnpQ0ewG5XovkkL9PSWkREmvPpyEbDhw/niSeeoK6ujuLiYsLDwwkICOjq2qQ7JUwwW73mbSA90bw6uxpEiIh0zB133MHUqVNbLBsxYoRF1fRtk5Ij2fzVEFI5aDaISL3Q6pJERIAOHHG66667OHjwIAB+fn4MGDCgKTTl5uZy1113dW2F0j2anec0LkkNIkREOiMlJYWMjIwWt+DgYKvL6pMmpkQ2XQi3PneDtcWIiDTjcXB6/fXXKS4ubnNdcXExK1as6GxN0hPUIEJERHqhmBB/ikJTAXDmZlpbjIhIMx2aqncipaWl+Pn5deVbSneJH2/el2RjrylmbEIYa/cXk5VTysgBodbWJiLSx9x3333ccccdBAQEMGHCBG699VYmT57s8fs4HI4Ofb57u45u39sED8rAudPAv7oQR2m+efH2k+hv4/eUxq/xN7/3Rp39Dtq7XbuC09q1a/n222+bni9fvpzPP/+8xWtqa2tZtWoVw4YN86BMsUxgBEQNg6N7IG8DaYkDzeCUW8rlk5Ksrk5EpE8IDQ3l2muvZerUqURERJCdnc0TTzzBtddey9KlS094wfgTycrK6lQ9nd2+twjzdbLPNZBhRj57v1pBWdyUdm3XX8bfURq/xu/tuvs7aFdw+vbbb1m8eDFgXrNp+fLlbb4uISGBP/3pT11XnXSvhAlNwSk98WpAnfVERDwxZswYxowZ0/R88uTJnHfeeVx88cU8/PDDHgen9PR07Ha7x3U4HA6ysrI6vH1v4z+gjM1ZQxhGPkMCyzEyMk76+v42fk9p/Bq/N48fOv8duLc/lXYFp5/97Gf8+Mc/xuVycfrpp/PEE0+02FGA2ShCJ8L2MQkTYPOrZnCa9XMAtjQ2iLDbDIuLExHpm8LCwjj77LN56aWXqKmp8ajrrN1u79QfPp3dvrcYnRDBu8ZQ4CuqstcTdnb7xtRfxt9RGr/G783jh+7/DtoVnAICApr+4V+1ahWxsbE6l6k/aGoQkcnQWLNBRFWd2SBC5zmJiHScy2V2KDUM/QjVEXabQX1cOhSBrWCj1eWIiAAd6KqXmJio0NRfxI8DDCjLwV51mDHxYQBk5Wi6nohIR5WWlvLpp58yevRo/P39rS6nzwofajbXCKnOg6qjFlcjItKBrnr19fX8+9//5u233yYvL4/a2toW6w3DYOvWrV1WoHQj/1CIGQlFO8zpeklJfJetBhEiIu3161//mvj4eNLS0oiMjCQ7O5snn3ySI0eO8MADD1hdXp82dlgy2d/EkWI7BAWbYOjZVpckIl7O4+D0j3/8g6effpqZM2cye/ZsHX3q6xImHAtOiWMBNYgQEWmvUaNG8e677/LSSy9RVVVFeHg4kyZN4qGHHmLcuHFWl9enTRwUyReuwaRwiMr96whWcBIRi3kcnN577z3mz5/PggULuqMe6WkJE2DTS2ZwGj0fUIMIEZH2uvnmm7n55putLqNfCg/ypSBoFNSuoXzfOtR+SkSs5vE5TqWlpR26qJ/0Uk0NIjYwNCaYID871fUO9h6usLYuERGRgebF2v0Ob7K4EBGRDgSn0047je3bt3dHLWKFgelg2KCiEHtlwbEGEZquJyIiFosecRoAUTUHoabM4mpExNt5HJzuvvtuXn31VT744APq6uq6oybpSX5BEDvafJy3gbTEcEDBSURErJc2chi5rmgAGvLUllxErOXxOU6XXHIJDQ0N3H777RiG0erCfoZhsG7dui4rUHpA4gQ4tKWxQYQ5LUINIkRExGpDY0L41BhCIkc4tHMNCUNnWF2SiHgxj4PT+eefrwv69TcJE2DD82ZwGns7AJtz1SBCRESsZbMZlISPgdLvqMpeb3U5IuLlPA5OVl2X4uuvv+bNN99kw4YNFBQUEBoaSlpaGvPnzyctLc2SmvqNZg0ihsUEE+h7rEHEiAGh1tYmIiJezSdxApQ+S9CRzVaXIiJezuNznKyybNkycnNzufbaa3n88cf5wx/+wNGjR7nqqqv4+uuvrS6vbxuQBjZfqDqCvTyHsQlqECEiIr1DfOpUAAbUHYC6SourERFv1q4jTlu2bPHoTceOHduhYk7mnnvuITo6usWyGTNmMGfOHJYuXcr06dO7/DO9ho8/DBgD+RsbG0QM57vsYrJyS7lsYpLV1YmIiBcbPWoUh1wRxBklHNmznujROs9JRKzRruB0+eWXt+u8JpfLhWEYbNu2rdOFHe/40AQQHBzMsGHDyM/P7/LP8zoJE5qCU3riJEANIkRExHoh/j5s9R1OXMN3FOz4VsFJRCzTruD017/+tbvr6JDy8nK2bt3KtGnTrC6l70uYAOueNoNTutmSfEueGkSIiIj1KqPHQuF31OdssLoUEfFi7QpOl156aXfX0SH33nsv1dXV3HLLLR3a3uFwdGq7jm7fKw0Yjx1w5W1gcGQAgb52quoc7C4sY3hcSIuX9svxe0Dj1/ib33ubzo7fW7836ZzA5IlQ+AxhJVutLkVEvJjHXfV6i0ceeYS33nqLP/7xjx3uqpeVldWpGjq7fW9iOOvJsPliqyllxzfvkRwWwI4jDt75OouzUgLb3KY/jb8jNH6N35t5+/ilZyWNmQ5rYVB9NjXVVQQEBlldkoh4oT4ZnBYvXsxjjz3Gr371K37yk590+H3S09Ox2+0eb+dwOMjKyurw9r2VsSEd8tYzNqKWqSOHsOPrA5T5RJCRMbrF6/rr+NtL49f4Nf6Oj9+9vYgnElNGUEIIEUYFu7euYfSks60uSUS8UJ8LTosXL2bRokXcdtttHZ6i52a32zv1h09nt+91EidC3npsBRsZlzQdOMCWvLITjrHfjd9DGr/Gr/F77/ilZxk2G3mBI4moXk/RzrWg4CQiFugz13ECWLJkCYsWLeLWW29lwYIFVpfT/zRdCDeT9MSWDSJERESsVBs7DgBX/kaLKxERb9Vnjjg9+eSTLFy4kBkzZnD22WeTmZnZYn1GRoYldfUrzYLTsJjApgYR+4oqGB4Xam1tIiLi1UKHTIIDTxNdvq3p8iciIj2pzwSnTz75BIDVq1ezevXqVut37NjR0yX1PzGjwCcQ6srxKdnHmIQw1jVeCFfBSURErDRozHT4DIY7s8kpKmNQbLjVJYmIl+kzwem5556zuoT+z+4D8ePg4LeNF8IdawannDIunWB1cSIi4s38Y4dRaQQRTBW7t65j0FnnWF2SiHiZPnWOk/SApul6G0hrPM9pc26phQWJiIgANhuHg0cBULJnrcXFiIg3UnCSlpoFp2MNIkpxqkGEiIhYzDHAbBDhc2iTxZWIiDdScJKW3MEpfyPDogMI8LVRWedgb1GltXWJiIjXixoxBYCEqp1U1TVYXI2IeBsFJ2kpejj4hUB9FT5HdzEmPgyArNwSa+sSERGvFznsNABGG9lszD5qcTUi4m0UnKQlmx3ix5uPm03Xy8ops7AoERERIHo4tUYAQUYt+3boek4i0rMUnKQ1NYgQEZHeyGanJMxsEFGxf53FxYiIt1FwktaaBadxSRGAGkSIiEjvYEvIACCwKAuXS/slEek5Ck7Smjs4FWQxLMpPDSJERKTXcJ/nNMK5h33aL4lID1JwktaihoJ/ODhq8Tmyo6lBhKbriYiI1XySMgAYY+xn3f4j1hYjIl5FwUlaMwxonArRokGEgpOIiFgtNpUGw48wo5rs3VutrkZEvIiCk7StjQYRCk4iImI5uy8VEWaDiNoD6y0uRkS8iYKTtK1ZcEpPMoPTllw1iBAREev5DzL3UVHl2yirqbe4GhHxFgpO0jZ3cCrcwvBIXzWIEBGRXiMweSIAY439ZB4osbYYEfEaCk7StohkCIwCZz0+RdsYrQYRIiLSWzReqD3dto/12UctLkZEvIWCk7TNMFpO19N5TiIi0lvEjcFp+BBpVLB/7w6rqxERL6HgJCem4CQiIr2RbwC1UWaDCFfeRp1/KyI9QsFJTqwpOGU2NYjYmlemHZSIiFjO3SBimGM3uw5XWFyNiHgDBSc5MXdwOrSV4RF2AnxtVNQ2sP+IGkSIiIi1bI3XG0wz9rM+u8TSWkTEOyg4yYmFJUBwHLgc+BzeeqxBRF6ZxYWJiIjXa2wQkWbbz4aDJdbWIiJeQcFJTuwEDSI25yo4iYiIxQaMxWXYiDNK2L9/j9XViIgXUHCSk2sWnNLcwSlPDSJERMRifsE4o0YAEF6ylbJap8UFiUh/p+AkJ9fGEacteWU4XWoQISIi1rInZgDmeU47j9RZW4yI9HsKTnJyjSffUrSDERHg72OjotZBfoXDyqpEREQgPgOANNs+dhypt7YWEen3FJzk5EIHQmgCuJz4HNrS1CBib7F2UCIiYrHGBhFjbfsVnESk2yk4yak1m643rvF6Tss2V/C3D3ayLvsoDl3XSURErDAwHYBE4whHjh6hwaHznESk+yg4yak1C07njx2Ir92gsNLBY5/t5fLHvmby//chv3o5kzc35lFapV/8RESkhwSE4YoaBsAI1z6e//YA5TXaD4lI9/CxugDpA5oFpzMuj+Gr383iuY/Wsac6kNW7iiiuquf1Dbm8viEXu81gUnIks1LjOCc1jpEDQjAMw9r6RUSk3zLix8PRPaQb+/i/d7bz0Ps7mTUqjovHJ3BOahyBfnarSxSRfkLBSU7N3SDiyC6oKSMqOJizUgK5PSMDFwbrsov5eMchPtl+iJ2FFazZf5Q1+4/y4MrtJEYEMis1lnNS4zh9WAwBvtqBiYhIF4ofD1te44KIg6w0gtlbVMnKLQWs3FJAkJ+d2aMHcPH4BGaOjMHfR/sgEek4BSc5teAYCE+G0gOQnwnJZzSt8rHbmDo0mqlDo7nre6M5eLSKT3cc4uPth/hqzxFyS6p5/psDPP/NAQJ8bZw+LKbpaFRiRKB1YxIRkf6h8ce9Ua59fPCrM9lxqJK3N+Xz1sY8coqreXNjHm9uzCM0wIfzxw7konHxnDE8Bl+7zlYQEc8oOEn7JGSYwSlvQ4vgdLxBUUFcM30w10wfTHWdg6/2FPHxdvNoVF5pDR9vN0PVH4FRA0KbQtTE5Ah8tBMTERFPDRwHgH9VPo6aUsYmRDM2IZzfnj+KjTmlvLUxj3c25VNQVsOr63J4dV0OkUG+XJAWz8Xj45k6JBq7TVPKReTUFJykfRImwLY3zeDUToF+ds4dPYBzRw/A5XKxo7C8KUStyy5mR2E5OwrL+ddnewgP9GXmyFjOSY3lrJFxRAX7deNgRESk3wiKwhWRjFFyAOOjP8KUmyF+PIZhkDEogoxBEfzhwtF8l13MWxvzeG9zPkUVdSxbc4Blaw4QG+rP3PR4LhoXz8TkSGwKUSJyAgpO0j7NGkR0hGEYpA4MI3VgGL84ezglVXV8tvMwn2w/xKc7D1NSVc9bG/N4a2MeNgMmJEdyTmocs0bFMTo+VA0mRETkhFzDzsVY9xS2zBcg8wWIGQXjr4L0KyAiGZvNYMqQKKYMieKei8fwzd6jvL0pj/c2F3C4vJanv9rP01/tJyE8gIvGJ3DRuHjSE8O17xGRFhScpH3cDSKK90N1caffLiLIj0syErkkIxGH08WGA8VN0/i2F5SzLruYddnFPPz+DuLDAzh7lDml74zh0QT56X+2IiJyjOuCB9ltH87QirXYdq6Eoh2w6j7zlnIGjLsSxvwAAs1p4WeOiOHMETHcd0kaX+4u4q2NeXywtZC80hoe/3wvj3++l5ToIC4el8BF4+MZNUA/4ImIgpO0V2AkRA2Fo3vNBhFEdtlb220GkwdHMXlwFL+9IJW8kmo+aezS98XuIvJLa5qmVPj52Jg2NJpzG8+NGhQV1GV1iIhIH2XzoXTAdFzn3wr1FbDtLdj4Euz/ArK/NG/v/gZGXgDjroIRc8DHDz8fG7NS45iVGkdNvYNPdxzmrU15rNpWSPaRKhZ/spvFn+xmRFwIFzWGqGGxIVaPVkQs0qeCU2VlJY888gjvvfcepaWlDB06lJtvvpm5c+daXZp3SJgAR/di5GVCyKzu+5iIQH48NYUfT02hpt7BN3uPNB2Nyimu5vOdh/l852HueXMLw+NCmqb0TR4cqS5JIiLeLiAcJvzEvJXmQNarsOllOLTVPFd325vmj4FjL4VxV8OgKWAYBPjauSBtIBekDaSytoFV2w/x9sY8Pt1xmF2HKvjnRzv550c7GRMfxsWN0/n0452Id+lTwem2224jKyuLX//61wwePJi3336bO+64A6fTycUXX2x1ef1fwgTY/F+M/A0wovuCU3MBvnbOHhXH2aPiuPf7LnYfqmgKUd9lF7P7UAW7D1Xw+Od7CQ3wYeaIWGalxnH2qFhiQvx7pEYR8W76Ua8XC0+CM/8HzrgdCjebASrrVSjPh++eNG+RgyH9SvNIVMxwAIL9ffj++AS+Pz6Bspp6PtxSyFub8vhiVxFb88vYml/Ggyu3kzEogovGxXPRuAQGhgdYOlQR6X59Jjh99tlnfPnll/z973/noosuAmDatGnk5eXx0EMPceGFF2K368J23crdICI/E0b0/McbhsGIAaGMGBDKz88aRml1Pat3Hebj7Yf4dMdhjlbW8U5WPu9k5WMYMD4pgnMap/SNTQjT/HQR6Rb6Ua8PMAwYmG7eZt8L+z6HTa+YR5+K98PnD5m3xElmgBp7GYTEAhAW4Mvlk5K4fFISxZV1rNxSwFsb8/hm7xEyD5aQebCEv7y7jdMGR3HxuHi+lx6vH+5E+qk+E5w+/PBDgoKCuOCCC1osv+yyy/j1r3/Nxo0bmThxokXVeYmB4wADozQHn9rON4jorPBAX3PO+bgEHE4XG3NK+KTxaNSWvLKmHdo/PtxJXKg/s0aZ89jPHBFDiH+f+Z++iPRi+lGvD7LZYdgs8zb377DjXfNI1O5VkLvOvK28C4bPNptKjLoQ/MwpeZHBfvxwSjI/nJLMofIa3ssq4O1NeazdX8yafUdZs+8o97y5hdOHxXDx+HjOHzuQiCBdXkOkv+gzfz3u2rWLYcOG4ePTsuRRo0Y1rfc0ODkcjg7V4t6uo9v3Wb7B2KKHYxzZRVDJThyOmVZX1ML4xDDGJ4bxP+cOp7Cshk93HOaTHYf5cs8RDpXX8vJ3B3n5u4P42g2mDI5i1qhYZqXGMjg62KPP8dr//o00/tbjdzpdOF0uHK5jj50uFw6nC6eLpscOpwuXCxwu9+OW2xz/evN9aPbYhcNpvt7hatzeSbPHjcsblzkb3+/Y42Of1+o9m9XcskaOvW/jbVxYHemd/Pezv9CPen2cXxCkzzNvFYdh83/NEJW3Hna9b978QmHM980QNXiGGbyAuNAArjt9MNedPpi8kmre2ZTP25vy2JhTyhe7i/hidxF3r9jMjBGxXDw+ntmjBxAa4GvxgEWkM/pMcCopKSEpKanV8vDw8Kb1nsrKyupUTZ3dvi8aHJBCNLsYsPdVclZWUBk5hrrAgeY0iF5mlC+MSrPx09ExbC2q47u8Wtbn11JQ6eDLPUf4cs8R/r93t5MQYmdivD+T4v0ZHeuHbzsvfuiN//2b6+z4XS4XDe4/yp3Q4IKGxj/oG5yNj12Y65yupudN6xrDQb37sRMaXOa27vesb3qP49/TRb37dS73+7f9vKHxfR3NnjtdLpyvFuAEnK6u+T77Dhe7BvgzNta7//fv1h0/6olFQmJh2i3mrWiXGaA2vQwlB8xrQ2W+AKEJZsgadxUMTGvaNCEikJtmDuWmmUPJPlLJ25vyeWtjHtsLypvOy/XzsXHOqDguGh/PuakDCPTTkUiRvqbPBCfgpOeodOT8lfT09A5NoXA4HGRlZXV4+77McF4IuR8RVrSOsKJ1ALiCYyFhEq6kybgSJ5nnQvmHWVxpS6cB12H+sb6vqJJPGo9Grd1fTF6Fg7xdVby9q4oQfztnDI9h1shYzh4VS2xo63nqffm/v8vlos7hoqbeQXWdg5oGBzX1TvN5/bHH7ue19U6qj39c18DhI8UEh4Y1hhMnDQ4X9Q4n9U4XDQ4n9Y7Ge6e5vKGt516WOOw2A7th/ltltxnYmu5p+dhmYDeMxtfR7LF7ufletsbX2w2jaRubAT6Gk0BqCXTVEmDUEkgN/q5aAqglwFWLv6vGvKcGP6f52M9lPvZ31eDrrMXfVY2vswZfp7ncx2E+9nVUY3fVsydsHsnpj3bq38/+oqt/1NNMiI7p8vFHDoWz7oKZd8LBbzGyXsHYugKjPA++WghfLcQVNwZX+pW40i6HsMSmTZMiArhl5hBumTmE3YcqeCcrn7c3FbC3qJKVWwpYuaWAID8756TGclF6PDNHxuLv07mOsPrv793jb2hooMHporKmDpdha5qV4J7p0HRrnH3Q4Dw2m6H5Ovdjp8tFg8PVYraEe73TBQ1OJ04nJ3jf4z/XAY56cNRhOOvAUY/hqMdwND521mM46zAc9dicddic5jKbsx6bq/HeWY+Pqw7DWY/d2YDd1XhPPXZnPXZXA067H660K0lPT+/Qd9je/+30meAUERHR5g6otLQUOLaT8oTdbu/UH76d3b5PmngdjoAIjqx/i9jabIyCLIzKw7BrJcaulY0vMiButHmSbdJpkDQZYlObpjdYbcTAcEYMDOfms4ZTXlPPF7uK+Hj7IT7ZcZiiilre31LI+1sKAUhPDGdWahznpsaRnhiOrdnRqK767+9yuah3uMwQU2eGl+pm4cUMLceCTVPgqXNQ09D4vGl96+1rj3vu6rK8UtNVb9TEx2bgYzfwtdnw9bHhYzPwtdvwtRv42Fs/97Wbz31sxy2z2cz3afFaG76247Zr+izj2Hs0fnabr7XbMFwudmzfRnraWPx87C1DTWPQsdsaA07T42Y/7Djqoa4S6qugvrrxcTXUV0Jd1bHHTeuOf11Vy23qqxu3a3zsqOvy/y7HC7PXe+e/fyfQlT/qaSZE53TP+AMg8VqMgVcTdmgN0TkfEn7oG2yHtmKs+jOuVfdSHpPB0cTZFMfPxOnbcvr3WdEw8+wQsksD+OJgDV8erOFQpYO3NxXw9qYCgnwNpiT4c2ZyIOlxfvi0c9ZDW/Tf3/rxuxpnPtQ5XNQ5zR8r6xyNz1vdji2vd7ioPW55vbP162sbX9t8uc1RRzDV+P13C75GA7404I9570sDvkYDfs2e+7WxzJcG/Ixm65vdu98zEAd+1LdY5ofjuM+pb9yucbnRQ2G2AT46GEdWVusfsrpSnwlOI0eO5O2336ahoaHFlIidO3cCMGKEBW3evJHdB8b8gIN1g4nOyMDurIeCTZDzHeSsNe9LD5jXyzi0FTY8Z27nFwKJEyFx8rEwFRJn7ViA0ABfvpdudkFyOl1szitl1bZDfLLjEJtySsnKNW8LV+0iJsSfs0fFMnNENIcKajm0tfC4ozfHQkzzIzjHAk3r5+7tHBYcfbHbDAJ97QT42gnwtTU9DvS143/c80C/Y8v87AaHC/IZnDwIP197szDjDhctw0zz0NH6tc3Cit3oXZ0PHfVQWw61pVBTBjXlUFuGs7oUe9EOErZ9i62hpjHYNN7qjn/cRiByNvTQAAzwCwbfIPM8Dl/3LbBxeSD4Bjeua3zsG9j4PPi41wU1PXbYAzm48wDRPTSK3q6rf9TTTIiO6bnxTwEW4KouwbntDfNI1IGvCSvaQFjRBlK2LMI18nu40q+EYeeA/dg5TROAH2D+Yb0pp5S3s/J5N6uAgrJaPs2u4dPsGiKDfDl/7ADmpsczdUgU9naGKP33b3v87lkWtY373NoGJzUN5syK2npn06yLWvd9vePY+jZe515e2+x5TYPTXOaetdHg6Q+ULkKoJpRqwoxKwqgi1KgijKp2PK8i1KcKf9+e2q90nsOw4zR8cRi+OG3mzWH44LIde+60+ZnP7b64Gh+77L7gfuzjBzY/sPvisvth2P2wBYUTHZbB2E7+G3oqfSY4zZ49m1deeYUPPviACy+8sGn566+/TlxcHOPHj7ewOi/mG2BePHDQlGPLygsh97tjYSp3PdRVmO1f931+7HURyWaIcoep+HHgY10LV5vNYFxSBOOSIvjVeSM5VN7YYGL7IVbvKqKoopZX1+Xw6rqcxi26vrOgYdAisAT42po9bhlyAv1aLzvRdoF+dgJ87AT4HVve0YsFOxwOMjPLyMhI7p07aKejMfCUNd6Xm8Gn6XlZs2Xu58cvK4eG6jbf3gakdEWdhv1YsGkKKccHm6CWIadVsGkeiI4LSD7+3XPuocMBHOj69+2juvpHPc2E6JweG39INJx2o3krzoas5bDpZYyinRhbX4etr0NQNKRdbp4PlTipxf8fJw6OZuLgaO6eO5bvsot5e1Me72blU1RRx0trc3hpbQ6xof7MTY/nonHxTEyObDHj4UT6y39/h9NFeU09ZdUNlNXUU1Zd33jf/HkDZdX1lDbeDpeUw8dfNgWd2g6FGM/ZcRDSGHoS3OHHMENOqFFNlK2aSFsV4bZqwo3GsEMlwa4qgl2VBDkrseHsdB0uDPPffbtfs5svRrPH2P0aX+PbclmLx/4nWN7W9m29h/9J3tsXu82OHejqNikOh4PCzMxu//9AnwlOZ511FmeccQZ//vOfqaioIDk5mXfeeYfVq1fz8MMP94t/KPqN0AGQOte8gfmH7OHtx45I5XxnPi85YN42/9d8nd3PvMZGU5iabF6Y0KKjEHGhAVw5eRBXTh5EXYOT7/Yf5ePth/h6zxEqq6qIDA8xA4yHoca/+Wt8WoYaP7utdx116UlOp3lEpnl4qS09LvycKOg026auomvr8g0G/1DzFhCGyy+EkuoGwmPisbV1ROdEj1sFG7Uo7g/0o54QmQIz/xdm/Nq8zuGmV8yL7FYegjWPm7eoYWaAGncFRA1t2tRmM5gyJIopQ6L400Vj+HbfUd7amMd7mws4XF7L01/t5+mv9pMQHsDccfFcPD6B9MTwXr+fcDhdVNSYIaf0JKGn6flx6ypqO3oE5cTb2QwI8LXj72Nr2j/7+9gI8XESZa8moingVBFGNWFUEkxlU7gJclYQ6KjA31GBX0M5fvXl+NSX49NQ2b7STpWN7H4QEH7s5h/W8nlAGAREtLne4RtM5tbdZEyYoL+Hu1mfCU4AixYt4p///CcLFy6kpKSEoUOH8o9//ENXZ+/tbHYYMNa8TbreXFZTZrZ7zVkLOevM+6qiY9fQcAuKMQNUUuNRqYSJ5j8ePczPx8bpw2M4fXhM4xGXTDIyMvQPFIDLZU5Da35Ep61AU9MsBLV1hKe2DOjCnwbt/ub/Vtyhxz+scUcT1uy5OxCFt7EszGxDbG/5z6TT4WBv439/9N/f6+lHPWliGGZzpIQJcN7/wd5Pza5829+Go3vg0/vNW9IUGN94kd2gqKbNfew2zhgewxnDY7jvkjS+3F3EWxvz+GBrIXmlNfx79T7+vXofKdFBXDQunovGJZA6MLRbQpTT6aK8tuGkR3qaLy+tNteVN64r73DwaSnIz05YgC9hgT6N976EB/oSFuBDWKCvuSzAToRRReWBTEYlRhHsqiLAUY5fQyV+DWX4NgYcW20ZRk1p476ozLyvKIWGLjpf1ze4MdycKvy4H0e0XO8b0PHPdjh6ZXfj/qhPBafg4GDuvvtu7r77bqtLkc4KCIOhZ5s3MP/4Lt5vhib3kan8jWaY2rnSvAFgmI0mmoepXtR4ot9wOqDiEJTlQVmueV+eB2V52MryGF2cj211w7HQ05Xn7Rj2xnBzfNBpFmya1h+/rNlzC6d9infRj3rSit0HRsw2b7UVZnja9LIZpnLWmLf37oQR55lHokZe0OIPZz8fG7NSzYu219Q7+HTHYd7elMdH2wrJPlLFkk/2sOSTPQyPC+HicQlcmNbynGGn00VFXUObR3PaDkP1lFYfW1dR29AlU9wCfe0tQk+LwNO4PDzQt9WysEBfQgN8zCnl9dXmPqg0B0r3mfuk0hwozGl8nAt15eYHdqY3hH9b4eZU4Se8cbuwFuezSf/Vp4KT9GOGAVFDzFv6PHNZfQ0UZDWeL9UYpkqy4fA289a88UTChGNNJxInm9MFpW0NdVCe3zIUNQtG5uMCcLXdCccAgk605qRBp9lRnxbLQs0dj3uZT4B+OZM+RT/qyUn5h8D4q81bWf6xi+wWbIId75o3/3DzIrvjr4bk08F27BzUAF87F6QN5IK0gVTWNrBq+yHe3pjHpzsOs/tQBf/8aCf//GgnA4Pt+H70GaWNR3y6Ivj4+9jaPsrTIgy1fUQoNMAXv1O1WXc0QEWB2VSq9CAcagxCpTlQlmM+ripqV60NvqHYQ2IwTnVkp63w4xfa4jsXOREFJ+m9fANg0GnmjVvNZRWHzACVe1zjif2rzZtbePKxI1JJk2HguM4dBu8r6iqPhZ8WR4vyjz2uPNy+9zLsEDoQwhLMW6h57wwZyO68owwbk4E9KPJY+PELUeARETmZsHg4fYF5O7St8SK7y82QsOE58xaWZJ4LNe5qiEttsXmwvw/fH5/A98cnUFZTz4dbCnlrUx5f7CqioNIBlS2b2vjZzeBz/FGfEx3laR6OQgN8CPDtxGwOlwsqi8xAVJrbeHSo+eNcc990gh/pWvANhvBECE8yr5kVntTisSNkIBu37NQUeul2Ck7St4TEQeqF5g0aG0/saDwitdac6ndoW+OvVwdgy2vm62y+xxpPJJ0GSZMgckjf+UPf5YKakuNCURvBqKa0fe9n9zd34GGJrYJR07KQuDanQLocDsobMiEpQ+f4iIh0VNxomP1nOOdPcOAr2PgSbH3DDFFf/NO8DRxnTuVLn2f+kNVMWIAvl09K4vJJSRSVV/Pm6g2MGz2KiGD/pjDUqeBzKrXljdPnchuPDh33uCyvfecP2XzMfU74oMYg5A5IScceB0ScfH/tpRe+lZ6n4CR9m80OA8aYt0nXmctqyiBvw7HpfbnfmUdZ8tabtzVLzdcFRbe8rlTiRPOQfU9zOs2pCM2nzTUPRu5pdfVV7Xs/v5BjYehEwSgoqu+ERhGR/sxmg8FnmrcL/2ae07vpZdj1gTmdr2ATfPhH85zgcVdB6kXm9L9mIoP8GD/An4zkiK454tJQe+yoUKsjRY0BqbadP9SFDDjhkSLCkyA4TtPkpM9QcJL+JyAMhp5l3sA8WlOSfawVes5ac0dUdQR2vW/eALPxxP/f3p1HNXXm/wN/B4IKqCwi4riMBU3YMrhB3KhL3bBYsG5zzhxwVFRqYRxRa63TKTiuYz1OwUGkOIqOxy9W0SOWauvSo/MbCYrVMipK3UaoRUQRENmS+/sjkyuRYFAg0fB+nXOP5blPyPMkIe9+7n1yI3/2Oame/tojgs258IS6Fqgoavh5ovpb+T1AU9u032fr/L9iqLt+YdSp3tkjM1x1kIiIWoBNB8AnVLs9KdF+H9SlNO3FJG6c1G42dtri6TcztcWU9Uv+r5xGrc2lxs4UPS7UXkq9KTo4vPhMUadf8asXyKKwcCLLJ5Fovw/Kqc+zC0/UVWsvPKErpArO/e/CE3na7Yd/avvZ2GvPRNUvpuxctPtqnwKlRYYvtKDbKorQtEtsS7RH5cQzRb8yUBj9Svulp0REZPnsuwD+Edrt4U3tZ6F+/D/tf+fu0272rtpc852mPUgoCEDlw/8tldOdHSrQP1NU/nPTroQq7dDImaIez4ql5858EVk6Fk7UNknbP7ukOSK1bRXF/7voRP0LT5Q3uPCEVafu8Kt6AuuMsqbdl5XNs8KnscKoYzdeypSIiAxzdgdGLQdGfqT9LO+Padqr8z25D2QlwjorEYr2XWB17GnTlnVLrJ9lkKEzRZ17ckk3kQEsnIh0OnYF5EHaDdAuZ3hw/dkZqYIc4P4VSMrvPfvDkdpqg6bTcxdaqF8Y2blw/TYRETWfRPLsoN+EtcBPJ4Af0yBcy0S76pJn/ey7vvhMUSc3fv8h0Stg4UTUGCtr7WecXL2AgeHatupyqO/lIu9WITz9x8DankfkiIjIDKxtAPlEQD4RmspHyP9/h9Gv/zBYO/ZqG1+/QWQGPAxO9DLadwJ6KVHV2R2wdWTRRERE5te+M544+2qX9LFoImo1LJyIiIiIiIiMYOFERERERERkBAsnIiIiIiIiI1g4ERERERERGcHCiYiIiIiIyAgWTkREREREREawcCIiIiIiIjKChRMREREREZERLJyIiIiIiIiMYOFERERERERkBAsnIiIiIiIiI1g4ERERERERGcHCiYiIiIiIyAgWTkREREREREZIzT0AcxAEAQCgVqtf6fa6273q7d90nD/nX//ftobzb978dbfTvQ+TFnOpeTh/zr/+v21NW58/YLpskghtML1qamqQm5tr7mEQEbVZCoUC7dq1M/cwXhvMJSIi8zOWTW2ycNJoNKirq4OVlRUkEom5h0NE1GYIggCNRgOpVAorK64W12EuERGZT1OzqU0WTkRERERERC+Dh/uIiIiIiIiMYOFERERERERkBAsnIiIiIiIiI1g4ERERERERGcHCiYiIiIiIyAgWTkREREREREawcCIiIiIiIjKChdNz0tPTIZfLxc3b2xsjRozA4sWLcfv2bb2+58+fx8qVK/H+++/D19cXcrkcBQUF5hl4C2nq/NVqNXbs2IG5c+fi7bffhp+fH4KCgvD555+jrKzMfBNoJc8/Ls9vKpXK3EN8ZUePHoVcLkdmZmaDfe+99x7kcjnOnDnTYN/YsWMxZcoUAMCpU6fw0UcfYfLkyfDx8YFcLm/1cbeU5s6/oqICW7duRVhYGIYPH44BAwZg8uTJSE5ORnV1tSmm0Cwt8fxv3rwZoaGhCAgIgEKhwDvvvINPP/0UhYWFrT7+toLZxGwyxFKzibnEXHpdc0narFtbsHXr1sHd3R3V1dW4cOECkpKSoFKp8M0338DBwQEAkJWVhbNnz8LLywv29vbIzs4286hbjrH5V1VVISEhAcHBwZg+fTqcnJxw5coVbN26FadOncKBAwfQoUMHc0+jxekel+f17dvXDKNpGQEBAZBIJMjKysKkSZPE9tLSUly/fh12dnZQqVQIDAwU9/3yyy+4e/cuZs+eDQD47rvvcOnSJXh5ecHGxgaXL182+TxeVXPn//PPPyM1NRUhISH4/e9/Dzs7O+Tk5GDLli3497//jR07dkAikZhjak3SEs9/WVkZ3n33XXh4eMDe3h4//fQTtm7dipMnT+LIkSNwcnIy+bwsFbOJ2WSIpWUTc4m59LrmEgunRvTr1w8KhQIAoFQqoVarkZCQgOPHj2Pq1KkAgIULFyIqKgoAsH37dosKJ2Pz79ChA06cOKH3wlMqlejevTsWLVqEY8eOISQkxFzDbzX1HxdL4ezsjH79+jV4/Z47dw5SqRRTp05tcNQyKysLgPY5B4DVq1fDykp7AnvVqlVvVEA1d/49e/bEyZMnYWdnJ+4fOnQobG1t8de//hU5OTkYPHhw60/kFbXE8//ZZ5/p7dc9LvPnz8eJEycwbdq0VpxB28JsYjYZYmnZxFxiLr2uucSlek2ke0MqKSkR23R/kG3B8/O3trY2WK3/5je/AaCt/OnNoVQqcevWLdy/f19sU6lU8PX1xciRI3H58mVUVFSI+7Kzs2FtbS2+8b7pfwvNmb+dnZ1eOOm8SX8LzX3+DXF2dgYASKU8PteamE3MJkvFXGIuvY659Ga/qkxItz68T58+5h2ImTR1/rqK/01dHmCMRqNBXV2d3qZWq809rGYbMmQIAOgd3VGpVAgICMDAgQMhkUiQk5Ojt8/b2xudOnUy+VhbQ2vM/036W2ip+dfV1aGqqgpXrlzB2rVr0adPH4wbN840k2ijmE3MJsAys4m5xFwCXr9cYuHUCN2b0JMnT3DmzBls3boV/v7+GDNmjLmHZhKvMv+ioiJs2rQJvr6+GD16tAlHazozZsyAj4+P3mYJyyP8/f1hZWUlvkE9evQI+fn58Pf3h729Pby9vcU33Hv37qGgoEA8HW4JWnr+eXl5SElJwbhx4+Dp6WmSOTRHS8y/uLgYPj4+8PPzw5QpU6BWq7Fr1y7Y29ubfD6WjNnEbDLEErOJucRceh1ziWsoGjFjxgy9nz08PJCYmNhmlp287PxLS0sxb948CIKAv/3tb2/8KfLGbNiwAR4eHnptr/MHLJvKwcEBnp6e4prhc+fOwdraGgMHDgSgfQPTvUHp+lhSQLXk/AsKChAZGQk3NzesXr3aBKNvvpaYv5OTE/bv34+amhrcvHkTKSkpCA8Px+7du+Hq6mrC2Vg2ZhOzyRBLzCbmEnPpdcwly3wHaQEbNmzA/v37kZqaipkzZ+LGjRuIiYkx97BM5mXm//jxY8yZMwdFRUX4xz/+gV69epl4tKbj4eEBhUKht/n6+pp7WC1CqVTi9u3bKCoqgkqlgo+Pj3hUJiAgAFevXkV5eTlUKhWkUikGDRpk5hG3rJaYf2FhIcLDw2FtbY3U1FQ4OjqaeBavrrnzl0qlUCgUGDRoEKZPn47U1FQUFBQgOTnZHNOxWMwmZpMhlppNzCXm0uuWSyycGqF7ExoyZAhWrVqF6dOn48yZMzh69Ki5h2YSTZ3/48ePMXv2bBQUFGDHjh1vxOlfMkx3pCY7OxvZ2dnw9/cX9+nejM6dOweVSgWFQmFxS7CaO//CwkKEhYUBAHbt2gU3NzcTjbxltPTz7+bmBldX1wbfMUTNw2xiNrUlzCXmEvB65RILpyZatmwZHBwcEB8fD41GY+7hmJyh+euC6e7du9i+fTu8vb3NPEpqDn9/f1hbW+PYsWPIz89HQECAuK9Tp07w8vLCoUOHUFhYaFHLIXSaM/+ff/4ZYWFh0Gg0SE1NRY8ePUw9/GZr6ef/zp07+OWXX/DrX/+6NYfd5jGbmE2WjLnEXHrdcqltLIpuAQ4ODpg/fz42btyIjIwMhISE4OHDh+KH1q5fvw4AOH36NJydneHs7Kz3BL/pnp//hAkTMHfuXFy5cgWffPIJ1Go1Ll68KPZ3dnZG7969zTfgVpKfn2/wSkW9e/cWL3P5purYsSO8vb1x/PhxWFlZNTjl7e/vj9TUVAAN1xEXFhYiNzcXAPDf//4XAMQjwD169HgjPqT8qvMvKSlBeHg4iouLsWbNGpSUlOhdGtrNze2NOMr3qvPPy8vDunXrMGHCBPTq1QtWVla4fv06du7cCUdHR8yZM8ek82hrmE3MJsBys4m5xFx63XKJhdNLCAsLw549e5CYmIjg4GDk5+dj0aJFen3i4uIAaNde7t692xzDbDX15z9gwADxDWnNmjUN+k6ZMgXr16839RBb3YoVKwy2r169GtOnTzfxaFqeUqlEbm4uvLy80LFjR719/v7+2LlzJ2xsbDBgwAC9fSqVqsFjo/vbeJNeC68y/59++gl3794FoD36/byoqChER0e37sBbyKvM38XFBa6urtixYweKi4tRV1cHNzc3jBo1CpGRkejevbupp9HmMJuYTZacTcwl5tLrlEsSQRCEV741ERERERFRG8DPOBERERERERnBwomIiIiIiMgIFk5ERERERERGsHAiIiIiIiIygoUTERERERGRESyciIiIiIiIjGDhREREREREZAQLJyIiIiIiIiNYOJFJpKenQy6Xi5u3tzdGjBiBxYsX4/bt2+YeHgAgKSkJx48fb9CuUqkgl8uhUqnMMCqtkydPIjIyEsOGDYOvry8CAgIwa9YsHD58GLW1tWYb1/MMPVYff/wxxowZ06r3W1RUhISEBFy9erVV74eILAuzqXmYTS/GbLI8UnMPgNqWdevWwd3dHdXV1bhw4QKSkpKgUqnwzTffwMHBwaxj27ZtGyZMmICxY8fqtfv4+CAtLQ19+/Y1+ZgEQcAnn3yC9PR0jBw5Eh9//DG6d++O8vJyqFQqxMXF4dGjR5g1a5bJx9ZUCxcuRHh4eKvex/3797Flyxb06NEDXl5erXpfRGR5mE0vh9nUNMwmy8PCiUyqX79+UCgUAAClUgm1Wo2EhAQcP34cU6dONfPoDOvYsSP69+9vlvtOSUlBeno6oqOjERUVpbdvzJgxiIiIwJ07d0w6pqqqKnTo0KHJ/Xv37t2KoyEiaj5m08thNlFbxaV6ZFa6oCopKdFrz83NRWRkJAICAqBQKBAaGorMzEy9Pg8fPkRsbCwmTZqEAQMGYOjQoQgPD8f58+cb3E9NTQ22bNmCoKAgKBQKKJVKhIWF4cKFCwAAuVyOyspKHDx4UFyyERYWBqDx5RAnTpzAzJkz4efnhwEDBmD27Nn44Ycf9PokJCRALpcjPz8fMTExGDRoEIYNG4YVK1agvLz8hY9NbW0tUlJS4O7ujg8//NBgn65du2Lw4MHiz6WlpYiNjUVgYCB8fX3xzjvvYPPmzaipqdG7XXV1NTZt2oQxY8bA19cXgYGBiIuLQ1lZmV6/MWPGYMGCBfj2228RGhoKhUKBLVu2AABu3LiBuXPnws/PD0qlEn/+85/x5MmTBmM0tBxCLpdj1apVOHToEIKCguDn54f33nsPp06d0ut3584drFixAuPHj4efnx8CAwMRGRmJa9euiX1UKhWmTZsGAFixYoX4/CUkJIh9mvJ6IiLSYTY1jtnEbGrLeMaJzKqgoAAA0KdPH7EtKysLERER8PPzQ2xsLDp16oTMzEwsXrwYVVVVeP/99wFo34gBICoqCi4uLqisrMR3332HsLAw7Ny5E0qlEgBQV1eHiIgI5OTkIDw8HEOGDIFarcalS5dw7949AEBaWhpmzZoFpVKJhQsXAtAezWtMRkYGli5dihEjRmDTpk2oqalBSkqKeN/1AwMAoqOjMWnSJEybNg3Xr1/Hpk2bAGiXhzTmP//5D0pLSzF9+nRIJBKjj2V1dTXCw8Nx9+5dREdHQy6X4/z580hOTsbVq1eRnJwMQLvEYuHChcjKysL8+fMxePBgXLt2DQkJCbh48SLS0tLQrl078fdevnwZN27cwAcffICePXvC1tYWDx48QFhYGKRSKT777DN06dIFGRkZ+Mtf/mJ0nDrff/89cnNz8Yc//AF2dnZISUlBVFQUjh49il69egHQLnNwdHTEkiVL4OzsjMePH+PgwYOYMWMGDh48CHd3d/j4+GDdunVYsWIFPvjgA4waNQoA4ObmBqDpryciIh1mE7OJ2UQGCUQmcODAAUEmkwkXL14UamtrhYqKCuH06dPC8OHDhd/97ndCbW2t2HfixIlCaGioXpsgCMKCBQuE4cOHC2q12uB91NXVCbW1tcKsWbOEDz/8UGw/ePCgIJPJhH379r1wjP379xeWL1/eoD0rK0uQyWRCVlaWIAiCoFarhREjRgjBwcF6Y6moqBCGDh0qzJw5U2yLj48XZDKZ8OWXX+r9ztjYWEGhUAgajabR8Xz99deCTCYT9u7d+8Jx6+zdu1eQyWRCZmamXntycrIgk8mEf/3rX4IgCMLp06cNjkl3f2lpaWLb6NGjBS8vL+HmzZt6fTdu3CjI5XLh6tWreu2zZ8/We6wEQRCWL18ujB49Wq+fTCYThg0bJpSXl4ttxcXFgqenp7Bt27ZG51hXVyfU1NQI48ePF9auXSu2//jjj4JMJhMOHDjQ4Dav+noiIsvHbGI21cdsImO4VI9MasaMGfDx8cHAgQMRERGBzp07IzExEVKp9uTnnTt3cPPmTUyePBmA9oicbnv77bdRXFyMW7duib9v7969mDJlChQKBby9veHj44OzZ8/ixo0bYp8zZ86gffv2LbZO/datW7h//z5CQkJgZfXsT8je3h7jx4/HpUuX8PTpU73bGFoOUF1d3WAZSHNkZWXBzs4OEydO1GvXHbU6e/as2K9+u05QUBDs7OzEfvXH+tZbb+m1qVQq9OvXD56ennrtwcHBTR6vUqnUO3Lq4uKCLl26oLCwUGyrq6tDUlISJk2aBF9fX3h7e8PX1xe3b9/We44b87KvJyJqm5hNWswmZhO9GJfqkUlt2LABHh4eePLkCTIzM5GWloaYmBikpKQAAB48eCD227Bhg8Hf8ejRIwDAjh07sH79evz2t7/FokWL4OTkBCsrK3zxxRe4efOm2P/hw4dwdXXVC5Lm0N1/165dG+xzdXWFRqNBWVkZbG1txXZHR0e9frrlBlVVVY3eT/fu3QE8WzJiTGlpKVxcXBosnejSpQukUqm4fKS0tBRSqRTOzs56/SQSCVxcXMR+OobmWVpaip49ezZod3FxadJYgYaPCaB9XKqrq8Wf169fjz179mDevHnw9/eHg4MDJBIJ/vSnP+n1a8zLvJ6IqO1iNmkxm5hN9GIsnMikPDw8xA/dDhkyBBqNBl999RWOHj2KiRMnwsnJCQCwYMECjBs3zuDv0B1hOnz4MAICAhAXF6e3//kPgTo7OyMnJwcajaZFAko3xuLi4gb77t+/DysrK3Tu3LnZ9+Pr6wtHR0ecOHECS5YsMbqW3NHREZcuXYIgCHp9S0pKUFdXJ47b0dERdXV1ePjwoV5ACYKABw8eiM+PjqH7dXR0FN/46zPU1hyHDx9GaGgoYmJi9NofPXrUpMf4ZV5PRNR2MZuajtnEbGrLuFSPzGrZsmVwcHBAfHw8NBoN3N3d0adPH+Tl5UGhUBjcdKfQJRKJ3gdFASAvLw8XL17UawsMDER1dTXS09NfOJZ27dq98CibzltvvYVu3brhyJEjEARBbK+srMS3336L/v376x3Re1U2NjaIiIjAzZs38fe//91gn5KSEuTk5AAAhg4disrKygZflHjo0CFxf/1/Dx8+rNfv2LFjqKysFPe/iFKpRH5+PvLy8vTajxw5YnxiL0EikcDGxkav7fvvv0dRUZFeW2NHSV/m9UREpMNsahyzidnUlvGME5mVg4MD5s+fj40bNyIjIwMhISGIi4vDvHnzMHfuXEyZMgXdunXD48ePcePGDVy+fBnx8fEAgFGjRiExMRHx8fHw9/fHrVu3kJiYiJ49e0KtVov3ERwcjPT0dMTGxuLWrVtQKpUQBAGXLl2Ch4cH3n33XQCATCZDdnY2Tp48ia5du8Le3h7u7u4NxmxlZYVly5Zh6dKlWLBgAWbOnImamhps374dZWVlWLJkSYs9PrpwSkhIQG5uLoKDg8UvGTx37hz27duH6OhoDBo0CKGhodizZw+WL1+OwsJCyGQy5OTkYNu2bRg5ciSGDRsGABg+fDhGjBiBzz//HBUVFRg4cCCuXbuG+Ph4eHt7IyQkxOi4Zs2ahQMHDmD+/Pn44x//KF65qP4ylJYwatQo8QpFcrkcly9fxvbt28WrEun07t0bHTp0QEZGBjw8PGBnZwdXV1d069atya8nIiIdZtOLMZuYTW0VCycyu7CwMOzZsweJiYkIDg7GkCFD8NVXXyEpKQlr165FWVkZHB0d4eHhgaCgIPF2kZGRePr0Kfbv34+UlBT07dsXsbGxOH78OLKzs8V+UqkUX375JbZt24avv/4aqampsLe3h6enJwIDA8V+K1euRFxcHGJiYvD06VMEBARg9+7dBsc8efJk2NraIjk5GYsXL4a1tTX8/Pywa9cuDBw4sMUeG4lEgnXr1mHs2LHYt2+f+Hjoxr906VLxg7Tt27fHrl27sHnzZqSkpODRo0fo1q0b5syZo/cFhRKJBImJiUhISEB6ejqSkpLg6OiIkJAQxMTENDhSakjXrl3xz3/+E2vWrEFsbCxsbW0xduxYfPrpp+Ilc1vCypUrIZVKkZycjMrKSnh7eyMhIQFffPGFXj9bW1usXbsWW7Zswdy5c1FbW4uoqChER0c3+fVERFQfs6lxzCZmU1slEeqfzyUiIiIiIqIG+BknIiIiIiIiI1g4ERERERERGcHCiYiIiIiIyAgWTkREREREREawcCIiIiIiIjKChRMREREREZERLJyIiIiIiIiMYOFERERERERkBAsnIiIiIiIiI1g4ERERERERGcHCiYiIiIiIyIj/D+mjIMCidB9pAAAAAElFTkSuQmCC",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2EAAAHbCAYAAABCwpIFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC8GklEQVR4nOzdeXzU5bn//9fMZIOQPSFkh0DYQzYIoAIuVK2IVqXFttZSj62oUE+1v1NFe6z9tkeU1lqRUtGqdQErLVJFoeKOimyBENkCBLITliwkIetkfn9MMhDJNklmJpO8n4+Hj4HP3J+Z604in1zzue/rMlgsFgsiIiIiIiLiFEZXByAiIiIiIjKQKAkTERERERFxIiVhIiIiIiIiTqQkTERERERExImUhImIiIiIiDiRkjAREREREREnUhImIiIiIiLiRErCREREREREnEhJmIiIiIiIiBMpCRMREREREXEiJWHiFgoKChgzZgwPPvigq0MRJ9L3XUT6Kv37NDDp+y69xcPVAcjAM2bMGAAiIyPZtGkT3t7eF4258sorKSwsZN++fXh49PzHNCsri9WrV7N9+3ZOnTqFh4cHUVFRXHbZZSxYsIDw8PAOY23P448/zs0332z32AvHHzp0CIAHHniADRs28Oijj/KDH/ygw9f60Y9+xPbt2/nrX//KFVdc0el7A6xfv55x48Z1Og5g06ZN7NixgwMHDnDw4EGqq6uZO3cuf/jDH7p0/je54nveXUePHmX16tVs27aN4uJi6urqCAwMZPz48XzrW9/ihhtuaDP+7v6MiYjr6brU+rV1XbJy9XXpm9+PtrTE+OGHHxIdHd2t99H1yzWUhInLFBUV8fe//52f/exnDnsPi8XCH/7wB1544QU8PDy45JJLuPbaa2loaGD37t28+OKLrFmzhqVLl3Lttde2+zqLFi1q83hbFw97xl7oe9/7Hhs2bGDt2rUdXuzy8vLYsWMH4eHhzJw5s0vvDRAaGtrh+19o5cqVHDx4kMGDBzNs2DBycnK6fG5H7P2eh4eH89577+Hn59cr79+ZZ599lhUrVtDU1ERycjI33XQTvr6+nD59mp07d/LII4+wZs0a1q1bZzunt37GRMT1dF1qTdelizn7uuRIun65lpIwcYmAgAAMBgPPPfcc8+bNIzg42CHvs2LFCl544QWioqJ47rnnSEhIaPX8f/7zH/6//+//4/777ycgIIDp06e3+TqLFy/u8nvaM/ZCU6dOZfjw4ezfv599+/YxYcKENsetXbsWi8XCLbfcgslk6pX3/qaHHnqIYcOGERcXx/bt27n99tt7/Jrd+Z57enoycuTIHr93V6xcuZLly5cTERHBn//8Z5KSki4a89lnn/HCCy+0OtZbP2Mi4lq6Ll1M16WLOfO65Gi6frmW9oSJS/j4+HD33XdTVVXFihUr7Dr36NGj3HPPPaSnp5OcnMz3v/99Pv/884vG5efns3LlSjw9PVm5cuVF/7gAXHPNNTz00EOYzWZ+85vf0NTU1O059Ybvfe97gPWC1pbGxkbeeustjEYj8+bNc1gc06ZNY/jw4RgMhl57ze58z5219r6goIAVK1bg6enJqlWr2kzAAGbOnNkqCXPHnzERaZuuS23Tdam1/rInzB1/FvsbJWHiMj/84Q+JjY3lH//4B8eOHevSOQUFBdx6662Ul5czf/58rr32Wvbt28dPf/pT3nvvvVZj161bR2NjI1dddVWHa9O/+93vEhYWxvHjx9m+fXuP5tRTN910E56enmzYsIHa2tqLnv/kk084deoUl156KVFRUS6IsGe68z13hnXr1tHQ0MDVV1/N6NGjOxzr5eXV6jx3+xkTkfbpunQxXZf6J3f8WexvtBxRXMbT05MHHniA++67jz/+8Y88++yznZ6zY8cO7rjjDn71q1/Zjv3whz/k1ltv5dFHH2XmzJkMGTIEgF27dgFw6aWXdviaHh4eTJ06lQ0bNpCRkcG0adMuGrN8+fKLjkVFRbXa0Nydsd8UHBzM7Nmz2bhxI5s2beI73/lOq+fffPNNAObPn9/m+W29N4C3t7dD9zh0VXe+586wc+dOALuXWvTmz5iIuJ6uSxfTdcn12vsaApw9e7Zbr6nrl+spCROXuvbaa0lJSWHz5s3s3LmTyZMndzjez8+Pe++9t9WxxMRE5s6dy1tvvcXmzZu56aabADh9+jQAw4YN6zSOljEnT55s8/m2/lFOT09v8wJmz9i2zJ8/n40bN7J27dpWF7sTJ07w+eefExYWxhVXXNHlOMH6desLFzuw/3vuDC0/K/ZWgOrNnzER6Rt0XbqYrkuu5YjEUNcv11MSJi73q1/9iltvvZUnnniCN998s8P13uPHj7d9onih9PR03nrrLfbv32+72FksFoAurR9vGdPe2I7Kw/ZkbFumTZtGbGwsO3fuJCcnh/j4eAD++c9/Yjabufnmm9stldvV927rU7Wbbrqp2+Vt7X09e77njoyjhT0/K90975s/Y8899xzvv/8+x44dw8vLi+TkZO6///5Ol0OKiOPputSarkvd1xvz6kqJ+gt15frSmz+L0j1KwsTlUlJSuOaaa/jPf/7Dxo0bue6669od214525bjVVVVtmNhYWHk5ORw4sSJTmNoGRMWFmZP6A5hMBj47ne/yx//+EfWrl3Lr371K5qamli3bh0Gg6FXNj6396lody929r6ePd9zR8bRYujQoV3+WblQT37Gtm/fzg9+8AMSExOxWCw888wz/OQnP+Hdd98lMDDQrjhEpHfputSarkvd19vz6oquXF/c9WexP1FhDukTfvnLX+Lp6ckf//hH6uvr2x3Xcvu8veMXfhqZlpYGwJdfftnhe5vNZrZt2wZAamqqXXE7ys0334ynpyf//ve/aWho4IsvvqCwsND2aWRPHTp06KL/pk6d6tTX6+r33NFxwPmfla+++squ9+vJz9jf/vY3brnlFkaPHs2YMWN48sknKS0tJSMjw64YRMQxdF1qTdcl58XRU125vrjzz2J/oSRM+oTY2Fi+//3vU1BQwGuvvdbuuP3797f6VLFFS8We8ePH247dfPPNmEwmNm/ezJEjR9p9zX/961+cPHmSESNGkJ6e3oNZ9J7Q0FCuvPJKzpw5w0cffWQrDdxSKrg/6Or33Blafrn4z3/+0+HPCtDqwtybP2PV1dU0NTXh7+/fvUmISK/Sdak1XZfcV1vXF3f+WewvlIRJn3Hvvffi7+/PX//6V6qrq9scU1lZeVEvj6ysLN555x38/Pz41re+ZTseExPDXXfdRUNDAwsXLmzzH5kPPviA3//+95hMJh599FGMxr7zv8R3v/tdwPqJ1kcffWSrUNWfdOV77gzR0dEsWrSIhoYGfvazn5GVldXmuM8++4w777zT9vfe/Bn7/e9/z7hx40hJSemdSYlIj+m61JquS+6preuLu/8s9gfaEyZ9RmBgIHfddRfLli1rd8yUKVP45z//yd69e0lNTeXUqVO89957NDU18dvf/vaizdGLFy+mpqaGl156iRtvvJHLLruMUaNG0djYyO7du8nMzMTHx4c//vGPfa4T/GWXXUZ0dDSZmZkAfOc732nVo6otHZWxnT17NuPGjevSe3/wwQd88MEHAJw6dQqAPXv22JpTBgUFtSrH3F1d+Z47y8KFC2lsbGTFihXMmzePlJQUJk6ciK+vL6dPn2bnzp0cP36ciRMntjqvN37GnnjiCXbt2sWaNWswmUzOmK6IdIGuS63puuR+Orq+uPPPYn+gJEz6lNtvv53Vq1dfVOmnRXR0NI899hh/+MMfeOONN6ivr2f8+PHce++9zJgx46LxRqORBx98kOuuu47XX3+dHTt2sHXrVkwmE1FRUdxxxx38+Mc/7lKJVmdr2ez89NNPA+c/gexIR2Vso6KiunyxO3DgAG+99VarY/n5+eTn59teqzcudtD599yZFi1axLe//W1Wr17Ntm3bWLduHfX19QQGBjJ27FjuvPNObrzxxlbn9PRn7PHHH+fdd9/l73//OzExMc6YpojYQdel83Rdci+dXV/c+WexPzBYWmpUioiIU/3ud7/jvffe49VXX2XkyJGuDkdERPoJXV/6Pt0JExFxgd/85je8/fbbrFixAn9/f9vymsGDB+Pr6+vi6ERExF3p+uIedCdMRMQFxowZ0+bxRYsWsXjxYidHIyIi/YWuL+5BSZiIiIiIiIgTaTmiiIhIL9m6dStvv/02u3fv5sSJE/j5+TFx4kTuvffeiyprftO6det46KGH2nzu888/JywszBEhi4iICygJExER6SVr1qyhvLyc22+/nVGjRlFaWspLL73E/PnzeeGFF7pU5vnxxx8nPj6+1bHAwEAHRSwiIq6gJExERKSXPProo4SEhLQ6NmPGDK6++mqee+65LiVhCQkJJCYmOipEERHpA9T6WkREpJd8MwED8PX1ZeTIkRQXF7sgIhER6Yt0J6yHmpqaaGxsxGg0YjAYXB2OiMiAYbFYaGpqwsPDA6Ox736mWFlZyf79+5k2bVqXxi9cuJDS0lL8/PxIT0/n5z//OaNHj7brPXVtEhFxja5em5SE9VBjYyNZWVmuDkNEZMBKTEzEy8vL1WG067HHHqOmpoaFCxd2OC40NJSFCxeSnJzMkCFDyM7OZtWqVcyfP581a9YwduzYLr+nrk0iIq7V2bVJSVgPtWS4iYmJmEwmu883m81kZWV1+3x3p/lr/pq/5t/Tfz/78l2wp59+mnfeeYdf//rXnVZHnDlzJjNnzrT9fcqUKcyaNYu5c+fy5z//mZUrV3b5fVu+JuPHj+/213b//v3dPt/daf6av+av+ff038/Ork1KwnqoZZmHyWTq0Q9qT893d5q/5q/5a/7d1VeX2z377LOsXLmSX/ziF9x2223deo3o6GjS0tLIzMy067yWr4mXl1e3f4noyfnuTvPX/EHz1/x79u9nZ9emvvvxoYiIiJt69tlnWb58OYsXL+50GWJnLBZLn77bJyIi9tO/6iIiIr1oxYoVLF++nLvvvptFixb16LXy8/PJyMggKSmpl6ITEZG+QMsRRUREesmLL77IM888w4wZM7j88svZs2dPq+eTk5MBWLJkCevXr2fz5s1ERUUBsGDBAiZPnszYsWPx9fUlOzubF154AYPBwH333efkmYiIiCMpCRMREeklH3/8MQBbtmxhy5YtFz1/6NAhwFpC3mw2Y7FYbM+NHj2ajRs38uKLL1JXV0dwcDDTpk3jnnvuYcSIEc6ZgIiIOIWSMBERkV7y6quvdmnc0qVLWbp0aatjS5YscURIIiLSB2lPmIiIiIiIiBMpCRMREREREXEiJWEiIiIiIiJOpCRMRERERETEiZSEiYiIiIiIOJGSMBERERERESdSEiYiIiIiIuJEbtsnbOvWrbz99tvs3r2bEydO4Ofnx8SJE7n33nuZOHFih+euW7eOhx56qM3nPv/8c8LCwhwRsoiIiIiIiPsmYWvWrKG8vJzbb7+dUaNGUVpayksvvcT8+fN54YUXmD59eqev8fjjjxMfH9/qWGBgoIMibkN9NcZ1dxHiNRqSk533viIiIu04UHyW/3t3P9fHQbKrgxER6afcNgl79NFHCQkJaXVsxowZXH311Tz33HNdSsISEhJITEx0VIidK83BcPAdoryC4IYlrotDRESk2eeHT7PlyBksdT7Mu9LV0YiI9E9uuyfsmwkYgK+vLyNHjqS4uNgFEXVDyCgsBhOe9WVQWeTqaERERBgX4Q/AoTP1Lo5ERKT/ctskrC2VlZXs37+fhISELo1fuHAh48aNIz09nUWLFpGdne3gCL/BcxD1waOtfy7a49z3FhERaUNSTABGA5w618SJilpXhyMi0i+57XLEtjz22GPU1NSwcOHCDseFhoaycOFCkpOTGTJkCNnZ2axatYr58+ezZs0axo4da/d7m81mu8/JKz3HjpPhfM90AAozMI+dY/druLuWr1t3vn79geav+V/4OND0dP4D9evmaH4+nowJ9+PAiUp255cTFezr6pBERPqdfpOEPf3007zzzjv8+te/7rQ64syZM5k5c6bt71OmTGHWrFnMnTuXP//5z6xcudLu98/KyrL7nFPnzOxtGsH3TJ9wNvtzckL22P0a/UV3vn79ieav+Q9kA33+fVFqbCAHTlSSkVfG9UlRrg5HRKTf6RdJ2LPPPsvKlSv5xS9+wW233dat14iOjiYtLY3MzMxunZ+YmIjJZLLrHIvFwhuf7AIzDKk8QnJSEhgM3Xp/d2U2m8nKyurW168/0Pw1f82/+/NvOV96X2pcEK9vzycjr9zVoYiI9Etun4Q9++yzLF++nMWLF3e6DLEzFosFo7F72+RMJlO3fokYEptEQ44Jz7oyqCqGwJhuvb+76+7Xr7/Q/DV/zX/gzr8vSo0NBGBf0VlqG8z4eOr7IyLSm9y6MMeKFStYvnw5d999N4sWLerRa+Xn55ORkUFSUlIvRdc1icOHkm2Jtv6laLdT31tERKQtMUGDCPQ20mC2kFVY4epwRET6Hbe9E/biiy/yzDPPMGPGDC6//HL27NnT6vnk5ubHS5YsYf369WzevJmoKOu69gULFjB58mTGjh2Lr68v2dnZvPDCCxgMBu677z6nziMlJpC9TfFMMOZiKdqNYfwNTn1/ERGRbzIYDIwJ9WRbYR27csuYMjzY1SGJiPQrbpuEffzxxwBs2bKFLVu2XPT8oUOHAGhqasJsNmOxWGzPjR49mo0bN/Liiy9SV1dHcHAw06ZN45577mHEiBHOmUCziZH+vGMZAXxMbd4uBjn13UVERNo2JsTLloSJiEjvctsk7NVXX+3SuKVLl7J06dJWx5YsWeKIkLrF29NE6ZDRUAem4j1gsQy44hwiItL3jAnxBCAjtwyLxYJB1yYRkV7j1nvC+guPsJHUW0x4NVRAeZ6rwxERESE+yBMvk4Ez1fXknjnn6nBERPoVJWF9wMjQwRyyNFdFVHEOERHpA7xMBiZEBQBoSaKISC9TEtYHjA7xIqspHoCGgl0ujkZERMSqpVT9rjwlYSIivUlJWB8QOshIrncCANXHlYSJiEjfkNachGXoTpiISK9SEtYHGAwGmiKSAfA5lWUtziEiIuJiKTGBABwqqaSytsG1wYiI9CNKwvqIoSNTqLN44NN4FsqOuzocERERhvr7EBM8CIsF9uSXuzocEZF+Q0lYH5EUF8ZBSywAFhXnEBGRPiItNghQcQ4Rkd6kJKyPmBjpzz6LtThHZc4OF0cjIiJilRanJExEpLcpCesjvD1NlAZMAKAuT8U5RESkb0htTsL25JVjbtKeZRGR3qAkrA/xjEkFYEjZPhXnEBGRPmFMuB++XiYq6xo5fLLS1eGIiPQLSsL6kKjRKdRZPBlkroLSHFeHIyIigofJSHJLvzAtSRQR6RVKwvqQlBFDOdBcnENLEkVEpK9QcQ4Rkd6lJKwPiQzw4YiHtWnzmcPbXByNiIiIVUrzvjA1bRYR6R1KwvoQg8HAudBEQGXqRUSk70iNsSZhx8+c43RVnYujERFxf0rC+hjf4ZMBCK44AE1NLo5GREQEAgZ7kjB0CKC7YSIivUFJWB8zfFwqtRZPBlnOYTlzxNXhiIiIABf0C8tTEiYi0lNKwvqYCdEhHLAMB+C09oWJiEgfkap9YSIivUZJWB/j42miaPBYACqO7nBxNCIiIlYtd8IyCyqob9RyeRGRnlAS1gc1DEsCwKMk08WRiIiIWMWH+hI42JP6xib2FVW4OhwREbemJKwPCho5BYChVYegyeziaERERKwVfNUvTESkdygJ64MSJqRxzuLNYGqoOXHQ1eGIiIgAF+wLU3EOEZEeURLWB0UEDeGwcTgAhfu/cm0wIiIizWwVEnPLsFgsLo5GRMR9KQnrgwwGA2f8JwBQfUzFOUREpG9Iig7EZDRQcraOwvIaV4cjIuK2lIT1UYbIFAAGnc5ycSQiIiJWg7xMTIj0B7QvTESkJ5SE9VFDx04FIKbuMBZzo4ujERERsUqNVb8wEZGeUhLWR40cm0K1xZtB1FF8dK+rwxERkS7YunUrDz30ENdeey3JycnMmDGDu+++m6+//rpL5585c4YHH3yQqVOnkpSUxPz589m6dauDo7aPbV+YinOIiHSbkrA+ysfbi+NeowAoOtC3LsAiItK2NWvWUFhYyO23386qVat4+OGHKS0t7VIyVV9fz4IFC9i6dSsPP/wwf/nLXwgJCeHOO+9k+/btTppB51qSsAPFlVTXaaWGiEh3eLg6AGlfZdBEOLmPhvwMV4ciIiJd8OijjxISEtLq2IwZM7j66qt57rnnmD59ervnrl27luzsbN544w1SUqz7gqdOncqNN97IsmXLWLt2rUNj76rIwEFEBPhQXFFLZkE5l4wMdXVIIiJuR3fC+jDv2DQAAsr3uTgSERHpim8mYAC+vr6MHDmS4uLiDs/94IMPGDFihC0BA/Dw8OCGG25g7969lJSU9Hq83WXrF6Z9YSIi3aI7YX1Y1PjpsBNGNBzlXG0tg318XB2SiIjYqbKykv379zNt2rQOxx0+fJi0tLSLjo8ZM8b2fHh4uF3vbTab7Rr/zfPaOz8lJoB39xaz83hZt9+jL+ts/v2d5q/5X/g40PR0/l09T0lYHzZ0+ESq8cHXUEvmvl0kpV3q6pBERMROjz32GDU1NSxcuLDDceXl5QQEBFx0vOVYeXm53e+dldWzNiftne9X2wDAzmOnydi9G6PB0KP36at6+vVzd5q/5j+QOXr+SsL6MqORwkFjGF2TyensbaAkTETErTz99NO88847/PrXv2bixImdjjd0kMx09Fx7EhMTMZlMdp9nNpvJyspq9/wJ5iYe/ewDqhqa8I9KYNTQIXa/R1/W2fz7O81f89f8uz//lvM7oySsj6sNTYT8TAxFe1wdioiI2OHZZ59l5cqV/OIXv+C2227rdHxgYGCbd7sqKioA2rxL1hmTydSjX6LaO99kMjEpOpDtx0rJLDjLmAj7Y3MHPf36uTvNX/PX/B03fxXm6OOGxE8BIKxyPxaLxcXRiIhIVzz77LMsX76cxYsXd7oMscXo0aPJzs6+6HjLsYSEhF6Nsads/cJUnENExG5Kwvq4qHHWcsYJluPknapwcTQiItKZFStWsHz5cu6++24WLVrU5fNmz55NTk4OmZmZtmONjY28/fbbJCUl2V2Uo9ssFjh5ACwdby5Pi1XTZhGR7lIS1sd5D02g2jAYH0MDR/bvdHU4IiLSgRdffJFnnnmGGTNmcPnll7Nnz55W/7VYsmQJ48ePp7Cw0HZs3rx5JCQkcN999/HOO+/w5Zdf8t///d8cO3aMX/7yl86bxO7XMD13KeE5/+xwWEuZ+iMnqyg/V++MyERE+g3tCevrjEZODhnHiMpdnD26Ey6f7eqIRESkHR9//DEAW7ZsYcuWLRc9f+jQIQCampowm82tlpl7eXnx8ssvs2zZMn73u99RU1PDuHHjeP7550lPT3fOBAAsTQAElGzrcFiwrxfxob7knK5md145V4wd6ozoRET6BSVhbqBpWBJU7sLrZGbng0VExGVeffXVLo1bunQpS5cuveh4aGgoTzzxRG+HZZ8Ya8I3uPwgmBugg43pqXFB5JyuZldumZIwERE7aDmiGwgaZb0gRtcc4lx9o4ujERGRfi10DBZvf0zmWji5r8OhKs4hItI9SsLcQHBzEjbWkMfe46dcHI2IiPRrRiNEWyvzGgp2dDi0JQnbk19Oo7nJ4aGJiPQXSsLcQXA854y+eBsayDu0y9XRiIhIP2dpTsLI397huFFhQ/Dz8aCmwczBE5VOiExEpH9QEuYODAbKAiYAUJOrJExERBzLEm1dgWEo6DgJMxoNpMZqSaKIiL2UhLkJU1QKAL5nstS0WUREHCsqFQtGDBX5cLa4w6HaFyYiYj8lYW4iZPRUAEabj5BXes7F0YiISL/m7U+N/3Drnzu5G6YkTETEfm6bhG3dupWHHnqIa6+9luTkZGbMmMHdd9/N119/3aXzz5w5w4MPPsjUqVNJSkpi/vz5bN261cFRd59nTBpgLc6x51iJi6MREZH+rjrIugy+s31hSTGBGA1QWF7DiYpaJ0QmIuL+3DYJW7NmDYWFhdx+++2sWrWKhx9+mNLS0i4lU/X19SxYsICtW7fy8MMP85e//IWQkBDuvPNOtm/v+GLjMoFx1Jj88DKYKcrOcHU0IiLSz1V1MQkb4u3BmGH+AGTk6W6YiEhXuG2z5kcffZSQkJBWx2bMmMHVV1/Nc889x/Tp09s9d+3atWRnZ/PGG2+QkmLdazV16lRuvPFGli1bxtq1ax0ae7cYDFSFJDLo5Jc0FuwG5rk6IhER6ceqg5uTsOI90FALnj7tjk2LC+RA8Vl25ZZxXWKEcwIUEXFjbnsn7JsJGICvry8jR46kuLjjTcQffPABI0aMsCVgAB4eHtxwww3s3buXkpK+udzPJ9a6JDGscr+aNouIiEPVDY7EMjgUzPVQnNnhWO0LExGxj9smYW2prKxk//79JCQkdDju8OHDjBkz5qLjLccOHz7skPh6yi/e2rdloiGHzPwKF0cjIiL9msEAzaXqOy3OERsMwL6iCmobzI6OTETE7bntcsS2PPbYY9TU1LBw4cIOx5WXlxMQEHDR8ZZj5eXldr+32dy9i07LeV06PzwJEzDakM/fjhWRPjywW+/Zl9g1/35I89f8L3wcaHo6/4H6dXMmS/QUDNnvQf42YHG742KCBxE6xJvTVXVkFVYwZXiw84IUEXFD/SYJe/rpp3nnnXf49a9/zcSJEzsdbzAYuvVce7Kysuw+x+7zLRbGmvzwNVdyPPML9gTV9+g9+5Kefv3cneav+Q9kA33+fZklpvlOWP52sFisd8faYDAYSIsL5D/7StiVW6YkTESkE/0iCXv22WdZuXIlv/jFL7jttts6HR8YGNjm3a6KCusSv7buknUmMTERk8lk93lms5msrKwun1+VkQxFWwioOkJS0p3dShj7Envn399o/pq/5t/9+becLw4UkQxGD6gqgfI8CIprd2haXJAtCRMRkY65fRL27LPPsnz5chYvXtzpMsQWo0ePJjs7+6LjLcc621PWFpPJ1KNforp6vu+IKVC0hfiGwxRW1BEX4tvt9+xLevr1c3eav+av+Q/c+fdpnoNg2CQoyrDeDeskCQPIyC3DYrG4/YeEIiKO5NaFOVasWMHy5cu5++67WbRoUZfPmz17Njk5OWRmnq/21NjYyNtvv01SUhLh4eGOCLdXeESnAjDJeEz9WERExPFiplof87d1OGxCZABeJiNnquvJPXPOCYGJiLivbt0JO3z4MBkZGZSUlFBbW0tQUBCjRo1iypQpDBkypLdjbNOLL77IM888w4wZM7j88svZs2dPq+eTk5MBWLJkCevXr2fz5s1ERUUBMG/ePFavXs19993HAw88QEhICKtXr+bYsWO89NJLTom/2yKtZfUTDAWsPVbCTSnRLg5IRET6tZh02Lay0wqJPp4mJkb5k5FXzq7cMoaH9o+VGiIijtDlJKyiooJ//OMf/OMf/6CoqAiLxXLxi3l4MHPmTH70ox912Cy5N3z88ccAbNmyhS1btlz0/KFDhwBoamrCbDa3itfLy4uXX36ZZcuW8bvf/Y6amhrGjRvH888/T3p6ukPj7jH/KOq8g/GuK6Xi+G4gzdURiYhIf9ZSnOPE11BXBd7tf9iaFhdkTcLyyrglTR8Sioi0p0tJ2CuvvMKKFSsAuO6660hPT2fChAkEBwfj7e1NRUUF+fn57Nmzhw8//JA77riDSy65hP/93/8lLq799eM98eqrr3Zp3NKlS1m6dOlFx0NDQ3niiSd6OyzHMxiwRCTD8Y/wK/2ac/WNDPZy+619IiLSVwVEg38UnC207g0bMbPdoWlxQTy/5RgZKs4hItKhLv32/uqrr/LQQw8xZ84cPD09L3o+NDSU0NBQUlJS+MlPfkJeXh4rV65k48aNXS6WIV3nE5sGxz9iAtamzdNHhrg6JBER6c9i0mHfW9biHB0kYamx1uIch0oqOVvbgL/Pxb8ziIhIF5OwjRs34uHR9bstsbGxPP7442qk6SjN+8ISjTl8lFemJExERBwr+oIkrAND/X2ICR5EfmkNe/LKmTk6zEkBioi4ly5VRzx8+HC3Xlwlhx3EVpyjkH3Hi10cjIiI9HstFRILmps2dyCt+W6Y+oWJiLSvS0nYTTfdxM0338zq1auprKx0dEzSGb8IGgaF4mFo4lx+ZptFUkRERHrNsETw8IGaMjhzpMOhtn5haqMiItKuLiVhd911F6Wlpfz2t7/lsssu45e//CVfffWVo2OT9hgMGKOs/cLi6rLVj0VERBzLw8u2CqOzfmGpzUnYnrxyzE36kFBEpC1dSsJ+8Ytf8PHHH7Nq1SquuOIK3n//fX7yk59w1VVX8Ze//IXiYi2JczZTcxKWaDzG7nx92igiIg7WUqq+kyRsTLgfvl4mKusaOXxSq2dERNrSpSQMwGAwMHPmTJ5++mk+//xzHn74YQICAnjmmWeYPXs2//Vf/8WmTZtoaGhwZLzSIjIZgERDDhm55S4NRUREBoCWfWH5Ozoc5mEykhwbCGhfmIhIe7qchF3I39+f2267jXXr1rF+/Xp+8IMfsH//fn7xi18wc2b7pWulF0UkAzDKUMi+XN2JFBERB4tuvhN26gDUlHc4VMU5REQ61q0k7EJjx47lhhtu4MorrwSgvLy8py8pXeEfgdk3HJPBgsdJa9NmERERhxkSBkEjrH8u2Nnh0JZ9YWraLCLStq43//qG0tJS3n77bf71r39x5MgRTCYTV1xxBfPmzevN+KQDpqhUyN7IBI6qabOIiDhezFQoO2YtVZ8wu91hKc13wo6fOcfpqjpCh3g7K0IREbdgVxLW1NTEZ599xr/+9S8++eQTGhoaGD58OPfffz833XQToaGhjopT2hKZAtkbmWg8RoaaNouIiKPFTIG9b3RanCNgkCejw4eQXVJFRm4ZV08Y5qQARUTcQ5eSsGPHjvGvf/2Lf//735w+fRofHx+uv/56brnlFiZPnuzoGKU9zcU5JhmOsVH9WERExNFsTZt3QpMZjKZ2h6bFBZFdUsWuPCVhIiLf1KUk7Nvf/jYAkyZNYvHixcyZMwdfX1+HBiZd0FycY6ShiAO5xVgsFgwGg2tjEhGR/mvoePAaAvVVcPIADJvY7tDU2CDWbM/XvjARkTZ0KQn78Y9/zLx580hISHB0PGIPv3AsfhEYK4uJrDlM7plzDA9VciwiIg5iNEFUGhz71LoksYMkLK25OEdmQQX1jU14efS4FpiISL/RpX8RH3rooTYTsJycHHbt2sW5c+d6PTDpGkOktWnzJGMOGVqSKCIijmbrF7a9w2EjQn0JGuxJfWMT+4oqnBCYiIj76NbHUuvXr2fmzJnMmTOH2267jWPHjgFw33338eabb/ZqgNKJyBQAW3EOERERh7LtC+s4CTMYDLa7YeoXJiLSmt1J2MaNG3nwwQcZP348v/71r7FYLLbnJkyYwMaNG3s1QOmErThHDrvzyl0aioiIDADRadbH0hyoOtXhUFu/MH1IKCLSit1J2KpVq7j55pv561//yvz581s9Fx8fz5EjR3otOOmCluIcxmIKTpSoabOIiDjWoCAIG2v9cyd3w9Jiz98Ju/BDWxGRgc7uJOzo0aPMmTOnzecCAwMpLy/vaUxijyFh4B8NwFjLcTLzte5eREQcLCbd+tjJvrBJ0YF4GA2UnK2jsLzGCYGJiLgHu5OwQYMGUVlZ2eZzJSUlBAQE9DgosVPzksREFecQERFniO5aEjbIy8T4SH9A+8JERC5kdxKWkpLC66+/3uaygnXr1pGent4rgYkdmotzJBqPsVtJmIiIOFpLcY6iDGis73BoavOSRPULExE5z+4k7N5772XPnj3MmzePV199FYPBwPvvv8/ChQvZuXMnCxcudESc0pGWO2GGHDLyyrXuXkREHCtklHVvWGMtlGR1ONRWIVEfEoqI2NidhCUmJvL8889z7tw5li5disVi4bnnnuPYsWOsWrWK0aNHOyJO6UiE9U5YvPEEDdXl5J5R3zYREXEgoxGip1j/3MmSxJYk7EBxJdV1Kh4lIgLg0Z2Tpk2bxsaNG8nLy+P06dMEBQUxYsSI3o5Nuso3BAJjoTzP1i9seKivq6MSEZH+LCYdDr8P+dtg2t3tDosMHEREgA/FFbVkFpRzychQJwYpItI3datZc4vY2FhSU1OVgPUFzaXqrUsSteRDREQcrGVfWP6OTofa+oVpX5iICNDFJOy9996z+4VLSkrYtWuX3edJN11QnCMjt9y1sYiISP8XmQoGI5wtgIqCDode2C9MRES6mIT99re/5cYbb2Tt2rVUVVV1OPbrr7/mscce45prruHgwYO9EqR0ga04xzEOnjirdfciIi5QVVXFk08+yR133MG0adMYM2YMy5cv79K569atY8yYMW3+d+rUKQdH3g3eQyB8ovXPXdwXlpFXTlOTikeJiHRpT9jmzZtZvnw5v//97/ntb3/L+PHjGT9+PCEhIXh5eVFRUUF+fj579uzh1KlTJCQksHz5cmbMmOHo+KVF83LE4cYShliqtO5eRMQFysvLefPNNxk7diyzZ89m7dq1dr/G448/Tnx8fKtjgYGBvRRhL4uZCif2QsEOmHhzu8PGR/rj42mkoqaBnNNVjBrq58QgRUT6ni4lYX5+fixZsoR7772XdevW8emnn7J+/XpqampsY2JiYpgxYwZz585l2rRpDgtY2jE4GIKGQ9lxJhqPsztPSZiIiLNFRUWxY8cODAYDpaWl3UrCEhISSExMdEB0DhCTDjuetxbn6ICnycik6EC2HytlV26ZkjARGfDsqo4YEBDAT37yE37yk58AUFlZSW1tLYGBgXh6ejokQLFDRDKUHWeSIUdNm0VEXMBgMLg6BOeKSbc+Fu+FhhrwHNTu0LS4IFsSNn9KrJMCFBHpm7pVor6Fn58ffn76NKvPiEyB/euZaDzGm81NmwfcLwQiIm5u4cKFlJaW4ufnR3p6Oj//+c+73YPTbDb36LxOz/eLxjgkHENVCeaCDIhtfyVMSnQAYC3O0d24nKXL8++nNH/N/8LHgaan8+/qeT1KwqSPaS7OkWQ8Rml1PblnzqlfmIiImwgNDWXhwoUkJyczZMgQsrOzWbVqFfPnz2fNmjWMHTvW7tfMysrqUUxdOT9+SAJBVSUUb19PSalPu+M865oAOHqqmi3bMvDz7lGXHKfo6dfP3Wn+mv9A5uj5KwnrTyKSAIgxnCSQSjVtFhFxIzNnzmTmzJm2v0+ZMoVZs2Yxd+5c/vznP7Ny5Uq7XzMxMRGTyWT3eWazmaysrC6db6j5Fpz4nKimQiKSkzscO+LLzzh2+hyNAdEkjx1qd1zOYs/8+yPNX/PX/Ls//5bzO6MkrD8ZFATB8VCaw0TjcTLyJnBzarSroxIRkW6Kjo4mLS2NzMzMbp1vMpl69EtUl86PnQ6AoWA7JqMROlgGnxYXzLHT59hTcJbZEyK6HZez9PTr5+40f81f83fc/Pv+WgCxT3Op+kmGHDVtFhHpBywWC0ZjH75cRySB0ROqT0HZsQ6HtvQLU9NmERno+vC/6tItkSkAJBpz1LRZRMTN5efnk5GRQVJSkqtDaZ+nj21PMvk7OhzakoTtyS+n0dzk4MBERPouu5Ow//f//h85OTmOiEV6Q/OFMNl0nCYLZBaUuzQcEZGB5tNPP2XTpk18/PHHABw5coRNmzaxadMmW3/NJUuWMH78eAoLC23nLViwgGeffZYPPviArVu38ve//50f/OAHGAwG7rvvPpfMpctiplofO+kXNipsCH4+HtQ0mDl4otIJgYmI9E127wlbv349q1evZtq0afzwhz/kqquuUhn0vqS5OEcEpwjirJo2i4g42WOPPdYquWpJwAA+/PBDoqOjaWpqwmw2Y7FYbONGjx7Nxo0befHFF6mrqyM4OJhp06Zxzz33MGLECKfPwy7RU6yP+ds7HGY0GkiNDeLT7FPsyi1jYlSAE4ITEel77E7CtmzZwltvvcWaNWtYtGgRERERfP/732fevHkEBwc7Ikaxh08AhIyCM0dINB4jI3eUqyMSERlQPvroo07HLF26lKVLl7Y6tmTJEkeF5Hgtd8JO7oO6SvBuv4doWtz5JOzHlwx3TnwiIn2M3csRBw8ezA9/+EM2bNjASy+9xIQJE/jzn//M5ZdfzoMPPjjgewr0Cc3FORINx9idX97qk1YREZFe5x8BAbFgaYLCXR0OVXEOEZEeFuaYPn06zz77LB9++CEpKSn8+9//5nvf+x7f/e53u/RJoDhIc3GOZNP5ps0iIiIOFdO1JYlJMYEYDVBYXsOJilonBCYi0vf0KAmrra1l7dq1LFy4kG3btjFy5EjuvfdezGYz9957LytWrOitOMUeLUmYx3EAMvL0aaOIiDiYrThHx0nYEG8Pxg7zB3R9EpGBq1tJWF5eHo8//jgzZ87k0UcfZdiwYbz44ots2LCBRYsWsW7dOn7605/y2muv9Xa80hURkwADYU2nCKFCFzkREXG8mHTrY8F2aOq4/LyWJIrIQGd3YY4777yTL7/8kkGDBnHzzTfzox/9iNjY2IvGXXHFFaxatapXghQ7eftBaAKczm4uzhHj6ohERKS/C58IHoOgtgJOZ8PQse0OTYsL4tWvcpWEiciAZXcSlp+fz0MPPcTNN9+Mr69vu+MSEhJ45ZVXehRcR6qqqvjLX/7CwYMH2b9/P2VlZSxatIjFixd3eu66det46KGH2nzu888/JywsrLfDdb6IZGsSZshhxYlkqusa8fW2+9stIiLSNSZPiEqD3M+td8M6ScIA9hVVUNtgxsfT5KwoRUT6BLt/K//Pf/7TpXFDhgwhPT3d7oC6qry8nDfffJOxY8cye/Zs1q5da/drPP7448THx7c6FhgY2EsRulhkCmS9yRTvXJrOWZs2q1+YiIg4VEy6NQnL3wapt7c7LDpoEGF+3pyqrCOrsIIpw9XiRkQGFre9NRIVFcWOHTswGAyUlpZ2KwlLSEggMTHRAdH1Ac3FORKNxwDUtFlERByvZV9YJ8U5DAYDabFBbNp3gl25ZUrCRGTAsTsJu/LKKzEYDG0+ZzQa8fPzIzExkdtvv52RI0f2OMD2tBeDNBuWCBgIajxNGOVkaN29iIg4WnRzEnY6G86VwuD2k6u0uPNJmIjIQGN3dcT09HQsFgslJSVERUWRlJREZGQkJSUlmM1mIiIi2Lx5M7fcckufb9y8cOFCxo0bR3p6OosWLSI7O9vVIfUe7yEQNgaAiUY1bRYRESfwDYGQUdY/F+zscGhq876wjNwyXZ9EZMCx+07YZZddxp49e9i8eTMRERG240VFRdxxxx3Mnj2bpUuX8qMf/Yjly5f3yQqJoaGhLFy4kOTkZIYMGUJ2djarVq1i/vz5rFmzhrFj299M3B6z2dytWFrO6+75HTEMS8J46iApphw+rk7h6MlKRoS2X0zFFRw5f3eg+Wv+Fz4OND2d/0D9uvV50elw5oh1X9joq9sdNjHKHy+TkTPV9eSeOcfwPnZ9EhFxJLuTsL/+9a8sXry4VQIGEBkZyb333stf/vIXbrrpJhYsWMD//d//9VqgvWnmzJnMnDnT9vcpU6Ywa9Ys5s6dy5///GdWrlxp92v29K6fI+4ahjWFEQukex2HBvj3F3u5PG5Qr79Pb+jrd00dTfPX/AeygT7/ficmHTJXWyskdsDbw0RidAC7csvYlVumJExEBhS7k7Dc3FyGDBnS5nP+/v4UFhYC1sIZNTU1PYvOiaKjo0lLSyMzM7Nb5ycmJmIy2V9i12w2k5WV1e3zOxRSB/ueZYIxF4BS/ElOntC779FDDp2/G9D8NX/Nv/vzbzlf+piYqdbHgl1gbgRT+79qpMYGWpOwvDJuSYt2UoAiIq5ndxIWGRnJW2+9xaxZsy567l//+pftDll5eTkBAQE9j9CJLBYLRqPd2+QAMJlMPfolqqfntykyGQxG/BpOM5Qyduf799lf9Bwyfzei+Wv+mv/AnX+/EzYWvP2h7iyc3AcRSe0OTYsL4vktx1Q8SkQGHLszjv/6r/9i06ZN3Hrrrbz88sts2LCBl19+mVtvvZXNmzdz5513ArBt2zYmTpzY6wE7Sn5+PhkZGSQltX+xcDteg60XQyDRmMPBE2eprmt0cVAiItKvGY0QPdn6505K1afGWotzHCqp5Gxtg6MjExHpM+y+E/a9730Pi8XC8uXLWbp0qe14aGgojz32GN/97ncBa+VBLy+v3ou0DZ9++ik1NTVUV1cDcOTIETZt2gTArFmzGDRoEEuWLGH9+vVs3ryZqKgoABYsWMDkyZMZO3Ysvr6+ZGdn88ILL2AwGLjvvvscGrPTRSTDyf1cMiifD6vT1LRZREQcLzodjn5kTcLSf9rusKH+PsQEDyK/tIY9eeXMHB3mxCBFRFzHriTMbDaTl5fHt7/9bb73ve+Rk5NDeXk5gYGBxMfHt+rdFRrq+F/0H3vsMdseNIBNmzbZkrAPP/yQ6OhompqaMJvNrcrfjh49mo0bN/Liiy9SV1dHcHAw06ZN45577mHEiBEOj9upIlMgczVTvXOhWk2bRUTECWxNm7d1OjQtNoj80hp25ZYpCRORAcOuJMxisTBnzhxWrlzJrFmzHNqMuSs++uijTscsXbq01R07gCVLljgqpL4nMgWA+MYjgEXr7kVExPGiJwMGKM+FyhLwC293aFpcEOv3FJGRp+uTiAwcdu0J8/DwIDQ0VE0V3cmwiWAwMbj+DMMoVdNmERFxPJ8AGDrO+udOStW3NG3enVeOuUnXJxEZGOwuzDFnzhzWr1/vgFDEITwH2S6EqR7HKa2u5/iZcy4OSkRE+r0uLkkcE+6Hr5eJqrpGsksqnRCYiIjr2V2YY+zYsbz33nvcfvvtXH311YSFhbXaCwZw9dVX91qA0gsik6Hka67wL+S90jQycssYoaaYIiLiSDFTYdfLkL+jw2EeJiPJsYF8ceQMu3LLGBfh75z4RERcyO4k7Fe/+hUAJSUlbN9+8RIDg8HAgQMHeh6Z9J6IZNj9GikexwHIUFNMERFxtOjmO2FFu6GxDjy82x2aFhvEF0fOkJFbxm3T4pwUoIiI69idhL3yyiuOiEMcKTIVgJi6bMDC7rxyl4YjIiIDQMhIGBQMNaVQvBdiprQ7tGVf2C4V5xCRAcLuJCw9Pd0RcYgjhU8AowfedaVEcoaDJwxU1zXi6233t19ERKRrDAbrksTsjdbiHB0kYSnNTZtzz5zjdFUdoUPav2smItIf2F2Yo0VlZSVbtmzh7bffpqKiojdjkt7m6WMrzjFrSAFNFsgsKHdtTCIi0v+1JF6dFOcIGOTJ6PAhAGqlIiIDQreSsBUrVjBjxgx++tOf8qtf/YqCggIAfvzjH7Nq1apeDVB6SXO/sFn+1ubWWpIoIiIOFzPV+pi/HTppj5KmJYkiMoDYnYS9/vrrrFixgnnz5vHcc8+16jl1xRVX8Mknn/RmfNJbIpIBmEgOoE8aRUTECSJTwWCCymKoKOhwaGrzkkRdn0RkILB7U9Drr7/OggUL+J//+R/MZnOr5+Li4sjNze214KQXNd8JG1Z9ELDYmjZ/s72AiIhIr/EaDMMSoXiPdUliYEy7Q1vuhGUWVFDf2ISXR7d3TIiI9Hl2/wuXn5/PjBkz2nzO19eXs2fP9jgocYDwCWD0xKOujBGmM2raLCIiznHhksQOjAj1JWiwJ/WNTewr0l5zEenf7E7C/Pz8OH36dJvPFRYWEhIS0uOgxAE8vCF8PADXhZwAtORDREScIKa5qnJBx0mYwWA4vy9M1ycR6efsTsKmT5/OCy+8wLlz5++iGAwGGhsbWbNmDZdddlmvBii9qHlJ4iWD8wFr02YRERGHaknCivdCfXWHQ1v6hen6JCL9nd1J2M9//nOKioqYM2cOS5cuxWAw8Nprr/Hd736X3Nxc7rnnHkfEKb2huTjHmKajAGSoQqKIiDhaQAz4RYDFDEW7OxyaFnv+Tpilk2qKIiLuzO4kLC4ujjVr1hAfH8+aNWuwWCz8+9//JigoiNWrVxMZGemIOKU3NN8JC67YD1g4dOIsVXWNro1JRET6N4Ph/N2wTvaFTYoOxMNooORsHYXlNU4ITkTENeyujggwatQo/va3v1FfX09ZWRkBAQH4+Pj0dmzS24aOB5MXxrpyJvtXsPNsIHsLyrlkZKirIxMRkf4sOh32/7vTJGyQl4kJkf5kFlSwK7eM6KDBTgpQRMS5elT/1cvLi/DwcCVg7sLDy1olEfh2c3EONW0WERGHa6mQWNB502bbvjAV5xCRfqxbd8IKCgrYuHEjRUVF1NbWtnrOYDDwf//3f70SnDhAZAoU7WaKVx4wVhc5ERFxvIhJYPKGc2egNAdCRrY7NC0uiJe+OM4uFecQkX7M7iTsk08+YdGiRTQ1NREcHIyXl1er59X8t49rLs4xoj4buFpNm0VExPE8vCEy2dqwOX9bp0kYwIHiSqrrGvH17tbnxSIifZrd/7L96U9/IjU1lT/96U/qCeaOmotzDCn9Gi8Pg61p84hQXxcHJiIi/VpM+vkkLPkH7Q6LCBhEZIAPRRW1ZGrfsoj0U3bvCcvNzeWnP/2pEjB3NXQcmLwx1J1l9lBrvxYtSRQREYdr2ReWv6PTodoXJiL9nd1JWGRkZKtGzeJmTJ4wbCIAswOLADXFFBERJ4huLlN/cj/UVnQ4tGVJ4i4lYSLST9mdhN111128+OKL1NSof4fbal6SmGw6Dqhps4iIOIFfOATGARYo2Nnh0JYkLCOvnKYmNW0Wkf7H7j1hWVlZnDlzhm9961tMnTqVoKCgi8Y88sgjvRKcOEhzcY6omoPAbFvT5iHa/CwiIo4UMxXKc6FgB4y6qt1h4yL88fE0UlHTQM7pKkYN9XNikCIijmf3b92vvfaa7c/vvvvuRc8bDAYlYX1d850w75NZRPl7UXi2nr355VwySpufRUTEgWLSIetNa3GODniajCRFB7LtWCm7csuUhIlIv2N3Enbw4EFHxCHOFDYWPHygvpKrh5/jpbMeZOSVKQkTERHHimneF1awE5qawNj+roi0uCBbEjZ/SqyTAhQRcQ6794RJP2DygGGJAMwcUgDAbu0LExHpsaqqKp588knuuOMOpk2bxpgxY1i+fHmXzz9z5gwPPvggU6dOJSkpifnz57N161YHRuxkQyeApy/UnYVTHX+omxqr4hwi0n91KQnbsWMH1dXVnY4rLS3ln//8Z4+DEidoXpI4wZIDYGvaLCIi3VdeXs6bb75JfX09s2fPtuvc+vp6FixYwNatW3n44Yf5y1/+QkhICHfeeSfbt293UMROZvKAqFTrnztZkthSpv7oqWrKqusdHZmIiFN1KQm7/fbbOXr0qO3vTU1NTJw4kf3797cal5+fz69//evejVAco7k4R2jlfrw8jLamzSIi0n1RUVHs2LGD1157jfvvv9+uc9euXUt2djZPP/00N9xwA5deeinPPPMMw4cPZ9myZQ6K2AVs/cI6TiyDfb2ID/UFYHe+7oaJSP/SpSTsm3dILBYLjY2NunPizprvhBlP7GVSpHXDs5piioj0jMFgwGAwdOvcDz74gBEjRpCSkmI75uHhwQ033MDevXspKSnprTBdqyUJK+j87l6q+oWJSD+lPWEDVeho8BwM9VXMHnoWUNNmERFXOnz4MGPGjLnoeMuxw4cPOzskx4iebH08cwSqz3Q4VE2bRaS/UmOogaqlOEf+NqYPygei1bRZRMSFysvLCQgIuOh4y7Hy8nK7X9NsNncrlpbzunt+h7wDMIYkYDhzGHPeVzD62naHJkf7A5CZX0FtfQOeJud8duzQ+bsBzV/zv/BxoOnp/Lt6npKwgSwyBfK3MarxCBCtps0iIi7W0VLG7ixzzMrK6kk4PT6/PXGDRxF65jAnd22g6Nywdsc1WSwM9jRwrsHM25/tYmSQp0PiaY+j5u8uNH/NfyBz9Py7/Nt2Tk4OJpMJOJ/h5eTkXDRG3EhzcQ7fM1lEBlxLUUWtmjaLiLhIYGBgm3e7KioqANq8S9aZxMRE27XbHmazmaysrG6f3xmD5RrI38iwhlyGJid3OHZy5k4+O3yaKp+hJCfH9XosbXH0/Ps6zV/z1/y7P/+W8zvT5STsoYceuujY//zP/7T6u8Vi6faGZHGB5uIcFGeSOtyfoqxaNW0WEXGR0aNHk52dfdHxlmMJCQl2v6bJZOrRL1E9Pb9dsdMBMBRmYKIJTO3f4Zo8PJjPDp9mT34Fd1zm3F8IHTZ/N6H5a/6av+Pm36Uk7PHHH3dYAOJCoQnWppkN1VwRUsEG0L4wEREXmT17No899hiZmZkkJSUB0NjYyNtvv01SUhLh4eEujrAXhY4GnwCorYCSr89/KNgGFecQkf6oS0nYTTfd5Og4xBWMJoiYBHlbmex5HIhgd16Z7miKiPTAp59+Sk1NDdXV1QAcOXKETZs2ATBr1iwGDRrEkiVLWL9+PZs3byYqKgqAefPmsXr1au677z4eeOABQkJCWL16NceOHeOll15y2XwcwmiE6Clw5ANrv7AOkrCkmECMBigsr+FERS3DAnycGKiIiGOoAsNAF5kCeVuJrs3GyyOKsnMNHDtdTXzYEFdHJiLilh577DEKCwttf9+0aZMtCfvwww+Jjo6mqakJs9ncqt+ml5cXL7/8MsuWLeN3v/sdNTU1jBs3jueff5709HSnz8PhYqY2J2HbYOpd7Q4b4u3B2GH+7C8+S0ZeGdclRjgxSBERx1ASNtA1f/poOrGHxKjvsCu3jN155UrCRES66aOPPup0zNKlS1m6dOlFx0NDQ3niiSccEVbfE9OcWObv6HRoWlwQ+4vPsitXSZiI9A9q1jzQNVdIpHgvaTHWxEtNm0VExOGi0sBghIo8OFvU4VDtCxOR/kZJ2EAXMgq8hkBjDTMCrRc3FecQERGH8/aDoROsf87f3uHQliRsX1EFtQ0Ds4GsiPQvSsIGOqMRIqxVuCaZjgHYmjaLiIg4VMuSxIKOlyRGBw0izM+bBrOFrMIKJwQmIuJYdiVhtbW13HrrrXz55ZeOikdcoXlfWEDp10QFDqLJAnvzy10bk4iI9H+2fWHbOhxmMBhIi9WSRBHpP+xKwnx8fMjOzh7Qjdv6JVvT5j0kxwYC2hcmIiJO0JKEFWdCQ22HQ7UvTET6E7uXI6akpLB3715HxGKXqqoqnnzySe644w6mTZvGmDFjWL58eZfPP3PmDA8++CBTp04lKSmJ+fPns3XrVgdG3Ie1FOc4kUVatB+gfWEiIuIEQSPANwzM9dZErAOpzUlYRm5Zq9L+IiLuyO4k7Fe/+hX/+Mc/WL9+va0RpSuUl5fz5ptvUl9fz+zZs+06t76+ngULFrB161Yefvhh/vKXvxASEsKdd97J9u0dbw7ul4LjwdsfGmuZ7n8KwNa0WURExGEMBoju2pLEiVH+eJmMnKmuJ/fMOScEJyLiOHb3CZs/fz4NDQ089NBDPPTQQ/j4+GAwGGzPGwwGdu3a1atBtiUqKoodO3ZgMBgoLS1l7dq1XT537dq1ZGdn88Ybb5CSYl2KN3XqVG688UaWLVtm12v1Cy3FOY5vIaHxCF4eYWraLCIizhGTDofehYKOPwT19jCRGB3ArtwyduWWMTzU10kBioj0PruTsGuuuaZV0uUqPYnhgw8+YMSIEbYEDMDDw4MbbriBp556ipKSEsLDw3sjTPcRmQzHt+BxYg+JUfPYlVtGhpo2i4iIo8VMtT7mbweLxXp3rB1pcUHWJCyvjFvSop0UoIhI77M7CVu6dKkj4nCqw4cPk5aWdtHxMWPG2J4feEnY+eIcqbF3NidhZczTRU5ERBwpMhmMHlBVAuW5EDS83aGpsef3hYmIuDO7k7D+oLy8nICAgIuOtxwrLy+3+zXN5u41j2w5r7vn95rwSZgAy4mvSZk8GIDduWUOj6vPzN9FNH/N/8LHgaan8x+oX7d+x3OQdUl84S7I39FxEhYXCMChkkrO1jbg7+PpnBhFRHpZt5Ow7Oxsjh49Sl1d3UXPfec73+lJTE7R0XLG7ix1zMrK6kk4PT6/xywWkjx88WisJujEl0AAh05UsnVHBoM8Hd/T2+XzdzHNX/MfyAb6/AXrksTCXdbiHJO+2+6woX4+xAYPJq/0HHvyypk5OsyJQYqI9B67k7CamhruvvtuvvrqKwwGg62C3oWJS19PwgIDA9u821VRUQHQ5l2yziQmJnarf5rZbCYrK6vb5/cm49dpcPwzpobVERnoQ1F5LZbgOJJHhjjsPfvS/F1B89f8Nf/uz7/lfOkHoqdYHzupkAjWfWF5pefYlVumJExE3JbdSdhf/vIXCgsLee2117jtttt49tln8fX1Zc2aNWRnZ/P00087IMzeNXr0aLKzsy863nIsISHB7tc0mUw9+iWqp+f3iqgUOP4ZxuJMUmOTKCovJrOgghmjhzr8rfvE/F1I89f8Nf+BO3/hfHGOkn1QVwXe7ReFSo0L4q3dhWTkaV+YiLgvu9eZffjhh/z0pz+1VRaMiIhg+vTpPPPMM0yYMIHVq1f3epC9bfbs2eTk5JCZeb4xZGNjI2+//TZJSUkDryhHi1bFOZo3P6tps4iIOFpAFPhHg8UMRRkdDk1rvj7tzivH3KR+liLinuxOwgoLC4mPj8dkMmEwGKipqbE9N3fuXD788MNeDbAjn376KZs2beLjjz8G4MiRI2zatIlNmzbZ4lqyZAnjx4+nsLDQdt68efNISEjgvvvu45133uHLL7/kv//7vzl27Bi//OUvnRZ/nxORbH0s2UdqVHNxDjVtFhERZ4jp2pLEMcP88PUyUVXXSHZJpRMCExHpfXYvR/Tz8+PcOWun+pCQEHJzc5k8eTJgvZvU8pwzPPbYY62Sq5YEDKx37KKjo2lqasJsNrdKJLy8vHj55ZdZtmwZv/vd76ipqWHcuHE8//zzpKenOy3+PidoOPgEQm05EzyK8PIwqmmziIg4R8xU2PeWtUJiB0xGAymxQXx+5DS7cssYF+HvpABFRHqP3UnYmDFjOH78ODNnzmTq1Kk899xzxMXF4eXlxYoVKxg7dqwj4mzTRx991OmYpUuXttnbLDQ0lCeeeMIRYbkvg8G6JDHnYzxL9pAYNUZNm0VExDlimj8ELdgOTU1gbH+xTmqcNQnLyC3jtmlxTgpQRKT32L0c8ZZbbqG6uhqA//7v/6ampoYf/ehHzJ8/n6KiIh588MFeD1KcKDLZ+li0m9TYQABtfhYREccLTwQPH6gpgzNHOhyaFmfdF7ZL1ycRcVN23wm77rrrbH+OiYnhP//5j61cfUpKCoGBgb0ZnzjbhcU5LgkCjpGRq4uciIg4mIcXRKZC3pfWu2Fho9sdmhwTCEDumXOcqqwjzM/bSUGKiPSOHnfhHTx4MFdeeSVXXHGFErD+wFacYz+pUYMAyC6ppKqu0XUxiYjIwNCyJLGT4hwBgzwZHW5dJq/VGiLijnqchEk/ExgLg4KhqYHwmqNEBQ6iyQJ788tdHZmIiPR3tiRse6dDW5YkarWGiLijLi1HHDt2LAaDoUsvaDAY2L9/f4+CEhdqKc5x9EMo2kNKbAqF5TVk5JVxyahQV0cnIiL9WXRzEnbqINSUw6DAdoemxgaxZns+u5SEiYgb6lISdu+993Y5CZN+IDK5OQnbTWrslWzYW6ymzSIi4nhDwiA4HkpzoGAnJMxud2jLnbC9hRXUNzbh5aHFPSLiPrqUhC1evNjRcUhfcmFxjlTrRa6labOScRERcajodGsSlr+twyRsRKgvQYM9KTvXwL6iClJig5wYpIhIz+hjI7lYS3GOkwcYH+qJ9wVNm0VERBzqwn5hHTAYDOdL1WtJooi4GbtL1K9fv77TMd/5zne6EYr0GQHRMDgUzp3G68wBEqMC2KmmzSIi4gwxU62PBTuhyQxGU7tDU+OC+ODASVVIFBG3Y3cS1l4z5guXqSkJc3MtxTmObIai3aTEXtqchJUxLy3a1dGJiEh/NnQcePlBfSWc3A/DEtsdmhZ7/k6YlsyLiDuxOwn78MMPLzpWVlbGhx9+yHvvvcef/vSnXglMXCwyuTkJ20PqyOtR02YREXEKowmi0yDnE2up+g6SsEnRgXgYDZScraOwvIbooMHOi1NEpAfs3hMWFRV10X8TJ07kvvvu4+qrr+aVV15xRJzibBcW52hec6+mzSIi4hQtSxI76Rc2yMvEhEh/QPvCRMS99GphjunTp/PRRx/15kuKq1xQnCPcp8nWtDlTTZtFRMTRWvqF5W/rdGiqmjaLiBvq1SSssLAQo1EFF/sF/0jwHQoWM5R8TUpsIKCLnIiIOEH0ZOtj2TGoOtXhUFuFRBXnEBE3YveesB07dlx0rL6+nkOHDvHcc88xffr0XglMXKylOMfh/1j3hcV+iw17i9mtO2EiIuJogwIhbBycOmAtVT92TrtDW5KwA8WVVNc14utt9682IiJOZ/e/VD/60Y8uqj5ksVgAuOSSS/j1r3/dO5GJ60UmNydhu0md/D1ATZtFRMRJYqZYk7D8bR0mYREBg4gM8KGoopbMgnIuGRnqxCBFRLrH7iSsrcIb3t7eREVFERqqf/j6lQuKc4yP8G/VtFn9wkRExKFipkLGK5B/8Qqcb0qNC6JobzEZuWVKwkTELdidhKWnpzsiDumLWopznDqIV1ONmjaLiIjztFRILMqAxnrw8Gp3aFpcEBv2FqtCooi4DburaBw7dozt29suGbt9+3aOHz/e05ikr/CPgCHDwNIEJ7LOV6DS5mcREXG0kFEwKAgaa+FEVodD02zXp3KamizOiE5EpEfsTsKWLl3aZsNmgI8//pilS5f2OCjpQ1qWJBbtIVUVEkVExFkMhvOl6gs67hc2LsIfH08jFTUN5JyuckJwIiI9Y3cSlpWVxZQpU9p8bsqUKXz99dc9Dkr6kMhk62PRblJi1bRZREScKKZr/cI8TUaSogMBNW0WEfdgdxJWWVnJ4MGD23zOx8eHioqKHgclfcgFxTnC/X3UtFlERJzHloR1fCcMLugXpiRMRNyA3UlYeHg4e/fubfO5vXv3EhYW1uOgpA+xFec4BHVVatosIiLOE5kKBhOcLYSKgg6HKgkTEXdidxI2e/ZsVq1axVdffdXq+LZt23j++ef51re+1WvBSR/gFw5+kYAFTuwlNVbFOURExEm8h8CwidY/d3I3rGXJ/NFT1ZRV1zs6MhGRHrG7RP29997L559/zk9+8hOGDx/OsGHDOHHiBMePH2fUqFEsXrzYEXGKK0WmwKEia3GOuPEA7M4vV9NmERFxvOh0KM60JmETb253WLCvF/FhvuScqmZ3fhlXjg13YpAiIvax+06Yn58f//jHP1i0aBEBAQEUFRUREBDA4sWLeeONNxgyRP2j+p0LinO0NG0ub27aLCIi4lAt/cI6qZAIkBarJYki4h7svhMG4Ovry7333su9997b2/FIX2QrU78bLw+jmjaLiIjztBTnKM6EhhrwHNTu0LS4INbuKlASJiJ9nt13wlpUVlayZcsW3n77bVVE7O9ainOcOQK1Z9W0WUSkHdXV1fz+97/nsssuIzExkRtvvJF333230/PWrVvHmDFj2vzv1KlTToi8DwuMhSHh0NQIRbs7HNpSnCMzv4IGc5MzohMR6ZZu3QlbsWIFzz//PLW1tRgMBv75z38SEBDAj3/8Yy699FJ+9rOf9Xac4kpDwsA/Gs4WNBfnGAmoQqKIyDctXryYrKwsHnjgAYYPH86GDRu4//77aWpqYu7cuZ2e//jjjxMfH9/qWGBgoIOidRMGg/Vu2IF3rPvC4i5pd+jIsCH4+3hwtraRg8WVJEYHODFQEZGus/tO2Ouvv86KFSuYN28ezz33HBaLxfbcFVdcwSeffNKb8UlfYdsXtsdWIVFNm0VEzvv000/54osvePTRR7n11luZNm0av/vd77j00kt58sknMZvNnb5GQkICycnJrf7z9PR0QvR9XMu+sE4qJBqNBttqjV25pY6OSkSk27qVhC1YsIBHHnmEyy67rNVzcXFx5Obm9lpw0odcUJxjqJo2i4hcZPPmzQwePJhrr7221fGbb76ZkydPkpmZ6aLI+oHolqbN2+CCD3/bYivOkVfu4KBERLrP7iQsPz+fGTNmtPmcr68vZ8+e7XFQ0gddUJwDUNNmEZFvOHz4MCNHjsTDo/VK/zFjxtie78zChQsZN24c6enpLFq0iOzsbIfE6nYiksDkBedOQ9mxDoe27AvT9UlE+jK794T5+flx+vTpNp8rLCwkJCSkx0FJHxTRnISVHoXaClJjg9iwt1jFOUREmpWXlxMdHX3R8YCAANvz7QkNDWXhwoUkJyczZMgQsrOzWbVqFfPnz2fNmjWMHTu2WzF1ZQlkR+d19/xeZ/TEGJGEoWAHTblfYQmIa3foxEg/jAYoLK+hoLSaiAAfu9+uz83fyTR/zf/Cx4Gmp/Pv6nl2J2HTp0/nhRde4KqrrsLb2xsAg8FAY2Mja9asuWiJovQTviEQEAsVeVCcSWrcJEBNm0VELtTRv4UdPTdz5kxmzpxp+/uUKVOYNWsWc+fO5c9//jMrV67sVjxZWVndOq+3zu9N0V7DCWcHZ/a8R17TmA7HxgV4cKy8kbc+28MlMfYnYS360vxdQfPX/AcyR8/f7iTs5z//OfPmzWPOnDnMnj0bg8HAa6+9xoEDBygqKuLpp592QJjSJ0QmW5Owoj2Mn3qZrWlzzulqRqpfmIgMcIGBgW3e7Wpp49JyR6yroqOjSUtL69FessTEREwmk93nmc1msrKyun2+Q3jPgZy1hNYeIzg5ucOhl+bt59i2PEqNASQnj7P7rfrk/J1I89f8Nf/uz7/l/M7YnYTFxcWxZs0aHn/8cdasWYPFYuHf//43U6dO5Q9/+AORkZF2BytuIjIFDrx9cdPm3DIlYSIy4I0ePZoNGzbQ2NjYal9Yy76uhIQEu1/TYrFgNHa7pScmk6lHv0T19PxeFTsNAMPJ/ZgaqsHHv92hk4cH89q2PHbnV/Sf+buA5q/5a/6Om3+3/mUfNWoUf/vb38jIyODTTz9l165dvPjii4wcObK345O+5IIKiYCtDPBuVUgUEWH27NmcO3eO999/v9Xxt956i6FDh5KUlGTX6+Xn55ORkWH3ef2Wf4R1WbylCQp3dTi0pTjHvqIKahsG5r4WEenbutWsuYWXlxfh4eG9FYv0dRHJ1seyY1BTRqoqJIqI2MyaNYtLL72U3/zmN1RVVREbG8u7777Lli1bWLZsme0T1SVLlrB+/Xo2b95MVFQUAAsWLGDy5MmMHTsWX19fsrOzeeGFFzAYDNx3332unFbfEpNuXRZfsANGXtHusOigQYT5eXOqso6swgqmDA92YpAiIp3rUhK2fv16u170O9/5TjdCkT5vcDAExkF5rrU4R/PSkJamzUO8e5TTi4i4veXLl/OnP/2JZ555hvLycuLj43nqqaeYM2eObUxTUxNmsxnLBf2uRo8ezcaNG3nxxRepq6sjODiYadOmcc899zBixAhXTKVvipkKX//T2i+sAwaDgbTYIDbtO8Gu3DIlYSLS53Tpt+YHH3ywyy9oMBiUhPVnkSnWJKxoD0PjLycqcBCF5TVk5pdz6ahQV0cnIuJSvr6+PPLIIzzyyCPtjlm6dClLly5tdWzJkiWODq1/iJlifczfAU1N0MF+ubS480mYiEhf06Uk7MMPP3R0HOIuIlNg//pW+8IKy2vIyC1TEiYiIo4VPhE8B0NdBZzOhqHt909LvaBps1qpiEhf06UkrGXNushFxTliA3kns0hNm0VExPFMnhCVBse3WJckdpCETYzyx8tk5Ex1PblnzjE81NeJgYqIdKzbdW+rqqr4/PPP2bBhA1988QVVVVW9GZf0VRHNVbrKc+FcKamx5yskXri/QURExCGiW5Ykbu9wmLeHicRoa282LUkUkb6mW5UU/va3v/Hss89SW1tru8Xv4+PDz3/+c37yk5/0dozSlwwKgqAR1gqJxXsYF3e5mjaLiIjzxEy1PhZ0nISBdV/YrtwyduWVcUtatIMDExHpOruTsPXr17Ns2TJmzpzJTTfdxNChQzl58iTr16/nySefJCgoyGmFOaqrq3n66afZuHEjFRUVxMfH87Of/axVFaq2rFu3joceeqjN5z7//HPCwsIcEW7/EZliTcKKduM18ko1bRYREedpuRN2OhvOlVor97ajZbWGWqmISF9jdxL28ssvc/311/OHP/yh1fFvf/vb/PKXv+Tvf/+705KwxYsXk5WVxQMPPMDw4cPZsGED999/P01NTcydO7fT8x9//HHi4+NbHQsMDHRQtP1IZArsWwdFewDr5ueduWVk5JXz3ckxro1NRET6N98QCBkFZ45Y+4WNvqbdoalxgQAcKqnkbG0D/j6eTgpSRKRjdidhOTk53H///W0+d8MNN7Bo0aIeB9UVn376KV988QV//OMfuf766wGYNm0aRUVFPPnkk1x33XW2xpjtSUhIIDEx0Rnh9i+24hx7AGxNm3erOIeIiDhDzFRrEpa/vcMkbKifD7HBg8krPceevHJmjtZKFxHpG+wuzOHj40NFRUWbz1VUVODj49PjoLpi8+bNDB48mGuvvbbV8ZtvvpmTJ0+SmZnplDgGpJbiHBV5UH3GttzjUEkllbUNLgxMREQGhJh062MnTZvBui8MVJxDRPoWu5OwtLQ0nn32WUpKSlodP3XqFCtWrGDy5Mm9FlxHDh8+zMiRI/HwaH0zb8yYMbbnO7Nw4ULGjRtHeno6ixYtIjs72yGx9js+ARA80vrn4t0M9fchKnAQFgvsLWg7QRcREek10c1JWOEuMDd2ONTWL0yrNUSkD7F7OeL999/PrbfeytVXX8306dMJCwvj1KlTfPXVV3h4ePDss886Is6LlJeXEx19caWjgIAA2/PtCQ0NZeHChSQnJzNkyBCys7NZtWoV8+fPZ82aNYwd237fkfaYzWa7z7nwvO6e7yqGiGSMpUdpKsjAMuIKUmIDKCyvYefxUqaNCOry67jr/HuL5q/5X/g40PR0/gP16yZA2Fjw9oe6s3By3/kVGm1Ia2mlkleOucmCyaimzSLienYnYQkJCfzzn/9k+fLlbNu2jfLycgIDA7nqqqtYtGgRI0aMcEScbTIY2v+HtKPnZs6cycyZM21/nzJlCrNmzWLu3Ln8+c9/ZuXKlXbHkpWVZfc5vXm+sw21DCUGqDj4KTl+VzHUWA3Ap1/ncVlQpd2v527z722av+Y/kA30+Us3GI3WKolHP7TuC+sgCRszzA9fLxNVdY1kl1QyLsLfiYGKiLStW33CRowYwVNPPdXbsdglMDCwzbtdLfvVWu6IdVV0dDRpaWnd3kuWmJjYaSGQtpjNZrKysrp9vssEVcP+lQSeO0ZycjLG0Ape3LOVnIomkpKSOkyCL+S28+8lmr/mr/l3f/4t58sAFZPenIRtg/SftjvMZDSQEhvE50dOsyu3TEmYiPQJ3UrC+oLRo0ezYcMGGhsbW+0La9nXlZCQYPdrWiwWjEa7t8kBYDKZevRLVE/Pd7rIZMCA4WwhpppSJkSFWJs21zSQW1Zrd78wt5t/L9P8NX/Nf+DOX7rJVpyj86bNqXHWJCwjt4zbpsU5ODARkc51Kwnbv38/77zzDkVFRdTV1bV6zmAwdGs5n71mz57Nm2++yfvvv891111nO/7WW28xdOhQkpLaX5rQlvz8fDIyMrjkkkt6O9T+yccfQhOszTKL9+CV8C0mRQew47iaNouIiBNETQYMUJ4LlSXgF97uUFuFRBXnEJE+wu4kbP369Tz00EMYjUaCg4Px9Gzd+LCry9B6atasWVx66aX85je/oaqqitjYWN599122bNnCsmXLbJ+qLlmyhPXr17N582aioqIAWLBgAZMnT2bs2LH4+vqSnZ3NCy+8gMFg4L777nNK/P1CRLI1CSvaDQnfIiU2yJqEqWmziIg4mo8/DB1vLcxRsB3GzW13aHJMIAYD5J45x6nKOsL8vJ0YqIjIxexOwlauXMmsWbN44okn7N531duWL1/On/70J5555hnKy8uJj4/nqaeeYs6cObYxTU1NmM1mLBaL7djo0aPZuHEjL774InV1dQQHBzNt2jTuuecepxYWcXuRKZD1ppo2i4iIa8SkW5Ow/G0dJmEBgzwZPdSPQyWVZOSVcc2EYU4MUkTkYnYnYSdPnuTRRx91eQIG4OvryyOPPMIjjzzS7pilS5eydOnSVseWLFni6NAGhshk62PRboCLmjb7+Xi2c6KIiEgviEmHXS91eV/YoZJKMnKVhImI69ldhWLcuHEXNWqWAWrYJMAAlUVQWdKqaXNmvpo2i4iIg8VMtT4W7YHGug6H2vaF5Wq1hoi4nt1J2P/8z/+watUqDh486Ih4xJ14D4GwMdY/F+8BrJ80AmRoSaKIiDhacDwMDgFzHRTv7XBoSxK2t7CCukY1+hYR17J7OWJycjJXX301N910E2FhYRctSzQYDLz99tu9FqD0cRHJcOqgdUni6GtIjQ3kncwi7QsTERHHMxggOh2yN1r3hcVMaXfo8JDBBPt6UVpdz76is7Yl9CIirmD3nbBVq1bx3HPPERQURGRkJIGBga3+6wt7xcSJIlOsj7biHNaL2u788lbFUERERByipV9YQcf7wgwGg+0alaEliSLiYnbfCXvllVe45ZZb+O1vf6vmmnJRcY5xEf7Wps3nGsg5Xa1+YSIi4lgt+8Lyt4PFYr071o60uCA+OFDCrtwy7pzhpPhERNpg952w6upqrr/+eiVgYjUsEQxGqDoBZ4vx8jAyKdp6N1SfNIqIiMNFpoDRAyqLoSK/w6Et+8J25pZptYaIuJTdSVhqaipHjx51RCzijrx8IWys9c8txTlalnvklbsmJhERGTi8Bls/EIROS9VPig7Aw2jgVGUdBWU1TghORKRtdidhDz/8MG+88QYffPAB9fX1johJ3E1EsvWxeUliSsu+MBXnEBERZ7hwSWIHfDxNTIhqXq2ha5SIfENTk4XTVXU0OeFOud17wm655RYaGxtZvHgxBoMBHx+fVs8bDAZ27drVawGKG4hMgczVFxTnCATUtFlERJwkegps+6u1QmInUmMDycwvJyO3jBuTo5wQnIj0NRaLheKKWrJLKjlcUsWhkkoOl1Ry+GQV5+rNXDF8EC+kODYGu5Owa665BkMHm15lALqwOIfFYmvaXFheQ2Z+BZclhLo0PBER6eda7oSdyIL6autS+XakxQXx0hfH2aU7YSL9nsVi4WRlHdkllRw6YU24sk9WcqSkisq6xjbP8TQZiPW3O0Wym13vYDabueuuuwgODlYpejkvfCIYTFB9Es4WQUAUqXFBFJbXkJFXpiRMREQcKyAa/CKhssj6geDwy9od2lKc40BxJdV1jfh6O/6XLRFxLIvFwqmqOmuSVVJJdkkVh0sqyS6p5Gxt28mWh9HAiFBfRof7kRA+hNHhfowOH0J0oA/7sjpu/t4b7PqXx2KxMGfOHFauXMmsWbMcFZO4G6/BMHQclHxtLc4REGVr2qw19yIi4nAGg7VR8/5/W5ckdpCERQQMIjLAh6KKWjILyrlkpD4oFHEnZ6rqrEnWycpWCVfZuYY2xxsNMDzUl9FDrUlWQrgfo8P9GBHqi5fHxeUxzGazo6cA2JmEeXh4EBoaqrKucrGIZGsSVrQbxs4537Q5r5ymJgtGo5awioiIA8VMbU7CdnQ6NDUuiKK9xWTklikJE+mjys/Vk918Z+twc7KVXVLJmeq2CwMaDBAXPLg5ybLe2UoY6kd8mC8+nn2vtZbd9+DnzJnD+vXrufzyyx0QjrityGTY85qtOEdL0+aKmgaOnVHTZhERcTBbhcRtXWravGFvMbvUz1LE5c7WNrRKslrubp2qrGv3nJjgQYwe6tcq4Ro1dEifTLbaY3cSNnbsWN577z1uv/12rr76asLCwi4q1HH11Vf3WoDiJiJTrY/NxTlamjbvOF5GRm6ZkjAREXGsYZPA5A01pXDmKISOandoy76wDK3WEHGaqrpG2z6t83e4qjhxtrbdc6ICB9n2ayUMPZ9s9Ye9nHbP4Fe/+hUAJSUlbN9+cT8Og8HAgQMHeh6ZuJfwCWD0gHOnoaIAAmNIjQ2yJmF55Xx3coyrIxQRkf7Mw8vaMiX/KyjY3mESNi7CHx9P62qNnNNVjBrq58RARfq3c/WNHDlZZa1GePJ8slVY3n6D9GH+Pq2KY1iLZfgxpB8kW+2xe2avvPKKI+IQd+fpYy3OcSLLWpwjMEZNm0VExLli0q1JWP42SP5Bu8M8TUaSogPZdqyUXbllSsJEuqG2wcyRk9+oRniykvzS9pOtMD9va3GMoX6MGWZNuEYN9SNg0MDrKWt3Epaenu6IOKQ/iEi2JmFFu2HcXFLjAgE1bRYRESeJaf4dJf/ilTrflBYXZEvC5k+JdXBgIu6rtsFMzqnqi6oR5paeo71afSG+XiSED2FMuJ+tGuHo8CEEDvZybvB9WLfv8VVWVrJnzx7KysqYNWuW+oaJdRnI7ldtxTmG+vkQHTSIgjI1bRYRESeIbk7CTh6A2grwaf93k5Z9YSrOIXLeufpGPjlYwkdfV7Jq/24Ol1Rx/Ew1Te0kW4GDPVsvIWwuAx8yxNu5gbuhbiVhK1as4Pnnn6e2thaDwcA///lPAgIC+PGPf8yll17Kz372s96OU9xBZIr1sbk4BwYDqbFBFJSpabOIiDiBXzgEDYey41CwE0Zd1e7QliXzR09VU1ZdT5CvPqGXgam2wcyn2ad4J7OIDw+cpKahpU9WtW2Mn4/HBXe1htgaHIcN8b6oQJ90jd1J2Ouvv86KFSv4wQ9+wIwZM7jrrrtsz11xxRW8//77SsIGqvAJYPS0VqYqz4OgOFJiA3lbTZtFRMRZotOtSVj+9g6TsGBfL+LDfMk5Vc3u/DKuHBvuvBhFXKzB3MSXR8/w9p4i3t93gsq6RttzscGDSAiAaePiGDPMn9HhfoT7K9nqbd1KwhYsWMD//M//XNRROi4ujtzc3F4LTtyMhzeEj4fiTGtxjqA4NW0WERHnikmHrDetFRI7kRYbRM6panblKgmT/q+pycL246W8k1nExq9PUHpB0+Nh/j5cPymCG5IjGT9sCJmZmSQnD8dkcp++W+7G7iQsPz+fGTNmtPmcr68vZ8+e7XFQ4sYikq1JWNFuGH9jq6bNOaerGTVU/cJERMSBWpo2F+yEJjMY2/8lMi0uiLW7CrQvTPoti8VCZkEF72QWsWFvESVnzzdADvH14rrECOYmRTI5Lsj2Qfk3b7KIY9idhPn5+XH69Ok2nyssLCQkJKTHQYkbi0yBjL/binO0atqcV6YkTEREHGvoePD0hbqzcOqgdal8O1qKc2TmV9BgbsLTZHRWlCIOY7FYOFRSydt7inhnb1GrkvF+Ph5cO2EYc5MiuWRkCB76mXcZu5Ow6dOn88ILL3DVVVfh7W2tfGIwGGhsbGTNmjVcdtllvR6kuJF2inPsOF7G7rxyvqemzSIi4kgmD4hOg2OfWfeFdZCEjQwbgr+PB2drGzlYXElitCo9i/s6drqadzKLeCeziMMnq2zHB3mamD0+nLmTIpg1JgxvDy0x7AvsTsJ+/vOfM2/ePObMmcPs2bMxGAy89tprHDhwgKKiIp5++mkHhCluY+h4MHlBbbl1Y3TwCDVtFhER54qZej4Jm/yTdocZjQZS44L45NApduWWKgkTt1NYXsO7e4t4O7OIrwvPbwnyMhm5fEwYc5MiuWrcUAZ7dbsrlTiI3d+RuLg41qxZw+OPP86aNWuwWCz8+9//ZurUqfzhD38gMjLSEXGKu/Dwsn7qWLTbWpwjeISaNouIiHO19AvL39bp0LTY5iQsr5wFlzo4LpFecKqyjo1fF/P2niJ2XrCf0WQ0cOmoUOZOiuDqCcMIGKTft/qybqXFo0aN4m9/+xv19fWUlZUREBCAj49Pb8cm7ioi2ZqEFe2GCTepabOIiDhX9GTrY+lRqD4Dvu3vV2/ZF5ah4hzSh1Wca2DTvmLeySzmy6Onbc2TDQaYMjyYG5Ii+fbEYWqS7Ebs3o330EMPkZ+fD4CXlxfh4eG2BKywsJCHHnqodyMU93PhvrBmLaXq1S9MRPqz6upqfv/733PZZZeRmJjIjTfeyLvvvtulc8+cOcODDz7I1KlTSUpKYv78+WzdutXBEfdTg4MhdIz1z52Uqk+KCcRosC7rKq6o6XCsiDNV1zXy7z2F3Pn3HUz+/WZ+9a8sPj9iTcCSYgJ5ZM44vnzwSt68azq3TYtTAuZm7L4T9tZbb/H973+fmJiLCyyUlZWxfv16Hn/88V4JTtyULQnLvKA4h5o2i0j/t3jxYrKysnjggQcYPnw4GzZs4P7776epqYm5c+e2e159fT0LFizg7NmzPPzww4SEhPD6669z55138tJLL5Genu7EWfQTMVPg9CHrksQx3253mK+3B+Mi/NlXdJaM3HLmTBrkxCBFWqttMPPJoVO8k1nEhwdLqG1osj03dpgfc5MimTspktiQwS6MUnpDr+7Sq6iowMvLqzdfUtzR0HFg8oa6CijNgZCRpMapabOI9G+ffvopX3zxBX/84x+5/vrrAZg2bRpFRUU8+eSTXHfdde02Pl27di3Z2dm88cYbpKRYP8iaOnUqN954I8uWLWPt2rVOm0e/ETMVdr8G+Ts6HZoWF8S+orPsyi1jzqQIJwQncl6DuYnPj5zmncwi3t9XQlVdo+254SGDuSEpkuuTIhkd7ufCKKW3dSkJ27FjB9u2nd/cunbtWj777LNWY+rq6vjwww8ZOXJk70Yo7sfkCcMmQuEua3GOkJGMHaamzSLSv23evJnBgwdz7bXXtjp+880388ADD5CZmUlqamqb537wwQeMGDHCloABeHh4cMMNN/DUU09RUlJCeHi4Q+Pvd1qaNhfuAnOD9drUjrS4IF7ZmssurdYQJzE3Wdh+rJR39haxMauYsnMNtuciAnxsd7wmRvljMOiD6/6oS0nYtm3bePbZZwFrT7D2PpGLjIzkf//3f3svOnFfkSnWC1/Rbph4i5o2i0i/d/jwYUaOHImHR+tL65gxY2zPt5eEHT58mLS0tIuOX3hud5Iws9ls9zkXntfd8/uEoHiMPgEYaiswF2WeXyrfhuRofwD2FVZQXVuPZ/OOebeefw/0i+9/Dzhq/haLhcyCCt7ZW8x7WSc4WVlney7E14vrJg7j+kkRpMYG2lYMNTU1tfdyDqPvf8/m39XzupSE3Xnnnfzwhz/EYrFwySWX8Le//Y3x48e3GuPl5YWvr6/9kUr/FJFsfSzaYzt0vmlzmZo2iwxA5iYLZ6rqKK6opbiilqLycxgr60h2dWC9pLy8nOjo6IuOBwQE2J7v6NyWcfae25GsrKxunddb57vaKP8xBNRup3DbW5wa0f7dBIvFQpCPkbLaJtZ9sovxYdatFe4+/57S/Hs+f4vFQm5FI5/n1/JFXi0nz53/Bd3X08C0aB8ujfFhYpgXJmM9lOeytzy3x+/bG/T9d+z8u5SE+fj42Cogfvjhh4SFhWnvl3Ss5RPH4kxoagKj0da0OSO33HVxiYhDNJqbOFlpTbBOVNRSXFFjfTxr/fuJilpKztbS2FJXuZmXCb5/VVO7e6XcTUfLhjpbUtSTc9uTmJjYra+t2WwmKyur2+f3FYbK2XByO9GWIqKSkzscO/XAbjbtK6HSO5TExLh+Mf/u6i/f/+7qjfkfO13Nhr3FbNhbzJFT1bbjg71MzB43lOsTI7gsIRRvD7sLlTucvv89m3/L+Z2xuzBHVFSU3cHIABQ2Fjx8oO6stThH6Chb0+bsk2raLOJO6hrNlFTUWROrs7UXJVonztZyqrKOb+RXbTIaYKifD8MCfBjm782IQTV4mPreLyHdERgY2OYdq4qKCoA273T1xrkdMZlMPfolqqfnu1ysdV+YsWAHdDKPycOD2bSvhIy8CkwzrWPdfv49pPnbN/+CsnO8u7eYtzOL2Fd01nbcy8PIFWPCuCEpiivHDmWQl3t8TfX9d+z87U7CGhoaeP7559mwYQNFRUXU1dW1et5gMLB///5eC1DclMkDhiVCwQ5rcY7QUWraLNIHnatvtN2pKm5OqGx3sZqPn6mu79JreZoMhPv7EBHgw7CAQdZH2999iAgYROgQL1vSZTab2bNnjwNn51yjR49mw4YNNDY2ttoXlp2dDUBCQkKH57aMu1BXzpUORKWBwQgV+XC2CPwj2x16vopvGRZLFz5REAFOVtby3t5i3tlbzK4LGn6bjAZmJIQyd1Ik35oQjr8+eJZvsDsJe+qpp3j55ZeZOXMms2fP1rJEaV9kijUJK9oNifMA676wgrIaMvLKlISJOJDFYqGyrvGCZKrmgjtY1qWBxRW1VNQ0dP5igLeHsVUyZX1sSbKsfw/x9RrQ7Sdmz57Nm2++yfvvv891111nO/7WW28xdOhQkpKSOjz3scceIzMz0zausbGRt99+m6SkJFVG7C5vPwifACeyIH87TPhOu0MnRPrj5WHkTHU9uaXnnBejuJ3yc/Vs+voE7+wtYuvRM7ZVAAYDTB0RzNykSL49MYJgX/2OLO2zOwnbuHEj9957L4sWLXJEPNKf2Ipz7LYdUtNmkZ6zWCyUn2tovnPVOrm6cJlgdX3XKjT5epmICPzmnatBFyRdPgQM8lSZ5E7MmjWLSy+9lN/85jdUVVURGxvLu+++y5YtW1i2bJltWcuSJUtYv349mzdvti3xnzdvHqtXr+a+++7jgQceICQkhNWrV3Ps2DFeeuklV07L/UWndykJ8/YwMSkqgJ25ZWTklROvH3e5QFVdIx/sL+GdzCI+O3yKBvP5u6XJMYHMTYrk+kkRhPv7uDBKcSd2J2EVFRVMnjzZEbFIf9NGcY5vNm0Wkdaamiycrq77RlJlvZN14uz5v9c1dq1sccAgz1bJ1DD/1snVsAAf7c/sRcuXL+dPf/oTzzzzDOXl5cTHx/PUU08xZ84c25impibMZnOrJW9eXl68/PLLLFu2jN/97nfU1NQwbtw4nn/+edLT010xlf4jZirs/BsUbO90aFpckDUJyy0nfrjjQ5O+rbbBzGf7T/LO3iI+PHCy1b+74yL8mZsUwdxJkcQED3ZhlOKu7E7CpkyZwsGDB5k2bZoj4pH+JHQ0eAyC+io4cwTCRjMuwh8fz/NNm0eEDHJ1lCJO19Rk4eipKrblnGH7gbO8eHAPJWetlQVPVta2+oS1I6FDvJoLXFycWEUEDGKYv4/bbADvL3x9fXnkkUd45JFH2h2zdOlSli5detHx0NBQnnjiCUeGNzDFNCexRXugoRY8279TYavim1fGvOHqZzkQNTVZ+OTQKV7ZXs6utz+iqu78ioIRob7NTZQjSAj3c2GU0h/YnYQ98sgj3HPPPURGRnL55ZdrT5i0z+QBEZMgf5u1OEfYaDxNRiZFBbL9eCkZeWVKwmRAqG9s4uuiCnYcK2XH8TJ25pZSfu7CvVit95+0VBAMD/Ahwv/i5CoiwIeh/t54eyjBEulU0HDwDYPqU9ZrUWz7HyKfr+JbRXWD7m4MJLUNZtZlFPLClhxyTp8vKR8VOIjrm+94TYj017Js6TV2J2E33ngjjY2N3HfffRgMBlv/sBYGg4Fdu3b1WoDi5iJTrElY0W6Y9D0AUmKtSdjuvDJuSWm/UpWIu6qsbSAjr5ydx0vZfqyUPfnlFy0f9PE0khwTSJhHLUmjYokMGmxLtsKGePebsu0iLmcwWJckHtxg3RfWQRI21M+H2ODB5JWe4/CZBi51YpjiGuXn6nntq1xe/vI4p6uslWD9fTy4NNqLn1yZyOThIQO64JA4jt1J2DXXXKNPAaTr2ijOoabN0t+cPFvLjuNl7Dheyo7jpRwoPntRz6xgXy8mxwUxZXgwk4cHMTEqACMW9uzZQ3Ly8AHdi0XE4WLSm5OwbZ0OTYsLIq/0HOsOVjFxbBnp8SH6vacfyi89x98+P8abO/M511zEKCpwEHdcNoJ5qZEcOfA1yXFBSsDEYexOwtpax+4q1dXVPP3002zcuJGKigri4+P52c9+1moDdHvOnDnDsmXL+Pjjj6mtrWXs2LH893//N9OnT3dC5AOIrTjHXmgyg9F0UdNmEXdisVjIOV3dfJfLurQw98zF5axjggcxZXiw7b+RYb4X/SJnNneteqGI9FB0876w/O1gsVjvjrXj6vHhvLW7kH2nGpj//DbGR/jz40viuCEpSnss+4GvCytY9VkO72YVY27+tGxchD93zYxnzqQIPE1G/dssTmF3EtaXLF68mKysLB544AGGDx/Ohg0buP/++2lqamLu3LntnldfX8+CBQs4e/YsDz/8MCEhIbz++uvceeedvPTSS6pE1ZtCE8DTFxqq4fRhGDq2ddPmggq09Vn6sgZzE/uLztrucu08XnZR82KDAcYN82fK8CAmNyddwwJUplikz4hMBqMnVJ+E8lzrPrF2fDsxgnfuvYQ/v7ebzwvq2F98ll/9K4v/e+8g86fEcNvUOGJDtF/MnVgsFrYcPs2qz3L4/Mhp2/HLRoVy16x4LhsVqrud4nRdSsL27dtn14tOmDChW8HY49NPP+WLL77gj3/8I9dffz0A06ZNo6ioiCeffJLrrruu3eU9a9euJTs7mzfeeIOUFOudmqlTp3LjjTeybNky1q5d6/D4BwyjyVqcI2+rdUP00LHA+abNu/PKmRHs2hBFLlRd18ie/HK2HytlZ24pu/PKbUtVWnh5WPdzTRluXV6YGheEv8q8i/RdnoMgIgkKd1rvhnWQhAGMj/Tn7skBPPGD8azbXcwrXx0nv7SGVZ/l8PyWHK4cM5TbLxnOjFGhWq7WhzWYm9iwt4hVnx3jQPFZAExGA9dPiuCnM+KZGBXg4ghlIOtSEnbLLbd06RMCi8WCwWDgwIEDPQ6sM5s3b2bw4MFce+21rY7ffPPNPPDAA2RmZpKamtrmuR988AEjRoywJWAAHh4e3HDDDTz11FOUlJQQHh7u0PgHlMgUaxJWtBuSbgXON23enV/OjGC3viErbu50VR07jzdXLTxeytdFZ21LVFoEDPK07ucaEcyU5v1cqkwo4mZi0puTsG22QlGdCRzsxU9nxnPHZSP45NBJ/r41l8+yT/HhwZN8ePAkI0J9+dG0OOZNjtYHMX1IVV0jb2zP48XPj1FUUQvAYC8T86fEcMelI9TXS/qELv32+/jjjzs6DrsdPnyYkSNH4uHRegpjxoyxPd9eEnb48GHS0tIuOn7huUrCelEbxTlamjbvya+gaZJuhYlzWCwW8krPWe9yNRfSuLAUcYuowEFMbr7LNWV4MAlDh+jTbhF3F5MOX/3FeifMTiajgavGhXPVuHByTlXx6le5/HNnAcdOV/PbDfv5w/uHuCklitunD2fMMPWPcpWTlbW8/MVxXvsql7O1jYC1n+KCS4Zz27Q4AgerrZL0HV1Kwm666SZHx2G38vJyoqOjLzoeEBBge76jc1vG2Xtue7q7ibPlvH69CXTYJEyA5UQWTQ11YPRg9FBfW9PmokozSf15/h0YEN//Djh6/uYmCweKz7Izt8z63/FyTlXVXTRudPgQpsQFMXl4EJPjgogMbN2/zmJpwhEh6vvfs/kP1K+bdFNLcY6Sr6GuCry7tyM5PmwIj86dwC+vHsNbuwt5ZetxskuqeH1bHq9vy2NafDA/nj6cb40PV6sJJzlysooXtuSwLqOQerO1HUh8qC93zojn5tQofDy1ckH6HrdeB9bREsnOlk/25Ny2ZGVl2X1Ob57fp1maSDYNwtRwjoOfv0Ot/wgARgSYOHC6iewz9UT35/l3Qb/+/ndBb82/rtHC4dJ6Dp5uYP/perLPNFDT2HppoYcRRgV5MjbUi3GhnowJ9cLPywg0gOUkJ4+f5GSvRNN1+v4P7PmLkwREgX80nC2Awl0QP6tHL+fr7cFt0+L44dRYvsop5ZWtx3l/fwlf5ZTyVU4pEQE+/HBqLLemxxI6xLuXJiEX2nm8lL9+msMHB0psx1JjA7lr1ki+NS5cKxikT3PbJCwwMLDNO1YVFRUAbd7p6o1z25OYmNitPj9ms5msrKxun+8ujHtTIO9LxgXUYElKBmDGiUMc2HKMQ2cauO+G/j3/9gyU7397ejr/snP17MotZ8fxUnbllvF10VkazK2TriHeHqTFBTb36AoiMSqgz3wqqu9/z+bfcr5Il8Wkw74CKNje4ySshcFgYPrIEKaPDKGovIbV2/JYsz2P4opa/vB+Ns98eIQ5kyK4fXqcrU+mdF9Tk4X395ew6rOjZOSV245/a3w4d82MZ/JwbXEQ9+C2Sdjo0aPZsGEDjY2NrfaFZWdnA5CQkNDhuS3jLtSVc9tjMpl69EtUT8/v86JSIe9LjCf2QuqPAEgbHgxbjrElr5bHNhzkh9OGMz7S38WBuka///53oivzt1gsFJTVsDO3uT/X8VIOn6y6aFy4v3er/lxjhvlh6uOfhur7P7DnL04UMxX2revWvrCuiAwcxC+vGcPiq0bxXlYxf/8ylz355by1u5C3dhcyKTqA26cP5/pJEX3mwyB3UdtgZl1GIS9sybHt5fUyGbk5NYo7Z8Qzaqga3oh7cdskbPbs2bz55pu8//77XHfddbbjb731FkOHDiUpKanDcx977DEyMzNt4xobG3n77bdJSkpSUQ5HaKM4xyUjQxgdPsS6ln57Pq9vzycpJpAfpsdyfVIEg73c9sdTeoG5yUJ2SWVzf64ydhwr5cTZ2ovGjRo6xFYqfsrwYKKDBqnfi4i0LWaK9TF/OzQ1gdExe7a8PUzclBLNTSnRZOaX88rWXN7ZW8Teggp+uTaT/3vvALdOieGH0+KI+sYeVGmt/Fw9r27N5e9bj3O6ytqj0d/Hgx9Nj+PHlwxnqJ96Mop7ctvfcmfNmsWll17Kb37zG6qqqoiNjeXdd99ly5YtLFu2zPap6pIlS1i/fj2bN28mKioKgHnz5rF69Wruu+8+HnjgAUJCQli9ejXHjh3jpZdecuW0+q/I5nYAJ7LA3AgmD/x8PHl30aW8tnk7O0q9eX9/CZn55WTml/P/NuznOylRfD89dsDeHRtoahvMZBVWNFcuLGVnbhmVzdWtWngYDUyMCiB9RDCT46yNkYN9Ve1KRLpo2CTwGAS15XDmCISNdvhbJsUE8seYQJZcN5Z/7Mznta25FFXU8pdPjvLXT4/yrfHh/Hj6cKaPDNEHSBfILz3H3z4/xps78229GqMCB3HHZSOYPyWGId5u+yusCODGSRjA8uXL+dOf/sQzzzxDeXk58fHxPPXUU8yZM8c2pqmpCbPZjMVyfp+Il5cXL7/8MsuWLeN3v/sdNTU1jBs3jueff5709HRXTKX/C44Hb3+oOwunDsKwiQAYjQYmhXtz+zXJlJ5r5J+7CnhjRx65Z87x6le5vPpVLskxgfxAd8f6nUZzE18cOc36rEr+b/tXZBWctVW1auHrZSI1znqXa/LwIFJighjkpSU8ItJNJk/r8vjcL6z9wpyQhLUIGeLNPZeP4mcz4vnw4Ele2XqcL46c4T/7SvjPvhJGDR3Cj6fHcVNq9IBOML4urGDVZzm8m1Vs69k4LsKfu2bGM2dSBJ6qOClNTdDUCBaz9bHJbP2v1d8bwdL0jb+bz4/95t+/8Vqm+kCHT8Ot/y/39fXlkUce4ZFHHml3zNKlS1m6dOlFx0NDQ3niiSccGZ5cyGiEiCQ4vsW6JLE5CbtQmJ83d18+krtmxrM15wyrt+Xxn30n2JNfzh7dHesXzE0Wth07w4a9xWz6+gSl1fWtng8d4k36iCAmx1mXFo6L8FOJZxHpXdFTzidhzXuUncnDZOSaCcO4ZsIwDpdU8upXufxrVwFHTlbx63/v44lNh5iXFs2PpscxMmxg7HOyWCxsOXyaVZ/l8PmR07bjl40K5a5Z8Vw2KlR3CZ2l8gSG/e8wLGc/hrPvA5buJzatEqWuJE7mC87v4LUczAQMD78U0mc69H3cOgkTNxOZbE3CivcA7V/4jEYDl44K5dJRoZyqrNPdMTfX1GQhI6+MDXuLeTermFOV5/t0Bft6kRxm4prUkUyNDyUuZLAutCLiWDFTrY8FO1wbB5AQ7sdvb5zI/3fNGP61q4BXtuaSc7qal788zstfHmdGQii3Tx/OlWOH9vkCQ93RYG5iw94iVn12jAPFZwFrY+zrJ0Xw0xnxTIyyv1q1dENDDRx8FzLXwNGPMFqaiAI45OrAusFgAqMHGJsfDcZv/N1kvTFg+7PHRX+3GD04E/YtHN12Xb+9ivO0UZyjM129O/aDqbGMi9Ddsb7CYrGwt6CCDXuLeHdvMUUV5wtqBAzy5NoJw5ibFMmUuAC+ztpLcnK0quOJiHPENG87OHUQaspgkOvLxvv5eLLg0hHcPn04Xxw9zd+/zOXDgyVsOXyaLYdPExU4iB9Nj2P+5BiC+sE+2Kq6Rt7YnseLnx+zXR8Ge5mYPyWGOy4dQUzwYBdHOABYLNa7wXtWw771UFdx/qnoKZwxhhEcOhSjyeOCBMX0jWTmmwlMR4lPZ+d6nB9z4d/tOddghF74ILfJbKZ8z54ev05nlISJ89iKc3wN5gbr2vwuauvu2JrteeSVfuPu2NRYrp+ku2OuYLFY2F981nrHa28xeaXnbM/5eXvwrQnhzJ0UyaWjQvHysC4xNJvNrgpXRAYq31DrPuXSHCjYCQnfcnVENkajgRkJYcxICCO/9ByvbcvlHzvyKSyvYenGg/xpczY3JEXy40uGu+VdopOVtbz8xXFe+yqXs82Fl0KHeLHgkuHcNi2OwMHun2D2eeV5kPkP612v0qPnjwfEQNKtkPR9mgKHk7tnD0HJyaAPSB1Gv6mK8wTHg3eA9dOWkwcgYlK3XubCu2NfHj3Dmu3fuDv2ju6OOdPhkkre2VvMhr1F5Jyqth0f5Gli9vhwrp8UwazRYeqJIyJ9R8xUaxKWv71PJWEXigkezEPfHscvZo/m7cwi/v7lcfYVnWXtrgLW7iogNTaQH18ynG9PjLB9sNVXHTlZxfOf5fDW7kJbAab4UF/unBHPzalRuj44Wl0VHHjbetfr+Jbzxz19YfyNkPx9iLvsfMsGfUDqFErCxHkMBohMgmOfWZckdjMJa2E0GrgsIZTLEnR3zNmOn65mw94i3sks5lBJpe24t4eRK8YMZW5SJFeOHapKhiLSN8WkW+8E5G9zdSSd8vE08b3JMXw3LZqMvHJe2Xqc97KKycgrJyNvD/9vyAF+kB7DD6bGMSygb/XM2nm8lL9+msMHB0psx1JjA7lr1ki+NS4cYz/c59ZnNDVZE67MNbD/bWg4/yEpw2dA8g9g3A3gPTCKv/RF+q1UnCsyxZqEFe8BftxrL6u7Y46XX3qOd7Osd7y+LjxrO+5pMjBrdBjXT4pk9vjwAV1aWUTcRHTzvrDCXdbKa8a+/4GRwWAgLS6ItLggHp4zjje25/P6tlxKztbxzEdHWPHJUa6dMIzbp8eRPiLYZUWOzE0WNu8vYdVnR8nIK7cd/9b4cO6aGc/k4cEuiWvAOHPUmnhlvgEV+eePB8dD0g8gaT4ExrouPrHRb0viXN0ozmGPrtwdS4kN5PvpujvWFScqam2J1+4LLqam5j1610+K4JrxwwgY3PX9fSIiLjd0HHj5QX0lnNwPwxJdHZFdhvr58POrErj78pG8v6+Ev289zvZjpbybZa1CO3aYH7dPH853UiKddp2rbTCzLqOQ57fkcOy09a6Ll8nIzalR3DkjnlFDdcfFYWrKYd9bF9/d9Q6AiTdZk6+Y9F4pWiG9R7+BinO1FOco2QeN9daqNg7yzbtjq7fn8v6+EnbnlbM7z3p37KZUa98x3R0773RVHRuzinlnbzE7jpfS0ufcYIBpI0KYmxTJtROHEdwPKnSJyABlNEH0ZMj52PpLq5slYS08TUbmTIpgzqQIDhSf5ZWtuby1u4CDJypZ8lYWSzce4HuTY7htWhzDQ30dEkP5uXpe3ZrL37ce53SVtfejv48Ht02LY8Elwxnq37eWSPYb5kbrz++e1dby8ubm9i8GI4y8yrrPa8x14DnItXFKu5SEiXMFDQefQKgtt376GO74C19Hd8de2ZrLK1t1d6ysup5N+06wYW8RW4+eocly/rnJcUHMTYrk24nDGOqni6mI9BMx6c1J2A6Ycqero+mxcRH+PH5zIg9eO5a1u/J59atccs+c44XPj/G3L45x+egwbr9kOLMSwnplL1Z+6Tn+9vkx3tyZz7l6ayGHyAAf/mtGPPOnxGhpuqOcPGBNvPa+CVUnzh8PG2dNvBK/B/4RrotPukz/h4hzGQzWps05n1iXJDohCbuQ7o6dd7a2gff3lbBhbxGfHz5N4wWZV1JMIHMnRXBdYgSRgfoUTUT6oZZ+YW5QnMMeAYM9uXNGPHdcOoJPD5/ilS+P8/GhU7b/4kIG86NpcXw3LaZbS8m/Lqxg1Wc5vJtVjLn5ujEuwp+7ZsYzZ1IEnqa+XanRLVWfga//aU2+ivecPz4oGBK/a02+IpK13NDNKAkT54tMsSZhxXsg5XaXhPDNu2Nrd+Xzxvb8Nu+OzZ0U2W+q/FXXNfLBgRI27C3m00OnbKWCAcZH+HN9UgTXJ0YSG6JGmSLSz0VNBgxQdgyqTsGQMFdH1KuMRgNXjBnKFWOGcvx0Na9+lcubO/PJPXOO3717gD++n813UqK4fXpcpx86WiwWthw+zarPcvj8yGnb8ctGhfKzmfHMSAh1WSGQfquxHg6/b93nlf0faGqwHjd6wOhrIen7kHA1eGhrgLtSEibO17IvzEHFOewV5ufNPZePYuHMkXxx9DRrtue1vju2YT83NVdWHDvM/e6O1TaY+ejgSTbsLeKjgyepbTifeCUMHcLcpEiunxRBfJg2TYvIADIoEMLGwqkDULAdxs5xdUQOMzzUl19fP54Hrh7N+t1FvLL1OAdPVLJmex5rtueRPiKYH08fztUTwlvdyWowN/H23mJWfXaMA8XWqrgmo4E5iRH8bGa8WzaM7tMsFijOtCZeWWvh3Jnzz0UkWQtsJM6zNhwXt6ckTJyvpUJiyX5orHNpKBcyGg3MSAhjRkKY298dq2s081n2aTbsLeKD/SVU159vvDgi1JfrJ0Vw/aRIxgzzc2GUIiIuFpNuTcLyt/XrJKzFYC8PfjD1/2/vzuOqLPP/j78O4MKiLCKKoikkKILgwuJuZrnhqJU5y0/bzTHNSevb6DTfsb5N2mKWOGqOZdaUU1PqpKml2WKl4JJKpuKeuG+guICcc//+uOHgEVQQOEfg/Xw87gd4L+d8rnOO58Pnvq77upvyu/gmpO47zXtrD7Bi21FS950mdd9pGtStxR8SbqN/dAOWpJ9n9JffcSTrUv6x7gyNa8LDnZvTJECjJcrVuaPmNV5bFpjXyxfwaQBt7jeLrwaRrotPKoSKMHE+v6bmOOaLp/O/bG69IQyVsXfsstXGD7tPsnTrEb7YdpRzl/Ls2xr7eZIUE8yANo1o3aiuho2IiAA0SYBN8+FgqqsjcSqLxUJCaD0SQutxNOsSH6Yc4MPUXzl2NofXV6bz+sp0+76BPjV5sFMz/l/ibfh5aehbubl8CXZ+DpsXwJ6vwMgfpeJeyzwhEPt7CL0D3PWnelWld1acr2Byjj2rsRzZDO5tXR3RNd3qvWNWm0HK3lMs2XqYFT8f5cyFy/ZtDevWpn+bYJLaBBPbxE+Fl4jI1Qom5zj8k3kNTjW8vqahb23G3R3BEz1vZ8XPR5n/4342/ZpJIx93Rt3Zkvs6NKF2jVt35EelYhiQsd6cYOPnhZCTVbgtJN4svFoPNofKSpWnIkxco1Fb2LPanJwj5NYtwq5Ukt6xe9o25ncV3DtmsxlsOHCGpVsPsyztKCezC4d0BvrUpF+0OdSww23+5TINsYhIlVXvdvD0h4tn4GgahLR3dUQuU8vDnYGxjRkY25gz2ZfYveNn2rVtgru7CrAyyzwIW/8NW/4Np3YXrq8bAjG/NSfZCLzddfGJS6gIE9fIn5zDcngzhLg2lNK6snfs+LlLfLIxw947Nn/tAebn9479Pr4pSeXUO2YYBpsPZrJ06xE+33qEo2cv2bf5edWgb1RDkto0IqF5AB6aHlhEpGQsFnNIYvoK87qwalyEXamuZw3cNHqibHLPw/YlsPkD2LcGyL8NTA0viBxoFl7NuoKbcnZ1pSJMXKNgco4T27FYc10aSlkE1al93d6xF8rQO2YYBtsOn2XJ1sN8vvUIGWcu2rfVqe3B3ZENGRATTOfbA3VfFhGRmxUSZxZhGanAKFdHI5WZzQYHfjAn2Pjlv5CbXbitWVdzuGGr30AtzUYsKsLEVXxDwCsQy4WTeJ7dA8S7OqIyKc/esZ1Hz7F062GWbj3CvpPn7eu9arpzV2QDkto0olt4ILU8NERERKTMmiSYP6vZ5BxSjk7tMYcabv03ZP5auD4g1OzxajMU/G9zXXxyS1IRJq5RMDnH7lV4Z6XfcPfKpDS9Yy3qewOw7+R5lv18jCVbDrPreOGZs1oebtzZKoikNo24IyLolp4WX0SkUmrcDizucPYQZGWYJwlFbuRSFmxbZM5ueHBd4fpadc3JNWJ/bxb4GtYp16AiTFynUVvYvQqvzKpVhBUorndsQeqvHDx9sbB3rIkvmefOsy/zqP24mu5udAuvz4CYYO5s1QCfWvpvKiJSYWp6Q8Mo8ya5B1NVhMm12ayw92uz8NqxFPLyr8+2uEFYT7PXq2V/qOHp2jilUtBfd+I6+ZNz+B39HsvGedBueJWdHvjq3rEPU35l5S/H+OmgOT2th5uFLi0CSWrTiLsiG+DrWcPFEYuIVCNNEgqLsKh7XB2N3GqO74AtH5o3VD53pHB9/VYQ+zuIvh/qBrsuPqmUVISJ6zTvjhEYjsfJdFg2Hn54A7qOh9g/VNli7OresaVbDnPi6CEe6d2BwDo6cyYi4hJNEiB1jjlDogjgnpuFZf0/zeu8Dv9UuMEzAKLvM3u9GrXVcEO5aSrCxHVq+WB77BsOLXmJJvs/wZJ1EJb+Cda8Dt2eNsdTu1fdHqGgOrV5oONtbN58Bn+vqll0iohUCiFx5s+jW+HyRXDTd3K1dWAtbmv/QZudy3Ez8sx1bh7QorfZ69Wid5U9USzOpSJMXMujNiea30PjpAm4b34fvp8GWb/CkidhzVTo9ox5I8MqXIyJiIiL+TUFn4aQfdTs9QhJcHVE4kw2G+z6Ar5/Aw6uwwJYAKNhDJbY35s9X96BLg5SqhrdXEhuDTU8IfGP8ORm6P0SeNeHzAPw2WiYEQc/fQDWPFdHKSIiVZHFAk3yb5WiIYnVh/UybP4QZnWEBb81Zzl0r4mt3QNs6z4X22NfQ+JIFWBSIVSEya2lphd0fALGboW7XwSvQDizD/47Cv4RZ96HQ8WYiIiUN3sRtt61cUjFy8mGtTPhzVhY/Ec4scOcWr7zn+BPaRj9p3Gpbqiro5QqTsMR5dZU0ws6jYEOD0PqP+HH6XB6Lyx6HL57Fbo/C1H3gpvumyUiIuXAftPmFDAM18YiFeP8SUh5y5yE5VKmuc6nASSOgg4PQW1fc53V6rIQpfpQESa3tpre0OVPEPeo+aX543Q4tRsWPlZYjLUerGJMRETKJjgG3GvChZPmCAypOs4cgLUzYNP7kHfRXBcQBp2fhDa/hRq1XRufVEsqwqRyqOUDXcdB/GPmWawfk+FkOnz6CHz7CvR4FiIHg5tG2IqI65w/f5433niD5cuXk5WVRWhoKCNGjKB///43PHbhwoVMmDCh2G3ff/899evXL+9w5UoetSA4FjJSsWSsByJcHZGU1dGf4Yc34edPwcjv3WrU1hx22GqATuCKS6kIk8qlVh1z+vr4EWYxtjYZTu6ETx6G+q+axVirgSrGRMQlxowZQ1paGuPHj6dZs2YsXbqUcePGYbPZGDBgQIkeY/LkyYSGOl6P4ufnVwHRShFN4iEj1VwaqQirlAwDDvxozra8e2Xh+rCeZvHVvJvu7SW3BBVhUjnVrgvdn4GEEbBuNqz9B5zYDv95EIJam8VYywEqxkTEab799lt++OEHpk6dSlJSEgCJiYkcPnyYV155hX79+uHufuMz7y1atCA6Orqiw5XiNEmAtTOwHEyFRsNcHY2Uhs0GO5fBD29ARv7kKhY3iBwEncdCo1gXBidSlIowqdxq+5oFV8LjsG4mrJsFx7fBx8OhQTT0+DO07K+zXnLryD0P2cfN5ewR/A7vBb9z5hTInv7gFWDeskEqnZUrV+Ll5UWfPn0c1t9zzz2MHz+eLVu20K5dOxdFJyVSMEPiie24XT7v2likZPJyIe1jc9jhyXRznXstaPsHc4KvAM1yKLcmFWFSNXj6wR0TzXuNrf2H2Tt2LA0++gM0bAM9JkBEXxVjUjGsl+H8Ccg+ll9gHbvq9yt+5mbbD3MHwgA2XvV4Hp6FBZmn/1W/Bzj+fuU23dTcpXbt2kVYWBgeHo6pNSIiwr69JEXYyJEjOX36NHXq1CE+Pp4nn3yS8PDwm4rJepOzvBUcd7PHV1pe9XHza4ol81e8M3dgtSa6OiKXqBTvf845LJvmY0mZheXcEQCMWnUxOjyCEf84+ASZ+91EGypF+yuQ2l+29pf0OBVhUrV4+kPP58zpZtfOMK8bO7oV/v0784LrHhMgvLeKMbkxmw0unimmoLqqqDp/HC6cKt1je3hCnQYY3vXJvnAJH7ccLBcz4eJpsOWZs3eduwjnDpfucWvWAa9iirOrC7cri7vafhq2W04yMzMJCQkpst7X19e+/XoCAwMZOXIksbGx+Pj4kJ6ezpw5cxg6dCgLFiygZcuWpY4pLS2t1MeU5/GVUTPvFtTL/JVGO+dx+OJxshokkFcrwNVhucSt+P575JwhaN9C6u//L+6XzZNaubXrcTz0Pk40TcJWwxt2HwZK+f1ZjFux/c6k9lds+1WESdXkFQB3/i8kPmFO3pEyB45shgVDoVE7sxhrcZeKserGMMyeqGILqmOQfcKxuLKV4sbgbh7gHQQ+9c37zvgE5f8s5veaPmCxYLNaSd+8mdjYWPNaIcOAnHNm8XfxNFw4nf/7mSt+P33FvwvWZQIG5J4zl8xfS/GiWMyeZIfC7eoirpiCLr8NVVVKSgrDhw8v0b6LFy+mVatWAFiu85pcbxtAt27d6Natm/3fcXFxdO/enQEDBvDmm28ya9asEsVzpejo6BJdh3Y1q9VKWlraTR9fmVk8fguLvsLnzC/4nPkFAKNRO4zwPhgtekODqCr92Ydb9P0/sx/L2hlYtnyIJe8SAEa9FhgdR+MefT/BHrUILqenuiXb70Rqf9naX3D8jagIk6rNux70mgQdR5v3GEv9JxzeBB8OgcYdzGLs9jurfEKt8vJyCq+zurK4Ol/McMDLF0r32F718ouroOsXV57+Ze9RsljMSWdq1wX/20p+nM0Kl7KKFmdXFm4Ov+cXdrnnAKOw0CsNtxpXFWgFhdsNeuIqyfVuzZs358UXXyzRvsHB5p9+fn5+xfZ2ZWVlAYU9YqUREhJC+/bt2bJlS6mPBXB3dy/TH1FlPb5Sirkfa70WHPvuHYLPbcVyZDOWw5uwHN4E37wEdRubIyrC+5gz7VWSz/TNuCXe/yNbzck2ti0Cw2aua9weujyFJaI/lgrsyb8l2u9Can/Ftl9FmFQP3oFw1wvQcQz8+CakzoVDG+CDeyEkHu6YAKF3qBi7ldis5jC/4nqpru7FupRZuseuWaeYHqtiiivv+pXjOis3d7PI8QqAemElPy4vt7AAK66Hzf57ZuHvF06DNQdsl80i9/zx0sXq4WkvyNw8/WlQOwJiY0v3GE4QFBTEkCFDSnVMeHg4S5cuJS8vz+G6sPR0c7KAFi1a3FQshmHgpiGjzhXchiMRD9IgNhb388dh15eQvgL2fA1nD8GGd8zFwxNCu5sFWXhvqNvI1ZFXDYYB+9eY08zvWV24/vZe5jTzzbooX0ulpyJMqhef+nD3i2Yx9sObsOFt834w7w+GJolmMda8u77cneH8Kfh1HUF7f8By6jO4cOKqXqwThWc9S8KtxjWKqquLqyCo6V1x7apMPGpCnQbmUhq5F67Rw3aD4ZOG1bze7ewhOHsICxDsvgFsL0EVONvaq1cvPv74Y7788kv69etnX79o0SKCgoKIiYkp9WMePHiQTZs20alTp/IMVUqjbjC0f8BcLl+E/d/DzuWQ/gWczTCLs/QV5r4N25iTQIX3huC2ut6ytGxW2LEUvn/DHLUC5jTzre8xp5kPbuPS8ETKk4owqZ7qNIA+L0HnJ80v+w3vwMF18N5AaNopvxjrdsOHkRKy2cybah9MgYOp5s9Tu3EHmlz3QIvZi3mjHiufIHOCCRXPzlHTy1x8G5f8GMOAnLMOPWy27FPsPA0RblUjFXXv3p3OnTszadIksrOzadq0KZ9//jlr1qzh1VdfdRjWMnHiRBYvXszKlStp3Nh8HR988EE6dOhAy5Yt8fb2Jj09nblz52KxWBg7dqyrmiVXquFpXk/c4i7zM31sW2ERlrHBnAjq6Fb49mVzGHP43RDeF0J7QC0fV0d/68rLgS3/Ni8bOLXbXOdRG9oOg06jwb+ZS8MTqQhVI/OJ3Kw6DaHvFPMM2/fTYOO78OuPMH8A3NbFLMaadXF1lJVPTjYc2lhYcGWkmtcsXcWo35IzNRriFxKBW52GRYsrr3rgrq+pKsFiMe/rV9vX/geVYbVycfNml4ZV3pKTk5k2bRrTp08nMzOT0NBQXn/9dfr37++wn81mw2q1YhiGfV14eDjLly/nnXfeIScnh4CAABITExk1ahTNmzd3dlPkRiwWaBhlLt2eNodM715p9pLtWW0O1f3pX+biXhOadS3sJfNr6urobw2XzsLGebB2JmQfNdfV9oP4xyD+cXP0ikgVpb9uRMAcbtLvFejyJ1jzOmyaDwe+h3f7mz1iPSbCbR1dHeWtyTAg66BZcP26ziy6jv1cdChhDW8IaQ9NEswlpAO2mnXZlz87YFUYjibi7e3Nc889x3PPPXfd/aZMmcKUKVMc1k2cOLEiQ5OK5lMfYn9vLnm5cOAHc8hi+nI4sx/2fGUuy56GoMj868j6QEgH87rO6uTcMUiZBevfgZz8E3R1GkHHJ8xhn7XquDY+ESdQESZypbqNoP9rVxRj78G+78wltIdZjDVNcHWUrpWXC0fTzOGbBcML82+U6cC3KTSJzy+64s1pna/u1aqmN4IUkSrOoyaE3WEufSbDyXRzyOLOFeZ35/FfzOX7183ZQ1vcDRF9IKyn2VtcVZ3aAz8mw+YPzQl+AAIjzNEo0UPM102kmlARJlIc3xBIeh26PAVrpsJP78Peb8wlrKdZjDWJc3WUznH+VH6xlV9wHd4E+fdosXPzgOCYwoKrSYJmCRMRAXPYYv0Ic+k81rwmcvdXZg/Z7lXm5DVb/20ubh5wWyfzOrLw3qWb7fRWdvgn8/rr7Z8VjpIIiTdPeIb31QQmUi1V2iLs/PnzvPHGGyxfvpysrCxCQ0MZMWJEkXH3xVm4cCETJkwodtv3339P/foagyz5/JrAgDfyi7HXzLN3e1aby+29zGIspL2royw/15hAowjPgMKCq2kiNGpbpe+VIyJSbrwCoM0Qc7FeNr9nC3rJTu0qHH3xxQSo18IsxiL6mt+5leGWGQUMwzxx+cMb5s8CLe42c2rTjppMSaq1SluEjRkzhrS0NMaPH0+zZs1YunQp48aNw2azMWDAgBI9xuTJkwkNDXVY5+fnVwHRSqXnfxv8Jhm6jofvXoXNC8wzmLtXmQmlxwRo3M7VUZZeCSfQoH7Lwmu5miSYZ2eVPEVEysa9hjn5U7Mu5u1TTu3Jv45shXlN2aldsHYXrJ1hDlO8vZfZc3T7nWYxdyuyWeGX/5q3gTmy2VxncYfo+8yewAatXRqeyK2iUhZh3377LT/88ANTp04lKSkJgMTERA4fPswrr7xCv379SnSH6xYtWhAdHV3R4UpV4t8MBv4jvxh7zZxSd9eX5hLexyzGGsW6OsrilWECDTz9XROziEh1Ui8MOo4yl0tZ5qiL9C/MHHPhFPz8qblY3Mx7Wxb0kgWGu/7E2OVLsOVD85qv03vNdR6e0G64OeGG/22ujU/kFlMpi7CVK1fi5eVFnz59HNbfc889jB8/ni1bttCuXSXslZDKIyAUBs0s7Bnb+lHhvWIi+kOPP7v+ppLlOYGGiIg4V21faD3YXGxW8z5k6SvMouz4NvN2Kr/+CKv+Zp4gDO9jFmW3dXHuBBeXsmD927BuljktP5gn7uJHmNPMe9dzXiwilUil/Etr165dhIWF4eHhGH5ERIR9e0mKsJEjR3L69Gnq1KlDfHw8Tz75JOHh4RUSs1RR9cJg8Gzo+jR89wqk/Qd2fm4uLZPMnrGGUc6J5fzJwmGFJZ1AIyS+dDfcFRER53NzN2fmbZoAvf4GZw6YvWPpK8zrx87sh5TZ5lKzjjkrY3gfc7h8Rd1r6+wRWDcTNsyD3HPmuroh5s2V2w7TzalFbqBSFmGZmZmEhIQUWe/r62vffj2BgYGMHDmS2NhYfHx8SE9PZ86cOQwdOpQFCxbQsmXLUsdkvcmptguOu9njK7sq037/5jBwFnR+Csua17D8/CmWHUthx1KMlgOwdXsWGkQWOeym22/Y4MROLBmpkJGK5eB6LKeLTqBheAZASDxGk3iMJgkQHFt0Ag0XvvZV5v2/SWp/2dpfXV83Efxvy7+h8WPmtb17vynsJTt/3JyFcPtngMUcUh7e2yzKGkSVfdjiyd3w45vmcHxrrrmufqv8aebvq1yTh4i4kMuLsJSUFIYPH16ifRcvXkyrVq0AsFznS+R62wC6detGt27d7P+Oi4uje/fuDBgwgDfffJNZs2aVKJ4rpaWllfqY8jy+sqtS7W8+itqB/QhOfx//w99g2bEE9x1LOB3cnSMRw7lUp3mRQ27Ufre8i3hnbsf79DZ8Tm/DO/MXPC5nF9nvos9tZAe05nxAFNn+rcnxDilMuKeB0zvLo4Xlrkq9/zdB7a/e7Rcpk1o+0CrJXGw2OPJT4eQeR7ZAxnpzWf2i2VNVUJA17wY1apf8eTI2wg/TYPtSwDDXNUk0ZzpscbemmRcpJZcXYc2bN+fFF18s0b7BwcGAOYNhcb1dWVnmrG4FPWKlERISQvv27dmyZUupjwWIjo4u0WQgV7NaraSlpd308ZVd1W1/LHQdhO34dizfvYLb9v8ScORb/I98h9F6MEbXZ6B+RPHtNwzIyjB7uQ6mmD+P/Yzlqgk0jBpe0Lg9Rn5PF43jqOnpRwBwi86ZVUTVff9LRu0vW/sLjheRfG5u0Li9udwxEc4ezi/IvjB7y85mwIa3zaWGF4T2MIuyFr2hbnDRxzMMcxbg79+A/WsK14f3Ne/x1TTROe0SqYJcXoQFBQUxZMiQUh0THh7O0qVLycvLc7guLD09HTBnPbwZhmHgdpNnctzd3cv0R1RZj6/sqmz7g6Ng6HtwbBt8MwXL9s+wbFsI2xaZwza6PI3Fdhn3oz/hfmhDqSbQsORPoFEVJoqvsu9/Can91bv9IhWmbiPo8JC5XL5oXj9WMGzx7CHYucxcwByuXjC5R/1I/A+txi11LBzLP9Hh5gHRQ6DTk8UOrxeR0nF5EXYzevXqxccff8yXX35Jv3797OsXLVpEUFAQMTExpX7MgwcPsmnTJjp16lSeoYqYGrSGoe+bsxV+MwV2LIW0/+D286fEWjxws+U67q8JNEREpDzV8Mwfitjb7OE6mlY4bPHQRvOeXkc2w7dTcHOvRag1J/84L2j/ICSOAr8mLmyASNVSKYuw7t2707lzZyZNmkR2djZNmzbl888/Z82aNbz66qsOZ1QnTpzI4sWLWblyJY0bm3/EPvjgg3To0IGWLVvi7e1Neno6c+fOxWKxMHbsWFc1S6qDhtHw2w/McfrfvIxl5+dYjFwMzwAsBQVXkwRo1BZqerk6WhERqYosFvM2KsFtoPszkH28cLbFPV9jyc0mr0Zd3DqNwi3h8Vv3xtAilVilLMIAkpOTmTZtGtOnTyczM5PQ0FBef/11+vfv77CfzWbDarViGIZ9XXh4OMuXL+edd94hJyeHgIAAEhMTGTVqFM2bF500QaTcBcfA7z7EenIP27el0apzEu4elfa/o4iIVGY+QdD2/5lLXg7WY9tJy8imTYeOoKHCIhWi0v7V5+3tzXPPPcdzzz133f2mTJnClClTHNZNnDixIkMTKTn/ZuT4ZJZ9ymAREZHy4FELGkZjO7rZ1ZGIVGmaT1RERERERMSJVISJiIiIiIg4kYowERERERERJ1IRJiIiIiIi4kQqwkRERERERJxIRZiIiIiIiIgTqQgTERERERFxIhVhIiIiIiIiTqQiTERERERExIlUhImIiIiIiDiRijAREREREREnUhEmIiIiIiLiRCrCREREREREnEhFmIiIiIiIiBN5uDqAys4wDACsVutNHV9w3M0eX9mp/Wr/lT+rG7W/bO0vOK7ge1gKKTeVjdqv9l/5s7pR+52TmyyGsleZ5ObmkpaW5uowRESqrejoaGrWrOnqMG4pyk0iIq51o9ykIqyMbDYbeXl5uLm5YbFYXB2OiEi1YRgGNpsNDw8P3Nw0uv5Kyk0iIq5R0tykIkxERERERMSJdOpQRERERETEiVSEiYiIiIiIOJGKMBERERERESdSESYiIiIiIuJEKsJEREREREScSEWYiIiIiIiIE6kIExERERERcSIVYRVo4cKFRERE2JfIyEi6dOnCU089xf79+x323bBhA3/5y1+45557iIqKIiIigoyMDNcEXk5K2n6r1cq8efN45JFH6NatGzExMfTt25fXXnuNs2fPuq4BFeTq1+XqJSUlxdUh3rQVK1YQERHBsmXLimz7zW9+Q0REBGvWrCmyrVevXgwePBiAr7/+mv/5n/9hwIABtG7dmoiIiAqPu7yUtf3Z2dnMmjWLYcOG0blzZ9q2bcuAAQOYM2cOOTk5zmhCmZTH+z9t2jQGDRpEfHw80dHR3Hnnnfz1r3/l0KFDFR5/daHcpNxUHOUm5aarKTdVbG7yuOkjpcQmT55MaGgoOTk5bNq0idmzZ5OSksLy5cvx9fUFYN26daxdu5ZWrVrh7e1Namqqi6MuPzdq/6VLl0hOTiYpKYkhQ4bg7+/PL7/8wqxZs/j666/59NNPqV27tqubUe4KXper3X777S6IpnzEx8djsVhYt24d/fr1s6/PzMwkPT0dLy8vUlJS6Nq1q33b0aNHOXjwIA899BAAK1euZMuWLbRq1YoaNWqwbds2p7fjZpW1/YcPH2b+/PkMHDiQBx98EC8vLzZu3MiMGTP48ccfmTdvHhaLxRVNK5HyeP/Pnj1L//79CQsLw9vbm927dzNr1ixWr17N0qVL8ff3d3q7qirlJuWm4ig3mZSblJsqOjepCHOCFi1aEB0dDUBCQgJWq5Xk5GRWrVrFvffeC8CoUaMYPXo0AG+//XaVSnQ3an/t2rX56quvHD7ACQkJBAcHM3bsWL744gsGDhzoqvArzJWvS1UREBBAixYtinx+169fj4eHB/fee2+Rs6nr1q0DzPcc4MUXX8TNzeykf+GFFypVoitr+0NCQli9ejVeXl727R07dsTT05NXXnmFjRs30qFDh4pvyE0qj/f/b3/7m8P2gtdlxIgRfPXVV9x3330V2ILqRblJuak4yk0m5SblJqjY3KThiC5Q8OV26tQp+7qC/9jVwdXtd3d3L/YMQps2bQDzbIRUHgkJCezbt4/jx4/b16WkpBAVFUX37t3Ztm0b2dnZ9m2pqam4u7vbv8Ar+/+FsrTfy8vLIckVqEz/F8r6/hcnICAAAA8PnTesSMpNyk1VmXKTctOtlpsq9yeqkioYT9+sWTPXBuIiJW1/wVmIyjwE4npsNht5eXkOi9VqdXVYZZaYmAjgcMYpJSWF+Ph42rVrh8ViYePGjQ7bIiMjqVOnjtNjrQgV0f7K9H+hvNqfl5fHpUuX+OWXX3jppZdo1qwZd911l3MaUU0pNyk3gXLTlduUm5SbKjI3qQhzgoIvtPPnz7NmzRpmzZpFXFwcPXv2dHVoTnEz7T927BhTp04lKiqKO+64w4nROs/9999P69atHZaqMAQkLi4ONzc3+xfdmTNn2LVrF3FxcXh7exMZGWn/4j5y5AgZGRn27v6qoLzbv2PHDubOnctdd91Fy5YtndKGsiiP9p84cYLWrVsTExPD4MGDsVqtvPfee3h7ezu9PVWZcpNyU3GUm5SblJuck5s0tsMJ7r//fod/h4WFMXPmzGoztKa07c/MzOSxxx7DMAzeeOONSj8E4FpefvllwsLCHNbdyhe2lpSvry8tW7a0j69ev3497u7utGvXDjC/CAu+6Ar2qUqJrjzbn5GRwciRI2nYsCEvvviiE6Ivu/Jov7+/P5988gm5ubns3buXuXPnMnz4cN5//32CgoKc2JqqTblJuak4yk3KTcpNzslNVfMb5Bbz8ssv88knnzB//nyGDh3Knj17GDdunKvDcprStD8rK4uHH36YY8eO8c4779CkSRMnR+s8YWFhREdHOyxRUVGuDqtcJCQksH//fo4dO0ZKSgqtW7e2nymKj49n+/btnDt3jpSUFDw8PGjfvr2LIy5f5dH+Q4cOMXz4cNzd3Zk/fz5+fn5ObsXNK2v7PTw8iI6Opn379gwZMoT58+eTkZHBnDlzXNGcKku5SbmpOMpNyk3KTc7JTSrCnKDgCy0xMZEXXniBIUOGsGbNGlasWOHq0JyipO3PysrioYceIiMjg3nz5lWK7m0pXsHZo9TUVFJTU4mLi7NvK/hSW79+PSkpKURHR1e5YWZlbf+hQ4cYNmwYAO+99x4NGzZ0UuTlo7zf/4YNGxIUFFTkHlZSNspNyk3VjXKTchPcOrlJRZgLPPPMM/j6+jJ9+nRsNpurw3G64tpfkOQOHjzI22+/TWRkpIujlLKIi4vD3d2dL774gl27dhEfH2/fVqdOHVq1asXixYs5dOhQlRruUaAs7T98+DDDhg3DZrMxf/58Gjdu7Ozwy6y83/8DBw5w9OhRbrvttooMu9pTblJuquqUm5SbbqXcVD0Gft9ifH19GTFiBK+++ipLlixh4MCBnD592n6xYHp6OgDfffcdAQEBBAQEOHxQKrur29+7d28eeeQRfvnlFyZOnIjVamXz5s32/QMCAmjatKnrAq4gu3btKnbGqaZNm9qnPa2sfHx8iIyMZNWqVbi5uRXp0o+Li2P+/PlA0THXhw4dIi0tDYBff/0VwH5munHjxpXiAvGbbf+pU6cYPnw4J06c4O9//zunTp1ymC68YcOGleLM4822f8eOHUyePJnevXvTpEkT3NzcSE9P591338XPz4+HH37Yqe2obpSblJtAuUm5SbkJnJObVIS5yLBhw/jggw+YOXMmSUlJ7Nq1i7Fjxzrs8/zzzwPmONX333/fFWFWmCvb37ZtW/sX29///vci+w4ePJgpU6Y4O8QKN2HChGLXv/jiiwwZMsTJ0ZS/hIQE0tLSaNWqFT4+Pg7b4uLiePfdd6lRowZt27Z12JaSklLktSn4v1GZPgs30/7du3dz8OBBwDwrf7XRo0czZsyYig28nNxM+wMDAwkKCmLevHmcOHGCvLw8GjZsSI8ePRg5ciTBwcHObka1o9yk3KTcpNyk3OSc3GQxDMMoU2tERERERESkxHRNmIiIiIiIiBOpCBMREREREXEiFWEiIiIiIiJOpCJMRERERETEiVSEiYiIiIiIOJGKMBERERERESdSESYiIiIiIuJEKsJEREREREScSEWYVDoLFy4kIiLCvkRGRtKlSxeeeuop9u/f7+rwAJg9ezarVq0qsj4lJYWIiAhSUlJcEJVp9erVjBw5kk6dOhEVFUV8fDwPPPAAn332GZcvX3ZZXFcr7rX685//TM+ePSv0eY8dO0ZycjLbt2+v0OcRkapFualslJuuT7mp6vFwdQAiN2vy5MmEhoaSk5PDpk2bmD17NikpKSxfvhxfX1+XxvbWW2/Ru3dvevXq5bC+devWfPTRR9x+++1Oj8kwDCZOnMjChQvp3r07f/7znwkODubcuXOkpKTw/PPPc+bMGR544AGnx1ZSo0aNYvjw4RX6HMePH2fGjBk0btyYVq1aVehziUjVo9xUOspNJaPcVPWoCJNKq0WLFkRHRwOQkJCA1WolOTmZVatWce+997o4uuL5+PgQGxvrkueeO3cuCxcuZMyYMYwePdphW8+ePXn00Uc5cOCAU2O6dOkStWvXLvH+TZs2rcBoRETKTrmpdJSbpLrScESpMgqS3qlTpxzWp6WlMXLkSOLj44mOjmbQoEEsW7bMYZ/Tp08zadIk+vXrR9u2benYsSPDhw9nw4YNRZ4nNzeXGTNm0LdvX6Kjo0lISGDYsGFs2rQJgIiICC5cuMCiRYvsw1KGDRsGXHvIx1dffcXQoUOJiYmhbdu2PPTQQ/z0008O+yQnJxMREcGuXbsYN24c7du3p1OnTkyYMIFz585d97W5fPkyc+fOJTQ0lCeeeKLYferXr0+HDh3s/87MzGTSpEl07dqVqKgo7rzzTqZNm0Zubq7DcTk5OUydOpWePXsSFRVF165def755zl79qzDfj179uTxxx/nyy+/ZNCgQURHRzNjxgwA9uzZwyOPPEJMTAwJCQn87//+L+fPny8SY3FDPiIiInjhhRdYvHgxffv2JSYmht/85jd8/fXXDvsdOHCACRMmcPfddxMTE0PXrl0ZOXIkO3futO+TkpLCfffdB8CECRPs719ycrJ9n5J8nkRECig3XZtyk3JTdaaeMKkyMjIyAGjWrJl93bp163j00UeJiYlh0qRJ1KlTh2XLlvHUU09x6dIl7rnnHsD8UgcYPXo0gYGBXLhwgZUrVzJs2DDeffddEhISAMjLy+PRRx9l48aNDB8+nMTERKxWK1u2bOHIkSMAfPTRRzzwwAMkJCQwatQowDzLeC1Llizh6aefpkuXLkydOpXc3Fzmzp1rf+4rkw/AmDFj6NevH/fddx/p6elMnToVMIfAXMvPP/9MZmYmQ4YMwWKx3PC1zMnJYfjw4Rw8eJAxY8YQERHBhg0bmDNnDtu3b2fOnDmAOYxk1KhRrFu3jhEjRtChQwd27txJcnIymzdv5qOPPqJmzZr2x922bRt79uzhj3/8IyEhIXh6enLy5EmGDRuGh4cHf/vb36hXrx5Llizh//7v/24YZ4FvvvmGtLQ0nnzySby8vJg7dy6jR49mxYoVNGnSBDCHcvj5+TF+/HgCAgLIyspi0aJF3H///SxatIjQ0FBat27N5MmTmTBhAn/84x/p0aMHAA0bNgRK/nkSESmg3KTcpNwkxTJEKplPP/3UCA8PNzZv3mxcvnzZyM7ONr777jujc+fOxh/+8Afj8uXL9n379OljDBo0yGGdYRjG448/bnTu3NmwWq3FPkdeXp5x+fJl44EHHjCeeOIJ+/pFixYZ4eHhxscff3zdGGNjY41nn322yPp169YZ4eHhxrp16wzDMAyr1Wp06dLFSEpKcoglOzvb6NixozF06FD7uunTpxvh4eHGP//5T4fHnDRpkhEdHW3YbLZrxvP5558b4eHhxoIFC64bd4EFCxYY4eHhxrJlyxzWz5kzxwgPDze+//57wzAM47vvvis2poLn++ijj+zr7rjjDqNVq1bG3r17HfZ99dVXjYiICGP79u0O6x966CGH18owDOPZZ5817rjjDof9wsPDjU6dOhnnzp2zrztx4oTRsmVL46233rpmG/Py8ozc3Fzj7rvvNl566SX7+q1btxrh4eHGp59+WuSYm/08iUjVp9yk3HQl5Sa5EQ1HlErr/vvvp3Xr1rRr145HH32UunXrMnPmTDw8zA7eAwcOsHfvXgYMGACYZwoLlm7dunHixAn27dtnf7wFCxYwePBgoqOjiYyMpHXr1qxdu5Y9e/bY91mzZg21atUqt3H9+/bt4/jx4wwcOBA3t8L/jt7e3tx9991s2bKFixcvOhxT3JCHnJycIkNdymLdunV4eXnRp08fh/UFZ9PWrl1r3+/K9QX69u2Ll5eXfb8rY23evLnDupSUFFq0aEHLli0d1iclJZU43oSEBIczuoGBgdSrV49Dhw7Z1+Xl5TF79mz69etHVFQUkZGRREVFsX//fof3+FpK+3kSkepJucmk3KTcJNen4YhSab388suEhYVx/vx5li1bxkcffcS4ceOYO3cuACdPnrTv9/LLLxf7GGfOnAFg3rx5TJkyhd/+9reMHTsWf39/3NzcePPNN9m7d699/9OnTxMUFOSQlMqi4Pnr169fZFtQUBA2m42zZ8/i6elpX+/n5+ewX8GQikuXLl3zeYKDg4HCYTE3kpmZSWBgYJHhIfXq1cPDw8M+RCYzMxMPDw8CAgIc9rNYLAQGBtr3K1BcOzMzMwkJCSmyPjAwsESxQtHXBMzXJScnx/7vKVOm8MEHH/DYY48RFxeHr68vFouF5557zmG/aynN50lEqi/lJpNyk3KTXJ+KMKm0wsLC7Bc8JyYmYrPZ+M9//sOKFSvo06cP/v7+ADz++OPcddddxT5GwZmvzz77jPj4eJ5//nmH7VdfgBsQEMDGjRux2WzlkuwKYjxx4kSRbcePH8fNzY26deuW+XmioqLw8/Pjq6++Yvz48Tcce+/n58eWLVswDMNh31OnTpGXl2eP28/Pj7y8PE6fPu2Q7AzD4OTJk/b3p0Bxz+vn52dPIlcqbl1ZfPbZZwwaNIhx48Y5rD9z5kyJXuPSfJ5EpPpSbio55SblpupMwxGlynjmmWfw9fVl+vTp2Gw2QkNDadasGTt27CA6OrrYpWCYgMVicbhIF2DHjh1s3rzZYV3Xrl3Jyclh4cKF142lZs2a1z37V6B58+Y0aNCApUuXYhiGff2FCxf48ssviY2NdTjTeLNq1KjBo48+yt69e/nHP/5R7D6nTp1i48aNAHTs2JELFy4Uuann4sWL7duv/PnZZ5857PfFF19w4cIF+/brSUhIYNeuXezYscNh/dKlS2/csFKwWCzUqFHDYd0333zDsWPHHNZd6+xtaT5PIiIFlJuuTblJuak6U0+YVBm+vr6MGDGCV199lSVLljBw4ECef/55HnvsMR555BEGDx5MgwYNyMrKYs+ePWzbto3p06cD0KNHD2bOnMn06dOJi4tj3759zJw5k5CQEKxWq/05kpKSWLhwIZMmTWLfvn0kJCRgGAZbtmwhLCyM/v37AxAeHk5qaiqrV6+mfv36eHt7ExoaWiRmNzc3nnnmGZ5++mkef/xxhg4dSm5uLm+//TZnz55l/Pjx5fb6FCS65ORk0tLSSEpKst8Qc/369Xz88ceMGTOG9u3bM2jQID744AOeffZZDh06RHh4OBs3buStt96ie/fudOrUCYDOnTvTpUsXXnvtNbKzs2nXrh07d+5k+vTpREZGMnDgwBvG9cADD/Dpp58yYsQI/vSnP9lnoLpyqE156NGjh32mqYiICLZt28bbb79tn12qQNOmTalduzZLliwhLCwMLy8vgoKCaNCgQYk/TyIiBZSbrk+5SbmpulIRJlXKsGHD+OCDD5g5cyZJSUkkJibyn//8h9mzZ/PSSy9x9uxZ/Pz8CAsLo2/fvvbjRo4cycWLF/nkk0+YO3cut99+O5MmTWLVqlWkpqba9/Pw8OCf//wnb731Fp9//jnz58/H29ubli1b0rVrV/t+f/nLX3j++ecZN24cFy9eJD4+nvfff7/YmAcMGICnpydz5szhqaeewt3dnZiYGN577z3atWtXbq+NxWJh8uTJ9OrVi48//tj+ehTE//TTT9svYq5Vqxbvvfce06ZNY+7cuZw5c4YGDRrw8MMPO9xM02KxMHPmTJKTk1m4cCGzZ8/Gz8+PgQMHMm7cuCJncItTv359/vWvf/H3v/+dSZMm4enpSa9evfjrX/9qn0a5PPzlL3/Bw8ODOXPmcOHCBSIjI0lOTubNN9902M/T05OXXnqJGTNm8Mgjj3D58mVGjx7NmDFjSvx5EhG5knLTtSk3KTdVVxbjyn5mERERERERqVC6JkxERERERMSJVISJiIiIiIg4kYowERERERERJ1IRJiIiIiIi4kQqwkRERERERJxIRZiIiIiIiIgTqQgTERERERFxIhVhIiIiIiIiTqQiTERERERExIlUhImIiIiIiDiRijAREREREREn+v/rmc4K+JZJcAAAAABJRU5ErkJggg==",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1MAAAHbCAYAAAAuxMAAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAClGElEQVR4nOzdeXyU1dn/8c89k30PCVsSEmXfAknYQUTcl6oVtfZp69JWra1YW/VX91p96iPqU9uq6CMubd1QUcQV3HBBQUACJOx7VghkmezrzPz+uJOQkACZyUwmy/f9es1rxnvLdSaYe64551zHcDqdTkRERERERMQlFl8HICIiIiIi0hMpmRIREREREXGDkikRERERERE3KJkSERERERFxg5IpERERERERNyiZEhERERERcYOSKRERERERETcomRIREREREXGDkikRERERERE3KJkSERERERFxg5Ip6bZyc3MZNWoUd911l69DERER0X1JRNrw83UA0jeMGjUKgLi4OFasWEFgYGCbY84880zy8vLYunUrfn6d/6e5d+9eXn/9ddauXcvBgwepra0lKiqKsWPHcs4553DJJZe0iqMpxuN55JFHmDdvXrv7nn32Wf7xj38AsHz5coYOHepWzCtWrGD9+vVs376dHTt2UFlZycUXX8z//u//unU9gMzMTF5//XXWrVvHkSNH8PPzIz4+ntNOO43rrruOgQMHtnte0/uxc+fO41676Xf2xRdfkJCQ4HaMHeXq77SJu++BiPReui91jO5L7evKWHQP696UTEmXys/P5z//+Q833njjSY8dOHAgH3/8MeHh4S7/nKeffpqFCxficDhISUnhsssuIzQ0lMLCQn744Qfuu+8+Fi9ezNKlS9ucO3/+/HavOWbMmHa3O51O3n77bQzDwOl0smTJEu68806XYwbz5rdjxw5CQkIYNGgQ+/btc+s6TXH97//+Ly+88AJ+fn7MnDmT888/n/r6ejZu3MhLL73E4sWLWbBgAeeff77bP6eruPM77W3vgYh4nu5LJ6b7ku/o/eohnCJdYOTIkc4pU6Y4p06d6kxLS3MWFRW1OWbu3LnOkSNHOuvr6zv1s5555hnnyJEjnXPmzHFu2rSp3WO+/vpr59VXX90mxpEjR7r887755hvnyJEjnffdd59zxowZzunTpztra2vdin3NmjXO/fv3Ox0Oh/P77793jhw50nn77be7da2nnnrKOXLkSOfcuXOdu3btarN/xYoVzuTkZOeYMWOcq1evbrO/I+9H0+8sJyfHrRg7yt3faWffAxHpvXRf6hjdl9rXFbHoHtYzaM6UdJmgoCB++9vfUlFRwcKFC096vDtj03Nzc1m4cCH+/v4sWrSIiRMntnvc6aefzgsvvNDh657IkiVLALjyyiu5+OKLKS4u5vPPP3frWtOnT+eUU07BMIxOxZSTk8Ozzz6Lv78/zz77LCNGjGhzzHnnncfdd9+N3W7nL3/5Cw6Ho1M/01vc/Z32pvdARLxD96WT033JN/R+9RxKpqRL/fznPycxMZE333yT/fv3e/z6S5cupb6+nnPPPZeRI0ee8NiAgIBO/7zCwkJWrlzJsGHDmDBhQvPY9bfeeqvT1+6MpUuX0tDQwFlnnXXCMfdXXnkl/fv358CBA6xbt64LI+w4d3+nvek9EBHv0X2pa+hvsmv0fvUcmjMlXcrf35/bb7+dW2+9lb/97W88/fTTHr3+Dz/8AMCMGTPcvsZTTz3VZlt8fHy7k3ybbpI//vGPAXNC6tixY/n+++/JyclhyJAhbsfRGRs2bABg1qxZJzzOz8+PadOm8eGHH5Kens706dPbHNPe+9GkrKysc4F2gLu/U0++ByLSe+m+1DV6032pJW/FontYz6FkSrrc+eefT2pqKp999hk//PADkydP9ti1CwsLATpV2aa9G+nUqVPb3LScjZN6rVYrl156afP2efPm8de//pUlS5Zw2223uR1HZzS9D4MGDTrpsU3HHD58uN39nv5g4Sp3f6eefA9EpHfTfcn7etN9qSVvxaJ7WM+hZEp84s477+SnP/0pjz76KG+99ZZLY7Hb+xbosssuIyEhAafTCdCpsd0nKnPa0vfff092djazZ89udZP80Y9+xKOPPsrSpUv5/e9/31xO90Rxu8NT70PTMcc7tiNlXzvKnffA3d9pZ9+D5557jk8//ZT9+/cTEBBASkoKt91220mH6YhIz6T7Uuu43dFX7kudiaWj9xZPvl/iXUqmxCdSU1M577zz+OSTT1i+fDkXXnhhh8893jd0CQkJDBgwgH379nHo0CFPhtuuN998E6DNN4PR0dGceeaZfPLJJ3z55Zecc845J43bHSe6Xv/+/Tv8PjQd079/f7ficIU774G7v9POvgfr1q3jZz/7GcnJyTidTp588kl++ctf8tFHHxEVFeVSLCLS/em+1Dpud/SV+1JndPTe0l3fL2lLyZT4zB133MHKlSv529/+xtlnn93h8070LdCkSZP4/vvv+f7777nyyis9EWa7WlZG+uMf/8gf//jHdo978803m29aHf1msaNO9j6sXbuW1atXn/B9sNvtrF27FoC0tDSPxtced94Dd3+nnX0PXnzxxVbHPfbYY0yePJn09HTOPPNMF1shIj2B7kud01fuS53R0XtLd32/pC1V8xOfSUxM5L/+67/Izc3l1Vdf9cg1582bh7+/P5988gl79uw54bF1dXVu/5x3332X+vp6xo0bxxVXXNHuIzo6mu+++86l4QaeMm/ePKxWK5999tkJ34d33nmHw4cPc+qppzJ16tQujLDj3P2devo9qKysxOFwEBER4XojRKRH0H3Je3rTfcmTjndv0fvVcyiZEp+6+eabiYiI4P/+7/+orKzs9PUSEhKYP38+9fX13HjjjWRmZrZ73DfffMP111/v9s9pWsPjL3/5Cw8//HC7jyuvvBKHw8Hbb7/t9s9x15AhQ/jNb35DfX09N910U7t/iD///HMefvhhrFYrDzzwABZL9/xz4O7v1NPvwcMPP8yYMWNITU3tfKNEpNvSfck7etN9yZOOd2/R+9VzaJif+FRUVBS/+c1vePzxxz12zZtuuomGhgYWLlzIFVdcQWpqKuPHjyc0NJTCwkJ++OEHDhw4wPjx4926/tq1a9m/fz8jR45kwoQJxz3uyiuv5Pnnn+edd95h/vz5WK3Wk177888/bx6mceTIEQA2bdrUvEBkdHQ0d955Z4fivOWWW6iuruZf//oXl156KaeddhrDhw+noaGBjRs3snnzZoKCgvjb3/7WqZK9XcHd36mn3oNHH32UDRs2sHjx4g79HkWk59J9qTXdl7znZPcWvV89g5Ip8blrrrmG119/3aPDDubPn88FF1zA66+/ztq1a1m6dCl1dXVERUUxevRorr/++lZlY13RtPDhyca+JyYmMnXqVNauXcvXX3/doXk227dv59133221LScnh5ycHMBcV6SjNy2LxcJdd93FhRdeyGuvvcb69etZs2YNVquV+Ph4fvWrX3Httdd2qOxqd+DO79QT78EjjzzCRx99xH/+8x+frc8iIl1L96WjdF/yjo7cW/R+9QyGs6n2ooiItPLXv/6Vjz/+mFdeeYVhw4b5OhwREekFdG/pXdQzJSLSjr/85S+8//77LFy4kIiIiObhLSEhIYSGhvo4OhER6Yl0b+l91DMlItKOUaNGtbt9/vz53HLLLV0cjYiI9Aa6t/Q+SqZERERERETcoBqKIiIiIiIiblAyJSIiIiIi4gYlUyIiIiIiIm5QMiUiIiIiIuIGlUZv5HA4aGhowGKxYBiGr8MREekznE4nDocDPz8/LJae/x3f2rVrueaaa9rd9+abb5KSktLha+neJCLiGx29NymZatTQ0EBmZqavwxAR6bOSk5MJCAjwdRgec9tttzFt2rRW20aMGOHSNXRvEhHxrZPdm5RMNWrKOJOTk7FarS6fb7fbyczMdPv8nk7tV/vVfrW/s38/e0OvVEtJSUku9UK1R/emzlH71X61X+339r1JyVSjpuETVqu1U//gOnt+T6f2q/1qv9rvLg1ja0v3Js9Q+9V+tV/td9fJ7k2962tAERGRbuKhhx5i7NixpKWl8etf/5offvjB1yGJiIiHqWdKRETEg8LDw7nmmmuYNm0aUVFRZGVl8eKLL3LNNdfw3HPPMXv2bJevabfb3Yql6Tx3z+/p1H61v+VzX6P2d679HT1PyZSIiIgHjR07lrFjxzb/9+TJkznnnHO4+OKLefzxx91KpjpbhKKvF7FQ+9X+vkzt9277lUyJiIh4WUREBGeccQZvvPEGNTU1BAUFuXS+ClC4R+1X+9V+tb+zfz9PRsmUiIhIF3A6nYB7hTZUgKJz1H61X+1X+71FBShERES8rLS0lK+++ooxY8YQGBjo63BERMRD1DMlIiLiQbfffjuDBw9m/PjxREdHk5WVxUsvvURRURELFizwdXgiIuJBSqZEREQ8aNSoUXz88ce88cYbVFVVERkZyaRJk3jssceYMGGCr8MTEREPUjIlIiLiQTfeeCM33nijr8MQEZEuoDlTIiIiIiIiblAyJSIiIiIi4gYlUyIiIiIiIm5QMiUiIiIiIuIGJVMeUFnbwPzFG/lsX5WvQxEREQFg+8EyrvvXevYU1/s6FBGRXkvJlAfklFSxfEsBr2eWN69wLyIi4kvf7DrCqj1FfLS70tehiIj0WkqmPODU2FCm+e0mqK6YA0XqnRIREd8bOTAcgL0l6pkSEfEWJVMeEGjbx5t+D/BswD/YmGPzdTgiIiKMj48EIL/cTkVtg4+jERHpnZRMeUJAKAApxh4y9x/ycTAiIiLQPzyQwZFBOIFt+WW+DkdEpFdSMuUJ4YOpCYzFajgpz9ro62hEREQASG7sncrMK/VxJCIivZPPk6k1a9Zw9913c/7555OSksLs2bP57W9/y5YtWzp0flFREXfddRfTpk1j4sSJXHXVVaxZs8bLUR/DMCAuBYAo2xbKazQ+XUREfC85PgKAzDz1TImIeIPPk6nFixeTl5fHNddcw6JFi7j33nspLi7uUFJUV1fHddddx5o1a7j33nt55plniImJ4frrr2fdunVd1AJTQOJkAMYb+9ico28ARUTE98Y3J1O6L4mIeIOfrwN44IEHiImJabVt9uzZnHvuuTz33HPMmDHjuOcuWbKEXbt28cYbb5CamgrAtGnTuPTSS3n88cdZsmSJV2NvyTnY/PkTjX18nF3CaSNiu+xni4iItGd8nDnM70BRFaXV9UQG+/s4IhGR3sXnPVPHJlIAoaGhDBs2jIMHD57w3M8//5xTTz21OZEC8PPz45JLLiEjI4OCggKPx3tcgycCMNQ4yNb9uV33c0VERI6jX2gAA0KsAGxV75SIiMf5PJlqT3l5Odu2bWPEiBEnPG737t2MGjWqzfambbt37/ZKfO0KG0BlQH8shpO63E04HFq8V0REfG9YP3MQSoaSKRERj/P5ML/2PPjgg1RXV3PTTTed8DibzUZkZGSb7U3bbDabyz/bbre7fE7TebXRowgtOMKw+t3sLihj+IAwt67VEzW9b+6+fz2d2q/2t3zuazrb/r76vnWVYdH+rMmtJTNXyZSIiKd1u2TqH//4Bx988AH3338/48ePP+nxhmG4te94MjMzXT6nyaDoUVDwLRMs+1j2XQZnnxri9rV6qs68f72B2q/292V9vf3d1bBoc56UilCIiHhet0qmnn76aZ599ln++Mc/8otf/OKkx0dFRbXb+1Raat4w2uu1Opnk5GSsVqvL59ntdg4cHmlew9jHt84IUlJOngz2Fna7nczMTLffv55O7Vf71X732990vnjH0MZkKru4CltVHVEhAT6OSESk9+g2ydTTTz/NU089xS233HLS4X1NRo4cya5du9psb9p2sjlX7bFarW5/GKqKMudqnWopYHd2LlbrRLeu05N15v3rDdR+tV/t77vt767CAiwkxYSQVVRFZl4ps0f093VIIiK9RrcoQLFw4UKeeuopfvvb3zJ//vwOn3f22Wezb98+Nm/e3LytoaGB999/n4kTJzJw4EBvhHtc9oAIGiKTAAgpyqS0Sov3ioiI7zUt3puheVMiIh7l82TqpZde4sknn2T27NmcccYZbNq0qdWjyT333MPYsWPJy8tr3nbFFVcwYsQIbr31Vj744ANWr17NH/7wB/bv388dd9zhg9aAJd4s0z7B2M/GnBKfxCAiItJS03pTKkIhIuJZPh/m9+WXXwKwatUqVq1a1Wb/zp07AXA4HNjtdpzOoyXHAwIC+Pe//83jjz/OX//6V6qrqxkzZgzPP/88U6dO7ZoGHGtwCmxbRrJlH+nZNs4YNcA3cYiIiDRq6plSEQoREc/yeTL1yiuvdOi4BQsWsGDBgjbbY2NjefTRRz0dltuccY09U5Z9vJ6lnikREfG9cY09U3m2agoraokNC/RxRCIivYPPh/n1OoPMohMJRiFZOdnYtXiviIj4WHiQH0P7hwLqnRIR8SQlU54WFIEzxqwiOKx+F7sPl/s4IBEREZgQr3lTIiKepmTKC4zGoX7Jxj42aKifiIh0A8kJUYB6pkREPEnJlDc0z5vaT3qWzbexiIiIABMS1DMlIuJpSqa8oalnyrKPjdnqmRIREd8bOzgCiwGHymo4XFbj63BERHoFJVPeMCgZp2FhkFFCRWEuxZV1vo5IRET6uNBAP4YPCAM01E9ExFOUTHlDYBhG7ChAvVMiItJ9jG8sQpGhoX4iIh6hZMpb4tMAc72pdCVTIiLSDTRX9FPPlIiIRyiZ8pamIhSq6CciIt1EU0W/jNxSnE6tgygi0llKpryluQjFfjbn2GiwO3wckIiI9HVjB0dgtRgUVtRySEUoREQ6TcmUtwwch9PiR6xRRnT9YXYc0uK9IiLiW8EBVkY0FqHQvCkRkc5TMuUt/sEYA8YAZhEKzZsSEZHuoGm9qS2aNyUi0mlKprypefHefaRr3pSIiHQDLedNiYhI5yiZ8qa4xop+xj42qGdKRES6gZYV/VSEQkSkc5RMeVOLnqmc4iqOlNf6OCAREenrRg8Ox99qUFxZR56t2tfhiIj0aEqmvGnAWLAGEGlUkWgc1rwpERHxuUA/KyMHhgOQqaF+IiKdomTKm/wCYOB4wBzqp3lTIiLSHTQVochQEQoRkU5RMuVtzetNqaKfiIh0D8nxUYB6pkREOkvJlLc1zZsy9pORW0pdgxbvFRER32rumcq1qQiFiEgnKJnytnizol+ydT91DQ1sO1jm44BERKSvGzkwnACrhbKaBrKLq3wdjohIj6VkyttiR4FfMGFUM9Q4qHlTIiLicwF+FsYMbixCoXlTIiJuUzLlbVY/GDwBgGRjv+ZNiYhIt5DcONRP86ZERNynZKortFhvSj1TIiLSHUxoLEKRoWRKRMRtSqa6QotkKr+0hkOlNT4OSERE+rqmnqkteaU4HCpCISLiDiVTXaExmRpvycKKXUP9RETE50YMCCPQz0J5bQMHiip9HY6ISI+kZKorxIyAgDCCqGWYkc8GDfUTEREf87NaGBsXAagIhYiIu5RMdQWLBQanADDRslc9UyIi0i1MiG9ab0rJlIiIO5RMdZW4FMCs6Lclr5Saertv4xERkT4vOSEKUEU/ERF3KZnqKo3zptL89lNvd7I1XzcuERHxrQlNRSjyS7GrCIWIiMuUTHWVxmRqlJGFPw2kZ9l8G4+IiPR5w/qHEexvparOzv7CCl+HIyLS4yiZ6ir9hkJQJP7OekYauSpCISLShyxZsoRRo0aRmprq61BasVoMxsebRSg0b0pExHVKprqKYTT3TiVb9pGeXYLTqSEVIiK9XUFBAY8++igDBgzwdSjtStbivSIiblMy1ZUak6kUyz4Ol9eSZ6v2cUAiIuJtDzzwAJMnT2bWrFm+DqVdTfOmVB5dRMR1Sqa6UmMyNSUgC0BD/UREern33nuPdevW8Ze//MXXoRzX+Mby6FvzS2mwO3wcjYhIz6Jkqis1JlOn2A8QSB0bs22+jUdERLymqKiI//mf/+H2229n0KBBvg7nuIbGhhIaYKWm3sGeIypCISLiCj9fB9CnRA6BkBisVUWMNrJJz+7v64hERMRLHnzwQU499VR+9rOfdfpadrt7axM2nXey88fHR7B2fwmbs0sY0T/UrZ/VHXW0/b2V2q/2t3zuazrb/o6ep2SqKzUVodjzOcmW/byRP4LqOjvBAVZfRyYiIh70ySefsHLlSpYtW4ZhGJ2+XmZmplfPH+hfC8CXm/cx3FrYqZ/VHXX2/evp1H61vy/zdvuVTHW1uDTY8znTArN4tcpJRq6NaUNjfB2ViIh4SGVlJQ899BBXX301AwYMoKysDID6+noAysrK8PPzIyQkpMPXTE5Oxmp1/Ys3u91OZmbmSc/PsRzk/V2bOVjrT0pKiss/p7vqaPt7K7Vf7Vf73W9/0/kno2SqqzXOm0rz2w9AeraSKRGR3qSkpITCwkJeeuklXnrppTb7p0yZwllnncUzzzzT4WtardZOfRg62fkpQ6IB2H6oHAcG/tbeNaW6s+9fT6f2q/1qv/far2SqqzUmU4PrsgimRhX9RER6mf79+/Pyyy+32b5o0SLWr1/P888/T3R0tA8iO76kmBDCg/wor2lgV0E54+IifR2SiEiPoGSqq0UMhrBBWCoOMdbIYmN2BE6n0yNj6kVExPcCAwOZNm1am+3vvvsuVqu13X2+ZhgGExIi+W5PEZm5pUqmREQ6qHf14/cUjb1TqX77KaqsI7u4yscBiYhIX5ccHwVAhhbvFRHpMCVTvtCYTJ0WkgNo8V4Rkb5gwYIFbNy40ddhHFdy4+K9mblKpkREOkrJlC80JlPjjX0ApGcrmRIREd+akGAmUzsOlVHb0DfXpRERcZWSKV9oTKZiarIJo4r0LJtv4xERkT4vITqYqBB/6u1Odh4q93U4IiI9gpIpXwjrD5FDMHAy3nKAHYfKqKht8HVUIiLSm5TmYXx6LwFVhzp0uGEYzUP9MjTUT0SkQ5RM+UpcCmDOm3I4ISPH5tNwRESkl9nyDpa1zzJ41ysdPqVpqJ/mTYmIdIxbpdF3795Neno6BQUF1NTUEB0dzfDhw5kyZQphYWGejrF3ikuF7R8wIzgbKswiFDOHx/o6KhER6S36jwYgrDijw6c0VfTLVEU/EZEO6XAyVVpayptvvsmbb75Jfn4+Tqez7cX8/Dj99NO5+uqrmTFjhkcD7XUa502NaNgDqAiFiIh42JCpODEIqszDXn4IouJPekpTz9SugnJq6u0E+Vu9HaWISI/WoWTq5ZdfZuHChQBceOGFTJ06lXHjxtGvXz8CAwMpLS0lJyeHTZs28cUXX/CrX/2KmTNn8uc//5mkpCSvNqDHGpwCQER1DhFUsDHHH4fDicWixXtFRMQDgqNg4HgoyMTIXgNRV5z0lMGRQcSGBVBYUcf2g2WkJkZ7P04RkR6sQ3OmXnnlFe6++26+/fZbHnjgAS644AISExMJCwvD39+f2NhYUlNT+eUvf8mrr77KJ598woABA1i+fLm34++5QvpB9KkApPlnYauqZ19hpY+DEhGR3sSZ1DhKJHtNh45vWYRCQ/1ERE6uQz1Ty5cvx8+v49OrEhMTeeSRR7DbtU7FCcWlQsl+zo3M46vCcaRnlzB8gOaciYiIZziHzIB1izCyV3f4nOT4SL7ceUQV/UREOqBDPVO7d+926+JWq8Zan1DjvKk0/wMAbNS8KRER8aTExp6pw9uhqrhDpyQnRAGq6Cci0hEdSqYuu+wy5s2bx+uvv055uRby85jGZCqpdhdgVvQTERHxmLAB1IQmYOCEnLUdOqWpCMXuw+VU1WkNRBGRE+lQMvWb3/yG4uJiHnroIU477TTuuOMOvv/+e2/H1vsNnghAcFU+MZSy+3AFZTX1Pg5KRER6k/KYCeaLrI4N9RsYEcSA8EAcTtiWX+bFyEREer4OJVN//OMf+fLLL1m0aBFz587l008/5Ze//CVnnXUWzzzzDAcPHvR2nL1TUATEjADgzMh8nE7YlG3zbUwiItKrVPRzLZmCo71TmjclInJiHUqmwKzwc/rpp/OPf/yDb7/9lnvvvZfIyEiefPJJzj77bH7961+zYsUK6uvVs+KS+DQA5obnARrqJyIinlXR1DN1cBPUdaxqbNPivVtU0U9E5IQ6nEy1FBERwS9+8QuWLl3KsmXL+NnPfsa2bdv44x//yOmnn+7pGHu3xnlTycZeQIv3ioiIZ9UFD8QZEQ+OBshd36FzmnumlEyJiJyQW8lUS6NHj+aSSy7hzDPPBMBms3X2kn1LYzI1qHI7YA7zczicvoxIRER6E8PA2VTVr4ND/cY3rjW190gFFbUqQiEicjwdXzzqGMXFxbz//vu888477NmzB6vVyty5c7niipOvsC4tDEoGw4J/1WGSAkrJqo1k9+EKRg0K93VkIiLSWyTOhC1vdziZ6h8eSFxkEPmlNWzNK2Xa0BgvBygi0jO5lEw5HA6++eYb3nnnHb766ivq6+s55ZRTuO2227jsssuIjY31Vpy9V0Ao9B8Nh7dxcWwBT+dHkp5domRKREQ8prlnKnc9NNSBX8BJz0lOiCS/tIZMJVMiIsfVoWRq//79vPPOO7z33nsUFhYSFBTEj370Iy6//HImT57s7Rh7v7hUOLyNmcHZPM1I0rNK+K+pib6OSkREeovYkRASA1VFkL8REqed9JTk+Eg+2Vqgin4iIifQoWTqggsuAGDChAnccsstXHTRRYSGhno1sD4lLhU2vcZIxx7gbDaoCIWIiHiSYUDiDNjxIWSv7lgylRAFQKaKUIiIHFeHkqlrr72WK664ghEjRng8gIqKCp555hl27NjBtm3bKCkpYf78+dxyyy0nPXfp0qXcfffd7e779ttv6d+/v6fD9Y44szx6P9tWwMm+I5WUVNYRHXryYRgiIiIdkjTTTKayVsNpfzzp4cmNRSj2F1ZSWl1PZLC/tyMUEelxOpRMHS9h2bdvHyUlJYwZM4aQkBC3ArDZbLz11luMHj2as88+myVLlrh8jUceeYShQ4e22hYVFeVWPD4xcBxY/LBUFzGjXxVrikPZmFPCmaMH+joyERHpLZJmms/Za8FhB4v1hIf3Cw0gITqY3JJqtuaVMnO45kWLiBzLrWp+y5Yt44knnuDIkSMAvP3224wbN45bb72VWbNm8ZOf/KTD14qPj2f9+vUYhkFxcbFbydSIESNITk52+bxuwz8IBoyFQxmc1+8ga4qHk55lUzIlIiKeMzAZAsKhthQKtsLgCSc9ZUJCJLkl1WQqmRIRaZfL60wtX76cu+66i7Fjx3L//ffjdB5dE2ncuHEsX77cpesZhoFhGK6G0fs0rjc1JSAL0OK9IiLiYVY/GDLVfN3BEunJ8VGAFu8VETkel3umFi1axLx58/if//kf7HY7Dz30UPO+oUOH8sorr3g0wI646aabKC4uJjw8nKlTp/L73/+ekSNHunUtu93eqfPcPd8YPBELkFS7EziLTTk2auvq8bN2el3lLtHZ9vd0ar/a3/K5r+ls+/vq++YTSTNh7xdmEYrpN5308AkJ5rypTFX0ExFpl8vJ1N69e7njjjva3RcVFYXNZutsTB0WGxvLTTfdREpKCmFhYezatYtFixZx1VVXsXjxYkaPHu3yNTMzMzsVk7vnB5eHMhYIOryJED+oqrPzwaoNnBrVsyb8dvb96+nUfrW/L+vr7e8RmuZNZa0Gp9Os8ncC4+PMZCq7uApbVR1RISqMJCLSksvJVHBwMOXl5e3uKygoIDIystNBddTpp5/O6aef3vzfU6ZMYc6cOVx88cX885//5Nlnn3X5msnJyVitJ56U2x673U5mZqbb52Mfi/O73+NXX8EFCTW8cyCIquCBpKT0jPWmOt3+Hk7tV/vVfvfb33S+dIG4NLAGQuURKNoLscNPeHhkiD+nxIRwoKiKzLxSZo/oIVVyRUS6iMvJVGpqKq+99hrnnXdem31Lly5l6tSpHgnMXQkJCUyaNInNmze7db7Vau3UhyG3z7cGw6DxkLeBMyMO8g6nsjGnlGtm9qwPZp19/3o6tV/tV/v7bvt7BP8gSJgMWd+Zj5MkUwDj4yM5UFRFRq6SKRGRY7k8Iefmm29m06ZNXHHFFbzyyisYhsGnn37KTTfdxA8//MBNN518DLa3OZ1OLJaeMdeolcYiFBMs+wAVoRARES9InGE+d7AIheZNiYgcn8sZR3JyMs8//zxVVVUsWLAAp9PJc889x/79+1m0aJHbhR88JScnh/T0dCZOnOjTONzSmEwNrtwOQFZRFYUVtb6MSEREepvm9aZcq+iXqYp+IiJtuLXO1PTp01m+fDnZ2dkUFhYSHR3Nqaee6nYQX3/9NdXV1VRWVgKwZ88eVqxYAcCcOXMIDg7mnnvuYdmyZXz22WfEx8cDcN111zF58mRGjx5NaGgou3bt4oUXXsAwDG699Va34/GZxmTKryCDkf1D2HWkivSsEs4dN8jHgYmISK8xZCoYFrBlQ2kuRCac8PDx8REA5NmqKaqoJSYssCuiFBHpEdxKppokJiaSmNj5AgkPPvggeXl5zf+9YsWK5mTqiy++ICEhAYfDgd1ub7Wu1ciRI1m+fDkvvfQStbW19OvXj+nTp/O73/2uU8mdz8SOAv8QqKvgvKQKdh2xkJ5tUzIlIiKeExgOgydC/kbIWgMTrjzh4eFB/gztH8q+I5Vk5pVyxqgBXRSoiEj316Fk6uOPP+bCCy906cIFBQXk5uYyadKkkx67cuXKkx6zYMECFixY0GrbPffc41JM3Z7VDwZNgJzvOS0km6c4RfOmRETE85JmNSZT3500mQKYEB9pJlO5SqZERFrq0Jyphx56iEsvvZQlS5ZQUVFxwmO3bNnCgw8+yHnnnceOHTs8EmSf0jjUb5RjDwAZuTbq7Q5fRiQiIr2Ni0UokhOiAMjQvCkRkVY61DP12Wef8dRTT/Hwww/z0EMPMXbsWMaOHUtMTAwBAQGUlpaSk5PDpk2bOHLkCCNGjOCpp55i9uzZ3o6/92lMpiJLthIZfAGl1fVsP1jGhMYbmYiISKc1JVOFO6GyEEJjT3i4KvqJiLSvQ8lUeHg499xzDzfffDNLly7l66+/ZtmyZVRXVzcfM2TIEGbPns3FF1/M9OnTvRZwr9eYTBmHMpg0JJyVu4pJzypRMiUiIp4TGgP9R8ORHZC9BsZcfMLDxw6OwGLAobIaDpfVMCAiqIsCFRHp3lwqQBEZGckvf/lLfvnLXwJQXl5OTU0NUVFR+Pv7eyXAPidmOASEQ105Z8XaWLkLNmTbuG6WrwMTEZFeJWmmmUxlrT5pMhUa6Mew/mHsPlxBZl4pZymZEhEB3FhnqqXw8HD69++vRMqTLBaISwFgamAWAOlZKkIhIiIeltT4LV2H502ZQ/0yNNRPRKRZp5Ip8ZLGZCqpdicWw1zbo6CsxrcxiYhI79I0b+pQBtSUnfTwCfGN86ZUhEJEpJmSqe6ocd5UwKFNjBwYDqh3SkREPCwyHqKSwOmA3HUnPbypol9mXmmrNR9FRPoyJVPdUWMyRcEWpg4JA9B6UyIi4nkuDPUbOzgCq8XgSHktBWW1Xg5MRKRnUDLVHUWfCkGRYK9jTlQhABvUMyUiIp6W1PH1poIDrIwYYH7Bl5Fr82JQIiI9h5Kp7sgwmnunJlr3A7Alr4zaBrsvoxIRkd6mqWcqbwPUn3xubvN6U5o3JSICuJFM/fd//zf79u3zRizSUlwaADFlW+kXGkCd3cHW/JNPEBYREemwfkMhdADY68yE6iSa5k2pop+IiMnlZGrZsmVcdNFF/PKXv+Tzzz/XJFRvaVq8N38jaYlRgIpQiIiIhxmGud4UQPbJh/q1rOin+7+IiBvJ1KpVq7jvvvs4cuQI8+fP58wzz2TRokUUFxd7I76+q6kIxeFtTEkIAVSEQkREvMCFIhSjBoXjZzEorqwjz1bt5cBERLo/l5OpkJAQfv7zn/Phhx/yr3/9i3HjxvHPf/6TM844g7vuuovMzExvxNn3RCZASCw4GpgVdggwi1Dom0AREfGopiIUOevA3nDCQ4P8rYwaZC7ZkamhfiIinStAMWPGDJ5++mm++OILUlNTee+99/jJT37ClVdeycqVKz0VY9/UogjFSPturBaDgrJa8ku1eK+IiHjQgLFmBdm6CnMB35NoKkKRoSIUIiKdS6ZqampYsmQJN910E2vXrmXYsGHcfPPN2O12br75ZhYuXOipOPumpsV7D2cwdnAEoHlTIiLiYRYrDJluvu7AUL/k+CgAtiiZEhFxL5nKzs7mkUce4fTTT+eBBx5g0KBBvPTSS3z44YfMnz+fpUuXcsMNN/Dqq696Ot6+pWneVMsiFJo3JSIintZchGLNSQ9t7pnKVREKERE/V0+4/vrrWb16NcHBwcybN4+rr76axMTENsfNnTuXRYsWeSTIPqspmTqygylTA/kP6pkSEREvaFmEwuEAy/G/ax05MJwAq4XS6npyiqtJjAnpoiBFRLofl5OpnJwc7r77bubNm0doaOhxjxsxYgQvv/xyp4Lr8yIGQ/hgKD/IlKBcALbml1FTbyfI3+rj4EREpNcYPBH8gqG6GAp3woAxxz00wM/CmMHhbM4tJSPPpmRKRPo0l4f5ffLJJ1x99dUnTKQAwsLCmDp1qtuBSaPG3qkB5dvoHx5Ig8OpledFRMSz/AJgyBTzdUfmTTUO9VNFPxHp6zpVgEK6QPPivZua501t0FA/EZFua/v27dx4442cccYZTJgwgalTp3LVVVfx3nvv+Tq0E0tsnDfVgWRqQmMRigwlUyLSx7k8zO/MM8/EMIx291ksFsLDw0lOTuaaa65h2LBhnQ6wz2tRhGLSxGg+2VqgeVMiIt1YWVkZgwYN4qKLLmLgwIFUV1fzwQcf8Kc//Ym8vDx+97vf+TrE9iW1SKacTnOJjuMYH2/2TG3JK8XhcGKxHP9YEZHezOVkaurUqaxbt47Dhw+TlpZGbGwsR44cYePGjQwYMIDBgwfz2Wef8d577/HKK6+QnJzsjbj7jqZkqmg3kweZv670bBtOp/O4Sa2IiPjOtGnTmDZtWqttc+fOJTc3l7feeqv7JlMJU8DiB+X5YMuC6FOOe+iIgWEE+lkor23gQFElQ/uHdV2cIiLdiMvD/E477TQCAgL47LPPePnll3niiSd45ZVX+PTTTwkICODss8/mk08+4ZRTTuGpp57yRsx9S2gsRJrVEsdbDuBvNSisqCWnuNrHgYmIiCuio6OxWrtx8aCAkKNf4J1kqJ+/1cLYOHP9Q83jFZG+zOVk6v/+7/+45ZZbGDx4cKvtcXFx3HzzzSxatIjw8HCuu+46Nm3a5Kk4+7a4FAACCjYxLs4cWqH1pkREujeHw0FDQwPFxcW89tprfPvtt9xwww2+DuvEklyZN6UiFCIiLg/zy8rKIiys/e78iIgI8vLyAIiPj6e6Wr0nHhGXCtvfb1y89xw25dhIzy7hx6nxvo5MRESO4y9/+QtvvvkmAP7+/tx777389Kc/detadru9U+d1+PyE6Vj5J86s1ThOcs64xp6pjFyb2/F5m8vt72XUfrW/5XNf09n2d/Q8l5OpuLg43n33XebMmdNm3zvvvNPcY2Wz2YiMjHT18tKelkUo5kbz0nf7VdFPRKSbu+mmm7jyyispLi5m5cqV/Pd//zfV1dX8+te/dvlamZmZnYqlo+db60KYiIFRvJct36+kIajfcY/1L68HzGRqw8aNWLvxPN7Ovn89ndqv9vdl3m6/y8nUr3/9a/785z/z05/+lPPPP5/Y2FgKCwtZsWIFmzdv5qGHHgJg7dq1jB8/3uMB90mNw/woOcCkgU4Adhwqp7K2gdBAl3+FIiLSBeLi4oiLiwNo/gLyiSee4LLLLqNfv+MnKe1JTk52a76V3W4nMzPTtfM3jYOCLYyPKIOxZx4/JoeTe778nOp6O5HxIxg+oPsVoXCr/b2I2q/2q/3ut7/p/JNx+ZP4T37yE5xOJ0899RQLFixo3h4bG8uDDz7IlVdeCZjfyAUEBLh6eWlPcDREnwol+xlUsYPBkUEcLK1hc66NmcNifR2diIh0wIQJE3jjjTfIyclxOZmyWq2d+jDk0vlJM6FgC9ac7yH58hNcE8bHR7D+QAlbD5YzanD3HY3S2fevp1P71X6133vtdymZstvtZGdnc8EFF/CTn/yEffv2YbPZiIqKYujQoa1KdcfG6kO+R8WnQcl+c95U0lw+yjjIxmwlUyIiPcXatWuxWCwMGTLE16GcWNJMWLcIstac9NDk+CjWHyghI7eUeWkJXRCciEj34lIy5XQ6ueiii3j22WeZM2eOFuXtSnGpsOUdyEsnLXEeH2Uc1OK9IiLd0P33309YWBjJycnExsZSUlLCihUr+Pjjj/n1r3/tcq9Ul0tsrOhXsAWqbRAcddxDkxNUHl1E+jaXkik/Pz9iY2NxOp3eikeOp7kIxSbSZkYBZnl0Ld4rItK9pKSksHTpUt59913Ky8sJCQlh9OjRPPbYY1x66aW+Du/kwgdCv2FQvBdy1sLI8457aHJ8FABb80tpsDvws7q84oqISI/m8pypiy66iGXLlnHGGWd4IRw5rkETAAPKchkXUUuAn4WSqnr2F2rleRGR7uTyyy/n8suPP9eoR0iaaSZTWd+dMJkaGhtKaICVyjo7e45UMHpQRBcGKSLiey4nU6NHj+bjjz/mmmuu4dxzz6V///5tekbOPfdcjwUojYIiIHYEFO4i4HAGE+Ij+SGrhPRsm5IpERHxrKSZsPGVky7ea7EYjI+PZO3+YjJzS5VMiUif43IydeeddwJQUFDAunXr2uw3DIPt27d3PjJpKy4VCnc1FqG4hB+yStiQVcIVkzTpV0REPCipcd5U/kaoq4KAkOMeOiGhMZnKK+XKyd28uIaIiIe5nEy9/PLL3ohDOiIuDTLeNJOpCdcCsDFbRShERMTDopIgPA7K8yF3PQydc9xDkxOiAMjIVREKEel7XE6mpk6d6o04pCOai1Ckk/Yjcz2PnQXllNfUEx7k78PARESkVzEMs3dqy9uQveaEydSEePN+tO1gGfV2B/4qQiEifYjbf/HKy8tZtWoV77//PqWl+jaqSwxKBsMCFQUMoISE6GCcTtiUY/N1ZCIi0ts0DfXL+u7Eh8WEEB7kR12Dg10F5V0QmIhI9+FWMrVw4UJmz57NDTfcwJ133klubi4A1157LYsWLfJogNJCQAj0H2O+zt/IpKRoANKzbL6LSUREeqemZCpnPTTUHfcwwzCYkGD2TmVqqJ+I9DEuJ1OvvfYaCxcu5IorruC5555rtebU3Llz+eqrrzwZnxyreajfRtISG5MpzZsSERFPix0Fwf2goRoObj7hoeMbh/plaPFeEelj3EqmrrvuOu677z5OO+20VvuSkpLIysryWHDSjrgU87llz1R2CQ6HFlIWEREPslggcYb5+iRD/SY0Lt6rnikR6WtcTqZycnKYPXt2u/tCQ0MpKyvrdFByAvFp5nP+RkYPDCPY30p5TQN7j1T4Ni4REel9mob6Za854WFNw/x2HCqjtsHu7ahERLoNl5Op8PBwCgsL292Xl5dHTExMp4OSExg4Hiz+UFWEX0Ve8w1MQ/1ERMTjmotQrAHH8ZOkhOhgokL8qbc72XVIX+6JSN/hcjI1Y8YMXnjhBaqqqpq3GYZBQ0MDixcvbjP0TzzMLxAGjjVf56U3D/XbkKVkSkREPGzQBAgIg9pSOLztuIcZhkFy87wpWxcFJyLiey4nU7///e/Jz8/noosuYsGCBRiGwauvvsqVV15JVlYWv/vd77wRp7TUbhEKm+/iERGR3snqB0Ma15fM6thQP82bEpG+xOVkKikpicWLFzN06FAWL16M0+nkvffeIzo6mtdff524uDhvxCkttUimUhOjANhzuAJb1fFL14qIiLglsWPrTSU3FqHIUDIlIn2InzsnDR8+nBdffJG6ujpKSkqIjIwkKCjI07HJ8TQnU5uICQ3g1NhQ9hdWsjHHxtxRA3wbm4iI9C4ti1A4nWAY7R7W1DO1q6Ccmno7Qf7WropQRMRn3Fq0t0lAQAADBw5UItXVBowFa6A5hr14X3Pv1EbNmxIREU+LnwTWAKgogOJ9xz1scGQQsWEBNDicbD+oyr4i0je41TOVm5vL8uXLyc/Pp6amptU+wzD4n//5H48EJ8dh9YdByZD3Q+O8qSksTc9jgyr6iYiIp/kHmQlV9hpzqF/MsHYPMwyD8fGRfLXzCJl5paQ2zukVEenNXE6mvvrqK+bPn4/D4aBfv34EBAS02m8cp/tfPCwutTmZmjThXAA2ZduwO5xYLfodiIiIByXNbEym1kDaNcc9bEJjMqV5UyLSV7icTP39738nLS2Nv//971pTypdaFKEYeU44YYF+VNQ2sKugnDGDI3wbm4iI9C5JM2HV305ehCIhClBFPxHpO1yeM5WVlcUNN9ygRMrXmpKpg5ux4mDiEHPir9abEhERj0uYCoYFbFlQmnfcw5qKUOw+XE513fEX+RUR6S1cTqbi4uJaLdgrPhI7EvxDoK4CivYwqXm9KSVTIiLiYUER5gK+YA73O46BEUEMCA/E4YRtB9U7JSK9n8vJ1G9+8xteeuklqqurvRGPdJTVDwZPNF/nbyQ1yUymNmrxXhER8Yakjq031dQ7pXlTItIXuDxnKjMzk6KiIs455xymTZtGdHTbaj333XefR4KTk4hLNb8hzN9I2pzLAdhfWElRRS0xYYE+Dk5ERHqVpJnw/TNmEYoTSI6P4vPthzVvSkT6BJeTqVdffbX59UcffdRmv2EYSqa6StO8qbx0IkP8GT4gjD2HK9iYbePssQN9G5uIiPQuiTPM5yPboaoYQvq1e1hzz1SekikR6f1cTqZ27NjhjTjEHU3J1KEMsDeQlhjFnsMVpGeXKJkSERHPCo2F2FFQuNMcFTH6onYPGx9vJlN7j1RQUdtAWKBbS1qKiPQILs+Zkm6k3zAICIeGGjiyg0mN86ZU0U9ERLyied7U6uMe0j88kMGRQTidsFW9UyLSy3UomVq/fj2VlZUnPa64uJi3336700FJB1ksEJdivs7fSFpjRb+M3FIa7A7fxSUiIr1TB4tQJDf2TmUqmRKRXq5DydQ111zD3r17m//b4XAwfvx4tm3b1uq4nJwc7r//fs9GKCfWYvHeYf3DiAjyo7rezo5D5b6NS0REep+mZOpgBtQe/z6jin4i0ld0KJlyOp1t/ruhoaHNdvGBFsmUxWKQmqihfiIi4iWRCRCVCE475Kw77mHJCVEAbFHPlIj0cpoz1dM1JVMFW6ChrnmonxbvFRERr0g8+byppmF++worKaup74qoRER8wufJVEVFBY899hi/+tWvmD59OqNGjeKpp57q8PlFRUXcddddTJs2jYkTJ3LVVVexZs2J18DoVaJPgaAosNfB4a2kJUUBSqZERMRLmob6ZR//XtsvNICE6GBAvVMi0rv5PJmy2Wy89dZb1NXVcfbZZ7t0bl1dHddddx1r1qzh3nvv5ZlnniEmJobrr7+edeuOP/ygVzGMVkP9UoZEYRiQU1zN4fIa38YmIiK9T1MylfsDNNQe97CmeVNavFdEerMOL/6wb98+rFYrAHa7vXnbsce4Kj4+nvXr12MYBsXFxSxZsqTD5y5ZsoRdu3bxxhtvkJpqJhTTpk3j0ksv5fHHH3fpWj1aXCrs+xLyNxI++VeMGhjOjkPlpGfZOH/8IF9HJyIivUnMcAjtD5VHIC8dkma0e1hyfBQfZx7S4r0i0qt1OJm6++6722z705/+1Oq/nU4nhmG4FICrx7f0+eefc+qppzYnUgB+fn5ccsklPPHEExQUFDBwYB9YvLZFzxRAamK0mUxllyiZEhERzzIMs3dq23tmifTjJFPqmRKRvqBDydQjjzzi7Tjcsnv3biZNmtRm+6hRo5r394lkKj7NfD68HeqrmZQUzeJ12aSrop+IiHhDYlMydfwiFOPjzGQqu7gKW1UdUSEBXRWdiEiX6VAyddlll3k7DrfYbDYiIyPbbG/aZrPZXL5m0xBGd89z9/xOCR2EJbQ/RuUR7PmbSUkYC0BGXinVtfUE+Hl/apxP298NqP1qf8vnvqaz7e+r71uP1jRvKmcd2BvA2vbjRGSIP0kxIWQVVZGZV8rsEf27OEgREe/r8DC/7upEwwTdGUKYmZnZmXA6fb67hocOJbLyCHnrP8R2ih/hAQbldQ6Wff0DI2O67ttAX7W/u1D71f6+rK+3v08ZOA4CI6C2DAoyjw43P0ZyfCRZRVVk5CqZEpHeqUcnU1FRUe32PpWWmuOz2+u1Opnk5OTmQhuusNvtZGZmun1+Zxm20+HwWhIshcSnpjIlcwMrdx6hMmgAKSmneP3n+7r9vqb2q/1qv/vtbzpfehCLFRKnw+5PIWvNcZOpCQmRfJhxUOXRRaTX6tHJ1MiRI9m1a1eb7U3bRowY4fI1rVZrpz4MdfZ8tyWYc8csBzeB1cqkU/qxcucRNuaWcn0XxuOz9ncTar/ar/b33fb3OUkzG5Op72DG79o9JDk+CoAMFaEQkV7K5+tMdcbZZ5/Nvn372Lx5c/O2hoYG3n//fSZOnNg3ik80afpWsHAn1FaQlhgNoCIUIiLiHYktFu91Ots9ZHx8BAB5tmqKKo6/JpWISE/VLZKpr7/+mhUrVvDll18CsGfPHlasWMGKFSuorq4G4J577mHs2LHk5eU1n3fFFVcwYsQIbr31Vj744ANWr17NH/7wB/bv388dd9zhk7b4TPggCI8DpwMOZTJxSCRWi8HB0hoOllb7OjoREelt4lLBLwiqiqCw7SgRgPAgf4b2DwUgU0P9RKQXcimZqqmp4ac//SmrVx+/FKo7HnzwQW699VbuueceAFasWMGtt97KrbfeSlFREQAOhwO73Y6zxbdfAQEB/Pvf/2batGn89a9/5aabbuLIkSM8//zzTJ061aMx9ggt1psKCfBj9KBwANKzbL6LSUREeie/AEiYYr7O+u64h02I13pTItJ7uTRnKigoiF27dnl8TPzKlStPesyCBQtYsGBBm+2xsbE8+uijHo2nx4pLhZ0fQX46AJOSotmaX8aGrBIumjDYx8GJiEivkzQTDqwyi1BM/lW7hyQnRLFsUz4Z6pkSkV7I5WF+qampZGRkeCMW6awWPVPA0XlT2Zo3JSIiXtC03lTWd8edN5WsnikR6cVcTqbuvPNO3nzzTZYtW0ZlZaU3YhJ3xaWYz0V7oKa0OZnaml9KTb0WxRQREQ9LmAIWPyjLA1t2u4eMi4vAMOBQWQ2Hy2q6OEAREe9yOZm66qqrOHToEHfffTeTJ08mNTWVtLS05sekSZO8Ead0RGgsRCaarw9uZki/YGLDAqm3O7XGh4iIeF5AKAxOMV9nr2n3kNBAP4b3DwNUhEJEeh+X15k677zzMAzDG7GIJ8SnQmk25G/EOPV00hKj+HRbAenZJUw+pZ+voxMRkd4maQbk/WAO9Zv403YPSU6IZPfhCjLzSjlrTB9atkREej2Xk6n2ikBINxKXCtveOzpvKinaTKZU0U9ERLwhaRasfsosQnEcE+IjWZqep3lTItLrdIt1psSDmopQ5B2t6AewIbukVVl5ERERj0icDhhQtBsqDrd7SHJCFAAZeaW6F4lIr+Jyz1STXbt2sXfvXmpr265o/uMf/7gzMUlnDJ5oPtuyoKqY5PhI/CwGR8pryS2pZki/EN/GJyIivUtwNAwYC4e3QtZqGPfjNoeMHRyBtfFeVFBWy6DIoK6PU0TEC1xOpqqrq/ntb3/L999/j2EYzd8wtZxHpWTKh4Kjod9QKN4H+RsJGn4W4+Ii2JxbSnp2iZIpERHxvKSZZjKVvabdZCo4wMqIAWHsOFRORq6NQZGDuj5GEREvcHmY3zPPPENeXh6vvvoqTqeTp59+mn/961+cc845JCUl8e6773ojTnHFsetNNQ71S8/SelMiIuIFSTPM56zvjnvIhITG9aZU0U9EehGXk6kvvviCG264gdRU8wP74MGDmTFjBk8++STjxo3j9ddf93iQ4qK4NPO5zeK9Nh8FJCIivVpi4+K9h7ZATfvJUtPivRkqQiEivYjLyVReXh5Dhw7FarViGAbV1dXN+y6++GK++OILjwYobmjumdoEHO2Z2nawjKq6Bh8FJSIivVbEYHOIOU7IXtvuIU1FKDJVhEJEehGXk6nw8HCqqqoAiImJISsrq3lfQ0ND8z7xocETAAPKcqHiMHGRQQyKCMLucOobQRER8Y6m3qnjDPUbPSgcP4tBcWUdebbqdo8REelpXE6mRo0axYEDBwCYNm0azz33HD/88AMZGRksXLiQ0aNHezpGcVVgOMSONF/nb8QwDNKSogBIz9a8KRERb1qzZg133303559/PikpKcyePZvf/va3bNmyxdeheVdSYzKV3f56U0H+VkYNCgdgi+ZNiUgv4XIydfnll1NZWQnAH/7wB6qrq7n66qu56qqryM/P56677vJ4kOKGY4tQJKoIhYhIV1i8eDF5eXlcc801LFq0iHvvvZfi4mKuuuoq1qw5/sK2PV5TEYq8dKhvv+epqQiFRkmISG/hcmn0Cy+8sPn1kCFD+OSTT5rLpKemphIVFeXJ+MRdcamQ8Ubbin7ZNpxOZ6tS9iIi4jkPPPAAMTExrbbNnj2bc889l+eee44ZM2b4KDIviz4VwgdD+UHI/QFOnd3mkOT4KBaTo4p+ItJruNwzdayQkBDOPPNM5s6dq0SqO4lvUdHP6WRcXAQBVgvFlXVkFWlem4iItxybSAGEhoYybNgwDh486IOIuohhHB3ql7W63UNa9kypCIWI9AYu90xJDzFwPBhWqCiA8oMERsSRnBDJhqwSNmSVcEpsqK8jFBHpM8rLy9m2bRvTp09363y73d6p89w931XGkOlYtryDM+s7HO38zGGxIQRYDUqr6zlQWEGilxeS7+r2dzdqv9rf8rmv6Wz7O3peh5Kp0aNHd3hYmGEYbNu2rUPHihcFhMCAMVCwxRy/HhFHWmIUG7JKSM8u4fJJCb6OUESkz3jwwQeprq7mpptucuv8zMzMTv38zp7fUUFV/RgHOLLXsin9B7C0/ZiRGOHHnpJ6PvhuM7OGBHdJXF3V/u5K7Vf7+zJvt79DydTNN9+sOTY9UVyKmUzlb4QxP2osQrFfi/eKiHShf/zjH3zwwQfcf//9jB8/3q1rJCcnY7VaXT7PbreTmZnp9vkuc07Aue4OrNUlpAwE4lPaHDItayt71uVQ7t+PlJRRXg2ny9vfzaj9ar/a7377m84/mQ4lU7fccovLAUg3EJcKG19tU4Ri56EyKmobCAvUKE8REW96+umnefbZZ/njH//IL37xC7evY7VaO/VhqLPnu/CTIHEG7PwYa85aSJzW5ogJQ6J4bV0OW/LKuuwDXte1v3tS+9V+td977e90AQrpxlqWR3c6GRgRRHxUMA4nbM6x+TQ0EZHe7umnn+app57illtucXt4X490kiIUyfFRgLnWlMOhIhQi0rO53DWxbNmykx7z4x//2I1QxOMGjgeLP1QXgy0bopNIS4omz1ZNelYJs4bH+jpCEZFeaeHChTz11FP89re/Zf78+b4Op2sltli81+EAS+vvbUcMDCPQz0J5bQNZxVWcqoJIItKDuZxMHW9R3pZzqpRMdRN+gTBwHBzcZPZORScxKTGKDzbnsyFbi/eKiHjDSy+9xJNPPsns2bM544wz2LRpU6v9KSkpPomrywyeAP6hUGODI9vN+1AL/lYLY+Mi2JhtIyPXpmRKRHo0l5OpL774os22kpISvvjiCz7++GP+/ve/eyQw8ZC41MZkKh3G/bh53tTGbBsOhxOLRYVFREQ86csvvwRg1apVrFq1qs3+nTt3dnVIXcvqD0Omwr4vzaF+xyRTABPiI9mYbSMzt5RLU+J9EKSIiGe4nEzFx7f9oxcfH8/48eNpaGjg5ZdfZsGCBR4JTjwgLhU2/Ku5CMWYwREE+Vsora5nX2ElwweE+ThAEZHe5ZVXXvF1CL6XNPNoMjX1hja7kxOigCwy8kq7PDQREU/yaAGKGTNmsHLlSk9eUjqruQjFZnA48LdamJAQBUB6lob6iYiIF7QsQuFsW2RiQkIkAFvzSrGrCIWI9GAeTaby8vKwWFQgsFsZMAb8gqC2FEr2AzSuNwXpmjclIiLeED/JLIBUcQiK97XZPax/GMH+Virr7OwvrPBBgCIinuHyML/169e32VZXV8fOnTt57rnnmDFjhkcCEw+x+sOgZMhdbw71ixlGWmIUABvUMyUiIt7gH2wmVDnfm1X9Yoa12m21GIyPj2D9gRIycksZPiDcR4GKiHSOy8nU1Vdf3apyH4CzsQt/5syZ3H///Z6JTDwnLvVoMpV8RXMRit2HKyitricy2N/HAYqISK+TNNNMprJWQ2rbBYvHx0c2J1Pz0hJ8EKCISOe5nEy9/PLLbbYFBgYSHx9PbKzWLeqWWi7eC8SGBZIUE0JWURWbcmzMGdnfh8GJiEivlDQTvn3iuIv3Ns2bylQRChHpwVxOpqZOneqNOMSbmpOpTeCwg8XKpMRosoqq2JBVomRKREQ8b8hUMCzmfN2yfIiIa7U7OT4KgG35ZTTYHfhZNedaRHoel/9y7d+/n3Xr1rW7b926dRw4cKCzMYmnxY4E/xCor4TC3QCkNq83pXlTIiLiBUGRMHC8+bqd3qmhsaGEBliprrez90hlFwcnIuIZLidTCxYsaHfhXjAXKtQaU92QxQqDJ5qvG4f6NRWh2JRtU1laERHxjqRZ5nP2mja7LBaD8fHmUL+MXFsXBiUi4jkuJ1OZmZlMmTKl3X1Tpkxhy5YtnQ5KvCAuzXxuTKZGDQwnNMBKeW0Duw+X+zAwERHptVquN9UOzZsSkZ7O5WSqvLyckJCQdvcFBQVRWqo/iN3SMUUo/KwWJg6JAiA9y+abmEREpHdLbFwu5fA2qCpuszu5cRH5jFx9dhCRnsnlZGrgwIFkZGS0uy8jI4P+/VXMoFtqSqYOZYC9AdDivSIi4mVh/c15uwDZ37fZPaFxmN+2g2XU2x1dGZmIiEe4nEydffbZLFq0iO+/b/1Hce3atTz//POcc845HgtOPKjfUAiMgIYaOLIdgEmNRSjStXiviIh4S1PvVNZ3bXYlxYQQHuRHXYODXQUaci4iPY/LpdFvvvlmvv32W375y19yyimnMGjQIA4dOsSBAwcYPnw4t9xyizfilM6yWMwiFAdWmUP9BiWT2liEYl9hJSWVdUSHBvg2RhER6X2SZkH6f9otQmEYBsnxkazeW0Rmbinj4iJ9EKCIiPtc7pkKDw/nzTffZP78+URGRpKfn09kZCS33HILb7zxBmFhYd6IUzzhmHlTUSEBDO0fCsDGHPVOiYiIFzQVocjfBLUVbXYnqwiFiPRgLvdMAYSGhnLzzTdz8803ezoe8aZjkimASYnR7DtSyYasEs4cPdBHgYmISK8VNQQih0BpDuSuh2FzW+2e0Lh4r5IpEemJ3F5uvLy8nFWrVvH++++rgl9PEd9YHv3QFmioBSCted6UzUdBiYhIr3eCEulN5dG3HyyjtsHelVGJiHSaW8nUwoULmT17NjfccAN33nknubm5AFx77bUsWrTIowGKB0UlQXA0OOrNMrUcrei3OddGgyopiYiINzQXoWibTCVEBxMV4k+93cmuQ22HAYqIdGcuJ1OvvfYaCxcu5IorruC5557D6XQ275s7dy5fffWVJ+MTTzKMo0P98tIBGDEgjPBAP6rq7Ow4pEpKIiLiBUmzzOe8H5pHRjRpKkIBkJFn6+LAREQ6x61k6rrrruO+++7jtNNOa7UvKSmJrKwsjwUnXnDMvCmLxSClsarfRq03JSIi3hA7AkJizeU5WszbbdI01C9Ti/eKSA/jcjKVk5PD7Nmz290XGhpKWVlZp4MSL2pOpjY1b2pebyrb1vXxiIhI72cYkHT89aaSG4tQZCiZEpEexq3S6IWFhe3uy8vLIyYmptNBiRc1JVOHt0F9NXB03tQGLd4rIiLe0jTUL6vtelNNPVO7CsqpqVcRChHpOVxOpmbMmMELL7xAVVVV8zbDMGhoaGDx4sVthv5JNxMRD6EDwGk3q/oBKYlRGAZkF1dxpLz2JBcQERFxQ1MRipy14GidMA2ODCImNIAGh5PtBzXCRUR6DpeTqd///vfk5+dz0UUXsWDBAgzD4NVXX+XKK68kKyuL3/3ud96IUzylZRGKxnHrEUH+jBwQDkC65k2JiIg3DEqGgHCoLYOCLa12GYbRvHjvFq03JSI9iMvJVFJSEosXL2bo0KEsXrwYp9PJe++9R3R0NK+//jpxcXHeiFM8qTmZSm/elJYUBSiZEhERL7FYIXG6+bq99aaaKvpp3pSI9CB+7pw0fPhwXnzxRerq6igpKSEyMpKgoCBPxybeckzPFEBqYjSL1+WwUYv3ioiItyTNgD2fmUUopv+21a7khCgAMtUzJSI9iFuL9jYJCAhg4MCBSqR6mrgU8/nITqg1F0hsqui3OddGXYMW7xURES9oWYSixTqV0LoIRXWdilCISM/QoZ6pZcuWuXTRH//4x26EIl0mfBCEx0F5PhzKgKSZDI0NJSrEH1tVPdsPljFxSJSvoxQRkd4mLhWsgVBVCIW7of/I5l0DI4IYEB7I4fJath0sZVJSPx8GKiLSMR1Kpu66664OX9AwDCVTPUF8GuzIN4f6Jc3EMAxSh0Tx5c4jpGeXKJkSERHP8wuEhCmQ9S1kr26VTIHZO/X59sNk5CqZEpGeoUPJ1BdffOHtOKSrxaXAjg9bzZualBTNlzuPsCGrhF/OOtV3sYmISO+VNNNMprJWw6TrWu1Kjo/i8+2HyVQRChHpITqUTMXHx3s7DulqTUUo8lpU9GtcvHdjts0HAYmISJ+Q1LjeVHsV/RrnTWWoCIWI9BBuVfMDqKioYNOmTdhsNqKjo5k4cSJhYWGejE28aXBjMlW8F6ptEBzFxCFRWAzIs1VzqLSGQZEqLCIiIh6WMBUMK5TmgC0bohKbd41vLI++90gFFbUNhAW6/TFFRKRLuFXN78UXX2T27NnccMMN3HHHHVx//fXMnj2bf/3rX56OT7wlNOboDezgZnNToB+jB0UAWm9KRES8JDDsaFXZrDWtdvUPD2RwZBBOJ2zLL+v62EREXORyMrVs2TIef/xxpkyZwhNPPMFrr73GE088wdSpU3nsscdcrvwnPtTOelPNi/dmKZkSEREvSWwc6pfddqhfcvPivbYuDEhExD0uJ1P//ve/+dGPfsSiRYu44IILmDRpEhdccAHPPfccF110Ef/5z3+8Ead4Q1ya+dwymWqcN6WeKRER8Zrm9aaOP29Ki/eKSE/gcjK1b98+Lrnkknb3XXLJJezdu7fTQUkXaadnqmnx3i15ZdQ2aNFEERHxgsTp5nPhLqg40mpXckIUgCr6iUiP4HIyFRQURGlp+3/gSktLCQpS0YIeY/BE89mWBZVFACT2CyEmNIA6u4MteRqvLiIiXhDSDwaMNV9nt5431TTMb19hJWU19V0dmYiIS1xOpiZNmsTTTz9NQUFBq+1Hjhxh4cKFTJ482WPBiZcFR0G/Yebrg2bvlGEYpCU1lUjXUD8REfGSpJnm8zFD/fqFBpAQHQzAFg31E5FuzuVk6rbbbqOwsJBzzz2Xm266ifvvv5+bbrqJc845h8LCQm677TZvxCne0l4RisZ5UxtUhEJERLzlBEUomudNaaifiHRzLidTI0aM4O233+ass84iMzOTpUuXkpmZyVlnncWSJUsYPny4y0FUVlby8MMPc9ppp5GcnMyll17KRx99dNLzli5dyqhRo9p9HDly5KTnCy2SqU3Nm9ISowCzCIXT6ez6mEREpPdr6pk6lAk1rZOm5PgoQIv3ikj359ZqeKeeeipPPPGEx4K45ZZbyMzM5Pbbb+eUU07hww8/5LbbbsPhcHDxxRef9PxHHnmEoUOHttoWFRXlsfh6tfi2Ff0mJEThZzEoKKslz1ZNQnSIj4ITEZFeKyIOok+BkgOQsw5GnNO8q2nelHqmRKS78/nS4l9//TXfffcdf/vb3/jRj34EwPTp08nPz+exxx7jwgsvxGq1nvAaI0aMIDk5uSvC7X0GTQAMKMuD8gIIH0hwgJWxcRFk5JaSnm1TMiUiIt6RNMtMprJWt5tMZRdXUVpVT2SIv48CFBE5MbeSqW3btvHBBx+Qn59PbW1tq32GYfDss892+FqfffYZISEhnH/++a22z5s3j9tvv53NmzeTlpbmTpjSEYFh0H8UHNkBBzdB+HmAOW8qI7eU9KwSLpkY59sYRUSkd0qaCZtea1OEIjLEn6SYELKKqsjMK+W0EbE+ClBE5MRcTqaWLVvG3XffjcVioV+/fvj7t/62yDAMl663e/duhg0bhp9f61BGjRrVvP9kydRNN91EcXEx4eHhTJ06ld///veMHDnSpTia2O3ura3UdJ675/uSMTgFy5EdOHJ/wDnsbABShpjfCm7IKu5Qm3py+z1B7Vf7Wz73NZ1tf19934SjRSjy06G+GvyDm3clx0eSVVRFRp5NyZSIdFsuJ1PPPvssc+bM4dFHHyUyMrLTAdhsNhISEtpsb7q2zWY77rmxsbHcdNNNpKSkEBYWxq5du1i0aBFXXXUVixcvZvTo0S7Hk5mZ6fI5njzfF/o7YkkEynZ8w95Is4cwsNL8cLMtv4y1GzYSaO1YktwT2+9Jar/a35f19faLG/oNhbBBUHEI8jbAKac175qQEMmHGQc1b0pEujWXk6nDhw/zwAMPeCSRanKi3qwT7Tv99NM5/fTTm/97ypQpzJkzh4svvph//vOfLg03bJKcnHzSOVrtsdvtZGZmun2+T8XWwZaniazcR8rEiWAYOJ1OBqz6isPltVhikkg5pd8JL9Gj2+8Bar/ar/a73/6m86UPMgxImgFb3zWH+rVIppor+imZEpFuzOVkasyYMW0W7O2MqKiodnufSkvNP56uJm0JCQlMmjSJzZs3uxWP1Wrt1Iehzp7vE3EpYFgxKg9jrSyAyHgAJiVFs3zLITbmlDF9WP8OXapHtt+D1H61X+3vu+0XNyXNOppMtTA+PgKAPFs1RRW1xIQF+iI6EZETcnmdqT/96U8sWrSIHTt2eCSAkSNHsnfvXhoaGlpt37VrF2BW6nOV0+nEYnG5aX2XfzAMGGu+bmfx3vRsLd4rIiJe0rTeVM46sB/9LBAe5M/Q/qEAZGq9KRHpplzumUpJSeHcc8/lsssuo3///m16jgzD4P333+/w9c4++2zeeustPv30Uy688MLm7e+++y4DBgxg4sSJLsWXk5NDeno6M2fOdOm8Pi8uBQoyzWRqjFmiPi0pCoCNjYv3ulpcRERE5KT6j4GgKKixwaHNED+pedeE+Ej2HakkM7eUM0YN8FmIIiLH43IytWjRIp577jn69etHXFxcm2p+rpozZw6zZs3iL3/5CxUVFSQmJvLRRx+xatUqHn/88eYhI/fccw/Lli3js88+Iz7eHIZ23XXXMXnyZEaPHk1oaCi7du3ihRdewDAMbr311k7F1efEpcLGV8yKSo3GxUUSYLVQWFFHdnEVSTGhPgxQRER6JYvFrOq3a7k51K9FMjU+PpJlm/LJUM+UiHRTLidTL7/8MpdffjkPPfSQx8bGP/XUU/z973/nySefxGazMXToUJ544gkuuuii5mMcDgd2ux2n09m8beTIkSxfvpyXXnqJ2tpa+vXrx/Tp0/nd737Hqaee6pHY+oy4VPM5fyM4nWAYBPlbGRcfwcZsG+nZJUqmRETEO5JaJFMzb2nePCEhCoAtSqZEpJtyOZmqrKzkRz/6kUcnGYeGhnLfffdx3333HfeYBQsWsGDBglbb7rnnHo/F0OcNHAcWf6guAVsWRJ8CmPOmNmbbSM+ycVlq2xL2IiIinZY0y3zOXgMOh9lbBYyLi8Aw4GBpDYfLaxgQHuTDIEVE2nK5SkNaWhp79+71RiziS36BMGi8+bpFEYpJSWYRig1ZKkIhIiJeMngi+IeYX+gdOVrgKjTQj+H9wwD1TolI9+RyMnXvvffyxhtv8Pnnn1NXV+eNmMRXWg71a9RU0W/HoTIqaxvaO0tERKRzrP6QMMV8nd26RHpyglnoSutNiUh35PIwv8svv5yGhgZuueUWDMMgKKh1l7thGGzYsMFjAUoXaieZGhQZRHxUMHm2ajbn2pg5LNZHwYmI9BwVFRU888wz7Nixg23btlFSUsL8+fO55ZZbTn5yX5U0C/Z/bc6bmnJ98+YJ8ZEsTc8jU8mUiHRDLidT5513nkpk91bNydSmVmPWUxOjyLNVk55VomRKRKQDbDYbb731FqNHj+bss89myZIlvg6p+0uaYT5nrW4uhASQ3FiEIiOvVMt0iEi341IyZbfb+c1vfkO/fv3arC8lvUD/0eAXBLVlULwPYocD5lC/DzMOkp5t8218IiI9RHx8POvXr8cwDIqLi5VMdUT8ZLMQUvlBKDkA/cyqvGMHR2C1GBwpr6WgrJZBkSpCISLdh0tzppxOJxdddBGbNm3yUjjiU1Z/GJRsvm6nCEV64+K9IiJyYoZhqAfFVQEhEJ9mvs46Om8qOMDKiAFmEYqMXJsPAhMROT6Xeqb8/PyIjY3VB+reLC4NctebydSEKwEYMziCQD8Ltqp69hVWMqyxspKIiHQNu93eqfPcPb+rGUOmY8lZiyPrO5wTftq8fXxcBDsOlbM5x8ZZo/t3+Ho9rf2epvar/S2f+5rOtr+j57k8Z+qiiy5i2bJlnHHGGa6eKj1BO0UoAvwsTEiIZP2BEtKzSpRMiYh0sczMTJ+e31UiGgYyAqjb/RVbW4yCiXZWAbB6Rw5n9q90+bo9pf3eovar/X2Zt9vvcjI1evRoPv74Y6655hrOPfdc+vfv32Yow7nnnuuxAKWLNSVTBzeDww4Wc3HmtKRoM5nKLuHKyUN8GKCISN+TnJyM1Wp1+Ty73U5mZqbb53e5mlNxrruXoMo8UoYNgvBBABgxNp7f+D1Z5TBx4sQOD6Hsce33MLVf7Vf73W9/0/kn43IydeeddwJQUFDAunXr2uw3DIPt27e7elnpLmJHgH8o1FdC4S4YMAY4ut5UepbNh8GJiPRNVqu1Ux+GOnt+lwntZy4gfygTa+5aGD8PgLHxUfhZDIor6yioqCc+Ktily/aY9nuJ2q/2q/3ea7/LydTLL7/sjTiku7BYzZXos1ebQ/2OSaZ2HS6nrKaeiCB/X0YpIiK9VdIsOJRpFqFoTKaC/K2MGhTO1vwyMnNtLidTIiLe4nIyNXXqVG/EId1JXOrRZCrlZwD0Dw8ksV8I2cVVbMq2cfrIjk8AFhER6bDEGbD2/yB7TavNExIi2ZpfRkZuKeePH+yj4EREWnM5mWpSXl7Opk2bKCkpYc6cOVp3qjdppwgFQFpiFNnFVaRnlyiZEhE5ia+//prq6moqK82CCXv27GHFihUAzJkzh+Bg9a60K2mm+VywFaqKIaQfAMnxUSwmh8y8Uh8GJyLSmlvJ1MKFC3n++eepqanBMAzefvttIiMjufbaa5k1axY33nijp+OUrtS0zsehTLDXm+tPYRahWLYpX4v3ioh0wIMPPkheXl7zf69YsaI5mfriiy9ISEjwVWjdW9gAiBkORXsgZy2MugAwe6YAMnJLcTqdWsdLRLoFlxbtBXjttddYuHAhV1xxBc8991yrNafmzp3LV1995cn4xBeiT4XASGiogSM7mjc3zZvamF2Cw6G1xkRETmTlypXs3Lmz3YcSqZNo6p1qsXjvyIHhBFgtlFbXk1Nc7aPARERacyuZuu6667jvvvs47bTTWu1LSkoiKyvLY8GJj1gsEDfRfJ2X3rx59KBwQgKslNc0sOdIhY+CExGRXi9plvncIpkK8LMwenA4ABl5Nh8EJSLSlsvJVE5ODrNnz253X2hoKGVlZZ0OSrqBduZN+VktTEyIAiA9q8QHQYmISJ+QOMN8PrgJ6o4u0pscbw7107wpEekuXE6mwsPDKSwsbHdfXl4eMTExnQ5KuoHjFaFIigJgg5IpERHxlqhEiEgARwPkrm/e3DRvKjNXyZSIdA8uJ1MzZszghRdeoKqqqnmbYRg0NDSwePHiNkP/pIdqSqYKtkJDbfPm5sV7s5VMiYiIlxgGJDX2TrUY6pccHwWYPVOauysi3YHLydTvf/978vPzueiii1iwYAGGYfDqq69y5ZVXkpWVxe9+9ztvxCldLSoJgvuBo95MqBqlNiZTe49UYquq81V0IiLS27VThGLEwDAC/SyU1zSQVVx1nBNFRLqOy8lUUlISixcvZujQoSxevBin08l7771HdHQ0r7/+OnFxcd6IU7qaYbQ71K9faABDY0MB2KgS6SIi4i1NRShy10OD+eWdv9XC2LgIADJybT4KTETkKLfWmRo+fDgvvvgidXV1lJSUEBkZSVBQkKdjE1+LS4W9X7SZN5WaGM2+wkrSs0uYO3qAj4ITEZFeLXYkhMRAVZFZiGLIVAAmxEeyMdtGZm4pl6bE+zZGEenzXO6Zuvvuu8nJyQEgICCAgQMHNidSeXl53H333Z6NUHznOEUoJiVp3pSIiHiZYRyt6pf1XfPm5Maqshmq6Cci3YDLydS7775LSUn7H6JLSkpYtmxZZ2OS7qIpmTq8HeqOjk1vqui3KduGXROARUTEW9pZb6qpot/WvFLdg0TE51xOpk6ktLSUgIAAT15SfCkiDkIHgNMOBVuaN48YEE5YoB+VdXZ2Hir3YYAiItKrNVX0y14LDjsAw/qHEexvpbLOzv5CLSAvIr7VoTlT69evZ+3atc3/vWTJEr755ptWx9TW1vLFF18wbNgwz0YovmMYEJ8Gu1aYQ/0ax6tbLQapiVGs2l1IenZJ82RgERERjxqYDAHhUFtqVpYdPAGrxWBcXAQ/ZJWQmVfK8AHhvo5SRPqwDiVTa9eu5emnnwbMNaWWLFnS7nFxcXH8+c9/9lx04ntxqUeTqRZSE6PNZCqrhF9MT/JRcCIi0qtZ/cwv8vZ+YQ71GzwBgOSESH7IKiEjt5TLUhN8HKSI9GUdSqauv/56fv7zn+N0Opk5cyYvvvgiY8eObXVMQEAAoaGhXglSfOg4RSjSEqMAFaEQEREvS5ppJlPZq2H6TcDReVOZuSpCISK+1aFkKigoqLli3xdffEH//v01N6qvGJxiPh/ZCbXlEGgOp2havPdAURWFFbVEB7tVZV9EROTEWhahcDrBMEiOjwJga34ZDXYHflaPTgEXEekwl//6xMfHK5HqS8IHQkQ84ISDGc2bI4P9GTEgDNDivSIi4kXxaWANhMojULQXgKGxoYQGWKmut7P3SKWPAxSRvszlZKq+vp5nnnmGCy+8kJSUFMaMGdPqcezwP+kFjjvUT+tNiYiIl/kFQsJk83XjelMWi8H4eHOoX0auzUeBiYh0cJhfS0888QT//ve/Of300zn77LPVS9UXxKXCjg/bXbz3zR9y2JClZEpERLwocYaZSGWthknXAua8qbX7i8nMK+XKyUN8HKCI9FUuJ1PLly/n5ptvZv78+d6IR7qj4/VMNS7em5Fro97u6OKgRESkz0iaCaswi1A0Sk6IAiBDRShExIdcHuZXWlrK5MmTvRGLdFdNyVTxXqi2NW8eGhtGZLA/NfUOdmjxXhER8ZYhU8Gwgi0bSnMBSG4c5rftYJm+0BMRn3E5mZoyZQo7duzwRizSXYX0g6jGtaQObmrebGlcvBcgXUUoRETEWwLDm9eYImsNAEn9QggP8qOuwcHuggofBicifZnLydR9993H22+/zaeffkpdXZ03YpLu6CRFKFTRT0REvKq5RPrRIhRNvVOZeTYfBSUifZ3Lc6YuvfRSGhoauPXWWzEMo3n9qSaGYbBhwwaPBSjdRFwqbFvWbhEKgI05Nq4bFemDwEREpE9InAFrnjaLUDRKTohk9d4iMnJLuWqKD2MTkT7L5WTqvPPOwzAMb8Qi3Vl8mvl8TDI1cUgUFgNyS6opqQ7zQWAiItInJM4wnwt3QmUhhMYyoXHx3sw8FaEQEd9wOZlasGCBN+KQ7m7wRPPZlg2VRRAaA0BYoB8jB4az41A5O4vqmevDEEVEpBcLjYH+Y+DIdsheA2MuZkKCOSJi+8EyahvsBPpZfRykiPQ1Ls+Zkj4qKBJihpuvD7Y/1G9nkebQiYiIFyU19k41FqFIiA4mKsSferuTXYdUhEJEul6Heqa2bt3q0kXHjRvnVjDSzcWlQtEeyNsIw89u3pyWGM1ra7NZm1dLZl4pKYn9fBikiIj0Wkmz4IeXmotQGIZZhGLV7kIy8mwkJ2juroh0rQ4lU5dffnmH5kk5nU4Mw2D79u2dDky6obhUyFzSZt7U7JGxRAb7U1BZz4+fWcOFyYO47ZxRDB+gOVQiIuJBTfOmDmVATRkERTAhwUymMnNLYZpvwxORvqdDydQjjzzi7TikJzhOefQB4UEs+90MHliyjlU5NXyceYgVWw5xxaQEbj17JPFRwT4IVkREep3IeHPdQ1sW5K6D4Wc3l0fPyFURChHpeh1Kpi677DJvxyE9waAJYFigPB/KD0H4oOZdif1CuHVaFHddOoy/f7GHz7YV8NYPuSzbmM/Ppydy89zhxIYF+jB4ERHpFZJmmclU1mozmUqIAmBXQTk19XaC/FWEQkS6jgpQSMcFhkHsKPN1/qZ2Dxk1KJznr5nM0t/NZMbQGOrsDv713QFOf+xL/vbpTspq6rsuXhER6X2OKUIRFxlETGgADQ4nOw6V+zAwEemLlEyJa44z1O9YaYnRvH7DNF799TQmJkRSVWfnqZV7mP3ol/zf13uprrN3QbAiItLrJM0yn/N+gPoaswhFY+GJzFyb7+ISkT5JyZS4pjmZSj/poYZhcNqIWJbdPIv/+0UawweEUVpdz4LlO5jz+Je8+n0W9XaHlwMWEZFepd9QCB0A9jrI2wDABM2bEhEfUTIlrmnZM+V0dugUwzA4f/xgPvnD6fzvlROJjwrmcHkt9y3bwll/+5plG/OwOzp2LRER6eMMA5Jmmq+zVwM0z5vKzFMyJSJdS8mUuGbQeLD4QeURKMtz6VSrxeCKSQmsvGMOD14yjtiwQLKLq/jDm5u48J+r+GxbAc4OJmgiItKHNQ31yzKTqQmNw/x2FZRrGLmIdCklU+Ia/2AYMMZ8fZJ5U8cT6Gfl2pmn8M2fzuD/nTeKiCA/dhaUc8PLPzDv2dWs3lvowYBFRKTXaSpCkbMO7A0MjAhiQHggDidsO6jeKRHpOkqmxHUdLEJxMiEBftw8dzir/nQmvztjGMH+VjZm2/jZ82u5+sW1ZGgisYiItGfAWAiKhLoKcwFfjvZOad6UiHQlJVPiOg8lU00iQ/z50/mj+fpPZ3DNjCT8rQardhdyydPfcdMrG9hzWKVuRUSkBYsVhkw3XzcO9Rsf31TRT8mUiHQdJVPiOjeKUHTEgPAgHrp0PCtvP4N5afEYBqzYeohz//4Nt7+1mZziKo/9LBER6eGai1CY60019UypCIWIdCUlU+K6AWPBGgDVJVBywOOXH9IvhCd+ksInfzid88YNxOGEd9JzOfNvX/GX97dypLzW4z9TRER6mJZFKByO5p6pPUcqqKxt8GFgItKXKJkS1/kFwsBx5msPDfVrz8iB4Tx39WSW3TyL04bHUm938u/VBzj9sS95/JMdlFbXe+1ni4hINzd4IvgFQ3UxFO5iQHgQgyODcDpha36Zr6MTkT5CyZS4Jy7NfPZiMtUkZUgUr14/jdevn8bEIVFU19tZ+OVeZj+6kme+2qMyuCIifZFfAAyZYr7O+g6A5ObFe20+CkpE+holU+IeDxeh6IiZw2NZ9ruZLLp6EiMHhlFW08BjK3Zy+uNf8sqaA9Q1OLosFhER6QYSG+dNHbPelOZNiUhXUTIl7mlKpg5uBkfXJTGGYXDuuEEsv/V0nvjJRIb0C+ZIeS33v7eVs574iqXpudgdWvhXRKRPSGqRTDmdJCdEAaroJyJdR8mUuKf/aPALgtoyKN7X5T/eajGYl5bAF7edwX9fOo7+4YHkFFdz21ubueCf3/DJ1kM4PVhpUEREuqGEKWDxg/J8sGU1D/PbV1hJWY3m1YqI9ymZEvdY/WDQBPN1frrPwgjws3D1jFP4+v+dwZ3njyYy2J9dBRX85pUNXPbMalbvKfRZbCIi4mUBIUdHSmStoV9oAAnRwQBs0VA/EekCSqbEfT6YN3U8IQF+/PaMYXzzp7ncPHcYwf5WNuXY+NkLa/n5C9+zKcfm6xBFRMQbmof6mUUomudNaaifiHQBJVPivm6UTDWJDPbn/503mm/+NJfrZp6Cv9Xguz1F/Hjhd9z48g/sKij3dYgiIuJJxxShaFpvSkUoRKQrdItkqrKykocffpjTTjuN5ORkLr30Uj766KMOnVtUVMRdd93FtGnTmDhxIldddRVr1qzxcsQCQHxjefSDm8HRvcqT9w8P5C+XjGPl7WdwxaQELAZ8uq2A8/7xDbe9tYmc4ipfhygiIp6QOA0woHgvlBcwIT4KUDIlIl2jWyRTt9xyC8uWLWP+/Pk8//zzJCcnc9ttt/HBBx+c8Ly6ujquu+461qxZw7333sszzzxDTEwM119/PevWreui6PuwmOEQEAb1VVC4y9fRtGtIvxD+98qJfPKH07lg/CCcTlianseZf/uKP7+3hcPlNb4OUUREOiM4GgaON19nr24uQpFVVKXF3UXE63yeTH399dd89913PPDAA/z0pz9l+vTp/PWvf2XWrFk89thj2O3H7/FYsmQJu3bt4h//+AeXXHIJs2bN4sknn+SUU07h8ccf78JW9FEWq7kCPWAc3OTbWE5ixMBwnv3FJN6fP4vZI2Kptzt5eU0Wpz/2JY+u2EFplW64IiI9VtIM8zlrDZEh/iTFhAAqQiEi3ufzZOqzzz4jJCSE888/v9X2efPmcfjwYTZv3nzccz///HNOPfVUUlNTm7f5+flxySWXkJGRQUFBgdfilkbdcN7UiUxIiOKVX09j8Q3TSU2MoqbewbNf7eW0x1ay8Ms9VNU1+DpEERFxVVLreVPJzfOmynwVkYj0ET5Ppnbv3s2wYcPw8/NrtX3UqFHN+090btNxrp4rHtKYTBkHe0Yy1WTGsBiW/nYmz18zmVEDwymvaeDxT3Zy+mNf8Z/VB6hr6LqFiEVEpJOailAUbIFq29GKfuqZEhEv8zv5Id5ls9lISEhosz0yMrJ5/4nObTrO1XOP50TDCjtynrvn91gDJ2AFOLQFHA09rv1njoplzogYPsw4yD++2E12cTUPvL+V51ft4/dnDufHKXFYLcZJr9Nnf/+N+nL76+0OCstrOFTRwN7DZWBYcDjB4XTicDhxOMHucOJ0Nr52tnjduN3udOJw0PjaPNfpdGJ3NF6n8fiW12x1/cZjnI3XPPb1cc9vtd18NmNqfO1s8bpxu73xGs4WP9fhcJIQWEtycuf+foq4LXwg9BtmFqHIWUty/GSgMZkaG+Xb2ESkV/N5MgVgGMf/sHqifZ09tz2ZmZkun+PJ83scp5OJfqH4NVQSXH6AzMxu8U/KZUnA43Mj+GK/P0u2VZBbUs2f3snkyU+38V/jw5kWH9ihf0997vd/jN7Q/nqHk7JaR/OjtKbxucW2lo+KeufRk5f33UWig/wMLtuc0aEvH/qCyspK/vGPf7B8+XJKS0sZOnQoN954IxdddJGvQ+u9kmaayVTWd4yffSYAebYaSms10kBEvMfnn3yjoqLa7UEqLTW75tvrefLEuceTnJyM1Wp1+Ty73U5mZqbb5/dklq2TYf/XhNh2Mvy0y3p0+yenwe8vtvPK2mye+3ofueX1PL7GxoT4SO44dwSzhse2e15f/v1D925/Tb2d4so6iirrKG7zqKeosrZxfz3FlXVU1Lo+b84wINBi4OdnxWKA1WJgGIb52jAwLAZWAyyGud1qMV9bGo+xGAYWS9vXVqPFdRqvaW3vnJbntrPf2rjdsBx93d45reI+tg2N2yxNr1tcB6cD/4pDpEyc0Km/n73JLbfcQmZmJrfffjunnHIKH374IbfddhsOh4OLL77Y1+H1TkkzYeMrkLWG8HP8Gdo/lH1HKtlXUs8cX8cmIr2Wz5OpkSNH8uGHH9LQ0NBq3tSuXWap7REjRpzw3KbjWurIucdjtVo79WGws+f3SHGpsP9rQkt39Yr2hwVb+e0Zw/n59CSe/2YfL367n4y8Uq751w/MHBbDHeeNIi0xut1ze0P7O6Mr2l9V10BRxdGEqLCitvl1UavnWoor6qisc30ImcWAfqEBxIQG0i80gH5hAcSEBjRuC6Bf4/bYMHNbeKCVzIzNpKSk9Mnfv91uZ9Omoj7/779JU5Xav/3tb/zoRz8CYPr06eTn5/PYY49x4YUX6n3yhqYiFPnpUFdFcnwk+45UsmJPFTMPlTO2cf0pERFP8nkydfbZZ/PWW2/x6aefcuGFFzZvf/fddxkwYAATJ0484bkPPvggmzdvbj6uoaGB999/n4kTJzJw4ECvxy80F6GIOvQd7PgIxl5sflXfw0UE+XP7uaO4duYpLPxyD699n83qvUXMe2Y154wdyB3njmLUoHBfh9mjOZ1OKmobjiZAFa2ToaLKulaJU1FlLTX1rg/Z8bMYZlIUGkBMmJkMxTQlRmGtE6SY0AAig/3NHpcO0pwfaelEVWpvv/12Nm/eTFpamo+i68WikiAiHsryIHc9M4aeynub8vnhYC0XPvUd4+MjuDwtgUtT4ukXGuDraEWkl/B5MjVnzhxmzZrFX/7yFyoqKkhMTOSjjz5i1apVPP74483f3t1zzz0sW7aMzz77jPj4eACuuOIKXn/9dW699VZuv/12YmJieP3119m/fz//+te/fNmsvmXoHJwRcfiX5cOSqyEuDc68D4ad2SuSqtiwQB64eBzXzx7KPz/fxdsbcvlsWwGfby/gxynx/PHskcRHBfo6zG7B6XRSWl3fmPzUUlTRoreo4miC1LInyZ3KiQFWS4vE6Ggy1PTfTdtiwswEKSLIz605lCLu6EiVWleTKRVH6hhjyHQsW9/BceA7rjh9FlFBVv719XbSD9WxJa+MLXnbePij7cwd1Z95afGcMbI/AX4+L2zsNX3t938stV/tb/ns7vkn4/NkCuCpp57i73//O08++SQ2m42hQ4fyxBNPtJqo63A4sNvtOJ1HJ3sHBATw73//m8cff5y//vWvVFdXM2bMGJ5//nmmTp3qi6b0TcHROG5cxeFl9zMoaxlGfjq8Og+SZsGZ9x9dTLGHi48K5rErJnLj6cP4+2e7+CjzIO9uzOODzflcNTmBEcG1VO4twjCMo5XPHMdUTDu2WtqxVdGcNFZba7+qWqvrNR3XVHHN0cHjWv5cT8XncFJSUU3F0k+ptztP/mYeI8jfcnRIXWiLIXVhgc2vWw61CwtUciTdV2eq1B6PiiN1TKxlCElAxbZP2R15Hv2BP82MpqzWwbc51Xx1oJq9JQ18tv0wn20/TESAwWmJwcw9JZhTo3rv35W+8vs/HrVf7fcmw9kyO+nDzDH/m9ye89DZ83u65vaPiMe6+p+w/kWw15o7h51l9lTF965hLZm5pfzvpzv5etcRX4fS7YQEWNskQ81J0bFD7cICCAnoFt/ruE3//+vvZ0vnnXceQ4YM4YUXXmi1/fDhw8yePZvbb7+dG2+8sUPXanpvVBypgw5vx/rcLJx+wTj+tB871jbt31VQztKN+SzbmM+RitrmU0cNDGNeWjyXToyjf3jvGG3Q537/x+jL7bc7nJRU1rB9+3YmjB9HUIA//hbDpSHsPV1nf/9N55/s3tSzP8FI9xPaH85/BGbcDN88Dhtfhb1fmI/RP4K598LAsb6O0iOSEyL5z6+msnZfEU9/uYf9BTZCgoOwWiztVmhrtyKaxWhTgc2sotb69dHKaUerr53wuOYKb61fN8XQdE6b447zcywGRyvJtapEZ/43Tie5B/YyI3U8/SOCCfLvWzctkZa8UWlWxZE6aOBYCO6HUV2MtWCLOeyc1u0fExfFvXFR3Hn+aFbtKWweur2zoIJHlu/ksU92MWdkfy5PS+CsMQN6xd+zPvP7P46e3n6Hw0l5TQPFVeYQ+ZLKOoqrjnmurMdWdfS/bdX1NHeXvHe4+VpWi4G/1cDfYsHfz4K/1cDPYiGgxWt/PwsBLV77Wwz8rce+bntegJ8Fv3aPbed1i2MD2nvtZyHAar5uqi7rLm///pVMiXdEJsDF/4RZt8JXj0LGm7DjQ7NARfIVcMbdEDPM11F6xLShMUxOiupV36y7ym63E1iaTVxUcJ9sv0hLnalSK51ksZhV/XZ8CFnfNSdT7fGzWpg7agBzRw2gtKqeDzPzeXtDLhuzbazccZiVOw4TEeTHJSlxXJ6WQMqQqF47DFC6jtPppLy2oTEBqqOkykyEShpflzQnTPXNiVFJVR0OD40jszvMofk1OKD25Md3B4aBmfxZm5IwM9k7XkJmPgwC/CxMi6kjxcvxKZkS7+o3FOY9B6f9Eb58GLa/D5lLYMtSSP05nP4niBri6yhFRDymM1VqxQMSZ5jJVPYamHFLh06JDPHn59OS+Pm0JPYeqWBpei5L0/M4WFrDq99n8+r32QzrH8rlkxKYl5rAoMggLzdCegKn00llnb1VYtQyOTraa9S0z9ze4GZmFBboR3SIH0OC6xkSVEW8fyUD/Srobymnn1FGpKOMcHsJwfU2AmqL8asppr6+Dr/AELBYcVr8cRh+OC1+OAx/nBY/7IYVh+GHwzBf2w0/HJivG7Bix48Gw0oDfjRgbmtwWqnHSr3TQgN+1Dmt1DktNDit1Dot1Dmt1Dut1DrM17UOi/lwms81Dgu1divVDgu1DoNau4Uqh4Uau4Vqu7nfjvkzwMDphDq7gzo74OJyJ0WDA7n2PLfe7g5TMiVdY8BouOoVyN9kJlW7P4X0l2HzGzD5V3DabRCuUvbSQ5UfIrA8G2qGQkhUr6hiKe7raJVa8ZKm9aay14DT9Wqhw/qH8f/OG81t54xizd4i3knPZfmWg+w9UsljK3by+Cc7OW14LFdMSuDcsYMIDtDvs7eorrO3SYBaDatrTIaak6PKeursrv8bA3NucXRIADEhfsQH15EQUMlg/0oGWCuINcqIpoxwh43QBhtBdSX41xRhqSqCqiKoru/wzwkAqDn63936X6uVNgE6DStYzcTPafHHaVjN14Yfjsbk0GExk0EHjcmgYaXB8MNuBFAQfw4w16thK5mSrhWXAj9fAtnfw8q/woFVsPb/zMRq6o3msMCQfr6OUuTEnE44uBl2Loddy7Ee3Mx4gK8A/xAIHwRhg8zn8MHmFwXhg1tvDwxX0tWLdaRKrXjJoAkQEAY1pXB4u9uXsVoMThsRy2kjYnno0nEszzzE2xtyWXegmFW7C1m1u5DwQD8umjCYyyclMDkpWsMAu5nCilr22+qp3FNIaY39mOSovk3SVOvGUh0AgX4WYkIDiGpMjuKCa0nwr2SQXzn9LRWNvUalhNlthNSXEFBXgrWqCKoKoaQQit0o3R0QDqExEBJrzldvfh3bvM0eFMXOXbsZNWIYVhxgrwdHPdgbGp/rwdFgPrrDPtr22BlOOzTYcff/rDCjBrjJzbM7RsmU+EbidLj2A9j3Faz8b8jbAN/9A354ySxeMf13EBTh6yhFjqqvgf3fwM6PYdcnUJ7fvMuJgcMvBGtDJdRXQfE+83Ei/qHtJ1nHJl+BWhi6JwoNDeW+++7jvvvu83UofY/VD4ZMhb0rMbJXg/+UTl8yPMifn0wZwk+mDCG7qIp30nN5Jz2X3JJq3lifwxvrczglJoR5aQnMS4snITrEAw0RV9Q22NmSV8bG7BI2ZttIzy7hYGlTl0xRh68TYLUQHepPdEhjBdoQK/GBNWavkaWcWEs50c5SIhylhNrNXiO/6iKoLDSTI1sxON1IjgIjWiRCsRASYz6H9m/c1iJxCokB/w4MNbXbqT5sQHwK9IQecYfdzQSt3jz3mH0OewPZNQMZ5+WwlUyJ7xgGDJsLQ8+AXSvMnqqCLfDVI7D2OTjtDzDlBgjQTUl8pOKwmTjtXA77vjQTpSb+oea/31EX4Bh2Npt255EydgTWqiNQUQDlB6G86fkQVBwyn8sPQW0Z1Fe6kHQNavEYDGEtkq3wQUq6RI6VNBP2roSs1TC888lUS4kxIfzxnJHcetYI1h0o5p0NuXyceZADRVU88dkunvhsFzOGxnD5pAQuGD+I0EB91PI0p9NJfmkN6VlHE6dt+WVthtxZDIgItDAgMqR5aY7oYCvxAdUM8qugv6WMfkY5Uc5SwhpKCakvxq+2GKOyRa9RfrFbw0UJijympyi2nWSp/9HXfr2jHH+nWKzmw0PvhdNup37TJo9c60T0f7j4nmHAqAtgxHmw7V348n+gaA989mdYsxBm3wGTrtUfGvE+pxMOb2scvrcCcn+g1bCDiHgYeb757/WU2Ue/GbTbgTwICIXgiJNXqqyrPJpYtUyyyg+ZyVdFwTFJ117zcSIBYe0nWccmX4FhnXmHRHqGRHPelJHzPQz7vVd+hMViMH1oDNOHxvDgpeNYseUQ76TnsnpvEWv2mY8/v7eFC8YP5vJJ8Uw/NaZPrfHjSTX1djLzStmYXUJ6lpk8HS5vW4ouNiyA1MRo0hLCmBOwk+El31KZv4Mo/3qMqiIzOaouob3hZCcVFNWipyjmmCTpmG0hMeAX0Ol2S8+gZEq6D4sFxl8OYy41S6l/vQBs2bD8/8HqJ2HOnTDxv8whHCKe0lAHWd/CzhWwa7n5b66lwSkw6kIYdb45F8MTcyICQs2Ey5WkqznJOtg6+aooMJOuugooruhY0tUqyRrUOgFrntOlpEt6sPhJYA3AqCggsDIPSPXqjwsJ8Gsc4pdAnq2ad9NzeXtDLgdaDAmMjwrm8rR45qUlcEpsqFfj6cmcTie5JdWkZ7fudTq2Ap6fxWBsXASpQ6JIS4omNSGSIeUbMba+Dhveh8ojQGMBhvYE92uRELWce9TOELuQfmD1927DpcfSp1Lpfqx+Ztn05Csh/T/wzf9CaQ68P9+cV3XG3TBunpl8ibijqtisKLlzOez5AurKj+7zC4JT55i9TyPPh4jBvouzo0lXbcXR3qz2hhU2PerKzaSraI/5OOHPDj9mTtexvV6NyZiSLumO/IPMhCp7DdH5X4Hj/C6bMxIfFcz8M0dw89zhpGeX8PaGPD7cnE+erZonV+7hyZV7mHJKNJenJXDhhMFEBPXtD+lVdQ1k5JY2J04bs20UVrTtdeofHkhaYhRpidGkJkaTHB9JsL8FctfDllfhi2Xm378mwdE4Rv+I3PooEkamYAkfcLQnKbifvpgVj9G/JOm+/AJg6g2Q8nP44UVY9YT5AfCdX5uvz7zX7DFQ9STpiMLdZvGInSsg5/vWY+BDB8DI88x/T0PnmElMTxIYZj46nHQdbH9YYdM8r7py81FU3qGkyxI+iITIFEh5zmNNEum0pFmQvYb4nS/h/NtSGHEujL4Qhp3VJQWODMNgUlI/JiX144GLx/LptgLe2ZDLqt1HWH+ghPUHSnjg/a2cP34Ql6clMGt4LNZePgzQ6XSSVVTVqtdpx6Fy7Mf0OvlbDcbGRZKWGGUO20uMIj4q2KyW6HRC/kb4ailsXWZ+2dokMBLG/Mj8wnXoHJxYOLJpE/HjUnpGAQbpkZRMSfcXEAIzb4FJ18H3z8Lqp+DwVnjjZ+Y3j2feB0PnKqmS1uwNZtK0c7n5OHb428DxjfOfLoS41L7R09nhpKvcTKpa9W4dPDqssOl1XQXUlWMUlRNTdtCstKQPLNJdTP8tjvJD2Ld9gH+NDTLfMh/WAHPO4+gLYeQFEBnv9VCC/K1cMjGOSybGUVBWw7sb83hnQy67D1fw3qZ83tuUz6CIIC5Li+fytASGD+gdPb6VtQ1szrGxMcdmFovIsVFcWdfmuEERQaQlNfU6RTEuLpIg/xZ/S5xOs0DVlqWwdSmUHDi6LyDM/Ds+fh4MO7P1/Gq7G1X1RFykZEp6jsBwmPMnmHK9mVCt/T+zpPorl5nfQJ55PyTN8HWU4ks1pbDnc7P3afenUGM7us/iD6fONj88jTofohJ9Fma3FxhuPmKHn/i4xqTLXprHtvxKxll0S5FuJDQW58VPkpFwLSkx9Vh3L4cdH5tfrOz9wnx8dLs5L3L0RebQ3oHjvf7F3MCIIG6aM4zfnD6UjNxS3knP5b1N+Rwqq+HZr/by7Fd7mTgkiismJXDJhDgiQ3rGMECn08m+wsrmHqf0rBJ2FZRzTKcTAVYL4+MjmofrpSVFMTgyuP2LHt5hJk9blkLR7qPb/YLNv+Pj5sGIc8D/OOeLdAHd+aTnCekHZz8A039rDvf74UXI+g7+dT4MP9vsqYrz7mRj6UaK95uV93YuN/8dOBqO7gvuZw7fG3m++Y2l1i7zrKakK/pU6m2bfB2NSPsMKyROglNnwbl/hSO7Gof8fgw56+DgJvPx5cMQmWgmVaMvNL+k82LRAcMwmDgkiolDorj3ojGs3H6Yd9Jz+XLnETbn2NicY+O/P9jGOWMHcvmkeE4f0R8/a/fpQS+vqWdTjq05edqUY8NWVd/muPioYFJbDNcbGxdBoN8JerCL9h7tgTq87eh2a6CZOI2fZ/5N72nDsaXXUjIlPVfYALhgAcycD988DhtfNXsl9nwOYy6GuffCgDG+jlI8zWE3S5bvWm72QB3Z3np/7MjG4hEXmAt3WjTsTERa6D/SfJz2hxZryX0Me7+E0mxY95z5CIw0P7yPvtD8oi4o0mshBfpZuSB5MBckD+ZIeS3vbcrjnfQ8th8s46PMg3yUeZDYsEAuS43j8kkJjB7UtV8MORxO9h6paFUkYtfhcpzH9DoF+lmYkBDZPFwvNTGagREdWFy2JOtoD9ShjKPbLf4w/CyzB2rUBfpCTLolJVPS80UmwMX/hFm3wlcLIOMt2P4BbP/QrAh4xl0nnyMi3VtthbkA564V5gefqsKj+wyruUBnU/U9/a5FpKPCBkDa1eajrgr2fQU7PzK/qKkqhC1vmw+LP5xy2tHhgJEJXgupf3gg188eyvWzh7I1v5R3NuTx3qY8CitqeX7Vfp5ftZ9xcRHmMMCJccSEeX4NxtKqejbmlLTqdSqvaWhz3JB+wWbi1FiefPSgCAL8Oth7VpoHW981k6i8DUe3G1azENC4eWYxieBoD7VKxDuUTEnv0W8ozFsEp/3RXPh3+/vmZOMt70DqL8z5Vl68AYqHleYeHb63/xuwt5i0HBgJI842Jx0PP0s3WxHpvIAQsxdq9IVHe8B3fmT+DSrcBfu+NB8f32GuOdeUWHlq/bl2jIuLZFxcJHdfOJqvdh7hnQ25fLGjgK35ZWzN38bDH21n7ugBXDEpgbmjBnQ8kWnB7nCy+3C5mTg1FonYc7iizXHB/lYmJEQ2D9dLSYxiQHgHep1aKi+Abe+ZCVT2mqPbDYs5rHL8PBhziVm+XKSHUDIlvc+AMXDVK2bp1JUPw57PzPWqNi+Gyb+C2beb30ZK9+JwmPMWdq0wh9wcymy9P/pU84PLqAsgcYYWUBQR77FYIXGa+TjnISjcczSxyv7eHIp2KAO+egQihxz925R0mrmsh4f5Wy2cM3Yg54wdSEllHe9vzued9Fwyckv5bFsBn20roF9oAJdMjOOKSQmMi4swy4i3o6Syjk05jUUiskvYnFNKRW3bXqdTYkKaE6fUxGhGDwp3b85WZRFsf88cwpf1XetlKRJnmD1QYy8117UT6YGUTEnvFZcKv3gbstbAyr9C1rdmBcD0l2Hab2Dm781iFuI79dWw7+uj858qDrXYacCQaWbFppEXQP9RKn8vIr4ROxxibzWHk1cWtphntdJc52jdIvMRGGHOsxrVOM8qOMrjoUSHBnDtzFO4duYp7Coo550Nuby7MY/D5bX8e/UB/r36AKMGhnPFpAQuHD+Q/bZ6tq3NZmNuKZuybewrrGxzzdAAKxOHRJHauChuypCozg0frC4xh9pvXWr+jXe2KFEeP9nsgRr74y4pSy/ibUqmpPdLmgHXfWiOhV/53+bY7G//DutfhBnzzaqAmtTadcoLGuc+rTAnfDdUH90XEGZW3Rt1gbnApoZ6iEh3ExoLqT83H01fCDXNs6o8bA4t3/IOWPzMoWtNwwG9sBzDyIHh3H3hGP7feaNYtaeQdzbk8um2AnYWlPPwx9t5+OOmAj1Frc4b2j+U1CFmWfLUIdGMGhTe+QWDa8rMBHPLUjPJdLSo7Dd4otkDNe4yiE7q3M8R6WaUTEnfYBgwbC4MPcMcpvHlw+YCgF/9j9lbddofYeoNWqvCG5xOKNhqvu+7lreeaAwQkdA4ROZ8cyFNP89PphYR8Qr/xvWORp1vDlXO23B0OOCRHbD/a/Ox/E8wMNmcjzXqAnNtKw/2tPtZLcwdNYC5owZQWl3Phxn5vLMhl/RsG8F+BmlJ/ZiUZK7rlDIkiuhQDw1FrKs027r1Xdj9Gdhrj+4bMA7GX2YmUSoMJL2YkinpWwyjcdX782Hbu2ahiqI98Nn9sGYhnH4HpF3rlTHvfUpDLRz4tjGBWmEOg2kpLs0cBjPq/C5ZJFNExOssFhgyxXyc/RdzvaSdHzfOs1oDBZnm4+tHISL+6DyrU0736D0nMtifn09L4ufTkiipqGH3ji1MSk3F+v/bu/Oops78f+DvhKACKouIeFxGQYksKW4QN6riimJxt7/fHHDcqYVxRB1rbafguI715xQcRIpVtB5Hq+hXLdXWpUf7rUTF0VIExXWEKiKCgMiW3N8ft4lEomKAROH9Ouce7HMvyfMkIe9+7n3uvRb1dJuIyqfiTdF/TRKnO1afXeDoJhZPXhPFqdlETQCLKWqapFLAaxLgHgT88m/gx3Xi/UWSFwP/Gw0MWQq88z5gwT+R2rIofwzJ5X8DWUfFKR4V1a4GJbMSjwrKA8Sb6LZyNls/iYhMoo0rMCBcXJ7kA1m/n2d1/SRQlAOcTxCXZq2eXZ20+4h6vTppaytLWNTHzqqqcvF7/df9YnFY/fvdvqtYPHlOBNp5cucYNTn8P0Vq2ixk4mXTFVPEC1OcXi8WVf/zoXhe1ZBlYkBI35y7zpucIADlReLNLUtyf18eAMX3dW3S4nvwfpAJCapdpamls1g4yQOAroPFyw4TETVFNm2Anv9XXCrLxKl/2qNWJbm/32/pwLP75vUYKxZX5jy/SF0png+WniReTKL88bN1tp3E85+8Jtb7lEWitw2LKSJAPE/Hdw7Q84/insKfNorT//bPEv89dLlYFDSmwKgq/70Y0hZJ96v9+7nCqarspQ+lfVWEdgpItOc/te/VtItQIiJDLFuIO5rcRgFjN4q38bj6LZCZDORlALfPiMvRj8TzjnqMEQur9j0b/jtVoxaf+9ckIOMw8PTRs3Wt2osFlOdEoGPfxpWHRHXAYoqoumbWwMA/A33+BKRsBs5uEi9U8e//A3ToA/h/ArgMfXNDRKMRw09bCBXnGi6OSnKBssLXe+zmtuL9uVq2q/FTbdMW6Q/U8Ow/sv7m5RMRNXZSKdCxj7gM+xvw6KZ4tOrqd8Cdn4EH6eJyer1YzMgDAPlYoGs9XqxHoxHP6UpPEm+o+yTv2TqbtuI9oDwniveE4g4yohpYTBEZ0qK1eN6U7xzg52hAtUW8StPOCeJNGYd9CnTuZ7r+lJdUK4TuGy6OtEeZqt/P41UsmhksjvQXJ3F52ZUO1WpUFl+q8zCJiJo0Bxeg/4fiUvpIvNDD1WTg+gmg+B5w4StxadYS6Dbs9/OsRr7+PRMFAcg+Lx6BunJQfGwtK3vA/T1xCt8fBvHcYaJX4F8I0ctYO4hXZVJ+APz0/8QQu/MT8NUooNsIwH+5eHNgY6grxT2AxS+ZXqf9WVnzJosv77ej4SKplbN+Wwu7N/coGxFRU2btAHi/Ly6VZeL0O+15VsX3xKNIV/7n2XlW8gCxuHLoavjxBEGcUpieBKQf1L/KanNbwD1QPALlMhiwsDTJEIkaAxZTRLXRqh0QsE68ye/p9cB/vgau/yAu7uOAdz8StxMEcW9ijYLo+SNIuUBp/suf83nNWr5gmp2zfpuNI4OQiKgxsWwhXumv+whgzAbg3iWxsMpMFqcBas+zOvYx0Nb99/OsxgLO78Cq6AYkJ4+ItwMpuPXsMZu1FIsvr4nizdJ5jz8io7CYInoddp2A96KBgQuAH9cCad8AGYchzTgCRQtHSL8t1L/r+6tIZYCN06uPINk4Ac1bNtiwiIjoLSGVAh16i4v/J0DB7d/Ps0oGbv+veBGLvAzgzAZIm7WER/XLmFtaixe+8JwoFma8UT1RnbGYIjJGG1dg0peAXwRwahUkGYfRrKzaSbtW9q84B+n3f1vZ84ReIiIynn0XoN8H4vK0AMj6QSysso5DUlEMjdQSku6jIFFMFG9Y38zG3D0malRYTBHVhZM7MO1rqB9cw7W083DrNQgWrZ05XYKIiEzPyh54Z6q4VJVDff9X/JL9BO/4DOSVVokaCHeJE9WHNq4otesB2HZkIUVEROYnaw607wmNJY9EETUkFlNERERERERGYDFFRERERERkBBZTRERERERERmAxRUREREREZAQWU0REREREREZgMUVERERERGQEFlNERERERERGYDFFRERERERkBBZTRERERERERmAxRUREREREZAQWU0REREREREZgMUVERERERGQEFlNERERERERGYDFFRERERERkBJm5O/CmEAQBAKBWq436fe3vGfv7bzuOn+Ov/rOp4fjrNn7t72m/h+kZZlPdcPwcf/WfTQ3Hb5pskghMLwBARUUF0tLSzN0NIqImS6FQoFmzZubuxhuF2UREZF6vyiYWU7/TaDSoqqqCVCqFRCIxd3eIiJoMQRCg0Wggk8kglXL2eXXMJiIi86htNrGYIiIiIiIiMgJ3ARIRERERERmBxRQREREREZERWEwREREREREZgcUUERERERGREVhMERERERERGYHFFBERERERkRFYTBERERERERmBxVQtJCUlQS6X6xYPDw8MGjQICxcuxO3bt/W2vXDhApYvX46JEyfCy8sLcrkc2dnZ5ul4Pant+NVqNbZt24ZZs2bh3Xffhbe3NwICAvD555+jqKjIfANoIM+/Ls8vKpXK3F002tGjRyGXy5GcnFxj3XvvvQe5XI4zZ87UWDd8+HBMmDABAHDq1Cn89a9/xbhx4+Dp6Qm5XN7g/a4vdR1/SUkJNm/ejODgYAwcOBC9evXCuHHjEB8fj/LyclMMoU7q4/3fuHEjxo8fD19fXygUCgwbNgyffvopcnJyGrz/TQWzidlkCLOJ2fQ8ZlPDZpPM6N9sgtasWQMXFxeUl5fj4sWLiIuLg0qlwnfffQdbW1sAQEpKCs6ePQt3d3fY2Njg3LlzZu51/XnV+MvKyhATE4PAwEBMmTIF9vb2uHLlCjZv3oxTp05h//79aNGihbmHUe+0r8vzunXrZobe1A9fX19IJBKkpKRgzJgxuvbCwkJcu3YN1tbWUKlU8PPz0627f/8+7t69ixkzZgAAfvjhB1y+fBnu7u6wtLREenq6ycdhrLqO/7fffkNiYiKCgoLwpz/9CdbW1khNTcWmTZvw888/Y9u2bZBIJOYYWq3Ux/tfVFSEsWPHwtXVFTY2Nrh+/To2b96MkydP4siRI7C3tzf5uBorZhOzyRBmk4jZxGxq6GxiMfUaunfvDoVCAQBQKpVQq9WIiYnB8ePHMWnSJADA/PnzERYWBgDYunVrowqsV42/RYsWOHHihN4HUalUon379liwYAGOHTuGoKAgc3W/wVR/XRoLBwcHdO/evcbn9/z585DJZJg0aVKNvZspKSkAxPccAFauXAmpVDz4vWLFircqsOo6/o4dO+LkyZOwtrbWre/fvz+srKzwj3/8A6mpqejbt2/DD8RI9fH+f/bZZ3rrta/L3LlzceLECUyePLkBR9C0MJuYTYYwm0TMJmYT0LDZxGl+daD9ksrPz9e1af9Am4Lnx29hYWGwon/nnXcAiHsH6O2hVCpx69YtPHjwQNemUqng5eWFwYMHIz09HSUlJbp1586dg4WFhe6L+G3/W6jL+K2trfXCSutt+luo6/tviIODAwBAJuN+vIbEbGI2NWbMJmbTm5ZNb/cnysy08827dOli3o6YSW3Hr90r8DZPLXgZjUaDqqoqvUWtVpu7W3XWr18/ANDbA6RSqeDr64vevXtDIpEgNTVVb52HhwdatWpl8r42hIYY/9v0t1Bf46+qqkJZWRmuXLmC1atXo0uXLhgxYoRpBtFEMZuYTQCzqfo6ZhOzqSGzicXUa9B+MT158gRnzpzB5s2b4ePjA39/f3N3zSSMGX9ubi42bNgALy8vDB061IS9NZ2pU6fC09NTb2kMUyt8fHwglUp1X1gFBQXIysqCj48PbGxs4OHhofsCvnfvHrKzs3WH0RuD+h5/ZmYmEhISMGLECPTo0cMkY6iL+hh/Xl4ePD094e3tjQkTJkCtVmPHjh2wsbEx+XgaM2YTs8kQZhOzidlkmmziXIvXMHXqVL3/dnV1RWxsbJOZsvK64y8sLMScOXMgCAL++c9/vvWH1l9k3bp1cHV11Wt7k0/grC1bW1v06NFDN//4/PnzsLCwQO/evQGIX2jaLyztNo0psOpz/NnZ2QgNDYWzszNWrlxpgt7XXX2M397eHvv27UNFRQVu3ryJhIQEhISEYOfOnXBycjLhaBo3ZhOzyRBmE7OJ2WSabGqc3yANZN26ddi3bx8SExMxbdo03LhxAxEREebulsm8zvgfP36MmTNnIjc3F1999RU6depk4t6ajqurKxQKhd7i5eVl7m7VC6VSidu3byM3NxcqlQqenp66PTe+vr7IyMhAcXExVCoVZDIZ+vTpY+Ye16/6GH9OTg5CQkJgYWGBxMRE2NnZmXgUxqvr+GUyGRQKBfr06YMpU6YgMTER2dnZiI+PN8dwGi1mE7PJEGYTs4nZZJpsYjH1GrRfTP369cOKFSswZcoUnDlzBkePHjV310yituN//PgxZsyYgezsbGzbtu2tOGxMhmn35pw7dw7nzp2Dj4+Pbp32y+n8+fNQqVRQKBSNbvpWXcefk5OD4OBgAMCOHTvg7Oxsop7Xj/p+/52dneHk5FTjHkhUN8wmZlNTw2xiNgFvTjaxmKqDJUuWwNbWFtHR0dBoNObujskZGr82rO7evYutW7fCw8PDzL2kuvDx8YGFhQWOHTuGrKws+Pr66ta1atUK7u7uOHjwIHJychrVNAqtuoz/t99+Q3BwMDQaDRITE9GhQwdTd7/O6vv9v3PnDu7fv48//OEPDdntJo/ZxGxq7JhNzKY3KZuaxoTqBmJra4u5c+di/fr1OHz4MIKCgvDo0SPdSXHXrl0DAJw+fRoODg5wcHDQe8Pfds+Pf9SoUZg1axauXLmCjz/+GGq1GpcuXdJt7+DggM6dO5uvww0kKyvL4BWSOnfurLvc5tuqZcuW8PDwwPHjxyGVSmscKvfx8UFiYiKAmnOSc3JykJaWBgD473//CwC6PcUdOnR4K06ENnb8+fn5CAkJQV5eHlatWoX8/Hy9y1Q7Ozu/FXsCjR1/ZmYm1qxZg1GjRqFTp06QSqW4du0atm/fDjs7O8ycOdOk42hqmE3MJoDZxGxiNgGmySYWU3UUHByMXbt2ITY2FoGBgcjKysKCBQv0tomKigIgzuPcuXOnObrZYKqPv1evXrovqFWrVtXYdsKECVi7dq2pu9jgli1bZrB95cqVmDJliol7U/+USiXS0tLg7u6Oli1b6q3z8fHB9u3bYWlpiV69eumtU6lUNV4b7d/G2/RZMGb8169fx927dwGIe8mfFxYWhvDw8IbteD0xZvyOjo5wcnLCtm3bkJeXh6qqKjg7O2PIkCEIDQ1F+/btTT2MJofZxGxiNjGbmE2mySaJIAhCnUZDRERERETUBPGcKSIiIiIiIiOwmCIiIiIiIjICiykiIiIiIiIjsJgiIiIiIiIyAospIiIiIiIiI7CYIiIiIiIiMgKLKSIiIiIiIiOwmCIiIiIiIjICiykym6SkJMjlct3i4eGBQYMGYeHChbh9+7a5uwcAiIuLw/Hjx2u0q1QqyOVyqFQqM/RKdPLkSYSGhmLAgAHw8vKCr68vpk+fjkOHDqGystJs/Xqeodfqo48+gr+/f4M+b25uLmJiYpCRkdGgz0NEjQuzqW6YTS/HbGp8ZObuANGaNWvg4uKC8vJyXLx4EXFxcVCpVPjuu+9ga2tr1r5t2bIFo0aNwvDhw/XaPT09sWfPHnTr1s3kfRIEAR9//DGSkpIwePBgfPTRR2jfvj2Ki4uhUqkQFRWFgoICTJ8+3eR9q6358+cjJCSkQZ/jwYMH2LRpEzp06AB3d/cGfS4ianyYTa+H2VQ7zKbGh8UUmV337t2hUCgAAEqlEmq1GjExMTh+/DgmTZpk5t4Z1rJlS/Ts2dMsz52QkICkpCSEh4cjLCxMb52/vz9mz56NO3fumLRPZWVlaNGiRa2379y5cwP2hoio7phNr4fZRE0Vp/nRG0cbXvn5+XrtaWlpCA0Nha+vLxQKBcaPH4/k5GS9bR49eoTIyEiMGTMGvXr1Qv/+/RESEoILFy7UeJ6Kigps2rQJAQEBUCgUUCqVCA4OxsWLFwEAcrkcpaWlOHDggG66R3BwMIAXT6U4ceIEpk2bBm9vb/Tq1QszZszAf/7zH71tYmJiIJfLkZWVhYiICPTp0wcDBgzAsmXLUFxc/NLXprKyEgkJCXBxccGHH35ocJu2bduib9++uv8uLCxEZGQk/Pz84OXlhWHDhmHjxo2oqKjQ+73y8nJs2LAB/v7+8PLygp+fH6KiolBUVKS3nb+/P+bNm4fvv/8e48ePh0KhwKZNmwAAN27cwKxZs+Dt7Q2lUom//e1vePLkSY0+GppKIZfLsWLFChw8eBABAQHw9vbGe++9h1OnTultd+fOHSxbtgwjR46Et7c3/Pz8EBoaiqtXr+q2UalUmDx5MgBg2bJluvcvJiZGt01tPk9ERFrMphdjNjGbmjIemaI3TnZ2NgCgS5cuuraUlBTMnj0b3t7eiIyMRKtWrZCcnIyFCxeirKwMEydOBCB+OQNAWFgYHB0dUVpaih9++AHBwcHYvn07lEolAKCqqgqzZ89GamoqQkJC0K9fP6jValy+fBn37t0DAOzZswfTp0+HUqnE/PnzAYh7/V7k8OHDWLx4MQYNGoQNGzagoqICCQkJuueuHiIAEB4ejjFjxmDy5Mm4du0aNmzYAECcWvIiv/76KwoLCzFlyhRIJJJXvpbl5eUICQnB3bt3ER4eDrlcjgsXLiA+Ph4ZGRmIj48HIE7PmD9/PlJSUjB37lz07dsXV69eRUxMDC5duoQ9e/agWbNmusdNT0/HjRs38MEHH6Bjx46wsrLCw4cPERwcDJlMhs8++wxt2rTB4cOH8fe///2V/dT68ccfkZaWhj//+c+wtrZGQkICwsLCcPToUXTq1AmAOEXCzs4OixYtgoODAx4/fowDBw5g6tSpOHDgAFxcXODp6Yk1a9Zg2bJl+OCDDzBkyBAAgLOzM4Daf56IiLSYTcwmZhMZJBCZyf79+wU3Nzfh0qVLQmVlpVBSUiKcPn1aGDhwoPDHP/5RqKys1G07evRoYfz48XptgiAI8+bNEwYOHCio1WqDz1FVVSVUVlYK06dPFz788ENd+4EDBwQ3Nzdh7969L+1jz549haVLl9ZoT0lJEdzc3ISUlBRBEARBrVYLgwYNEgIDA/X6UlJSIvTv31+YNm2ari06Olpwc3MTvvzyS73HjIyMFBQKhaDRaF7Yn2+//VZwc3MTdu/e/dJ+a+3evVtwc3MTkpOT9drj4+MFNzc34aeffhIEQRBOnz5tsE/a59uzZ4+ubejQoYK7u7tw8+ZNvW3Xr18vyOVyISMjQ699xowZeq+VIAjC0qVLhaFDh+pt5+bmJgwYMEAoLi7WteXl5Qk9evQQtmzZ8sIxVlVVCRUVFcLIkSOF1atX69p/+eUXwc3NTdi/f3+N3zH280REjR+zidlUHbOJXoXT/Mjspk6dCk9PT/Tu3RuzZ89G69atERsbC5lMPHB6584d3Lx5E+PGjQMg7rnTLu+++y7y8vJw69Yt3ePt3r0bEyZMgEKhgIeHBzw9PXH27FncuHFDt82ZM2fQvHnzepv3fuvWLTx48ABBQUGQSp/9WdnY2GDkyJG4fPkynj59qvc7hqYSlJeX15hCUhcpKSmwtrbG6NGj9dq1e7fOnj2r2656u1ZAQACsra1121Xva9euXfXaVCoVunfvjh49eui1BwYG1rq/SqVSbw+ro6Mj2rRpg5ycHF1bVVUV4uLiMGbMGHh5ecHDwwNeXl64ffu23nv8Iq/7eSKiponZJGI2MZvo5TjNj8xu3bp1cHV1xZMnT5CcnIw9e/YgIiICCQkJAICHDx/qtlu3bp3BxygoKAAAbNu2DWvXrsX777+PBQsWwN7eHlKpFF988QVu3ryp2/7Ro0dwcnLSC5e60D5/27Zta6xzcnKCRqNBUVERrKysdO12dnZ622mnKpSVlb3wedq3bw/g2XSTVyksLISjo2ONaRdt2rSBTCbTTT0pLCyETCaDg4OD3nYSiQSOjo667bQMjbOwsBAdO3as0e7o6FirvgI1XxNAfF3Ky8t1/7127Vrs2rULc+bMgY+PD2xtbSGRSPDJJ5/obfcir/N5IqKmi9kkYjYxm+jlWEyR2bm6uupO7O3Xrx80Gg2++eYbHD16FKNHj4a9vT0AYN68eRgxYoTBx9DuiTp06BB8fX0RFRWlt/75E00dHByQmpoKjUZTL6Gl7WNeXl6NdQ8ePIBUKkXr1q3r/DxeXl6ws7PDiRMnsGjRolfOTbezs8Ply5chCILetvn5+aiqqtL1287ODlVVVXj06JFeaAmCgIcPH+reHy1Dz2tnZ6cLg+oMtdXFoUOHMH78eEREROi1FxQU1Oo1fp3PExE1Xcym2mM2MZuaMk7zozfOkiVLYGtri+joaGg0Gri4uKBLly7IzMyEQqEwuGgPv0skEr2TUQEgMzMTly5d0mvz8/NDeXk5kpKSXtqXZs2avXRvnFbXrl3Rrl07HDlyBIIg6NpLS0vx/fffo2fPnnp7/oxlaWmJ2bNn4+bNm/jXv/5lcJv8/HykpqYCAPr374/S0tIaN3c8ePCgbn31n4cOHdLb7tixYygtLdWtfxmlUomsrCxkZmbqtR85cuTVA3sNEokElpaWem0//vgjcnNz9dpetDf1dT5PRERazKYXYzYxm5oyHpmiN46trS3mzp2L9evX4/DhwwgKCkJUVBTmzJmDWbNmYcKECWjXrh0eP36MGzduID09HdHR0QCAIUOGIDY2FtHR0fDx8cGtW7cQGxuLjh07Qq1W654jMDAQSUlJiIyMxK1bt6BUKiEIAi5fvgxXV1eMHTsWAODm5oZz587h5MmTaNu2LWxsbODi4lKjz1KpFEuWLMHixYsxb948TJs2DRUVFdi6dSuKioqwaNGient9tIEVExODtLQ0BAYG6m6MeP78eezduxfh4eHo06cPxo8fj127dmHp0qXIycmBm5sbUlNTsWXLFgwePBgDBgwAAAwcOBCDBg3C559/jpKSEvTu3RtXr15FdHQ0PDw8EBQU9Mp+TZ8+Hfv378fcuXPxl7/8RXfFpOpTWOrDkCFDdFdGksvlSE9Px9atW3VXQ9Lq3LkzWrRogcOHD8PV1RXW1tZwcnJCu3btav15IiLSYja9HLOJ2dRUsZiiN1JwcDB27dqF2NhYBAYGol+/fvjmm28QFxeH1atXo6ioCHZ2dnB1dUVAQIDu90JDQ/H06VPs27cPCQkJ6NatGyIjI3H8+HGcO3dOt51MJsOXX36JLVu24Ntvv0ViYiJsbGzQo0cP+Pn56bZbvnw5oqKiEBERgadPn8LX1xc7d+402Odx48bBysoK8fHxWLhwISwsLODt7Y0dO3agd+/e9fbaSCQSrFmzBsOHD8fevXt1r4e2/4sXL9adrNu8eXPs2LEDGzduREJCAgoKCtCuXTvMnDlT76aKEokEsbGxiImJQVJSEuLi4mBnZ4egoCBERETU2KNqSNu2bfH1119j1apViIyMhJWVFYYPH45PP/1Ud/ne+rB8+XLIZDLEx8ejtLQUHh4eiImJwRdffKG3nZWVFVavXo1NmzZh1qxZqKysRFhYGMLDw2v9eSIiqo7Z9GLMJmZTUyURqh/3JSIiIiIiolrhOVNERERERERGYDFFRERERERkBBZTRERERERERmAxRUREREREZAQWU0REREREREZgMUVERERERGQEFlNERERERERGYDFFRERERERkBBZTRERERERERmAxRUREREREZAQWU0REREREREb4/8ogsSB++ZNgAAAAAElFTkSuQmCC",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA04AAAHbCAYAAAD8lMpYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACgg0lEQVR4nOzdeXyU5bn/8c8zk33fFwIJEHYIhEVWAXEBW2ytdT1tXU+ttkI91bZqq8fq71Stra1HoBaOWncqtoo7LrhRQTZZwg4BwpIFsu/bzPz+eDIhIQnJJJNMJvm+X695zeRZZq570Ny5nue+r9twOBwOREREREREpE0WTwcgIiIiIiLS2ylxEhERERERaYcSJxERERERkXYocRIREREREWmHEicREREREZF2KHESERERERFphxInERERERGRdihxEhERERERaYcSJxERERERkXYocRIREREREWmHEifxWidOnGDkyJHce++9ng5FRERE/ZJIH+fj6QBEAEaOHAnAgAEDWLNmDf7+/i2OufDCCzl58iS7d+/Gx6fz/+k6P8tisfDJJ5+QlJTU6nHf/va3yczMBODvf/87M2fObHFMRkYGr776Kps2beL06dP4+PiQlJTE+eefz0033UR8fPw5Y2jLo48+yve//30A3njjDe67775zHm+xWNi7d2+b+1evXs0999wDwP/8z/9w9dVXn/P93CkzM5NXX32VjRs3kpOTQ01NDREREYwZM4ZLLrmE7373u63+e3f2uxURcQf1S831hX7J2cb9+/e3eYzz33Tt2rUMHDiw05+lPqxvUuIkvUp2djYvvPACP/nJT9o9Nj4+nvfff5/Q0FCXP8fHx4f6+nreeOMNFi9e3GL/1q1byczMbDzubA6Hgz/96U8888wz+Pj4MHPmTC699FLq6urYtm0bzz33HCtXruSxxx7j0ksvbTOORYsWtbp99OjRzV63ddyWLVv4+uuvmTNnTpufkZOTw//8z/8QFBREZWVlm8d1h6VLl7Js2TLsdjvp6elcccUVBAcHk5+fz5YtW7j//vtZuXIlb7zxRuM57vpuRUTcQf2Sqa/0S91NfVjfpsRJeo3w8HAMw2D58uVcddVVREVFnfN4X19fUlNTO/VZ0dHRxMTE8MYbb3DHHXdgsTQftfrPf/4TX19fZsyYwZdfftni/GXLlvHMM8+QlJTE8uXLGT58eLP9H374Ib/61a+46667CA8PZ8aMGa3G0VrneLbRo0c367CauvbaawG45pprWt3vcDi47777iIiI4JJLLuG5555r9/Pc5emnn2bJkiUkJibyv//7v0yYMKHFMV9++SXPPPNMs23u+m5FRLpK/VLrvLVf6gnqw/o2zXGSXiMgIICf/vSnlJeXs2zZsnaP7+pY8quuuors7Gy++uqrZtvLy8tZs2YNF154IdHR0S3OO378OE8//TS+vr48/fTTLX4pAixYsID77rsPm83G7373O+x2e6diPJcDBw6wfft24uPjueCCC1o95sUXX+Trr7/m0UcfJSgoyO0xtOXEiRMsW7YMX19fVqxY0WrSBDBnzpxmiVNv+W5FRED9kqt6c7/UE3rLv4N0HyVO0qv88Ic/JDk5mddee40jR45062d95zvfITAwkNdff73Z9nfeeYfKykquuuqqVs974403qK+v56KLLjrnmPCrr76a2NhYjh49yqZNm9waO8Brr70GmB2t1WptsT8zM5MnnniCG264gfPOO8/tn38ub7zxBnV1dcyfP58RI0ac81g/P79m5/WG71ZExEn9Usf15n6pJ/SWfwfpPhqqJ72Kr68vd999N3feeSdPPPEES5cu7bbPCg0NZcGCBbz33nsUFhY2DsF4/fXXGTBgAOeffz7vv/9+i/O2bt0KwKxZs875/j4+PkybNo13332Xb775hunTp7c4ZsmSJS22JSUlNU7AbUt1dTVvv/02Foul1Qm19fX1/OpXvyIxMZG77rrrnO/VHbZs2QLg8hAEd363IiLuoH6pb/RLTbXWRqfS0tJOv6/6sL5PiZP0OpdeeikTJ07k448/ZsuWLUyZMqXbPuvqq69m9erVvPXWW9x8883s3buX3bt3s2jRohbjy53y8/MBSEhIaPf9ncecOnWq1f2tdcBTp05tt4P64IMPKC0t5YILLiAxMbHF/mXLlrF3715effVVAgIC2o3T3ZzfkatVg9z53YqIuIv6Je/vl5rqruRXfVjfp8RJeqV77rmH6667jj/84Q+sWrUKwzA6fG5rV5KuuOKKVsuKTpkyhSFDhvDPf/6Tm2++mVWrVmGxWLjyyivbfH+HwwHQoZicx7R17LlKop6LcziEcxJuUzt37mT58uXcfPPNTJw4sVPv7+TKd9mUK99RZ89r7btdvnw5H330EUeOHMHPz4/09HTuuuuudocLioi0R/3SufX2fqmpjpQjb6qjfYs7/x2kd1LiJL3SxIkTWbBgAR9++CEffPAB3/72tzt8bltXy9r6pXrVVVfxxz/+kQ0bNvDuu+8yc+ZMBgwY0Ob7x8bGcvjwYXJzc9uNxXlMbGxsB6Nv36FDh9i2bRsJCQnMnTu32T7nUIjBgwfzX//1X13+LFe/S6e4uLgOf0dNdfW73bRpEz/4wQ9IS0vD4XDw1FNPcfPNN/Pee+8RERHhUiwiIk2pX2qbN/RLXdHRvsXT/w7S/VQcQnqtX/7yl/j6+vLEE09QW1vb4fP279/f4jFt2rQ2j7/iiivw9fXl3nvvpbS0tM3Jt06TJ08GYP369ec8zmazsXHjRgAmTZrU4fjb849//ANoffJtZWUlR48eJTMzk7S0NEaOHNn4cHY2999/PyNHjuT3v/99u5/l6nfp5PyOvv76a5fa1tXv9tlnn+XKK69kxIgRjBw5kscff5zCwkK++eYbl+IQEWmN+qXWeUO/1BUd7Vs8/e8g3U+Jk/RaycnJ/Md//AcnTpzg5Zdf7rbPiY6O5oILLiA3N5fIyEguuuiicx7//e9/H6vVyscff8yhQ4faPO5f//oXp06dYsiQIUydOtUtsdbU1DROvm2tI/Xz8+Oqq65q9TFmzBjA/MV+1VVXdXm4xLl8//vfx9fXlw8//PCc3xHQ7I8Pd3+3FRUV2O12wsLCXG+EiMhZ1C+15C39kju11bd48t9BeoaG6kmvdscdd7B69Wr+9re/des44HvuuYfvfe97xMXFNSuP3ZpBgwZx22238de//pXbb7+dv/3tbwwbNqzZMZ988gm///3vsVqtPPjgg21O6HXVBx98QElJCfPmzWt18m1AQECbV+yWLFnCnj17uOKKK1qteOROAwcOZNGiRfzlL3/hJz/5Cf/7v/9LWlpai+OcC+C++OKLgPu/29///veMHj3aazpjEen91C815y39kju11bd48t9BeoYSJ+nVIiIiuO222/jjH//YrZ8zaNAgBg0a1OHjFy9eTFVVFX//+9+5/PLLOf/88xk2bBj19fVs27aNHTt2EBAQwBNPPOHWVcFXrVoFtL0ie29y++23U19fz7JlyxqvJI4bN47g4GDy8/PZsmULR48eZdy4cc3Oc9d3+4c//IGtW7eycuXKVtcTERHpDPVLzXlTv+QO7fUtnvp3kJ6hxEl6vRtuuIFXX321RZUbT7JYLNx77718+9vf5pVXXmHz5s1s2LABq9VKUlISt9xyCzfeeGOHSpJ2VGZmJlu3bm118m1vtWjRIr71rW/x6quvsnHjRt544w1qa2uJiIhg1KhR/PjHP+byyy9vdo47vttHH32U9957jxdeeMGlPzxERDpC/ZLJG/ulruhI3+KJfwfpOYbDWTtRRKQP+J//+R/ef/99XnrpJVJTUz0djoiI9AHqWwR0x0lE+pDf/e53vP322yxbtoywsDBOnz4NQFBQEMHBwR6OTkREvJH6FnHSHScR6TNGjhzZ6vZFixaxePHiHo5GRET6AvUt4qTESUREREREpB0er4FYXl7O448/zi233ML06dMZOXIkS5YsafXYuro6/v73v/Od73yH8ePHM2XKFK677jotbikiIiIiIt3K43OciouLWbVqFaNGjeLiiy/m9ddfb/U4m83GokWL2Lp1Kz/+8Y+ZOHEiVVVV7Nq1i6qqqh6OWkRERERE+hOPJ05JSUls3rwZwzAoLCxsM3F66aWX+PLLL1m5ciXp6emN2y+44IKeCVRERERERPotjydOHV11+8UXX2TKlCnNkiYREREREZGe4PHEqSNycnI4efIkF154IX/+85/55z//SXFxMUOGDOHHP/4xV1xxhUvvZ7fbqa+vx2KxdDhxExGRrnM4HNjtdnx8fLBYPD7NttdQvyQi4jkd7Zu8InHKy8sD4M033yQhIYEHHniA0NBQVq1axb333ktdXR3XXHNNh9+vvr6ejIyM7gpXRETakZaWhp+fn6fD6DXUL4mIeF57fZNXJE52ux2AmpoaVqxYQVJSEgCzZs3iyiuvZNmyZS4lTs5McsyYMVitVpfjsdls7Nmzp9Pnezu1X+1X+9X+rv7+1N2m5pzfR1paWqe/14yMjE6f7+3UfrVf7e+/7YeufwfO89vrm7wicYqIiABg6NChjUkTmPOjzj//fJYvX05BQQHR0dEdej/nMAg/P79Of7ldOd/bqf1qP6j9an/Xfn9qOFpzzu/DarV26b+rrp7v7dR+tV/t77/th65/B+31TV5xyS85OZnAwMBW9znX71UnLCIiIiIi3cUrEicfHx8uuugiDh8+zIkTJxq3OxwO1q1bR3JyMlFRUR6MUERERERE+rJeMVTviy++oKqqioqKCgAOHTrEmjVrAJg7dy6BgYHceeedfPnll/z4xz9m8eLFhISE8Prrr7Nv3z6efPJJD0YvIiIiIiJ9Xa9InB566CFOnjzZ+POaNWsaE6e1a9cycOBAkpOTeeWVV3jiiSd44IEHqK+vZ/To0Tz99NPMmzfPU6GLiIiIiEg/0CsSp08//bRDx40YMYLly5d3czQiIiIiIiLNecUcJxEREREREU9S4iQiIiIiItIOJU4iIiIiIiLtUOIkIiIiIiLSDiVOIiIiIiIi7VDiJCIiIiIi0g4lTiIiIiIiIu1Q4iQiIiIiItIOJU6uOrUXyytXEly0x9ORiIiIAGDs+hepm34D1aWeDkVEpM9S4uSqzM8wDn9G3OF/eToSERERAIyMVUTkfY2x721PhyIi0mcpcXJVzAgAgkoOeTgQERERk6OhbyI3w7OBiIj0YUqcXJU4HgD/ihNQW+7hYERERIAEs28ycnd6OBARkb5LiZOrQuJwhCZi4IC8XZ6ORkREBEdD4kTuLrDbPBuMiEgfpcSpMxLSADA0JEJERHqD6GHYrAEYdRVQeNjT0YiI9ElKnDrBEW8mTmhIhIiI9AYWK1VhQ83XOTs8G4uISB+lxKkTHI1jyXXHSUREeofK8OHmi5ztHo1DRKSvUuLUGYkTzOdTe6G+1rOxiIiI0DRx0mgIEZHuoMSpM8IHUe8bimGvg9N7PR2NiIgIlWHDzBc5O8Dh8GwwIiJ9kBKnzjAMKsNSzde6siciIr1AdehgHBZfqC6GkuOeDkdEpM9R4tRJVc4hESoQISIivYDD6gexo8wfVCBCRMTtlDh1UmW4c0iEEicREekdHA2LtKtvEhFxPyVOndSYOOVmaLFBERHpHZwL4eqOk4iI2ylx6qTq4GQcPoGgxQZFRKSXcC6XoWHkIiLup8SpsyxWiB9jvtaVPRER6Q3ixwEGlOVA+SlPRyMi0qcoceoCXdkTEZFexS8YYrSek4hId1Di1BUJaeazOicREektnIu052z3aBgiIn2NEqcuaHbHSYsNiohIb6DRECIi3UKJU1fEjQHDCpUFUHrS09GIiIg0ueOk+bciIu6kxKkrfAKaLDaoK3siItILOIeRFx2FqmJPRiIi0qcoceqqRA2JEBGRXiQoCiKSzde5GZ6NRUSkD1Hi1FUJWqVdRER6Gc1zEhFxO48nTuXl5Tz++OPccsstTJ8+nZEjR7JkyZJznuNwOPjhD3/IyJEjefjhh3so0jbojpOIiPQ2ienms+Y5iYi4jccTp+LiYlatWkVtbS0XX3xxh8555ZVXyMrK6ubIOsg5lrzkOFQWejYWEREROHNRT4mTiIjbeDxxSkpKYvPmzbz88svcdddd7R5/4sQJnnjiCR588MEeiK4DAsIhcoj5Wh2UiIj0Bs7KevkHoLbSs7GIiPQRHk+cDMPAMIwOH//f//3fzJo1i0suuaQbo3KRhuuJiEhvEpoAwXHgsEPebk9HIyLSJ3g8cXLF66+/zs6dO3nggQc8HUpzKhAhIiK9jfOuU65GQ4iIuIOPpwPoqLy8PP7whz/wq1/9ivj4eLe8p81m69J5jefHj8MKOHJ2YO/ke3qTFu3vZ9R+tb/pc3/T1fb31+/NIxLHw6GPNYxcRMRNvCZxevDBBxk1ahTXXHON294zI6Nr61s4z/epsTIBoOAQO7dswO4T2PXgvEBXvz9vp/ar/f1Zf2+/V3DecdJoCBERt/CKxGnNmjWsW7eOV199lbKysmb76urqKC0tJTAwEF9fX5feNy0tDavV6nI8NpuNjIyMZuc71idglOcyPt4Cg9Jdfk9v0lr7+xO1X+1X+zvffuf50gOcw8hP7QFbHVhd6yNFRKQ5r0icDh48SH19fat3m1atWsWqVatYtmxZh8uZO1mt1i794dPs/MTxcDAX66ndMHhmp9/Tm3T1+/N2ar/ar/b33/Z7hcjB4B8ONSVwet+Z5TNERKRTvCJxuuKKK5g6dWqL7TfccAMXX3wxN9xwA8OHD/dAZE0kjIeDH2ksuYhIH7Bhwwbefvtttm3bRm5uLqGhoYwbN4477riDcePGNR5377338uabb7Y4f8iQIaxZs6YnQ27JMMyLekfXmX2TEicRkS7pFYnTF198QVVVFRUVFQAcOnSoscOZO3cuAwcOZODAga2eGx8fz7Rp03os1japJLmISJ+xcuVKiouLueGGGxg2bBiFhYX8/e9/59prr+WZZ55hxowZjccGBATwwgsvNDs/ICCgp0NuXeKEhsRpJ0z0dDAiIt6tVyRODz30ECdPnmz8ec2aNY2J09q1a9tMmnoV5yTcvD1QXws+fp6NR0REOu3BBx8kOjq62bbZs2czf/58li9f3ixxslgspKen93CEHdRYIEKjIUREuqpXJE6ffvppp87bv3+/myPpgogUCAiH6oax5M47UCIi4nXOTpoAgoODSU1NJScnxwMRdZKzQERuBtjtYPGq5RtFRHqVXpE49QmGYXZQR9eZw/WUOImI9CllZWXs2bOH6dOnN9teXV3NrFmzKCwsJDY2losvvpif//znREREuPwZbltf0ClyKBafQIy6CmynD0CMh+cDdxOtr6b2N33ub/p7+6Hn1hhU4uROzsRJY8lFRPqchx56iKqqKm6//fbGbaNGjWLUqFGNBYo2bdrECy+8wIYNG/jnP/9JcHCwS5/hrvUFmxoZOoSQoj1kbXyHoqQLu/T+vV1/L3Wv9qv9/V13fwdKnNxJBSJERPqkJ598knfeeYcHHnigWVW9m266qdlxs2bNYsyYMfz85z/n9ddfb7G/Pe5cX9DJyJkBW/Yw2L+ElN46F6uLtL6a2q/299/2Q8+tMajEyZ2ck3A1llxEpM9YunQpTz/9NL/4xS/40Y9+1O7xl1xyCUFBQWzfvt3lz3Lr+oJODX2TJXcn9PE/qvr7+mJqv9rfn9sP3f8d6C97d4oeDj4BUFsOhYc9HY2IiHTR0qVLWbJkCYsXL242RK89DocDS2+5eNZ4UW8nOByejUVExIv1kt/qfYTVB+LHmq9zVfpVRMSbLVu2jCVLlvDTn/6URYsWdfi8NWvWUFVVxYQJE7oxOhfEjQaLD1QVQclxT0cjIuK1NFTP3RLGw8mtZoGIcVd6OhoREemE5557jqeeeorZs2dzwQUXtBh2l56ezsmTJ7n77rtZuHAhycnJGIbB5s2beeGFFxg+fDhXX321Z4I/m4+/mTzlZph9U0SypyMSEfFKSpzcTQUiRES83meffQbAunXrWLduXYv9+/fvJyQkhJiYGP7+979TUFCAzWYjKSmJ66+/nttvv52goKCeDrttCRMaEqcdMPoyT0cjIuKVlDi5W9NV2h0Oc30nERHxKi+99FK7x4SHh7N06dIeiMYNEifA9pd1UU9EpAs0x6kTymvq294ZNxYMK1QWQGl2zwUlIiLSFudoiBzNvxUR6SwlTi76aHcuEx7+hDWZla0f4BsAsSPN17qyJyIivUH8OMCAshwoP+XpaEREvJISJxcVVtQCsP54ddsHJTiv7ClxEhGRXsA/BKKHma/VN4mIdIoSJxdNTokE4GBhLXU2e+sHqUCEiIj0No3rOWm4nohIZyhxclFqbAhhAT7U2mBvTlnrBzUtECEiItIbaJ6TiEiXKHFykcViMCnZvOu09VhR6wclpJnPJcehsrCHIhMRETmHxot6Gg0hItIZSpw6YXJKBADfZBW3fkBAOEQONl9ruJ6IiPQGzvm3RUegusSzsYiIeCElTp3gnOe0NasIh8PR+kEqECEiIr1JUBSEJ5uvczM8G4uIiBdS4tQJ45PCsRqQV1bDiaKq1g9SgQgREeltNM9JRKTTlDh1QqCflSERvgB809Y8p8R081mdk4iI9Baa5yQi0mlKnDppVIyZOG052laBiIarevkHobaih6ISERE5B1V9FRHpNCVOnTQqxg+ALVltJE6h8RASDzggb3fPBSYiItKWxot6+6G20rOxiIh4GSVOnTQy2rzjtD+3lLLqutYPStBYchER6UVCEyA4Dhx2OLXH09GIiHgVJU6dFBVoZWBkIHYHbD9e3PpBKhAhIiK9iWE0KRCx3aOhiIh4GyVOXTA5OQLowDwnTcIVEZHeQgUiREQ6RYlTFzRdz6lVzs7p1B6wtTGcT0REpCdpGLmISKcoceoCZ+K07VgR9TZ7ywMiB4N/ONhq4fS+ng1ORESkNbqoJyLSKUqcumB4XAih/j5U1NrYn1fW8gDDgIQ087WGRIiISG+gi3oiIp2ixKkLrBaD9IZ5Tm0P11OBCBER6UWaFYhQ3yQi0lFKnLpoSkoUoAIRIiLiRTTPSUTEZUqcumjK4A4WiMjdCfZW5kGJiIj0tKZ9k4iIdIhPZ046ePAg33zzDXl5eVRXVxMZGcmwYcM477zzCAkJcXeMvdqEQRFYDDhZXEVOSRWJ4YHND4gZAT4BUFsORUcgOtUzgYqIiDg1DiPPMC/qWXQdVUSkPR1OnEpKSnjttdd47bXXyM7OxuFwtHwzHx/mzJnD9ddfz4wZM9waaG8V4u/D6MQwdmeXsjWriMvGn5U4WX0gbgxkf2MOiVDiJCIinhY9HHwCzYt6hYchZpinIxIR6fU6lDi9+OKLLFu2DIBvf/vbTJ06lbFjxxIVFYW/vz8lJSUcP36c7du3s3btWm655RZmzpzJf//3f5OSknLO9y4vL+evf/0r+/btY8+ePRQVFbFo0SIWL17ceIzNZuPFF1/k3//+NwcPHqSkpIQBAwZw0UUX8ZOf/ISwsLAufAVdNyUlkt3ZpWw5WsRl4we0PCBxvJk45e6Ecd/v+QBFRESasvpAwjg4sRlytitxEhHpgA7dm3/ppZe47777+Pe//82DDz7It771LZKTkwkJCcHX15eYmBgmTpzIzTffzMsvv8yHH35IXFwcH3zwQbvvXVxczKpVq6itreXiiy9u9Zjq6mqWLFlCUlISv/nNb1ixYgXXXHMNq1at4j/+4z+orq52rdVuNnmwWSCizXlOKhAhIiK9TYKqvoqIuKJDd5w++OADfHw6Ph0qOTmZRx99FJvN1u6xSUlJbN68GcMwKCws5PXXX29xTEBAAGvXriUyMrJx27Rp00hMTOTOO+/kww8/5PLLL+9wfO7mXAh3T04plbX1BPmd9V0lppvPOTvA4TBLwYqIiHiSs0CEKuuJiHRIh+44HTx4sFNvbrVa2z3GMAyMdhIJq9XaLGlyGj/evFqWm5vbqfjcJSkikMTwAGx2B9uPF7c8IH4MGFaozIeynB6PT0REpIWmazm1Mm9ZRESa61DidMUVV/D973+fV199lbKysu6OqcO+/vprAIYN8/zYbOddp62trefkG2hW1wMN1xMRkd4hbgxYfKCqEEpOeDoaEZFer0Pj72677TbeeustHn74Yf7whz9wySWXcNVVVzF9+vTujq9NeXl5PPHEE4wbN4558+Z16j06MpTwXOc1PX9ScgTv7sxh89HCVt/XSEjDcnov9uztOIZd0qnP7S1aa39/ovar/U2f+5uutr+/fm+9ko8/xI6GvAxzuF7EIE9HJCLSq3UocfrFL37Bf/3Xf7Fu3TreeOMNPvroI9577z0GDBjAlVdeyRVXXEFiYmJ3x9qouLiYW2+9FYfDwZNPPomlk+tPZGRkdCmOpueHVNcBsOVoAd9s24blrOGHcbZoBgEl+9dxOMy7Eyenrn5/3k7tV/v7s/7e/j4jcYKZOOXuhNGXeToaEZFercMVHwzDYM6cOcyZM4fS0lLefvtt3njjDZ566imWLVvG9OnTufrqq7nooovw9fXttoBLSkq45ZZbyMvL44UXXmDQoM5fIUtLS+vQPKyz2Ww2MjIymp0/zmbnd1+upbLWRvCAYYyMD21+UkQ57HmaiKos0tPTOx1zb9Ba+/sTtV/tV/s7337n+dJLJI6H7ahAhIhIB3S8VF4TYWFh/OhHP+JHP/oR+/bt41//+hfvvvsuv/jFL4iIiGDDhg3ujhMwk6abb76ZEydO8PzzzzNq1KguvZ/Vau3SHz5Nz7daraQPimB9ZgHbjpcwZkBE84MHmNWLjJLjWGtKICiq05/bW3T1+/N2ar/ar/b33/b3GY2V9TT/VkSkPZ0b49bEqFGj+O53v8uFF14ImMPouoMzaTp+/DjPPvssY8aM6ZbP6Yop5yoQERgBEQ2LAefqaquIiPQC8eMAA8qyofy0p6MREenVOnXHCaCwsJC3336bf/3rXxw6dAir1cq8efO46qqrXH6vL774gqqqKioqKgA4dOgQa9asAWDu3LkYhsF//ud/smfPHn7zm99gs9nYvn174/lRUVEkJyd3tiluM8mZOB1rYyHcxPFQnGWOJR86twcjExERaYV/CEQPg4KDkLsDhrW+EL2IiLiYONntdr788kv+9a9/8fnnn1NXV8fgwYO56667uOKKK4iJielUEA899BAnT55s/HnNmjWNidPatWuBMxORf//737c4/4orruCxxx7r1Ge706SUSAwDsgoqOV1WQ2yof/MDEibA3nc0JEJERHqPxPFm4pSjxElE5Fw6lDgdOXKEf/3rX7z11lvk5+cTEBDAZZddxpVXXsmUKVO6HMSnn37a7jH79+/v8ud0t7AAX0bGh7Ivt4ytWYVcOu6sSoNapV1ERHqbxAmw61+6qCci0o4OJU7f+ta3ABg/fjyLFy9m4cKFBAcHd2tg3mpySiT7csvYcrSolcSpYZX2goNQWwl+QT0foIiI9DkvbMjipX/n8+rQahIjXeyfExr6Jl3UExE5pw4Vh7jxxht55513WLVqFddcc42SpnOYfK55TqEJEBwHDjvk7e7hyEREpK/akFnAkeJ63tmZ4/rJztEQRUegusS9gYmI9CEdSpzuu+8+hg8f3mL74cOH2bp1K5WVlW4PzFtNSTHLjO86WUJ1na3lAc67Trm6siciIu7hvGi34XCh6ycHRUF4w5qIqvoqItKmTpUjX716NXPmzGHhwoX86Ec/4siRIwDceeedrFq1yq0BeptBUYHEhvpTZ3Ow80QrV+4ah0RoLLmIiLjHzNRoADYdKaTOZnf9DbSek4hIu1xOnD744APuvfdexowZwwMPPIDD4WjcN3bsWD744AO3BuhtDMNoXM9pS1YrV/5UIEJERNxsdEIoIb4GFbW21i/atUd9k4hIu1xOnFasWMH3v/99/va3v3Httdc22zd06FAOHTrktuC8lXPIxDdZrcxzcg7VO7UHbHU9GJWIiPRVFovB2Dg/ADZk5rv+Bs7RELm64yQi0haXE6fMzEwWLlzY6r6IiAiKi4u7GpPXaywQkVXU7I4cABGDwT8MbLVwuveXWBcREe8wPs5cO/CrQwWun+y843R6n1n1VUREWnA5cQoMDKSsrKzVfXl5eYSHh3c5KG83dkA4/j4WiirryDxd0XynxQIJaeZrXdkTERE3Gddwx2nrsaLWixOdS2gCBMeaVV9P7emG6EREvJ/LidPEiRN55ZVXWt5JAd544w2mTp3qlsC8mZ+PhQmDIgDY2to8JxWIEBERN0sKtRIX6k9tvb31oeLnYhia5yQi0g6XE6c77riD7du3c9VVV/HSSy9hGAYfffQRt99+O1u2bOH222/vjji9jnO43pajrc1zUuckIiLuZRhGY3W9r7oyz0l9k4hIq1xOnNLS0vi///s/Kisreeyxx3A4HCxfvpwjR46wYsUKRowY0R1xep0p51oIt3Etpwywd6JsrIiISCtmDDXXElyf2YV5ThpGLiLSKp/OnDR9+nQ++OADjh07Rn5+PpGRkQwZMsTdsXk15x2nw6crKKyoJSrY78zOmBFg9YfaMnOl9uhUD0UpIiJ9yYyh5h2nnSdKKKuuIzTAt+MnOy/q5e02q75aXThXRKQf6NQCuE7JyclMmjRJSVMrIoL8GBYXApjV9Zqx+kL8GPO1ruyJiPQ6GzZs4L777uPSSy8lPT2d2bNn89Of/pRdu3a1OHb37t3cdNNNTJw4kSlTprBo0SKOHz/ugaghKTKQlOggbHYHm460Msf2XCKHgH+4qr6KiLShQ4nT+++/7/Ib5+XlsXXrVpfP60smJ59jIVwViBAR6bVWrlzJyZMnueGGG1ixYgW//e1vKSws5Nprr2XDhg2Nx2VmZnL99ddTV1fHk08+ySOPPMLRo0f5wQ9+QGGhi4mLmzjnObk8XM8wzlR91TwnEZEWOpQ4Pfzww1x++eW8/vrrlJeXn/PYXbt28dBDD7FgwQL27dvnliC91eTB51oIVwUiRER6qwcffJAXX3yRH/zgB0ydOpVLL72U5557joiICJYvX9543FNPPYWfnx/Lly9n7ty5zJ8/n+XLl1NUVMSzzz7rkdhnpsYA8NWhThSI0DwnEZE2dWiO08cff8ySJUv4/e9/z8MPP8yYMWMYM2YM0dHR+Pn5UVJSwvHjx9m+fTunT59m+PDhLFmyhNmzZ3d3/L2as0DEjhMl1NTb8PexntnZtHNyOMwrfSIi0itER0e32BYcHExqaio5OTkA1NfX8/nnn3P55ZcTEhLSeFxSUhLTpk3jk08+4Ve/+lWPxew0vWGe077cMgrKa4gO8e/4yYmqrCci0pYOJU6hoaH85je/4Y477uCNN97giy++YPXq1VRVVTUeM2jQIGbPns13vvMdpk+f3m0Be5MhMcFEBftRWFHLrpOljQUjAIgbA4YFKk5DWS6EJXouUBERaVdZWRl79uxp7OOOHTtGdXU1I0eObHHsiBEj+Oqrr6ipqcHf34XExQ1iQ/0ZGR/K/rwyvj5cyMLxLvQvjRf1Gqq+Wro0FVpEpE9xqapeeHg4N998MzfffDNgdiLV1dVERETg66vqO2czDINJyZF8sjePrVmFzRMnvyCzut7pfeZdJyVOIiK92kMPPURVVVXjeoXFxcUAREREtDg2IiICh8NBSUkJcXFxHf4Mm83Wqdic5zmfZ6RGsT+vjH8fPM2lYzv++UQOxeITgFFbji3/IEQP61Q8Pe3s9vc3ar/a3/S5P+rqd9DR8zpVjtwpNDSU0NDQrrxFnzdlsDNxamWeU8J4M3HK2QkjFvR8cCIi0iFPPvkk77zzDg888ADjxo1rts84x1Drc+1rTUZGRqfiO/v8BKMagM/3ZrN9cJ1L7zEyZAghxXvJ+vodipLmdSmentbV78/bqf1qf3/X3d9BlxInaV/jQrhZRTgcjuadaOIEyFgFOds9E5yIiLRr6dKlPP300/ziF7/gRz/6UeN2552moqKWF8aKi4sxDIOwsDCXPistLQ2r1dr+gWex2WxkZGQ0nj90ZB2Pr19LTrmNuMEjGRAR2OH3MrKnw9a9DPYvISU93eVYPOHs9vc3ar/a35/bD13/Dpznt0eJUzcblxSOn9VCfnktWQWVDI4JPrPTOQlX1YtERHqlpUuXsmTJEhYvXtw4RM8pOTmZgIAADhw40OK8AwcOkJKS4vL8JqvV2qU/fJznR4ZYSRsYwY7jxWw8WsxVk0PaP9lpQDpsBUteBnjZH2Fd/f68ndqv9vfn9kP3fwea9dnNAnytjEsyrzhuOXu4nnO9jOJjUNXKUD4REfGYZcuWsWTJEn7605+yaNGiFvt9fHyYN28eH3/8cbOlOrKzs9m4cSOXXHJJT4bbwpn1nFwsS57QpLKew+HmqEREvJcSpx4wZXAUQMt5ToGREJFsvs7VuFQRkd7iueee46mnnmL27NlccMEFbN++vdnDafHixY0FI7744gs+/vhjbrvtNiIjI7nllls81wDOJE4bMgtwuJIAxY0Biw9UFULpyW6KTkTE+2ioXg+Y3DjPqZVV5BPGm3eccnbCkDk9HJmIiLTms88+A2DdunWsW7euxf79+/cDkJqayksvvcSf/vQn7rzzTqxWK9OnT2fZsmVERUX1aMxnm5IShZ/VQk5JNUfyKxga28Hher4BEDsa8jLMu07hA7s3UBERL+Fy4vT//t//44c//CFDhw7tjnj6JGfidCCvnJLKOsKDmpRuT5wA+97VPCcRkV7kpZde6vCx48aN4/nnn+++YDop0M/KxOQINh4pZH1mQccTJzDn4DoTp1ELuy9IEREv4vJQvdWrV7Nw4UJuvvlmPvnkE9du//dTMSH+DGkoCvHNsbOG6zkXG9Qq7SIi4mazhsUAnZjn1Ng36aKeiIiTy4nTunXruP/++zl9+jSLFi3iwgsvZMWKFRQWtjIMTRpNSj5TlrwZ5yTc/ANQW9nDUYmISF/WdJ6T3e7Chc6mBSJERAToROIUFBTED3/4Q959913+/ve/M3bsWP73f/+XCy64gHvvvVeLb7VhymAzcdpy9jyn0AQIjgWHHU7t8UBkIiLSV40fGEGQn5Wiyjr25ZZ1/MSEcYABZdlQfrrb4hMR8SZdqqo3Y8YMli5dytq1a5k4cSJvvfUW11xzDVdffTWffvqpu2LsE5wL4W4/XkydzX5mh2Hoyp6IiHQLPx8LU4eYRSpcGq7nHwrRqebrXPVNIiLQxcSpurqa119/ndtvv52NGzeSmprKHXfcgc1m44477mDZsmXuitPrpcaGEB7oS3WdnT3Zpc13aiFcERHpJmfWcypw7UTNcxIRaaZTidOxY8d49NFHmTNnDg8++CAJCQk899xzvPvuuyxatIg33niDW2+9lZdfftnd8Xoti8VgUnIE0Mo8JxWIEBGRbjIz1SwQsfFwQfMRD+3RaAgRkWZcTpx+/OMfc+mll/LPf/6Tyy+/nDVr1vC3v/2NmTNnNjtu3rx5FBUVtfEu/VObC+E6O6e8PWCr6+GoRESkLxuTGEZ4oC8VtTZ2nijp+InOi3oaDSEiAnQicTp+/Dj33XcfX375Jb/97W9JTk5u9bjhw4fz4osvtvt+5eXlPP7449xyyy1Mnz6dkSNHsmTJklaP3b17NzfddBMTJ05kypQpLFq0iOPHj7vaBI9xrue0JauweRn3yCHgFwq2GrO6noiIiJtYLAYzhjqr67kwz8mZOBUehmoXEi4RkT7K5cTpww8/5Prrryc4OPicx4WEhDB16tR236+4uJhVq1ZRW1vLxRdf3OZxmZmZXH/99dTV1fHkk0/yyCOPcPToUX7wgx94TSn0CQMj8LEY5JXWcKKo6swOiwUS0szXGksuIiJuNnNYJ+Y5BUVB+CDzde6ubohKRMS7dKk4hDskJSWxefNmXn75Ze666642j3vqqafw8/Nj+fLlzJ07l/nz57N8+XKKiop49tlnezDizgv0szJ2QBjQ2kK4KhAhIiLdwznPaUtWEdV1to6fqHlOIiKNfFw94cILL8QwjFb3WSwWQkNDSUtL44YbbiA1NbXd92vrvZqqr6/n888/5/LLLyckJKRxe1JSEtOmTeOTTz7hV7/6Vccb4UGTU6LYcaKELUeLuDw96cwOFYgQEZFukhobTFyoP6fKavgmq4iZw2I6dmLiBNj/ni7qiYjQiTtOU6dOxeFwkJeXR1JSEhMmTGDAgAHk5eVhs9lITEzk448/5sorr3TbYrjHjh2jurqakSNHttg3YsQIsrKyqKmpcctndbczC+G2USAiNwPsLlQ9EhERaYdhGMxqSJZcGq6XqDtOIiJOLt9xOv/889m+fTsff/wxiYmJjduzs7O55ZZbuPjii3nssce4/vrrWbJkCStWrOhykMXFxQBERES02BcREYHD4aCkpIS4uDiX3tdmc2G4Qivndeb89IHmUL39uaUUV9QQGtDwTxA1DIvVH6OmFFvBYYga0qnYekJX2t8XqP1qf9Pn/qar7e+v31tvMCM1mje3neSrzHx+ScsLka1yjoY4vR/qqsA3sPsCFBHp5VxOnP72t7+xePHiZkkTwIABA7jjjjv461//yhVXXMFNN93EI4884rZA4dzD+joy5O9sXb0j1tnz44KsnKq08cYXW5kQ79+4fVRICsElBzj69dsUD5jbpdh6grvuKHortV/t78/6e/u9kXMh3J0nSiirriM0wLf9k0ITISgGKvPNJTMGTu7mKEVEei+XE6esrKxm84yaCgsL4+TJk4A5/6iqqqrV41zlvNPU2rpQxcXFGIZBWFiYy++blpaG1Wp1+TybzUZGRkanz59xYAdv7cih2CeK9PThjduNE9Ng2wGGBJThSE93+X17Slfb7+3UfrVf7e98+53nS88bGBlESnQQWQWVbDpSyEWj49s/yTDMu06ZayF3hxInEenXXE6cBgwYwJtvvsncuS3viPzrX/9qvBNVXFxMeHh41yMEkpOTCQgI4MCBlmscHThwgJSUFPz9/Vs589ysVmuX/vDp7PlThkTz1o4cvjlW0vz8Aemw7SUseTvBC/4g6+r35+3UfrVf7e+/7fdWM1OjySqoZH1mQccSJziTOGmek4j0cy4Xh/jP//xP1qxZw3XXXcfzzz/Pu+++y/PPP891113Hxx9/zI9//GMANm7cyLhx49wSpI+PD/PmzePjjz+mvLy8cXt2djYbN27kkksuccvn9JQpDQvhbjtWRL2tSSGIBGdlPVUvEhER95uRqgIRIiKd5fIdp2uuuQaHw8GSJUt47LHHGrfHxMTw0EMPcfXVVwNw++234+fn16H3/OKLL6iqqqKiogKAQ4cOsWbNGgDmzp1LYGAgixcv5qqrruL222/n1ltvpba2lqeeeorIyEhuueUWV5vhUSPiQwn196Gspp79eWWMHdBwZy5+LBgWqDgFZbkQmuDZQEVEpE+ZMdSc57Q3p5SC8hqiQzowWsNZICJvD9jqwNqBuVEiIn2QS4mTzWbj2LFjfOtb3+Kaa67h8OHDFBcXExERwdChQ5sVaIiJ6eAaEcBDDz3UODcKYM2aNY2J09q1axk4cCCpqam89NJL/OlPf+LOO+/EarUyffp0li1bRlRUlCvN8DirxSA9OYJ1B/PZmlV0JnHyC4Lo4ZC/37zrpMRJRETcKDbUn5HxoezPK+Prw4UsHJ/Y/kkRg8E/DGpKzep6Ce4ZTSIi4m1cSpwcDgcLFy7k6aefZu7cuR1a4LYjPv300w4dN27cOJ5//nm3fKanTUmJYt3BfLYcLeKGGYPP7EgcbyZOuTtgxHyPxSciIn3TjNRo9ueVsT4zv2OJk8VirjWY9W9zIVwlTiLST7k0x8nHx4eYmBgcDkd3xdNvOBfC3Xr2QrjOIREaSy4iIt1AC+GKiHSOy8UhFi5cyOrVq7shlP5lwqAILAacLK4ip6RJ2fYEZ+ekAhEiIuJ+U4dEYTHgSH4F2cUdXDYkUcWLRERcLg4xatQo3n//fW644Qbmz59PbGxsi8Vn58/XELP2hPj7MDoxjN3ZpWzNKuKy8Q2rsSekmc/FWVBVDIERngpRRET6oPBAX9IGRrDjeDEbMgu4cvLA9k9yXtTL3Ql2uzl8T0Skn3E5cbrnnnsAyMvLY9OmTS32G4bB3r17ux5ZPzAlJZLd2aVsOVrEZeMHmBuDoiA8GUqOQW4GDJnt2SBFRKTPmZkazY7jxXyVmd+xxClmBPgEQG05FB2BaPfMcRYR8SYuJ04vvvhid8TRL00eHMULG7Jamec0viFx2qnESURE3G5majRPf57JhswCHA5Hi5EjLVh9zCUzTm6FnO1KnESkX3I5cZo6dWp3xNEvTW5YCHdPTikVNfUE+zf8cyROgH3vahKuiIh0iykpUfhZLeSUVHO0oJIhMcHtn5Q4oSFx2gnjruz+IEVEeplOD1IuKytj3bp1vP3225SUlLgzpn4jKSKQxPAAbHYHO04Un9mhAhEiItKNAv2sTEyOAOCrQ/kdOylBlfVEpH/rVOK0bNkyZs+eza233so999zDiRMnALjxxhtZsWKFWwPs65x3nbYebTJcz1n2Nf8A1HWw4pGIiIgLZqaaZck3dLQsubOyXu5O0LIkItIPuZw4vfLKKyxbtoyrrrqK5cuXN1vTad68eXz++efujK/Pm9KQOG1pOs8pNBGCYsBhg7w9HopMRET6slnDogFYn5mP3d6BRChuDBhWqCyA0pPdHJ2ISO/TqcTppptu4v777+f8889vti8lJYWsrCy3BdcfTE6JAuCbY0VnOi7DOHPXKVdDIkRExP3GD4wgyM9KUWUd+3LL2j/BNwDiRpuvNZRcRPohlxOn48ePM3t265XegoODKS0t7XJQ/cnoxFCC/KyUVddz8FT5mR2Niw0qcRIREffz87Fw3mDz4t36TM1zEhFpj8uJU2hoKPn5rf+CPXnyJNHR0V0Oqj/xsVpIHxQBwJaswjM7VCBCRES62Znhei7Oc1LiJCL9kMuJ04wZM3jmmWeorKxs3GYYBvX19axcubLF8D1p35RWC0Q0dE6n9oCt3gNRiYhIX+csELHxcAF1Nnv7JzQtECEi0s+4nDj9/Oc/Jzs7m4ULF/LYY49hGAYvv/wyV199NVlZWfzsZz/rjjj7tEmtFYiIHAJ+oVBfbVbXExERcbPRiWGEB/pSUWsj42QHlhZJGAcYZnGIig4O7xMR6SNcTpxSUlJYuXIlQ4cOZeXKlTgcDt566y0iIyN59dVXGTBgQHfE2adNSonEMOBYYSWnyqrNjRZLQweFruyJiEi3sFoMZgxtGK7XkfWc/EMhOtV8reF6ItLPdGodp2HDhvHss8/yzTff8MUXX7B161aee+45UlNT3R1fvxAW4MvI+FAAvslqZbieOicREekmM12d56QCESLST3UqcXLy8/MjPj6egIAAd8XTbzkXwt3SdJ6TCkSIiEg3c85z2pJVRHWdrf0TNM9JRPopn86cdOLECT744AOys7Oprq5uts8wDB555BG3BNefTE6J5JWNx5rPc2pcyynDXKXdMDwTnIiI9FmpscHEhfpzqqyGb7KKmDks5twnJOqOk4j0Ty4nTp9//jmLFi3CbrcTFRWFn59fs/2G/rjvlCkNC+Huzi6hus5GgK8VYkeB1Q9qSqDoKEQN8WyQIiLS5xiGwczUaFZvz2Z9ZkH7iVNCwx2nwsNQXQoBYd0fpIhIL+By4vSXv/yFSZMm8Ze//EVrNrnRoKhAYkP9OV1Ww84TJUwdEgVWX3OV9pwd5pAIJU4iItINZg6LYfX2bL7KzOeXjDz3wcHREDYQSk+YIyIGz+qZIEVEPMzlOU5ZWVnceuutSprczDCMxvWcmi2EqwIRIiLSzWammn36zhMllFXXtX+C5jmJSD/kcuI0YMCAZovfivtMbm0hXBWIEBGRbjYwMojkqCBsdgebjxa2f4LmOYlIP+Ry4nTbbbfx3HPPUVVV1R3x9GuNidOxIhwOh7lRV/VERKQHzGooS/7VoQ6UJW8cDaG+SUT6D5fnOGVkZFBQUMAll1zCtGnTiIyMbHHM/fff75bg+puxA8Lx97FQXFlH5ukKhsWFQPxYwIDyPCjLg9B4T4cpIiJ90IzUGFZuOt6x9ZycoyFO74O6KvAN7N7gRER6AZcTp5dffrnx9Xvvvddiv2EYSpw6yc/HwoRBEWw6UsjWrEIzcfILhpjhkH/AvOsUeomnwxQRkT5oxlDzjtPenFIKK2qJCvZr++CwARAUA5X5cGoPJE3uoShFRDzH5cRp37593RGHNJiSEsmmI4VsOVrEteclmxsTJ5iJU84OGK7ESURE3C821J+R8aHszytjQ2YBC8cntn2wYZjznDI/NfsmJU4i0g+4PMdJulfTeU6NEjQJV0REut+Mhup66zPz2z9Y85xEpJ/pUOK0efNmKioq2j2usLCQf/7zn10Oqj9zJk6HT1dQWFFrbnRWL1KBCBER6UazGha/3eDKPCdd1BORfqJDidMNN9xAZmZm4892u51x48axZ8+eZscdP36cBx54wL0R9jMRQX7m3CZga1bDXSdn51R0FKpLPBOYiEg/Ul5ezuOPP84tt9zC9OnTGTlyJEuWLGlx3L333svIkSNbPC699FIPRN11U4dEYTHgcH4FOSXtVM913nHK2w22Dqz9JCLi5To0x6mxNHaTn+vr61tsF/eYkhLJoVPlbMkq5JIx8RAUBeGDoOR4wyrt53s6RBGRPq24uJhVq1YxatQoLr74Yl5//fU2jw0ICOCFF15osc0bhQf6kpYUzo4TJaw/VMCVkwe2fXDkEPALhdoycx5u/NieC1RExANcLg4h3W9SSiT/2Hycb7LOmudUctwcS67ESUSkWyUlJbF582YMw6CwsPCciZPFYiE9Pb3ngutmM4fFmIlTZjuJk8ViDiXP+socrqfESUT6OBWH6IWmNMxz2nGihJp6m7mxcRKuxpKLiHQ3wzAwDMPTYXjEzCYFItodWaICESLSj3hV4rRnzx5+9rOfcf755zNhwgQuvfRSli5dSlVVO+OwvcyQmGCig/2orbez62SpuVEFIkREeqXq6mpmzZrF6NGjmTNnDg8//DDFxcWeDqvTpqRE4We1kFNSzdGCynMfrAIRItKPdHio3uHDh7FarQDYbLbGbWcf010OHTrEddddx5AhQ/jNb35DZGQkW7Zs4a9//Su7d+/m6aef7rbP7mmGYTApJZKP9+SxNavQrLTXuEr7fq3SLiLSS4waNYpRo0YxfPhwADZt2sQLL7zAhg0b+Oc//0lwcLBL7+fsX13lPK+z5zflZ4WJyeFsPFLEvw+cIjkyue2D48dhBRy5O7HX14Hhmeux7my/N1L71f6mz/1RV7+Djp7X4cTpvvvua7Ht17/+dbOfHQ5Htw1teOedd6ipqWHJkiUkJ5u/xGfMmMHp06d57bXXKCkpITw8vFs+2xMmNyZODfOcwgZAUDRUFmiVdhGRXuKmm25q9vOsWbMYM2YMP//5z3n99ddb7G9PRkZGl+Lp6vlOg4Pq2Ai8/81hxvgXtn2g3cZEix+W2nL2fvU+NSHnmBPVA9zVfm+l9qv9/V13fwcdSpweffTRbg2iI3x9fQEICQlptj00NBSLxdK4v69wznPamlV0JiFNGA+HPzPHkitxEhHplS655BKCgoLYvn27y+empaU1ju5whc1mIyMjo9Pnn60+oojXdm9kf6GN8eMnYLG0fVHU2DYOsr9hTGQdjrHpXf7sznB3+72N2q/29+f2Q9e/A+f57elQ4nTFFVe4HIC7fe973+OFF17gd7/7Hb/61a+IjIxk8+bNvPbaa/zwhz8kKCjI5ffsDUMi2jImIQQ/q0F+eS2HT5cxODoYI2E8lsOfYc/ejsODt2P7+y1htV/tb/rc3/TUcAhv53A4sFhcH7ZmtVq79IdPV893mpgSRZCflcLKOg6ermTMgLC2D06cANnfYMnLgPFXdfmzu8Jd7fdWar/a35/bD93/HXhNOfKBAwfyj3/8g0WLFnHxxRc3br/++uv57W9/26n37C1DItoyJMKH/QV1vLluJ/MGBxJZHcZQoOrw1+zrxJVMd+vvt4TVfrW/P+vv7T+XNWvWUFVVxYQJEzwdSqf5+Vg4b3AUXxw4zfrM/PYTJ1DxIhHp87wmcTpx4gQ//elPiY6O5qmnniIqKoodO3bw9NNPU1lZySOPPOLye/aWIRFtmZ2zj/3/PsppRyjp6eNgUAh88/8IKj9K+vhxYPHMP19/vyWs9qv9an/3D4foDb744guqqqqoqKgAzCJFa9asAWDu3LkUFhZy9913s3DhQpKTkzEMg82bN/PCCy8wfPhwrr76ak+G32WzhkXzxYHTbMgs4Mezh7Z9YGKTynoOB/TTMu4i0vd5TeL0xBNPUF5ezurVqxuH5Z133nlERkbym9/8hu9973tMnTrVpffsLUMi2nLekGie+fdRth0vNj8nZjj4hWDUlmMtOgxxo7vtszuiv98SVvvVfrW/b7f/oYce4uTJk40/r1mzpjFxWrt2LaGhocTExPD3v/+dgoICbDYbSUlJXH/99dx+++2dGkLem8xMjQFg45FC6m12fKxtDD2MGwuG1SxeVJoN4Uk9GKWISM/xmsRp7969pKamtuiI0tLSADh48KDLiVNvN7mhQMSBvHJKKusID/KF+HFw/GuzQISHEycRkb7s008/bfeYpUuX9kAknjE6MYzwQF9KqurYebKEScmRrR/oGwCxo+DUbvOukxInEemjvGYB3Li4OA4dOtQ4ZMLJWbUoPj7eA1F1r5gQf4bEmGuAfHOsoSx54yrtWmxQRES6j9ViMGNoNAAbMgvOfbDmOYlIP+BS4lRdXc11113H+vXruyueNt14440UFRVxyy238P7777Nhwwb+9re/8eijjzJs2DDmzJnT4zH1BOcVvi1ZDetoOMeSq3MSEZFuNnOYmTh9dSj/3Ac2neckItJHuZQ4BQQEcODAAY+Ma7/ooot4/vnnCQkJ4ZFHHuH222/nzTff5LrrruPll1/Gz8+vx2PqCVMGn1nPCTDXcgIzcXI4PBSViIj0BzNTzcRpS1YR1XXnKCXfOBpCF/VEpO9yeY7TxIkT2blzJ9OmTeuOeM5p+vTpTJ8+vcc/15OcC+FuP15Mnc2Ob+wosPhCdQkUZ0HkYM8GKCIifVZqbAhxof6cKqvhm2NFjQUjWogfZz6XnoCKfAhu4zgRES/m8hyne+65h9dee43Vq1e3mG8k7pcaG0J4oC/VdXb2ZJeCj9+ZohC6siciIt3IMIzGu07rD51jnlNAGESlmq81XE9E+iiXE6drr72W3Nxc7rvvPqZMmcLEiROZNGlS42Py5MndEWe/ZbEYTEqOAMyhEoAKRIiISI9x3mVan9nBeU6agysifZTLQ/UWLFiAocXtetSUwVF8tv8032QV8Z/nDzETp20vqXMSEZFu5ywQseNECWXVdYQG+LZ+YOIE2P2mLuqJSJ/lcuL02GOPdUcccg7O9Zy2ZBXicDgwnAUiNFRPRES62cDIIJKjgjhWWMnmo4VcOKqN5T9UIEJE+jivWcepP5swMAIfi0FeaQ0niqogfixgQHkulJ/ydHgiItLHdWieU0JD4lSYCdWlPRCViEjPcvmOk9OBAwfIzMykpqamxb7vfe97XYlJzhLoZ2XsgDB2nChha1YRgyYmQfQwKDhoXtkbfrGnQxQRkT5s5rAY/rH5OF+dayHc4GgIG2hW1svbBSkzey5AEZEe4HLiVFVVxU9/+lO+/vprDMPA0bCWUNN5T0qc3G9ySlRj4vS9iUnmkIiCg5CzXYmTiIh0qxlDzTtOe3NKKayoJSq4jbUTE8ebiVPODiVOItLnuDxU769//SsnT57k5ZdfxuFwsHTpUv7+979zySWXkJKSwptvvtkdcfZ7zoVwz1TWU/UiERHpGbGh/oyMDwXg68PnuOukeU4i0oe5nDitXbuWW2+9lYkTJwKQmJjIjBkzeOqppxg7diyvvvqq24OUMwUi9ueWUlZdByoQISIiPWhGwzynrw6doyx5Y9+kynoi0ve4nDidPHmSoUOHYrVaMQyDqqqqxn3f+c53WLt2rVsDFFN8WAADIwOxO2DbseIzV/WKjkB1iUdjExGRvs9ZIGLDueY5Ofum0/ugrroHohIR6TkuJ06hoaFUVlYCEB0dTVZWVuO++vr6xn3iflMa7jptzSqCoChzEi5A7i4PRiUiIv3BtKHRWAw4nF9BTklV6weFDYCgaHDY4NTung1QRKSbuZw4jRw5kqNHjwIwbdo0li9fzpYtW9i5cyfLli1j1KhR7o5RGkweHAU0JE7QZCy5hkSIiEj3Cg/0JS0pHDhHWXLD0DwnEemzXE6crrzySioqKgD4r//6L6qqqrj++uu59tpryc7O5t5773V7kGJy3nHadqyIeptdBSJERKRHzUiNAWD9uYbraZ6TiPRRLpcj//a3v934etCgQXz44YeNpcknTpxIRESEO+OTJkbEhxLq70NZTT37cssYpwIRIiLSg2YNi+ZvX2SyITMfh8PRbCmSRs47TrqoJyJ9jMt3nM4WFBTEhRdeyLx585Q0dTOrxSA9OQKAb44VnbnjpEm4IiLSA6akROFrNcguqeZoQRtzmhsTp11gq+u54EREulmXEyfpWVNSzHlOW44WQVgSBEY1TMLd4+HIRESkrwv0szIx2Rw2vj6zjbLkkUPALxRsNZB/oAejExHpXh0aqjdq1KjWb8e3wjAM9uzRH/HdxbkQ7tasojOTcA9/Zo4lT5rk4ehERKSvm5Uaw6Yjhaw/VMAPp6W0PMBigYQ0OLbeHEoeP7bngxQR6QYdSpzuuOOODidO0r0mDIrAYsDJ4ipySqpITBxvJk4aSy4iIj1g5rBo/vIJbDhcgN3uwGJpY57TsfXmRb30/+j5IEVEukGHEqfFixd3dxzSQSH+PoxODGN3dilbs4q4TAUiRESkB00YGEGQn5XCilr255UxOjGs5UGq+ioifZDmOHkhZ1nyLUeLzkzCzdsNdpsHoxIRkf7Az8fCeQ3rCn51qI15Tk3XcrLbeygyEZHu5XI58tWrV7d7zPe+971OhCIdNXlwFC9syDLnOV02E3yDoa4C8g9CnBYgFhGR7jUzNZovDpxmQ2YBP549tOUBMSPBJwBqy6DoCESn9nyQIiJu5nLi1NYCt03nQClx6l7OO057ckqpqLMTnJAGx782h0QocRIRkW42a5i5EO7GI4XU2+z4WM8awGL1gbgxkP2NOc9JiZOI9AEuJ05r165tsa2oqIi1a9fy/vvv85e//MUtgUnbBkQEkhgeQE5JNTtOFDMzcbyZOOXsgPHXeDo8ERHp40YnhhEe6EtJVR07T5YwqaFEeTOJE8zEKXcnjPt+zwcpIuJmLs9xSkpKavEYN24cd955J/Pnz+fFF1/sjjjlLJMb7jptPVoEjQUidngwIhER6S+sFoPpQ815ThsyC1o/KFF9k4j0LW4tDjFjxgw+/fRTd76ltKGxQERWUfPqRQ6HB6MSEZH+wjlcr82FcJsWiFDfJCJ9gFsTp5MnT2KxqFBfT5jSUNHom2NF2GNGgcUXqkug+JiHIxMRkf5gZmo0YFZ4ra5rpapr3FgwrFCZD6XZPRydiIj7uTzHafPmzS221dbWsn//fpYvX86MGTPcEpic26iEUIL8rJRV13OwoJaRcaPNO065OyGylZXcRURE3Cg1NoS4UH9OldXwzbEiZqbGND/ANwBiR8Gp3WbfFJ7kmUBFRNzE5cTp+uuvb1ZBD8DRcAt+5syZPPDAA+6JTM7Jx2ohfVAE6zML2JJVyMjE8WbHlLMDRn/H0+GJiEgfZxgGM1OjWb09mw2ZBS0TJzCHkp/abfZNI7/V80GKiLiRy4lTa8Uf/P39SUpKIiamlV+a0m2mpESyPrOArUeL+OHgCcDL5lhyERGRHjAzNYbV27P56lA+d88f2fKAxAmwY6X6JhHpE1xOnKZOndodcUgnTG6Y57QlqwhmNCkQISIi0gNmDjPnOe04UUJ5TT0h/mf9WaGqryLSh7hcyeHIkSNs2rSp1X2bNm3i6NGjXY1JOmhicgSGAccKKzkdPBwwoCwHyk97OjQREekHBkYGkRwVhM3uYNORVsqSJ6SZz6UnoKKNsuUiIl7C5cTpsccea3URXIDPPvuMxx57rMtBSceEBfgyMj4UgK05tWdWZs/VlT0REekZzup66w+1khgFhEHUUPO1+iYR8XIuJ04ZGRmcd955re4777zz2LVrV5eDOpctW7Zw6623ct555zF+/Hjmz5/PsmXLuvUzezPnQrhbjhY1WTNDnZOIiPSMmY3rObW1EK76JhHpG1xOnMrKyggKCmp1X0BAACUlJV0Oqi3vvPMO119/PaGhofzhD39gxYoV3HrrrY1V/fqjKYObLITbOJZc85xERKRnzBhq3nHak1NKYUVtywPUN4lIH+FycYj4+Hh27tzJzJkzW+zbuXMnsbGxbgnsbHl5efz3f/831157Lb/73e8at0+fPr1bPs9bTE42C0Tszi6h9uJx+IEKRIiISI+JDfVnRHwIB/LK+fpwAd9OS2x+gO44iUgf4fIdp4svvpgVK1bw9ddfN9u+ceNG/u///o9LLrnEbcE19frrr1NZWcmtt97aLe/vrQZFBRIb6k+dzcEu+2BzY+FhqC71aFwiItJ/ONdwWp+Z33KnM3EqzFTfJCJezeU7TnfccQf//ve/ufnmmxk8eDAJCQnk5uZy9OhRhg0bxuLFi7sjTjZv3kxERASHDx/mZz/7GQcPHiQ8PJxLLrmEX//614SEhLj8njabrVOxOM/r7PnuNjk5gjW789iQ42Bi2ACM0mxsOTsheUa3fF5va39PU/vV/qbP/U1X299fv7e+bmZqNM+vP9p6gYjgGAhLgtKTkLcLUlqOWBER8QYuJ06hoaG89tprPP/886xbt47s7GwiIyNZvHgxN954I8HBwd0RJ3l5eVRVVXHnnXdy2223kZ6eTkZGBkuWLOHgwYO8+uqrGIbh0ntmZGR0Kaaunu8uCT6VAHyakcUPAwcTUZpN9pb3OVUY2K2f21va7ylqv9rfn/X39ktz04ZGYzHgcH4FOSVVJIaf1f8kjDcTp5ydSpxExGu5nDgBBAcHc8cdd3DHHXe4O542ORwOampqWLRoET/5yU8AmDZtGr6+vjzyyCNs2LCh1XlX55KWlobVanU5FpvNRkZGRqfPd7voYp7f8TWZxXZCzz8f8taTZC1kQHp6t3xcr2t/D1P71X61v/Ptd54vfUt4oC9pSeHsOFHChswCvj9pYPMDEifAgQ80z0lEvFqnEicwq+tt376doqIi5s6dS3h4uDvjaiEiIgKA888/v9n2OXPm8Mgjj7B7926XEyer1dqlP3y6er67pA2MxN/HQnFVHadCRpEIWPIyoJtj6y3t9xS1X+1X+/tv+6WlGakx7DhRwleH2kicQMWLRMSruVwcAmDZsmXMnj2bW2+9lXvuuYcTJ04AcOONN7JixQq3Bug0cuTIVrc7S5FbLJ1qSp/g52NhwqAIALbUNHRWp/dBfY3nghIRkX5l1jCzLPmGzPyWy4QkNpQkP7UX6qp7ODIREfdwOdt45ZVXWLZsGVdddRXLly9v9stx3rx5fP755+6Mr9H8+fMB+PLLL5ttd/48YcKEbvlcbzGlYSHcL3P9ITAS7PVwao+HoxIRkf5iSkoUvlaD7JJqsgoqm+8MS4KgaHDY1DeJiNdyeajeK6+8wk033cSvf/3rFtWRUlJSyMrKcltwTZ1//vnMmzePZcuWYbfbSU9PZ9euXSxdupR58+YxZcqUbvlcbzG5IXHaeqzYHBJx+HNzLPmAiR6NS0RE+odAPysTkyPZdKSQrzLzGRzTpFiUYZgFIg5/ZvZNSZM8F6iISCe5fMfp+PHjzJ49u9V9wcHBlJZ23xoNTz75JDfeeCOrVq3i1ltvZeXKldx000089dRT3faZ3sKZOB3Or6Aqepy5Uau0i4hID5rVuJ5TK2XJNc9JRLxcp8qR5+e3ssAdcPLkSaKjo7scVFsCAgL45S9/yS9/+ctu+wxvFRHkx7C4EA6dKueQdShpoM5JRKSTysvL+etf/8q+ffvYs2cPRUVFLFq0qNW1Cnfv3s0f//hHduzYgdVqZfr06dxzzz0MGjTIA5F71sxh0fzlE9iQWYDd7sBiabJMiHOekyrriYiXcvmO04wZM3jmmWeorDwzftkwDOrr61m5cmWLqnfSc5zznNZXDjA35O0GuxabFBFxVXFxMatWraK2tpaLL764zeMyMzO5/vrrqaur48knn+SRRx7h6NGj/OAHP6CwsLAHI+4dJgyMINDXSmFFLfvzyprvTEw3n/N2g62+x2MTEekqlxOnn//852RnZ7Nw4UIee+wxDMPg5Zdf5uqrryYrK4uf/exn3RGndMCkhsRpbW4I+AZBXSUUHPJwVCIi3icpKYnNmzfz8ssvc9ddd7V53FNPPYWfnx/Lly9n7ty5zJ8/n+XLl1NUVMSzzz7bgxH3Dn4+FqYOiQJaGa4XOQT8QqG+GvIPeCA6EZGucTlxSklJYeXKlQwdOpSVK1ficDh46623iIyM5NVXX2XAgAHdEad0gPOO0/bscuzxznlOGhIhIuIqwzAwDOOcx9TX1/P5558zf/58QkJCGrcnJSUxbdo0Pvnkk+4Os1eamWoO2V9/6Kxh/RYLJKSZrzWUXES8UKcWwB02bBjPPvsstbW1FBUVER4eTkBAgLtjExcNiQkmOtiPgopa8kNGEccmM3Eaf42nQxMR6XOOHTtGdXV1q+sMjhgxgq+++oqamhr8/f09EJ3nzGwoELHxSCH1Njs+1ibXaBPHw7H1Zt804ToPRSgi0jmdSpyc/Pz8iI+Pd1cs0kWGYTApJZKP9+Sxl8HEga7qiYh0k+LiYgAiIiJa7IuIiMDhcFBSUkJcXFyH3/PsZT5cPa+z57vTyPhgwgN9KamqY8fxItIbFmgHMOLTsACO7O3Y3Rhrb2q/J6j9an/T5/6oq99BR8/rUOK0evVqlz78e9/7nkvHi/tMbkic1pUlMhfMkuQOh7mGhoiIuN25hvS1N9zvbBkZGV2Kpavnu8uoKAsbT8K//r0LRp8ZxhhY6scYwJ69g+3bvgHD5RkD59Rb2u8par/a399193fQocTp3nvv7fAbGoahxMmDnPOc3suN4LcWH4zqYig5DhHJng1MRKSPcd5pKioqarGvuLgYwzAICwtz6T3T0tKwWq0ux2Kz2cjIyOj0+e52aVUWG0/u5WiVP+np6Wd22Mbi+PcirPUVpKdEQNRQt3xeb2t/T1P71f7+3H7o+nfgPL89HUqc1q5d63IA4hnjksLxs1rIqbBTO3Ak/vm7zbHkSpxERNwqOTmZgIAADhxoWSHuwIEDpKSkuDy/yWq1dukPn66e7y6zR8QCe9maVUSdHQJ8G2KyWiF+DGRvw3pqF8QOd+vn9pb2e4rar/b35/ZD938HHbpHnpSU5NJDPCfA10rawHAAsgNHmBtzNM9JRMTdfHx8mDdvHh9//DHl5eWN27Ozs9m4cSOXXHKJB6PzrNTYEOJC/ampt/PNsbPuyCVOMJ9V9VVEvEyni0OUl5ezfft2iouLiYyMZMKECc3KsYrnTE6JZGtWERm2ZIaACkSIiHTCF198QVVVFRUVFQAcOnSINWvWADB37lwCAwNZvHgxV111Fbfffju33nortbW1PPXUU0RGRnLLLbd4MnyPMgyDmanRrN6ezYbMgsZKewAkjDefdVFPRLxMpxKnZ599lqVLl1JdXY3D4cAwDAICAvj5z3/OzTff7O4YxUWTG+Y5fVaSyHdBnZOISCc89NBDnDx5svHnNWvWNCZOa9euZeDAgaSmpvLSSy/xpz/9iTvvvBOr1cr06dNZtmwZUVFRngq9V5iZGsPq7dmszyzg7qY7EtPN55wdKl4kIl7F5cRp9erV/PGPf2TOnDlcccUVxMXFcerUKVavXs3jjz9OZGSkikN4mDNx+qggFkeAgVGWDeWnISTWw5GJiHiPTz/9tEPHjRs3jueff757g/FCMxoWwt1xvJjymnpC/Bv+5IgfA4YVKvOhLAfCBngwShGRjnO5Dujzzz/PZZddxooVK/jWt77F5MmT+da3vsXy5ctZuHAhL7zwQnfEKS6ICfFnSEwwFQRSFTrY3JirseQiItJzBkUFkRwVRL3dweYjhWd2+AZCbMOiwZrnJCJexOXE6fDhw3z3u99tdd93v/tdMjMzuxyUdN2kZPOuU5ZfqrlBw/VERKSHzWy46/TVofzmOxoLRKhvEhHv4XLiFBAQQElJSav7SkpKCAgI6HJQ0nVTBpuJ07bahjLkKhAhIiI9zDlcb31mQfMdjQUidMdJRLyHy4nT5MmTWbp0KXl5ec22nz59mmXLljFlyhS3BSed51wId21xvLlBV/VERKSHOavp7ckppaii9swO5x0nXdQTES/icnGIu+66i+uuu4758+czY8YMYmNjOX36NF9//TU+Pj4sXbq0O+IUF6XGhhAe6Mu2qhSwAoWZUF0KAa6tYi8iItJZsaH+jIgP4UBeORsOF/DttERzR0Ka+VxyHCoLIah/VyAUEe/g8h2n4cOH889//pOLLrqIjIwM3njjDTIyMrjooot4/fXXGTZsWHfEKS6yWAwmp0RSSBjl/g13nfJ2eTYoERHpd5x3ndZnNpnnFBAGUUPN1xquJyJeolPrOA0ZMoQ///nP7o5F3GxySiSf7jvFYZ9UxtfkmcP1UmZ6OiwREelHZqZG8/z6o63Pcyo8bCZOqfM8E5yIiAtcvuMk3sO5ntOmqiRzg8aSi4hID5s2NBqLAYdPV5BbUn1mR2NlPd1xEhHv0Kk7Tnv27OGdd94hOzubmpqaZvsMw+Dpp592S3DSNRMGRuBjMdhUPZAf+6ECESIi0uPCA31JSwpnx4kS1mfm8/1JA80diQ2V9XRRT0S8hMuJ0+rVq7nvvvuwWCxERUXh6+vbbL9hGG4LTrom0M/K2KRwdh8fbG44vRfqa8DH36NxiYhI/zIjNaYhcSo4kzglNNxxKjgENWXgH+q5AEVEOsDlxOnpp59m7ty5/OEPfyA8PLw7YhI3mpwcyXPHY6i0hhFkK4VTe2FAuqfDEhGRfmRmajR/+yKT9YfycTgc5kXWkFgIHQBl2ZC7C1JmeDpMEZFzcnmO06lTp7jhhhuUNHkJcyFcg/3GEHODxpKLiEgPO29wFL5Wg+ySarIKKs/s0DwnEfEiLidOo0ePbrH4rfRezoVwN1c3DI3QWHIREelhgX5WJiab/VGz6nqa5yQiXsTlxOnXv/41K1asYN++fd0Rj7hZXFgAg6IC2WUfbG5QgQgREfGAmanRAHzVdD0n3XESES/i8hyn9PR05s+fzxVXXEFsbGyLIXuGYfD222+7LUDpusnJkWQUDTZ/yNsFdhtYrB6NSURE+pdZw2J48pODfJ1ZgN3uwGIxzLWcAE7vg7pq8A3wbJAiIufg8h2nFStWsHz5ciIjIxkwYAARERHNHpr71PtMHhzFEUci1YY/1FVCQaanQxIRkX5mwsAIAn2tFFTUsj+vzNwYPhACo8BeD6f2eDZAEZF2uHzH6cUXX+TKK6/k4YcfxmrVXQtvMCUlEjsW9tpTmGgcMIdExI7wdFgiItKP+PlYOG9IFF8eOM36zAJGJ4aBYZjD9Q5/Zs5zSprk6TBFRNrk8h2niooKLrvsMiVNXmREfCih/j5k2FLMDbkaSy4iIj1vVsM8pw3N5jk1DNfTPCcR6eVcTpwmTZpEZqaGenkTq8UgPTmC3Y7B5gYViBAREQ+YmRoDwMbDhdTb7ObGxgIR6ptEpHdzOXH67W9/yz/+8Q8++eQTamtruyMm6QZTUqLYbXfecdoJDodnAxIRkX5nzIAwwgN9KaupJ+NkibkxoSFxytsFtnrPBSci0g6X5zhdeeWV1NfXs3jxYgzDICCgeQUcwzDYunWr2wI8l9dff53777+foKAgtm3b1iOf6a2mDI5kmWMQ9VjxqSqCkhMQMcjTYYmISD9itRhMHxrFh7vzWJ9ZYK7tFDUU/EKgthwKDkLcaE+HKSLSKpcTpwULFmAYRnfE4pK8vDz+8Ic/EBcXR3l5uafD6fXSB0VQb/hywD6QMZYscyy5EicREelhM1NjGhKnfO6YNwwsFkhIg2MbzL5JiZOI9FIuJU42m43bbruNqKgoj5cdf/DBB5kyZQoRERF8+OGHHo3FGwT7+zA6MYzdp1LMxCl3J4y+zNNhiYhIPzNrmFkgYsvRIqrrbAT4Ws15Tsc2mPOcJlzn4QhFRFrn0hwnh8PBwoUL2b59ezeF0zFvvfUWmzZt4ne/+51H4/A2U1IiVSBCREQ8KjU2hNhQf2rq7Ww7VmxuTFBlPRHp/Vy64+Tj40NMTAwODxYWKCgo4JFHHuHuu+8mISGhS+9ls9m6dF5nz/eUickRvPL1YAAcuTuw97P2u4var/Y3fe5vutr+/vq9yRmGYTAzNZq3tmezPjOfGanRZyrr5e4Eu90cvici0su4PMdp4cKFrF69mgsuuKAbwmnfQw89xJAhQ/jBD37Q5ffKyMjw6Pk9LbDSxl5HMgBGaTa7Nn5OvX9Ep9/P29rvbmq/2t+f9ff2S9fMSo1pSJwKuBsgdiRY/aGmFIqPmgUjRER6GZcTp1GjRvH+++9zww03MH/+fGJjY1sUi5g/f77bAmzqww8/5NNPP2X16tVuKVCRlpbWqYV8bTYbGRkZnT7fk0L+XcbhqgSGWnIZF2OH1HSX38Ob2+8Oar/ar/Z3vv3O86V/m9GwEO6O48WU19QT4u8L8WMge5s5XE+Jk4j0Qi4nTvfccw9gVrXbtGlTi/2GYbB3796uR3aWiooKHn74Ya6//nri4uIoLS0FoK6uDoDS0lJ8fHwICgrq8HtardYu/eHT1fM9YUpKJHv2DmYouVhP7YIRl3T6vbyx/e6k9qv9an//bb90zaCoIAZFBXK8sIrNRwqZNyrOnOeUvc2cgzv2Ck+HKCLSgsuJ04svvtgdcbSrqKiI/Px8nnvuOZ577rkW+8877zwuuugi/vrXv3ogOu8xJSWS3bsHc5n1axWIEBERj5mVGsM/Co+zPjPfTJyc85xUIEJEeimXE6epU6d2Rxztio2NbTVpW7FiBZs3b+b//u//iIyM9EBk3mXK4Cged6QA4MjdiedX5BIRkf5oRmo0/9h8nK8OFZgbmiZODgf0gjUjRUSacjlxciorK2P79u0UFRUxd+7cbl/Xyd/fn2nTprXY/uabb2K1WlvdJy2NSgjlsE+q+UNBJtSUgX+oZ4MSEZF+Z2ZqDAB7ckopqqglMn4sGFaozIeyHAgb4OEIRUSa61S9z2XLljF79mxuvfVW7rnnHk6cOAHAjTfeyIoVK9waoLiXj9VC8qAUchxRGDggd5enQxIRkX4oNtSfEfEhAHx9uAB8AyFmhLlTQ8lFpBdyOXF65ZVXWLZsGVdddRXLly9vtqbTvHnz+Pzzz90ZX7see+wxtm3b1qOf6e2mpESy224O1yNXnZOIiHiG867TV5n55gbNcxKRXqxTidNNN93E/fffz/nnn99sX0pKCllZWW4LTrrH5MFR7HYMNn/QVT0REfGQmQ1lyddnOuc5jTefdVFPRHohlxOn48ePM3v27Fb3BQcHN5YJl95rYnIEexoSp7qT2z0ai4iI9F/ThkZjMeDw6QpyS6p1x0lEejWXE6fQ0FDy8/Nb3Xfy5Emio6O7HJR0r7AAX6qjxgJgzd8P9TUejkhERPqj8EBfxiWZxaXWZ+ZDQpq5o+Q4VBZ6MDIRkZZcTpxmzJjBM888Q2VlZeM2wzCor69n5cqVLYbvSe80cMhIih3BWBx1cMr9CxaLiIh0hHOe0/rMAggIh8gh5g7ddRKRXsblxOnnP/852dnZLFy4kMceewzDMHj55Ze5+uqrycrK4mc/+1l3xCluNmVIFLvtg80fNJZcREQ8xDnPaUNmgVlwyjlcT32TiPQyLidOKSkprFy5kqFDh7Jy5UocDgdvvfUWkZGRvPrqqwwYoHUXvMHk5DMFIupP6qqeiIh4xpTBkfhaDU4WV5FVUHmmQITuOIlIL9OpBXCHDRvGs88+S21tLUVFRYSHhxMQEODu2KQbDYoK5Lj/MLBB1bFtaAlcERHxhCA/HyYmR7LpSCHrMwsY3FggQnecRKR3cfmO03333cfx48cB8PPzIz4+vjFpOnnyJPfdd597I5RuYRgGPklm5xRQsAfsNg9HJCIi/ZVzuN5XmfmQ0JA4FRyCmjIPRiUi0pzLidObb75JUVFRq/uKiopYvXp1V2OSHjJw2HiqHH742qugINPT4YiISD/lLBDxdWYB9qAYCB0AOCB3l2cDExFpwuXE6VxKSkrw8/Nz51tKN5o0OIa9jmQA7BpLLiIiHpI+KIJAXysFFbUcOFWmhXBFpFfq0BynzZs3s3HjxsafX3/9db788stmx9TU1LB27VpSU1PdG6F0m7EDwvknQ5jEIUoObyVy/NWeDklERPohPx8L5w2J4ssDp/nqUAGjEifAgTUqECEivUqHEqeNGzeydOlSwJwb8/rrr7d63IABA/jv//5v90Un3crPx0JZ5Bgo+ZiaE9s8HY6IiPRjs1Kj+fLAaTZk5vOfU52V9XTHSUR6jw4lTj/+8Y/54Q9/iMPhYObMmTz77LOMGTOm2TF+fn4EBwd3S5DSfQIHTYQSCC3aCw4HGIanQxIRkX7IOc9p4+FC6r+TZv6Bcnov1NeAj79HYxMRgQ4mTgEBAY2V89auXUtsbKzmMvURg0ZNpi7DSrCtBEpOQMQgT4ckIiL90JgBYYQF+FBaXU9GWSgTAyOhqghO7YEBEz0dnoiI68UhkpKSlDT1IROHJnDIkQRA2dFvPByNiIj0V1aLwYyGsuTrDxdC43pOmuckIr2Dywvg1tXV8X//93+8++67ZGdnU1NT02y/YRjs2bPHbQFK94oI8mOj/zBG1x3j1IFNhKZf7umQRES8xsaNG7nhhhta3ffaa6+Rnp7eswF5uZmpMXy4O48NmQXckTweDn+ueU4i0mu4nDj9+c9/5vnnn2fOnDlcfPHFuvvUB9TGjIOcT7Fl66qeiEhn3HXXXUybNq3ZtuHDh3soGu/lXAh389FCaqek4Qe64yQivYbLidMHH3zAHXfcwaJFi7ojHvGAkMGTIAciS/d5OhQREa+UkpKiu0tuMCwuhNhQf06X1bDbPoSJAHm7wVYPVpf/ZBERcSuX5ziVlJQwZcqU7ohFPGTwuOkAxNpPU1N6ysPRiIhIf2UYRuNdp89Oh4BfCNRXQcFBD0cmItKJxOm8885j3z7dmehLBg9I4BgJAGTt+trD0YiIeJ+HH36YMWPGMGnSJP7zP/+TLVu2eDokr+VMnL46XAQJaeZGzXMSkV7A5fve999/Pz/72c8YMGAAF1xwgeY49QGGYXAqeCTJFbkUZW6Gmd/1dEgiIl4hNDSUG264gWnTphEREUFWVhbPPvssN9xwA8uXL2f27NkuvZ/NZutUHM7zOnt+bzJ9SCQAO44XUzN9LP7HNmDP3oZj3FVtntOX2t8Zar/a3/S5P+rqd9DR81xOnC6//HLq6+u58847MQyjcX0nJ8Mw2Lp1q6tvKx5mi0+Dw19g5GZ4OhQREa8xZsyYZgvCT5kyhUsuuYTvfOc7/PGPf3Q5ccrI6Nrv4K6e31vEBVs5VWFjQ2EYFwAVhzZwIG57u+f1lfZ3ltqv9vd33f0duJw4LViwAMMwuiMW8aDIoVPgMMRV7MfhcOjfWESkk8LCwrjgggv4xz/+QXV1dYsLjOeSlpaG1Wp1+TNtNhsZGRmdPr+3ueDILlZtOcGBoAlcAISUZ5I+YTwYrc8w6Gvtd5Xar/b35/ZD178D5/ntcTlxeuyxx1wORnq/5LHT4RNIduRwLOc0KQPiPB2SiIjXcjgcAC5fhLJarV36w6er5/cWs4bFsGrLCd7NCecnVj+MmjKspcchaug5z+sr7e8stV/t78/th+7/DlwuDiF9U0BkIgWWaCyGg8O7VSBCRKSzSkpK+Pzzzxk9ejT+/v6eDscrzWgoEJGRW0l9zGhzowpEiIiHdeiO0+7du11607Fjx3YqGPGsotBRRJd8RdmRrYAKRIiItOfuu+8mMTGRcePGERkZSVZWFs899xwFBQUaodEFcaEBjIgP4UBeOdmBI0hmh7kQ7tjveTo0EenHOpQ4XXnllR0abuCcG7N3794uByY9zxgwHkq+wvf0Lk+HIiLiFUaOHMn777/PP/7xDyorKwkPD2fy5Mk8/vjjjB8/3tPhebWZqTEcyCtne30KyQC5uuMkIp7VocTp0Ucf7e44pBeIHX4e7H2aQTWHKKmsIzzI19MhiYj0aj/5yU/4yU9+4ukw+qQZqdE8v/4oawrjzDEQOTvA4QAVLxIRD+lQ4nTFFVd0dxzSC4QNmQLACOM464/kccHYgR6OSERE+qvpQ6OxGPBpYSyOQAtGxWkoy4WwRE+HJiL9lIpDyBkRyVRaQ/EzbGTt11pcIiLiOeGBvoxLCqcaf8pCGqrp5ezwbFAi0q8pcZIzDIOyCLN6UWXWNg8HIyIi/Z2zut5BS0PipHlOIuJBSpykGb+B6QCEFu2hzmb3bDAiItKvzUqNAeCriiRzg+44iYgHubwArqds2LCBt99+m23btpGbm0toaCjjxo3jjjvuYNy4cZ4Or88IHzIZdsBIjrAnu5QJgyI8HZKIiPRTUwZH4ms1WF+ZxM/90FpOIuJRXnPHaeXKlZw8eZIbbriBFStW8Nvf/pbCwkKuvfZaNmzY4Onw+gzLgHQAxhhZbDla4NlgRESkXwvy82FiciR77CnmhpJjUFno2aBEpN/ymjtODz74INHR0c22zZ49m/nz57N8+XJmzJjhocj6mJjh1Fn8CbbXcPzQTpid6umIRESkH5uZGs2mI4Wc9h1AbF22Oc9p6AWeDktE+iGvueN0dtIEEBwcTGpqKjk5OR6IqI+yWKmOMgtE1J/YgcPh8HBAIiLSn81smOe0oy7Z3KB5TiLiIV5zx6k1ZWVl7Nmzh+nTp3fqfJvN1qXzOnt+bxcwMB3ytzOw5hDHCsoZGBnUbH9fb3971H61v+lzf9PV9vfX7006L31QBIG+Vr6pS+Fi3681z0lEPMarE6eHHnqIqqoqbr/99k6dn5GR0aXP7+r5vVWMPYoUYIxxlDe+3MGclMBWj+ur7e8otV/t78/6e/ul5/j5WDhvSBS7Dw02N+iOk4h4iNcmTk8++STvvPMODzzwQKer6qWlpWG1Wl0+z2azkZGR0enze704O+z8M2MtR/nQEUp6evPvt8+3vx1qv9qv9ne+/c7zRVwxMzWaZw4MNn8oOAQ15eAf4tGYRKT/8crEaenSpTz99NP84he/4Ec/+lGn38dqtXbpD5+unt9rJaRhN6xEU8axY5lYrRNaPazPtr+D1H61X+3vv+2XnjUrNYbHCCfPEUm8UQR5uyC5c8P0RUQ6y2uKQzgtXbqUJUuWsHjx4k4P0ZN2+AZgjx4BQED+Lsqq6zwckIiI9GdjBoQRFuBDhn2wuUHD9UTEA7wqcVq2bBlLlizhpz/9KYsWLfJ0OH2aT1I6AGM4yrZjxR6NRURE+jerxWD60Gh2OwabG1QgQkQ8wGsSp+eee46nnnqK2bNnc8EFF7B9+/ZmD3GzhPEAjLUcZUtWkYeDERGR/m7WsBh2646TiHiQ18xx+uyzzwBYt24d69ata7F///79PR1S35ZoJk5jLFm8qMRJREQ8bGZqNCsaEifH6b0Y9TXg4+/ZoESkX/GaxOmll17ydAj9S0IaAAONfA4fO0a97Tx8rF5zg1JERPqYYXEh1IYkUVQXQqS9HE7tgQETPR2WiPQj+ktYWhcQjiNyCABD6jPZl1vm4YBERKQ/MwyDmcNi2G1PMTdonpOI9DAlTtImo2G43ljjKFs1XE9ERDxsZmo0uxzmRT3NcxKRnqbESdrWWCAiS4mTiIh43MzUGPY0zHOyZStxEpGepcRJ2pZoLnyrO04iItIbDIoKIj9slPlD3i6w2zwbkIj0K0qcpG0NidNQI4ei4iJySqo8HJCIiPR3yalpVDj8sdqqIf+gp8MRkX5EiZO0LSQOQhKwGA5GGcfYclR3nURExLNmDI9lj8NZIELD9USk5yhxknNLPLMQrobriYiIp81IjW5cCLf6+DbPBiMi/YoSJzm3BFXWExGR3iMuNID8EHOeU0XWVg9HIyL9iRInObcmd5z25JRSUVPv4YBERKS/Cxk8CYCggj3gcHg4GhHpL5Q4ybk1FIgYZTmBxV7HjuPFno1HRET6vaFjJ1Pj8CHQXg5FRz0djoj0E0qc5NwiUiAgHF/qGW6c0HA9ERHxuGmpiRxwDAKg6LCG64lIz1DiJOdmGE0Wwj3KFiVOIiLiYeFBvmQHjgDg1P6NHo5GRPoLJU7SvobEaYyRxTfHirDbNZ5cREQ8y9EwB9ehkuQi0kOUOEn7Gjqn8dYsyqrrOXiq3MMBiYhIfxc/YioAceX7cNjtHo5GRPoDJU7SvoYCEWMsWRjYNc9JREQ8buSE6dgcBlGUcPLEUU+HIyL9gBInaV/0cPAJINBRxWAjj63Hij0dkYiI9HNBwWFk+5oFIg5nbPBwNCLSHyhxkvZZfSB+LGAuhPvNMd1xEhERzyuPNPum8qPfeDgSEekPlDhJxzSprHessIqiapuHAxIRkf4uOMVcCDe4cDcOLYQrIt1MiZN0TEOBiKkBJwDYl1/nyWhERERIHDUdgBGOwxwrrfdwNCLS1ylxko5pKBAxkiOAgxd2lPKnjw6QcaJEV/lERMQjfJPMi3oDjXwO5hR4OBoR6et8PB2AeIm4sWBYCakvJsW3mKzKSJ7+4jBPf3GYpIhAFoxN4NJxCUxOicRqMTwdrYiI9AeBEZQEDCS8+gTVufuBSz0dkYj0YUqcpGN8AyB2JJzaw3tXhfLM4XD2VwTw+f58ThZX8dxXR3juqyPEhPhxyZgEFoyNZ2ZqDH4+uqkpIiLdx5GQBkdPEFR8iHqbHavV6umQRKSPUuIkHZcwHk7tIahwD7OT57M4PZ06O3x54DRrdufyyZ488strWbnpGCs3HSM0wIeLRsVx6bgE5oyIJchP/7mJiIh7hQ2ZAkc/YARH+P0H+/j+pEFMGBiOYWj0g4i4l/6SlY5LHA87/4GRmwFh8wEI8LUyf2wC88cmUGez8/XhAtbsyuXD3Xnkl9ewens2q7dnE+BrYe6IWC4dl8CFo+IJD/T1cGNERKQvsAww5+CONY5y54ZjvLjhGAlhAcwfG8+CsQlMHRKFr1WjH0Sk65Q4Scc1FIggdyeMaLnb12ph9vBYZg+P5eHLx7HtWBFrduWyZncuJ4qq+HB3Hh/uzsPHYjBzWAyXjk3gkjHxxIb692w7RESk72jom1ItOVwxNpyPDpaTW1rNixuyeHFDFhFBvlw0Kp4FY+OZMyKWAF8N5RORzlHiJB2XkAaAUXIca23JOQ+1WgymDI5iyuAofrtwNLuzS/lwdy5rduVy8FQ5Xx44zZcHTvPb1RmclxLFgnHmvKiBkUE90RIREekrQuJwhCRglOfyRNwH1F14Hf8uieXDPXl8svcUhRW1/OubE/zrmxME+lqZOyKWBePiNfpBRFymxEk6LiAcIgdD0VGCSjKBuR06zTAMxiWFMy4pnLvnj+TQqXI+3J3LR7tz2XGihE1HC9l0tJD/9+4e0pLCuXRcAgvGJjAsLqRbmyMiIn2DI3kGxp43sWxYiv+GpVwUNpCLRizAdvV8tljSWbO/mI9253GyuIo1u82RED4Wgxmp0cwfm8CCMfHEhQV4uhki0sspcRLXJIyHoqNE5P4bqq6AkBiX32JYXAjD4oZxx7xhnCyu4qOGO1GbjxaScbKEjJMl/PHD/QyLC+HShjLnYweEaaKviIi0ynHZk2RZk0mu3otx5EsoPQFbnsW65Vmm+QQybegF/PdF89kfNpP3sgw+3J3Lgbxy1h3MZ93BfB5YvYuJyREsGGteuBsSE+zpJolIL6TESVyTNAn2vk3c0dU4/vSWObZ8yBwYOheSZ4Cfa51NUkQgN88aws2zhpBfXsMne/JYszuXrw7lc+hUOUtPHWLpZ4dIigjk0nFmEjUpWWtFiYhIE/6h5A++nIHpD2K11cDRdXBgDRz4EEpPwoEPMA58wChgVEIad0+4lOy4ObyTn8CaPafZdqy48fHYB/sYER/SmETpwp2IOClxEtdMvgl7WS41uz8gsDwLcrabj/VPgcUXBk01E6khc2HgFLB2fPx4TIg/101N5rqpyZRW1/HZvlOs2ZXL5/tPc7K4imf/fYRn/32EmBB/LhkTz6XjEpgxNFprRYmIyBl+QTBigflwOCBvl5lAHfgQTmyG3AzIzWAAf+S2oBhuGz6f4qkXsqZ6DO/tL2dDZgEH8so5kHeIJZ8ealzkfcHYeKYMjtKFO5F+TImTuCYwEsf8R9gTdw3pqfFYs76CI1/CkS+g5DhkfWU+Pn8UfIMhZeaZO1LxaWDpWJITFuDL5elJXJ6eRFWtjS8PnubDXbl8vNcsc950raiLR5slZ+eOiCXQT9WSRESkgWGYhY0S0mDOL6EiHw5+DAc/hENroTIfdrxKxI5Xuc7iw3UpM6lacAnrLJP511F/vjhwutki79HBfmafM85c5F0V+kT6FyVO0nmhiTDhWvPhcEDhYTOBOvyFOUyisgAOfWw+AAKjYMjshjtSF0B0qtmptSPQz9o4ZKK2vmGtqN25fNSwVtSb207y5raTBPhauGCEueDuvFFxqpYkIj2ioqKCJ598kg8++ICSkhKGDh3KT37yExYuXOjp0ORswTGQ/h/mw1YHxzY03I1aAwWH4MiXBB75kvnA/KhU6mfMZ1vgNFadGshH+4ooqKjltS3HeW3LcYL9rFwwKo4FYxOYNzKW0AD1OSJ9nVclTuqcejHDMBOh6FSYcgvY7XBqt5lEHfkCstZDVSHsect8AIQlmUP6nHekwga0+zF+PhbmjIhlzohY/t/l4/jGuVbUrtxm1ZJ8rQYzU2O4dJy5VlRMiNaKEpHusXjxYjIyMrj77rsZPHgw7777LnfddRd2u53vfOc7ng5P2mL1bbiQNwcW/B4KMs8kUVlfQWEmPpue5jye5jz/MP4w6kIORczkzbIxvHmgltzSat7bmcN7O3Pws1qYOSyaBWPV54j0ZV6VOKlz8iIWy5nhETMXmVf2Tn5jJlFHvoTjG80JuzteNR8A0cPNBGrIHBg8G4KizvkRVovBeYOjOG9wFPc3rBXlXHD30Klyvjhwmi8OnOa3b2YwZXAUl45NYMG4BJIiAnvgCxCR/uCLL77gq6++4oknnuCyyy4DYPr06WRnZ/P444/z7W9/G6tVw7m8QnQqzPiZ+agugczP4OBHZjJVmY9l72pGsJp7MPh10hRy0+aypnYCLx0J5XB+JZ/vP83n+0/zmzczmJIS2ThSYlCU1icU6Su8JnFS5+TlrL6QPM18zP011FbC8a8b7kh9aRaYKDhoPjY/AxiQOL7hjtRcSDl3xb6ma0X9csGZtaI+3J3LzhMlbDpSyKYjhTz87h7GDwxnQUOZ89RYrRUlIp338ccfExQUxKWXXtps+/e//33uvvtuduzYwaRJkzwUnXRaQDiM/Z75sNsh+5szVfpyd2Kc3Eziyc3cDNwclkTJpHmss0zm+ZxktpysYfPRIjYfLeJ/3tvLmMQwM4kaF8/I+FBV6BPxYl6TOKlz6mP8giD1QvMBUFUER786c0fq9D7I2WE+nBX7Bp535o5U0hTw8Wvz7ZuuFXWiqJKPdptlzjcfLWTniRJ2njDXihoeF9K44K5KzoqIqw4ePEhqaio+Ps2705EjRzbuV9/k5SwWs0rswClw4f1QcvLMnajDn0PpScL3vMxlvMxlPgFUj5rFNwHTeKVwFB8c92FPTil7ckr5yycHSIkOaqzQN3FQJBZV6BPxKl6TOHVH52Sz2ToVi/O8zp7v7bql/X5hMOJb5gOgLBfj6Do48gXG0S8xSk7AsfXm4/NHcfgGQ/J0HEPm4Bg8xxwSaLResS8xzJ8bZyRz44xkc62ovaf4cHceGw4XcPBUOQc/dZacDWDB2HgWjElgYnJEmyVn9e/v+fY7HA7q7Q7qbQ3Pdjs2u4M6m4N6m71hm6Nhm516W8Prs44zt5n7Gs+znTmu8f2bvGddvY1Tp0uJOrYbAwO7w4EDzGeHWSel5bYzP9sdQNNj7Oazo2Ff0/PPbGs4j7OOaXwPcND8vc+8R5P34cz7NY8THPa2Ym6+DQO+OyyQtLSu/f7sK4qLixk4cGCL7eHh4Y37XaF+qXN6tP0hCTDxBvNRVwVZ/8Y4+BHGwQ8xSk4QcHQtM1nLTKA+aTQHwmeyuiKNF0/EkVVQyYovD7Piy8PEhvhz8eg45o+NY/qQri2toX///tN+h8Psw2ptdmrr7dTZ7FTV1nOyrJ7AnBIwLNjsjsb+xu4w+ziHA2wNfYPdbu5repx5jKPhGBqOMX922BvOdZ531vs4+xyb3YzPZm84z/kZdhs4bGC34bDVYzjMZ3NbPQ67DaPxmHqw2zEc9WCvx3DYG57PHGM0vJfhOPNw+AQwbMwU0rr4O7Q9hsPhcHTqE3rYggULGDhwIM8++2yz7adOnWL27Nncdddd3HbbbR16L5vNxvbt27shSukWDgd+ldmE5W8jNP8bQvO34Vtb0uyQet8wymLSKY2ZSFnMJGqCB7Zbsa+i1s7WnBq+PlnNttwaapv8PxPhb2Fqkj/TkgIYF+eHTx+8Kmh3OKizQ53NTB7qbDQ8O6i3Q23D9nq7g1obZtJgc1Brp+GXYvPnerv5R3Z9wy/S+hbHmL9snc/m8c3PO/sYmx3qG36BN3v2it9afYUDH2z4UY8v9VixMz45lsXTIrv0runp6X1iePWCBQsYNGgQzzzzTLPtzr7p7rvv5ic/+Um776N+qQ9wOAgoO0J43tdE5H1NcNEeDOyNu+t8w8gMmcwntom8VDiGvPozc5+CfA0mJ5p9TnqCH4Fan7BXMBMJs2+sd/aD9jN9Z739TL9ZZz/TT9bZneeceX328fX2Ju/X0P/W2x3U19vBXofFXovVVoPVXoPFUYePrQaroxZfRx1+1OJPHQHU4m+Yz37UY8WGD3ashg0rdnywY8GOD7bGZyt289HmMXaszuMMe8MxZ/adeZ/mxzh/bnZ+w8Ni9Eyn/WHcfxIz7Yddeo/2+iavueMEnHMYVWeGWKWlpXWq47bZbGRkZHT6fG/nmfZPBBqqJzrs2E7txWi4G0XWenxqS4nM+ZLInC/NQ8IGmHeiBs/BMWROmxX7ZgE/h4a1ovL5aE8ea/edori6no8OV/HR4SrCAny4cFQcC8bGM3tYDH5WOt1+e8MdkJp6e+PVopr6s54bttfW284cV9d0u73N7WfOtzX87KCm3tbis2ptdupsfS/78LEY+FgN89liOfPaasFqMfBt+tpqYG04zvna12LB2nCOb8NxPpYz7+FjMbAYUJB/mvi4OKxWCwZgMQwMw/w9ZDHMnN3S8DvJ0rit4ZjGbQYGDqzUYbXX4+Oow8dR3/BzHdaGny2OOqz22sbXPo56LHZzm9VRh8VRj9Veh8XZ0TrqsNjNY53bLI376zCa/Gw4n221jfsMex2GreG1zTz/bKcDFhKe9nyXfn/2FREREa3eVSopMS/uOO88dZT6pc7pPe2fCHwfAHtlAcahtXDoI4xDn+BbU8qoos8YxWfc4WuleMBk1lvO47nTI9haEcO6Y9WsO1aNv4+F2cNiuGRsHBeNiiMyqO1h6U69p/3dy2Z3UFFTT2l1HWXV9ZRW11NWXU9JZQ0HjhwjOi7BvPDXpI8178o4mv3c2G827T/Pem2rr8Ow1eDvaEhSDPPZn1oCqMPfqDUTl7P2+VOHv1FHaCvJjXnMmeNbPd+ob9lwAy/7i73j7FixG1YchgWH4XPmtcWnYZu12QOL87VP42ssVhx+ISQOm8WoLv4ObY/X/DO4u3MCsFqtXfoF09XzvZ3n2m+FAePNx6zFZsW+7G1nSp8f34hRmo2x8x+w8x/mKdHDzCITQ+e2WrEvJNDKt8cP4NvjB1Bbb2fD4QLW7Mrl4z255JfXsnp7Nqu3ZxPoa2X28BjsVaWEHtpNrc3RJJmxNf7CralrLTGy9epkxc/Hgn/Dw89qwd/Xip/V0rjdr+HhazGoKCslJjoSX6v1TNLhTDSsDQlIY3JyJjHxsZrnNz3e12omL9azznMmKi0ToeYJkTOxsVqM1i+gOBzmfyO2GqivbXiuAVvtWc9N97d9nL2+htPGSWJt4Vjq6hreu7bhHOejYZutpsnrujPv49xmr+v5f+guchgW6v0j+/3vP6cRI0bw7rvvUl9f32wo+YEDBwAYPny4S++nfqlrelX7Q+Ng4n+YD1udWU32wBo48BFG/n4iT21iIZtYCFTHprAzaBori8fybskQPtl3ik/2ncJqMZg6OIoFY+OZPzaBAe1Uhe1V7T+Lw+Ggqs5mJjxVdQ1JT5PnKvPZTIjqGo8ra3JceY2ZVFixEUYFEUYFEZQTbpQTRiWlTZMZagk9V8LSbJ/5c9NkxtfH5vG/kh2GD3YffxxWf/AJwOETAL4BGD4BGL6BWHzNZ7vVj8KSCqJi47BYfMBiJhWNz0aT1y1+9jGnOpx9XuM258/WM+c7jz17W+P7Ws76ubVtVjAs5oVEN3xXNpuNo9u3d/v/A16TOLm7c5I+xOoLg6aaj7m/MsecH/v6zGK8OdvNhQ0LDsGWZ4GGleSHzjUX4k2eDv5nquv5+ViYOyKWuSNi+Z/vjWNrlrlW1Ie7zbWiPtqT13BkVZdD9/Ox4G+14O9raZKkWBuTlMaEpZVExr8DxzR9n8b3beXzfK1tJB2tcA4pSk+f0PovJ1u968lJbWcTm3Md3+Q8N7IA8QBH3Pq2JsMCVn+w+pn/XTuffc7e1vTRZJtPa9t9W3nPto71P+s8v4bPPnOe3WGQvWMHcd3QfG908cUXs2rVKj766CO+/e1vN25/8803iYuLY8KECR6MTnoNqy8MPt98zP8fc8H4Ax+ZidTRfxNQlsXUsiymAn8KDeZw2FTeqRrPq4Wj2HDYwYbDBfzunTNVYReMjWdYXGiPNqG23t6Y2JxJbsyEp7SthKemeUJUf9Y4ax/qCaeCCKOcCMobniuIMcpJbXjt3BduVBDhV06kUU6YUdmjbTcTF3+MhsQFnyaPxp/9wSfQfPYNbOPn1s5rsu+s9zasPnQkBXDYbGRt305kejr00sS5r/CaxEmdk3SYbyCkzjMfAFXF5mKGzjtSp/dB7k7zsX5JQ8W+KWfuSDWp2Ge1GEwdEsXUIVE8cJm5VtQX+09x4mQ2KYOSCPC14udjbZGkND5brWclKWeO87Naer6Kn90OdZVQWwo15VBWAbXOR7n5XFd55nXT7Q0PS005Y8qLsXxlaT2pcdjbj8OTDOuZRMTH30wWfPzaeG56nPlst/iSl19M/ICBWHz920lKWkt02k5KsHhBh9cPJl+7Yu7cucyaNYvf/e53lJeXk5yczHvvvce6dev44x//2Guv/ouHRQ2F6bebj5oyszpfw90oa8Uphhd8xl18xl0BcCpsLJ/ZJ/JS4Wh2nhjcWBV2aGxw41pR4xLPvbSG3e6gvLa+WVJTWlVHWU3zRKe08Q6Qc9uZ7dV1bf9u96OOcMob7wBFGOUMNMoJp4JIo4wIKgi3lhNhNY+JslQQTjnBXb0A6R8OgRE4AiMpq7MQGhmH4RvgYuLSTgJk9cewaM6ZmLwmcVLnJJ0WGAGjFpoPgLI8s+T5kc/h8JdQcgyObTAfXzwGvkGQPKPhjtRcSBgPFkvjWlGjE0LYvr2U9PQh3fvfXX1ti6Sl2c91bWxv9ZzKM+d0kQF0fAlho1PJybmTmq4c1/XkxGGzkb19O3G6sicNlixZwl/+8heeeuopiouLGTp0KH/+859ZuHChp0MTb+AfCqO/Yz7sdsjZduZuVM524kp3cy27udYPKv3j2Ow7mZXFY/ji9Fie/ryCpz/PJCHMn1GRBhEHd551R8h8Lq+ppyOlwAKoaUh8zDs98U2TIZ9ywiknxlpJtMXcH045oY5y/B3VXfgCDHPdrMDIM4+gqOY/t/YIiACr+Wes3Wbj4PbtfabojPReXpM4gToncZPQeBh/tflwOKDo6JlhfUe+hMp8yFxrPsD8BT34/IY7UhdAxJDm79d4F6eNpKXVfW0lRE3u9nTr/BcD/ELMRYUbH2f/3Po+mzWQzKwTpI4cg9U38NwJi8Wn3eqGIt4uODiY+++/n/vvv9/ToYi3s1ggabL5mHcflOaYa0Yd/AgyPyOo5hRzaz5grs8H2Pz82BeQzpvl41hTNoHPS2MhKxtwENSYAJWTYjQMgbNUEG2pINankhhrZeNdnzDKCbGXEWQrxdfRshhMqxqWPmjGsJjJTEeSnsAo86JmYKSZNHnD3XYRvCxxUuckbmcYEDXEfEy+yUyCTu89M6zv6Ffm4rx73zEfgCUkgbF2C5ZP6912F+ecrP5tJDYdS3RavPYNMocfdDahsdkoq9wOyem64yIi0p3CEmHyjeajrhqy/m0uvHtgDdbiY4yt3MRYyybu94cin1j8LXb860qwOlqpzObkAM6xG4tPBxKfVh7+YWbiJ9KHeVXiJNLtLBaIH2s+ZvzMLHSQva1hWN8XcHwTRnkuAa2da1jOJCbtJjAdTHR8gxuHIoiISD/mGwDDLjYf33ocTu9vmBf1IY7jXxNZf7r58RbfVu7+NLnT09ojKMrsgzRSQKRV+otM5FysPjDoPPMxx6zYZzu5jYMHDzF87ESsgaFnEh2fAHU2IiLS/QwD4kaZj/P/C3t5PofWv82wsZOxhkSbSZBvkPokETdT4iTiCt9AGDSNigJ/iB+joWoiIuJ5gZGUR0+AhHHql0S6kQajioiIiIiItEOJk4iIiIiISDuUOImIiIiIiLRDiZOIiIiIiEg7lDiJiIiIiIi0Q4mTiIjI/2/v3oOiuu44gH8XViOg4SEijo8a0F15bBEUFhWiEl8YDBBfnemAVRGJgVpRa4hNA1ZFaxwboIgEo2gcB6PoqCGaoGa0U1kUK6X4IoBWSIKIICLyWm7/YPbWFXBRYFfh+5nZcTz3LPd37l7ud87dswsREZEOnDgRERERERHpwIkTERERERGRDpw4ERERERER6cCJExERERERkQ6cOBEREREREenAiRMREREREZEOnDgRERERERHpwIkTERERERGRDlJDF2AIgiAAANRq9Us9X/O8l33+647j5/if/re34fg7N37N8zTXYWrBXOocjp/jf/rf3qa3jx/QXzZJhF6YXg0NDcjLyzN0GUREvZZCoUDfvn0NXcYrg7lERGR4urKpV06cmpub0dTUBCMjI0gkEkOXQ0TUawiCgObmZkilUhgZcbW4BnOJiMhwOppNvXLiRERERERE9CJ4u4+IiIiIiEgHTpyIiIiIiIh04MSJiIiIiIhIB06ciIiIiIiIdODEiYiIiIiISAdOnIiIiIiIiHTgxImIiIiIiEgHTpyekZ6eDrlcLj4cHR3h5eWFVatW4fbt21p9L1++jPXr1+P999+Hs7Mz5HI5SkpKDFN4F+no+NVqNfbs2YOlS5fi7bffhouLC3x9ffHZZ5+hurracAPoJs8el2cfKpXK0CW+tFOnTkEulyMjI6PVtvfeew9yuRwXLlxotW3atGkIDAwEAJw7dw5//OMfMWfOHDg5OUEul3d73V2ls+OvqanBzp07ERQUhEmTJsHV1RVz5sxBcnIy6uvr9TGETumK13/Hjh0ICAiAh4cHFAoF3nnnHXzyyScoLS3t9vp7C2YTs6ktPTWbmEvMpVc1l6SdenYPFhsbCzs7O9TX1+PKlStISkqCSqXCt99+C3NzcwBAVlYWLl68CAcHB5iZmSE7O9vAVXcdXeOvq6tDfHw8/Pz8MH/+fFhaWuLatWvYuXMnzp07hyNHjqBfv36GHkaX0xyXZ40aNcoA1XQNDw8PSCQSZGVlYfbs2WJ7VVUVbt26BVNTU6hUKnh7e4vbfvnlF9y9exeLFy8GAHz//ffIzc2Fg4MD+vTpg/z8fL2P42V1dvw//fQTUlNT4e/vj9/97ncwNTVFTk4OEhIS8M9//hN79uyBRCIxxNA6pCte/+rqarz77ruwt7eHmZkZfvzxR+zcuRNnz57FyZMnYWlpqfdx9VTMJmZTW3paNjGXmEuvai5x4tSO0aNHQ6FQAACUSiXUajXi4+ORmZmJuXPnAgBWrFiB8PBwAMDu3bt7VDjpGn+/fv1w5swZrRNPqVRiyJAhWLlyJU6fPg1/f39Dld9tnj4uPYWVlRVGjx7d6vy9dOkSpFIp5s6d2+quZVZWFoCW1xwANm7cCCOjljewN2zY8FoFVGfHP2zYMJw9exampqbi9gkTJsDExAR//etfkZOTg/Hjx3f/QF5SV7z+n376qdZ2zXEJDQ3FmTNnMG/evG4cQe/CbGI2taWnZRNzibn0quYSl+p1kOaCVFFRIbZpfiF7g2fHb2xs3OZs/de//jWAlpk/vT6USiWKi4tx7949sU2lUsHZ2RmTJ09Gfn4+ampqxG3Z2dkwNjYWL7yv++9CZ8ZvamqqFU4ar9PvQmdf/7ZYWVkBAKRS3p/rTswmZlNPxVxiLr2KufR6n1V6pFkfPnLkSMMWYiAdHb9mxv+6Lg/Qpbm5GU1NTVoPtVpt6LI6zdPTEwC07u6oVCp4eHjAzc0NEokEOTk5WtscHR0xYMAAvdfaHbpj/K/T70JXjb+pqQl1dXW4du0aNm/ejJEjR2L69On6GUQvxWxiNgE9M5uYS8wl4NXLJU6c2qG5CD1+/BgXLlzAzp074e7uDh8fH0OXphcvM/6ysjJs374dzs7OmDp1qh6r1Z8FCxbAyclJ69ETlke4u7vDyMhIvEBVVlaioKAA7u7uMDMzg6Ojo3jB/fnnn1FSUiK+Hd4TdPX4b9y4gZSUFEyfPh1jxozRyxg6oyvGX15eDicnJ7i4uCAwMBBqtRr79u2DmZmZ3sfTkzGbmE1t6YnZxFxiLr2KucQ1FO1YsGCB1v/t7e2RmJjYa5advOj4q6qqsGzZMgiCgL/97W+v/Vvk7dm6dSvs7e212l7lD1h2lLm5OcaMGSOuGb506RKMjY3h5uYGoOUCprlAafr0pIDqyvGXlJQgLCwMtra22Lhxox6q77yuGL+lpSUOHz6MhoYGFBUVISUlBcHBwdi/fz9sbGz0OJqejdnEbGpLT8wm5hJz6VXMpZ55BekCW7duxeHDh5GamoqFCxeisLAQkZGRhi5Lb15k/A8fPsSSJUtQVlaGL7/8EsOHD9dztfpjb28PhUKh9XB2djZ0WV1CqVTi9u3bKCsrg0qlgpOTk3hXxsPDA9evX8ejR4+gUqkglUoxbtw4A1fctbpi/KWlpQgODoaxsTFSU1NhYWGh51G8vM6OXyqVQqFQYNy4cZg/fz5SU1NRUlKC5ORkQwynx2I2MZva0lOzibnEXHrVcokTp3ZoLkKenp7YsGED5s+fjwsXLuDUqVOGLk0vOjr+hw8fYvHixSgpKcGePXtei7d/qW2aOzXZ2dnIzs6Gu7u7uE1zMbp06RJUKhUUCkWPW4LV2fGXlpYiKCgIALBv3z7Y2trqqfKu0dWvv62tLWxsbFr9jSHqHGYTs6k3YS4xl4BXK5c4ceqgtWvXwtzcHHFxcWhubjZ0OXrX1vg1wXT37l3s3r0bjo6OBq6SOsPd3R3GxsY4ffo0CgoK4OHhIW4bMGAAHBwccOzYMZSWlvao5RAanRn/Tz/9hKCgIDQ3NyM1NRVDhw7Vd/md1tWv/507d/DLL7/gV7/6VXeW3esxm5hNPRlzibn0quVS71gU3QXMzc0RGhqKbdu24cSJE/D398eDBw/ED63dunULAHD+/HlYWVnByspK6wV+3T07/pkzZ2Lp0qW4du0aPv74Y6jValy9elXsb2VlhREjRhiu4G5SUFDQ5jcVjRgxQvyay9dV//794ejoiMzMTBgZGbV6y9vd3R2pqakAWq8jLi0tRV5eHgDgv//9LwCId4CHDh36WnxI+WXHX1FRgeDgYJSXl2PTpk2oqKjQ+mpoW1vb1+Iu38uO/8aNG4iNjcXMmTMxfPhwGBkZ4datW9i7dy8sLCywZMkSvY6jt2E2MZuAnptNzCXm0quWS5w4vYCgoCAcOHAAiYmJ8PPzQ0FBAVauXKnVJyYmBkDL2sv9+/cbosxu8/T4XV1dxQvSpk2bWvUNDAzEli1b9F1it4uKimqzfePGjZg/f76eq+l6SqUSeXl5cHBwQP/+/bW2ubu7Y+/evejTpw9cXV21tqlUqlbHRvO78TqdCy8z/h9//BF3794F0HL3+1nh4eGIiIjo3sK7yMuM39raGjY2NtizZw/Ky8vR1NQEW1tbTJkyBWFhYRgyZIi+h9HrMJuYTT05m5hLzKVXKZckgiAIL/1sIiIiIiKiXoCfcSIiIiIiItKBEyciIiIiIiIdOHEiIiIiIiLSgRMnIiIiIiIiHThxIiIiIiIi0oETJyIiIiIiIh04cSIiIiIiItKBEyciIiIiIiIdOHEivUhPT4dcLhcfjo6O8PLywqpVq3D79m1DlwcASEpKQmZmZqt2lUoFuVwOlUplgKpanD17FmFhYZg4cSKcnZ3h4eGBRYsW4fjx42hsbDRYXc9q61h99NFH8PHx6db9lpWVIT4+HtevX+/W/RBRz8Js6hxm0/Mxm3oeqaELoN4lNjYWdnZ2qK+vx5UrV5CUlASVSoVvv/0W5ubmBq1t165dmDlzJqZNm6bV7uTkhLS0NIwaNUrvNQmCgI8//hjp6emYPHkyPvroIwwZMgSPHj2CSqVCTEwMKisrsWjRIr3X1lErVqxAcHBwt+7j3r17SEhIwNChQ+Hg4NCt+yKinofZ9GKYTR3DbOp5OHEivRo9ejQUCgUAQKlUQq1WIz4+HpmZmZg7d66Bq2tb//79MXbsWIPsOyUlBenp6YiIiEB4eLjWNh8fH4SEhODOnTt6ramurg79+vXrcP8RI0Z0YzVERJ3HbHoxzCbqrbhUjwxKE1QVFRVa7Xl5eQgLC4OHhwcUCgUCAgKQkZGh1efBgweIjo7G7Nmz4erqigkTJiA4OBiXL19utZ+GhgYkJCTA19cXCoUCSqUSQUFBuHLlCgBALpejtrYWR48eFZdsBAUFAWh/OcSZM2ewcOFCuLi4wNXVFYsXL8a//vUvrT7x8fGQy+UoKChAZGQkxo0bh4kTJyIqKgqPHj167rFpbGxESkoK7Ozs8OGHH7bZZ9CgQRg/frz4/6qqKkRHR8Pb2xvOzs545513sGPHDjQ0NGg9r76+Htu3b4ePjw+cnZ3h7e2NmJgYVFdXa/Xz8fHB8uXL8d133yEgIAAKhQIJCQkAgMLCQixduhQuLi5QKpX485//jMePH7eqsa3lEHK5HBs2bMCxY8fg6+sLFxcXvPfeezh37pxWvzt37iAqKgozZsyAi4sLvL29ERYWhps3b4p9VCoV5s2bBwCIiooSX7/4+HixT0fOJyIiDWZT+5hNzKbejO84kUGVlJQAAEaOHCm2ZWVlISQkBC4uLoiOjsaAAQOQkZGBVatWoa6uDu+//z6AlgsxAISHh8Pa2hq1tbX4/vvvERQUhL1790KpVAIAmpqaEBISgpycHAQHB8PT0xNqtRq5ubn4+eefAQBpaWlYtGgRlEolVqxYAaDlbl57Tpw4gTVr1sDLywvbt29HQ0MDUlJSxH0/HRgAEBERgdmzZ2PevHm4desWtm/fDqBleUh7/vOf/6Cqqgrz58+HRCLReSzr6+sRHByMu3fvIiIiAnK5HJcvX0ZycjKuX7+O5ORkAC1LLFasWIGsrCyEhoZi/PjxuHnzJuLj43H16lWkpaWhb9++4s/Nz89HYWEhPvjgAwwbNgwmJia4f/8+goKCIJVK8emnn2LgwIE4ceIE/vKXv+isU+OHH35AXl4efv/738PU1BQpKSkIDw/HqVOnMHz4cAAtyxwsLCywevVqWFlZ4eHDhzh69CgWLFiAo0ePws7ODk5OToiNjUVUVBQ++OADTJkyBQBga2sLoOPnExGRBrOJ2cRsojYJRHpw5MgRQSaTCVevXhUaGxuFmpoa4fz588KkSZOE3/72t0JjY6PYd9asWUJAQIBWmyAIwvLly4VJkyYJarW6zX00NTUJjY2NwqJFi4QPP/xQbD969Kggk8mEQ4cOPbfGsWPHCuvWrWvVnpWVJchkMiErK0sQBEFQq9WCl5eX4Ofnp1VLTU2NMGHCBGHhwoViW1xcnCCTyYQvvvhC62dGR0cLCoVCaG5ubreeb775RpDJZMLBgwefW7fGwYMHBZlMJmRkZGi1JycnCzKZTPjHP/4hCIIgnD9/vs2aNPtLS0sT26ZOnSo4ODgIRUVFWn23bdsmyOVy4fr161rtixcv1jpWgiAI69atE6ZOnarVTyaTCRMnThQePXoktpWXlwtjxowRdu3a1e4Ym5qahIaGBmHGjBnC5s2bxfZ///vfgkwmE44cOdLqOS97PhFRz8dsYjY9jdlEunCpHunVggUL4OTkBDc3N4SEhODNN99EYmIipNKWNz/v3LmDoqIizJkzB0DLHTnN4+2330Z5eTmKi4vFn3fw4EEEBgZCoVDA0dERTk5OuHjxIgoLC8U+Fy5cwBtvvNFl69SLi4tx7949+Pv7w8jo/79CZmZmmDFjBnJzc/HkyROt57S1HKC+vr7VMpDOyMrKgqmpKWbNmqXVrrlrdfHiRbHf0+0avr6+MDU1Ffs9Xetbb72l1aZSqTB69GiMGTNGq93Pz6/D9SqVSq07p9bW1hg4cCBKS0vFtqamJiQlJWH27NlwdnaGo6MjnJ2dcfv2ba3XuD0vej4RUe/EbGrBbGI20fNxqR7p1datW2Fvb4/Hjx8jIyMDaWlpiIyMREpKCgDg/v37Yr+tW7e2+TMqKysBAHv27MGWLVvwm9/8BitXroSlpSWMjIzw+eefo6ioSOz/4MED2NjYaAVJZ2j2P2jQoFbbbGxs0NzcjOrqapiYmIjtFhYWWv00yw3q6ura3c+QIUMA/H/JiC5VVVWwtrZutXRi4MCBkEql4vKRqqoqSKVSWFlZafWTSCSwtrYW+2m0Nc6qqioMGzasVbu1tXWHagVaHxOg5bjU19eL/9+yZQsOHDiAZcuWwd3dHebm5pBIJPjTn/6k1a89L3I+EVHvxWxqwWxiNtHzceJEemVvby9+6NbT0xPNzc34+uuvcerUKcyaNQuWlpYAgOXLl2P69Olt/gzNHabjx4/Dw8MDMTExWtuf/RColZUVcnJy0Nzc3CUBpamxvLy81bZ79+7ByMgIb775Zqf34+zsDAsLC5w5cwarV6/WuZbcwsICubm5EARBq29FRQWamprEui0sLNDU1IQHDx5oBZQgCLh//774+mi0tV8LCwvxwv+0tto64/jx4wgICEBkZKRWe2VlZYeO8YucT0TUezGbOo7ZxGzqzbhUjwxq7dq1MDc3R1xcHJqbm2FnZ4eRI0fixo0bUCgUbT40b6FLJBKtD4oCwI0bN3D16lWtNm9vb9TX1yM9Pf25tfTt2/e5d9k03nrrLQwePBgnT56EIAhie21tLb777juMHTtW647ey+rTpw9CQkJQVFSEv//97232qaioQE5ODgBgwoQJqK2tbfWHEo8dOyZuf/rf48ePa/U7ffo0amtrxe3Po1QqUVBQgBs3bmi1nzx5UvfAXoBEIkGfPn202n744QeUlZVptbV3l/RFziciIg1mU/uYTcym3ozvOJFBmZubIzQ0FNu2bcOJEyfg7++PmJgYLFu2DEuXLkVgYCAGDx6Mhw8forCwEPn5+YiLiwMATJkyBYmJiYiLi4O7uzuKi4uRmJiIYcOGQa1Wi/vw8/NDeno6oqOjUVxcDKVSCUEQkJubC3t7e7z77rsAAJlMhuzsbJw9exaDBg2CmZkZ7OzsWtVsZGSEtWvXYs2aNVi+fDkWLlyIhoYG7N69G9XV1Vi9enWXHR9NOMXHxyMvLw9+fn7iHxm8dOkSDh06hIiICIwbNw4BAQE4cOAA1q1bh9LSUshkMuTk5GDXrl2YPHkyJk6cCACYNGkSvLy88Nlnn6GmpgZubm64efMm4uLi4OjoCH9/f511LVq0CEeOHEFoaCj+8Ic/iN9c9PQylK4wZcoU8RuK5HI58vPzsXv3bvFbiTRGjBiBfv364cSJE7C3t4epqSlsbGwwePDgDp9PREQazKbnYzYxm3orTpzI4IKCgnDgwAEkJibCz88Pnp6e+Prrr5GUlITNmzejuroaFhYWsLe3h6+vr/i8sLAwPHnyBIcPH0ZKSgpGjRqF6OhoZGZmIjs7W+wnlUrxxRdfYNeuXfjmm2+QmpoKMzMzjBkzBt7e3mK/9evXIyYmBpGRkXjy5Ak8PDywf//+NmueM2cOTExMkJycjFWrVsHY2BguLi7Yt28f3NzcuuzYSCQSxMbGYtq0aTh06JB4PDT1r1mzRvwg7RtvvIF9+/Zhx44dSElJQWVlJQYPHowlS5Zo/YFCiUSCxMRExMfHIz09HUlJSbCwsIC/vz8iIyNb3Slty6BBg/DVV19h06ZNiI6OhomJCaZNm4ZPPvlE/MrcrrB+/XpIpVIkJyejtrYWjo6OiI+Px+eff67Vz8TEBJs3b0ZCQgKWLl2KxsZGhIeHIyIiosPnExHR05hN7WM2MZt6K4nw9Pu5RERERERE1Ao/40RERERERKQDJ05EREREREQ6cOJERERERESkAydOREREREREOnDiREREREREpAMnTkRERERERDpw4kRERERERKQDJ05EREREREQ6cOJERERERESkAydOREREREREOnDiREREREREpMP/AFHwDaHzR2klAAAAAElFTkSuQmCC",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA14AAAHaCAYAAAAQZpgVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACmqUlEQVR4nOzdeXxU9b3/8deZyb6vJGQhCxBCIAFUSFARUUBbqtbtZ69WS221qKBtvdaqtbd6b1uq1loELdSlahUVVFyquKDiyuICBCIECEtISCArCdln5vfHJCEhAWaSTGaSvJ8P85jMOed75vOdYE4+c77fz9ew2Ww2RERERERExGVM7g5ARERERERksFPiJSIiIiIi4mJKvERERERERFxMiZeIiIiIiIiLKfESERERERFxMSVeIiIiIiIiLqbES0RERERExMWUeImIiIiIiLiYEi8REREREREXU+IlIiIiIiLiYl7uDkCkv+Xm5vLCCy+wYcMGDh8+jJeXF/Hx8Zx99tnMnTuXmJiYLm3GjBnT6bm3tzdBQUHExcWRkZHBhRdeyJlnnonJ1P1nGW3td+zY0b5txYoV/O53v2PatGk88cQT3ba78cYbWbt2Lffffz9XXXVVt7F0Z9WqVYwdO7bL9t27d7N8+XI2btxIcXExdXV1BAUFkZKSwpQpU7j44osZNWrUKc/fF3bv3s0LL7zA+vXrOXjwII2NjYSFhZGRkcGsWbO4+OKL8fX17dKuJz8/ERFPpuuSe69L3b0XxzvvvPMoKipizZo1JCQk9Pi1dA0b2gybzWZzdxAi/cFms/HQQw/xxBNP4OXlxZlnnklaWhrNzc18++23bNmyBX9/fxYuXMiFF17YqW3bL+X58+cDYLFYqKmpYefOnXzzzTc0NzeTlZXFQw89RFJSUpfXPtEv9ZtuuokPP/yQ3//+91xzzTWd9r3wwgvcd999nHvuuSxduvSEsXTnRz/6EdHR0Z36/ve//51//OMf2Gw2srKyyMzMJDg4mJqaGvLy8tiyZQtWq5W//e1vfO973zvl+9kbixcvZsmSJVitViZOnEhmZiaBgYGUlZXx1VdfsXfvXsaNG8err77aqQ89/fmJiHgiXZc847rUH4mXrmECgE1kiHj00UdtaWlpthkzZtjy8/O77F+9erUtMzPTNnbsWNsXX3zRaV9aWpotLS2t2/MePnzYduutt7afu7y8vMsxJ2pfVlZmy8nJsU2YMMG2e/fu9u0FBQW2CRMm2LKzs22HDx92OJYT+fvf/25LS0uznXfeebbNmzd3e0xxcbHtD3/4g+2ll15y6tzOeuyxx2xpaWm26dOn2zZt2tTtMWvXrrVde+21nbb15ucnIuKJdF3yjOuSI/HPmDHDlpaWZissLOzRa+gaJjabzabES4aE/fv32zIyMmzjxo2zbd++/YTHvfDCC7a0tDTb7NmzbRaLpX37qX4pWywW249//GNbWlqa7U9/+lOX/Sdr//7779vS0tJsl112ma25udnW3Nxsu/zyy21paWm2999/36lzdWffvn22jIwM2/jx4ztdRE+kubnZ4XM7q7Cw0DZu3DjbuHHjbDt27DjpsY2Nje3f9/bnJyLiaXRd8ozrks3m+sRL1zBpo+IaMiS8+uqrtLS0cP755590LPqVV15JdHQ0e/fuZcOGDQ6f32QycfPNNwPw5ptvOhXbzJkzufzyy9m6dStLlixhyZIl5ObmctlllzFz5kynztWdtr5feOGFpKamnvJ4Ly/XTf189dVXaW5uZvbs2aSlpZ30WB8fn07tXPnzExHpb7ouecZ1qT/oGiZtBva/ZBEHff311wCcddZZJz3Oy8uL7Oxs3nrrLb755htycnIcfo3TTz8dLy8vysvLOXDggFNjwO+++27Wr1/fPmY+Pj6ee+6556RtHn300W63+/r6cuONN7Y//+abbwDIzs52OB5X+eqrrwCYOnWqU+364+cnItKfdF3yjOtSRyeKH+DIkSM9Pq+uYdJGiZcMCWVlZQDExsae8ti2Yw4dOuTUa/j4+BAaGkp5eTkVFRVOXeCCgoK45ZZbuOuuuwD4wx/+QFBQ0EnbLF68uNvtwcHBnS5wbX0fNmxYl2N3797N22+/3Wnb8OHDueKKKxyO3RltsThbtak/fn4iIv1J1yXPuC51dKL4e0vXMGmjxEuGBFtr8U7DME55bNsxjhzbVxoaGvjnP//Z/vzdd9/lnHPOOWmbk1Vf6uhkfd+zZ0+XC81pp53m0AWuu08GL7300pNe2J35OfS0XXc/v6VLl/Lee++xZ88efHx8mDhxIr/+9a9POdxRRMRVdF3yjOtSR45UNezI0WuLp/+spf8o8ZIhITo6moKCAkpKSk55bNsxHcveOqKpqYnq6moAwsPDnWr74IMPUlBQwHXXXcfGjRtZuXIlM2fOZMaMGU6dpztRUVEUFBRQWlraZd/MmTPbLzQHDhzg/PPPd/i83X0yOGXKlJNe4IYNG+bwz6Gj3v78NmzYwNVXX01mZiY2m41Fixbx05/+lP/85z+EhYU5FYuISF/Qdckzrku94ei1pT9+1jIwqLiGDAmnn346AF988cVJj7NYLKxfvx6wf8LmjK+++oqWlhaioqJITEx0uN1nn33G888/T1paGnfccQcPPPAAPj4+3HvvvVRWVjoVQ3fa+rFu3bpen6ujHTt2dPk61Xj9tp+Ds7H09uf35JNPcvnll5OWlsaYMWN44IEHqKioaJ9nICLS33Rd8ozrUm84em3pj5+1DAxKvGRIuOyyyzCbzbz//vvs2rXrhMe98sorHDp0iJSUFKZMmeLw+a1WK48//jgAP/jBDxxuV1VVxV133YWXlxcPPvggPj4+pKWlcdttt3H48GH+8Ic/OHyuE2nr+7vvvktBQUGvz9fbWLy9vXn33XdP+nMA+ye1Hdv15c/v6NGjWK1WQkJCnO+EiEgf0HXJM65LfelE1xZX/6xl4FDiJUNCYmIiv/jFL2hubmbevHnd/uL74IMP+OMf/4jZbOZ//ud/MJkc+9+jvLycX/3qV2zYsIG4uDh+8YtfOBzXH/7wBw4dOsQvf/lL0tPT27dff/31nHHGGaxevZq33nrL4fN1JykpiV/84hc0NTVxww03sGXLlm6Pq6mp6dXrOCIhIYH58+fT3NzMjTfeSG5ubrfHffLJJ/z85z9vf97XP78//vGPjB07lkmTJvW+UyIiPaDrkmdcl/rSia4trvxZy8CiOV4yZCxYsID6+nqefvppLrnkEs4++2xGjRpFS0sL3377LZs3b8bPz4+//vWvJyx33jZx12q1UlNTw86dO/n6669pbm4mKyuLhx56iIiICIfiWbVqFe+88w6TJ0/m+uuv77TPZDKxcOFCLr74Yu6//34mT57cpRLgycrezpw5k7Fjx7Y/v/XWW7FarSxdupQrr7ySrKwsMjMzCQ4Oprq6mv3797Nu3ToMw2gfEuEq8+bNo6WlhSVLlnDFFVcwadIkxo8fT2BgIGVlZXz11Vfs3buX8ePHd2rXFz8/gL/85S98/fXXLF++HLPZ7NK+ioicjK5LnnFd6gunurb01TVMBjbD1lZqRWSI2LJlC88//zwbN26krKwMs9lMfHw806ZN4yc/+Um35V6PX/DQ29ubwMBA4uPjycjIYPbs2Zx99tkn/ISqrX3bhOHi4mIuvvhibDYbb7zxBvHx8d22W7FiBb/73e+YNm0aTzzxRLexdOfPf/4zl112WZftu3bt4sUXX2T9+vUUFxfT0NBAUFAQycnJTJ48mR/+8IeMGjXqlOfvC7t37+aFF15oj6WpqYmwsDDS09O54IILuOSSSzototymJz+/Nn/+85/5z3/+wzPPPMPIkSNd2T0REYfpuuTe69Lx70V32qoarlmzpkuxDmeuLb25hsnAp8RLRIaE//u//+Ptt9/mueeeU9IlIiJ9QtcWcYaGGorIoPeHP/yBN954gyVLlhASEsLhw4cBCAgIIDAw0M3RiYjIQKRrizhLd7xEZNA70TCY+fPns2DBgn6ORkREBgNdW8RZSrxERERERERcTLUqRUREREREXEyJl4iIiIiIiIsp8RIREREREXExJV4iIiIiIiIupnLyTrJarbS0tGAymTAMw93hiIgMKTabDavVipeX1wkXhh2KdG0SEXEPZ65LSryc1NLSQm5urrvDEBEZ0jIzM/Hx8XF3GB5D1yYREfdy5LqkxMtJbZlsZmYmZrPZ6fYWi4Xc3Nwetx/ohnr/Qe+B+q/+96b/be11t6szXZt6R/1X/9V/9b8/rktKvJzUNoTDbDb36h9nb9sPdEO9/6D3QP1X/3vTfw2n60zXpr6h/qv/6r/631OOXJf0kaGIiIiIiIiLKfESERERERFxMSVeIiIiIiIiLqbES0RERERExMWUeImIiIiIiLiYEi8REREREREXU+IlIiIiIiLiYkq8REREREREXEyJl4iIiIiIiIsp8RIREREREXExJV4iIiIiIiIupsRLRERERETExbzcHUBtbS2PPfYY27dvJy8vj8rKSubPn8+CBQs6HTdmzJgTniMlJYXVq1ef9HWuvfZaNmzY0GX72WefzZNPPtmz4EVERERERBzg9sSrqqqKl19+mfT0dGbOnMmKFSu6Pe6ll17qsm3z5s386U9/YtasWQ69VmJiIg899FCnbcHBwc4H3Rv7vmDUuj/AiKUQPap/X1tERKQbxrolJOethcznwWx2dzgiIoOS2xOv+Ph4Nm7ciGEYVFRUnDDxmjhxYpdtL730EoZhcMUVVzj0Wn5+ft2epz8Z298k9PBXWL99Fmbf79ZYREREAIxvnyOyLB/L/i9h1Ax3hyMiMii5fY6XYRgYhuF0u9raWlavXs3kyZNJSkpyQWQuEmUfMmmUbHFzICIiIq0iRwNglG51cyAiIoOX2xOvnnr77bepq6vjyiuvdLjN/v37mTJlChkZGcycOZO//e1vNDQ0uDDKrmyxmfZvSnLBZuvX1xYREemOLWa8/RslXiIiLuP2oYY9tXLlSkJCQrjgggscOv60007je9/7HqmpqTQ2NvLJJ5/wxBNP8PXXX/Pss89iMjmXg1oslp6EjSVyDCbDhFFXhqWqEELie3Segartfevp+zcYDPX3QP1X/zs+9rS99K22DwWNklw3RyIiMngNyMRr586dbN68mWuuuQZfX1+H2vzqV7/q9Hz69OnEx8fzl7/8hTVr1jhcoKNNbm7PL04ZQUn41+xhzxevUx17Zo/PM5D15v0bLIb6e6D+q//iQWJaR2OU7YCWRvBy7NoqIiKOG5CJ18qVKwGcGmbYnYsvvpi//OUvbNq0yenEKzMzE3MPKj9ZLBZqvh2Nf80eUv1rsLm52Ed/s1gs5Obm9vj9GwyG+nug/qv/vel/W3vpY6EJtHgH4dVcC4d3wPAsd0ckIjLoDLjEq6mpiddff51x48YxduzYPjmns8MMAcxmc4//aKoLHUXkgfcwlW4dsmV7e/P+DRZD/T1Q/9X/odx/j2MY1IeMIrh8k30OshIvEZE+N+CKa3z44YdUVlY6XEL+ZF577TUAJkyY0OtzOaMu1F49ioOb+/V1RURETqQuZKT9G83zEhFxCY+447V27Vrq6+s5evQoALt27WL16tWAfS6Wv79/+7ErV67Ez8+Piy666ITny8jIYPLkyTzzzDMAfPXVVzz++OPMmjWLxMTE9uIaL7/8Mjk5OZx33nku7F1XdSGtCycfOQBHyyEwsl9fX0RE5Hh1oa3XJiVeIiIu4RGJ13333UdRUVH789WrV7cnXmvWrCEhIQGAgwcP8vnnn3PxxRcTHBx8wvNZLBasVmv78+joaMxmM4899hiVlZUYhkFSUhK33nor119/fY+GGvaG1TsQW0QqRkUBlGyGkf2b+ImIiByvPqRD4mWzQQ/W2BQRkRPziMTrww8/dOi44cOH8913353yuB07dnR6npSUxLJly3oUW1/7dGcZf1xTziuxYwmpKLAPN1TiJSIyaHz33Xf87W9/Iz8/n4qKCvz8/EhJSeHqq6/mkksuaT/ut7/9bfuQ945SUlLaP3zsTw3BI7CZvDEaq6FqP4Qn9XsMIiKDmUckXkPJJzsPs7OimY3hiZwPcHCLu0MSEZE+dOTIEWJjY5kzZw4xMTHU19fz5ptv8pvf/IaioiJuvvnm9mP9/Pzah8V33OYONpM3RI+xL6JckqvES0Skjynx6mdjYuxDJNfXJ7QmXiqwISIymGRnZ5Odnd1p24wZMzhw4AAvv/xyp8TLZDIx0YOWFbHFZGK0JV5jf+DucEREBpUBV9VwoMuMDwXgnbJh9g0Vu6HhiBsjEhGR/hAeHu75JfRjx9sfS7e6Nw4RkUFIiVc/GxkdiI8ZCpuCaAmMtW/UBU5EZNCxWq20tLRQUVHB888/z2effcYNN9zQ6ZiGhgbOOussxo4dyznnnMP9999PVVWVewLGfscLgBINgxcR6WsaatjPvMwmUsO82V7ezOHgdIYfLbHP80o6092hiYhIH/rDH/7ASy+9BIC3tzf33HMPP/rRj9r3p6enk56ezujR9rUdN2zYwDPPPMOXX37JypUrCQwMdPo1LRZLj2Jta2eJGosZoGo/lqMV4Bfao/MNNO397+H7N9Cp/+p/x8ehprf9d6adEi83GBlhT7x2GKkM52PN8xIRGYTmzZvHlVdeSUVFBR9++CH/+7//S319PT/72c8AmDt3bqfjzzrrLDIyMrj11ltZsWJFl/2OyM3t3RpcubsKGe8fg299Kbs+W0Vt1IRenW+g6e37N9Cp/+r/UNYf/Vfi5QYjw70BWF+XwLmgIR0iIoNQXFwccXFxAEyfPh2Ahx9+mEsvvZSIiIhu28yaNYuAgAA2bdrUo9fMzMzs0Twyi8VCbm4umZmZeO84HfLfZnRwPTYPKvzhSh377/Hz8FxA/Vf/1f+e97+tvSOUeLlBW+K1uiKGO83Aoe+guQG83VNCWEREXC8rK4sXX3yRwsLCEyZeADabDZOpZ1OwzWZzr/5wMpvNGMOzIP9tTIe2wRD7I6y3799Ap/6r/+q/a/uv4hpuEBdsJtDHzJ7mMFr8wsFmgUN57g5LRERcaP369ZhMJhITE094zOrVq6mvr2fCBDcO8WurbKjRGCIifUp3vNzAZBiMjw9h/Z5KyoLSiW340j7PK/40d4cmIiK9dO+99xIUFERmZiZRUVFUVlayevVq3n77bX72s58RERFBUVERt99+O3PmzGHEiBEYhsHGjRt55plnGD16NFdeeaX7OhDbWtnw0HZoaQIvH/fFIiIyiCjxcpPx8aGs31PJTlMqsXypTxZFRAaJiRMn8uqrr/Laa69RU1NDQEAA6enpPPDAA1xyySUABAUFERUVxdNPP015eTkWi4X4+HiuvfZa5s2bR0BAgPs6EJYEviHQeATKdhxLxEREpFeUeLlJ20LK6+oTmAaqbCgiMkhcfvnlXH755Sc9JjQ0lMWLF/dTRE4yDHuyte9zKNmqxEtEpI9ojpebZMaHAPB+ZYx9Q+k2sLS4MSIREZFWbclWydAuLy0i0peUeLlJUkQAwX5e7GwZhsU7EFoaoCzf3WGJiIh0SLw0DF5EpK8o8XITwzDISgjFhonyoDH2jbrAiYiIJ+h4x8tmc28sIiKDhBIvN8qMDwNgpynVvkHzvERExBNEp4PJCxqqoPqAu6MRERkUlHi50YQEe4GNDQ0J9g0HdcdLREQ8gJcvRLWNxtA8LxGRvqDEy40yWxOvNVWx9g0lW8BqdWNEIiIirVRgQ0SkTynxcqP4MH8iAn3YbonDava1r5lSucfdYYmIiKjAhohIH1Pi5UaGYZAZH0oLXlQEjrJv1AVOREQ8QVviVbrVvXGIiAwSSrzcLKt1uOFuswpsiIiIB2lLvCr3QkO1W0MRERkMlHi5WWa8PfFa35Bo36ACGyIi4gkCIiCktfhT6Tb3xiIiMggo8XKzrIQwAD6qbi2wcXCz1kwRERHPoAIbIiJ9RomXm8WE+BId7EuedQQ2wwx1ZVBz0N1hiYiIqMCGiEgfUuLlZoZhkBUfSiM+VAUk2zdqnpeIiHgC3fESEekzSrw8QNt6Xru8Rto3aJ6XiIh4gtjx9sdD34Gl2b2xiIgMcEq8PEBbZcON7QU2dMdLREQ8QFgy+ASDpQnK8t0djYjIgKbEywNkxocB8ElNnH2DxtKLiIgnMJmO3fXScEMRkV5R4uUBooN9iQv1Y5s1yb6huhDqKtwblIiICGiel4hIH1Hi5SEyE0KpIYBqfw03FBERD6LES0SkTyjx8hBt63kVtBfYUOIlIiIeoGPipXUmRUR6TImXh8iMtxfY+Kqx9Y6X5nmJiIgniB4LhhnqK+BIsbujEREZsJR4eYi2xOvT2tYCG7rjJSIinsDbD6LH2L/XcEMRkR5T4uUhwgN9SIzwZ5s12b6hfDc01rg1JhEREUDzvERE+oASLw+SFR9GOaHU+gwDbFCy1d0hiYiIQExbSXkNgxcR6SklXh4ks3Uh5T3eqfYNusCJiIgn0B0vEZFe83J3ALW1tTz22GNs376dvLw8KisrmT9/PgsWLOh03G9/+1tee+21Lu1TUlJYvXq1Q6/1xRdf8Pe//53t27fj5+fHjBkzuOOOO4iMjOyTvvRWVus8r42NI8hkneZ5iYiIZ2hLvCr32IfB+wa7Nx4RkQHI7YlXVVUVL7/8Munp6cycOZMVK1ac8Fg/Pz+eeeaZLtscsWHDBm644QamT5/OY489Rnl5OQ899BBz587llVdewcfHp1f96AvjWhOvdXXxXO8DHNQdLxER8QCBURAcBzXFULoNRuS4OyIRkQHH7YlXfHw8GzduxDAMKioqTpp4mUwmJk6c2KPXeeCBB0hOTmbRokV4edm7nZCQwH/913+xcuVKrr766h6dty+F+nuTEhXI1rIU+4bD30FLI3j5ujcwERGR2Ex74lWSq8RLRKQH3D7HyzAMDMNw6WuUlpaSm5vLJZdc0p50AZx22mkkJyfzwQcfuPT1nZEZH0oxkTR4hYK1BQ7luTskERGRDvO8NBpDRKQn3H7HyxkNDQ2cddZZVFRUEB0dzcyZM7n11lsJCws7abv8/HwAxowZ02XfmDFj+Oabb5yOxWKxON2mY7sTtc+MD+GNzcUUeI0ko+UbrEXfYovJ6tFreaJT9X8oGOrvgfqv/nd87Gl7cQMV2BAR6ZUBk3ilp6eTnp7O6NGjAfucrWeeeYYvv/ySlStXEhgYeMK2VVVVAISGhnbZFxYW1r7fGbm5vbvwnKi9X10TABsb4sngG8q3fsh+04RevZYn6u37NxgM9fdA/Vf/ZYBpS7xK88DSAuYB8yeEiIhHGDC/NefOndvp+VlnnUVGRga33norK1as6LK/Oyca0tiToY6ZmZmYzWan21ksFnJzc0/YfnRjC79f+wFfNSXxEx+Iaikmoofz2jzRqfo/FAz190D9V/970/+29uIG4SngEwRNtVC+E4aNdXdEIiIDyoBJvLoza9YsAgIC2LRp00mPaxuK2N2draqqqm7vhJ2K2Wzu1R9NJ2ofEmBmVHQQ2w4nA2CUbsOMbdB9stjb928wGOrvgfqv/g/l/g9IJhPEjIPC9fbhhkq8RESc4vbiGr1ls9kwmU7ejbS0NAB27NjRZV9+fn77fk+RmRDKHlssTeYAaGmwf7IoIiLibiqwISLSYwM68Vq9ejX19fVMmHDyOVAxMTFkZWXx5ptvdpqYvWnTJvbs2cOsWbNcHapTsuJDsWFin1drWXktpCwiIp6gPfHa6t44REQGII8Yv7Z27Vrq6+s5evQoALt27WL16tUATJ8+nYqKCm6//XbmzJnDiBEjMAyDjRs38swzzzB69GiuvPLKTufLyMhg8uTJnRZb/u///m+uv/56brvtNq6++mrKy8v561//SlpaGpdffnn/ddYBmQlhAHzdlMRottkXUp7wI/cGJSIiDvnuu+/429/+Rn5+PhUVFfj5+ZGSksLVV1/NJZdc0unYbdu28eCDD7J582bMZjM5OTnceeedJCYmuin6U+hY2dBmAxcvByMiMph4ROJ13333UVRU1P589erV7YnXmjVrCA4OJioqiqeffpry8nIsFgvx8fFce+21zJs3j4CAgE7ns1gsWK3WTtuys7NZtmwZixYtYt68efj7+3Puuefym9/8Bh8fH9d30gkZw0Mwmwy+akrkR97ojpeIyABy5MgRYmNjmTNnDjExMdTX1/Pmm2/ym9/8hqKiIm6++WYAdu/ezbXXXsvYsWN55JFHaGxsZNGiRVx99dW8/vrrREREuLkn3RiWAYYJ6sqgpgRChrs7IhGRAcMjEq8PP/zwlMcsXrzY4fN1N5cL7JUQzzrrLIfP4y7+PmZGDwtiW2myfUPJFrBa7RObRUTEo2VnZ5Odnd1p24wZMzhw4AAvv/xye+K1aNEifHx8WLp0KUFBQQCMGzeOCy64gCeffJI77rij32M/JW9/iEqDw9vtd72UeImIOEx/yXuorIRQdtriaTG8ofEIVO11d0giItIL4eHh7ZUcW1pa+Pjjj5k9e3Z70gUQHx9PdnY2H3zwgbvCPDUV2BAR6RGPuOMlXWUmhPHyV14UeieT0rTTPs8rItXdYYmIiIOsVitWq5UjR47wzjvv8Nlnn3HvvfcCsH//fhoaGhgzZkyXdmlpaXz++ec0Njbi6+vr1Gt2LCDVk3aOtDeGjcPECqwHt2Dr4et5Gmf6Pxip/+p/x8ehprf9d6adEi8PlRVvX1vsm6YRpLDTPs9r3A/dG5SIiDjsD3/4Ay+99BIA3t7e3HPPPfzoR/ZCSW3rSratM9lRWFgYNpuN6upqhg0b5tRr9nZxaUfaB9f6kwY07f+abadYR3OgGeqLc6v/6v9Q1h/9V+LlodKHB+NtNvi2eQSXe6MhHSIiA8y8efO48sorqaio4MMPP+R///d/qa+v52c/+1n7McZJqgKebN+JZGZm9mhhaovFQm5urmPta+Ng/Z34Hi1iYsYo8Ak6+fEDgFP9H4TUf/Vf/e95/9vaO0KJl4fy9TKTHhvC1uIOa3mpdK+IyIARFxdHXFwcYF8aBeDhhx/m0ksvbb/TVVlZ2aVdVVUVhmEQEhLi9GuazeZe/eHkUPvQ4RAUi1FbgrlsByRO6fHreZrevn8Dnfqv/qv/ru1/jxKvnTt38s0331BaWkpDQwPh4eGMGjWKyZMnd5okLL2TmRDKq0WJWDFhOnpYpXtFRAawrKwsXnzxRQoLCxk3bhx+fn7k5+d3OS4/P5+kpCSn53f1q9hM2FViH40xiBIvERFXcjjxqq6u5qWXXuKll16iuLgYm83W9WReXpxzzjlce+21TJ06tU8DHYqy4kN5AV+KvBJJbNlnv+ulxEtEZEBav349JpOJxMREvLy8mDFjBu+//z533HFH+4eWxcXFrF+/nrlz57o32FOJzYRd79tLyouIiEMcSryeffZZlixZAsD3v/99pkyZwrhx44iIiMDX15fq6moKCwvZtGkTa9as4frrr+fMM8/k97//PUlJSS7twGCWmWAvsLGpZQSJ7LN/sjjmQjdHJSIiJ3PvvfcSFBREZmYmUVFRVFZWsnr1at5++21+9rOftS+MvGDBAq644grmzZvHDTfcQFNTE4sWLSI8PJzrr7/ezb04hfaS8kq8REQc5VDi9dxzz3HXXXcxZ84cvL29u+yPiooiKiqKSZMm8dOf/pT9+/fz+OOP88477zBv3rw+D3qoSIsJxsfLxKbmJC7y/tR+x0tERDzaxIkTefXVV3nttdeoqakhICCA9PR0HnjgAS655JL240aOHMlzzz3HQw89xG233YbZbCYnJ4clS5a0J2ceKzbL/li6DSwtYNaUcRGRU3HoN+U777yDl5fjv1RHjBjBn//85yG7HkBf8TabyBgewraiZPuGg6psKCLi6S6//HIuv/xyh44dP348//rXv1wbkCtEpIB3IDQfhYrdEN11PTIREenM5MhBO3fu7NHJh3JllL6SlRBKnrV1uGb1fqircG9AIiIiJjPEjLN/r+GGIiIOcSjxuvTSS7nssst44YUXqKmpcXVM0kFmfChHCKTE3FpUQ+t5iYiIJ4gdb3/UdUlExCEOJV6/+MUvqKio4P777+fss8/mv//7v1m3bp2rYxMgKyEMgM0tI+wbNM9LREQ8gQpsiIg4xaHE61e/+hUfffQRy5YtY8aMGbz33nv89Kc/5fzzz+exxx7j4MGDro5zyBoZHYi/t5nNLa3DDZV4iYiIJ2grsFGy1b1xiIgMEA4lXgCGYXDOOefwyCOP8Nlnn3HPPfcQGhrKokWLmDlzJj/72c9YvXo1zc3Nrox3yPEymxgXF8I2W4p9gwpsiIiIJxiWAYYJjh6CmlJ3RyMi4vEcTrw6CgkJ4cc//jGvvvoqq1at4uqrryYvL49f/epXnHPOOX0d45CXlRDGNmuy/Un5LmisdWs8IiIi+ARA5Cj79xpuKCJySj1KvDpKT0/n4osv5rzzzgOgqqqqt6eU42QlhFJGKOWmSMAGpRrWISIiHqB9npdGY4iInEqPVzysqKjgjTfe4JVXXmHXrl2YzWZmzJjBFVdc0ZfxCZCZEArAFksSM4xy+zyvETlujkpERIa82EzY+orueImIOMCpxMtqtfLJJ5/wyiuv8PHHH9Pc3ExycjK//vWvufTSS4mKinJVnENaSmQgQb5e9sTL6xvN8xIREc+gyoYiIg5zKPHas2cPr7zyCq+//jplZWX4+fnxgx/8gMsvv5wzzjjD1TEOeSaTwfj4ELbtTbZvUGVDERHxBG2VDct3QdNR8Al0bzwiIh7MocTre9/7HgBZWVksWLCAOXPmEBioX679KSshjP8UJNufHP4OWhrBy9etMYmIyBAXNAwCh9krG5bmQeJkd0ckIuKxHEq8fvKTn3DFFVcwevRoV8cjJ5AZH8oyojhiBBNirYFDeRA3yd1hiYjIIFBV10Tp0ZaeNY7NhN1r7AU2lHiJiJyQQ1UN77rrrm6TroKCAr7++mvq6ur6PDDpLCshFDDYamlbSFnzvEREpG/84t/fctvqMooq651v3DbPSxV3RUROqkfl5FetWsU555zDnDlz+PGPf8yePXsAuO2223j55Zf7NECxGxERQIifF1va1vPSPC8REekjZhM0W+GTnWXON1aBDRERhzideL3zzjv89re/JSMjg3vvvRebzda+b9y4cbzzzjt9GqDYGYZBVkIYeW2Jl9ZMERGRPpKdEgHAhr0VzjduK7BRug2slj6MSkRkcHE68Vq2bBmXXXYZ//jHP7jqqqs67UtNTWXXrl19Fpx0lpkQylZbsv1JyVZd4EREpE+0JV7rCyo6faDqkMiR4OUPzXVQUeCC6EREBgenE6/du3czZ86cbveFhYVRVVXV25jkBLLiQ9lji6UeP2iph7Kd7g5JREQGgUmJYXiboLSmkb3lTs7bNpkhZpz9e43GEBE5IacTL39/f2pqarrdV1paSmhoaK+Dku5lJYZhw8Q2a1uBDc3zEhGR3vP1NjM6whuAdQXlzp9A87xERE7J6cRr0qRJPP/8890ORXj11VeZMmVKnwQmXcWF+hEZ6MPWtsRLnyyKiEgfGTfMB1DiJSLiKk4nXrfccgubNm3iiiuu4LnnnsMwDN577z3mzZvHV199xbx581wRp2AvsJGZEMq2tnleuuMlIiJ9ZFy0PfHq0TwvJV4iIqfkdOKVmZnJP//5T+rq6li4cCE2m42lS5eyZ88eli1bRlpamivilFZZ8aFsay8pvwWcvTiKiIh0Iy3SBx+zQcmRBvY5O89rWAZgQG0p1B5ySXwiIgOdV08a5eTk8M4777B//37KysoIDw8nJSWlr2OTbmQmhPG4LYEmvPBprIbKvRCh915ERHrH12wwMTGMDXsrWVdQTnJUoBONg+zVDct32e96jTrfdYGKiAxQPVpAuc2IESM47bTTlHT1o6yEUJrxYoc1wb5B87xERKSPTGktK695XiIifc+hxOvtt992+sSlpaV8/fXXTreTk4sJ8WNYsC9bra3JruZ5iYhIH8luT7w0z0tEpK85lHjdf//9XHLJJaxYsYLa2tqTHrt161buu+8+LrjgArZv394nQUpnWSqwISIiLjApMQwfs4mSIw3sr3Bynldslv1RiZeISLccmuP1/vvv8+ijj/LHP/6R+++/n4yMDDIyMoiMjMTHx4fq6moKCwvZtGkThw8fZvTo0Tz66KNMmzbtlOeura3lscceY/v27eTl5VFZWcn8+fNZsGBB+zEWi4Vnn32Wzz77jJ07d1JdXU1cXBznn38+N954IyEhIad8nWuvvZYNGzZ02X722Wfz5JNPOvI2eIzM+DA+3p5sf3Jws73AhmG4NSYRERn4/H3MrfO8KlhXUE5SpBPzvNrueJXvhKY68AlwTZAiIgOUQ4lXcHAwd999N7fccguvvvoqa9euZdWqVdTX17cfk5iYyLRp07jooovIyclxOICqqipefvll0tPTmTlzJitWrOhyTENDA48++ig/+MEPuPLKKwkPDycvL4/HH3+cjz76iFdeeQU/P79TvlZiYiIPPfRQl74NNFkJoTxuG4EFE+ajh6GmBEKGuzssEREZBLJTI1oTrwqumjzC8YZBMRAYDUcPw6HvIOF01wUpIjIAOVXVMDQ0lJ/+9Kf89Kc/BaCmpoaGhgbCwsLw9vbuUQDx8fFs3LgRwzCoqKjoNvHy8/NjzZo1hIeHt2/Lzs5m+PDh3Hbbbbz77rtccsklp3wtPz8/Jk6c2KM4PUlmQigN+LLbOpw0U5G9wIYSLxER6QM5qZE8+uEu1hWUY7PZMBwdUWEYEDMeCj6yX5eUeImIdNKrqobBwcFER0f3OOkC+6LAp/qlbjabOyVdbbKy7OPJS0pKevz6A1FUkC/xYf5stanAhoiI9K3TRoTjbTY4WN1AYUX9qRt0pAIbIiIn1KN1vDzFunXrABg1apRDx+/fv58pU6ZQW1tLXFwcc+bM4aabbnJomOLxLBaL0206tutp+zbj40PYtj2Jy8yfYSvejLWX5+svfdX/gWyovwfqv/rf8bGn7cV12uZ5bWxdz2tEpBNztdoKbJRudU1wIiID2IBNvEpLS/nrX//K+PHjmTFjximPP+200/je975HamoqjY2NfPLJJzzxxBN8/fXXPPvss5hMzt38y83t3ad5vW0fZRxlW+sdr6b9G9m6aVOvztffetv/wWCovwfqv/ovnisnNbI98fp/kxMdb9h+x2srWK3g5LVVRGQwG5CJV1VVFTfccAM2m41HHnnEoaTpV7/6Vafn06dPJz4+nr/85S+sWbOGWbNmORVDZmYmZrPZqTZg/7Q2Nze3x+3b1AaVsWBrKQC+9aVMHJME/l2HY3qavur/QDbU3wP1X/3vTf/b2otrZadE8ig9mOcVOQq8/KD5KFTugciRrg1URGQAGXCJV3V1Nddffz2lpaU888wzJCY68UnccS6++GL+8pe/sGnTJqcTL7PZ3Ks/mnrbfkJiOEcIZJ91GEmmQ5gPbYXUc3t8vv7W2/4PBkP9PVD/1f+h3H9Pd1pSGN5mg+LWeV4ODzc0e8GwDCj+xl5gQ4mXiEi7ATUGoLq6mp/+9KccOHCAp59+mvT09D45r7PDDD1BWIAPIyICOiykvMWt8YiIiN2XX37JXXfdxYUXXsjEiROZNm0aN910E1u3dp739Nvf/pYxY8Z0+brwwgvdFPkxAT5eTEgIA2DdnnLnGqvAhohIt5y+4/W///u/XHPNNaSmproinhNqS7oKCwt56qmnyMjI6PU5X3vtNQAmTJjQ63O5Q2ZCKFu3JfN98wZVNhQR8RDLly+nqqqK6667jlGjRlFRUcHTTz/NVVddxRNPPMHUqVPbj/Xz8+OZZ57p1L4nBZ9cISc1kq/2tc7zOqMn87yUeImIdOR04rVq1SpeeOEFcnJyuOaaazj//PMdH/t9AmvXrqW+vp6jR48CsGvXLlavXg3Y52IZhsHPfvYz8vLyuPvuu7FYLGzqUEwiIiKCESOOLfKYkZHB5MmT2y9mX331FY8//jizZs0iMTGxvbjGyy+/TE5ODuedd16v4neXrPhQvtyabH9SojteIiKe4H/+53+IjIzstG3atGnMnj2bpUuXdkq8TCaTx64vmZMayeKPdrG+oMK5eV5tlQ2VeImIdOJ04vXpp5/y2muvsXz5cubPn8/w4cP5r//6L6644goiIiJ6FMR9991HUVFR+/PVq1e3J15r1qwBjlXA+uMf/9il/aWXXsrChQvbn1ssFqxWa/vz6OhozGYzjz32GJWVlRiGQVJSErfeeivXX3/9gBxqCPY7Xv+0tq7lVbYTGmvBN8i9QYmIDHHHJ10AgYGBjBw5koMHD7ohop45LSkML5NBUVU9ByrrSYxwcJ5XTOuIlJqDcLQMAqNcF6SIyADidOIVEBDANddcwzXXXMOXX37J888/z9///ncWL17M97//fa655hoyMzOdOueHH354ymN27Njh8PmOPzYpKYlly5Y5FdNAMD4+lDJCKbWFEWNUQek2GJHt7rBEROQ4NTU15OXlkZOT02l7Q0MDZ511FhUVFURHRzNz5kxuvfVWwsLC3BNoBwE+XkxIDOPrfZV8WVDueOLlGwwRqVBRYL/rNfLUS76IiAwFvapqOHXqVKZOnUpJSQl33nknr7/+Oq+//jrjx4/npptuGrBD+AaKED9vUqMC2VqdQoz5W/s8LyVeIiIe57777qO+vp558+a1b0tPTyc9PZ3Ro0cDsGHDBp555hm+/PJLVq5cSWBgoNOv09uFqY9vPyU5nK/3VbJudxmXT4pz+HymmPEYFQVYD27GlnxOj2LqT1rYXP3v+DjUqP+9678z7XqVeDU0NPDmm2/y/PPPs337dkaNGsWFF17Ihx9+yC233ML8+fO55ZZbevMScgqZCaFsq0rifL6FEhXYEBHxNI888ghvvvkm9957L+PHj2/fPnfu3E7HnXXWWWRkZHDrrbeyYsWKLvsd0ds1zo5vH21rBODTHSVs2mTtrkm3Yq1RxAOV333KXv9pvYqpPw31NeLUf/V/KOuP/vco8dq/fz/PP/88r732GrW1tZxzzjn85je/4cwzzwRg/vz5PPzww/z73/9W4uViWQlhbNjSOs9LlQ1FRDzK4sWLefzxx/nVr37Fj3/841MeP2vWLAICAjoVkHJGbxemPr59WlMLf/psDYfrrEQlpZEQ7uBww8BDsOMpIpoOEOahxUM60sLm6r/6r/739venI5xOvH7+85/zxRdf4O/vz2WXXca1117bqaJgmxkzZgzKeVWeJishlKfb1vI6tB1aGsHL160xiYiIPel69NFHWbBgQachhqdis9l6XPSptwtTH98+2N9MVkIo3+yvYsPeKpKigh07UZx9mRajbCdmaxN4+/c4pv401Bf2Vv/Vf/Xftf13+jd7YWEhd911F5988gn33HNPt0kXwOjRo3n22Wd7HaCcXMbwEIqJosoWCNZmOPSdu0MSERnylixZwqOPPspNN93E/PnzHW63evVq6uvrPWp9yZxUe5XG9XsqHG8UPBwCIsFm0XVJRKSV03e83n33XYeOCwoKYsqUKU4HJM4J9PVi1LBgtlUkc5Z5m309r7iJ7g5LRGTIeuqpp1i0aBHTpk3j3HPP7TJscOLEiRQVFXH77bczZ84cRowYgWEYbNy4kWeeeYbRo0dz5ZVXuif4buSkRvLYx7tZV1DueCPDsC+kXPCxvbJh/Gkui09EZKDoVXEN8QyZ8WFsLU/mLLZpnpeIiJt99NFHgH3dy08//bTL/h07dhAUFERUVBRPP/005eXlWCwW4uPjufbaa5k3bx4BAQ7OpeoHpyeF42UyOFBZT2FFneNl5TsmXiIi4nzidd55551w9XqTyURwcDCZmZlcd911jBw5stcByqllJYTy9aZk+5ODW9wai4jIUPfcc8+d8pjQ0FAWL17cD9H0XqCvF5kJoXy7v4r1eyqcWEi5dU1PJV4iIkAP5nhNmTIFm81GaWkp8fHxTJgwgbi4OEpLS7FYLAwfPpz333+fyy+/fMiXpewvmQmhbGstsGEryQXr0FyHQUREXKNtnpdTww1jWxOv0m1gdbwUvYjIYOV04nX22Wfj4+PD+++/z7PPPsvDDz/Mc889x3vvvYePjw8zZ87k3XffJTk5mUcffdQVMctxMoaHsN+Io87mi9FSD2U73R2SiIgMIscKbDiReEWNBrMvNNVA1V7XBCYiMoA4nXj94x//YMGCBQwfPrzT9ri4OG655RaWLVtGcHAwc+fO7fE6JOIcP28zo2JCybMl2TeUaLihiIj0nTOSwjGbDAor6jlQWedYI7M3DBtr/17DDUVEnE+89u3bR1BQULf7QkJCKCoqAiA+Pp76+vreRScOy4oPZas12f5EBTZERKQPBfp6kRkfCsD6AifKysdqnpeISBunE6+4uDhee+21bve98sor7XfCqqqqCA0N7V104rCO87yUeImISF/r2TyvLPujEi8REeerGv7sZz/j97//PT/60Y+48MILiYqKoqysjNWrV7N582buv/9+ANavX8/48eP7PGDpXlZCKC+03vGylWzBsNns66iIiIj0gZzUCP6xdjfrnJnnpTteIiLtnE68/t//+3/YbDYeffRRFi5c2L49KiqK++67r33Rx3nz5uHj49N3kcpJjYkNZp9pBE02Mz4N1VC1D8KT3R2WiIgMEmckR7TP8yqqqic+zP/UjWLG2R+PFMHRcgiMdG2QIiIezKnEy2KxsH//fr73ve/x//7f/6OgoICqqirCwsJITU3ttL5XVFRUnwcrJ+brZWbk8HB2HEok09hrH26oxEtERPpIUOs8r02FVawvKOey0xJO3cgvBMJToHIPlOZC6rkuj1NExFM5NcfLZrMxZ84cvv32WwzDYOTIkZx++umMHDnyhIsqS//JjA9lW3uBDVU2FBGRvpWdGgE4O8+rddpByVYXRCQiMnA4lXh5eXkRFRWFzWZzVTzSC1kJoWy1pdifqMCGiIj0sWMFNpypbKgCGyIi0IOqhnPmzGHVqlUuCEV6KzM+jDyrfS0vm9byEhGRPta2ntf+ijqKqxxcMkYFNkREgB4U10hPT+ftt9/muuuuY/bs2URHR3cZZjh79uw+C1AcNzomiAJzMhabgbm2FGpKIDjW3WGJiMggEeznzfj4UDYXVrF+TzmXTnJgnldb4lW2A5obwNvPtUGKiHgopxOvO++8E4DS0lI2bNjQZb9hGHz33Xe9j0yc5m02kRI3jIKSOEYbRfZ5Xkq8RESkD+WkRrC5sIp1uyscS7xC4sE/HOor4fB2iJvo8hhFRDyR04nXs88+64o4pI9kxYey9WAyoymyz/NK091HERHpOzkpkSxdW+D4el6GYb/rtecT+3BDJV4iMkQ5nXhNmTLFFXFIH8lMCGPbhmQuNX8OJSqwISIifeuM5HBMBuwrr+NgdT3DQx1Yzys261jiJSIyRDldXKNNTU0Nn376KW+88QbV1dV9GZP0QlZCKNtsyQDYVNlQRET6WLCfN5nxoQCsd7S6oQpsiIj0LPFasmQJ06ZN44YbbuDOO+/kwIEDAPzkJz9h2bJlfRqgOGdkdBAF5lQAjKr99jH1IiIifehYWXkHhxvGtK7lVboVtCSNiAxRTidezz//PEuWLOGKK65g6dKlndb0mjFjBh9//HFfxidOMpsMRsTHsd8abd+ghZRFRKSPOb2QclQamH2g8QhU7XNhZCIinqtHidfcuXP53e9+x9lnn91pX1JSEvv26Requ2UlhLUPN0TreYmISB87IzkCkwF7W+d5nZKXD0Sn27/XcEMRGaKcTrwKCwuZNm1at/sCAwM5cuRIr4OS3slKCGWrNcX+RPO8RESkj4W0rucFzszzyrI/KvESkSHK6cQrODiYsrKybvcVFRURGRnZ66CkdzLjQ9lmSwLApqGGIiLiAm3zvNY7WlZeBTZEZIhzOvGaOnUqTzzxBHV1de3bDMOgpaWF5cuXdxl+KP0vOTKQvd6j7U/K8qHpqHsDEhGRQSenfZ6XKhuKiDjC6cTr1ltvpbi4mDlz5rBw4UIMw+Df//43V155Jfv27ePmm292RZziBJPJYHh8EodsYRjYoGSru0MSEZFBpm2e156yo5RUN5y6QWxrZcPqQqhzMFkTERlEnE68kpKSWL58OampqSxfvhybzcbrr79OeHg4L7zwAnFxca6IU5xkn+eVbH+iAhsiItLHQvy8GRfXOs/LkeGGfqEQZh8GT6k+EBSRocerJ41GjRrFk08+SVNTE5WVlYSGhuLn59fXsUkvZCaEstWWzHlsgoOb3B2OiIgMQjmpEeQWVbOuoJxLJsafukFspr2cfEkupJzj+gBFRDxIjxZQbuPj40NMTIySLg+UFR/GttY7XlYV2BARERdoL7Dh9Dwv3fESkaGnR3e8Dhw4wDvvvENxcTENDZ3HdRuGwZ/+9Kc+CU56LjHCn/0+rQU2Dn0HLU32dVRERET6yBnJERgGFJQdpfRIAzEhp/ggVgU2RGQIczrx+vjjj5k/fz5Wq5WIiAh8fDr/MW8YhlPnq62t5bHHHmP79u3k5eVRWVnJ/PnzWbBgQZdjt23bxoMPPsjmzZsxm83k5ORw5513kpiY6NBrffHFF/z9739n+/bt+Pn5MWPGDO64445BWQLfMAyiEkZRVRhImPUoHP4Ohk9wd1giIjKIhPp7My4uhK1FRxwbbtiWeB3erg8ERWTIcXqo4d/+9jdOO+00Pv30Uz777DM+/PDDTl9r1qxx6nxVVVW8/PLLNDU1MXPmzBMet3v3bq699lqam5t55JFH+NOf/sTevXu5+uqrqag49RCHDRs2cMMNNxAZGcljjz3GPffcwxdffMHcuXNpampyKuaBIjPh2HBDLaQsIiKukJNi//DSobLyoYn2IhvWZnvyJSIyhDh9x2vfvn08+uijfXaXKD4+no0bN2IYBhUVFaxYsaLb4xYtWoSPjw9Lly4lKCgIgHHjxnHBBRfw5JNPcscdd5z0dR544AGSk5NZtGgRXl72bickJPBf//VfrFy5kquvvrpP+uNJshJC2WZL5iy2geZ5iYiIC+SkRvLEZ3scq2xoGBCbBXs/tQ83HJ7l+gBFRDyE03e84uLiOi2e3FuGYZxyeGJLSwsff/wxs2fPbk+6wJ60ZWdn88EHH5y0fWlpKbm5uVxyySXtSRfAaaedRnJy8inbD1RZCWHtJeWtxZvcGouIiAxOk1Na53kdPsqhI46s56V5XiIyNDmdeP3iF7/gqaeeor6+3hXxdGv//v00NDQwZsyYLvvS0tLYt28fjY2NJ2yfn58P0G37MWPGtO8fbIaH+lHsby+wYSvdClaLmyMSEZHBJtTfm4zhIQCs2+PAcEMlXiIyRDk91DA3N5fy8nJmzZpFdnY24eHhXY753e9+1yfBtamqqgIgLCysy76wsDBsNhvV1dUMGzbspO1DQ0O7bd+23xkWS8+SmLZ2PW3vrOC4dOr2+xLQUo/l0A6I7pp89qf+7r8nGurvgfqv/nd87Gl78Sw5qZFsK7YX2Lh4QtzJD+6YeNls9uGHIiJDgNOJ17///e/27//zn/902W8YRp8nXh3P3ZN9pzrG2UqMYE9Ae6O37R0V5d3Id7YRnG7sZN/6t6hM6L87lSfTX/33ZEP9PVD/1X8ZPHJSI3nysz2sK3BgnlfUGDB5Q2M1VO2H8CTXBygi4gGcTry2b+//KkRtd7oqKyu77KuqqsIwDEJCQk7Zvrs7W1VVVd3eCTuVzMxMzGaz0+0sFgu5ubk9bu+sct9DbM1P5nTTTpJ9q0iaONHlr3ky/d1/TzTU3wP1X/3vTf/b2nuyL7/8kjfeeINvv/2WkpISgoODGT9+PLfccgvjx4/vdGxvl0nxFFOSO8zzqmlgWPBJ1vPy8oHodCjNhdKtSrxEZMjo0QLK/W3EiBH4+fl1OxcrPz+fpKQkfH19T9g+LS0NgB07djB9+vQu7dv2O8NsNvfqj6betnfUhBHhfGBLBsB2cIvH/KHXX/33ZEP9PVD/1f/B2v/ly5dTVVXFddddx6hRo6ioqODpp5/mqquu4oknnmDq1KnAsWVSxo4dyyOPPEJjYyOLFi3i6quv5vXXXyciIsLNPXFcaIB9nte24iOsL6jgIkeGG5bm2ocbps/pnyBFRNzMoeIaGzdu5OjRo6c8rqKigpUrV/Y6qON5eXkxY8YM3n//fWpra9u3FxcXs379embNmnXS9jExMWRlZfHmm292mh+wadMm9uzZc8r2A1lMiB8H/e2Jpe3gZvt4ehERcZn/+Z//4dlnn+Xqq69mypQpXHjhhTz11FOEhYWxdOnS9uM6LpMyffp0Zs+ezdKlS6msrOTJJ590Yw96Jrt9PS8HhhuqwIaIDEEOJV7XXXcdu3fvbn9utVoZP348eXl5nY4rLCzk3nvvdTqItWvXsnr1aj766CMAdu3axerVq1m9enV79cQFCxZQX1/PvHnzWLt2Le+//z6/+MUvCA8P5/rrr+90voyMDH7yk5902vbf//3fFBQUcNttt/HFF1/w5ptv8stf/pK0tDQuv/xyp2MeSAISMmmymfFqOmIfTy8iIi7T3TqXgYGBjBw5koMHDwK9XybFE+Wk2u/QOZd4aY1JERk6HBpqaDvuLonNZqOlpaXL9p667777KCoqan/elnQBrFmzhoSEBEaOHMlzzz3HQw89xG233dY+Fn7JkiVdhmNYLBasVmunbdnZ2SxbtoxFixYxb948/P39Offcc/nNb36Dj49Pn/TDU41LjCK/IJHxxl44uFnj6UVE+llNTQ15eXnk5OQAp14m5fPPP6exsfGkw+i7486Ku6ePCMUwYPfho5RU1REdfJLYozMwA1Ttx3K0Avycn2vdl1RtVP3v+DjUqP/9V23XI+Z4ffjhhw4dN378eP71r3+d8rgdO3Z0u/2ss87irLPOcia0QSEzIZRt1mTGm/baP13MuNjdIYmIDCn33Xdf+6gN6P0yKSfi7oq7yaFe7Klq4eWPv+GsRP+THjvePwbf+lJ2fbaK2qgJvXrdvuLphVtcTf1X/4ey/ui/RyRe4lqZ8aH83ZbMVUBL0bf6oYuI9KNHHnmEN998k3vvvbdLVcPeLpNyPHdX3J1e9B17vthHqTWEiRPHnfRY047TIf9tRgfXY1PFXbdS/9V/9b9/qu3qb/AhICrIl0OBY6AJrMUaTy8i0l8WL17M448/zq9+9St+/OMft2/v7TIpJ+LuirtTR0bxry/2sX5v5anPMzwL8t/GdGgbeMgfe4O52qYj1H/1X/13bf8dTrwKCgrag2kby1hQUNDlGPFMfglZWHcb+NQfgppSCI5xd0giIoPa4sWLefTRR1mwYEH7EMM2vV0mxVNlp9jX89p1qJbDNY0nn+elyoYiMsQ4nHjdddddXbb95je/6fTcZrP1aGiEuN6YEbEU7BrOKKPYPs8rePCW0BcRcbclS5bw6KOPctNNNzF//vwu+zsuk3LHHXe0VzZsWyZl7ty5/Rxx3wgL8CE9NoTvDh5hw54K5mQNP/HBsa3DLg9vh5Ym+8LKIiKDmEOJ15///GdXxyEulhUfxlZbMqMohoObYLQSLxERV3jqqadYtGgR06ZN49xzz2XTpk2d9k9snc+0YMECrrjiCubNm8cNN9xAU1MTixYt6naZlIEkJzWC7w4eYV1B+ckTr7Ak8A2BxiNQln8sERMRGaQcSrwuvfRSV8chLpYZH8qj1hR+aP6C5gOb8HZ3QCIig1TbmpSffvopn376aZf9bZV3nVkmZSDJTonk6c/3nno9L8OwDzfc97l9uKESLxEZ5FRcY4gIDfCmLHgMNICleLMSLxERF3nuueccPtbRZVIGkuwUe9K481AtZbWNRAWdYp5XW+LFf/VPgCIibmJydwDSf7zjJwLgV1sI9V0raYmIiPRWeKAP6bHBAKwvqDj5we0FNlRxV0QGPyVeQ8jopAQKrdH2J6oiJSIiLpKTGgnA+j2nGG7YsbKhzebiqERE3EuJ1xCS2VpgA4CDm90ai4iIDF5tidcp53lFp4PJCxqqoPqA6wMTEXEjJV5DyPj4ELZZkwFoKPzWvcGIiMigNaV1nld+qX2e1wl5+dqTL9BIDBEZ9JxKvBoaGvjRj37EF1984ap4xIWC/bwpD7Ff4CxFm9wbjIiIDFoRHeZ5bdjj4Dyv0q0ujkpExL2cSrz8/PzIz8/HbDa7Kh5xsbYCG/5H9kDTUfcGIyIig5bDww1jWsvIq8CGiAxyTg81nDRpElu26JfjQJWUPJJDtjBMWKF0m7vDERGRQSon1T7c0PHKhhpqKCKDm9OJ15133slLL73EqlWrOHpUd0wGmgkJoWyzJtmfqMCGiIi4yJQU+x2vHaU1lJ9snldb4lW5FxqqXR+YiIibOJ14XXXVVZSUlHDXXXdxxhlnMGnSJE477bT2r9NPP90VcUofyYgLYZstBYD6/d+4ORoRERmsIgJ9GBPjwDyvgAgISbB/r5EYIjKIeTnb4IILLsAwDFfEIv0gwMeLypB0qIPmos34uzsgEREZtHJSI9hRWsO6gnK+lzn8xAfGZsKRA/bhhkln9l+AIiL9yOnEa+HCha6IQ/qROX4i7ITAqh3Q0gRePu4OSUREBqGc1Eie+XIf6xyZ55X/jgpsiMigpnW8hqCElHSqbQGYbS1weLu7wxERkUGqbT2vHaU1VBxtOvGBKrAhIkOA03e82uTn57N7924aG7tOmP3hD3/Ym5jExTITwthmTeZMcx62g5swhme5OyQRERmEIoN8SYsJIr+0lg17yrlw/AmGG7YlXoe2g6UZzN79F6SISD9xOvGqr6/npptuYt26dRiGgc1mA+g070uJl2cbOzyE50nmTPI4uu9bgk67zt0hiYjIIJWTGkl+aS3rCipOnHiFJYFPMDTVQNlOiMno3yBFRPqB00MNH3vsMYqKivj3v/+NzWZj8eLFPP3008yaNYukpCRee+01V8QpfcjP20x58FgAmg986+ZoRERkMHNoIWWTCWLbFlLWcEMRGZycTrzWrFnDDTfcwKRJkwAYPnw4U6dOZdGiRYwbN44XXnihz4OUvucVPwGAwMrtYLW4ORoRERms2uZ5bS+podKheV4qsCEig5PTiVdRURGpqamYzWYMw6C+vr5930UXXcSaNWv6NEBxjdiRmdTbfPCx1kP5bneHIyIig1RUkC+jhwUBsP5k63mpwIaIDHJOJ17BwcHU1dUBEBkZyb59+9r3tbS0tO8Tz5aZEEmeLQkA28HNbo5GREQGM4eGG3ZMvFrnj4uIDCZOJ15jxoxh7969AGRnZ7N06VK++uortmzZwpIlS0hPT+/rGMUFxsQGs92WAkDNnq/dHI2IiAxmDiVe0WPBMEN9BRwp7qfIRET6j9OJ1+WXX87Ro0cB+OUvf0l9fT3XXnstV111FcXFxfz2t7/t8yCl7/l4magItSfJTSqwISIiLpSd6sA8L28/iB5j/17DDUVkEHK6nPz3v//99u8TExN5991320vLT5o0ibCwsL6MT1zIFDcB8iGwIs8+rKPDkgAiIiJ9pW2e185DtWzYW8EF42K7PzA2Ew7l2ROvMRf2b5AiIi7m9B2v4wUEBHDeeecxY8YMJV0DTEzqJJpsZvwtR6Bqv7vDERGRQaztrpdD87xKdcdLRAafXideMnCNS4pmpy0BAKsKbIiIiAsdm+d1ksqGMVrLS0QGL4eGGqanp2M4OAzNMAzy8vJ6FZT0j9HDglhFCuPYR3XBV4RnXOzukEREZJDKTrEnXttLjlBV10RYgE/Xg9rueFUUQGMN+Ab3Y4QiIq7lUOJ1yy23OJx4ycDhZTZRGTIWaj+msXCTu8MREZFBLDrYl1HDgth1qJb1e04wzyswCoLjoKYYSrfBiJz+D1RExEUcSrwWLFjg6jjETUxxE1sLbGxzdygiIjLI5aRG2BOvglMU2Kgptg83VOIlIoOI5ngNcZEjJ2G1GQQ3l0FNqbvDERGRQaxtuKFjCylv6YeIRET6j9Pl5FetWnXKY374wx/2IBRxh3HJcRTYhjPKKMZSvBnzmNnuDklERAaptsqG3zkyz0sFNkRkkHE68TrRAskd54C5KvH67W9/y2uvvXbC/S+99BITJ07sdt+rr77KXXfd1e2+zz77jOjo6L4IccBJjQ7iHSOFURRTufsropR4iYiIiwwL9mNkdCC7Dx9lw54KZnc33LC9pHweWFrA7PSfKiIiHsnp32Zr1qzpsq2yspI1a9bw9ttv87e//a1PAuvOzTffzI9+9KMu2+fNm4ePjw+ZmZmnPMef//xnUlNTO20byuuPmU2GvcBGzec0FH7j7nBERGSQy0mNZPfho6w/UeIVngI+QdBUC+W7YFh6/wcpIuICTide8fHx3W4bP348LS0tPPvssyxcuLBPgjveiBEjGDFiRKdtGzZsoLKykptuugmz2XzKc4wePdqhBG0oMYZnQQ0ElKvAhoiIuFZ2aiTPr99/4nleJpN9Pa/Cdfbhhkq8RGSQ6NPiGlOnTuXDDz/sy1Oe0sqVKzEMg8svv7xfX3cwiRh1hv2xqRjqq9wbjIiIDGo5KfZ5XnkHj1Bd19z9QbFtCymrwIaIDB59mngVFRVhMvVfocSamhreffddpk6dSmJiokNt5s2bx9ixY5kyZQrz588nPz/fxVF6vrGpyRywRQHQUqyLnIiIuM6wED9SowOx2WDD3oruD1KBDREZhJwearhx48Yu25qamtixYwdLly5l6tSpfRKYI9566y0aGhq44oorTnlsVFQU8+bNY+LEiQQFBZGfn8+yZcu46qqrWL58Oenpzg1lsFgsPYq5rV1P27tCQqgva41UEijjcP56hiWf5bLX8sT+97eh/h6o/+p/x8eetpeBLSc1koLDR1lXUM6sjJiuB3RMvGw26FDAS0RkoHI68br22ms7VTAEsNlsAJx55pnce++9fROZA1auXElYWBizZs065bHnnHMO55xzTvvzyZMnM336dC666CL+/ve/8/jjjzv12rm5vfsUrrft+1qJbwo0bqB8++cUDzvP5a/naf13h6H+Hqj/6v9gVltby2OPPcb27dvJy8ujsrKS+fPns2DBgk7Hnahab0pKCqtXr+6vcPtdTmokL6zfz/o9J5jnNSwDDBPUlUFNCYQM798ARURcwOnE69lnn+2yzdfXl/j4eKKiovokKEds376drVu3ct111+Hj0806IA5ISEjg9NNPZ/PmzU63zczMdKiYx/EsFgu5ubk9bu8qu7ZPhp0vEd2wh6gTlOTvC57a//401N8D9V/9703/29p7uqqqKl5++WXS09OZOXMmK1asOOGxfn5+PPPMM122DWZt87y2FR+hur6ZUH/vzgd4+0NUGhzebr/rpcRLRAYBpxOvKVOmuCIOp61cuRKAK6+8slfnsdlsPZqXZjabe/VHU2/b97XIUZNhJ0Q17sdsaQSfAJe+nqf13x2G+nug/qv/g7n/8fHxbNy4EcMwqKioOGniZTKZTrgG5WA1LMSP1KhACsqOsnFPBTNPNNzw8HZ7gY00rTEpIgOf0xnHnj172LBhQ7f7NmzYwN69e3sb0yk1NTXx5ptvkpWVRVpaWo/PU1hYyDfffMOECRP6MLqBacyo0Ry2hWLGSpMKbIiI9IphGF2G5Utn2amRACcuK68CGyIyyDh9x2vhwoUkJyd3e+fro48+Ys+ePfzjH//ok+BO5IMPPqCqqorbb7+92/133303q1at4v33329fd2zu3LmcccYZpKenExgYSH5+Pk888QSGYXDbbbe5NN6BICEigM+NVKL5lkP5G0lIznF3SCIiQ0JDQwNnnXUWFRUVREdHM3PmTG699VbCwsKcPtdAKvw0JTmM5Rv282VBefevO2wcZsBWshWri+NS0Rv1v+PjUKP+91/RJ6cTr9zc3BMO75s8eTJvvvmms6d02sqVKwkICOD73/9+t/utVisWi6W96AdAWloa77zzDk899RSNjY1ERESQk5PDzTffTEpKistj9nSGYVAenA4131K//xt3hyMiMiSkp6eTnp7O6NGjAfvIkWeeeYYvv/ySlStXEhgY6NT5BlLhp6B6+x8r3xUf4fMN3xDo03kQjlcjTACo2M2Wr77E6uXv8pgGwvxBV1L/1f+hrD/673TiVVNTQ0BA9/N//Pz8qK6u7nVQp/LUU0+ddP/ChQtZuHBhp2133323K0MaHIZnQc1y/Mu2ujsSEZEhYe7cuZ2en3XWWWRkZHDrrbeyYsWKLvtPZaAVfkr+8hP2ltfRGJLAWenDuuy3fRGLUVtCVqwZEia6LA4VvVH/1X/1vz+KPjmdeMXExLBlyxbOPPPMLvu2bNlCdHS0s6cUDxGWOhnyIaahAFqawKtn1SJFRKTnZs2aRUBAAJs2bXK67UAr/DR1ZCR7y+vYsLeSWeO6qVwYmwm7SjAf2gZJrl8ndLAXfTkV9V/9V/9d23+ni2vMnDmTZcuWsW7duk7b169fzz//+U+H1tQSz5SWPo4jtgC8aaHxYJ67wxERGbJ6WnF3oMlpL7BR0f0BKrAhIoOI03e8brnlFj777DN++tOfkpycTGxsLCUlJezdu5dRo0Z1WRxSBo7YUH++NqVwhm0bB3esJzlxortDEhEZclavXk19ff2QqLibnWJPvLYVV3OkoZkQv+PW81LiJSKDiNOJV3BwMC+99BL/+te/+PTTTykuLiY8PJwFCxbwk5/8xOmJwOI57AU2xsKRbdTvU4ENEZHeWLt2LfX19Rw9ehSAXbt2sXr1agCmT59ORUUFt99+O3PmzGHEiBEYhsHGjRt55plnGD16dK/XqRwIYkP9SI4MYG95HV/treC89OPW84rNsj+WbgNLC5id/rNFRMRj9Og3WGBgILfccgu33HJLX8cjbmaNyYQjK/Er2+buUEREBrT77ruPoqKi9uerV69uT7zWrFlDcHAwUVFRPP3005SX20uqx8fHc+211zJv3rwTFrIabHJS7fO81hV0k3hFpIB3IDQfhYrdED3GPUGKiPSBHn90VFNTw6ZNm6isrGT69OmEhob2ZVziJuEjJ8NOiK3fCVYLmIbuJEsRkd748MMPT3nM4sWL+yESz5aTGsmLGwu7X0jZZIaYcXBgg324oRIvERnAejRzd8mSJUybNo0bbriBO++8kwMHDgDwk5/8hGXLlvVpgNK/UtMnUm/zwZ8G6kry3R2OiIgMctmpEQBsLbLP8+pC87xEZJBwOvF6/vnnWbJkCVdccQVLly7ttEjxjBkz+Pjjj/syPulnw8IC2WVKBuDg9vXuDUZERAa94aH+JEcGYLXB13srux4QO97+qMRLRAa4HiVec+fO5Xe/+x1nn312p31JSUns27evz4IT9ygLTgfgqApsiIhIP2irbtjtcMO2AhtKvERkgHM68SosLGTatGnd7gsMDOTIkSO9Dkrcyxpjv8j5HtZFTkREXC9npH24YbeJ17AMMExw9BDUlPZzZCIifcfpxCs4OJiysrJu9xUVFREZGdnroMS9QlNPByC2bid0GEoqIiLiCm13vHKLqqk5fp6XTwBEjrJ/r7teIjKAOZ14TZ06lSeeeIK6urr2bYZh0NLSwvLly7sMP5SBJ2XsGTTbzIRSQ82hPe4OR0REBrm4MH+SWud5fdXtPK+2Ahtb+jcwEZE+5HTideutt1JcXMycOXNYuHAhhmHw73//myuvvJJ9+/Zx8803uyJO6UeRYSHsNSUCUJS3zs3RiIjIUJCd0jrccE9387xU2VBEBj6nE6+kpCSWL19Oamoqy5cvx2az8frrrxMeHs4LL7xAXFycK+KUfna4rcDGXhXYEBER18tJbSuwUdF1pxIvERkEerSA8qhRo3jyySdpamqisrKS0NBQ/Pz8+jo2cSPLsCw4shqfsq3uDkVERIaA7NbEa2vrPK9gP+9jO9sqG5bvgqaj4BPohghFRHqnRwsot/Hx8SEmJkZJ1yB0rMDGDjdHIiIiQ0F8mD8jIgKwWG18te+4eV5BwyAoBrDBoe/cEp+ISG85dMdr1apVTp30hz/8YQ9CEU+SlJGN9V2DaCqoPnyA0OgEd4ckIiKDXE5qBPsr6lhXUM6MMcM674wZD7Wl9gIbCWe4J0ARkV5wKPH67W9/6/AJDcNQ4jUIhIaFs98UxwhbEYV56widfoW7QxIRkUEuOyWSl786wPoTzfPavUbzvERkwHIo8VqzZo2r4xAPdCgonRE1RdTs/QaUeImIiItlp9orG+YWVVPb2EKQb4c/U1RgQ0QGOIcSr/j4eFfHIR7IMiwTatbgc0gXORERcb2E8AASI/wprKjnq70VnNtxuGFbgY3SbWC1gMnsniBFRHqox8U1amtr+eyzz3jrrbf4/PPPqa2t7cu4xAMEtxbYiKnLd3MkIiIyVOSknKCsfORI8PKH5jqoKHBDZCIivdOjcvJPPvkkixcvpqGhAZvNhmEY+Pn5ceutt/LTn/60r2MUN0nMyIH3IcFWQnnZISKjhp26kYiISC9kp0ay4usDrD9+IWWTGWLGQdFX9gIbUaPdE6CISA85fcdr1apVPPjgg0yePJmHH36Y559/nocffpgpU6bwwAMPOF0BUTxXcPgwSgx7srV/23o3RyMiIkNBdop9nteWA9UcbWzpvFPzvERkAHM68frXv/7FD37wA5YtW8b3vvc9Tj/9dL73ve+xdOlS5syZwzPPPOOKOMVNDgWmAVCz92s3RyIiIkNBYkQACeH+3a/n1Z54be3/wEREesnpxKugoICLL764230XX3wxu3fv7nVQ4jmah9knM3urwIaIiPSTnNS2eV7HDTdsK7ChO14iMgA5nXj5+flRXV3d7b7q6mr8/Px6HZR4jtDU0wAYdnSHmyMREZGh4oSJV0wGYEBtCdQe6v/ARER6wenE6/TTT2fx4sWUlpZ22n748GGWLFnCGWdoNfnBJH7sVACSbQcoLe9mQUsREZE+1jbPK/f4eV4+gfbqhqC7XiIy4Dhd1fDXv/41P/rRj5g9ezZTp04lOjqaw4cPs27dOry8vFi8eLEr4hQ38Y+Ip9III5wq9uZ9Rcy02e4OSUREBrnEiADiw/wpqqrn632VnJMWfWxnbCaU77InXqPOd1+QIiJOcvqO1+jRo1m5ciXnn38+ubm5vPrqq+Tm5nL++eezYsUKRo0a5Yo4xV0Mg9LAMQDU7Nno5mBERGSoOPE8L1U2FJGBqUfreKWkpPDwww/3dSzioZqjx0PterwOqYqUiIj0j5zUCF755oAKbIjIoOH0HS8ZeoJSTgdgWO12bDabm6MREZGhoO2O15YD1dQ1dZjn1XbHq3wnNNe7ITIRkZ7p0R2vvLw83nzzTYqLi2lsbOy0zzAMHn/88T4JTjxDXHo2fAgjbfsprqghPjLE3SGJiMggd/w8r2mjW+d5BcVAYDQcPQyH8iD+dPcGKiLiIKcTr1WrVnHXXXdhMpmIiIjA29u7037DMPosOPEMvtEjqTUCCeIoe7/7mvizZ7g7JBERGQKyUyN49Zsi1hWUH0u8DMN+12v3h/bhhkq8RGSAcDrxevzxx5k+fTp/+ctfCA0NdUVM4mkMg0MBowk6uomqgq9BiZeIiPSDnNTI1sTruOVMOiZeIiIDhNNzvA4dOsR1112npGuIaYq2j6n3OrTFzZGIiMhQMbV1ntfmwqrO87xiVNlQRAYepxOvsWPHdlk8WQa/oOTTAIiu3aECGyIi0i8Swv2JC/WjxWrjm31Vx3a0l5TfClarW2ITEXGW04nXb37zG5YtW8b27dtdEc8JrV+/njFjxnT7tWnTplO2Ly8v57e//S3Z2dlMmDCBq666ii+//NL1gQ8SMWOyAUiz7WV/ea2boxERkaHAMIzu1/OKHAVeftB8FCr3uCk6ERHnOD3Ha+LEicyePZtLL72U6OjoLkMODcPgjTfe6LMAj/frX/+a7OzsTttGjx590jZNTU3MnTuXI0eOcM899xAZGcnzzz/Pz3/+c55++mmmTJnisngHC+9hY2jEhyCjgQ3bt5B09lnuDklERIaAnNRIXv22qHPiZfaCYRlQ/A2UbIHIke4LUETEQU4nXsuWLWPp0qVEREQQFxfXpaqhqyUlJTFx4kSn2qxYsYL8/HxefPFFJk2aBEB2djaXXHIJDz74ICtWrHBBpIOM2YtDAaNIrMvjyJ6vQYmXiIj0g7Y7XpsP2Od5Bfi0/ukSm9maeOXCuEvdGKGIiGOcTryeffZZLr/8cu6//37MZrMrYupzH3zwASkpKe1JF4CXlxcXX3wxDz/8MKWlpcTExLgxwoGhMToT9uVhKlWBDRGRk6mtreWxxx5j+/bt5OXlUVlZyfz581mwYEGXY7dt28aDDz7I5s2bMZvN5OTkcOedd5KYmOiGyD1PYoR9nldxdQPf7Kvi7NFR9h2xKrAhIgOL04nX0aNH+cEPfuC2pOv+++/n17/+NX5+fkyaNImbbrqJM84446Rtdu7cyemnd13nY8yYMe37nU28LBaLU8cf366n7d0pYMQk2PcS0TXbaW5uwWRyfs22gdz/vjLU3wP1X/3v+NjT9p6uqqqKl19+mfT0dGbOnHnCkRW7d+/m2muvZezYsTzyyCM0NjayaNEirr76al5//XUiIiL6OXLPYxgG2amRvPZtEev3lHdIvLLsjyVb3ReciIgTnE68TjvtNHbv3s3UqVNdEc8JBQcHc91115GdnU1YWBj79u3jySef5LrrrmPp0qVMmzbthG2rqqq6LX/ftq2qqsrpeHJze/cJW2/bu4OvLZQ4YAx7eOezr4gP6fkw04HY/7421N8D9V/9H8zi4+PZuHEjhmFQUVFxwsRr0aJF+Pj4sHTpUoKCggAYN24cF1xwAU8++SR33HFHf4btsXJSI3jt+HleMRmAATXFcLQMAqPcFp+IiCOcTrzuuecebr31VmJjYznnnHPw8fFxRVxdZGRkkJGR0f78jDPOYNasWVx00UU8+OCDJ028wP6JWU/2nUhmZmaP7vpZLBZyc3N73N6tWsbS8tl8IoxavL1MTs+1gwHe/z4y1N8D9V/9703/29p7OkeuKy0tLXz88cdccskl7UkX2JO27OxsPvjgAyVerdrmeW0qrKK+yYK/jxl8gyEiBSoK7MMNR85wc5QiIifndOJ1+eWX09LSwoIFCzAMAz8/v077DcPg66+/7rMATyYkJIRzzz2XF198kYaGhi6xtAkLC+v2rlZ1dTVAjxaDNpvNvfqjqbft3cIcQIl/KrH1Ozmy92vM03peDXJA9r+PDfX3QP1X/4dy/wH2799PQ0ND+7D3jtLS0vj8889pbGzE19fXDdF5lhERAQwP9eNgdQPf7K/krFEd5nkp8RKRAcLpxOuCCy7o0R0iV2lbzPdkMaWlpZGfn99le9u2U5Wjl2Mao8ZB4U5MJSqwISLSG20fCIaFhXXZFxYWhs1mo7q6mmHDhjl8zsE8/zg7JYJVm4r5YlcZOSnhABjDxmPKex3rwS3YehH7QOi/K6n/6n/Hx6GmP+ceO5V4WSwWfvGLXxAREdGju0R9rbq6mo8//pixY8ee9BPBmTNnct9997F582YmTJgA2Id4vPHGG0yYMEEVDZ0QkHQaFK4iqnY7LRYrXman1+AWEZEO+nIo/GCefzzcXAfAh1v3c170UQBC6gIZDTTu20jepk29fg1P7n9/UP/V/6GsP/rvVOJls9mYM2cOjz/+ONOnT3dVTN26/fbbGT58OOPHjyc8PJx9+/bx1FNPUV5ezsKFC9uPu/vuu1m1ahXvv/8+8fHxAFxxxRW88MIL3Hbbbdx+++1ERkbywgsvsGfPHp5++ul+7cdAFzFqMnwG6exl9+GjjIkNdndIIiIDUtudrsrKyi77qqqqMAyDkJAQp845mOcfhyUe5fGvP2V3ZQtjMjLt87yODIMNd+NXW8jEcWPA279H5x4I/Xcl9V/9V//7Z+6xU4mXl5cXUVFR7cP7+tOYMWN4++23efHFF6mrqyM0NJTTTz+dBx54gKysrPbjrFYrFoulU4w+Pj7861//4sEHH+T//u//qK+vZ+zYsfzzn/9kypSez1MaiszDM7FiMNyoYOPu3YyJnejukEREBqQRI0bg5+d3wqHwSUlJTs/vGszzj1Ojg4kN8aPkSANbio5w5qgoCEuAgEiMunLM5fkQf1qvXsOT+98f1H/1X/13bf+dnuM1Z84cVq1axbnnnuuCcE7sxhtv5MYbbzzlcQsXLux0B6xNVFQUf/nLX1wR2tDiG0ylbyKRjfupKvgazpro7ohERAYkLy8vZsyYwfvvv88dd9zRXtmwuLiY9evXM3fuXPcG6GEMwyAn1T7Pa11BuT3xMgx7gY2Cj6F0a68TLxERV3I68UpPT+ftt9/muuuuY/bs2URHR3cZgz579uw+C1A8T330eDiwH6Nks7tDERHxWGvXrqW+vp6jR+3zkXbt2sXq1asBmD59Ov7+/ixYsIArrriCefPmccMNN9DU1MSiRYsIDw/n+uuvd2f4Hik7NbI18ao4trEt8SoZ2vNTRMTzOZ143XnnnQCUlpayYcOGLvsNw+C7777rfWTisQJGTIIDbxNZs4NmixVvFdgQEenivvvuo6ioqP356tWr2xOvNWvWkJCQwMiRI3nuued46KGHuO222zCbzeTk5LBkyRIiIiLcFbrH6rieV0OzBT9vM8S2TjdQ4iUiHs7pxOvZZ591RRwygISPnAxfQAZ7yC+tYVyc+ytcioh4mg8//NCh48aPH8+//vUv1wYzSCRHBhAT4kvpkUa+2V/JmSOjIGa8fWfJVrBawaQPA0XEMzmdeKkYhRjD7SX5k02lvLLngBIvERHpF/Z5XpG83jrc8MyRURA1Gsy+0FQDVXshItXdYYqIdKvHHwvV1NTw6aef8sYbb1BdXd2XMYmnC4ig2icWgIqCr90cjIiIDCVtww3XFZTbN5i9YdhY+/cabigiHqxHideSJUuYNm0aN9xwA3feeScHDhwA4Cc/+QnLli3r0wDFM9VHjrN/c3CLewMREZEhJTvFPvetbZ4XYC+wAUq8RMSjOZ14Pf/88yxZsoQrrriCpUuXdlova8aMGXz88cd9GZ94KP8R9pK9UbXbaWyxuDkaEREZKlKiAhkW7EtTi5Vv91fZN6rAhogMAD1KvObOncvvfvc7zj777E77kpKS2LdvX58FJ54rJMWeeI1lLztKatwcjYiIDBVt87ygw3BD3fESkQHA6cSrsLCQadOmdbsvMDCQI0eO9Doo8XxG3EQARhlFbN1X6t5gRERkSOmSeMW0Dn8/UgR1FSdoJSLiXk4nXsHBwZSVlXW7r6ioiMjIyF4HJQNA8HCOekfgZVgp3/2Nu6MREZEhJDvVPs/r27Z5Xn4hEJ5i36m7XiLioZxOvKZOncoTTzxBXV1d+zbDMGhpaWH58uVdhh/KIGUY1EdkAGBTgQ0REelHqVGBRLfO89pUWGXfqOGGIuLhnE68br31VoqLi5kzZw4LFy7EMAz+/e9/c+WVV7Jv3z5uvvlmV8QpHsivtcBGdO0O6ptUYENERPqH5nmJyEDkdOKVlJTE8uXLSU1NZfny5dhsNl5//XXCw8N54YUXiIuLc0Wc4oECk+yJV4axh7yDmtsnIiL9J6d1uKESLxEZKLx60mjUqFE8+eSTNDU1UVlZSWhoKH5+fn0dm3g4I24CAOlGIS/uP8zpSeFujkhERIaKtjte3+y3z/Pya0u8ynZAcwN46+8SEfEsTt/xuuuuuygsLATAx8eHmJiY9qSrqKiIu+66q28jFM8VlkyjORBfo5lDe/QJo4iI9J/UqECigjrM8wqJB/9wsLbA4e3uDk9EpAunE6/XXnuNysrKbvdVVlayatWq3sYkA4XJRF1Eawnf4s3ujUVERIYU+zwv+3DD9QUVYBgabigiHs3pxOtkqqur8fHx6ctTiofzTZwIQFTtdo42trg3GBERGVK6FtjIsj+WbnVTRCIiJ+bQHK+NGzeyfv369ucrVqzgk08+6XRMY2Mja9asYeTIkX0boXi0gKTT4RsYZ9rLtuIjTEmJcHdIIiIyRByb51XZeZ6X7niJiAdyKPFav349ixcvBuy39lesWNHtcXFxcfz+97/vu+jE87V+uphh7OPFwgolXiIi0m9GRtvneZXVNrK5sIrsjomXzWYffigi4iEcSrx+/vOfc80112Cz2TjzzDN58sknycjI6HSMj48PgYGBLglSPFhUGi0mX4KsDZTszYNzRrk7IhERGSIMwyA7NYL/bDnI+j0VZJ+bBmYfaDwCVfsgPNndIYqItHNojpefnx/h4eFERESwZs0aJk+eTHh4eKcvJV1DlNmLuvB0AKxFKrAhIiL9q9M8L7M3RNuvSRpuKCKexuniGvHx8SqgIZ34JEwCYNjRHVTXN7s5GhERGUqmtlY2/HpfJY0tlmMFNpR4iYiHcXoB5ebmZv75z3/y1ltvUVxcTGNjY6f9hmGQl5fXZwGK5/NLnAibIcPYy7aias4cFeXukEREZIgYGR1EVJAPZbVNbC6sZooKbIiIh3I68Xr44Yf517/+xTnnnMPMmTN190tg+AQAxpv28PKBKiVeIiLSbwzDIDslkv/kHmRdQTlTRirxEhHP5HTi9c4773DLLbcwf/58V8QjA9GwDKyGmQhqKdy7C1CBDRER6T85qRH8J/cg6/eUw1nj7RurC6GuAgJUbVdEPIPTc7yqq6s544wzXBGLDFTeftSHjgbAWvytm4MREZGhpq3Axtf7Kmn0CoKwJPuO0m1ujEpEpDOnE6/Jkyezfft2V8QiA5h3wkQAYuryqTza5N5gRERkSBk1LIjIQB8amq1sOVANmuclIh7I6cTrd7/7HStXruS9996jqUl/YItdW2XDccZecouq3RyNiIgMJYZhHCsrv7tclQ1FxCM5PcfrkksuoaWlhdtuuw3DMPDz8+u03zAMvv766z4LUAaI4faL3DjTXl4rquactGg3ByQiIkNJdus8r3V7yllwtu54iYjncTrxuuCCCzAMwxWxyEDWOqwjzqigYN9eVGBDRET6U8d5Xk0/zMAH4PB2aGkCL1VgFhH3czrxWrhwoSvikIHON5j6kBT8j+zBUrQZmOnuiEREZAgZPSyIiEAfKo42saUmmDP8QqGh2p58tY7KEBFxJ6fneImciFf8RACG1+VzuKbx5AeLiIj0Ifs8L3vp+HV7KjTPS0Q8jkN3vLZtc64c67hx43oUjAxs3vET4bvXGGfaS25RFeelx7g7JBERGUKyUyJ5O7eEdQUVzE/IhL2fKvESEY/hUOJ1+eWXOzSvy2azYRgG3333Xa8DkwGorcCGsYfXD1Qr8RIRkX7VcZ5Xy6Tx9j9ySre6NSYRkTYOJV5//vOfXR2HDAaxEwBIMZWyc38xkObeeEREZEjpOM8r35REBkDJFrDZQIXBRMTNHEq8Lr30UlfHcUpffvklb7zxBt9++y0lJSUEBwczfvx4brnlFsaPH3/Stq+++ip33XVXt/s+++wzoqNV+rxPBEbSFBiHz9Fimos2Y7NNVwVMERHpNyaTQXZKBO9sLWFtRSQZJm97gY3qQggb4e7wRGSIc7qqobssX76cqqoqrrvuOkaNGkVFRQVPP/00V111FU888QRTp0495Tn+/Oc/k5qa2mlbWFiYiyIemszxEyG/mPiGnZQeaSQ21O+UbURERPpKTmok72wt4Yu9R7hpWLp9jldJrhIvEXG7AZN4/c///A+RkZGdtk2bNo3Zs2ezdOlShxKv0aNHk5mZ6aoQBTDHTYD8txlv2suWA1XEhsa6OyQREY+1fv16rrvuum73vfTSS0ycOLF/AxoEslsrG361txLrpPGY2hKv9DlujkxEhroBk3gdn3QBBAYGMnLkSA4ePOiGiKRbw+3zvMYZe/lPUTWzxynxEhE5lV//+tdkZ2d32jZ69Gg3RTOwpQ0LJjzAm8q6Zor8RpEIqmwoIh5hwCRe3ampqSEvL4+cnByHjp83bx4VFRUEBwczZcoUbr31VtLSelYAwmKx9KpdT9t7vGHjMAOjjCLy9pVisYzqtHvQ998BQ/09UP/V/46PPW0/2CQlJenuVh+xz/OKZPW2Er5qTGhNvLa4OywRkYGdeN13333U19czb968kx4XFRXFvHnzmDhxIkFBQeTn57Ns2TKuuuoqli9fTnp6utOvnZvbu0/PetveY9lsjPMOxa+5mvrCTXz7bUC3BTYGbf+dMNTfA/Vf/RdxlZzUCFZvK2F1WRSXAlTth/oq8A9zb2AiMqQN2MTrkUce4c033+Tee+89ZVXDc845h3POOaf9+eTJk5k+fToXXXQRf//733n88cedfv3MzEzMZrPT7SwWC7m5uT1uPyBsOw32fESyZS/Dkq8nPty/fdeQ6P8pDPX3QP1X/3vT/7b2g83999/Pr3/9a/z8/Jg0aRI33XQTZ5xxhtPn0WgMuynJ4QB8sr8FW0QiRnUhloNbIOmsbo8fbP13lvqv/nd8HGr6cyTGgEy8Fi9ezOOPP86vfvUrfvzjH/foHAkJCZx++uls3ry5R+3NZnOv/mjqbXuPFj8R9nzEeGMP2w7WMCIqqMshg7r/Dhrq74H6r/4P5f63CQ4O5rrrriM7O5uwsDD27dvHk08+yXXXXcfSpUuZNm2aU+fTaAw7q81GkI9BbZOFA+YEEimk6Ot3OVwZeNJ2g6X/PaX+q/9DWX/0f8AlXosXL+bRRx9lwYIFpxxieCo2mw2TydRHkUm72CwAMkx7ebeomu9lDndzQCIinikjI4OMjIz252eccQazZs3ioosu4sEHH3Q68dJojGPOzPuW9/JKORg0nsSKL0nwqiD+BPPoBmP/naH+q//qf/+MxBhQideSJUt49NFHuemmm5g/f36vzlVYWMg333zDmWee2UfRSbvWyoZjjUIeLixzczAiIgNLSEgI5557Li+++CINDQ34+Tm+HqJGYxwzdWQk7+WV8kVdPFMAU+lWOEXfBlP/e0L9V//Vf9f2f8AkXk899RSLFi1i2rRpnHvuuWzatKnT/rZqUHfffTerVq3i/fffJz4+HoC5c+dyxhlnkJ6eTmBgIPn5+TzxxBMYhsFtt93Wzz0ZAsJTsHgH4dtcS23Rd9hsZ3VbYENERLpns9kA9LuzF3JS7cvQvHUokl+agMPboaUJvHzcG5iIDFkDJvH66KOPAPj000/59NNPu+zfsWMHAFarFYvF0n7RAkhLS+Odd97hqaeeorGxkYiICHJycrj55ptJSUnpnw4MJSYTxvAs2P8FKU272FdeR3LUycfVi4iIXXV1NR9//DFjx47F19fX3eEMWGNiggkL8GZXXQQtIcF4NdVAWT7Enrwgl4iIqwyYxOu5555z6LiFCxeycOHCTtvuvvtuV4QkJ2EaPgH2f8E40162FFUr8RIR6cbtt9/O8OHDGT9+POHh4ezbt4+nnnqK8vLyLtcycY7JZDAlOYL38kop9R9NfNM39oWUlXiJiJsMmMRLBpjWeV7jTHv54EAVF0+Ic3NAIiKeZ8yYMbz99tu8+OKL1NXVERoayumnn84DDzxAVlaWu8Mb8HJS7fO8tllGEE9r4sV/uTssERmilHiJawxvrWxo7ONvhZVuDkZExDPdeOON3Hjjje4OY9Bqm+e19kgss01AyRb3BiQiQ5pqqYtrRI3BavYl2Kinujgfq9V26jYiIiJ9KD02mFB/bzY1j7BvKN0KNl2PRMQ9lHiJa5i9MGLs4+hTWwooKDvq5oBERGSoMZkMpqREsNMWj8XwgvpKOFLk7rBEZIhS4iUuY7QONxxv2kNuUZV7gxERkSEpJzWSJrwp8mq961Xi2EKnIiJ9TYmXuE5bgQ1jL1sOVLs5GBERGYpyUiMA+LYpwb5BiZeIuIkSL3Gd1jte40x7yS2scm8sIiIyJI2NDSHU35stLW13vFRgQ0TcQ4mXuM6wcdgMM5FGDWUH99Jisbo7IhERGWJMJoPJyRHk2ZLsG3THS0TcRImXuI63H0SPAWCUZTe7Dte6OSARERmKclIj+M7aeserci80aPi7iPQ/JV7iUsbwiYDmeYmIiPvkpEZSRTAHbfZ1vSjd5t6ARGRIUuIlrtVe2XAvuUq8RETEDcYODyHEz4utVg03FBH3UeIlrtVW2dC0hy1FSrxERKT/mU0GU1IiNc9LRNxKiZe4VusiynFGBSUHD9DUogIbIiLS/3JSI8jTHS8RcSMlXuJafiHYIkYCkGYtYOchFdgQEZH+l5N67I6X7dB3YGl2c0QiMtQo8RKXM9rW8zL2kqvhhiIi4gZjh4dQ7TucIzZ/DEsjlO10d0giMsQo8RLXa53nNd6kxEtERNzDPs8riu80z0tE3ESJl7herP2OV4axl9yiI24ORkREhqqc1Mhj63mVbHFvMCIy5CjxEtdrveOVaiqhuLSUJovNzQGJiMhQlN2hsqFNd7xEpJ8p8RLXC4zCFhIPwCjrPvZXt7g5IBERGYoy4kLY52Uv+GQp3gI2fRAoIv1HiZf0C6N9ntcedlWqkpSIiPQ/s8kgLCmLFpsJr8ZKqDno7pBEZAhR4iX9o3We1zjTPnZXKPESERH3OGPUcHbZ7KMwVGBDRPqTEi/pH613vMYZuuMlIiLuk50a0T7Py3pQBTZEpP8o8ZL+0bqW12ijiEPVddQ3WdwckIiIDEUZw0PYbUoBoGbvN26ORkSGEiVe0j9C4iEgEi/DSppRSN5BlZUXEZH+52U2QWym/YmGGopIP1LiJf3DMI4NNzTt5Z5V21jy0S52ltZgU1UpERHpR8NGnw5AaH0hNNa4ORoRGSqUeEn/aS2wkWnsZeehWh58dwez/vYJ5/11LX9++zu+3leB1aokTEREXGtS+igO2iIAsBzc6uZoRGSo8HJ3ADKEtN7xmhNRhO3McXzw3SE+31XOnrKjLP2kgKWfFBAV5MusjGHMzohl6shI/LzNbg5aREQGm4zhIXxOMsOpoDR/IzGJU9wdkogMAUq8pP+0Jl7BtQX86PThXJOTTG1jC2t3HOa9vBI+3H6IstpGlm8oZPmGQgJ9zJw7Zhizx8Vw7phhhPp7u7kDIiIyGHiZTRwJTYcj33Bk7zfEuDsgERkSlHhJ/wlPweYThKmpFktZPgzPJMjXizlZw5mTNZymFivr95Tz3rZS3ssrofRII//JPch/cg/iZTKYOjKS2eNimTU2hthQP3f3RkREBjDfxImw7QV8y/LcHYqIDBFKvKT/mForSe3/EmPDUsi5GYaNtRfeAHy8TEwbHc200dHcd/E4couqeS+vhPe2lbLzUC2f7izj051l3LtqKxMSw5idEcMF42IYGR2E0XoOERERRyRmZMM2GN5UgKVF60uKiOsp8ZJ+ZUvIxtj/JaZvn4Nvn4PQREi7ANIuhOSzwdsfAJPJYEJiGBMSw7jjgnQKDtfyXl4p720r4dvCKja3fj347g5SowKZNS6G2RmxTEoMw2RSEiYiIic3esx4jtr8CDQa2LFjC6A5xSLiWkq8pF/ZzrmDfTUwoiEPY88nUF0IG5+wf3n5Q+q5kDYbRl8AofHt7VKjg5g3PYh500dy6EgDH3x3iPfySvhiVzkFZUdZuraApWsLiA72ZebYGGaPi+HMkZH4eulCKiIiXXl5eVHgN5K0xm0Ubd9A6Mip7g5JRAY5JV7Sv7z9KUu+mISJv8dsaYQ9n8DOdyH/XThSBPnv2L/APixxdOvdsPjTwGRPooaF+HF19giuzh5BTUMza/MP8962Uj7afojDNY0s37Cf5Rv2E+Trxbljopk9LpZzx0QT4qfiHCIickxT1Dgo2kZT0WZQ4iUiLqbES9zHJwDGXGj/stmgdBvkr7YnYQc2Qkmu/evThyAgEkbPtn+NOh/8QgEI9vPmB1lx/CArjqYWK+sKytvnhR2qaeStLQd5a8tBvM0GU0dGMTsjhlkZMcSEqDiHiMhQF5J8GhS9TGj1dqw2rSMpIq6lxEs8g2FA7Hj71zn/DUfLYNcH9iRs1xqoK4fNy+1fJi8YMfXY3LDIUWAY+HiZOCctmnPSorn/4vFsPlDVPi9s9+GjfJJ/mE/yD/O7VVuZmBjG7NZ5YaOGBbm79yIi4gZx6ZPhcxht28vHVc2c5u6ARGRQG1CJ19GjR3nkkUd45513qK6uJjU1lRtvvJE5c+acsm15eTkPPvggH330EQ0NDaSnp/PLX/6SqVM1tMAjBUbBhB/ZvyzNULj+2N2wsnzY+6n9673fQXiKPQFLmw1JZ4GXLyaTwaQR4UwaEc6dF6az61At7+fZy9R/u7+KTYX2rwdW7yA1OpDZGbHMHhfDxAQV5xCR/tWba5v0jlfsOKyYiDKOsO9gibvDEZFBbkAlXgsWLCA3N5fbb7+d5ORk3nrrLX79619jtVq56KKLTtiuqamJuXPncuTIEe655x4iIyN5/vnn+fnPf87TTz/NlClasd6jmb3tFQ+Tz4bZ/wcVBZD/nn1u2N7PoHIPrH/c/uUT1Fqg40L7sMRg+7KYo4YFMWpYEDeday/O8f53pby3rZQvdpdRcPgo/1i7m3+s3c2wYF9mZcQwe1wsU1Mj8fEyubfvIjLo9fTaJn3A25+qgGQi6gpoKN3p7mhEZJAbMInX2rVr+fzzz/nrX//KD37wAwBycnIoLi7mgQce4Pvf/z5mc/cV7FasWEF+fj4vvvgikyZNAiA7O5tLLrmEBx98kBUrVvRbP6QPRKRCzjz7V2MNFHxsvxO28z2oLYXtb9m/AOImHUvChk8Ek4lhIX5ck53ENdlJHGloZu2Ow7yXZy/OcaimkefX7+f59fsJ9vXi3PRhzM6I4dwx0QSrOIeI9LHeXNukj8RmQkEBgUd2caS+mfAgvd8i4hoDJvF6//33CQgI4MILL+y0/bLLLuP2229n8+bNnHZa96OzP/jgA1JSUtqTLrCXkb344ot5+OGHKS0tJSYmxqXxi4v4BsPYi+xfViuUbLYnYfmrofjbY18f/xmCYmD0LHsilnou+AYT4ufNRRPiuGhCHI0tFr7cXc57eaW8n1fK4ZpG3txczJubi/E2G5w5MorZ42KYNTaGYSrOISJ9oDfXNukboSmnQcHrjLLtY9L/rSHEz4vEiABGRASQGBFAYrg/Ca3P48P88fNWYiYiPTNgEq+dO3cycuRIvLw6hzxmzJj2/Se6OO3cuZPTTz+9y/aObZ1NvCwWi1PHH9+up+0HOpf3PybL/jXtDqgtxdj1PsbO96DgY4zaUvj23/Dtv7GZvCH5LGyjZmMbfQFEpOBlwLRRkUwbFcl9PxjL5gPV9iGJeaXsKatjbf5h1uYf5p7XtjIpMZRZGTHMGjuM1GjninPo38Dg6b/VaqPZaqPFYqXZYqXZYjvusfP3LVYbDU0t7CluoNTrIIbJhM0GNpsNG2C12bDZaK+u1vZ92z5sYD3u+PZt2I7ts2/GZmvdxrHt1uP2H/8aHePpuO/YsfbXsh/X8TXsjxzXxtpaKK7t3GYTnBnVTGYvf4cOFr25tknfMMdlATDetA+AIw0tbCs+wrbiI90eHxPiS2K4PRFLaE3M2pK0mBA/zJonLOKRbB2ucWBrfW6jpaUFi7V/ri0DJvGqqqoiISGhy/bQ0ND2/Sdr23acs21PJDc31+k2fdl+oOu//o+H0eMxUucTVJFLaOmXhJauw6+u2J6MFXwM791NfdAIqodlUx0zldqI8WDywgBmx8DsmBAOHAlgQ3EDG4oa2VnRzLeF1XxbWM0D7+YTH2xmSrwf2fG+jAz3xmQ4dtHVv4HO/bfZbFhs0GK10WK1P1qs2BMbK1hsx7Yf/2hpf966zdbdvuMfu75ex0fL8du7OaelN9WnP6/qRWMbJmyYsGLG2uXR3GGf2ehuv7Xb9h2P7f68HbYZtlMc230MLZjYHDebkeEaugu9u7Z1Rx8K9kB0BmYgySgh98dmSrzi2NsUyr7qFg5U1nOgop7CyjoKK+upa7JQeqSR0iONfLWvssupvM0GcWH+jAj3JyE8gMQIfxLC/Uls/T7M3xvDwWtEfxrSP38GTv9tNhvNFhuNLRYamq00NFuob7Z/39RYT3N9LS31R7A01mJrqMHaWAtNtdgaazCa6jA112JuPoq55SheLXV4W47iY6nD11JHiKWBvW+DgQ2j/dpmw7B/jIYB7d8DGK0fEB7b3/b8WLu2Y9qOO3ZM6/7Wsx173vGctB9D67mMDufqGNOx47rf1xaXyTh2XEfewBhbIPnG86RNOsfpn4sz/24GTOIFnPSX1al+kfWmbXcyMzN7NO7eYrGQm5vb4/YDnXv7PwX4GdhsWMp3Yex8F2PX+7D/S/xr9+Nfu5/YghXYfEOwjTwPRs3GNmomBEYxEfhB61lKjzSw5rtDvJdXypcFFRTVWHht+1Fe236UmGBfZo4dxqyMGLJTIrotzjEQ/w00tVipa2qhrsn+S/5oo/2xrslCXVML9U1t31taj2k57hgL9a3t65os1DU0gsmr/S5Q250hz2HDGwt+NNm/jEZCae7wvPOXb4d9gaZmAkzN+BtN+BvHHtv2+9CMydqMlwnMWDA6JkA2e4LS/mWzHPf82PcDWZF3E9GZV/bqd+hg0pfXJ30o2DOZflH4NJQRvPIqgoFRGDT7RtDkP4ymgBiaoobRlDCMKu9hFNsi2WeJZH+9P6V1Vg4dtXDoqIXDdRaaLTb2ldexr7wOKO/yOv5eBsMCzcQEmjs/BnkxLMCMr5d7k7Kh+vNv42z/ba0fyDVZbDRZbDS2PjZZ6PD98V/24y0tTRjNdZha6jG31GG21OFtqcfL0oC3pQ4faz3e1np8rfX42erxtzXgZ2sgkHoCjQYCsX/FGPUE0oCv0dL7N8CT804X/6/hQzOF+wqoM0Jc+joDJvEKCwvr9pO/6upqgG7vaPVF2xMxm829+qO5t+0HOrf3Pybd/nX2bdBQDbs/bC/QYdSVY+StgrxVgAEJZxxbMyxmPHHhgVx7ZgrXnplCdX0zH++wJ2Efbz9EaU0jz28o5PkNhQT7ejEjfRizx8UwPa1rcY6+fg+sVht1zfZEqK6xcwLUKRlqOpYw1R33fX2ThaMdEqm271usrkiKmk55hI/ZhJfZwNtkEGRuIcjcTKCphSBza4Jj2JOcAKMZf1Mz/jThbzTh1ynRaX20NeFDIz7WJnxsjXjbGvGyNuJta8LL2oiXpQGztRGzpRGztQHD1gfJzbEPB7ty9QXOMIPJfNyjqcNzUzfbTnRshzad2p7s2O63W00+VPqeRqy7fwd4iL6+PulDwZ6x+jzEkbWPEmythiNFGC31+DSW49NYDlXftR83Ashq/d7mEwQh8RCdgG1UAtbgBKp8Yjhoi2RvSwT5dSHsr26isLKewop6Dtc2Ut9iY191C/uqu/8jOSrIh8RwfxIjAjrdKUsM9yc2xA8vs2sq7Q72n39Ti5WaxhZqG1qoaWimtrGFmoaW9scj9c3sLTpISFgkDS1WGlvsd5Mamq00tFhobGrB0tyIqaX1jlFzHV4tR/G21HVJhIKMegJoIMhoYBgNrd/bk6Njx9XjYzhxETBwOPFowpsGUwANhj9N5gCazAE0mwNo8QrE4hWAxTsQq3cQNp9A8AnG8AnE5hPIocoaYmOHYzKbMDDAMOwvaZjsa61itP2H0brNaN/edmzb9237wcDA1nps+3lb99nbmuznaT2X/dtj5zaM1n/zbds6nMt+iOnYsabWxw7HGx3Of+y4tqMMDJMJq8XCrj37Off0yS7/QHDAJF5paWm89dZbtLS0dBoLn5+fD8Do0aNP2rbtuI4caStDgF8ojLvU/mW1QNE39uIcO9+Fklw4sNH+9eH/2S+yo2fbE7GU6YT6B3DJxHgumRhPY4uFL3aX8942e3GOstpG3thczBubi/ExmzhzVCSzM2KZPjqSmkYrRZX1NFpsnRKckydEx+4aHT3+DlJTCw3Nrr8L4m02CPDxIsDHjL+PmUAfL/x9zAQc932wl5UIo5Ywo5ZQWw3BthqCrEcItBzBp7maoxUHiQr2x8vWhNnSgMnSiNnSgGFpwNTSgNHSAC0NGM310Po9Ftz0aZwB3v7g5XeSRz/w8u/86B3Q7bEWkw+79+5j5Kg0zGavEyQ2J0p4Omw3TCdPeDyUzWKhcdMmd4fhMXpzbeuOPhTsoYyL2dk0gokTJ2I2maCuHKoLofoAVLU+Vnd4PHoYo6kWynZA2Q77MCYgqvUrE+z/jwYPh9AESE+kJTieCu9hlBDNnuYI8utD2VVjorCinsKKOmoaWyirbaKstolvC6u7hOhlMhge5mefTxYe0J6ctc0viwz06fUwRk/7+VusttbkqEOy1NDCkeOe1zQ0U9Phecc2RxpaaGqx4E8j4dQSbtQSZtS0fn/s8WzjKEGtSVGQYU+YAo0GgqgngEa8j0+UzK1fvdRi8m1PjFq8A7F6BWL1CbQn9j5BmHyDMHyDMfkF4+UXjNk/GG//YLz8QzB8g8En0L6Ujq/9eB+zNz6AM/dtLBYLmzZtYsLEiR718+8vFosFr6JD/fLvf8AkXjNnzuTll1/mvff+f3t3HtXUmb8B/MnClqhARMC61IISWTK4AW7UpVqXYtHWZc6ZA451rdVxXDqtXX4Fx3Ws4xQcVIqj2LE9thU92lr39tQ5U6Kl1aG4KypgRRTCviW5vz9CbgkERSCsz+ecewLvfWPeNwl5/N77JjmByZMni+0HDx6Eu7s7AgMDH3vd6OhoXLx4Ueyn1+tx+PBhBAYG8hMN6TdSGdAryLS98D6Qn2X6mPprx00fW1+QBaTsNm1yR6BPaNXZsAlwcOmNMWp3jFG7Y93UAPycocOJS/dxIi0b6Q+L8d3VHHx3NafajT2wyRQkEkBhJ4OTvRxKBxmc7KoKIwe5+LPCQQ5F9Z/tTf2UDlXFk/lnOwmUQhGUhkI46fMhL9MBpblASW61yzzTz4VVP5fkApXFTx7orw2coFReu8h5bFFUj8vH7ZPZVx2JayIGAwqLLwDPDQA6YMCRpcZkG9mIRAIo3UzbMwOt96ksBQruAbq7VcWYuTDL+O13Q4UpMwqygAwt5ADcqzbzWTM4dAGce0Hw6YkK5TPItfPAfYkb7lSqcK3MGWlFSmTklSMzrxQVBmNVkVYKa8sYFfYysRDrWVWYmYoy05kzpUPz/ZdPEEwHFU1nlSpRUKMgKiyrfsbptyKqsMYZqZKK2kfbJDCiM0qgqiqaXCRFcEUhXCVFeE5SBBUKqxVWRXCRFUElK4SDpLJJ5maUOcJo30ksjCQOVcWRY2dIqtrMRZB4Kf5cVShVa5fL5G3nP+PUaG3msR41ahRGjBiBqKgoFBUVoXfv3vj6669x9uxZbN68WaxQ33nnHRw6dAgnT55Ejx49AADTp0/Hp59+imXLlmHlypXo2rUrPv30U6Snp2P37t0tOS1q7Zx7AEPmmLbKUtMXNl87ZirE8jOAGydN29FVgLufqQjrNwHSnkEY/KwrBj/rircn9sfNnCIcTzN9QuLFDB0AwF4uhdJeBkXVmSJl1Vkk8xklRY2fnezlFn3q6u9oJ7V+1LOytEbBVO2yQGd9X5kOaOiSO4kUcHQBFCrASSVeGh2dkZ1bCI+efSC1t35WqPal4rdCS9ZmXraInqi+2UatjJ0T0NXbtFljNALFOdYLMnOxVpoLlBcAD9IgeZAGBwDdqzax3JPIgC49IHj3QKmiB3RVZ8zuGFxxrdwVvxR2wY18AfcLylBSYcC17CJcyy6yOiSV0l78ePxeVWfNzIWZR2d7sV9ZpeExZ5MqfyuYrLVVK5zqs0JdDr1F8eQhKUJ/saAqhKvcVDx1lRaaVlGgCJ1RBFlD3+cqtauRSa6AoiuMjq64l1eCZ55TQ+rQ+TGFUydIpTK03jUF1Nq1qf/BxMbGYuvWrYiJiYFOp4OXlxf+/ve/46WXXhL7GI1GGAyGqo+KNLG3t8eePXuwefNmrF27FqWlpfD19cXHH3+M4ODglpgKtUV2TqbvAes3Hpj8IfDgctWSxBNAhhZ4cMm0/Wer6cW87zjAZyIk3mPR112Fvu6d8caYvigpq8Avqf/D4EEDG/afKqMBKNX9VhzlVyuWzGecqp+NMv+uL2vE3JXVQsqykKrdVvW7g7PVJW+CwYB7Fy7AfcAAnvEhQv2yjdoYqRTo7GHaetb+OhsAQEVxjSWMNZY1FmQBRj2QfxeS/LtQAFAAeAaAxRcMOLrA2LsXSp26Q2fvgWyJG+7ou+J6uQvSirvgfzoH5JUakFtcgdziCvHgn8VwJYDCToKKpOOoaNAHHQlwQjlUKEQvialYcpUUQiUthoddMbpJi+EmK4IriuCMquXnhnw4GksacFtV7JSAoiugcLXMJIXK1O6kqr3PobPVFQyCwYDsCxfQnblENtamCi+lUon33nsP7733Xp19Nm7ciI0bN9Zqd3Nzw6ZNm2w5POpIJBLAw8+0ha4wFTc3TpsKsRsnTQVP6hemTSIDeoX8tiRR1c/0PS+CAJQX1bF0r2YBVe2yrPba/3qTyk2FkUVIuVppq1FIyR2a7r4jIgv1yTZqh+yVQDe1abPGaACKsi3PktVc1liWD5TpIC3TQYlUKAH0QI3CTGoHo2ePqsLME9kSN9w1qHCj3AW/FDvj53wl8vV2KKowf+y2EV1Qgh4OpXjGvgSe8hK4y4vhJisW37vbRShA56r37TpW5sOhUgeZsY4PTBLwhPfoSgAnFytFU80De10ts4m5RG1Qmyq8iFothQr43QzTZtADmeeqliSeAHIuA3f/a9pOfQBpJ09oKishPVpoeg9AQzl0sQwla2ejLI72uZqu0wq/Q4aIiGqQyoAuz5i2XnWszikrqPs9ZroMoPAeYKyEVHcbSt1t64WZHDB0VqEUTnASSiAtz//tU10rq7b6ktnXkUFdreRTVZujs2muRB0ACy+ipiaTA88ON23j1wB5d6o+oOMYkH4WkqL7sLfob29ZHFktoGoWV66AjF9AS0TUoTl2ARyrVl9YY9ADhb/WLsyqL2msKIKsNBedal7XvlO1s1B1FE0188q+Ew/uET0GCy8iW3N9Fgieb9oqimHIuoCrt+5CPWAYZJ3cTMtNGFRERNTUZHLApZdpw7Da+wUBKNPBkHsXN9JS0FcTBFmnblxiTmQjLLyImpO9Eug9FKW5jqYg5Jt4iYiopUgkpiLLswuK7utNn87LXCKyGX4iJhERERERkY2x8CIiIiIiIrIxFl5EREREREQ2xsKLiIiIiIjIxlh4ERERERER2RgLLyIiIiIiIhtj4UVERERERGRjLLyIiIiIiIhsjIUXERERERGRjbHwIiIiIiIisjEWXkRERERERDbGwouIiIiIiMjGWHgRERERERHZGAsvIiIiIiIiG5O39ADaGkEQAAAGg6FB1zdfr6HXb+s6+vwB3gecP+df/bKh1ze/FpMJs6lxOH/Ov/plR8P5N18uSQSm11OpqKhAampqSw+DiKhD02g0sLe3b+lhtBrMJiKillWfXGLh9ZSMRiP0ej2kUikkEklLD4eIqEMRBAFGoxFyuRxSKVfLmzGbiIhaxtPkEgsvIiIiIiIiG+PhQiIiIiIiIhtj4UVERERERGRjLLyIiIiIiIhsjIUXERERERGRjbHwIiIiIiIisjEWXkRERERERDbGwouIiIiIiMjGWHg1saSkJKjVanHz8/PDyJEjsXz5cty+fdui748//oh3330Xr7zyCgICAqBWq5GZmdkyA28i9Z2/wWDA7t27MXfuXDz//PMIDAzEpEmT8OGHH6KgoKDlJmAjNe+XmptWq23pITbYsWPHoFarcfTo0Vr7Xn75ZajVapw9e7bWvnHjxmHatGkAgG+//RZ/+ctfMGXKFPj7+0OtVtt83E2lsfMvKirC9u3bERERgREjRmDgwIGYMmUK4uPjUV5e3hxTaJSmePy3bt2KqVOnIjg4GBqNBi+88ALef/99ZGVl2Xz8HQWzidlkTXvNJuYSc6m15pK8UdemOm3YsAFeXl4oLy/HTz/9hB07dkCr1eKbb76Bs7MzACA5ORk//PADfH19oVQqce7cuRYeddN50vzLysoQGxuLsLAwzJgxA66urrh06RK2b9+Ob7/9FgcOHICjo2NLT6PJme+Xmvr27dsCo2kawcHBkEgkSE5OxuTJk8V2nU6Ha9euQaFQQKvVIjQ0VNx3//59ZGRkYM6cOQCAkydP4uLFi/D19YWdnR3S0tKafR4N1dj537t3D4mJiQgPD8cf//hHKBQKpKSkYNu2bfjvf/+L3bt3QyKRtMTU6qUpHv+CggK89NJL8Pb2hlKpxI0bN7B9+3acOXMGX331FVxdXZt9Xu0Vs4nZZE17yybmEnOpteYSCy8b6devHzQaDQAgJCQEBoMBsbGxOHXqFF599VUAwOLFi7FkyRIAwK5du9pVuD1p/o6Ojjh9+rTFEzckJATdu3fHsmXLcPz4cYSHh7fU8G2m+v3SXqhUKvTr16/W8/f8+fOQy+V49dVXax01TU5OBmB6zAFg7dq1kEpNJ+DXrFnTpgKusfPv2bMnzpw5A4VCIe4fNmwYnJyc8Le//Q0pKSkYMmSI7SfSQE3x+H/wwQcW+833y4IFC3D69GlMnz7dhjPoWJhNzCZr2ls2MZeYS601l7jUsJmYX9AePXoktpn/oDuCmvOXyWRWjxb87ne/A2A68kBtR0hICNLT0/HgwQOxTavVIiAgAKNGjUJaWhqKiorEfefOnYNMJhNfuNv630Jj5q9QKCzCzawt/S009vG3RqVSAQDkch4ftCVmE7OpvWIuMZdaYy617WdVG2JeH9+nT5+WHUgLqe/8zUcc2uryhicxGo3Q6/UWm8FgaOlhNdrQoUMBwOLoklarRXBwMAYNGgSJRIKUlBSLfX5+fujcuXOzj9UWbDH/tvS30FTz1+v1KCsrw6VLl7B+/Xr06dMH48ePb55JdFDMJmYT0D6zibnEXAJaXy6x8LIR84tYcXExzp49i+3btyMoKAhjx45t6aE1i4bMPzs7G1u2bEFAQADGjBnTjKNtPjNnzoS/v7/F1h6WdwQFBUEqlYovcHl5ebh+/TqCgoKgVCrh5+cnvmD/+uuvyMzMFE/ntwdNPf8rV64gISEB48ePR//+/ZtlDo3RFPPPycmBv78/AgMDMW3aNBgMBuzduxdKpbLZ59OeMZuYTda0x2xiLjGXWmMucQ2HjcycOdPid29vb8TFxXWYZTNPO3+dTof58+dDEAT84x//aPOn+OuyadMmeHt7W7S15jeo1pezszP69+8vrpk+f/48ZDIZBg0aBMD0Amh+gTP3aU8B15Tzz8zMxKJFi+Dp6Ym1a9c2w+gbrynm7+rqii+//BIVFRW4desWEhISEBkZiU8++QTu7u7NOJv2jdnEbLKmPWYTc4m51BpzqX2+grQCmzZtwpdffonExETMmjULN2/exIoVK1p6WM3maeafn5+P1157DdnZ2fjXv/6FXr16NfNom4+3tzc0Go3FFhAQ0NLDahIhISG4ffs2srOzodVq4e/vLx4VCg4OxuXLl1FYWAitVgu5XI7Bgwe38IibVlPMPysrC5GRkZDJZEhMTISLi0szz6LhGjt/uVwOjUaDwYMHY8aMGUhMTERmZibi4+NbYjrtFrOJ2WRNe80m5hJzqbXlEgsvGzG/iA0dOhRr1qzBjBkzcPbsWRw7dqylh9Ys6jv//Px8zJkzB5mZmdi9e3ebOH1N1pmPFJ07dw7nzp1DUFCQuM/8Ynb+/HlotVpoNJp2t4SssfPPyspCREQEAGDv3r3w9PRsppE3jaZ+/D09PeHu7l7rO6aocZhNzKaOhLnEXAJaVy6x8Gomb775JpydnRETEwOj0djSw2l21uZvDraMjAzs2rULfn5+LTxKaoygoCDIZDIcP34c169fR3BwsLivc+fO8PX1xaFDh5CVldWulnOYNWb+9+7dQ0REBIxGIxITE9GjR4/mHn6jNfXjf+fOHdy/fx/PPvusLYfd4TGbmE3tGXOJudTacqljLOpuBZydnbFgwQJs3rwZR44cQXh4OHJzc8U3/V27dg0A8P3330OlUkGlUlk8Qdq6mvOfMGEC5s6di0uXLuGdd96BwWDAhQsXxP4qlQq9e/duuQHbyPXr161+UlTv3r3Fjyltqzp16gQ/Pz+cOnUKUqm01in7oKAgJCYmAqi9jjorKwupqakAgLt37wKAeAS6R48ebeJN3g2d/6NHjxAZGYmcnBysW7cOjx49svhob09PzzZxlLGh879y5Qo2bNiACRMmoFevXpBKpbh27Rr27NkDFxcXvPbaa806j46G2cRsAtpvNjGXmEutLZdYeDWjiIgI7Nu3D3FxcQgLC8P169exbNkyiz7R0dEATGtPP/nkk5YYps1Un//AgQPFF7R169bV6jtt2jRs3LixuYdoc6tXr7bavnbtWsyYMaOZR9P0QkJCkJqaCl9fX3Tq1MliX1BQEPbs2QM7OzsMHDjQYp9Wq61135j/NtrSc6Eh879x4wYyMjIAmI6+17RkyRIsXbrUtgNvIg2Zv5ubG9zd3bF7927k5ORAr9fD09MTo0ePxqJFi9C9e/fmnkaHw2xiNrXnbGIuMZdaUy5JBEEQGnxtIiIiIiIieiK+x4uIiIiIiMjGWHgRERERERHZGAsvIiIiIiIiG2PhRUREREREZGMsvIiIiIiIiGyMhRcREREREZGNsfAiIiIiIiKyMRZeRERERERENsbCi9qEpKQkqNVqcfPz88PIkSOxfPly3L59u6WHBwDYsWMHTp06Vatdq9VCrVZDq9W2wKhMzpw5g0WLFmH48OEICAhAcHAwZs+ejcOHD6OysrLFxlWTtfvq7bffxtixY216u9nZ2YiNjcXly5dtejtE1L4wmxqH2fR4zKb2R97SAyB6Ghs2bICXlxfKy8vx008/YceOHdBqtfjmm2/g7OzcomPbuXMnJkyYgHHjxlm0+/v7Y//+/ejbt2+zj0kQBLzzzjtISkrCqFGj8Pbbb6N79+4oLCyEVqtFdHQ08vLyMHv27GYfW30tXrwYkZGRNr2NBw8eYNu2bejRowd8fX1teltE1P4wm54Os6l+mE3tDwsvalP69esHjUYDAAgJCYHBYEBsbCxOnTqFV199tYVHZ12nTp0wYMCAFrnthIQEJCUlYenSpViyZInFvrFjx2LevHm4c+dOs46prKwMjo6O9e7fu3dvG46GiKjxmE1Ph9lEHRWXGlKbZg66R48eWbSnpqZi0aJFCA4OhkajwdSpU3H06FGLPrm5uYiKisLkyZMxcOBADBs2DJGRkfjxxx9r3U5FRQW2bduGSZMmQaPRICQkBBEREfjpp58AAGq1GiUlJTh48KC45CQiIgJA3cs5Tp8+jVmzZiEwMBADBw7EnDlz8PPPP1v0iY2NhVqtxvXr17FixQoMHjwYw4cPx+rVq1FYWPjY+6ayshIJCQnw8vLCG2+8YbVPt27dMGTIEPF3nU6HqKgohIaGIiAgAC+88AK2bt2KiooKi+uVl5djy5YtGDt2LAICAhAaGoro6GgUFBRY9Bs7diwWLlyIEydOYOrUqdBoNNi2bRsA4ObNm5g7dy4CAwMREhKC//u//0NxcXGtMVpbzqFWq7FmzRocOnQIkyZNQmBgIF5++WV8++23Fv3u3LmD1atX48UXX0RgYCBCQ0OxaNEiXL16Veyj1Woxffp0AMDq1avFxy82NlbsU5/nExGRGbOpbswmZlNHxjNe1KZlZmYCAPr06SO2JScnY968eQgMDERUVBQ6d+6Mo0ePYvny5SgrK8Mrr7wCwPRCDgBLliyBm5sbSkpKcPLkSURERGDPnj0ICQkBAOj1esybNw8pKSmIjIzE0KFDYTAYcPHiRfz6668AgP3792P27NkICQnB4sWLAZiOJtblyJEjWLVqFUaOHIktW7agoqICCQkJ4m1XDxwAWLp0KSZPnozp06fj2rVr2LJlCwDT8pa6/PLLL9DpdJgxYwYkEskT78vy8nJERkYiIyMDS5cuhVqtxo8//oj4+HhcvnwZ8fHxAExLRBYvXozk5GQsWLAAQ4YMwdWrVxEbG4sLFy5g//79sLe3F//dtLQ03Lx5E6+//jp69uwJJycnPHz4EBEREZDL5fjggw/QtWtXHDlyBH/961+fOE6z7777DqmpqfjTn/4EhUKBhIQELFmyBMeOHUOvXr0AmJZpuLi4YOXKlVCpVMjPz8fBgwcxc+ZMHDx4EF5eXvD398eGDRuwevVqvP766xg9ejQAwNPTE0D9n09ERGbMJmYTs4msEojagAMHDgg+Pj7ChQsXhMrKSqGoqEj4/vvvhREjRgh/+MMfhMrKSrHvxIkThalTp1q0CYIgLFy4UBgxYoRgMBis3oZerxcqKyuF2bNnC2+88YbYfvDgQcHHx0f4/PPPHzvGAQMGCG+99Vat9uTkZMHHx0dITk4WBEEQDAaDMHLkSCEsLMxiLEVFRcKwYcOEWbNmiW0xMTGCj4+P8PHHH1v8m1FRUYJGoxGMRmOd4/n6668FHx8f4bPPPnvsuM0+++wzwcfHRzh69KhFe3x8vODj4yP85z//EQRBEL7//nurYzLf3v79+8W2MWPGCL6+vsKtW7cs+m7evFlQq9XC5cuXLdrnzJljcV8JgiC89dZbwpgxYyz6+fj4CMOHDxcKCwvFtpycHKF///7Czp0765yjXq8XKioqhBdffFFYv3692P6///1P8PHxEQ4cOFDrOg19PhFR+8dsYjZVx2yiJ+FSQ2pTZs6cCX9/fwwaNAjz5s1Dly5dEBcXB7ncdPL2zp07uHXrFqZMmQLAdETQvD3//PPIyclBenq6+O999tlnmDZtGjQaDfz8/ODv748ffvgBN2/eFPucPXsWDg4OTbZOPz09HQ8ePEB4eDik0t/+BJVKJV588UVcvHgRpaWlFtextpyhvLy81jKWxkhOToZCocDEiRMt2s1HzX744QexX/V2s0mTJkGhUIj9qo/1ueees2jTarXo168f+vfvb9EeFhZW7/GGhIRYHLl1c3ND165dkZWVJbbp9Xrs2LEDkydPRkBAAPz8/BAQEIDbt29bPMZ1edrnExF1TMwmE2YTs4kej0sNqU3ZtGkTvL29UVxcjKNHj2L//v1YsWIFEhISAAAPHz4U+23atMnqv5GXlwcA2L17NzZu3Ijf//73WLZsGVxdXSGVSvHRRx/h1q1bYv/c3Fy4u7tbBFFjmG+/W7dutfa5u7vDaDSioKAATk5OYruLi4tFP/NyibKysjpvp3v37gB+W/LyJDqdDm5ubrWWfnTt2hVyuVxc/qLT6SCXy6FSqSz6SSQSuLm5if3MrM1Tp9OhZ8+etdrd3NzqNVag9n0CmO6X8vJy8feNGzdi3759mD9/PoKCguDs7AyJRIL33nvPol9dnub5REQdF7PJhNnEbKLHY+FFbYq3t7f4puWhQ4fCaDTiiy++wLFjxzBx4kS4uroCABYuXIjx48db/TfMR7gOHz6M4OBgREdHW+yv+SZalUqFlJQUGI3GJgk48xhzcnJq7Xvw4AGkUim6dOnS6NsJCAiAi4sLTp8+jZUrVz5xLb2LiwsuXrwIQRAs+j569Ah6vV4ct4uLC/R6PXJzcy0CThAEPHz4UHx8zKzdrouLixgc1Vlra4zDhw9j6tSpWLFihUV7Xl5eve7jp3k+EVHHxWyqP2YTs6kj41JDatPefPNNODs7IyYmBkajEV5eXujTpw+uXLkCjUZjdTMvAZBIJBZvtAWAK1eu4MKFCxZtoaGhKC8vR1JS0mPHYm9v/9ijfGbPPfccPDw88NVXX0EQBLG9pKQEJ06cwIABAyyOKDaUnZ0d5s2bh1u3buGf//yn1T6PHj1CSkoKAGDYsGEoKSmp9UWbhw4dEvdXvzx8+LBFv+PHj6OkpETc/zghISG4fv06rly5YtH+1VdfPXliT0EikcDOzs6i7bvvvkN2drZFW11HaZ/m+UREZMZsqhuzidnUkfGMF7Vpzs7OWLBgATZv3owjR44gPDwc0dHRmD9/PubOnYtp06bBw8MD+fn5uHnzJtLS0hATEwMAGD16NOLi4hATE4OgoCCkp6cjLi4OPXv2hMFgEG8jLCwMSUlJiIqKQnp6OkJCQiAIAi5evAhvb2+89NJLAAAfHx+cO3cOZ86cQbdu3aBUKuHl5VVrzFKpFG+++SZWrVqFhQsXYtasWaioqMCuXbtQUFCAlStXNtn9Yw632NhYpKamIiwsTPySyvPnz+Pzzz/H0qVLMXjwYEydOhX79u3DW2+9haysLPj4+CAlJQU7d+7EqFGjMHz4cADAiBEjMHLkSHz44YcoKirCoEGDcPXqVcTExMDPzw/h4eFPHNfs2bNx4MABLFiwAH/+85/FT46qvoymKYwePVr8hCi1Wo20tDTs2rVL/FQos969e8PR0RFHjhyBt7c3FAoF3N3d4eHhUe/nExGRGbPp8ZhNzKaOioUXtXkRERHYt28f4uLiEBYWhqFDh+KLL77Ajh07sH79ehQUFMDFxQXe3t6YNGmSeL1FixahtLQUX375JRISEtC3b19ERUXh1KlTOHfunNhPLpfj448/xs6dO/H1118jMTERSqUS/fv3R2hoqNjv3XffRXR0NFasWIHS0lIEBwfjk08+sTrmKVOmwMnJCfHx8Vi+fDlkMhkCAwOxd+9eDBo0qMnuG4lEgg0bNmDcuHH4/PPPxfvDPP5Vq1aJb0R2cHDA3r17sXXrViQkJCAvLw8eHh547bXXLL7gUiKRIC4uDrGxsUhKSsKOHTvg4uKC8PBwrFixotaRWmu6deuGf//731i3bh2ioqLg5OSEcePG4f333xc/8rgpvPvuu5DL5YiPj0dJSQn8/PwQGxuLjz76yKKfk5MT1q9fj23btmHu3LmorKzEkiVLsHTp0no/n4iIqmM21Y3ZxGzqqCRC9fPJRERERERE1OT4Hi8iIiIiIiIbY+FFRERERERkYyy8iIiIiIiIbIyFFxERERERkY2x8CIiIiIiIrIxFl5EREREREQ2xsKLiIiIiIjIxlh4ERERERER2RgLLyIiIiIiIhtj4UVERERERGRjLLyIiIiIiIhs7P8B9SzzblpLHZsAAAAASUVORK5CYII=",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0MAAAHaCAYAAADCNpJNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC0JklEQVR4nOzdeXhU5fn/8ffMZF/IzpaQhC2sYUvYVMAFcUGlbtWvbam2aq2AVv3+6t6q7beitmoFtKJV64ZLRUQUFHFDRSBhC2vYErKwZV/JMjO/P04SEwiQSSacJPN5XVeukDPnnLmfAXLmnvM8921xOp1OREREREREPIzV7ABERERERETMoGRIREREREQ8kpIhERERERHxSEqGRERERETEIykZEhERERERj6RkSEREREREPJKSIRERERER8UhKhkRERERExCMpGRIREREREY+kZEhERERERDySl9kBiGdLS0vj7bffZt26dRw9ehQvLy9iYmKYNGkSN954I1FRUSccM2jQoNOed8mSJQwZMqTFxzz++ONcddVVTfbt3bs3K1aswNfX94T9zz//fHJycti2bRteXs3/N3rhhRd49tlnAVi+fDn9+vU7bdyteT3a0969e3n77bdZu3YtBw8epKqqitDQUIYOHcqFF17IFVdc0ezr09w4oqOjOeecc7jxxhvp0aPHGR2HiEhL6brUVEe5LtW/Brt27TrpPvWvwapVq4iJiWnV8+j65XksTqfTaXYQ4nmcTid///vfefnll/Hy8uKss84iISGBmpoaNm7cyJYtWwgICODpp5/mvPPOa3Js/S/E2bNnn/T8119/fZNf0Kc7ZurUqQ0XqcYXqHvuuYdbb731hP1Pd9FxOp1MnTqVnJwcnE4nv/nNb7j33ntPGm9bXo/2Mn/+fBYsWIDD4WDUqFEkJiYSGBhIXl4eKSkpZGRkMGzYMBYvXuzSOPz9/Zk7dy4XX3zxGRmHiEhL6Lp04v4d6brU3smQrl8ezClignnz5jkTEhKc5513njM9Pf2Ex1esWOFMTEx0Dhs2zLlx48YmjyUkJDgTEhJcej5XjklISHCOHTvWOW7cOOeYMWOc+fn5J+xz3nnnORMSEpw1NTXNnuPbb791JiQkOB966CHnxIkTnRMmTHBWVVWd9Dnb8nq0h+eff96ZkJDgnDJlinPTpk3N7vPNN984f/WrXzXZ1tJxDBkyxPnDDz+0S+wiIq2h61JTHe261JLXq/41yMrKcvn8un55Lq0ZkjMuKyuLF154AW9vb1544QUGDhx4wj4XXXQR999/PzU1Nfz5z38+4zH6+fnx+9//nrKyMhYsWODy8e+//z4A1157LZdffjkFBQV88cUXze7b0V6P7OxsFixYgLe3NwsXLmTkyJHN7jd58mRefvnlhp9dGYfdbueRRx7B4XC02zhERFqqo/0ebo4nX5fam65fnk3JkJxxixcvpra2lgsuuOCUc6avvfZaoqKi2LlzJxs3bjyDERp+8YtfEBsby7vvvsv+/ftbfFxeXh5ffvkl/fv3Z8SIEQ1zvt97771m9+9or8fixYupqalh2rRpJCQknHJfHx+fJse5Mo6MjAzWrVvntrhFRFqro/0ePhlPvS61N12/PJsKKMgZl5qaCsDZZ599yv28vLwYP348y5YtIyUlhdGjRzd5fN68ec0e5+vr2+x86pMdEx0d3XBhaMzb25t77rmHO++8k3/84x/Mnz//lPHWq08mfvaznwHGPOehQ4fy448/kpWVRZ8+fZrs767Xw11SUlIAmDhxokvHtWYcGzZsYMKECa0LVETETXRd6tjXpcZO9hoDlJSUtOqcun55NiVDcsbl5eUB0LNnz9PuW7/P4cOHT3jsZBeB4ODgk150mjtm3LhxzV50AC6++GJGjx7NypUrSUlJITk5+ZTxOp1O3n//fWw2GzNmzGjYftVVV/HXv/6V999/n7vvvrvJMe56PdylPh5XK+a0ZhxHjhxxMToREffTdaljX5caa2kC6ApdvzybkiE545x1BQwtFstp963fp6qq6oTHTlVR5mRac8y9997L9ddfzxNPPMF77713yrh//PFHDhw4wKRJk5okE5dddhlPPPEEixcv5o477mhS6cddr8fxmvv07MorrzxthR1X4mntcfX7NN73xRdf5PPPP2f//v34+PgwatQo7r777tNO1RMRaStdlzr2damxllSTa6wl15a2Xr+kc9OaITnj6kuLHjp06LT71u8THh7erjGdyujRo7nooovYsmULy5cvP+W+7777LsAJn+iFhYVx/vnnc/ToUb766qsmj7XX6zF//vwTvo6/SDSne/fuLY6nsdaMo3GZ2XXr1nHDDTfwzjvv8J///AebzcZNN91EUVGRS3GIiLhK16WOfV1qi5ZcW9p6/ZLOTcmQnHFJSUkA/PDDD6fcz263s3btWgCGDRvW7nGdyv/+7//i7e3NP/7xD6qrq5vdp3FlnrvuuotBgwY1+frss8+Any5M9drr9di1a9cJX+PHjz/tcfXx/Pjjj6fdt7njXBnHmDFjGrb/+9//5uqrryYhIYFBgwbx5JNPUlBQwIYNG1yKQ0TEVboudezrUlu05NrS1uuXdG5KhuSMu+qqq7DZbKxcuZI9e/acdL8PPviAI0eOEBoayqRJk85ghCeKjY3lf/7nf8jOzubNN99sdp8PP/yQmpoahg0bxjXXXNPsV1hYGN9//32TT8I62utx1VVX4e3tzWeffXbKeIAmF2BXx9G3b1/GjRt30v3Ky8txOBx069bN9UGIiLigo/0ebglPui65U3PXFndfv6STMa3DkXi0Z5991pmQkOC84IILnLt37z7h8ZUrVzpHjBjhTEhIcL733ntNHjsTze0mTZp0wvbCwkJncnJyQ+O745vbXXTRRc6EhATn5s2bT3ruv//9786EhATns88+22R7W16P9vDCCy80NJ/bsmVLs/s013S1peNoSdO6O+64wzljxgxnbW1t6wciItJCui517OuSu5qunuza4s7rl3QuKqAgppgzZw6VlZW8+uqrzJgxg3POOYcBAwZQW1vLxo0b2bx5MwA333wz1157bbPnOFV5zalTpzJkyBC3xhwaGsrvfvc7nnrqqRMeW7t2Lfv37ychIYERI0ac9BzXXnstL730Eh988AGzZ8/GZrMB7nk93Om2226jtraWBQsWcM011zB69GiGDx9OYGAgeXl5pKSkkJGRwfDhw5sc15Jx+Pn58Y9//OOUpbufeOIJUlNTWbRoUcNrJCLSnnRd6tjXJXc41bXFXdcv6XwsTmddCQ0RE2zevJm3336b9evXc/To0YZpV1FRUTz55JOcddZZJxxzqoZo9R5//PEmi0Xrj2lJ1Z5BgwbRo0cPvv322xMeq66u5uKLL26YTrBt2za8vLy45557WLZsGQ8++CAzZ8485flnzpzJ2rVreeGFFzj//PObPNaa16M97d27l7fffpu1a9eSm5tLdXU1oaGhDB48mIsuuogZM2Y0abxab8uWLbz11lusX7+evLw8bDYb0dHRTJo0iV//+tenLF/6+OOP88knn/Cf//yH/v37t+fwREROoOtSx7wuteT1qq8mt2rVqhMq1LX02tKW65d0TkqGpEMpKyvjhhtuYO/evfzzn/9k6tSpZodkKk97Pf7617/y6aef8sYbbygREpEOwdN+D59OZ3w9dG2RU1EyJB3OwYMHufbaaykqKuL5559n8uTJZodkKk95PR555BGWLl3KggULGDBgQMP2gIAAAgMDTYxMRDydp/webqnO9Hro2iKno2RIOqSdO3eycuVK/Pz8+PWvf93sVCxP4gmvx8mmmcyePZs5c+ac4WhERJryhN/Drugsr4euLXI6SoZERERERMQjqc+QiIiIiIh4JCVDIiIiIiLikZQMiYiIiIiIR1IyJCIiIiIiHsnL7ADcxeFwUFtbi9VqxWKxmB2OiIjHcDqdOBwOvLy8sFr1GVtjujaJiJijpdemLpMM1dbWkpaWZnYYIiIeKzExscOW1zWLrk0iIuY63bWpyyRD9RlfYmIiNpvN5ePtdjtpaWmtPr6z0/g1fo1f42/r70/dFTqRrk1to/Fr/Bq/xt/e16YukwzVTz+w2Wxt+gfT1uM7O41f49f4Nf7W0jSwE+na5B4av8av8Wv8rXW6a5M+xhMREREREY+kZEhERERERDySkiEREREREfFISoZERERERMQjKRkSERERERGPpGRIREREREQ8kpIhERERERHxSEqGRERERETEIykZEhERERERj6RkSEREREREPJKSIRERERER8UhKhkRERERExCMpGRIREREREY/kZXYAHYLTiWXpbHoe84VRo8yORkRE2mjNmjUsXbqUjRs3cujQIYKDgxk+fDizZs1i+PDhpzx28eLF3H///c0+9t133xEVFdUeIZ/gYHEl93+Qxlnda3VpEhFpJ0qGAKpKsG5+m95YcFQ9AgGhZkckIiJtsGjRIoqKipg5cyYDBgygoKCAV199leuuu46XX36ZiRMnnvYcjz/+OP369WuyLTQ0tJ0iPtGmA0V8nX6Ug/ne/PaSM/a0IiIeRckQgF8Izm7RWEpy4OBm6D/F7IhERKQN/vznPxMREdFk26RJk5g2bRovvvhii5KhgQMHkpiY2F4hntbQ3t0A2FtYQ1WNnQCbzbRYRES6Kq0ZqhedBIAlJ9XkQEREpK2OT4QAAgMD6d+/PwcPHjQhItfFhgcQGeRDrQPSckvMDkdEpEvSnaE6zt5jsOxYqmRIRKSLKi0tZfv27UyYMKFF+992220UFBQQHBzMuHHjuOOOO0hISGjVc9vt9lYdNyY2lM+3HyFlfwHJcWGtOkdnVv+6tfb16+w0fo2/8XdP09bxt/Q4JUN1nNHJxh9ylQyJiHRFjz76KJWVldx2222n3C8yMpLbbruNUaNGERQURHp6OgsXLuS6665j0aJFDB482OXnTktLa1XMvbwrAfh62wEmhJa26hxdQWtfv65C49f4PVl7j9/0ZGjt2rXMnDmz2cfeffddRp2pEjq9RuDEiqX0IJTkQrfeZ+Z5RUSk3T377LN8/PHHPPzww6etJjd58mQmT57c8PPYsWOZMmUKl19+Of/85z954YUXXH7+xMREbK1Y82MPzec/m9ezp8jByJEjsVgsLp+jM7Pb7aSlpbX69evsNH6NX+Nv/fjrjz8d05OhenfffTfjx49vsm3gwIFnLgCfICq7xRNQsg9yUpUMiYh0EfPnz+eFF17grrvu4pe//GWrzhETE0NSUhKbN29u1fE2m61VF/PEmDB8rFBYUcOBwmP0iwpq1fN3dq19/boKjV/j1/jbb/wdJhmKi4s7c3eBTqI8dIiRDGWnwJDLTY1FRETabv78+cybN485c+acdnrc6TidTqzWM1t3yMfLSv9wb3bk1ZCSWeixyZCISHtRNblGykPr5oGriIKISKe3YMEC5s2bx+9//3tmz57dpnNlZWWxYcMGRo4c6aboWm5QhA8AqRmFZ/y5RUS6ug5zZ+ixxx7j7rvvxs/Pj9GjR/P73/+e5OTkMxpDedgQ4w+5G8FhB6vn3pIUEenMXnnlFZ577jkmTZrEueeey6ZNm5o8Xj8T4YEHHmDJkiWsXLmS6OhoAG688UaSk5MZPHgwgYGBpKen8/LLL2OxWLjzzjvP7EAK9jM0HJYAqQeUDImIuJvpyVBwcDAzZ85k/PjxhIaGkpmZyb///W9mzpzJiy++yKRJk1w6X1vK7x0LjsPpHYClugz74R3QfUirztUZqXyjxt/4u6fR+M9M+dIz6auvvgJg9erVrF69+oTHd+3aBYDD4cBut+N0OhseS0hIYPny5bzyyitUVVURHh7OhAkTuP322+nbt++ZGQDA/m+x/edyLo29kr9xLXuOlFFUUU1ogM+Zi0FEpIszPRkaOnQoQ4cObfg5OTmZCy+8kMsvv5ynnnrK5WSoTeX3LDbKug0kOH8zWT8uIT+2qvXn6qRUvlHj92Qaf9cZ/xtvvNGi/ebOncvcuXObbHvggQfaIyTX2WsAiMr7kf5RN7L3aDmpmYVcMKSHyYGJiHQdpidDzenWrRvnnnsu77zzDseOHcPPz6/Fx7a2/F5ZZTW7dm4jYOAkyN9MrO0IfUwu6HAmqXyjxq/xa/ztXb5UXBSTjBMLvhUHmTzIwd6jkKJkSETErTpkMgQ0TFlwtadCa8rv1dgdTH32e0J9HKy4JAkAa+4G8MA3RSrfqPFr/Bq/dBB+IRA1CI7u5PzATF6lO6mZWjckIuJOHbKaXHFxMV9//TVDhgzB19e33Z/P7nBSWFHN7oIaDgUNMzYe3g7VFe3+3CIiIifjjBkLwDCHscZpc1YR1bUOM0MSEelSTE+G7rnnHv7+97+zYsUK1q5dy3vvvcd1111Hfn4+f/zjH89IDH7eNob17gbAugJ/COoJTjscbF1zPREREbeoS4bCCjYTFuBNVa2DbbnFJgclItJ1mJ4MDRo0iO+++46HHnqIm266iWeeeYYBAwawaNEizjrrrDMWR1JcKAApmUUQU1fSOyfljD2/iIjI8ZzRddej3I2Miw0G0FQ5ERE3Mn3N0K233sqtt95qdhgkx4XxyveZpB4ogqQxsHOZmq+KiIi5IhOo9Q7Cq6aMqRF5fIaV1MxCbnat0KqIiJyE6XeGOoqkuDAAdh0upSxqlLExW8mQiIiYyGKlPNToeTfOaw9gVJRr3BdJRERaT8lQncggX3oG2XA6YWNtPGCB4gNQdsTs0ERExIOVhxm9+GLKtuJts3C0tIqsgkqToxIR6RqUDDUyOMIbgHW5tUY5U9BUORERMVVZXTJky1nP8OgQAFIPFJgZkohIl6FkqJHBkT4ArM8ogGij3xDZKqIgIiLmKQ8bghMLFGUypbcxPS4lQ0UURETcQclQI0PqkqFNWUXYe48xNurOkIiImMjhHdQwW2FyQAaginIiIu6iZKiR3sE2Qv29OVbjYI/3YGNjzgZwqMGdiIiYp77E9uCanYBR7KfkWI2ZIYmIdAlKhhqxWiwN/Ya+K4kCLz+oKoaCveYGJiIinq2u+WrAkQ3ERQQYxX4OFJkbk4hIF6Bk6Dj1JbZTssqg1yhjo9YNiYiIiZx1yRA5Gxhb33w1Q0UURETaSsnQcZJijWRofUYhzmitGxIRkQ4gMgH8QqC2kgvCjgJGvyEREWkbJUPHSYzuho/NSl5ZFXkhicbGHN0ZEhERE1msULduaIx1N2AU+6m1a02riEhbKBk6jq+3jcQYo4/D+tp+xsZDW6HmmIlRiYiIx+szDoDuxWkE+3lRUW1n56FSk4MSEenclAw1IznemCq3+og/BESCowYOpZkclYiIeLS6dUOW7HWMqZvSnaJ1QyIibaJkqBnJceEApGQW/dR8VVPlRETETDHJgAUKM5jUq675qtYNiYi0iZKhZtRXlNt9pIzKHqONjSqiICIiZvILaWi+erb/PgA2KBkSEWkTJUPNCA/0oX9UIAA7bQnGRpXXFhERs9VNlRtQtR2b1UJu8TFyiypNDkpEpPNSMnQS9VPlvi7rY2wo3A8VmpstIiImqiui4J2bytBe3QBNlRMRaQslQydRX0Thh5xaiBhgbNRUORERMVOMkQw1br6qqXIiIq2nZOgkkuONO0Obs4ux91LzVRER6QAaNV89N/QIACmZmrUgItJaSoZOIj4igIhAH6prHeQEDjU2at2QiIiYyfpT89WRpAOw42Ap5VW1ZkYlItJpKRk6CYvF0jBVLqW++WpOKjidJkYlIiIer27dUEjeJqJD/bE7nGzKKjI3JhGRTkrJ0CnUF1H4PD8KbD5QWWAUUhARETFLjHFniOx1Da0gUrVuSESkVZQMnUL9naG1B8pw9hxhbMzWuiERETFR3TQ5CjM4p5cDUEU5EZHWUjJ0CsN6h+DrZaWwoobi8LpkSEUURETETP6hEDUYgPHeRvPVjZmF2B2axi0i4iolQ6fg42VlZJ9QAHbaBhobc1REQURETFbXfLVPeRqBPjZKq2rZfaTU5KBERDofJUOnMbZuqtw3ZbHGhoNboLbaxIhERMTj1RVRsOakMjq2rthPhqbKiYi4SsnQadQXUVhxMBD8QsFeBYe3mhuUiIh4tvrmq7kbSKprvqoiCiIirlMydBpjYsOwWGB/fgXVPUcbG7VuSEREzBSZAL4hUFPBlG6HATVfFRFpDSVDpxES4E1Cd+NTtwP+dc1XlQyJiIiZrFaISQJgqH0XVgtkFVRypOSYyYGJiHQuSoZaIKlu3VBqbV9jQ7aKKIiIiMnqpsr5HUplUM9ugKbKiYi4SslQC9QXUfi0MNrYkL8bKovMC0hERKSPUVHOaL4aCqjfkIiIq5QMtUB9EYUfDoIjNN7YmLvBvIBEREQaNV89q6fRY0h3hkREXKNkqAViwvzp0c2XGruTgtDhxkatGxIRETM1ar461msvANtyizlWYzcxKBGRzkXJUAtYLJaGu0M7bIOMjdlKhkRExGR1zVcjCzfTPdj40G5zVpG5MYmIdCJKhlooKc5YN/RtWR9jQ04qOJ0mRiQiIh6vrvmqJXs9yXXrW7VuSESk5ZQMtdDYeOPO0JLDkTitXlB+BIqzTI5KREQ8Wt2dIXI3kNzHqCi3QcmQiEiLeZkdQGcxpFcwAT42jh6Dqpgh+OWlGSW2Q2PNDk1ERI6zZs0ali5dysaNGzl06BDBwcEMHz6cWbNmMXz48NMen5+fz1NPPcVXX33FsWPHGDx4MH/4wx+YOHHiGYjeBZGDjOarVcWcE3wIgNQDhTgcTqxWi8nBiYh0fLoz1EJeNiujY0MBOBAwxNioIgoiIh3SokWLyMnJYebMmSxcuJAHH3yQgoICrrvuOtasWXPKY6urq7nxxhtZs2YNDz74IM8//zwRERHcfPPNrFu37gyNoIUaNV/tX7UdP28rRRU17MsrMzkwEZHOQXeGXJAUF873e/JJqelPAigZEhHpoP785z8TERHRZNukSZOYNm0aL7744inv8Lz//vukp6fzzjvvMHr0aADGjx/PjBkzeOqpp3j//ffbNXaXxYyDvV9iy0lhZMwI1u4vICWjkAHdg82OTESkw9OdIRckx9U3X+1lbMjdBPZa8wISEZFmHZ8IAQQGBtK/f38OHjx4ymO/+OIL+vbt25AIAXh5eXHFFVewZcsWDh8+7PZ426Sh+epPRRTUb0hEpGWUDLlgdGwoVgt8XxSOwycYaivhyHazwxIRkRYoLS1l+/btDBw48JT77d69m0GDBp2wvX7b7t272yW+VmtovrqfCT0cgJIhEZGW0jQ5FwT7eTO4Zze2HyyhIGQ4kUfXGFPleo0wOzQRETmNRx99lMrKSm677bZT7ldUVERISMgJ2+u3FRUVufzcdnvrGqHWH3fK432CsUYOwpK3i5HOdMCbfXnlHCmpJCLQp1XP21G0aPxdmMav8Tf+7mnaOv6WHqdkyEVj48PYfrCEHbaBTGIN5KRA8k1mhyUiIqfw7LPP8vHHH/Pwww+3qJqcxXLySmyneuxk0tLSXD7GlePj/PsRyS7Kt60gptuVZJfUsvibDYzt7dem5+0o2vr6dXYav8bvydp7/EqGXJQUH85/1mTyTXkskwByNpgdkoiInML8+fN54YUXuOuuu/jlL3952v1DQ0ObvftTXFwM0Oxdo9NJTEzEZrO5fJzdbictLe20x1ucF0HWcnrWHODshJ68m5JNgTWMUaNOnO7XmbR0/F2Vxq/xa/ytH3/98aejZMhFY+sWpy7L781DPsCRHVBVCr6q2iMi0tHMnz+fefPmMWfOnNNOj6uXkJBAenr6Cdvrt51uzVFzbDZbm97MnPb42AkAWHI3MvbCbrybAhsOFHWZN1Btff06O41f49f422/8KqDgol4h/kSH+nPIEUpVQC/ACbkbzQ5LRESOs2DBAubNm8fvf/97Zs+e3eLjpk6dyr59+9i8eXPDttraWpYuXcrIkSPp0aNHe4TbNvXNV2sqmBhkNF/dklNMVa1nrjUQEWkpJUOtkFRXYvuA/1Bjg/oNiYh0KK+88grPPfcckyZN4txzz2XTpk1Nvuo98MADDB06lJycnIZt11xzDQMHDuTOO+/k448/5ocffuAPf/gD+/fv53//939NGE0LNGq+2rtsKxGBPlTXOtiaU2JyYCIiHZumybXC2Pgwlm7OJaW2HwNZBdkpZockIiKNfPXVVwCsXr2a1atXn/D4rl27AHA4HNjtdpxOZ8NjPj4+vPbaazz11FP89a9/pbKykiFDhvDSSy8xbty4MzOA1qhrvmrJXs+YuNGs3H6Y1MyChg/wRETkRK1Khnbv3s2GDRs4fPgwx44dIywsjAEDBjB27FiCgoLcHWOHkxQXDsCKomj+x4KKKIiIdDBvvPFGi/abO3cuc+fOPWF7ZGQkTzzxhLvDal/1zVez1pE86l5Wbj9MSkYht042NywRkY6sxclQcXEx7777Lu+++y65ublNPkVrOJmXF5MnT+ZXv/oVEydObFVA77//Pg899BABAQFs3Ngx1+IM6hlMsK8X66picfpbsZTmQkkudOttdmgiIuKpmjRfNdYKbThQiNPpbFU5cBERT9CiZOj1119nwYIFAFx66aWMGzeOYcOGER4ejq+vL8XFxWRlZbFp0yZWrVrFb37zG8466yz+9Kc/ERcX1+JgDh8+zBNPPEH37t0pKytr3YjOAJvVwui4ML5Nr6UwcADhZenGuiElQyIiYhb/UKOQQt4uhjrS8bHZyCurJjO/gvjIQLOjExHpkFpUQOGNN97g/vvv57vvvuPPf/4zl1xyCbGxsQQFBeHt7U1kZCSjR4/mpptu4s033+Szzz6je/fuLF++3KVg/vznP5OcnMzZZ5/dqsGcScl1c7B32BKMDVo3JCIiZqubKuedm0JijNEPKSWz0MyIREQ6tBYlQ8uXL+dnP/sZ3t7eLTppbGwsjz/+OLfcckuLA/noo49Yt24djzzySIuPMVNyXb+hb8v7GBtUUU5ERMwWU1fgIWt9w4d2qZkFJgYkItKxtSgZ2r17d6tO3tIGSfn5+fztb3/jnnvuoWfPnq16rjNtVJ9QbFYLX5fXTQPM3QgO9XMQERET9alLhnI3kNzHaAaeqjtDIiIn1aI1Q1deeSVDhw7lmmuu4fLLLyc4ONitQTz66KP07duXG264oc3nsttbl5DUH9fS431tFob16sbWnBhqbf54VZdhP7wdug9t1fObzdXxdzUav8bf+Lunaev4PfV165Dqm69WFTM2wGi+mn64jOKKGkICWja7Q0TEk7QoGfrd737HRx99xGOPPcYTTzzBhRdeyDXXXMOECRPaHMBnn33Gl19+yZIlS9xS7SYtLe2MHR8bUMMWrOyz9SPBvo2sHz8iP7a6Tc9vtra+fp2dxq/xezJPH3+XUN98de+XhOZvpG/kQPbnlbPhQCHnDe5udnQiIh1Oi5Khu+66iz/84Q+sXr2axYsX8/nnn/PJJ5/Qu3dvrr76aq688kp69erl8pOXl5fz2GOP8atf/Yru3btTUmJ0yq6pqQGgpKQELy8vAgICWnzOxMTEFk/Pa8xut5OWlubS8Rd7HWLZ7k1stgwmgW3E2o7QZ9Qol5+7I2jN+LsSjV/j1/hbP/7646WDqGu+SvZ6kuLGsT+vnNRMJUMiIs1pcZ8hi8XC5MmTmTx5MiUlJSxdupTFixfz3HPPsWDBAiZMmMC1117LBRdc0OJCC4WFheTl5fHKK6/wyiuvnPD42LFjueCCC3j++edbPCCbzdamNzOuHD+ubwQAX5X14VpvsOZugE7+Rqqtr19np/Fr/Bq/546/y4hp1Hx14kP8NzWbFBVREBFpVouToca6devGL3/5S375y1+yc+dOPvjgA5YtW8Zdd91FaGgoa9asadF5oqKieP3110/YvnDhQtavX89LL71EWFhYa0I8I7p38yM2PIANBf3BGzi8HaorwKfld7JERETcKibJ+F64n3FRxnquTVlF1NgdeNtaVDdJRMRjtCoZamzw4MFcccUVVFRUsHjxYoqKilp8rK+vL+PHjz9h+4cffojNZmv2sY4mOT6MxQXllHlHElSTBwc3Q9xEs8MSERFP5R/W0Hw1/th2Qvy9Ka6sYXtuCSP7hJodnYhIh9Lqj4gKCgp47bXXuPzyy/n5z3/ORx99xHnnnceCBQvcGV+HlxwXDlh+ar6ao+arIiJisrrmq9acFJIa+g2pxLaIyPFcSoYcDgdff/01c+bMYcqUKcydO5eamhruvvtuvv76a55//nnOP//8Ngc1d+5cNm7c2ObznAn1zVdXV8QaG7KVDImIiMnqm69mr1cyJCJyCi2aJrd//34++OADPvroI/Ly8vDz8+Oyyy7j6quvJjk5ub1j7NAGRAUR4u/N+qr+4APkbDA7JBER8XT1zVdzUkk6x+gNmJJZgNPpdEsbCxGRrqJFydAll1wCwIgRI5gzZw7Tp08nMDCwXQPrLKxWC0lxYazb2RcnFizFB6DsCASphKmIiJgkchD4doOqEkb55OJltXC4pIrswkr6hKvIj4hIvRZNk/v1r3/Nxx9/zHvvvcfPf/5zJULHSY4Po4wADvrUTZXLSTU3IBER8WxWK0QbVeX8DqUwLDoEgA0HNFVORKSxFiVD999/PwMHDjxh+759+0hNTaWiosLtgXUmRhEFSKnpb2zQuiERETFbn0brhmKNdUMpGUqGREQaa1U1uSVLljB58mSmT5/OL3/5S/bv3w/AnXfeyXvvvefWADuDETEheNssrK2ONzbozpCIiJitvohC1rqGYj8pKqIgItKEy8nQ8uXLue+++xg6dCgPP/wwTqez4bFhw4axfPlytwbYGfh520iMDmGTY4CxIWcDOBzmBiUiIp6tUfPVsXXNV3cdKqH0WI2JQYmIdCwuJ0MLFy7kqquu4l//+hfXXXddk8f69evHnj173BZcZ5IcH84uZww1Fh+oKoaCvWaHJCIinqy++SoQVZxGn3B/HE7YlFVkblwiIh2Iy8nQ3r17mT59erOPhYaGUlRU1NaYOqXkuDBq8WKXVeuGRESkg6hrvkrWOq0bEhFphsvJkL+/P6Wlpc0+dvjwYUJCQtocVGdU39Tux6p4Y0OOkiERETFZ4+ar8UaxHzVfFRH5icvJ0OjRo3nrrbearBWqt3jxYsaNG+eWwDqbiCBf+kUGNlo3pCIKIiJispi6O0M5qST3MZqvbjxQiN1x4jVcRMQTuZwMzZo1i02bNnHNNdfwxhtvYLFY+Pzzz7nttttISUnhtttua484O4Xk+DA2OeuSoUNboeaYuQGJiIhnixpsNF+tqSCBAwT7elFebWfnoRKzIxMR6RBcToYSExN56aWXqKioYO7cuTidTl588UX279/PwoULSUhIaI84O4XkuHCynZEUW0PAUQOH0swOSUREPFmj5qu2nPWMig0FNFVORKSeV2sOmjBhAsuXL+fAgQPk5eURFhZG37593R1bp2P0cbCQWtuf860bjHVD9YtXRUREzNBnHOz7CrJTSI47l9W780jNLGTmxHizIxMRMV2rmq7Wi42NZcyYMUqE6vSNDCQi0IeN9n7GBq0bEhERszUUUWjUfFUV5UREgBYmQ59++qnLJz58+DCpqZ6VDFgsFsbENVo3pPLaIiJitvrmqwX7GBlRi9UCOUWVHCrWulYRkRYlQ4899hgzZszg/fffp6ys7JT7bt26lUcffZSLLrqInTt3uiXIzmRsfBibHXV3hgr3Q0WBuQGJiIhna9R8NejIRob06gZASqauTyIiLVoztHLlSubNm8f//d//8dhjjzF06FCGDh1KREQEPj4+FBcXk5WVxaZNmzh69CgDBw5k3rx5TJo0qb3j73CS4sIpIYgMehNPrjFVbuCFZoclIiKeLGYs5O2CrHUkx13NttwSUjMLuWxEb7MjExExVYuSoeDgYB544AFmzZrF4sWL+eabb1iyZAmVlZUN+/Tp04dJkyZx+eWXM2HChHYLuKMbHt0NXy8rqfZ+xNtyjalySoZERMRMfcbCpjchez1jRt3Mf9ZkqqKciAguVpMLCQnhpptu4qabbgKgtLSUY8eOERoaire3d7sE2Nn4etkYGRPK5qz+XG37TkUURETEfPVFFHJSSb7CmCa3LbeEiupaAnxaVVhWRKRLaFM1ueDgYKKiopQIHScpPoxNjroiCjmp4FSnbxERMVGj5qvRVfvoFeKH3eFkc1ax2ZGJiJiqTcmQNG9sfBg7nbFU4wWVBUYhBREREbM0ar5K9nqS4owS26kqoiAiHk7JUDsYExtGNd5sc8QbG7I1VU5EREzWp26qXNZPyVCK1g2JiIdTMtQOQgN8SOgRxCZHf2OD1g2JiIjZGjdfjQsHYENmIQ6HpnKLiOdSMtROkuLCGyVDar4qIiIma9R8dUi3Kvy9bZQcq2XP0VP3DxQR6cqUDLWT5LgwNjvrkqGDW6C22tyARETEs/mHQWQCAF4HUxnVJxSAlAxNlRMRz+VyMvSXv/yFffv2tUcsXcrY+HAynD0pdAaBvQoObzU7JBER8XT1U+Wy1pEcX79uSEUURMRzuZwMLVmyhOnTp3PTTTfxxRdf4FTZ6Gb1CfcnKtiPzVo3JCIiHUWfscb3JhXldGdIRDyXy8nQ6tWreeihhzh69CizZ8/m/PPPZ+HChRQU6JOlxiwWC2PjG02VUzIkIiJma2i+uoHRMcFYLJCZX8HR0ipz4xIRMYnLyVBAQAC/+MUvWLZsGa+++irDhg3jn//8J+eeey733XcfaWlp7RFnp5QUF87G+jtD2SqiICIiJmtovlpOSMluEroHA7o7JCKeq00FFCZOnMj8+fNZtWoVo0eP5qOPPuLnP/851157LV9++aW7Yuy0kuPC2FKfDOXvhsoiU+MREfEUZWVlPPnkk/zmN79hwoQJDBo0iHnz5rXo2MWLFzNo0KBmv44ePdrOkbezJs1X15EUr+arIuLZ2pQMHTt2jPfff5/bbruNtWvX0r9/f2bNmoXdbmfWrFksWLDAXXF2SkN7d6PSO4xMR3djQ+4GcwMSEfEQRUVFvPfee1RXVzN16tRWnePxxx/n3XffbfIVGhrq3kDN0Kj5arLWDYmIh/NqzUEHDhzgrbfe4sMPP6SsrIzJkyfzxz/+kbPOOguA2bNn8/TTT/Pmm28ya9YstwbcmXjbrIzqE8rmrP7EccRYN9T/fLPDEhHp8qKjo1m/fj0Wi4WCggLef/99l88xcOBAEhMT2yE6k8XUF1FYR9IUIxnamlPCsRo7ft42EwMTETnzXE6Gbr75Zn744Qf8/f256qqr+NWvfkVsbOwJ+5133nksXLjQLUF2ZmPjw9iUOYArbGsgW0UURETOBIvFYnYIHVdMsvG9YB+xvhVEBvmSV1ZFWk4xY+PDzY1NROQMc3maXFZWFvfffz/ffvstDz74YLOJEBifqL3++uttDrCzS4oPZ1NDee0UUClyEZFO4bbbbmPIkCGMGzeO2bNnk56ebnZI7tGo+aolJ6Vhqpyar4qIJ3L5ztBnn33Wov2CgoIYN26cywF1NaNjQ9lOPDVOG97lR6E4C0KbTyBFRMR8kZGR3HbbbYwaNYqgoCDS09NZuHAh1113HYsWLWLw4MEun9Nut7cqlvrjWnv8yViik7HmpeM4sI4xsb9gxbZDpGYUYLfHu/V52qq9xt9ZaPwaf+Pvnqat42/pca1aMyQt183Pm749I9mRH8sIy36jxLaSIRGRDmvy5MlMnjy54eexY8cyZcoULr/8cv75z3/ywgsvuHzOtradcHfbikhnT+KAsp1fEjxoGgDr9h1l48aNHXKKoae37dD4NX5P1t7jdzkZOv/880/6i9JqtRIcHExiYiIzZ86kf//+bQ6wK0iOC2Pz0f6MsO43iigMv8rskERExAUxMTEkJSWxefPmVh2fmJiIzeZ6cQK73U5aWlqrjz+p3j6w5WmCS3bzs0mjeOTbrympdhASM5B+UUHue542arfxdxIav8av8bd+/PXHn47LydC4ceNYt24dR44cYcyYMURGRnL0qPFpUvfu3enVqxcrV67ko48+4o033uialXhclBwfxrfrBvArvjCSIRER6XScTidWa+s6Uthstja9mWnr8SfoMQx8u2GpKsG/aDcjY0JZl1HAxuwSBvYMcd/zuInbx9/JaPwav8bffuN3+bf6Oeecg4+PDytXruT111/n6aef5o033uDzzz/Hx8eHqVOn8tlnnxEfH9/iBnddXXJ8OJucxl0yZ+4msNeaG5CIiLgkKyuLDRs2MHLkSLNDcQ+rFaLHGH/OXseY+n5DKqIgIh7G5WToX//6F3PmzKFXr15Ntvfu3ZtZs2axcOFCgoODufHGG9m0aZO74uzUokP9qQzuS4nTH0ttJRzZbnZIIiJd3jfffMOKFSv46quvANizZw8rVqxgxYoVVFZWAvDAAw8wdOhQcnJyGo678cYbmT9/Pl988QVr1qzhP//5DzfccAMWi4U777zTlLG0i5gTm6+mZBaYGJCIyJnn8jS5zMxMgoKan0/crVu3hgtKdHR0w8VGIKlvJFu29+Mc2zZjqlyvEWaHJCLSpT366KNNkpz6RAhg1apVxMTE4HA4sNvtOBu1PUhISGD58uW88sorVFVVER4ezoQJE7j99tvp27fvGR9Hu+lTlwxlryPpIiMZ2nu0nMLyasICfUwMTETkzHE5GerduzcffvghU6ZMOeGxDz74oOGOUVFRESEhHW/esVmS48LYtG0A57DN6DeUfJPZIYmIdGlffvnlafeZO3cuc+fObbLtgQceaK+QOpZGzVfDKKV/VCB7j5az4UAhFwzpYW5sIiJniMvJ0G9/+1v+9Kc/cf3113PxxRcTGRlJXl4eK1asYPPmzTz22GMArF27luHDh7s94M4qOT6MZxwDAHBmp9LxCpeKiIhHqW++mpcO2etJiuvF3qPlpGQqGRIRz+FyMvTzn/8cp9PJvHnzmnyaFhkZyaOPPsq1114LGJ27fXx0m73e4J7d2O09yPjh6E6oKgXfYHODEhERzxYzri4ZWkdy3E28l5KtIgoi4lFcSobsdjsHDhzgkksu4ec//zn79u2jqKiI0NBQ+vXr16T/UGRkpNuD7cxsVguxsfFkH4gkxpIHuRuh7+TTHygiItJe+oyFTW9C1jqSpt8NwObsIqprHfh4ta6MuIhIZ+LSbzqn08n06dMbOlT379+fpKQk+vfv3yE7Vnc0yXHhbHb0M35QvyERETFbzFjje84G+oX7EhbgTVWtg225xebGJSJyhriUDHl5eREZGdmk6o60XHJ8GJvq1g2RnWJuMCIiIlGDwScYasqxHNlBUn2/oUxNlRMRz+DyPfDp06ezZMmSdgil6xvVJ5Q0jGTInq07QyIiYjKrDWKSjD9nryMpLhyAFK0bEhEP4XIBhcGDB/Ppp58yc+ZMpk2bRlRU1AlT5KZNm9bi8+3YsYNnnnmG9PR0CgoK8PPzo2/fvtxwww3MmDHD1fA6tEBfL2p7jMSeb8FWdhBKcqFbb7PDEhERTxYzDvZ9DdkpJI++CoDUA4U4nU5NgReRLs/lZOjee+8F4PDhw6xbt+6Exy0WCzt27Gjx+UpKSujZsyfTp0+nR48eVFZW8vHHH/PHP/6RnJwcbr/9dldD7NAS+/YiPa8PQywHjHVDSoZERMRM9c1Xs9aReFkI3jYLR0uryCqoJDYiwNzYRETamcvJ0Ouvv+7WAMaPH8/48eObbDvvvPPIzs7mvffe63LJUHJcOBvX9meI9YCxbmjI5WaHJCIinqyh+epe/KqLGB4dwsYDRaRkFigZEpEuz+VkaNy4ce0RxwnCwsLIz88/I891JiXHh/EP5wBu4Ctqs1Jc/wsQERFxp+OarybHxdYlQ4VcNSbG7OhERNpVq5sIlJaWsnr1apYuXUpxcdtLcDocDmpraykoKOCtt97iu+++45ZbbmnzeTuaHt38OBw8zPghdyM47OYGJCIiUl9iO3tdQ0W5DaooJyIeoFU3JhYsWMBLL73EsWPHsFgs/Pe//yUkJIRf//rXnH322dx6660un/ORRx7h3XffBcDb25sHH3yQ66+/3uXz2O2tSy7qj2vt8a4Ij0ukfKcvgbXl2A9vh+5D2/05T+dMjr8j0vg1/sbfPU1bx++pr1uXEjMWNr1lNF8dZ6wN3nW4lOLKGkL8vU0OTkSk/bicDL311lssWLCAG264gUmTJvG73/2u4bHzzjuPzz//vFXJ0G233ca1115LQUEBX375JX/5y1+orKzkt7/9rUvnSUtLc/m53Xl8S3S3VZLm7McEyw6yfvyI/Njqdn/OljoT4+/INH6N35N5+vg9Wn0RhZwNRAXYiIsIIDO/go0HCjl3UHdzYxMRaUetSoZuvPFG/vjHP57waWBcXByZmZmtCqR379707m1UVpsyZQoATz/9NFdeeSXh4eEtPk9iYiI2m83l57fb7aSlpbX6eFf49yrl2y0DmGDdQR/LYfqMGtWuz9cSZ3L8HZHGr/Fr/K0ff/3x0onVN1+tLoWjRvPVzPwKNmQqGRKRrs3lZCgrK4tJkyY1+1hgYCAlJSVtDgpgxIgRvPPOO2RlZbmUDNlstja9mWnr8S0xuGcIL3sNBKA6KxX/DvTm60yMvyPT+DV+jd9zx+/R6puv7vvamCoXN5XFG3JI0bohEeniXC6gEBwcTF5eXrOP5eTkEBER0eagANauXYvVaqVPnz5uOV9HYrVaINooZepbsBOqK0yOSEREPF5M3VS57PUkxxkfQm7KKqLW7jAxKBGR9uXynaGJEyfy8ssvc8EFF+Dr6wsYjVZra2tZtGgR55xzjkvne/jhhwkKCiIxMZHIyEgKCwtZsWIFn376Kb/97W9duivUmfQfMIhD2WH0pBAOboK4s8wOSUREPFmj5qsDZwQR7OdF6bFadhwsJTEmxNzYRETaicvJ0B133ME111zD9OnTmTp1KhaLhTfffJMdO3aQm5vLs88+69L5Ro0axeLFi/nwww8pLS0lICCAwYMH8+STTzJjxgxXw+s0kuPC2OzoT09bCs7sFCxKhkRExEzRScb3gr1YKwsYExvGN+lHSc0sUDIkIl2Wy9Pk4uLiWLRoEf369WPRokU4nU4++ugjwsLCePvttxuKILTU1VdfzVtvvcWPP/7Itm3bWL9+PW+88UaXToQARvYJZQsDAKjcv87kaERExOMFhEOEsZ7VmCpn9BvSuiER6cpa1WdowIAB/Pvf/6a6uprCwkJCQkLw8/Nzd2xdmp+3jZLwEVD8Ds6cVLPDERERMabK5e82mq/GG2tbU5UMiUgX5vKdocZ8fHzo0aOHEqFW6tZ/HA6nhcDKXCg7YnY4IiLi6WLGGt+z1zOqTyg2q4WDxcfILao0Ny4RkXbSqjtD2dnZLF++nNzcXI4dO9bkMYvFwt/+9je3BNfVJfbrw56U3iRYciAnFQZdYnZIIiLiyRo1Xw3wsjC0VzfScopJySzkilB/c2MTEWkHLidDX3/9NbNnz8bhcBAeHo6Pj0+Txy0Wi9uC6+qS48P40jGABGsOxzLW4adkSEREzNS4+eqR7STFhZGWU0xqRgFXjHRtTbCISGfgcjL0zDPPMGbMGJ555hm39RTyVJFBvmQHDoGqb6jYtxZNNhQREVMd13w1Of4SXvshQ0UURKTLcnnNUGZmJrfccosSIXepa74akLcZHGpsJyIiJmvUfDWprqLcjoMllFfVmhiUiEj7cDkZ6t27NxUVFe0Ri0eKGTSGSqcPfvYyyN9jdjgiIuLp6osoZK2jV4g/0aH+OJywKavI1LBERNqDy8nQ7373O1555RUqK1VZxh3G9O3BVmc8ALVZKeYGIyIiEmPMWKBgL5TnN9wdSsnQVDkR6XpcXjOUlpZGfn4+F154IePHjycsLOyEfR566CG3BOcJ+kcF8qY1gbGkU5j+A1FjbjA7JBER8WT1zVfzd0NOCsnxg1i6OZeUzAKzIxMRcTuXk6E333yz4c+ffPLJCY9bLBYlQy6wWCxURI2Co8uM8toiIiJmq2++mrWOMYMnALDpQBF2hxObVVVjRaTrcDkZ2rlzZ3vE4dGC+k+AoxBWmg41x8BbdeVERMREMWNh01uQvY7B5wYT6GOjtKqW9MOlDOnVzezoRETcxuU1Q+J+gwcPJc/ZDS9qcR7aYnY4IiLi6Ro1X/WyOBkdW7duSCW2RaSLaVEytH79esrLy0+7X0FBAf/973/bHJSnGR4TyhbnAAAK0teYHI2IiHi8huarZQ3NVwE2KBkSkS6mRcnQzJkz2bt3b8PPDoeD4cOHs3379ib7ZWVl8fDDD7s3Qg/g62XjcLfhAJTtXWtyNCIi4vGsNogeY/w5a91PFeVUREFEupgWJUNOp/OEn2tra0/YLq1niU4CIDBvk7mBiIiIwE9T5bLXMzo2FKsFsgoqOVJyzNy4RETcSGuGOoieQ84CILI6B8rzTY5GREQ8XsxPyVCwnzeDehqFE7RuSES6EiVDHcTIgfHsdfQCoHSfpsqJiIjJ6puv5u+BigKS4kIBSFUyJCJdiJKhDiIs0Id9voMBOLLje5OjERERj1fffBUgez3JceGA7gyJSNfS4j5D+/btw2azAWC32xu2Hb+PtF5l1EjI/UrNV0VEpGNo1Hw1afQkALblFFNZbcffx2ZycCIibdfiZOj+++8/Ydsf//jHJj87nU4sFnWmbq3A/hMgF6JKtoHTCXotRUTETI2ar8ac70+Pbr4cLqliS3YR4/tFmB2diEibtSgZevzxx9s7DgH6Dx9P1bdedKOEqqN78e0+wOyQRETEk8WMNb7nbMDidJAUF8anaYdIySxUMiQiXUKLkqErr7yyveMQIK57GFstfUlkNzlbV9PvfCVDIiJiou5D6pqvltY1Xw3n07RDKqIgIl2GCih0IBaLhaMhiYCar4qISAfQuPlq9nqS65qvpmYW4nCo16CIdH5KhjoYS4yar4qItFVZWRlPPvkkv/nNb5gwYQKDBg1i3rx5LT4+Pz+f++67j/HjxzNy5Eiuu+461qxZ044Rd2D1zVez1jO0dzf8vK0UV9awL6/M3LhERNxAyVAH02PoOQDEVO3BUVNlcjQiIp1TUVER7733HtXV1UydOtWlY6urq7nxxhtZs2YNDz74IM8//zwRERHcfPPNrFu3rp0i7sAamq+uw9tmZWRMKAApGZoqJyKdn5KhDmbgoESKnEH4UkPOrvVmhyMi0ilFR0ezfv163nzzTe6++26Xjn3//fdJT0/n2Wef5YorruDss8/mueeeIz4+nqeeeqqdIu7Ajmu+mhxvTJVTvyER6QqUDHUw3l42MvyM5quHt6v5qohIa1gslla3evjiiy/o27cvo0ePbtjm5eXFFVdcwZYtWzh8+LC7wuwcTtJ8dYOSIRHpAlxKho4dO8b111/PDz/80F7xCFARNQoAp5qvioiccbt372bQoEEnbK/ftnv37jMdkvnqS2xnrWN0bCgA+/LKyS/TdG4R6dxa3HQVwM/Pj/T0dGw2dZ1uT0H9x0P2y/Qo2Wp2KCIiHqeoqIiQkJATttdvKyoqcvmcdru9VbHUH9fa493FEp2MdfPbOLPWEXyujYHdg9h9pIz1+/O5cGiPdnvejjJ+s2j8Gn/j756mreNv6XEuJUMAo0ePZsuWLYwfP97loKRl+o6cDN9ArDOHvKNHiIzqbnZIIiIe5VRT7Foz/S4tLa0t4bT5+LbyLw9mKODIWs+mjanEBdrZDSxPSSeq+mC7P7/Z4zebxq/xe7L2Hr/LydC9997L7bffTlRUFBdeeCGBgYHtEZdHCw7vSa61J70dh9i/5VsiL7jG7JBERDxGaGhos3d/iouLAZq9a3Q6iYmJrZpVYbfbSUtLa/XxbuNIxLnmLmzVZYzq7ceFzh58sX8r2ce8GTVqVLs9bYcZv0k0fo1f42/9+OuPPx2Xk6HrrruOmpoa7r//fu6//378/PyafEpmsVhITdVal7Y62m04vYsOGc1XlQyJiJwxCQkJpKenn7C9ftvAgQNdPqfNZmvTm5m2Ht9mNhtEJ8H+b7DlpjCu73UApOWUUOsEX6/2jc308ZtM49f4Nf72G7/LydBFF13U6go90nLWmGQo+oLAvM1mhyIi4lGmTp3Ko48+yubNmxk5ciQAtbW1LF26lJEjR9KjR/utkenQ+oyD/d9A1nrik24iItCH/PJqtuYUk1RXYU5EpLNxORmaO3due8Qhx+kx9GzYCv2qdlBZVYu/r8t/VSIiHu2bb76hsrKS8vJyAPbs2cOKFSsAmDJlCv7+/jzwwAMsWbKElStXEh0dDcA111zD22+/zZ133sk999xDREQEb7/9Nvv37+fVV181bTyma9R81WKxkBQXxufbD5OSUahkSEQ6Lb3D7qCiBiRTi41ISwmpO7eTNHKE2SGJiHQqjz76KDk5OQ0/r1ixoiEZWrVqFTExMTgcDux2O06ns2E/Hx8fXnvtNZ566in++te/UllZyZAhQ3jppZcYN27cGR9Hh3Fc89X6ZChV/YZEpBNrdTKUnp7O3r17qao6scfAz372s7bEJIDFJ4Ac3/7EVaVzdOd3oGRIRMQlX3755Wn3mTt3brMzHiIjI3niiSfaI6zOKyAcIgYYyVD2epLjjd5DqZmFOJ1OTaEXkU7J5WSosrKS3//+9/z4449YLJaGT9Ma/xJUMuQelVEjITsdZ7YKUoiISAcQM64hGRo+eSo+Niv55dVk5FfQN1LVZUWk87G6esDzzz9PTk4Ob775Jk6nk/nz5/Pqq69y4YUXEhcXx4cfftgecXqkoP4TAOheuhWHw3mavUVERNpZH+NuEFnr8PWykRhjlBnXVDkR6axcToZWrVrFLbfcwujRowHo1asXEydO5LnnnmPYsGG8/fbbbg/SU/Uceg4AQ537SD+kC42IiJisvohCTio47CTHhQGQmllgYlAiIq3ncjKUk5NDv379sNlsWCwWKisrGx67/PLLWbVqlVsD9GReUQmUWwLxt1SzZ+t6s8MRERFP130I+ARDdRkc2UFSXTKUkqEP7ESkc3I5GQoODqaiogKAiIgIMjMzGx6rra1teEzcwGolr9swACr2/mhyMCIi4vGsNogeY/w5e11DMrT7SBlFFdUmBiYi0jouJ0ODBg0iIyMDgPHjx/Piiy+SkpLCli1bWLBgAYMHD3Z3jB7NGpMEgL+ar4qISEcQU79uaD0RQb4NhRM2HigyLyYRkVZyORm6+uqrGxrY/eEPf6CyspJf/epXXHfddeTm5nLfffe5PUhPFjnkbAASanZxqPiYydGIiIjH6/NT81Xgp6lyWjckIp2Qy6W1L7300oY/9+nTh88++6yhzPbo0aMJDQ11Z3wezz/OuOgMtOTw2Z4sLkkaaHJEIiLi0ervDNU1X02OC+O/qdlaNyQinVKrm67WCwgI4Pzzz3dHLNKc4B4U+fQgtPowh3euASVDIiJipibNV1NIipsIwObsImrsDrxtLk86ERExjX5jdQIVUUYZc2eOmq+KiEgHEPPTVLn+UUGE+HtzrMbB9twSc+MSEXFRi+4MDR48GIvF0qITWiwWtm/f3qagpKmgfuMhZwW9S7dRVlVLkG+bb+iJiIi0Xp+xsPltyFqH1WohKS6ML3ceISWzkJF9Qs2OTkSkxVr0rnrWrFktTobE/boNmACrYaR1D5sOFHHOwEizQxIREU92XPPV+mQoNbOA357T19zYRERc0KJkaM6cOe0WwJo1a1i6dCkbN27k0KFDBAcHM3z4cGbNmsXw4cPb7Xk7lV4jsWOlp6WQj9N3cs7Ac8yOSEREPFn3IeAT1Kj5ai8AUjMLcTqd+gBVRDoN09cMLVq0iJycHGbOnMnChQt58MEHKSgo4LrrrmPNmjVmh9cx+ARSHGwUTijft9bkYERExOMd13x1ZEwoXlYLh0uqyC6sNDc2EREXuLz4ZMmSJafd52c/+1mLz/fnP/+ZiIiIJtsmTZrEtGnTePHFF5k4caKLEXZN1pgk2LGLoLzN1NodeKlaj4iImClmHOz/FrLW45/8G4ZFh7A5q4jUzEL6hAeYHZ2ISIu4nAydrKlq41viriRDxydCAIGBgfTv35+DBw+6Gl6X1W3ABNjxNsMcu9l5qJTh0SFmhyQiIp6sofnqegCSYsMakqGfjY42MTARkZZzORlatWrVCdsKCwtZtWoVn376Kc8880ybgyotLWX79u1MmDChzefqKqwxyQAkWvfxwf6jSoZERMRcDc1XdxvNV+PDeOX7/aRkqvmqiHQeLidD0dEnftoTHR3N8OHDqa2t5fXXX2fu3LltCurRRx+lsrKS2267zeVj7XZ7q56z/rjWHt/uwgditwUQZK8gK30T9onurdbT4cffzjR+jb/xd0/T1vF76uvm8Y5rvpocNxmAXYdKKD1WQ7Cft8kBioicnlsb1kycOJE//OEPbTrHs88+y8cff8zDDz/cqmpyaWlpbXr+th7fnnoHDKBX6RbsB9axcWN8u1Tr6cjjPxM0fo3fk3n6+KUVYsbVJUPr6J4wjT7h/mQVVLLxQBGTE6LMjk5E5LTcmgzl5ORgtbZ+Yf/8+fN54YUXuOuuu/jlL3/ZqnMkJiZis9lcPs5ut5OWltbq488E+5EpsHYLA2t30z1+MNFh/u47dycYf3vS+DV+jb/1468/XjxQo+arYKwbyiqoJDWzUMmQiHQKLidD69evP2FbdXU1u3btalP1t/nz5zNv3jzmzJnTqulx9Ww2W5vezLT1+PZkixsHa2GUdS8bsoqJjQxy/3N04PGfCRq/xq/xe+74pRXq1w3VN1+ND2fJplxStW5IRDoJl5OhX/3qVydMz3I6nQCcddZZPPzwwy4HsWDBAubNm8fvf/97Zs+e7fLxHiM6CYAESxbv78tRtR4RETFX96FNmq8mx8UCsPFAodpAiEin4HIy9Prrr5+wzdfXl+joaCIjI10O4JVXXuG5555j0qRJnHvuuWzatKnJ46NGjXL5nF1WSDTH/Lrjd+wIJftTgXFmRyQiIp6svvnq/m8hez0JY4YR7OtFaVWt2kCISKfgcjI0bpx734B/9dVXAKxevZrVq1ef8PiuXbvc+nydnSUmCfYsJ7wojeLKGkL8Va1HRERMVN98NXs9tuSbGBUbyurdeWw4UKhkSEQ6PJeTof3793P06NFmk6J169bRvXt34uPjW3y+N954w9UQPJpv3DjYs5yRlj1sPFDIuYO6mx2SiIh4svrmq3VFFJLjwlm9O4+UjEJmTow3Ly4RkRZweTLv3Llzm228CsZdnrb2GJLTqFs3NMq6l5QMLVAVERGTNdN8FVARBRHpFFxOhtLS0hg7dmyzj40dO5atW7e2OSg5hd6jcWIhxpLH7n17zY5GREQ8XX3zVYDsFEb2CcVqgZyiSg4WV5obm4jIabicDJWWlhIQENDsY35+fhQXF7c5KDkFv25UhycAYM3dQI3dYXJAIiLi8ervDmWvI8jXiyG9ugG6OyQiHZ/LyVCPHj3YsmVLs49t2bKFqCg1WWtvPrHJAAx17mZbbonJ0YiIiMerT4Ya1g0ZU+U0nVtEOjqXk6GpU6eycOFCfvzxxybb165dy0svvcSFF17otuCkeZYYIxkaZdlDSkaBydGIiIjHqy+ikLMBHHbGxGndkIh0Di5Xk5s1axbfffcdN910E/Hx8fTs2ZNDhw6RkZHBgAEDmDNnTnvEKY3VFVEYad3H2/vzuXlSP5MDEhERj9bQfLUUju4kOd64Lm0/WEJFdS0BPi6/3RAROSNcvjMUHBzMu+++y+zZswkJCSE3N5eQkBDmzJnDO++8Q1BQUHvEKY11H4rd5kc3SwVHMrfhdDrNjkhERDxZffNVgKx1RIf60yvED7vDyaasIlNDExE5lVZ9VBMYGMisWbOYNWuWu+ORlrB5Y+k1ErLXEle5gwMFFcRFBJodlYiIeLJGzVdJvomkuDCWbTlIakYhZ/WPNDs6EZFmuXxnqF5paSmrV69m6dKlqiBnAmsfY7HqKOte1muBqoiImO245qtJ9euGDugaJSIdV6uSoQULFjBp0iRuueUW7r33XrKzswH49a9/zcKFC90aoJxEw7qhvaRmqoiCiIiYLNoo7tPQfDUuHIANmYU4HJrOLSIdk8vJ0FtvvcWCBQu45pprePHFF5usVznvvPP4+uuv3RmfnExdMjTEksmm/YdNDkZERDxeYASE9zf+nJ3CkF7B+HvbKDlWy+4jZebGJiJyEq1Khm688UYeeughzjnnnCaPxcXFkZmZ6bbg5BRCY3EEROFjseOXt43C8mqzIxIREU9XP1Uuez1eNiuj+oQCkKIZDCLSQbmcDGVlZTFp0qRmHwsMDKSkRE1AzwiLBWuMcXdolHWPejmIiIj56puvZtc1X41XvyER6dhaVVo7Ly+v2cdycnKIiIhoc1DSQnXzs0dZ95KiC42IiJit4c5QKjjsPxVR0DVKRDool5OhiRMn8vLLL1NRUdGwzWKxUFtby6JFi06YOiftqK6nw0iLiiiIiEgHcFzz1dGxYVgskJlfwdHSKrOjExE5gcvJ0B133EFubi7Tp09n7ty5WCwW3nzzTa699loyMzO5/fbb2yNOaU5dMhRvPcyB7Cyqau0mByQiIh7tuOarIf7eJHQPBnR3SEQ6JpeTobi4OBYtWkS/fv1YtGgRTqeTjz76iLCwMN5++2169+7dHnFKc/zDcEYMAGCIYw9bc9TvSURETNawbmg9AEkN64Y0g0FEOh6v1hw0YMAA/v3vf1NdXU1hYSEhISH4+fm5OzZpAUt0MuTvYZR1D+szCkmq6+sgIuLpysvLefbZZ1m+fDnFxcX069ePW2+9lenTp5/yuMWLF3P//fc3+9h3331HVFRUe4TbdcQ0bb6aHBfG22sPaG2riHRIrUqG6vn4+NCjRw93xSKtEZMMW95hpGUvb2UUwhSzAxIR6RjmzJlDWloa99xzD/Hx8Sxbtoy7774bh8PB5ZdfftrjH3/8cfr169dkW2hoaDtF24XU3xmqa75aX0Rha04xx2rs+HnbTAxORKSpFiVDS5YscemkP/vZz1oRirRKfREF617uzsjH6XRisVhMDkpExFzffPMN33//Pf/4xz+47LLLAJgwYQK5ubk8+eSTXHrppdhsp35TPnDgQBITE89EuF1LffPVgr2Qk0rsgKlEBvmSV1ZFWk4xY+M1g0FEOo4WJUP33Xdfi09osViUDJ1JPRJx2nwIt5fR7Vg2e4+WM6B7kNlRiYiYauXKlQQEBHDxxRc32X7VVVdxzz33sHnzZsaMGWNSdB6gzzgjGcpah2XghSTHhbFi2yFSMgqVDIlIh9KiZGjVqlXtHYe0lpcPlp4jICelocS2kiER8XS7d++mf//+eHk1vcwNGjSo4fHTJUO33XYbBQUFBAcHM27cOO644w4SEhLaLeYuJWYsbF7UpPnqim2H6ooo9Dc3NhGRRlqUDEVHR7d3HNIWMcmQk8LouiIK142NNTsiERFTFRUVERMTc8L2kJCQhsdPJjIykttuu41Ro0YRFBREeno6Cxcu5LrrrmPRokUMHjzY5Xjs9ta1Pqg/rrXHm6Z3MjbAmZ2Co6aaUTHG656aWUhtbW2Lp3N32vG7icav8Tf+7mnaOv6WHtfqAgplZWVs2rSJoqIiwsLCGDlyJEFBuiNhiugkwFg39Lqq9YiIAJzyDfepHps8eTKTJ09u+Hns2LFMmTKFyy+/nH/+85+88MILLseSlpbm8jHuPP6Mc9oZZfPDVl3Gzu8+ojaoLz5WKKyo4dPvUokOdu3tR6cbv5tp/Bq/J2vv8bcqGfr3v//N/PnzOXbsWMOCfT8/P+644w5uuukmd8cop1OXDA2zZJKdV0xeWRWRQb4mByUiYp7Q0NBm7/4UFxv92OrvELVUTEwMSUlJbN68uVXxJCYmnrZgQ3PsdjtpaWmtPt5M1q1jIWM1Q4JKcI4ZzcjUtazPKKTCvyejRp141645nXn87qDxa/waf+vHX3/86bicDC1ZsoSnnnqKyZMnc+WVV9K9e3eOHDnCkiVLePLJJwkLC1MBhTMtvB/4h+FbWchgywFSMgq5eHhPs6MSETFNQkICy5Yto7a2tsm6ofT0dMCoFOcqp9OJ1epyr3IAbDZbm97MtPV4U/QZBxmrseZsgLG/JSkunPUZhWzIKuL68XEunapTjt+NNH6NX+Nvv/G7/Fv9tdde47LLLmPhwoVccsklJCUlcckll/Diiy8yffp0/vOf/7RHnHIqFkvD3aFR1j3q8i0iHm/q1KlUVFTw+eefN9n+4Ycf0r17d0aOHOnS+bKystiwYYPLx3m0+uar2T81XwVj3ZCISEfh8p2hffv2cffddzf72BVXXMHs2bPbHJS0QnQy7PmCUda9vJGhC42IeLYpU6Zw9tln88gjj1BWVkZsbCyffPIJq1ev5qmnnmr4lPGBBx5gyZIlrFy5sqFY0I033khycjKDBw8mMDCQ9PR0Xn75ZSwWC3feeaeZw+pc6puv5qU3ab6692g5heXVhAX6mBiciIjB5WTIz8+vYc718YqLi/Hz82tzUNIK9XeGLHu4L1ddvkVE5s2bxzPPPMNzzz1HUVER/fr14+mnn2b69OkN+zgcDux2O06ns2FbQkICy5cv55VXXqGqqorw8HAmTJjA7bffTt++fc0YSud0XPPVsIEX0j8qkL1Hy0nNLGTq0B5mRygi4noylJSUxPz58xk3bhw9evz0i+zo0aMsWLCA5ORktwYoLVSXDPW3HsS/upTNWUWM7xdhclAiIuYJDAzkoYce4qGHHjrpPnPnzmXu3LlNtj3wwAPtHZrnaNR8lYEXkhQXxt6j5aQoGRKRDsLlZOjuu+/m+uuvZ9q0aUycOJGoqCiOHj3Kjz/+iJeXF/Pnz2+POOV0AiMgLB4KMxhh3U9KZqGSIRERMdfxzVfjwnkvJZsNWjckIh2Ey8nQwIED+e9//8u8efNYu3YtRUVFhIaGcsEFFzB79mxNITBTdDIUZjDKsoeUDBVREBERk9WvG8pOBYedpHhj3dDm7CKqax34eLWuOp+IiLu0qs9Q3759efrpp90di7RVdBJs/W9D81WHw4nV2rIu3yIiIm7XfSh4B0J1KRzdRb/uQwgL8KawooatucWMiQ0zO0IR8XD6SKYriTHWa4227qXkWA27j5SZHJCIiHg0mxdEjzH+nL0Oi8XSUFVOU+VEpCNo1Z2h7du38/HHH5Obm0tVVVWTxywWCy+88IJbghMX9RwBVi8iHcVEk0dKZgGDegabHZWIiHiyuuarZK2HpBtJigvnix1HSMko5OZJZgcnIp7O5WRoyZIl3H///VitVsLDw/H29m7yuMWiaVmm8faDHsPh4CZGWfeSkjGKX7jY5VtERMStjm++WrduKCWzEKfTqfcNImIql5OhF154gSlTpvDEE08QEhLSHjFJW8Qkw8FNjLTu5Y1MFVEQERGTHdd8NTE6BG+bhbyyKg4UVBAXEWhufCLi0VxeM3TkyBFmzpypRKijqus3NNq6h6yCSg6XHDM5IBER8Wj1zVcBclLx87YxPNp4D5GqdUMiYjKXk6EhQ4Zw+PDh9ohF3CHaKKKQaM3Ai1pSMnShERERk9XfHcqq7zf001Q5EREzuZwM/fGPf2ThwoXs3LmzPeKRtooYAL4h+FFFgiWbFE2VExERs/Wp7ze0HoCkuHAAUvWBnYiYzOU1Q6NGjWLatGlceeWVREVFnTBdzmKxsHTpUrcFKC6yWiF6NOz7uq6IwkizIxIREU9XX0QhJxUcjoby2ulHSimurCHE3/sUB4uItB+X7wwtXLiQF198kbCwMHr37k1oaGiTL60l6gDqpsqNtOxl+8ESyqtqTQ5IREQ8Wn3z1aoSOLqTqGBf4iICcDph4wHdHRIR87h8Z+j111/n6quv5rHHHsNms7VHTNJWdUUUxnrvxV7pZFNWEWcPiDQ5KBER8Vj1zVczVhsltnsMJSkujMz8ClIzCzl3UHezIxQRD+XynaHy8nIuu+wyJUIdWV0yFO/MJpBKFVEQERHz9ambKpdVv26oroiCrlEiYiKXk6ExY8awd+/e9ohF3CW4B4T0wYqTEdZ9KqIgIiLmO775al0RhU1ZRdTaHWZFJSIezuVk6MEHH+Sdd97hiy++oLq6uj1iEneouzs0yrKXjQeKsDucJgckIiIeLcZYz1rffHVg9yC6+XlRWWNnx8FSc2MTEY/l8pqhq6++mtraWubMmYPFYsHPz6/J4xaLhdTUVLcFKK0UnQTbl5DktY8XqmrZeaiEYb1V3EJEREwSGAnh/aBgH+RswDpwKmPiwvh611FSMgtIjNE1SkTOPJeToYsuugiLxdIesYg71X0CN8ZrL1QZc7KVDImIiKlixhnJUPY6GDiVpNj6ZKiQm87ua3Z0IuKBXEqG7HY7v/vd7wgPD3dbCe2ysjKef/55du7cyfbt2yksLGT27NnMmTPHLef3WL1GgsVGuD2fHhSQklnIr8+KNzsqERHxZH3GwpZ3IMtYN5QUbxRR2JCpIgoiYg6X1gw5nU6mT5/Opk2b3BZAUVER7733HtXV1UydOtVt5/V4PoFGXwdglHUPqRkqoiAiIiY7rvnqqD6h2KwWDhYfI6eo0tzYRMQjuZQMeXl5ERkZidPpvsX40dHRrF+/njfffJO7777bbecVIMYoojDato9cXWhERMRsxzVfDfDxYmivbgCk6EM7ETGBy9Xkpk+fzpIlS9wWgMVi0Rqk9lJXUe5sv/2ALjQiImKy+uar0FBiu77fkKbKiYgZXC6gMHjwYD799FNmzpzJtGnTiIqKOiGZmTZtmtsCdJXdbm/Tca09vkPqNRobkGDfgxUH6/cXcFliz2Z37ZLjd4HGr/E3/u5p2jp+T33dpJVixkLGaqP5atKNJMeH8doPGaQoGRIRE7icDN17770AHD58mHXr1p3wuMViYceOHW2PrJXS0tJMPb5DcdoZZfPH117JAEsO3+30YVPsqXtDdanxt4LGr/F7Mk8fv5whfeqbr64HfroztONgCWVVtQT5uvzWRESk1Vz+jfP666+3Rxxuk5iYiM1mc/k4u91OWlpaq4/vqKxpSZD5HaOse3i/pA/9Bw8j2M/7hP266vhbSuPX+DX+1o+//niRFokZa3zP2wWVhfQKCSM61J+coko2HSjinIGR5sYnIh7F5WRo3Lhx7RGH29hstja9mWnr8R1OjJEMneOfyXtlsDmnlCkJUSfdvcuN30Uav8av8Xvu+OUMadx8NTvV6DcUF0ZOUSWpmYVKhkTkjHK5gEK90tJSVq9ezdKlSykuLnZnTOJO0Ubz1STbPgCV2BYREfPVl9iuK6KQXNdvKCVT1ygRObNalQwtWLCASZMmccstt3DvvfeSnZ0NwK9//WsWLlzo1gCljeoqyvWq3o8/x1ifoQWqIiJisj51U+Xqmq+OiTWSoY0HirA73Ne+Q0TkdFxOht566y0WLFjANddcw4svvtik59B5553H119/7XIQ33zzDStWrOCrr74CYM+ePaxYsYIVK1ZQWaneOG0SEg3BvbA67Qy3ZLApq4gau8PsqERExJMd13x1cM9gAn1slFXVkn641NzYRMSjuLxm6K233uLGG2/kj3/84wnlVOPi4sjMzHQ5iEcffZScnJyGn+sTIYBVq1YRExPj8jmlkegk2LmMCb4ZrD82mO25JYzsE2p2VCIi4qmOa77q1WMoo2PD+G5PHimZhQypa8QqItLeXE6GsrKymDRpUrOPBQYGUlJS4nIQX375pcvHiAvqkqHJARnMOwYpmYVKhkRExDz1zVczVhsltnsMJSnOSIZSMwr41YQ4syMUEQ/h8jS54OBg8vLymn0sJyeHiIiINgclbhZjFFEYZN8NQKoWqIqIiNnqS2zXFVGo7zek5qsicia5nAxNnDiRl19+mYqKioZtFouF2tpaFi1axDnnnOPWAMUNeo0CLHSrOkgkxazPKGyy1ktEROSMq2++mmU0Xx0dG4rVAtmFlRwuOWZiYCLiSVxOhu644w5yc3OZPn06c+fOxWKx8Oabb3LttdeSmZnJ7bff3h5xSlv4dYOowQAkee3haGkVWQUqTCEiIiY6rvlqsJ83g3oaa4VSdXdIRM4Ql5OhuLg4Fi1aRL9+/Vi0aBFOp5OPPvqIsLAw3n77bXr37t0ecUpb1ZXYntrNKIO+Xv2GRETETPXNV8FovgokxYUCkKI2ECJyhrhcQAFgwIAB/Pvf/6a6uprCwkJCQkLw8/Nzd2ziTjFJsOlNkr2M5qspmYVcnaQqfSIiYqKYcVCwz1g3NHAqyXHhvPnjAa1tFZEzxuU7Q/fffz9ZWVkA+Pj40KNHj4ZEKCcnh/vvv9+9EYp7RBtFFGIqd2LBoQuNiIiY77jmq/VFFLblllBZbT/ZUSIibuNyMvThhx9SWNj87evCwkKWLFnS1pikPXQfCl7+eNeU0s9ykPTDZRRVVJsdlYiIeLL6dUN1zVdjwvzp0c2XWoeTzdlFpoYmIp7B5WToVIqLi/Hx8XHnKcVdbF7QexTw07qhDQc0J1tEREzUfdhPzVfzdmGxWBruDqmIgoicCS1aM7R+/XrWrl3b8PP777/Pt99+22SfqqoqVq1aRf/+/d0bobhPdBIcWMOUwExeLB7P+oxCzh/cw+yoRETEUzVuvpq1DroPISkunE/TDtUlQ33NjlBEurgWJUNr165l/vz5gNFT6P333292v969e/OnP/3JfdGJe9VVlBtsTwcgVdV6RETEbDFjjWQoex0k/ZrkRneGHA71xBOR9tWiZOjmm2/mF7/4BU6nk7POOot///vfDB06tMk+Pj4+BAYGtkuQ4iZ1yVBYaTq+VLM5u4iqWju+XjaTAxMREY91XPPVob274edtpbiyhr155SYGJiKeoEVrhvz8/AgLCyM8PJxVq1YxduxYwsLCmnwpEeoEQmMhMAqLo5aJATlU1TrYmlNidlQiIu2ivLyc//u//+Occ84hMTGRGTNm8Mknn7To2Pz8fO677z7Gjx/PyJEjue6661izZk07R+yhjmu+6m2zMjImFNC6IRFpfy4XUIiOjlaRhM7KYmm4O3RxWA6ASmyLSJc1Z84clixZwuzZs3nppZdITEzk7rvv5uOPPz7lcdXV1dx4442sWbOGBx98kOeff56IiAhuvvlm1q1bd4ai9yDNNF9Njjemym04UGRSUCLiKVxuulpTU8NLL73EsmXLyM3NpaqqqsnjFouF7du3uy1AcbPoZEhfUdd89RzWZxRy62SzgxIRca9vvvmG77//nn/84x9cdtllAEyYMIHc3FyefPJJLr30Umy25qcIv//++6Snp/POO+8wevRoAMaPH8+MGTN46qmnTrpuVtogZuwJzVdhL6mZhdzQv5vZ0YlIF+ZyMvT000/z2muvMXnyZKZOnaq7RJ1NjHFnKKZiBwAbMgtxOrVAVUS6lpUrVxIQEMDFF1/cZPtVV13FPffcw+bNmxkzZkyzx37xxRf07du3IREC8PLy4oorruDpp5/m8OHD9OihSpxuFTMWtrwL2ca6odGxoQBk5FdQfEzT8EWk/bicDC1fvpxZs2Yxe/bs9ohH2ltv4+LvV5pJT68yDpUHsT+vnLhwf5MDExFxn927d9O/f3+8vJpe5gYNGtTw+MmSod27d5OUlHTC9sbHKhlys/oiCtlG89XQAB8Gdg9i95EyduXXMMXc6ESkC3M5GSouLiY5Obk9YpEzwT8UIgZC/m6uiDrMwoNBpGQUKhkSkS6lqKiImJiYE7aHhIQ0PH6qY+v3c/XYk7Hb7S4f0/i41h7faUQOxuodiKWqGPvh7dB9CGNiQ9l9pIwdedVdf/wn4TF//yeh8Wv8jb+39vjTcTkZGjt2LDt37mTChAkuByUdRHQS5O9mckAmC+lPSmYBV4/pbXZUIiJuZbFYWvVYW49tTlpamsvHuPP4ziCh20CC8zeRtWYx+XHT6WmtBOCT3RX0WrKWaf0DTI7QPJ7w938qGr/G355cToYeeughbr/9dnr37s25556rNUOdUUwybHmHIY5dwPmkqPmqiHQxoaGhzd7BKS4uBmj2zo87jj2ZxMTEkxZsOBW73U5aWlqrj+9MLAXnwfebiLUeos+oUQxLdLC7YjOfbj3MixtKKPMK4eHLhuBtc7kQbqflSX//zdH4Nf62jL/++NNxORmaMWMGtbW13HnnnVgsFvz8/Jo8brFYSE1NdfW0ciZFG/Pkwwq3Ak725ZWTX15tbkwiIm6UkJDAsmXLqK2tbbJuKD09HYCBAwee8tj6/RprybEnY7PZ2vRmpq3Hdwqx4+F7sGanQN14n7t+FKHvfM+ibWW8tS6LvXnlPP+LJMIDPeuDWI/4+z8FjV/jb8/xu5wMXXTRRa2aIiAdSI9EsPliPVbIuZGlfJ3XjQ2ZhUSZHZeIiJtMnTqV9957j88//5xLL720YfuHH35I9+7dGTly5CmPffTRR9m8eXPDfrW1tSxdupSRI0eqeEJ7ia5bj1zXfBX/MCwWC1cPCWLKqATufm8zP+4r4Ir53/Hyr5MZ3FMlt0W6mqKKarZkF5OWU8y23GLifCoYNap9n9PlZGju3LntEYecSV4+0GsEZK/n4rBcvs7rRkpmIZf0MjswERH3mDJlCmeffTaPPPIIZWVlxMbG8sknn7B69Wqeeuqphk8ZH3jgAZYsWcLKlSuJjo4G4JprruHtt9/mzjvv5J577iEiIoK3336b/fv38+qrr5o5rK4tKArC+kLhfshJhQFTGx6aOqQ7H846m5v/k8KBggquev4Hnv75KC4e3tPEgEWkLUqP1bA1p4Qt2UVsySkmLbuYAwUVTfaJDfHif9s5DpeTIekiopMge31d89XBpB4o4pJefqc9TESks5g3bx7PPPMMzz33HEVFRfTr14+nn36a6dOnN+zjcDiw2+1N+q35+Pjw2muv8dRTT/HXv/6VyspKhgwZwksvvcS4cePMGIrn6DPOSIay1jdJhgASegTz0ayzmfX2Bn7Ym89tb6Zy19QE5pw/AKtVM1ZEOrKK6lq255awJbu4IfnZd7S82X37RgaSGB3C8N7BxFkL2j22FiVD27Ztc+mkw4YNa1UwcgbVTUfoU7kDuJStOcVU2X3NjUlExI0CAwN56KGHeOihh066z9y5c5ud8RAZGckTTzzRnuFJcxqar65r9uGwQB9e/804/vrJDl77IYNnvkhn1+ES/n7tSAJ89PmuSEdwrMbOzkOlpGUX1SU/xew+UorDeeK+MWH+jIgJITE6lBExIQzvHUJIgDdgFEDYtKm43eNt0W+Oq6++ukXrhJxOJxaLhR07drQ5MGlndUUUfI5upVeQlYNlDvYW1DDe5LBERMSDHdd8tTleNiuPXDGMwT2DefijrXyadoj9eRW8NDOJmDDPLb8tYoYau4Ndh0pJyyluuOuz61Aptc1kPj26+TIiJpQR0SEkxoSQGB1CRJD5H8S3KBl6/PHH2zsOOdPC+xmLUysLmdGnkH/tDmFnvirKiYiIiboPA+9AqCo2CilEJJx01+vHxdK/exC/fzOVHQdLmDH/e174ZRLj+oafwYBFPIfd4WTPkTK2ZBc1JD/bD5ZQXXviBxcRgT4kxoQ0SX56dOuYyzFalAxdeeWV7R2HnGkWi7FuaM8XTA7I5F+MYGdejdlRiYiIJ7N5GTMXMlZD1rpTJkMAY+PD+Wj2Odz6egrbcku44aUfeWzGcG4YH3uGAhbpmhwOJxn55Q3T3NJyitiaU0Jljf2Efbv5eTEiJpTEmBBGxoSQGBNK7xC/TlN9WhNsPVl0Muz5gsH2dGAEW49Us3zrIS4bGW12ZCIi4qliko1kKHsdjPrlaXePDvXnv7edxf/+dzOfbDnIAx+mseNgCX+6fKhHNWgVaS2n00l2YeVPxQ2yi9maU0xpVe0J+wb62BgeHWKs84kJZWRMCLHhAZ0m8WmOkiFPFp0EQFhhGmNib2bDgSJmL9rEsi2HeGzGMLp30NuZIiLShcXUrxtKafEh/j425v/PaIb26sZTn+3ijR8z2X2k1CMbtIqcitPp5FDJsSaJT1pOMUUVJ84O8vO2Mqy3sbZnRN2Ut36RgV2ueqOSIU9WlwxZ8nfz5h8S+NNH21iyq4IV2w7xw948Hr5sKNckxXTqbF9ERDqZmLHG96M74VjLK0lZLBZmnTeAgd2DuOvdTfy4r4AZC77jpZlq0Cqe62hpFWk5P1V125JdTF5Z1Qn7+disDOkVbKzziTamvA3sHoSXB9xdVTLkyQIjGhrc+R7dzP8MD+OmqaO4b/FW0nKK+X//3cLSzbn87cpE+oSrQk9Xdaj4GE9/vovNGfn02bqBqGA/ooJ8iAr2JTLIl8j670E+BPl6KTkWkfbVpPlqChDh0uHThvVk8e1nc8vrPzVofea6UVw0TA1apWsrLK8mLae4rriBkQAdLD52wn42q4WEHsF163uM5CehZxC+XjYTojafkiFPF50Ehfux5KRC8FQG9wzmw9vP4t/f7efplems3p3HRc9+yx8vGsTMifFd7taoJ6uxO3j1+/3884vdlFcbCyJ35R855TG+XtafkqQgX6KCfRr+bPxsJE2Rwb4EK3ESkdaqa75qyV4PIRe7fPignk0btP7ujVTuvtBo0KrfS9IVlB6rMRKf7GK21CU/WQWVJ+xnscCAqKC64gbGHZ+hvbrh5+2ZiU9zlAx5uphk2PpfLDkbYLDR7dvLZuV3U/ozbVhP7v1gC+v2F/DIx9v5eMtBnrh6BAO6B5kctLTVD3vy+NPSbew5UgbAqD4hnNsbwntEk19eQ15ZVd1XtfG9tIryajtVtQ6yCyvJLjzxF+7xfLysRNXdUWouWWrYFuRLN38lTiLSSF3z1dYmQ2A0aP3Pb8bxf3UNWp9emc7OQ2rQKp1PRXUtOw/XVXXLLmJLTjH7jpY3u2/fyMAma3yG9e5GoK/+vZ+KXh1PV7duiNxUGNS0QVbfyEDeuWUCb687wNzlO0nNLOTSf67mzqkDuXVyP1Xp6YQOFlfy10928MmWgwCEB/pw3yWDuXJkL7Zs2cyoUbHYbM1/WlRRXUteaTVHGxKlKvJKjWTpaGlVkwSqrKqW6loHOUWV5BS1IHGyWY9Lko5PoH66CxXi763ESaSrq2++mpMKQ5tvvtoS3mrQKp1MfWW3tfsLWLsvj7W788j+7xc008OUmDB/o6pbdCgjYkIYHh1CiL/3mQ+6k1My5Ol6jgCrF5byo/hUHj7hYavVwi8nxHH+4O488GEaX+86ylOf7eKTLQd58poRDI8OMSFocVV1rYNXvt/Pc6t2U1Ftx2qBX06I454LBxES4I3dfmLfgOMF+HgRG+FFbMTp30Acq7E3JEjG9+pGyVLTJKq0qpZqu4Pc4mPkNjO3+XjeNgsRgb5EBvvU3Xlquq4pqu7nqLrESVM7RTqh7sPAOwBLVQl+ZZnAmDadrr5B621vqEGrdCxOp5N9eeWs3VfAuv35rNtf0Oy1sGc3v7r1PSENzUxVKdE9lAx5Om8/6DEcDm4isGgn0Px0hN6h/rx641iWbMrh0Y+3s/1gCTMWfM+tk/tx5wUDNfe0A/tudx5/XrqVvXW31MfEhvLYjOHtmsj6edvoEx7QosIbx2rsP03Ja5JAGdsa7kSVVlFyrJYau1EW9FDJ6RMnL6uFiKCm65rqk6jGa5/CArxwOJv52E1EzGHzgt5jIPM7Agt3AG1v/j42Ppylc87hlv+ksP1gCb942WjQ+j/j1KBVzhyHw8muw6Ws21/A2rrkJ6+susk+3jYLI2JCGRsXSqi9kCvOGUXvsECTIu76lAyJsW7o4Ka6C87JWSwWrhwdw6SBUfx56TY+2XKQF77ey2dbD/HENSMYG69P2DqS3KJK/vrJdj5NOwRARN2UuKvHxHSouyV+3jZiwgJaNGWlqtZOfln1CdPyjjaTRBVX1lDrcHK4pIrDJSeWET2etxXivllNfGQQfSMDiIsIpG9kIHERAfQO8e9Qr5mIR+gzFjK/I/TQD+Cww0mm8LoiOtSf//5+Iv/v/S18knaQ+xcbDVofvkwNWqV91NodbD9Ywtp9BazdX8D6jAKKK5v29PH1sjI6NpTxfSMY3zec0bFh+PvYsNvtbNq0iR7q+9iulAwJRCfD+pcJKNrZot0jg3xZcMMYrhh5iIeXbGVfXjk/f3ENMyfE8f8uHkyQFuqZqqrWzsur9zP/yz1U1hhT4mZOjOeuCxM6/VxiXy8bvUP96R3qf9p9q2sd5Jc3nZJ3tHFhiEYJVWFFDTUO2HO0nD3NLEr18bISGx5AfEQg8REBxEcGGn+ODKBXiD82JUoi7pdwMXz3DKGHf8D5zvVwzb/BP6zNpw3w8WL+DaMZ8lUwf/88ndfXZLL7cBkLfjFG046kzaprHWzJLjLW/OwvIDWjoKFia70AHxtJcWFM6BfBuL7hjIgJ8diy1h2B3rVKQxGFoMLtODe+Ack3tuiwi4b1ZEK/CP72yQ7eTcniP2sy+WLHEf52VSJTEqLaMWA5mW/Tj/LI0m3syzPe0CfHhfHojGEM6+15a7t8vKz0CvGnV8jpE6dj1TV8+eMGArrHk1VYyf68CjLzy9mfX05WQQXVtQ72HClrqL7X5HlsVmIjAowkKSKQuMhA+kbU3VEKVaIk0mqxE3D8bCEsnYN17ypYeC5c/zb0GNbmU1ssFmafP5CEHsHc9e4m1uzLZ8aC73h55lgG9Qxue+ziMSqr7WzMKqxb81PAhgOFVNU2LfrRzc+LcX3DGdc3nPF9IxjWu5tHNDPtLJQMCUQOxDH0SqzbP8Sy7E7IWQ+X/h28T/8mMsTfmyeuGcHlI3tz3+ItZBdW8utX1nH1mBgevmwIoQH6lO1MyCmq5C8fb2fFNmNKXGSQL/dfMpirxkSr8loLeNus9Aj0YtTAyBOq6dkdTnKLKsnILycjr/zERMl+6kSpT7h/3XS7QOKVKIm4xJl4DbsKYMiWv2IpzICXp8KMBTD8Krecv75B682vryeroJKrnv+eZ64bxTQ1aJWTKKuqJSXDSHzW7S9gc3YRNfama04jAn3qEp9wxvWNYHDPYE217sCUDAlYLDiveokcRzi9d72KZeObcHAz/Px1CO/XolOcMzCSz++azN8/S+fVH/bzwYZsvkk/yl9mDOOSxF7tPADPVT8lbt6XuzlW48BmtTBzYhx3XZhAN7/OPSWuo7BZLQ3FICYNbHrH8/hEKSO/ou57OVkFlVTbHew9Wt5QvKKx5hKl+rtLSpREflIZMgDHb7/E9uHNsO9r+O9NcHATXPBnsLZ9atGgnsEsnXUOt7+1gTX78rn1jVTuuTCB2WrQKkBRRTXrMwpZtz+ftfsL2JpTfEKZ657d/Bjf76c7P/2jAvVvpxNRMiQGi5VDA39Bz+TLsC2+BQ6lwYvnwpX/gsGXtugUAT5e/OnyoUwf0Yt7P9jCniNl/P6tDVwyvCePzhhG92AtAHSnr3cd4dGPt7O/bkrcuPhwHp0xjCG9upkcmedocaJUlyRl5pezP6/liVJ84ySpbp2SEiXxSAHh8IsPYNWj8MNz8P0/4eAWuOYV47E2Cgv04fXfjuOvy7bznzWZ/GNlOjsPlfLUtSPUoNXDHC2tqrvrYyQ/uw6Xcnyx0djwgIY7P+P7RtAn3F/JTyem/+HSVN8p8Ltv4f0bIXsdvPM/cM7dcN6DRqnTFkiKC+OTO85h/pd7eOHrvSzfeogf9ubz0PQhXJMUo18YbZRdWMFflm3ns21GX6ioYF8evHQIM0b11mvbgTRNlJo+Vp8oZeZXsD+/nMy6u0ktSZS8bcZ5jel2gU0q3ylRki7N5gXT/gK9R8FHs2HfV7BwClz3FvQa0ebTe9usPDpjOIN7deNPH23lk7SD7M8r56VfJxPdgqIt0jnlFlXWlbk2Sl3va+b3bv+oQMb3i6ib9hbeorWo0gJOJ1QUQHFW3Ve28VV0AIqzsZbk0idyAox6pV3DUDIkJwqJhhs/gZUPw9p/wXdPQ04KXP0KBLWsMIKvl417pg3ikuHGXaK0nGL+33+38PGWg/ztyuHq/N0Kx2rsvPTtPhZ8vadhStyNZ8Xzh6kDCdaUuE6lcaJ0zsDIJo+dLFHKyK/gQL6xRmnf0fJmL9hKlMQjDL8aIgfBu7+Awgz49zS4Yh6MuNYtp/+fcbH0jwri92+msv1gCVfM+45//SpJ7SO6AKfTyYGCioYy1+sy8skqqGyyj8UCg3t2a0h8xvUNJzLI16SIO7naaijNrUtw6pOdAz8lPcXZUFNx0sMtgJ9fVruHqWRImuflA5c8AX3GwUdzYP+38OIkuPY1iJ3Q4tMM7d2ND28/i5e/28/TK9P5Nv0o0575lnsvHsyvJsRpQWELfbXrCI8s3UZmvvFLY1zfcP4yY7j7qh4dK8G3PAecI91zPmm10yVKB4sryciraLpOKb+8xYmSUR7cKAte/+cewUqmpZPpORxu+Qo+uBn2roLFNxvriKY+2uJZDKcyrm84H80+m1tfNxKiG15Sg9bOyOl0sudImZH41N35Ob7vnM1qYXjvbozvF8G4+HCS48NU/KmlKosaJTZ1d3eKGt3hKT0ItKCheVBPCIkxvkL7QEgfCInBHhzN7twqRrXzMJQMyakNvxp6DId3fwl56fDadJj2Vxh/m/HxSQt42azcNqU/04b24L4P0liXUcCfl27j4825PHHNCPpHBbXzIDqvrIIKHlu2nZXbjSlx3YN9eXD6EK4Y6aYpcQ4HpL6CdeWfGV5dhnNNOMROhLiJxvdeI8GmN8odhc1qaWhQe7JEKTO/gv0N65OMyneZdeXBT5UoDY7w5t3hDgLc0NhS5IwICIdfvA9f/tWYwbBmPhzaAte8CoGRpz/+NGLCAk5o0LrzYAkPqUFrh2V3ONl5qKShzPW6jAIKyqub7ONtszCqT2jdXZ8IkuLC1B+xOQ67kcw03NXJapT01CU7VSWnP4+X30+JTkgMhMQ2SnpioFs0eJ3kzpvdDoc2uXVYzYbY7s8gnV/UILjlS1h6B2xbDCvug6y1xrQE35bfmegXFcQ7t07grbWZzF2+k5TMQi7552ruvGAgt07up4tLI8dq7Lz4zT6e/3oPVbXGlLjfnB3PHRe4cUpcYYYx7z5jNRbAiRVLZQHs+sT4AvDyh5hkiDvLSI5ixoKvkteOqHGidPaAExOlQyXHGirdNa58V58o7cqvpqyqlgBfJb/SiVhtMPXPxgc3S243ZjEsPBeue9NYW9RG9Q1aB38ZzD9WpvOfNZmkHy7j+V+MIUwNWk1XY3ewNae4ocz1uowCSo/VNtnHz9vKmNiwhkpvo2ND8fPWhz5UlTW6q9No6lr9nZ2SHHDaT3+egIiGOzmExjZKeuru8ARGtvjDc7MoGZKW8Q02qvbEToDPHoBtH8KhrcYFp/vgFp/GarXwq4nxnD+kBw8sTuOb9KM89dkuPk07yBNXj2B4tOc1Bz3eqh2HefTj7RwoMKbETegXzmMzhpPQw01T4hwOWP8yfPEI1JSDlz+OC/7EJttoRvYAW/Y6yFwDB9bAsSLIWG18AVhsxkLl2Ik/fbVwHZmYx2a1EB3qT3So/wmJksPhJKewnL27dhChN3fSWQ37mfHB3Ts3QME+eOUiuPyfMPL6Np/aYrEw54KBJPQM5u66Bq1XqEGrKY7V2NmSXdxQ6S01s5CK6qZv2IN8vUiKC2N8P6PaW2J0KD5eHvZhq8MB5Ud+upPTeOpafeJTWXj681i9jDs3DUlOn0bT2WKNx3w6/xrwDpEMlZeX8+yzz7J8+XKKi4vp168ft956K9OnTzc7NGnMYoHxv4Neo4xqc/m74aXz4YrnIPEal04VHerPazeN5cONOTy2bDvbckuYseB7bpvSjznnD/TIT20O5Ffw2LJtfLHjCAA9uvny4PShXD6il/uqxOXvhaVzIPN74+e4s+GKeThD43Fu2gQxo4wpcmffafwyzdsFmT/AgR+N5Kg4C3I3Gl8/Pm+cI2LAT4lR3EQI69vhPwWSn1itFnqH+nPE18PeLEjX032IsY5o8S2w+3P48HeQu8moQOeG6b4XDevJB7efxS2vp6hB6xlSUV3LlsNVfPXFbtZnFLIxq4jqWkeTfUL8vZuUuR7SKxivrj7TpObYcVPWsppUYaMkB+zVpz+PX8hP09YaT12rv6sT1N0tvbw6ug6RDM2ZM4e0tDTuuece4uPjWbZsGXfffTcOh4PLL7/c7PDkeLHjjfLbH/zGmJLwwW+NaXPT/s8ovNBCFouFq8bEMGlgFI8s3cYnaQdZ8JVRivvJq0eQ7CGVe47V2Hnh67288M1eqmsdeFkt/Pacvsy5YKD75jE7HLDuRfjiUaitBO9AuPBRSP4tWK3GvNzjWa3Gm4vuQ2Dsb41tRVk/JUYH1sCR7ZC/x/ja+IaxT1BP4w5ifXLUY7hH/DIVkQ7APxT+5134+nH49klY+4LRN+/a19xyF3twz258NOscZjVq0Pq/0xKYdZ4atLrLkdJjfLH9CCu3H+L7PXlU253AT3cxIoN8jcSnrslpQvfgrlmMqbIIMn+k+75vsRx530hw6pOe8qOnP95iheDejRKcRklO/c9+6ksIHSAZ+uabb/j+++/5xz/+wWWXXQbAhAkTyM3N5cknn+TSSy/FpgW9HU9QFPxqCXz1f7D6H7BuoXG34NrXjP9gLogK9mXBL8Zw+dZDPPzRVvYdLefaF9fw64nx/L+LBhHYhRc2frH9MI8u29ZQ2vOs/hE8NmMYA7q7cepF3h74aBZk/Wj8HD8JZsyHsHjXzxXax/iqL2FbUQBZ6+BA3d2jnA1Qdgi2LzG+AHyCjaqE9clRdBJ4q0eDiLQTqxXOf9BYR/ThbZD5XV0/ojeM3z9tFF7XoPUvy7bz+ppM/v55OjsOlfLUNWrQ2lp7jpSxcvthPt9+iE1ZRU2anEb6WzlnUE+j2lvfcPpFBnbNxLOiwPiQMeN7Y2r6oTRsOOlzsv29A5tUXjthzU5wb7dUVvQEpr9KK1euJCAggIsvvrjJ9quuuop77rmHzZs3M2bMGJOik1Oy2uCCPxmL6j/8HWSvhxcnw9X/hv7nuXy6i4f3ZGK/CP76yXbeT83mtR8yWLn9MI9flcjkhK61LiUzv5xHP97OlzuNKXE9u/nx0GVDmJ7oxilxDrsxle3Lv0LtMfAJggsfg6SbjDcL7hAQDoMuNr4AaiqNhKg+OTqwFqpLjdK3e1cZ+1i9offonyrW9Rnvlg7yIiJNDLkMIlfBO78wpnW/cglc9gyM/kWbT+1ts/LYjOEM7lnXoHXLQfYfVYPWlnI4nGzMKmpIgI6vcjmyTyjThvbggsFRlOXsZvToEV3vg/GKAmPKesZ3RgJ0eCvHl6F2hg+g0Dea0PhErKGxjQoV9AG/UE1JdxPTk6Hdu3fTv39/vLyahjJo0KCGx11JhuzNTfdx4bjWHt/ZtWn8A6bBzV9h/e+NWA5twfnGlTjPfQDnOXcZt2ldEORrZe5Vw7lsRE8eXLKN7MJKZr6yjqvHRPPgpYMJ8W+fSldn6u+/strOv77dx8LV+6mudeBtM6rEzTq3P4G+XjgcjtOfpCXy0rEunY0lJwUAZ98pOC57zvgF6nSeMC3ObeO3+kCfCcbX2RgJ2eFtWLKMqXWWrB+xlB2G7HXG1/f/NOKLGowzdiL0mYgzdoLLdxfbSv//2zZ+T33dpBOIGgS3rDLuEO36FD663ZjFcNHfXJrWfTI3jI9lQHc1aG2JYzV21uzN5/Pth1i5/Qh5ZT/1+/G2WZjYP5JpQ3tw4dAe9OjmBxi/WzbldpE3/GVHjeSnPgE6sv3EfSITIP4cYz1v/Dk4AqLYv2kTo0aNgq6WDHYgpidDRUVFxMSc+MYnJCSk4XFXpKWltSmeth7f2bVl/JYxTxC7dR6RBz7F8vX/UbR9FRmj78Pu4/qc1CBg7rnBvJ1mYfmeCj7YkMOq7Qe5ZXQ3JsT4tTrG02mvv3+n08n63Cpe3VTKkQrjjeOI7j78dnQ3YrpVsnvHVvc8kcNOj33v0XvXa1gcNdi9Asga+nvyYy+FjHwg/5SHt9u/f59xMGAc9L8Dn4pcggq2ElyQRlB+Gn7lWViO7sRydCekvgpAlX93ysITG76OBce5nFi3hv7/e/b4pYvyC4Hr3oJvn4Kv/wbrXzI+hb/2PxDco82nr2/Qesvrqeyoa9D6lxnDuV4NWimuqOHLXYdZuf0wX+862qTyW7CvF+cN7s6FQ3tw7qAo97WN6CjKjtTd9fnOSICO7jxxn6ghEH/2TwlQUPemj+uDpjPC9GQIOOW0IFenDCUmJrbqVqrdbictLa3Vx3d2bht/0ngcm97EsvyPhB75kZFr78BxzWtGBbpWmJgMKZmFPPDhVvYeLeepNUVcPKwHj1w+lKjgkzTpaoX2/PvPyC/nsWU7+Ca9CICeIX48dOlgLh7Ww73zno/swPrxHCy5GwBw9r8Apj9Dn5CYk885rnNm//2PBn6qFGkvPwpZa7EcWIPlwI9waAu+lUfwzVlFRI4xtc7pFwp9xuOMnYizz3hjmp3NfWWg9f+/beOvP16kw7Ja4dx7jXVEi28x1mYsnGK0h4hJbvPpY8IC+OD3E/nf9zfzadoh7lucxs5DpTw4fYjH9dDLKapk5bZDfL79MGv3F2B3/DT1q2c3Py4c2oNpw3owvm9E1yp5XXKw0bS374ypmcfrPsxIfOLPNpIfNzQHlrYzPRkKDQ1t9u5PcXEx8NMdopay2WxtejPT1uM7O7eMP+nXRrO792ZiKczA9uolcOlTMGZmq+a3ju8XySd3TGL+l3t44Zu9rNh2mDX7Cnj4sqFcPSbarQmFO//+K6vtPP/1Hl78Zh/VdmNK3M2T+jHn/AHuXWRrr4Xvn4VvnjBKafqGwMWPYxl1AzYXXxtT/v136wnDZhhfYDSCy15ft+boB8hOwXKsCHZ/hmX3Z8Y+Xn4QnWxUrYubCDHj3FIVR///PXv84gEGXWyU337nBqN1wKuXwPR/GNenNgrw8WLBDWOY9+Uenl6Zzms/ZJB+uJQFN3TtBq1Op5MdB0sb1v9syy1p8vigHsENCVBidEjXKX5QnFOX/Kw21vwU7D1uBwv0HA5x59Td+TlL62M7KNOToYSEBJYtW0ZtbW2TdUPp6ekADBw40KzQpC16jYRbv4YPfw/py+HjO4zy25f+vVUNuvy8bfzvRYO4JLEnf/zvFrbllvC/729m6eZc/nblcGLCOk7TL6fTyWfbDvOXZdvJKTKqxE0aGMkjVwyjf1SQe5/s8Daj6/rBTcbPAy+Cy5+Fbr3d+zxnkm+QUYCjvgiHvQYObmlUlGENVOQbFaIyv4PVGFPoegz/qWJd7EQIVu8PEWlG5ICf1hHtXGb0XsvZAJc8AV5tm3FgsVi444KBJPQI5u73NvHD3nxmLPiel2Ymd6kGrbV2B+szCuvW/xwmu7Cy4TGrBZLjwpk2zFj/ExcRaGKkblR0wEh6Muvu/BRmNH3cYoWeI36a8hY3EfzDTAlVXGN6MjR16lTee+89Pv/8cy699NKG7R9++CHdu3dn5MiRJkYnbeIfBte/bdy1+PIvsOkt403tz/8DEf1bdcphvUNYMutsXlq9j2e/2M236Ue56JlvufeSwfxyfJzpvQb2HS3jkY+382260QMgOtSfhy8bwkXDerr30zB7DXz3DHzzJDhqjKoylzwBI67retVlbN4Qk2R8nTXHKACRt/un5CjzByjKhENbjK91LxrHhfU1PomLnQCxZxn/5rraayMireMbDD9/A7572qi4mfqq8eHSz1+Hbr3afPqLh/ckPtJo0HqgoIKrnv+eZ68fzYVD275GySwV1bV8m36Uz7cf5sudRyiqqGl4zNfLyqSBUUwb1oMLBncnIsh909hN4XQa15X6Sm+Z3xnJUGMWm/HBb3zdnZ/YCcb6NOl0TE+GpkyZwtlnn80jjzxCWVkZsbGxfPLJJ6xevZqnnnpKUzY6O6sVJt1t9Hb472/gcBosPA+ufAEGTz/98c3wtlm5/dwBXDSsJ/d9sIX1GYX86aNtfLw5l7lXj3D/3ZcWqKiuZcFXe3jp2/1U2x342KzcOrkfs84bgL+Pm/8NH9xiVEQ6VLdGY9ClRrlYT7kTYrFAVILxlXSjsa0kt64R7I+QucZYHF243/ja9JaxT2DUT81gYycan+CpB4OI57JaYfL/Gm9oP/itUeFy4RQjSYod3+bT1zdovf2tVH7cV8Ctb6Rwz4Wdq0FrXlkVq3YYBRBW786jqvaniqdhAd5cMMS4+zNpYGTn7rHkdELBvrppb3Xrfkqym+5jsUH0mIZKb/QZr6alXUSH+Jc7b948nnnmGZ577jmKioro168fTz/9NNOnt+7NsnRA/abAbavh/RuN6XLv3ABn/wHOf7jVb0j7RwXx7q0TeXNtJk8s38n6jEIu+edq/jB1ILdO6ofXGVi06nQ6WbH1EH9Ztp3c4mMATEmI4pErhtE30s1TA2qrjQa3q/8OjlrjztslT0HiNbrj0a03DL/a+AKjc3f2euOu0YEfISfV6Ni942PjC4yGdX3GGneNYsbhVeWAqhKjIazN2+ijJSJd38ALjXVE7/7SKHf82nS49EmjJ1sbf7eGB/rwxm/H89jH23njR6NB685DpTx1zUj3f1DmJvvzylm5/RCfbztM6oHCJg1Q+4T7M21oT6YN7UFSXNgZuc62C6cT8vca633qE6DS3Kb7WL1PTH58z/yHrdL+OkQyFBgYyEMPPcRDDz1kdijSnrr1hhs/gZV/MpqBfv+s8Sb1mldOLCfZQlarhZkT4zl/cHce+HAr36Yf5ckVu/g07SBPXD2CYb3b75b13qNlPLJ0G6t35wHGlLg/XT6UaUPdXCUOIHcTfDSrrikbMORymP50q1+3Ls8/1HiDM/BC4+eaY8a6qvrkKOtHOFYM+76GfV9jA0YCfN7oHBarcTG0+RgJu82n7uf6Lx+w1m23eTf9s83btWOb7O+G4z09ORZxVUR/+O1K4/fs9iWw7C6jH9Glf2/zOiJvm5W//Gw4Q3oZDVqXbTnI/rxyFs7sGA1aHQ4nW3KKGxKg3UfKmjyeGB3SUABhUI/gTnNXqwmnE/LSm5a6LjvcdB+bj1GYp77SW59x4NNF1jvJKXWIZEg8iM0bLn4cYsYai1YzVsO/JsG1rxmLDVspJiyA/9w0lv/f3p3Hx3S2jx//zCSWJDQRkUjFlpA9jS2Lfa09Yvd8v30SVVuq1INudKPVouppiVqjivr2RyvUvrcPWgnioRFBrBVrhFiCLDPn98eRkSEIk32u9+s1L68558zMfc9M5nKdc933vergBT5ff5QjF27RY/YfRLR2ZVS7+lQsV3Bn4NIzsonceZJFe06TpVMob6klopUrb7YphJK47Ax1XNCeb0DRgXVVNTj79JL/8D6PchUflMgFq/f1ekhJfJAc7UU59yea25eMH6PoQZeh3kobreUzkinj5EmrtcAFB/CfB5TMs9VCFLoKldRY9MdM2DEJDi6FK0dhwLICmZTmf4Nq4VbNhjeXHyTh4i1CZ+9h3j8b06QYFmjNzNaz93QqWxMusz3xClduPfyds9RqCHatSkcfJzp4OfFyCUjYnpuiqOv65E5+0lOMj7GooP5fJGeqa5cAtTJAmB1JhkTx8O0NTj6wIkyd3vSHbtDxcwge8cL/yddoNPRt7EIrdwcmrk1gY/xlvvvtFJuPXOarvq/QuLZpAUdRFDbGX2byhqNcelAS19ajGp+G+FCnoEviQL1qtuYt9T/toCZAXb+WdQkKglarfv+cfCBwKHqdjkP/jaOBnw8Wik4tQ9RlqhNV6DIfuZ+lTlqhy1SnNddlPriflY/jswrwuXId/yh9tnrLvvf4vjxoACdAl/452JbimQiFMJVGAy3+BdX91HGuFw7A/NbqxD+1m5n89EGuVVk7sjlDlhzg2OXb/M/CGCb39GVAQOEv0Hrrfha/HbtqWAD1Tka2YZ9NeQvaeDrS0duJNh6O2FqVsgVQ9Xq1xDFnqutzf6qzjuZmWVG92pMz1XWNxuqJMmH2JBkSxaeaBwzdCetGw5FfYMsEdTxRj9kmDUp0rFyROa81ZvORS3y0JoFTKen0nbeXgU3r8G4nD2wqPP/X/uRVtSRuz0m1JM6lihWfhvjQwcux4EsGsu7Df6aqZycVvTrwv9sM8A4t2NcRxjQWarAsbZO2KMqDhCl38pSPpCzXfX1WJieuZVK/Uumd6UqIAlWvvbo8xIp/quXJS0Kg81QIGGLyVXmXKtZEj2jGuJWH2XTkMu+viifx0m0+6uZV4GNwLt28x/ajV9h69Aoxp1PJ0j0cAFStcgW1/M3biaZuValgWYp++/Q69XM5+4eaAJ37A+7dMD6mnLWa/NRpoSZANRqZXPIoyiZJhkTxqlAJ+kSpAxO3TICjvz4sS3D0MumpO/s6E+xalckbEvklLpkf/jzL9sQrTOntR8v61fL1HOkZ2czamcT3e848LIlr7caINm4FWnpncH6/WrN+7bh637cvdPkKbKoW/GuJskGjeVj6xoutt6XodKQfOlSgzRKi1LOvC4O3qiXdR1bBxnfUcUTd/m3yFYXcC7R+s11doDXp6m1m/49pC7QqisKJK3fU8T9Hr/BX8k2j/fUcKxkSIH8Xu2JfjiLf9Dq48tfDmd7+/lMd95lbORu1FLpOc6jTEpwbgGXZXexWFBxJhkTx02ggaBi83BB+HgipSbCwHYTMglf6mfTUdtbl+bqfPz38X2Z8dDzJN+4Rtmgf/Rq78FE3b2yt8y4FUBSFDfGXmLw+kcu31JK49p6OfBLiXTgLyGXdg9++gL3fPbga5KhOl+3VveBfSwghRP6Ut4E+i+DlRrDtY3Wq/qtHYcCPYOti0lNrtRpGd6iPR3V1gdY/TqoLtEYNbIK7U/4XaNXpFeLO3WBrwmW2JV7hXOpdwz6NBhrVqkJHb3UKbNdiWHrihaX9jSZhDW6HN6DdmgAZt433l6/8IPl5UPbm7P/gpJAQz0eSIVFy1AyA4bvU9R5O/w7RQ9SyuU5fmHxpu5V7NbaOacX0LcdZsvcsP8cl8/uJFD4P9aWzr/H6PCev3uaTXxP485Rab1zL3ppPQ7xp71VIJUR/x6rrBqWeVO+/MkAtx7Au+kG1QpQV6enpfPvtt2zatImbN2/i6urKsGHD8rVkQ3R0NOPHj89z3549e6hWLX9XlkUZodFAs5FQ3Rd+HqReHZrfWp1soW5Lk58+Z4HWIUvUBVp7ffcHM//RkA5PWaD1XqaOPSevsTXhMjuOXeV6eqZhX3lLLS3qOdDR24n2Xk5Uq1yKSsNuXlBn8zsSDRcOoAXscvZVsFUnWsqZ6lrWihMFRL5FomSxcYB/RsPvU2DXdNi/UA08/ZeYfBbOpoIlE3v40O0VZ95f9RenU9KJ+DGObn7OfNLdk3tZeqZsOsYPf54jW69QwVJd3HV4a9fCKYnLvKuufB4zB1CgsjN0/xY8Ohf8awlhZkaNGkV8fDzjxo2jTp06rF+/nrFjx6LX6wkJCcnXc0yZMgVXV1ejbXZ2doXQWlEquLZ5MI7oNXXR66Wh6sm6oAiTxxF5Vn+JtSNb8OaPccSeuc7QZQd4p6MHw1vWMRxzPT3TsADqrqQU7mc9XADV1qoc7T0dedXbiVbu1V5obGyxuX1ZLZE/Eq0ue2CgQanTgmRrX15u1h+Ll/1l/TdRKErRX4swG1oLaPeROs1l9DB1Np95LdWxRfXam/z0AXXs2fh2S2btSGL+rtNsiL/EnpPXsFB0XL+vBpcOXk58GuJNTfsXG4PxTOf+VMcGXT+t3m/wmhpUraoUzusJYUb+85//8McffzBjxgy6d1dLTYODg7l48SJfffUVXbt2xSIfE2XUr18fPz+/wm6uKE2q1IY3tqoT/8SvhM0fqOvAhXxr8rTM9jbl+XHIwwVap285ztGLN6mmTWfa/lgOnLuBPtcCqDXsrAzr/wTUsadcaVoA9U4KJP4KR1arkx+Q0zEN1Gqqzjjr1QO9tQNXDx3iZWdJhEThkWRIlFzunWD4f2BlOFw6DD/2gbYToOU76tTIJqhYzoL3OnvS1c+Z9375i6OXbgFqSdykHj609SykxUwz02H7JNi3APVq0MvQY9bDxUGFECbbtm0b1tbWdO5sfJW1d+/ejBs3jsOHD9OoUaNiap0o9cpbQ+8F6uxkWz6Ev/6fOo7oH8vBzrQpsnMWaPV0rsynvyawIf6y0X5v55cMCZC380ulawHU9FQ4tk69AnR2tzo+NodLoJoAeYcar+mk0xV9O4XZkWRIlGxV6qhn4Ta9BweXqJMMnN+nBqICGFPjW8OWX0c258e9Z/n7fDLv9grGumIhzT5zZjesHQk3zqr3G4VDx8lQ0bZwXk8IM5WUlISbmxuWlsYhzsPDw7A/P8lQREQE169fp3LlygQGBvL222/j7u5eKG0WpYxGA8FvgpMv/Pw6XP7r4Tgi19YmP/1rQbWpV60SH66OpyJZ9Ap0paOPc+FVKxSWezcgcT0krFbHAiu5kpuXGz1IgHqCXc3iaqEQkgyJUqBcRfXqSc0g2DAWTm57uAheDdPP7paz0BLetDaHrG5QoTDGBmXcge2fwv4o9f5LLmp/CqDkTwjxuLS0NFxcHh9jaGtra9j/NA4ODkRERNCgQQMqVarEiRMnWLBgAQMGDOCnn37C09Pzuduke8Ez3DmPe9HHl3Ylvv+1msGQnWh/Dkdz6RDKsp4o7SeiBL9l8jiiJrXt2DiqGfHx8fj51cTCwqLkvg+53b+F5vhGNIlr4NRvaHItDK1UfwXFuxeKd0+15DDHE/pV4j//Qib9N63/+X2cJEOi9Gj4mroq+MpwuHEGvu+krsHT+HWTg06hOf07/DoKbv6t3m88CF79zKRFZYUwJ7GxsYSHh+fr2DVr1uDlpa5P9rTyoWeVFrVq1YpWrVoZ7gcEBNC6dWtCQkKYOXMmc+fOzVd7couPj3/uxxTk40u7kt5/TcMp1LL4FofkLWi2f8L1xN85+8o7KJamrUeUo6T3X5t9F9vLe7G/+DsvpexDmysBuvuSKzec23Dj5TZkVHpwkuLcDfWWTyW9/4VN+l+4/ZdkSJQuzq+os/mseROOb4T1/1LL5rrNUOu4S4r7t2DbJxC3WL1vWwtCI9XZiIQQ+Va3bl0mT56cr2OdnZ0Bdca3vK7+3LypLtKYc4Xoebi4uNC4cWMOHz783I8F8PPzy9ekDY/S6XQPrgy82ONLu1LV/0b/h/7AIjRbJ2B/YSdVsq+i77fM+ArIcyrR/c9MR5O0Fc3R1XByO5rs+4ZdioO74QpQhWoeVAeqP/mZnqhE978ISP9N63/O459FkiFR+ljZwYDl8OdM2PEZHP4/tV67/1Ko6lbcrYOTO2Dt23ArWb0fMAQ6TIQK+V9ETwihcnR0pF+/51t82d3dnfXr15OdnW00bujEiROAOkvci1AUBe0LTt5iYWFh0n9mTH18aVdq+h88HJzVCgbNlSNYLGoHfb8Ht3YmPW2J6X/WPUjapo4BOrEZsh4u8Iq9mzoGyKc3GkevAp3cocT0v5hI/wu3/6VoHkYhctFqocUYCP8VbKrBlSOwoI06ULO43L8Jv46EH3uriVCVOjBwvXrVShIhIYpMhw4duHv3Llu3bjXavnr1ahwdHfH393/u5zx//jwHDx58occKM1O7GQz7D9RorE4g8GMf2PMtKMozH1oiZWfAsY2waihMrwcrwyAhWk2EqtRRY/Hw3TAqTl0Ww8m75JauC5EHuTIkSre6rdQf4Z9fVxdrW/EaNB8N7T4p2pWpTzxYd+L2RfV+UAS0/wTK2xRdG4QQALRu3ZrmzZszceJE7ty5Q61atdiwYQO7d+9m+vTpRmcYJ0yYwJo1a9i2bRs1atQA4PXXX6dJkyZ4enpiY2PDiRMniIqKQqPRMHr06OLqlihNbGvAoE2wYRz8d5k6ic6lQxD6XemIC9mZ6pjXhGg4tgEybj3cZ1sLfHqCTy94uaEkPqLUk2RIlH4vOcPr62HbpxDzHfwxE5Lj1NKEyk6F+9r3bsDmCWqpHoC9qxrsajcr3NcVQjxVZGQk33zzDbNmzSItLQ1XV1f+/e9/061bN6Pj9Ho9Op0OJddZe3d3dzZt2sT3339PRkYG9vb2BAcHM2LECOrWrVvUXRGllWUF6BGpznq68T21tCzlOAz4sWSUdD9KlwVndqkJUOJ6uJ/2cF/ll9Xkx6cXuDSRBEiUKZIMibLBohx0/hJqBqilauf2wPxW0G9x4SUmxzfBun/BncuABpq+BW0/LFkTOQhhpmxsbPjoo4/46KOPnnrc1KlTmTp1qtG2CRMmFGbThDnRaKDJG+Doo5aXXT0KC9tCn0UlY7FtvQ7O7lEToKNr4d71h/sqOalrAPn0Upe2MHGxcyFKKkmGRNni00tdBG/FPyHlGPzQXZ3Kuqnpaz4Y3L0Omz+Av1ao96vWg9A5UCuoYJ5fCCFE2VIrSB1HtDIckvfB8n7q+JqW44r+KoteB3/HPEiAfoX0lIf7rB3AO1SNpbWbgdZ8B+0L8yHJkCh7HOrDkB3qtNvxP8PWD+F8rFq+Zur6PonrYf0YSL8KGi00HQltJ0A5qwJpuhBCiDIqp6R70/vqsgs7P1fHEfWcW/iT7Oj1kLxfTYAS1jyoaHjAqgp49VBngqvdomjH2wpRAsg3XpRNFSpB74Xqpf3N4yFxrVqe0H+ZOtPN80pPhU3vwZFf1PsOHtBzjlo7LYQQQuSHZQUI+VadeGDjO5C4Dq4lwT/+r+DHESkKXIhTxyolrHm43ANARVvwDAHfXlC3tVpqLoSZkmRIlF0aDQQOVYPOyoGQehKi2kPITHilf/6fJ2GNGrTSU9SrQc1HQ+sPoFzBrCwuhBDCzDQeCE4+D0u6F7SFPgvBvZNpz6so6tWmhNXqLe3vh/vKVwbPbuoVINe2YFnetNcSooyQZEiUfS5NYPguWDUYTv8G0UPVeunOU9SzdE9yJ0VNgo6uUe87equldjUaFUmzhRBClGEuTdRxRD8PhL/3wv8NgDbjodW7zzdZgaKoa+3lJEDXTz/cV84GPLqoCZBbezmJJ0QeJBkS5sGmKvxzFfxnmno7sAgu/hf6LwW7msbHKopaV73xXbibChoLaDlWDVBPS56EEEKI51HZCcLXwpYJsH8h/P4lXDoMveY9e4zr1UQ4Eq0mQKlJD7dbWqlXmHx7Q/2OMqZViGeQZEiYD62FOtlBjSbq1aGLB9Xpt/sshLpt1WPuXIXN76p13KDOTBf6HbzcoNiaLYQQogyzLA/dvlZLutePgeMbYGE7dRyR/SPjiK4lPUyAUhIfbreooE7V7dsb3DuXjoVdhSghJBkS5se9o1o2tzJcra3+sS+aVu9hf9sC7fa56kKqWkv1SlCLsVJXLYQQovA1fA0cvdRxRKlJakLUcy7l0xU0e3aq02BfiX94vEV5qNdBnQbbo0vhz0gnRBklyZAwT1Vqwxtb1PWC4haj3TUNw7ry1f3UqU6r+xVnC4UQQpibGo0ejCN6Hc7twWLlPzGKRFpLcGv3IAHqClZ2xdNOIcoQSYaE+SpXUZ3itGYgyvoxKLpsaP0e2pZjZZpRIYQQxaNSNQhfA1s/hti5KBot1G2Nxrc3eHYHa/vibqEQZYokQ0I0+F/0dVqRcOQIPk1fBQtZcVsIIUQxsigHXaaia/AaR85cxTeoDRYSm4QoFM8xd6MQZVhlZ7KsqhV3K4QQQoiHHL3JrmBX3K0QokyTZEgIIYQQQghhliQZEkIIIYQQQpglSYaEEEIIIYQQZkmSISGEEEIIIYRZkmRICCGEEEIIYZYkGRJCCCGEEEKYJUmGhBBCCCGEEGZJkiEhhBBCCCGEWZJkSAghhBBCCGGWJBkSQgghhBBCmCVJhoQQQgghhBBmSZIhIYQQQgghhFmSZEgIIYQQQghhliQZEkIIIYQQQpgly+JuQEFRFAUAnU73Qo/PedyLPr60k/5L/3P/a26k/6b1P+dxOb/D4iGJTaaR/kv/c/9rbqT/RRObNEoZiV6ZmZnEx8cXdzOEEMJs+fn5Ub58+eJuRokisUkIIYrXs2JTmUmG9Ho92dnZaLVaNBpNcTdHCCHMhqIo6PV6LC0t0Wql+jo3iU1CCFE88hubykwyJIQQQgghhBDPQ07hCSGEEEIIIcySJENCCCGEEEIIsyTJkBBCCCGEEMIsSTIkhBBCCCGEMEuSDAkhhBBCCCHMkiRDQgghhBBCCLMkyZAQQgghhBDCLJlFMhQdHY2Hh4fh5u3tTYsWLRgzZgxnz541OvbAgQN8+OGH9O7dG19fXzw8PEhOTi6ehheQ/PZfp9OxePFiBg8eTKtWrfD396dLly58/fXX3Lp1q/g6UEgefV8evcXGxhZ3E1/Y5s2b8fDwYOPGjY/t69GjBx4eHuzevfuxfR06dKBXr14A/Pbbb7z33nuEhITg4+ODh4dHobe7oJja/zt37jB37lzCwsJo3rw5DRs2JCQkhAULFpCRkVEUXTBJQXz+33zzDT179iQwMBA/Pz/at2/Pxx9/zIULFwq9/eZCYpPEprxIbJLY9CiJTYUbmyxf+JGl0JQpU3B1dSUjI4ODBw8yb948YmNj2bRpE7a2tgDExMSwd+9evLy8sLGxYd++fcXc6oLzrP7fv3+fyMhIunfvTr9+/ahSpQpHjx5l7ty5/Pbbb6xatYqKFSsWdzcKXM778qh69eoVQ2sKRmBgIBqNhpiYGLp27WrYnpaWxokTJ7C2tiY2NpaWLVsa9l2+fJnz588zaNAgALZt28bhw4fx8vKiXLlyJCQkFHk/XpSp/b948SJLliwhNDSU119/HWtra+Li4pg9ezZ//vknixcvRqPRFEfX8qUgPv9bt27RrVs33NzcsLGx4eTJk8ydO5edO3eyfv16qlSpUuT9KqskNklsyovEJpXEJolNhR2bzCoZql+/Pn5+fgAEBQWh0+mIjIxk+/bt9OnTB4ARI0YwcuRIABYtWlSmAs6z+l+xYkV27Nhh9EUKCgrC2dmZ0aNHs2XLFkJDQ4ur+YUm9/tSVtjb21O/fv3Hvr/79+/H0tKSPn36PHZ2MSYmBlA/c4DJkyej1aoXjz/77LNSFXBM7b+Liws7d+7E2trasL9p06ZYWVnx1VdfERcXR5MmTQq/Iy+oID7/Tz/91Gh/zvsybNgwduzYQd++fQuxB+ZFYpPEprxIbFJJbJLYBIUbm8yiTO5Jcn5kUlNTDdty/sDMwaP9t7CwyDOjfuWVVwA1OxelR1BQEGfOnOHq1auGbbGxsfj6+tK6dWsSEhK4c+eOYd++ffuwsLAw/JCW9r8FU/pvbW1tFGxylKa/BVM//7zY29sDYGlpVufRipzEJolNZZnEJolNJS02le5vlIly6q3r1KlTvA0pJvntf05WXpovzT+NXq8nOzvb6KbT6Yq7WSYLDg4GMDoDExsbS2BgII0aNUKj0RAXF2e0z9vbm8qVKxd5WwtDYfS/NP0tFFT/s7OzuX//PkePHuXLL7+kTp06vPrqq0XTCTMlsUliE0hsyr1PYpPEpsKMTWaVDOX8sKSnp7N7927mzp1LQEAA7dq1K+6mFYkX6f+VK1eYMWMGvr6+tG3btghbW3T69++Pj4+P0a0slCYEBASg1WoNPzg3btwgKSmJgIAAbGxs8Pb2NvyAXrp0ieTkZMNl6LKgoPt/7NgxoqKiePXVV/H09CySPpiiIPqfkpKCj48P/v7+9OrVC51Ox9KlS7GxsSny/pRlEpskNuVFYpPEJolNRRObzKrWoX///kb33dzcmDNnjtmUfDxv/9PS0hg6dCiKovDtt9+W+kvTTzJt2jTc3NyMtpXkAYj5ZWtri6enp6H+dv/+/VhYWNCoUSNA/UHK+cHJOaYsBZyC7H9ycjIRERFUr16dyZMnF0HrTVcQ/a9SpQq//PILmZmZnD59mqioKMLDw1m2bBmOjo5F2JuyTWKTxKa8SGyS2CSxqWhiU9n8BXmCadOm8csvv7BkyRIGDBjAqVOnGDt2bHE3q8g8T/9v3rzJG2+8wZUrV/j++++pWbNmEbe26Li5ueHn52d08/X1Le5mFYigoCDOnj3LlStXiI2NxcfHx3DmJDAwkMTERG7fvk1sbCyWlpY0bty4mFtcsAqi/xcuXCA8PBwLCwuWLFmCnZ1dEffixZnaf0tLS/z8/GjcuDH9+vVjyZIlJCcns2DBguLoTpklsUliU14kNklskthUNLHJrJKhnB+W4OBgPvvsM/r168fu3bvZvHlzcTetSOS3/zdv3mTQoEEkJyezePHiUnHZVeQt52zKvn372LdvHwEBAYZ9OT8u+/fvJzY2Fj8/vzJX/mRq/y9cuEBYWBgAS5cupXr16kXU8oJR0J9/9erVcXR0fGwNHGEaiU0Sm8yNxCaJTVByYpNZJUOPevfdd7G1tWXWrFno9fribk6Ry6v/OcHm/PnzLFq0CG9v72JupTBFQEAAFhYWbNmyhaSkJAIDAw37KleujJeXF2vWrOHChQtlqgwhhyn9v3jxImFhYej1epYsWUKNGjWKuvkmK+jP/9y5c1y+fJnatWsXZrPNnsQmiU1lncQmiU0lKTaZR0HyE9ja2jJs2DCmT5/OunXrCA0N5fr164ZBXSdOnABg165d2NvbY29vb/SBlXaP9r9Tp04MHjyYo0ePMmHCBHQ6HYcOHTIcb29vT61atYqvwYUkKSkpzxl6atWqZZiusbSqVKkS3t7ebN++Ha1W+9il5oCAAJYsWQI8XpN74cIF4uPjAfj7778BDGdqa9SoUSoG8r5o/1NTUwkPDyclJYUvvviC1NRUo2mOq1evXirOxL1o/48dO8aUKVPo1KkTNWvWRKvVcuLECX744Qfs7Ox44403irQf5kZik8QmkNgksUliExRNbDLrZAggLCyM5cuXM2fOHLp3705SUhKjR482OmbSpEmAWse4bNmy4mhmocnd/4YNGxp+YL744ovHju3VqxdTp04t6iYWuvHjx+e5ffLkyfTr16+IW1PwgoKCiI+Px8vLi0qVKhntCwgI4IcffqBcuXI0bNjQaF9sbOxj703O30Zp+i68SP9PnjzJ+fPnAfUs9aNGjhzJqFGjCrfhBeRF+u/g4ICjoyOLFy8mJSWF7OxsqlevTps2bYiIiMDZ2bmou2F2JDZJbJLYJLFJYlPRxCaNoiiKSb0RQgghhBBCiFLIrMcMCSGEEEIIIcyXJENCCCGEEEIIsyTJkBBCCCGEEMIsSTIkhBBCCCGEMEuSDAkhhBBCCCHMkiRDQgghhBBCCLMkyZAQQgghhBDCLEkyJIQQQgghhDBLkgyJFxYdHY2Hh4fh5u3tTYsWLRgzZgxnz54t7uYBMG/ePLZv3/7Y9tjYWDw8PIiNjS2GVql27txJREQEzZo1w9fXl8DAQAYOHMjatWvJysoqtnY9Kq/36oMPPqBdu3aF+rpXrlwhMjKSxMTEQn0dIUTZIrHJNBKbnk5iU9ljWdwNEKXflClTcHV1JSMjg4MHDzJv3jxiY2PZtGkTtra2xdq2+fPn06lTJzp06GC03cfHhxUrVlCvXr0ib5OiKEyYMIHo6Ghat27NBx98gLOzM7dv3yY2NpZJkyZx48YNBg4cWORty68RI0YQHh5eqK9x9epVZs+eTY0aNfDy8irU1xJClD0Sm56PxKb8kdhU9kgyJExWv359/Pz8AAgKCkKn0xEZGcn27dvp06dPMbcub5UqVaJBgwbF8tpRUVFER0czatQoRo4cabSvXbt2DBkyhHPnzhVpm+7fv0/FihXzfXytWrUKsTVCCGE6iU3PR2KTMFdSJicKXE7wSU1NNdoeHx9PREQEgYGB+Pn50bNnTzZu3Gh0zPXr15k4cSJdu3alYcOGNG3alPDwcA4cOPDY62RmZjJ79my6dOmCn58fQUFBhIWFcfDgQQA8PDy4e/cuq1evNpRLhIWFAU8uRdixYwcDBgzA39+fhg0bMmjQIP773/8aHRMZGYmHhwdJSUmMHTuWxo0b06xZM8aPH8/t27ef+t5kZWURFRWFq6srb731Vp7HVKtWjSZNmhjup6WlMXHiRFq2bImvry/t27fnm2++ITMz0+hxGRkZzJgxg3bt2uHr60vLli2ZNGkSt27dMjquXbt2DB8+nK1bt9KzZ0/8/PyYPXs2AKdOnWLw4MH4+/sTFBTEJ598Qnp6+mNtzKsUwcPDg88++4w1a9bQpUsX/P396dGjB7/99pvRcefOnWP8+PF07NgRf39/WrZsSUREBMePHzccExsbS9++fQEYP3684fOLjIw0HJOf75MQQuSQ2PRkEpskNpkzuTIkClxycjIAderUMWyLiYlhyJAh+Pv7M3HiRCpXrszGjRsZM2YM9+/fp3fv3oD64wowcuRIHBwcuHv3Ltu2bSMsLIwffviBoKAgALKzsxkyZAhxcXGEh4cTHByMTqfj8OHDXLp0CYAVK1YwcOBAgoKCGDFiBKCedXuSdevW8c4779CiRQtmzJhBZmYmUVFRhtfOHQQARo0aRdeuXenbty8nTpxgxowZgFqa8SRHjhwhLS2Nfv36odFonvleZmRkEB4ezvnz5xk1ahQeHh4cOHCABQsWkJiYyIIFCwC1vGHEiBHExMQwbNgwmjRpwvHjx4mMjOTQoUOsWLGC8uXLG543ISGBU6dO8eabb+Li4oKVlRXXrl0jLCwMS0tLPv30U6pWrcq6dev4/PPPn9nOHL///jvx8fG8/fbbWFtbExUVxciRI9m8eTM1a9YE1BIDOzs7xo0bh729PTdv3mT16tX079+f1atX4+rqio+PD1OmTGH8+PG8+eabtGnTBoDq1asD+f8+CSFEDolNEpskNok8KUK8oFWrVinu7u7KoUOHlKysLOXOnTvKrl27lObNmyuvvfaakpWVZTi2c+fOSs+ePY22KYqiDB8+XGnevLmi0+nyfI3s7GwlKytLGThwoPLWW28Ztq9evVpxd3dXVq5c+dQ2NmjQQHn//fcf2x4TE6O4u7srMTExiqIoik6nU1q0aKF0797dqC137txRmjZtqgwYMMCwbdasWYq7u7uycOFCo+ecOHGi4ufnp+j1+ie2Z8OGDYq7u7vy008/PbXdOX766SfF3d1d2bhxo9H2BQsWKO7u7sqePXsURVGUXbt25dmmnNdbsWKFYVvbtm0VLy8v5fTp00bHTp8+XfHw8FASExONtg8aNMjovVIURXn//feVtm3bGh3n7u6uNGvWTLl9+7ZhW0pKiuLp6anMnz//iX3Mzs5WMjMzlY4dOypffvmlYftff/2luLu7K6tWrXrsMS/6fRJClH0SmyQ25SaxSTyLlMkJk/Xv3x8fHx8aNWrEkCFDeOmll5gzZw6WluqFx3PnznH69GlCQkIA9cxZzq1Vq1akpKRw5swZw/P99NNP9OrVCz8/P7y9vfHx8WHv3r2cOnXKcMzu3bupUKFCgdV9nzlzhqtXrxIaGopW+/DPwsbGho4dO3L48GHu3btn9Ji8LsVnZGQ8VoJhipiYGKytrencubPR9pyzS3v37jUcl3t7ji5dumBtbW04Lndb69ata7QtNjaW+vXr4+npabS9e/fu+W5vUFCQ0RlOBwcHqlatyoULFwzbsrOzmTdvHl27dsXX1xdvb298fX05e/as0Wf8JM/7fRJCmCeJTSqJTRKbxNNJmZww2bRp03BzcyM9PZ2NGzeyYsUKxo4dS1RUFADXrl0zHDdt2rQ8n+PGjRsALF68mKlTp/KPf/yD0aNHU6VKFbRaLTNnzuT06dOG469fv46jo6NRcDBFzutXq1btsX2Ojo7o9Xpu3bqFlZWVYbudnZ3RcTmX+u/fv//E13F2dgYelms8S1paGg4ODo+VLVStWhVLS0tD6UZaWhqWlpbY29sbHafRaHBwcDAclyOvfqalpeHi4vLYdgcHh3y1FR5/T0B9XzIyMgz3p06dyvLlyxk6dCgBAQHY2tqi0Wj46KOPjI57kuf5PgkhzJfEJpXEJolN4ukkGRImc3NzMwxMDQ4ORq/X8/PPP7N582Y6d+5MlSpVABg+fDivvvpqns+RcyZo7dq1BAYGMmnSJKP9jw6UtLe3Jy4uDr1eXyBBJ6eNKSkpj+27evUqWq2Wl156yeTX8fX1xc7Ojh07djBu3Lhn1mbb2dlx+PBhFEUxOjY1NZXs7GxDu+3s7MjOzub69etGQUdRFK5du2b4fHLk9bp2dnaGH/Pc8tpmirVr19KzZ0/Gjh1rtP3GjRv5eo+f5/skhDBfEpvyT2KTxCZzJmVyosC9++672NraMmvWLPR6Pa6urtSpU4djx47h5+eX5y3n8rVGozEaTAlw7NgxDh06ZLStZcuWZGRkEB0d/dS2lC9f/qlnw3LUrVsXJycn1q9fj6Iohu13795l69atNGjQwOjM24sqV64cQ4YM4fTp03z33Xd5HpOamkpcXBwATZs25e7du48tzrdmzRrD/tz/rl271ui4LVu2cPfuXcP+pwkKCiIpKYljx44ZbV+/fv2zO/YcNBoN5cqVM9r2+++/c+XKFaNtTzqb+TzfJyGEyCGx6ckkNklsMmdyZUgUOFtbW4YNG8b06dNZt24doaGhTJo0iaFDhzJ48GB69eqFk5MTN2/e5NSpUyQkJDBr1iwA2rRpw5w5c5g1axYBAQGcOXOGOXPm4OLigk6nM7xG9+7diY6OZuLEiZw5c4agoCAUReHw4cO4ubnRrVs3ANzd3dm3bx87d+6kWrVq2NjY4Orq+libtVot7777Lu+88w7Dhw9nwIABZGZmsmjRIm7dusW4ceMK7P3JCTiRkZHEx8fTvXt3w8J2+/fvZ+XKlYwaNYrGjRvTs2dPli9fzvvvv8+FCxdwd3cnLi6O+fPn07p1a5o1awZA8+bNadGiBV9//TV37tyhUaNGHD9+nFmzZuHt7U1oaOgz2zVw4EBWrVrFsGHD+Ne//mWYsSd3CUhBaNOmjWFmHg8PDxISEli0aJFhNp4ctWrVomLFiqxbtw43Nzesra1xdHTEyckp398nIYTIIbHp6SQ2SWwyV5IMiUIRFhbG8uXLmTNnDt27dyc4OJiff/6ZefPm8eWXX3Lr1i3s7Oxwc3OjS5cuhsdFRERw7949fvnlF6KioqhXrx4TJ05k+/bt7Nu3z3CcpaUlCxcuZP78+WzYsIElS5ZgY2ODp6cnLVu2NBz34YcfMmnSJMaOHcu9e/cIDAxk2bJlebY5JCQEKysrFixYwJgxY7CwsMDf35+lS5fSqFGjAntvNBoNU6ZMoUOHDqxcudLwfuS0/5133jEMNq1QoQJLly7lm2++ISoqihs3buDk5MQbb7xhtCieRqNhzpw5REZGEh0dzbx587CzsyM0NJSxY8c+dkYzL9WqVePHH3/kiy++YOLEiVhZWdGhQwc+/vhjw/SvBeHDDz/E0tKSBQsWcPfuXby9vYmMjGTmzJlGx1lZWfHll18ye/ZsBg8eTFZWFiNHjmTUqFH5/j4JIURuEpueTGKTxCZzpVFyX3cVQgghhBBCCDMhY4aEEEIIIYQQZkmSISGEEEIIIYRZkmRICCGEEEIIYZYkGRJCCCGEEEKYJUmGhBBCCCGEEGZJkiEhhBBCCCGEWZJkSAghhBBCCGGWJBkSQgghhBBCmCVJhoQQQgghhBBmSZIhIYQQQgghhFmSZEgIIYQQQghhlv4/NZCbKNopV+IAAAAASUVORK5CYII=",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2EAAAHaCAYAAACJnkGgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC9J0lEQVR4nOzdd3hUZfo38O+ZSSY9mXRILxBCCSSQQgsoYkVwLau+7qrouooC6uo2UNfyc1eUXRugK9a1gIoiIgqCiHSSAEkINUB6AumT3qa8f5xMSMyE5EymJt/PdXlNmHOek/uB3Zzcc57nvgWdTqcDERERERERWYTM2gEQERERERENJ0zCiIiIiIiILIhJGBERERERkQUxCSMiIiIiIrIgJmFEREREREQWxCSMiIiIiIjIgpiEERERERERWRCTMCIiIiIiIgtiEkZERERERGRBTMKIiIiIiIgsyMHaARBJodFo8PXXX2Pz5s3Izc1FU1MTPD094efnh4kTJ2LOnDm46qqrus4fM2YMAODMmTM9rqN/vy8vvfQSbrnlFpN+3w0bNuDpp59Gamoq3nvvPYPf98EHH8Tu3bvxwgsv4I477hjQ38nKlStx/PhxFBQUoLa2Fs7OzggKCsLcuXPxu9/9Dt7e3gO6zq+dP38e69atQ1paGi5cuIC2tjYolUqMGzcOV199NRYsWAAnJyejrm1uxsSek5ODdevWIT09HZWVlXBwcEBwcDBmzpyJhQsXIjAw0EqzISJbxvtSb7wvXdLXv3d3c+bMQWlpKXbu3ImQkBCjvg/vYfZH0Ol0OmsHQTQQGo0GDz30EPbu3QtPT0/Mnj0bI0aMQF1dHQoLC3H06FHExcVh/fr1XWP6u9ktWbLE4PeaO3cuxo4da/Lv+/DDD+Pnn3/GP/7xD/zud7/rcWzdunV4/vnnccUVV+Cdd94Z8N/LhAkTMG7cOERHR8PX1xctLS3IysrC8ePHERAQgC+++AJBQUEDvh4ArF69GmvWrIFWq0V8fDzi4uLg5uaGqqoqHD58GAUFBRg/fjw2btwo6bqWIDV2nU6Hf//733jvvffg4OCA6dOnIyYmBh0dHcjMzMSxY8fg4uKCFStW4LrrrrPy7IjIlvC+ZBjvS5eYOwnjPcyO6YjsxKZNm3QxMTG6BQsW6Orr63sdV6lUuv379/d4LyYmRhcTE9Pr3L7eN/f3raqq0k2dOlU3adIk3fnz57vez8vL002aNEmXkpKiq6ysHFBceq2trQbff/XVV3UxMTG6f/zjH5Ku99Zbb+liYmJ0s2fP1mVlZRk8Z/fu3bq7775b0nUtwZjYV61apYuJidFdeeWVutzc3F7nb9u2TRcXF6cbO3as7sCBA2aLnYjsD+9LhvG+dMlA/l2vvPJKXUxMjK64uFjy9XkPs1/cE0Z24+jRowCAm2++GR4eHr2Oe3l5Yfr06Tb9fX19ffF///d/aGlpwV/+8heo1Wqo1Wr85S9/QUtLC1588UX4+flJiq+vpRfXX389AKC4uHjA1yopKcGaNWvg6OiItWvXYtKkSQbPmzVrVo+lK2lpaRgzZgxWrVpl8Pw5c+Zgzpw5A47DGMbEXlxcjLfffhuOjo54++23MXr06F7nX3vttVi2bBk0Gg2ee+45aLVas86DiOwH70uG8b5kGbyH2TcmYWQ3fHx8AAAFBQV2/X3nzp2LW2+9FcePH8eaNWuwZs0a5OTk4JZbbsHcuXNN8j0A4OeffwbQ/z6D7jZu3IiOjg5cc801iImJuey5CoViUPGZmjGxb9y4EWq1GlddddVl/55++9vfwt/fHwUFBUhPTzdp3ERkv3hfkma43ZfMjfcw+8bCHGQ3rr32Wrz77rv4/PPP0djYiKuuugoTJkxAaGio0dc09AlZcHBwj83P5vi+y5cvR1paWtca++DgYDz11FNGXw8A3n//fTQ3N6OhoQHHjx/HkSNHMG7cODz44IMDvsbhw4cBANOmTRtULNZgTOxHjhwBAMyYMeOy5zk4OCAlJQVbtmzB0aNHMXXqVOMDJaIhg/elyxvu96Xu+noiBwD19fVGXZP3MPvGJIzsRmxsLP7973/jxRdfxHfffYfvvvsOAKBUKpGcnIzbbrsNs2fPlnTN1atX93ovOTm5x83OHN/X3d0dixcvxrJlywAAzz33HNzd3SVd49c++OADVFVVdf151qxZWLFihaQqVPrx9lhFyZjY9WNGjBjR77n6cyoqKoyIjoiGIt6XLm+435e6M/TvOli8h9k3JmFkV6677jpcddVVSEtLw5EjR3Dq1CkcOXIE27dvx/bt23Hrrbfin//8JwRBGND1LletyJzft7W1Fe+++27Xn3/88UfMmjXL4LmGPj27+eabe1VQ2r9/PwDxh3JmZib+/e9/46abbsI777yD8ePHD+h6us5iqQOdhzkMdL6/ZkzsUsboz+l+7jvvvIPt27cjPz8fCoUC8fHxeOKJJ/pdMkNEQwfvSyLely5vINURuxvI/WWw9zCyLiZhZHccHR0xc+ZMzJw5E4BYqvfHH3/EU089ha+//hpz5swx6Rp2c3zflStXIi8vD/fccw8yMjLw1VdfYe7cubjyyit7ndvXp6J9/fD38/PD1VdfjfHjx+Oaa67B3/72N2zZsmVA1wsICEBeXh4uXrw4oHmYg9T56hkTu7+//4DH6M/x9/fvei89PR133XUX4uLioNPp8Oabb+K+++7D999/D6VSOeA4iMi+8b7E+5KpDeT+Mth7GFkXkzCye3K5HDfccANyc3Px9ttv49ChQ2a52Znq++7btw+fffYZYmJi8Je//AUFBQW49dZb8cwzz+C7777rtUxjoJ+K/lpQUBBGjRqFU6dOoaampmsj9+WuN2XKFBw6dAiHDh3Cb3/72wF/L5lMrPGjVqsNHm9oaDBYwcsQY+drTOxTpkxBWloaDhw4cNkxGo0GaWlpAIDJkyd3vf/+++/3OO+VV15BYmIijh49avdVt4jIeLwvGTbc7kuDMZD7y2DvYWRdrI5IQ4abmxuAS4/nbfH7qlQqLFu2DA4ODli5ciUUCgViYmLw2GOPobKyEs8995xJY9Ov/ZbL5QM6/5ZbboGjoyN+/PFHnDt37rLntre3d33t6ekJAAY/jSssLDR607EUxsR+yy23QC6XY8eOHZcd8/XXX6OiogKRkZFITk7u87ympiZotdquvw8iGt54X+ptON2XTMnQ/cXU9zCyLCZhZDe2bNmC/fv3G+xxUVlZiQ0bNgAAEhMTbfb7Pvfcc6ioqMDjjz+O2NjYrvfvv/9+JCYmYtu2bT2WaPTn/PnzqKys7PW+VqvFa6+9hurqaiQkJMDLy2tA1wsJCcGSJUvQ0dGBBx98EDk5OQbP27NnDx544IGuP0dFRcHd3R07d+5EdXV11/utra148cUXBzyfwTAm9tDQUDz00EPo6OjAokWLDN7EfvrpJ/zzn/+EXC7Hs88+2/XpqiH//Oc/MXbsWCQkJJhmUkRk03hf6o33JfMwdH8x9T2MLIvLEcluZGdn4+OPP4a/vz8mT57ctRa7pKQEu3fvRmtrK6666ipcd911Nvl9N23ahK1btyIpKQn3339/j2MymQwrVqzAggUL8MILLyApKWlAlaD27t2LlStXIjExEWFhYVAqlaiqqkJGRgaKi4vh7+8v+WazaNEiqNVqrFmzBrfddhsSEhIwYcIEuLm5oaqqCocPH0ZBQQEmTJjQNcbR0RH33XcfVq1ahd/85je4+uqroVarceDAAQQEBCAgIEBSDMYyJvalS5eipaUFH374IW666SbMnDkTo0aNglqtRmZmJrKzs+Hs7Iz//Oc/ly2R/PLLL+PIkSNYv379gD/hJSL7xvtSb7wvmd7l7i+muoeR5Qk6Sz8jJzLShQsX8PPPP+PAgQM4d+4cKisr0d7eDqVSibFjx+LGG2/E/Pnze3zKo29e+Ov13H29b67vW1ZWhgULFkCn02Hz5s0IDg42+L02bNiAp59+GqmpqXjvvff6jS03Nxfr16/H0aNHcfHiRTQ0NMDFxQURERG44oorcPfddxtdIOL8+fNYt24d0tLSUFZW1jXn2NhYXHvttbjpppt6NMbU6XR477338MUXX+DixYvw8/PDDTfcgKVLl2LevHkALjXqNDepsQPAsWPH8NlnnyEjIwNVVVWQy+UIDg5Gamoq7r333suWAH7ppZfw/fff43//+x+io6PNPT0ishG8L/XG+1JPA/l31VdH3LlzZ69iHwO9vwzmHkbWwSSMiGgQXnzxRfzwww/45JNPmIAREZHJ8P4ytHE5IhGRkZ577jls3rwZa9asgaenZ9c+CFdX166N8URERFLx/jL08UkYEZGR9MtMfm3JkiVYunSphaMhIqKhgveXoY9JGBERERERkQWxTiUREREREZEFMQkjIiIiIiKyICZhREREREREFsQkjIiIiIiIyIJYon6QtFot1Go1ZDIZBEGwdjhERMOGTqeDVquFg4NDj6a0xHsTEZG1DPTexCRskNRqNXJycqwdBhHRsBUXFweFQmHtMGwK701ERNbV372JSdgg6TPcuLg4yOVyyeM1Gg1ycnKMHm/vOH/On/Pn/Af785NPwXrjvWlwOH/On/Pn/M19b2ISNkj6ZR5yuXxQ/0Md7Hh7x/lz/pw/528sLrfrjfcm0+D8OX/On/M3Vn/3Jn58SEREREREZEFMwoiIiIiIiCyISRgREREREZEFMQkjIiIiIiKyICZhREREREREFsQkjIiIiIiIyIKYhBEREREREVkQkzAiIiIiIiILYhJGRERERERkQUzCiIiIiIiILIhJGBERERERkQUxCSMiIiIiIrIgJmFEREREREQWxCTMiprb1ViyPhM78pqtHQoREREA4NSFeiz8MAPnajqsHQoR0ZDFJMyKimqasfV4OdblNECn01k7HCIiIuw7W4W956qxObfJ2qEQEQ1ZTMKsKNLPDQq5gPp2HYprW6wdDhERESYEewEATlW28wNCIiIzYRJmRU4OcowL8gQAZBWrrBsMERERgIQwJRzlAmpatSiq4QeERETmwCTMyiaFKAEAWcV11g2EiIgIgLOjHHGdT8MyCmusHA0R0dDEJMzK4kPFGx2fhBERka1IjvAGAGTk11o5EiKioYlJmJXFhyoBiNWo2tQa6wZDREQEIDHCBwCQUcgkjIjIHJiEWVmotws8nWRo1+hwoqze2uEQEREhMVwJAUBhdTMq6lutHQ4R0ZDDJMzKBEFAjI8jACCrSGXdYIiIiAB4ODsiQukAAEgv4L4wIiJTYxJmA0b7iklYJveFERGRjRjrpwAApOczCSMiMjUmYTZA/yQss4hr74mIyDaM82cSRkRkLkzCbMAoH0cIAlBS24LKhjZrh0NERISxfuIHhGfKG6BqbrdyNEREQwuTMBvg6ijDKH93ACxVT0REtkHpLEeknyt0OuBwAVdqEBGZEpMwG3GpXxhvdEREZBuS9KXqWZyDiMikmITZCH2/sExWSCQiIhuR1Nm0OY37woiITMrB2gGQKKEzCTtWUgeNVge5TLBuQEREJFljYyPeeustnD59GidPnkRtbS2WLFmCpUuX9jt248aNWLZsmcFj+/btg7+/v6nD7VdyZxJ2vLQOze1quCr4awMRkSnwp6mNGBXgDjeFHI1tapyraMSYER7WDomIiCRSqVT48ssvERsbi7lz52LDhg2Sr/HSSy8hKiqqx3tKpdJEEUoTrHRBkJczyupakVmkwoxRflaJg4hoqGESZiPkMgETQ5Q4mFeNzKJaJmFERHYoODgYGRkZEAQBNTU1RiVho0ePRlxcnBmik04QBCRF+uDbrDKk59cwCSMiMhHuCbMh8WFKAKyQSERkrwRBgCAMreXkyZFicQ72CyMiMh0+CbMhCSzOQUQ07C1atAg1NTXw8PBAcnIyHn30UcTExBh1LY1GM6hxGo0GUzo/IMwsrkVLWwcUDkP/89vu8x+OOH/Ov/vrcDPY+Q90HJMwG6J/EpZb0YDGNjXcnfjPQ0Q0XPj5+WHRokWIj4+Hu7s7cnNzsXbtWtxxxx1Yv349YmNjJV8zJydnUDHl5ORAp9PBUyGgvl2Lb3YfxhhfxaCuaU8G+/dn7zh/zn84M/f8+Vu+DQnwcEaw0gWlqhYcK1ZhOtfeExENG7NmzcKsWbO6/pyUlITZs2dj/vz5eOONN/D2229LvmZcXBzkcrnkcRqNBjk5OV3jU04cxY5TFVA5+iE+Pqr/C9i5X89/uOH8OX/O3/j568f3h0mYjUkIU6JU1YJMJmFERMNeSEgIpkyZguzsbKPGy+XyQf0SpR+fEuWLHacqcLhQhUeG0S9lg/37s3ecP+fP+Ztv/kN/YbedYdNmIiLqTqfTQSaz7u1aX5wjo6AGGq3OqrEQEQ0FTMJsTEKY2Bgzq7gWOh1vdEREw1lxcTGOHj2KSZMmWTWOcSM94aaQo6FVjTMXG6waCxHRUMDliDZmfJAnHOUCqhrbUVLbglAfV2uHREREEuzevRstLS1oamoCAJw7dw7btm0DAMyePRsuLi5Yvnw5Nm3ahB07diA4OBgAsHDhQiQmJiI2NhZubm7Izc3Fe++9B0EQ8Nhjj1ltPgDgIJdhcrg39p6tQnp+NcYFeVo1HiIie8ckzMY4O8oxbqQnskvqkFmsYhJGRGRnnn/+eZSWlnb9edu2bV1J2M6dOxESEgKtVguNRtNjxUNMTAy2bt2KDz74AG1tbfDx8cHUqVPxyCOPIDIy0uLz+LWUSB/sPVuFjIJaLJxh/XiIiOyZ3SZhBw8exObNm5GZmYmLFy/Cw8MDEyZMwOLFizFhwoTLjt24cSOWLVtm8Ni+ffvg7+9vjpAHLD5UieySOmQVqbBgUpBVYyEiIml+/vnnfs9ZsWIFVqxY0eO95cuXmyskk0iKEPeFpeXXQKfTDbmm1ERElmS3Sdj69euhUqlwzz33YNSoUaipqcGHH36IO+64A++99x6mTZvW7zVeeuklREX1LLWrVCrNFPHAJYR5438HC5FZXGvtUIiIiAAAk0KVUMhlqGpsQ0F1MyL93KwdEhGR3bLbJOzZZ5+Fr69vj/dSU1NxzTXX4J133hlQEjZ69GjExcWZK0SjJXQ2bT5RVo82tQZODsO3PCgREdkGZ0c54kOVSC+oQXp+NZMwIqJBsNvqiL9OwADAzc0N0dHRuHDhghUiMp0wH1f4uCnQrtbi1AVWoSIiItuQFClW8E3P50oNIqLBsNsnYYY0NDTg5MmTmDp16oDOX7RoEWpqauDh4YHk5GQ8+uijiImJMep7azSaQY379fhJIV7YdaYSRwqqERfkYdS17UFf8x8uOH/Ov/vrcDPY+Q/XvzdrSo70xZpd55FeUG3tUIiI7NqQSsKef/55tLS0YNGiRZc9z8/PD4sWLUJ8fDzc3d2Rm5uLtWvX4o477sD69esRGxsr+Xvn5OQYG7bB8YEOLQCAX3IKEO+qGtS17cFg//7sHefP+Q9nw33+9mRymBIyASiuacGFuhaM9HKxdkhERHZpyCRhr7/+Or777js888wz/VZHnDVrFmbNmtX156SkJMyePRvz58/HG2+8gbffflvy94+Li4NcLn3vlkajQU5OTq/xje5V+PzEYRQ2CoiPj5d8XXvR1/yHC86f8+f8jZ+/fjxZjoezI8YHeSGntA7p+TW4KT7Y2iEREdmlIZGErV69Gm+//Tb+9Kc/4fe//71R1wgJCcGUKVOQnZ1t1Hi5XD6oX6J+PT4+TCwFXFTTAlWLGr7uTkZf2x4M9u/P3nH+nD/nP3znb2+SInyQU1qHjAImYURExrLbwhx6q1evxqpVq7B06dJ+lyH2R6fTQSazjb8SLxdHjApwBwBkFausGwwREVGn5EjxQ8L0/BorR0JEZL9sI+Mw0po1a7Bq1So8/PDDWLJkyaCuVVxcjKNHj2LSpEkmim7w4kOVAJiEERGR7UiKECsk5pY3orap3crREBHZJ7tdjvjBBx/gzTffRGpqKq644gpkZWX1OK7fR7V8+XJs2rQJO3bsQHCwuGxi4cKFSExMRGxsLNzc3JCbm4v33nsPgiDgscces/BM+pYQpsRXR0qQWaSydihEREQAAF93J4wKcMe5ikZkFNTgmvEjrB0SEZHdsdskbNeuXQCAvXv3Yu/evb2OnzlzBgCg1Wqh0Wig0+m6jsXExGDr1q344IMP0NbWBh8fH0ydOhWPPPIIIiMjLTOBAUgIFT9tzC5WQavVQSYTrBwRERGRuC/sXEUj0vOZhBERGcNuk7BPPvlkQOetWLECK1as6PHe8uXLzRGSdOp2CLtfgUeHP4D4XodjAt3h4ihHQ5sa5ysbMTpw6PYLIyIi+5ES6YP16UXIKOC+MCIiY9j1njC7V5UL2d6VCM/+j8HDDnIZJoZ4AQCXJBIRkc1I6izOcbysHk1taitHQ0Rkf5iEWZN3OHSCDE4t5UDDBYOnxIcpAQCZLM5BREQ2IljpgmClCzRaHY4W1Vo7HCIiu8MkzJqcPAD/seLXpUcMnqLfF5bJmxwREdmQFJaqJyIyGpMwK9MFTwEACH0lYZ1PwnLLG7jkg4iIbEYSkzAiIqMxCbO2kEQAgFB62ODhQE9nBHk5Q6sDjpXUWTIyIiKiPumbNmcWq9Cm1lg5GiIi+8IkzMp0wWIShrJMQGP4SVdCWOeSxGIuSSQiItsQ5ecGP3cF2tVa5PBDQiIiSZiEWZtfDDQObhA6moGKkwZPiQ9VAgCyWCGRiIhshCAISIoQn4alcUkiEZEkTMKsTZChSRkrft3HksSEbhUSuzedJiIisiZ9EsZ+YURE0jAJswFN3p0VEksMJ2ETgr3gIBNQ2dCGsrpWC0ZGRETUN/2+sMMFtdBo+SEhEdFAMQmzAY3e48QvSjIMHnd2lGPsSE8ALFVPRES2Y+xIT3g4OaCxTY1TF+qtHQ4Rkd1gEmYDmvXLEatygRaVwXO4L4yIiGyNXCZgSoRYPIql6omIBo5JmA1QOymh844U/9BPv7DMYpVlgiIiIhoA/b4wJmFERAPHJMxGdJWq72NfmL5MfU5pHdrVWkuFRUREdFkpkZeKc7B4FBHRwDAJsxXBU8TXPvaFRfi6QunqiHa1Fqcvct09ERHZhrgQLzg5yFDd1I7zlU3WDoeIyC4wCbMRupDOJ2GlhwEDnyQKgtC1LyyT+8KIiMhGODnIu+5PLFVPRDQwTMJsReAEQO4EtNQCNXkGT+kqzsF9YUREZEP0SxK5L4yIaGCYhNkKuQIIihe/7mNJon5fGMvUExGRLUliEkZEJAmTMFvST3GO+BAlAKCguhm1Te0WCoqIiOjyJod5Qy4TUKpqQamqxdrhEBHZPCZhtkS/L6yPJ2Fero6I8ncDwCWJRERkO9ycHDAhyBMAkMGnYURE/WISZktCksTX8uNAe7PBUxJCuSSRiIhsT3LnksQ0JmFERP1iEmZLvEIA90BAqwYuZBs8JZ5Nm4mIyAbpmzazQiIRUf+YhNkSQbj0NKy0j6bN3SokarVsiklERLZBn4Sdq2hEVWOblaMhIrJtTMJsTT/7wmJHeMDZUYaGVjXyqtgUk4iIbIO3mwIxge4AgMN8GkZEdFlMwmxNPxUSHeQyTAxWAuC+MCIisi3JXaXqeX8iIrocJmG2JigBEGRAfSlQX2bwFP2+MFZIJCIiW6JfkpheUG3lSIiIbBuTMFvj5A4EjBe/7uNpmH5fWGaRyjIxERERDYD+SdjJsno0tHZYORoiItvlYMygs2fP4ujRoygvL0drayu8vb0xatQoJCUlwd3d3dQxDj8hiUB5jrgvbNyCXocTwsQy9acv1qO5XQ1XhVH/jERERCY10ssFYT6uKKppxpHCWlwxJsDaIRER2aQB//ZeV1eHL774Al988QXKysqg0/WuzOfg4IBZs2bh7rvvxrRp00wa6LASkggc+RAoPWLw8AgvZ4zwdMbF+lbklNQhJcrXwgESEREZlhThg6KaZmQU1DAJIyLqw4CSsI8//hhr1qwBANxwww1ITk7G+PHj4ePjAycnJ9TV1aG4uBhZWVnYuXMn7r//fkyfPh3/+Mc/EB4ebtYJDEldZeqPAho1IO/9z5QQpsTW4xeRWaxiEkZERDYjJdIHXx8tQTqbNhMR9WlASdgnn3yCZcuWYd68eXB0dOx13M/PD35+fkhISMB9992HoqIivP3229i6dSsWLVpk8qCHPN/RgJMX0FYHVJwARk7qdUp8qJiEZXFfGBER2ZCkzn1h2cV1aO3QwNlRbuWIiIhsz4CSsK1bt8LBYeD7jsLCwvDSSy9Bo9EYHdiwJpMBwZOBvF3ivjADSZh+X1hmMcsAExGR7YjwdYW/hxMqG9qQzdUaREQGDag64tmzZ426uFzOT7+Mpl+SWGJ4X1hcsBfkMgHl9W24UNdiwcCIiIj6JggCkjtL1WewaTMRkUEDSsJuvvlm3HLLLVi3bh0aGhrMHRMB3ZKwDIOHXRRyxI7wAMBS9UREZELV5yF8+wicGoqMvoS+VH0a94URERk0oCTsoYceQk1NDV544QXMnDkTf/7zn3Ho0CFzxza8hSSKr9VngRbDSw4TOps2ZxZxSSIREZnImR8gO/Y5Rp791OhL6Js2Hy2shVqjNVVkRERDxoCSsD/96U/YtWsX1q5diyuvvBLbt2/Hfffdh6uuugpvvfUWLly4YO44hx9XH8AnSvy6j1L18aHivrCsYpWFgiIioiFvRBwAwKM6CzDQjmYgxozwgKezA5raNTh5od6EwRERDQ0DSsIAcY33rFmz8Prrr2Pfvn146qmn4OXlhTfffBNz587FH/7wB2zbtg0dHR3mjHd46VqSeNjgYf2TsGMldejgJ41ERGQKIcnQyRVQtFYBtflGXUIuE5DY+TSMpeqJiHobcBLWnaenJ37/+99j48aN2LRpE+666y6cPHkSf/rTnzBr1ixTxzh89bMvLNLXDZ7ODmhTa3HmIvfqERGRCShcgeApAAChYK/Rl9HvC2MSRkTUm1FJWHexsbFYsGAB5syZAwBQqVSDveSAHDx4EMuWLcN1112H+Ph4pKam4uGHH8bx48cHNL66uhp///vfkZKSgkmTJuGOO+7AwYMHzRy1RJ03QZQcNrgkRCYTEK8vVc99YUREZCK68JniFwX7jL5GUrcKiVqtccsaiYiGKqOTsJqaGnz00UeYP38+br/9dnz77be48sorsWbNGlPG16f169ejtLQU99xzD9auXYunnnoKNTU1A0qm2tvbsXDhQhw8eBBPPfUU3nrrLfj6+uKBBx5Aenq6ReIfkMAJgIMz0KoCqs8bPCU+VAkAyOS+MCIiMhFdRCoAQCjcb/S+sLhgLzg7ylDb3IHzlY2mDI+IyO4NvAMzAK1Wiz179uDrr7/GL7/8go6ODkREROCJJ57AzTffDD8/P3PF2cuzzz4LX9+eDSBTU1NxzTXX4J133sG0adP6HLthwwbk5ubi888/R0JCAgAgJSUFN910E1auXIkNGzaYNfYBc1AAI+OB4kPikkS/Ub1O0e8Ly2KZeiIiMpWQRGhljpA1XgSqzwF+oyVfQuEgw+Qwbxw4X420/BqMDvQwQ6BERPZpQE/C8vPz8e9//xuzZ8/Gww8/jH379uHGG2/Ep59+im3btuGPf/yjRRMwAL0SMABwc3NDdHR0v9Uaf/rpJ0RGRnYlYADg4OCABQsW4NixYygvLzd5vEbTl6rvY19YfIgSAJBX1QRVc7uFgiIioiHNwRlN3uPFr/P3GH2ZJDZtJiIyaEBPwq6//noAwMSJE7F06VLMmzcPbm5uZg3MGA0NDTh58iSmTp162fPOnj2LKVOm9Hp/zJgxXccDAwMlfW+NRiPp/F+P63N80GTIAehKDkNr4BxPZzkifF1RUN2Mo4U1mB3jb1Qc1tLv/Ic4zp/z7/463Ax2/sP1781SGvzixTL1BfuApD8YdY2UbsU5dDodBEEwYYRERPZrQEnYvffei9tuuw2jR0tfjmBJzz//PFpaWrBo0aLLnqdSqeDl5dXrff17xhQXycnJkTxmIOMdW1wxEQDKc5B9+BB0Ds69zgl316KgGtiWcRpezaWDisNaBvv3Z+84f85/OBvu87dVDb6TxC8K9on7woxIoBLCvOEgE3ChrhUltS0I9XE1cZRERPZpQEnYsmXLDL6fl5eH2tpajB07Fq6u1v3B+vrrr+O7777DM888gwkTJvR7/uU+jTPmk7q4uDjI5XLJ4zQaDXJycvoer9NBlzYSQsMFTArQAWHxvU65srUQuwtP4WKHC+Ljex+3Zf3Of4jj/Dl/zt/4+evHk3k0KcdC5+AMoakCqDwDBMRKvoaLQo64EC9kFqmQnl/DJIyIqJOkwhx6mzZtwquvvorKykoAwFdffYXx48fjsccew4wZM3D77bebNMj+rF69Gm+//Tb+9Kc/4fe//32/5yuVSoNPu+rq6gDA4FOy/sjl8kH9EnXZ8cFTgNNbIC87AkTO7HV4Sri4Py67pA4ymcwul3sM9u/P3nH+nD/nP3znb6t0cgUQmgLk7wYK9hqVhAFAcoQPMotUyCiowa1TQkwcJRGRfZJcon7r1q34+9//jnHjxuGZZ56Brlvp2vHjx2Pr1q0mDbA/q1evxqpVq7B06dJ+lyHqxcTEIDc3t9f7+vdsbtllV9PmwwYPx470gJODDHUtHcivarJgYERENJTpwmeIX7BpMxGRSUlOwtauXYtbbrkF//3vf3HHHXf0OBYVFYVz586ZLLj+rFmzBqtWrcLDDz+MJUuWDHjc3LlzkZeXh+zs7K731Go1Nm/ejEmTJkkuymF2/SRhjnIZ4oLFp3eZLFVPREQmoovo1rRZqzXqGonhPhAEsYpvZUObCaMjIrJfkpOw8+fPY968eQaP9bXMzxw++OADvPnmm0hNTcUVV1yBrKysHv/pLV++HOPGjUNp6aWCFfoiI4899hi+++47HDhwAI8//jjy8/Px5z//2SLxSxIUDwhyoKEMqDNceEPfLyyzuNZycRER0dAWNBlwdAWaq4HK00ZdwsvVEWM6e4SxVD0RkUjynjAXFxc0NDQYPFZeXm7Ufipj7Nq1CwCwd+9e7N3be5nEmTNnAIgNpjUaTY9lkwqFAh999BFWrlyJF198ES0tLRg7dizeffddJCcnWyR+SRRuQOA44GIOUHoY8ArudUp8qDeAfGQVqyweHhERDVH6fWF5u8QliYHjjLpMcqQPTl9sQHp+DW6IG2niIImI7I/kJCwhIQGfffYZrr322l7HNm7caLEk5pNPPhnQeStWrMCKFSt6ve/n54eXX37Z1GGZT0iSmISVZADjbup1WP8k7NSFBrS0a+Ci4CZ3IiIygchUMQnL3wOkPGTUJZIjffDxwULuCyMi6iR5OeLixYuRlZWF2267DZ988gkEQcD27duxaNEiHD58eMDFMUiifvaFjfRyRoCHEzRaHY6X1VkwMCIiGtIiZomvhfuN3heWHCEW5zh1sR51LR2mioyIyG5JTsLi4uLw7rvvorm5GStWrIBOp8M777yD/Px8rF27FjExMeaIk4ITxdeyLEDT+wYmCMKlfWFF3BdGRGQNjY2NeOWVV3D//fdj6tSpGDNmDFatWjXg8dXV1fj73/+OlJQUTJo0CXfccQcOHjxoxogHICgecHQDWmqBihNGXSLA0xkRvq7Q6YCjhbxHERFJTsIAYOrUqdi6dSu2b9+OdevWYevWrfjxxx+RkpJi6vhIz3cU4OwFqFuAcsM3QXFfGLgvjIjISlQqFb788ku0t7dj7ty5ksa2t7dj4cKFOHjwIJ566im89dZb8PX1xQMPPID09HQzRTwAckcgfJr4df7gS9WncUkiEZFxSZheWFgYJk+ejMjISFPFQ32RyS49DSvJMHjKpSdhKsvEREREPQQHByMjIwOffvopnnjiCUljN2zYgNzcXLz++utYsGABZsyYgTfffBMRERFYuXKlmSIeoIhU8bVgn9GXSOpcksgKiUREA0zCfvjhB8kXLi8vx5EjRySPo8sI0SdhhveFTQzxgkwALtS14mJdqwUDIyIiQFwaLgiCUWN/+uknREZGIiEhoes9BwcHLFiwAMeOHUN5ebmpwpROn4QV7gO0GqMukRLpCwA4VqJCa4dx1yAiGioGlIS98MILuOmmm7BhwwY0NjZe9tzjx4/j+eefx7XXXovTp43rKUJ90BfnKDWchLkqHDBmhCcAIIv9woiI7MrZs2cxZsyYXu/r3zt79qylQ7pk5CRA4QG01omVeo0Q6uOCQE8ndGh0XLFBRMPegErU79ixA6tWrcI///lPvPDCCxg3bhzGjRsHX19fKBQK1NXVobi4GFlZWaisrMTo0aOxatUqpKammjv+4SV4ivhafQ5orgFcfXqdkhCmxKkL9cgsUuG6CezFQkRkL1QqlcFem/r3VCqV5GtqNMY9cdKPuzRegCx8GoSz26HN3wNdYJxR102K8MaWYxeRlleF5AilUdewhN7zH144f86/++twM9j5D3TcgJIwDw8PLF++HIsXL8bGjRuxe/dubNq0CS0tLV3nhIaGIjU1FfPnz8fUqVONCpr64eoD+EQDNeeB0iPA6Kt7nRIfqsS6tCJksjgHEZHdudxSRmOWOebkGPfUytD4QMdIhACoP/Y9zjvPMOp6I+XNAICfc4qQ6nP5lTW2YLB/f/aO8+f8hzNzz19Ss2YvLy/cd999uO+++wAADQ0NaG1thVKphKOjo1kCpF8JSRKTsJLDBpOwyZ3FOXJK6qDWaOEgH1TtFSIishClUmnwaVddndj70dBTsv7ExcVBLpdLHqfRaJCTk9NzfCCAk+/AS3UC8RMnADJJv0IAAFxGNuDdzP04W6vB+LiJcLTRe5TB+Q8jnD/nz/kbP3/9+P5I/wnajYeHBzw8PAZzCZIqJBE49nmfFRKj/Nzh4eyAhlY1zpQ3YHyQ9Js2ERFZXkxMDHJzc3u9r39v9OjRkq8pl8sH9UtUj/FB8YCTF4S2OsgrTgDBkyVfL3aEF7xcHFHX0oHT5U2ID1UaHZslDPbvz95x/pw/52+++dvmR1DUt+7FObTaXodlMqHrpsaNz0RE9mPu3LnIy8tDdnZ213tqtRqbN2/GpEmTEBgYaMXoAMjkQPh08esC4/qFyWRCV6n69PxqU0VGRGR3mITZm8DxgIOzWKGq+pzBUxKYhBERWc3u3buxbds27Nq1CwBw7tw5bNu2Ddu2bevaS718+XKMGzcOpaWlXeNuu+02jB49Go899hi+++47HDhwAI8//jjy8/Px5z//2Spz6SWys+DWoJo2ewMA0tm0mYiGsUEtRyQrkDsCQQlA0UHxaZh/TK9T4jv3hbFMPRGR5T3//PM9kit9AgYAO3fuREhICLRaLTQaDXQ6Xdd5CoUCH330EVauXIkXX3wRLS0tGDt2LN59910kJydbfB4G6fuFFR0ENGpALv3XiOTOfmEZBbXQanWQyYzrq0ZEZM+YhNmjkETxBliSAcTf1etwfKj4KeP5yibUNXfAy5VFU4iILOXnn3/u95wVK1ZgxYoVvd738/PDyy+/bI6wTCNwAuCsBFpVwIUs8X4k0fggT7g4ylHX0oHcigbEdva3JCIaTrgc0R4Fd970+ijO4eOmQLivKwAgu0RloaCIiGjIk8mAiJni1/l7jLqEo1yGKeHih4UZXJJIRMOU5CTs//7v/5CXl2eOWGig9MU5yk8C7U0GT+G+MCIiMgv9ksSCfUZfIjlSLM6RxiSMiIYpyUnYpk2bMG/ePNx333346aefeqxnJwvxCgY8ggCdBijLMniKvkIi94UREZFJ6Z+EFR0CNB1GXUJfITGjoIa/RxDRsCQ5Cdu7dy+efvppVFZWYsmSJZgzZw7Wrl2Lmhp+mmVRIVPE1z6WJCaEiUs9MotVvMEREZHpBIwDXHyAjiag9KhRl0gIU8JRLqC8vg1FNc0mDpCIyPZJTsJcXV3xu9/9Dlu2bMGHH36I8ePH44033sAVV1yBv//97wPqEE0m0L1fmAFjR3pC4SCDqrkDBdW8wRERkYnIZEDEDPFrI/uFOTvKMTFECYCl6oloeBpUYY5p06Zh9erV2LlzJxISEvDtt9/i9ttvx29/+9sBVYeiQdAnYcUZgIEnXQoHGSYEiRWnuCSRiIhMKmKW+GpkEgZc2hfGJIyIhqNBJWGtra3YsGEDFi1ahLS0NERHR2Px4sXQaDRYvHgx1qxZY6o46ddGxgOCHGi8CNSXGjyla0kii3MQEZEp6Zs2F6UB6jajLpHcbV8YEdFwY1QSVlRUhJdeegmzZs3Cs88+ixEjRuCDDz7Ali1bsGTJEmzcuBF//OMf8emnn5o6XtJTuAKB48Wv+9gXdqk4h8oyMRER0fDgHwu4+gHqFqP3hU2J8IYgAAXVzaiobzVxgEREtk1yEvbAAw/guuuuw1dffYWbbroJ27Ztw3//+19Mnz69x3lXXnklamu5DM6s9EsSSwzvC0sIUwIATpbVo7VDY6GgiIhoyBOES1USjVyS6OnsiLGdjZrT+TSMiIYZyUlYcXExli1bhj179uCpp55CWFiYwfNGjx6Njz/+eNAB0mX0k4QFK13g5+4EtVaHE2V1FgyMiIiGPP2SRCObNgPcF0ZEw5fkJOzHH3/E3XffDTc3t8ue5+7ujuTkZKMDowEISRRfL2QZ7NUiCELX0zDuCyMiIpPSN20uyQA6jFtOyCSMiIarQRXmICvziQaclYC6FSg/bvAUJmFERGQWfjGAe6B4D+qjXUp/9E2bz5Q3QNXcbsroiIhsmoPUAXPmzIEgCAaPyWQyeHh4IC4uDvfccw+io6MHHSBdhkwmPg0795O4JDEoodcpLM5BRERmod8XdvxroGDfpT1iEvh7OCHK3w15lU04XFCLueMCzRAoEZHtkfwkLDk5GTqdDuXl5QgODsakSZMQFBSE8vJyaDQajBw5Ejt27MCtt97Kxs2W0LUvzHCFxIkhSsgEoFTVwupTRERkWvrEK38Q/cJYqp6IhiHJSdjMmTOhUCiwY8cOfPzxx3j11VfxySefYPv27VAoFJg7dy5+/PFHREREYNWqVeaImboL7twX1kcS5u7kgJhADwBAJp+GERGRKembNpekAx0tRl1Cvy8sjfvCiGgYkZyE/fe//8XSpUsxcuTIHu8HBQVh8eLFWLt2LTw8PLBw4UJkZWWZKk7qS/Bk8bUmD2g2fAPjvjAiIjIL32jAYySgae/zw8D+6PeFHS+tQ3O72pTRERHZLMlJWGFhIdzd3Q0e8/T0RGlpKQAgODgYLS3GfSpGErj6AL6jxa/7KFV/aV8Y+7YREZEJde8XZuSSxBBvFwR5OUOt1fHDQiIaNiQnYUFBQfjmm28MHvv666+7npCpVCp4eXkNLjoamJDLL0lMCPMGABwrqYNao7VUVERENBzoS9Ub2bRZEAQksVQ9EQ0zkpOwP/zhD9i2bRvuvPNOfPTRR9iyZQs++ugj3HnnndixYwceeOABAEBaWhomTJhg8oDJAH0S1keJ4FH+7vBwckBzuwa55Y0WDIyIiIY8fdPmksNAe7NRl2C/MCIabiSXqL/99tuh0+mwatUqrFixout9Pz8/PP/88/jtb38LAFi0aBEUCoXpIqW+dVVIPAJotWLp+m5kMgETQ72w/1w1sopVGBfkaYUgiYhoSPKOBDyDgfpSoDgNiL5S8iX0FRIzi2vRrtZC4cA2pkQ0tElKwjQaDYqKinD99dfj9ttvR15eHlQqFZRKJaKionr0D/Pz8zN5sNSHgPGAgwvQVgdUnwX8x/Q6JSHUG/vPVSOzqBZ3pYRZIUgiIhqSBEFcknjsc3FJohFJ2KgAd/i4KVDT1I6c0jpMCfc2Q6BERLZD0kdNOp0O8+bNQ2ZmJgRBQHR0NKZMmYLo6Og+GziTBcgdLjVq7mNfGJs2ExGR2eiXJBbsM2q4IAhI7Ey82C+MiIYDSUmYg4MD/Pz8oNPpzBUPGaurOEcfFRI7y9Sfq2xEfWuHhYIiIqJhQV8hsfQI0Gbc3mPuCyOi4UTyout58+Zh06ZNZghFmsbGRrzyyiu4//77MXXqVIwZM2bAzaE3btyIMWPGGPyvsrLSzJGbSde+MMNJmJ+7E0J9XKDTAceK6ywYGBERDXneEYBXGKBVA8WHjLqEPgnLKKiBRssPe4loaJNcmCM2NhY//PAD7rnnHlxzzTXw9/fvtRTxmmuuMVmAfVGpVPjyyy8RGxuLuXPnYsOGDZKv8dJLLyEqKqrHe0ql0kQRWpj+SVjFCfFTSKfevdwSQr1RXNOCzKJazBzNPXtERGRCkalA1mfiksRRcyUPHzfSE24KORpa1ThzsYFFpIhoSJOchP3tb38DAJSXlyM9Pb3XcUEQcOrUqcFH1o/g4GBkZGRAEATU1NQYlYSNHj0acXFxZojOCjyDLlWnupB1aWlINwlhSmzOLkMm94UREZGpRcwUkzAjmzY7yGWYEuGDPbmVSM+vZhJGREOa5CTs448/NkcckrEQiAEhicDJUrE4h4EkrHtxDp1Ox79DIiIyHX3T5rJMoK0BcPKQfInkCG/sya1ERkEtFs6INHGARES2Q3ISlpycbI44rGLRokWoqamBh4cHkpOT8eijjyImJsaoa2k0mkGNM3Z8d0LQZMhOfgtdcQa0Bq43JtAdCrmAmqZ25Fc2ItzXddDfc7BMOX97xPlz/t1fh5vBzn+4/r3ZLGWouDestgAoOgSMvlryJZIjfQEAafk1/LCQiIY0yUmYXkNDA7KyslBbW4vZs2fDy8vLlHGZlZ+fHxYtWoT4+Hi4u7sjNzcXa9euxR133IH169cjNjZW8jVzcnIGFdNgxwOAW7MSsQDUBQdxLDNT7N3yK+FeDjhb04HN+7ORGuYy6O9pKqaYvz3j/Dn/4Wy4z39IiZgpJmH5e4xKwiaGeEEhl6GqsQ0F1c2I9HMzfYxERDbAqCRszZo1ePfdd9Ha2gpBEPDVV1/By8sL9957L2bMmIEHH3zQ1HGa1KxZszBr1qyuPyclJWH27NmYP38+3njjDbz99tuSrxkXFwe5XC55nEajQU5OjtHje+iIge7Qk3Bsq0F8lD/gFdLrlBmlp3D2QCFqZF6Ijx83uO9nAiadvx3i/Dl/zt/4+evHkw2JmAVkfio2bTaCs6Mc8aFKpBfUID2/mkkYEQ1ZkpOwzz77DGvWrMFdd92F1NRUPPTQQ13HrrzySmzfvt3mkzBDQkJCMGXKFGRnZxs1Xi6XD+qXqMGOFy/iAQROAC5kQV52BPAJ73VKQpg3PjpQiOySepv6pc8k87djnD/nz/kP3/kPKfr9yBeygdY6wFn6KpmkSO/OJKwWdySFmThAIiLbILlP2GeffYaFCxfi6aefxsyZPYs/hIeHo7Cw0GTBWZpOp4NMJvmvxLb007R5cpg3AOBkWR1aO7ifgoiITMgrGPCJAnRaoPCgUZfQ7wtLL6g2ZWRERDZFcsZRXFyM1NRUg8fc3NxQX18/6KCsobi4GEePHsWkSZOsHcrg6Js2lxpOwkK8XeDnrkCHRocTZfb5b0VERDZMXyXRyCWJk8OUkAlAcU0LLtS1mDAwIiLbITkJ8/DwQFVVlcFjpaWl8PX1HXRQA7V7925s27YNu3btAgCcO3cO27Ztw7Zt29DSIv7gXr58OcaNG4fS0tKucQsXLsTq1avx008/4eDBg/jf//6Hu+66C4Ig4LHHHrNY/GahT8LKsgB1e6/DgiD0KFVPRERkUpGde66NTMI8nB0xPkhcxpieX2OqqIiIbIrkPWHTpk3De++9h6uuugpOTk4AxF/s1Wo11q9f32uJojk9//zzPZIrfQIGADt37kRISAi0Wi00Gg10Ol3XeTExMdi6dSs++OADtLW1wcfHB1OnTsUjjzyCyEg770viEwW4eAMttUB5DhA8pdcpCWHe+OlUBTKLagHY+XyJiMi2dO0LOybei1y8JV8iKcIHOaV1yCiowU3xwSYOkIjI+iQnYY8++ihuu+02zJs3D3PnzoUgCPj0009x6tQplJWV4fXXXzdDmIb9/PPP/Z6zYsUKrFixosd7y5cvN1dI1icIQHAicG4HUHLEYBLGJ2FERGQ2HiMA39FA9Vmg8AAQO0/yJZIjffDB/nw+CSOiIUvycsTw8HCsX78eUVFRWL9+PXQ6Hb799lt4e3tj3bp1CAoKMkecJIV+SWJJhsHDE0O8IAhASW0LKhvaLBgYERENC5H6fWH7jBqeFCE+Pcstb0RtU++l9URE9s6oPmGjRo3C+++/j/b2dtTW1sLLywvOzs6mjo2MFdL59KuPJMzD2RGjA9yRW96IrGIVrh4XaMHgiIhoyIuYCRz+AMg3bl+Yr7sTRgW441xFIzIKanDN+BEmDpCIyLoGVY9doVAgMDCQCZit0S9BrM0HmgwXUUkIFT9lFPeFERERmZC+QmJ5DtBs3JLC5EgfACzOQURDk1FPwkpKSrB161aUlZWhtbW1xzFBEPCvf/3LJMGRkVy8Ab8YoCoXKD0CxFzb65T4MCW+OFyMzCKV5eMjIqKhzT0A8I8FKk8DhfuBsfMlXyI5wgfr0oqQUcAkjIiGHslJ2C+//IIlS5ZAq9XCx8cHCoWix3FBEEwWHA1CSJKYhJVkGEzCEsKUAIBjJSpotDrIZfx3IyIiE4qYKSZh+XuNS8I6n4QdL6tHU5sabk5GfW5MRGSTJP9Ee+211zB58mS89tprFu0JRhIFTwGyPutzX9joAA+4KeRoatfgbEUDYkd4WjhAIiIa0iJSgYz3jO4XFqR0QbDSBaWqFhwtqkXqaH8TB0hEZD2S94QVFhbij3/8IxMwW6evkFh6FNBqex2WywRMDFECALK4JJGIiExN3y+s4mSf+5P7k8J9YUQ0RElOwoKCgtDc3GyOWMiUAsYBjq5AW724LNEA/ZJE7gsjIiKTc/MT70WA8aXqmYQR0RAlOQl76KGH8MEHH6ClpcUc8ZCpyB2AoATx6z6WJLJpMxERmZW+SqKRSxL1+8Iyi1VoU2tMFRURkdVJ3hOWk5OD6upqXH311UhJSYG3t3evc55++mmTBEeDFJIoVqUqyQAm393rcHznk7DcigY0tHbAw9nRwgESEdGQFpkKpL9j9JOwKD83+LkrUNXYjpySOiRG+Jg4QCIi65CchH366addX3///fe9jguCwCTMVnTtCzti8HCAh3PXpudjJXWYMcrPgsEREdGQFz4DgCBWSWysEEvXSyAIApIifLD1+EWk5dcwCSOiIUNyEnb69GlzxEHmEJwovlacBNoaACePXqckhClRqmpBVrGKSRgREZmWqw8QOEFs2lywF5hwq+RL6JMw9gsjoqFE8p4wsiOeIwHPEECnBcoyDZ6SECYuJ80sqrVkZERENFxE6veFGbckUb8v7HBBLTRanamiIiKyqgElYRkZGWhqaur3vJqaGnz11VeDDopMKKTzaVjJYYOHuxfn0Ol4cyMiIhPTl6rPN644x9iRnvBwckBjmxqnLtSbMDAiIusZUBJ2zz334Pz5811/1mq1mDBhAk6ePNnjvOLiYjzzzDOmjZAGR78vrI8kbHyQJxzlAqoa21FSy4qXRERkYuHTAQhA9Vmg/oLk4XKZgCkR4qoNlqonoqFiQEnYr5+Q6HQ6qNVqPjmxB11PwjIAA/9ezo5yjBvpCUAsAUxERGRSLt7AyIni14X7jbpEMvuFEdEQwz1hQ93ISYDMAWiqAOqKDZ7CfWFERGRW+n5h+XuMGp7cWRUxo6CGHwAT0ZDAJGyoc3QBRsSJX/fTtDmzSGWZmIiIaHgZZNPmuBAvODnIUN3UjvOV/e9RJyKydUzChoPgyxfnSOhs2nyyrB5tao2FgiIiomEjfBogyICaPKCuVPJwJwd51weGLFVPREPBgJOwvLw8nDhxous/Q+/l5eWZLVAahK7iHIafhIX5uMLHTYF2jRYny1h5ioiITMzZS1weDxhdqj6F+8KIaAgZcLPmZcuW9Xrvr3/9a48/63Q6CIIw+KjItPTFOS4cA9RtgINTj8OCICA+VImfT1cgq1jVtUeMiIjIZCJSxZ6VBXuASXdIHp7EJIyIhpABJWEvvfSSueMgc/KJAlx8gJYa4OJxIGRKr1MSOpOwzCIV7pthhRiJiGhoi0gFDrxp9JOwyWHekMsElKpaUKpqQbDSxcQBEhFZzoCSsJtvvtnccZA5CYL4NOzsdnFJooEkLL5zX1gWy9QTEZE5hE8DBDlQWwCoigFlqKThbk4OmBDkieySOmTk1yA4Idg8cRIRWQALcwwX+n1hpYaLc0wKVUIQgKKaZlQ1tlkwMCIiGhacPICgBPFrI6sk6vuFpXFJIhHZOSZhw0X3ps0GeDo7ItrfHQCQxVL1RERkDhEzxVcjlyQmRej3hVWbKiIiIqtgEjZcBE0WX2sLgMZKg6ckdJb/5ZJEIiIyi0h902bjnoTpk7DzlU1ctUFEdo1J2HDhogT8xohf97EkUV8VMbO41kJBERHRsBI6FZA5AHVFQG2h5OHebgqMCfQAABxmvzAismNMwoaTrn5hhpMwfSPM7OI6aLQ6CwVFRETDhpP7pZUZRu4LS4oUPzBMz+cHhkRkvyQlYa2trbjzzjtx4MABc8VD5tTPvrCYQHe4KuRobFPjfGWjBQMjIhoampqa8M9//hMzZ85EXFwcbrrpJnz//ff9jtu4cSPGjBlj8L/KSsNLyO3WIJckJkf6AgDSC7gvjIjs14CbNQOAs7MzcnNzIZfLzRUPmZM+CSs9Cmg1gKznv6ODXIa4YC+k5dcgq0iFmM4lH0RENDBLly5FTk4OnnzySURERGDLli144oknoNVqMX/+/H7Hv/TSS4iKiurxnlKpNFO0VhKRCuz9j1icQ6cT26hIkNy5L+xkWT0aWjvg4exojiiJiMxKUhIGAAkJCTh27BhSUlLMEQ+Zk/9YwNENaG8AqnKBgLG9TkkI80Zafg0yi2txe5K0Hi5ERMPZ7t27sX//fvznP//BjTfeCACYOnUqysrK8Morr+CGG27o90PM0aNHIy4uzhLhWk9oCiBzBOpLgNp8wCeq/zHdjPByRpiPK4pqmnGksBZXjAkwU6BEROYjeU/Y3/72N3zxxRfYtGkTmpqazBETmYvcAQjuXIvfx5JE/b6wTJapJyKSZMeOHXB1dcV1113X4/1bbrkFFRUVyM7OtlJkNkbhemllxiCrJGawOAcR2SnJT8LuuOMOdHR0YNmyZVi2bBmcnZ0hdFtKIAgCjhw5YtIgyYSCp4iboUsygMn39DqcEKYEAOSWN6CxTQ13J8n/EyEiGpbOnj2L6OhoODj0/Lk5ZsyYruOTJ0++7DUWLVqEmpoaeHh4IDk5GY8++ihiYmKMjkmj0QxqnLHj+yOEz4Cs6CC0+Xuhi/+95PFJ4Up8fbQEaXk1ZonR3PO3dZw/59/9dbgZ7PwHOk7yb9jXXnttj6SL7Ew/FRIDPZ0RrHRBqaoFx0pUmB7tZ8HgiIjsl0qlQkhISK/3vby8uo73xc/PD4sWLUJ8fDzc3d2Rm5uLtWvX4o477sD69esRGxtrVEw5OTlGjTPV+L54qEcgBoD63M/IycyUvC/MrUUNAMgqrkX6kUwo5Ob5vcRc87cXnD/nP5yZe/6Sk7AVK1aYIw6yFP0SkIpTQFsD4NS7+EZ8qBKlqhZkFTMJIyKS4nIfUl7u2KxZszBr1qyuPyclJWH27NmYP38+3njjDbz99ttGxRMXF2dUMS2NRoOcnByjx/erYwx06cuhaK1GfJgH4DtK0vBJOh389/2CysY2wCcc8ZE+Jg3P7PO3cZw/58/5Gz9//fj+cK3ZcOMxAvAKBeqKxSqJUbN7nZIQpsT3ORe4L4yISAKlUmnwaVddXR2AS0/EBiokJARTpkwZ1F4yuVw+qF+iBju+7wu7AyHJQOE+yIsOAAFjJF8iOdIH3+dcwJEiFaaN8jd9jDDj/O0E58/5c/7mm7/RSVhubi7Onz+Ptra2Xsd+85vfDCYmMreQRDEJK8kwmITpi3NkFaug0+m4/JSIaABiYmKwZcsWqNXqHvvCcnNzAYiVD6XS6XSQySTX0LIPETOBwn3iPuXE+yQP1ydhafk1WGKG8IiIzElyEtbS0oKHH34Yhw4dgiAI0Ol0AHous7BEEtbY2Ii33noLp0+fxsmTJ1FbW4slS5Zg6dKlAxpfXV2NlStXYteuXWhtbUVsbCwef/xxTJs2zcyR24CQJODEN0Cp4QIqE4K94CATUNnQhlJVC0K8XS0cIBGR/Zk7dy6+/PJLbN++HTfccEPX+9988w0CAgIwadIkSdcrLi7G0aNHMX36dFOHahsiU4HdK8QKiUb0C9NXSDxaWAu1RgsH+RBNVoloSJL8E+utt95CaWkpPv30U+h0OqxevRoffvghrr76aoSHh+Obb74xR5y9qFQqfPnll2hvb8fcuXMljW1vb8fChQtx8OBBPPXUU3jrrbfg6+uLBx54AOnp6WaK2IZ0FefIEG98v+LsKMfYkZ4AWKqeiGigZs+ejRkzZuC5557Dl19+iUOHDuGZZ57B3r178Ze//KVrWcvy5csxbtw4lJaWdo1duHAhVq9ejZ9++gkHDx7E//73P9x1110QBAGPPfaYtaZkXsGJgIMz0FQBVJ2VPHzMCA94OjugqV2DkxfqzRAgEZH5SH4StnPnTvzxj39EQkICAGDkyJEYP348pk2bhieffBLr1q3DCy+8YPJAfy04OBgZGRkQBAE1NTXYsGHDgMdu2LABubm5+Pzzz7vmkZKSgptuugkrV66UdC27NGKi2CizqRJQFQLeEb1OSQhTIqe0DlnFKsyfFGT5GImI7NCqVavw2muv4c0334RKpUJUVBReffVVzJs3r+scrVYLjUbTtZIEEJcybt26FR988AHa2trg4+ODqVOn4pFHHkFkZKQ1pmJ+js7ih4IFe4GCPYC/tFL8cpmApAgf7DxdgfT8GkwMUZonTiIiM5D8JKy0tBRRUVGQy+UQBAEtLS1dx+bPn4+dO3eaNMC+CIJg9F6ln376CZGRkV0JGAA4ODhgwYIFOHbsGMrLy00Vpm1ydAZGxIlf91GqXt8vLLOo1kJBERHZPzc3Nzz99NPYt28fjh8/js2bN/dIwACxyvCZM2d6lLNfvnw5vv/+exw9ehQnTpzA3r17sXLlyqGbgOlFdlaENLZpc2dVxPR8Nm0mIvsi+UmYh4cHmpubAQC+vr4oLCxEYqJY9lytVncds2Vnz57FlClTer3fvaFmYGCgpGvaakPMvgjBiZCVHYW2OB26cTf3Oh4XJC5HPF5Wj5a2DigczLPWng0BOf/ur8MN52+ZhphkwyJSxdeCfUbtC0vuTMIyCmqg1eogk7GQFBHZB8lJ2JgxY1BQUIBZs2YhJSUF77zzDsLDw6FQKLBmzRqjG0pakkqlMlgqeCANNftiqw0x++Kj9kMkgObcPTgTmNXruE6ng7tCQGO7Fpv3HMEoH0ezxsOGgJz/cMb5D+/5D2vBkwEHF6C5Cqg8DQSMlTR8QpAXnB1lqG3uwPnKRowO7N37kojIFklOwm699VYUFhYCAB5//HHcdddduPvuuwEAnp6eWLt2rWkjNBNjG2r2xWYbYvYlzAvI/BfcGs4jfsJYwMGp1ylTjh3G7twqNLsEID4+3CxhsCEg58/5c/7mbohJNszBCQhLAfJ+EZckSkzCFA4yTA7zxoHz1UjLr2ESRkR2Q3IS1r3sbmhoKH788ceucvUJCQlQKpWmjM8sTN1QE7Dhhph98YsGXH0hNFdDXnlS7B32K5PDfLA7twrZJXVmj40NATl/zp/zp2EqIlVMwgr2AikPSh6eFOGDA+erkVFQg99PNc8HhkREpmZ0s2Y9V1dXzJkzxxSxWExMTExX88zuBtNQ0+4Iglge+OyPYql6A0lYvL44R7HKsrEREdHw0X1fmFYLSGxOndKtOIdOpzO6aBcRkSUNy86Gc+fORV5eHrKzs7veU6vV2Lx5MyZNmiS5KIfd6t4vzID4znK/hdXNqGlqt1BQREQ0rARPBhzdgJYaoOKk5OEJYd5wkAm4UNeKktqW/gcQEdmAAT0Ji42NHfAnS4Ig4ORJ6T9EjbF79260tLSgqakJAHDu3Dls27YNgNg008XFBcuXL8emTZuwY8cOBAcHAwBuu+02rFu3Do899hiefPJJ+Pr6Yt26dcjPz8eHH35okdhtgv7pVx9l6r1cHRHt74bzlU3IKq7FnNhhkpwSEZHlyB2BsKnA+Z3i07AREyQNd1HIERfihcwiFdLzaxDq42qmQImITGdASdjixYtt8vH+888/j9LS0q4/b9u2rSsJ27lzJ0JCQgw2xVQoFPjoo4+wcuVKvPjii2hpacHYsWPx7rvvIjk52eLzsJrgyQAEsWFzYwXgHtDrlPhQbzEJK1IxCSMiIvOImNmZhO0Fpi6SPDw5wgeZRSpkFNTg1ikh/Q8gIrKyASVhS5cuNXccRvn555/7PWfFihVYsWJFr/f9/Pzw8ssvmyMs++HsBfiPEcsClxwGYm/odUpCmBJfHy3hvjAiIjIffdNmI/eFJUf64J09eWzaTER2Y1juCaNuupYk9rEvLFQJAMgqVkGr1Rk8h4iIaFBGxgMKd6BVBZQflzw8MdwHggDkVTWhoqHV5OEREZma5OqImzZt6vec3/zmN0aEQlYRkgRkfgqUGt4XFjvCA86OMjS0qpFX1YhRAezBQkREJiZ3AMKmAed2iEsSR06UNNzL1RFjAj1w+mIDDhfU4oa4kWYKlIjINCQnYX//+98Nvt99zxiTMDsS3PkkrPQooNUAsp69ehzkMkwMViK9oAaZRSomYUREZB6RqWISlr8XmLZY8vCUSB+cvtiA9PwaJmFEZPMkJ2E7d+7s9V5tbS127tyJH374Aa+99ppJAiMLCRgrlgZubxT3hgWO73VKQlhnElaswm8TQ60QJBERDXn6fmGFBwx+KNifpEgf/O9gIfeFEZFdkJyE6cu8//q9CRMmQK1W4+OPPzZYCINslEwuVkks2CsW5+gjCQOAzCKVZWMjIqLhY8REwMkTaKsDLh4DghIkDU+OEJs2n7pYj7qWDni5OJojSiIikzBpYY5p06YNqGIh2Zj+mjaHegMAzlysR3O72lJRERHRcCJ3AMKni1/n75U8PMDTGRG+rtDpgKOFtSYOjojItEyahJWWlkImsaws2YB+mjaP8HLGSC9naHXAsZI6CwZGRETDin5JYsE+o4YnR4pPw9K4JJGIbJzk5YgZGb2flrS3t+PMmTN45513MG3aNJMERhakL85ReRporQecPXudEh+qxIW6i8gqVmFqlK+FAyQiomEhYqb4WngA0KjFp2MSJEX44MvDJcgoYBJGRLZNchJ2991396iECAA6ndg/avr06XjmmWdMExlZjkcgoAwDVEVA2VEg6opepySEKbH1+EVkFnGJBxERmcmIOMDZC2itAy5kAyFTJA1PiRQ/JDxWokJrhwbOjtKKexARWYrkJOzjjz/u9Z6TkxOCg4Ph5+dnkqDICoITxSSsJMNgEqbfF5ZZpIJOp+uViBMREQ2aTA6EzwTOfC8WjJKYhIX6uCDQ0wnl9W3ILFJhWjRXbhCRbZKchCUnJ5sjDrK2kCTgxMY+94XFBXtBLhNQ0dCGC3WtCFK6WDhAIiIaFiK6JWEzH5c0VBAEJEf64rvsMqTn1zAJIyKbJbmKRn5+PtLT0w0eS09PR0FBwWBjImvoqpB4GOhcXtqdi0KOsSPFRs0sVU9ERGYTqe8XdhDQdEgenhwhrtzgvjAismWSk7AVK1YYbNgMALt27WKPMHs1Ig6QOQLNVUBtgcFT4kOVAICsYu4LIyIiMwkYD7h4Ax1NQFmW5OHJnfvCjhTWokOjNXFwRESmITkJy8nJQVJSksFjSUlJOH78+KCDIitwdAZGThS/7mNJYkK3fWFERERmIZMB4TPErwv2SB4+OsAdXi6OaOnQ4Hgp26oQkW2SnIQ1NDTA1dXV4DFnZ2fU1fEHnt3SL0ksNZyExYcpAQA5pXX8dJGIiMwncpb4akTTZplMQFKE2C+MSxKJyFZJTsICAwNx7Ngxg8eOHTsGf3//QQdFVtK1L6x3LzgAiPR1g5eLI9rUWpy+0GDBwIiIaFjRN20uTgPU7ZKHp3Q2bU5n02YislGSk7C5c+di7dq1OHToUI/309LS8O677+Lqq682WXBkYcGdpYAvHAM6WnsdlskETOK+MCIiMjf/WMDVF+hoFvtXSpQUqX8SVguttnexKSIia5OchC1evBhBQUG47777cP3113e9Lly4EEFBQVi6dKk54iRL8I4AXP0AbQdw0fDTzoTOJIz7woiIyGxkMrFUPWDUksTxQZ5wVchR19KB3Aqu3CAi2yM5CfPw8MAXX3yBJUuWwMvLC2VlZfDy8sLSpUvx+eefw93d3RxxkiUIQs9S9QYkdO4LyyxWWSYmIiIanvRLEgukJ2GOchkmh3WWqueSRCKyQZKbNQOAm5sbFi9ejMWLF5s6HrK2kClA7tY+94Xpy9TnVzWhtqkd3m4KCwZHRETDRo99YW2Ag5Ok4cmRPth3rgpp+TW4e1qE6eMjIhoEyU/C9BoaGrB3715s3ryZFRGHkn6ehCldFYjycwMAZJWoLBQUERENO/5jALcAQN3a5z3pcrpXSNTpuC+MiGyLUUnYmjVrkJqaij/+8Y/429/+hpKSEgDAvffei7Vr15o0QLKwoMkABKCuCGgoN3hKV9Nm7gsjIiJzEYRL+8IK9kkenhCmhKNcQHl9G4pqmk0cHBHR4EhOwj777DOsWbMGt912G955550eny5deeWV+OWXX0wZH1masycQMFb8uo9+YdwXRkREFtGVhEnfF+bsKMfEECUAlqonIttjVBK2cOFCPP3005g5c2aPY+Hh4SgsLDRZcGQl+lL1fe4LEzc7ZxerWPqXiIjMR9+0uTjdYOuU/iSzXxgR2SjJSVhxcTFSU1MNHnNzc0N9ff2ggyIr62dfWOxIDzg5yFDX0oH86iYLBkZERMOK7yjAfQSgaevzg8HLSe62L4yIyJYYVaK+qqrK4LHS0lL4+voOOiiyMn0SVnoU0Gp6HXaUyzAxxAsA+4UREZEZ9dgXJn1J4pQIbwgCUFDdjPJ66U/SiIjMRXISNm3aNLz33ntobr60yVUQBKjVaqxfv77XEkWyQ/5jAIU70NEEVJwyeEpXcY7iWgsGRkREw06kvl+Y9OIcns6OGDvCEwCXJBKRbZGchD366KMoKyvDvHnzsGLFCgiCgE8//RS//e1vUVhYiEceecQccZIlyeRA8GTx6z6WfyR0NsHkkzAiIjIrfb+wkgygo0XycP2+MC5JJCJbIjkJCw8Px/r16xEVFYX169dDp9Ph22+/hbe3N9atW4egoCBzxEmW1rUk0fC+MP2TsNMXG9DS3nvJIhERkUn4RAEeQYCmXWzcLFEKi3MQkQ1yMGbQqFGj8P7776O9vR21tbXw8vKCs7OzqWMjawpOFF/7KM4x0ssZgZ5OKK9vQ05pXdcnjURERCYlCOKSxGNfiEsSo66QNDyxszjHmfIGqJrboXRVmCFIIiJpjGrWrKdQKBAYGMgEbCgK6UzCKs8ArXW9DguCwH1hRERkGfriHPnSi3P4ezghyt8NOh1wuID3KyKyDQN6ErZp0yZJF/3Nb35jRChkU9wDAGU4oCoUqyRGX9nrlIQwb/x4opz7woiIyLz0+8JKjwDtTYDCTdLw5Agf5FU2IaOgBnPHBZohQCIiaQaUhP39738f8AUFQWASNlSEJIlJWMlhw0lY55MwJmFERGRW3hGAVyhQVyzuC4ueI2l4cqQPPs8oRhr3hRGRjRhQErZz505zx0G2KCQROP5VnxUS40K8IJcJuFjfigt1LRjp5WLhAImIaFjQ9wvLXi8uSZSYhCV17gs7XlqH5nY1XBVGbYknIjKZAf0UCg4ONnccZIv0FRJLMgCdTrwJduOqcMCYQA+cvFCPrCIVRsYxCSMiIjOJSBWTMCOaNod4uyDIyxllda3ILFJhxig/MwRIRDRwRhfmaGxsxL59+7Blyxbs378fjY2NpoyLbMGIOECuAFpqgNp8g6fEhykBAFnFKsvFRUREw4++OEfpUaBN2u8cgiAgiaXqiciGGPU8/v3338fq1avR2toKnU4HQRDg7OyMRx99FPfdd5+pYyRrcXACRkwUe4WVHBZ7tfxKQqgS69KKuC+MiIjMyzscUIYBqiKg6BAweq6k4cmRPvg2q4xJGBHZBMlJ2KZNm7By5UrMmjULN998MwICAlBRUYFNmzbhlVdegbe3t8UKczQ1NeH111/H1q1bUVdXh6ioKDz44IOYN2/eZcdt3LgRy5YtM3hs37598Pf3N0e49ikkqTMJywAm3t7rcELnk7BjpSqoNVo4yAfV9YCIiKhvEbOArE+Bgj3Sk7DOfWGZxbVoV2uhcOD9ioisR3IS9tFHH+HGG2/Ev//97x7vX3/99fjzn/+M//3vfxZLwpYuXYqcnBw8+eSTiIiIwJYtW/DEE09Aq9Vi/vz5/Y5/6aWXEBXV8+mOUqk0U7R2KiQRSEOfTZuj/Nzh4eyAhlY1Tl9swIRgL8vGR0REw0dkamcStk/y0FEB7vBxU6CmqR05pXWYEu5thgCJiAZG8sdAeXl5WLBggcFjCxYswPnz5wcd1EDs3r0b+/fvx7PPPos777wTU6dOxYsvvogZM2bglVdegUaj6fcao0ePRnx8fI//HB0dLRC9HdEX57h4DOho6XVYJrvUtDmT+8KIiMic9PvCyrKA1npJQwVBQFKEmHhxSSIRWZvkJMzZ2Rl1dXUGj9XV1cHZ2XnQQQ3Ejh074Orqiuuuu67H+7fccgsqKiqQnZ1tkTiGPGUY4OYPaNXAhWMGT9H3C8vivjAiIjInrxDAOxLQaYCig5KH60vVZxQwCSOiS3Q6Hc5XNmJdWhGe2nQcWRfbzP49JS9HnDJlClavXo3k5GQEBl7qOl9ZWYk1a9YgMTHRpAH25ezZs4iOjoaDQ88pjBkzpuv45MmTL3uNRYsWoaamBh4eHkhOTsajjz6KmJgYo+IZyJO3y40zdrwlyIITIeRuhbY4Dbrg3v++E0PEJYiZRbWS52EP8zcnzp/z7/463Ax2/sP1723Yi0wVK/YW7AVirpU0NCXSF4CYhGm0OshlQj8jiGgo0mp1OFvRiLT8aqTl1SAtvwZVjZcSr4QRCiy87jIXMAHJSdgTTzyBO++8E9dccw2mTZsGf39/VFZW4tChQ3BwcMDq1avNEWcvKpUKISEhvd738vLqOt4XPz8/LFq0CPHx8XB3d0dubi7Wrl2LO+64A+vXr0dsbKzkeHJyciSPMeV4cxohC0YwANWJnch3ntHruLxNCwDIq2rCvvSjcFdI3+xsy/O3BM6f8x/Ohvv8SaKIVODox2LTZonGjvSAm0KOhlY1zlxswLggTzMESES2RqPV4dSFeqTn1yAtvxrp+TWobe7ocY7CQYaEUCWSI7wR5yZtubMxJCdho0ePxldffYVVq1YhLS0NKpUKSqUSV111FZYsWYLIyEhzxGmQIPT9Cdbljs2aNQuzZs3q+nNSUhJmz56N+fPn44033sDbb78tOZa4uDjI5XLJ4zQaDXJycowebxFe9cDp9+DddA5e8fEGTwnfvweF1c3QeocifvTAq0vaxfzNiPPn/Dl/4+evH0/DTESq+HrxGNCiAlyUAx7qIJdhSoQP9uRWIj2/mkkY0RCl1mhxoqy+60lXRkEN6lvVPc5xcZRjSrg3kiN9kBLpg0mhSjg7yqHRaJCVlWX2GI3qExYZGYlXX33V1LFIolQqDT7t0u9X0z8RG6iQkBBMmTLF6L1kcrl8UL9EDXa8WYUmAhAg1JVA3lwJeIzodUpCqBKF1c04VtKAK2N7H++PTc/fAjh/zp/zH77zJ4k8RwK+o4Dqc+K+sDHXSxqeHOGNPbmVyCioxcIZlvvgmIjMp12tRU6pCoc6lxYeKahBU3vPJetuCjkSI3yQEuWDlEhfxAV7WbVVhVFJmC2IiYnBli1boFare+wLy83NBSA+sZNKp9NBJmPfkF6cPICAcUDFCbFU/dgbe52SEOaNTVllyCyutUKAREQ0rETMFJOw/L3Sk7DOfWFp+TXQ6XSXXTlDRLaptUODrGJV1/LCI4W1aO3Q9jjH09mh8ymXL1KifDBupKdN9bM1Kgk7efIkvvvuO5SVlaGtrWf1EEEQjFrOJ9XcuXPx5ZdfYvv27bjhhhu63v/mm28QEBCASZMmSbpecXExjh49iunTp5s61KEhZEpnEpbRRxKmBABkFat4UyMiIvOKSAWOfCQ2bZZoYogXFHIZqhrbUFDdjEg/N9PHR0Qm1dKuwdGiWqTlVeNQfg2yilVoV/dMunzcFEiO8BETrygfxI7wtOniO5KTsE2bNmHZsmWQyWTw8fHp1VfLUr98z549GzNmzMBzzz2HxsZGhIWF4fvvv8fevXuxcuXKrqUty5cvx6ZNm7Bjxw4EBwcDABYuXIjExETExsbCzc0Nubm5eO+99yAIAh577DGLxG93QpLEjdB9NG2OHeEJhYMMquYO3tSIiMi8uvaFHQeaawBXnwEPdXaUIz5UifSCGqTnV/N+RWSDGtvUOFwgLi1Mz6/BsRIVOjS6Huf4uTshJcoHUyN9kBLli1H+7pDZcNL1a5KTsLfffhuzZ8/Gyy+/LHnflamtWrUKr732Gt58802oVCpERUXh1Vdfxbx587rO0Wq10Gg00Oku/cPFxMRg69at+OCDD9DW1gYfHx9MnToVjzzyiEULi9gVfdPmsqOARg3Ie/5PR+EgQ1ywF44U1iKzqJY3NSIiMh+PQMAvBqjKBQoPGFyhcTlJkd6dSVgt7kgKM1OQRDRQdS0dXUlXWl41jpfVQ6PtmXSN9HJGSmfClRLpg0g/N7teeSU5CauoqMCzzz5r9QQMANzc3PD000/j6aef7vOcFStWYMWKFT3eW758ublDG3r8xgBOnkBbPVB5ChgR1+uU+FAljhTWIqtYhVsm924fQEREZDIRqWISVrBXchKWHOmLNbvOI72g2kzBEdHl1Da1iwlXZ/XCUxfroeuZcyHUxwUpkb5IjvTB1EhfhPq42HXS9WuSk7CxY8eivLzcHLGQLZPJgKAEIH+3uC/MQBKm3xeWWaSybGxERDT8RKYCh98HCvZJHjo5TAmZABTXtOBCXQtGermYIUAi0qtsaOvqz5WWV4Mz5Q29zon0c+t80iUW0whSDu3/X0pOwv76179i2bJlGDt2rFFNjcmOhSR1JmGHgcT7ex2OD1UCAE5dqEdrhwbOjiw5TUREZhI+U3wtPw40VQNuvgMe6uHsiPFBXsgprUN6fg1uig82U5BEw9PFulak5Vd3loyvRl5lU69zRge4dyVcKZE+CPB0tkKk1iM5CYuPj8c111yDm2++Gf7+/r2WJQqCgM2bN5ssQLIh+n1hfRTnCFa6wN/DCZUNbTheWofEiIFvlCYiIpLE3R/wHysukS/cB4y7SdLw5EgfJmFEJlJc09y1nystvwZFNc09jguCWMQtpbMxcnKkD3zdnawUrW2QnIStXbsW77zzDnx8fBAUFNSrOiINYSGJ4mvVGaBFBbgoexwWBAEJoUpsP1mOzCIVkzAiIjKvyFQxCSuQnoQlRfjg/X35yCioMVNwREOTTqdDQXUz0jv3c6Xl16BU1dLjHJkAjA/y6iqkkRThDaWrwkoR2ybJSdjHH3+MW2+9FS+88EJXGXgaJtz8AO8IoLYAKD0CjLqq1ynxYWISllWssnR0RERW19TUhNdffx1bt25FXV0doqKi8OCDD/ao2tuX6upqrFy5Ert27UJraytiY2Px+OOPY9q0aRaI3E5FzATS14pNmyVKivAGAOSWN6K2qR3ebvwFkcgQnU6H85WNnUsLxdYO5fU9+wQ7yATEhXh1NUZODPeGhzMf1FyO5CSsqakJN954IxOw4Sok6bJJWEKoeFPLLKq1cGBERNa3dOlS5OTk4Mknn0RERAS2bNmCJ554AlqtFvPnz+9zXHt7OxYuXIj6+no89dRT8PX1xWeffYYHHngAH374IZKTky04Czui3xdWeQporBSXKA6Qr7sTRgW441xFIzIKanDN+BFmCpLIvmi1OhSoOpB9sBAZBbVIz69BdVN7j3MUchniQ5VIiRKXFk4J94arQnJaMaxJ/tuaPHkyzp8/z0/mhquQJCBng1gh0YCJIV6QCUBZXSvK61sROMw2WRLR8LV7927s378f//nPf3DjjWLJ9KlTp6KsrAyvvPIKbrjhhj4/wNywYQNyc3Px+eefIyEhAQCQkpKCm266CStXrsSGDRssNg+74uYLBE4Qi3MU7gPG3yxpeHKkD85VNCI9n0kYDW86nQ4nyurx1ZESbM4uQ01TO4BLLRycHGSYHObdVUgjIUzJAmyDJDkJe+qpp/Doo49ixIgRmDVrFhQKPr4fVoI794WVZAA6nbjTshs3JwfEBHrg9MUGZBapcN0E3tSIaHjYsWMHXF1dcd111/V4/5ZbbsGTTz6J7OxsTJ482eDYn376CZGRkV0JGAA4ODhgwYIFePXVV1FeXo7AwECzxm+3ImaKSVj+XulJWIQP1qUVcV8YDVuVDW34NqsUXx0pwemLl8rGO8sFJEX6YGq0H1IifRAX4gUnByZdpiQ5Cbv11luhVquxdOlSCIIAZ+eeTzoEQcCRI0dMFiDZmBFxgNwJaKkFavIA3+hepySEKXH6YgOyipmEEdHwcfbsWURHR8PBoeetdcyYMV3H+0rCzp49iylTpvR6v/tYJmF9iEgF0v4rNm2WKDlSLCB1vKweTW1quDlxORUNfe1qLX4+XY6vjpRg15lKaLRil2SFgwzXjAvELQlBcGssQeLkBG4/MiPJP22uvfbaIdWtmiRyUAAjJwEl6WKpekNJWKg31qcXc18YEQ0rKpUKISEhvd7Xt3JRqVSXHfvrli8DHXs5Go1mUOOMHW9RoVMhgwChKheaujLAfeDJaqCHAsFKZ5SqWnG4oBozR/kBsLP5mwHnP/Tmr9PpcPJCA74+WorN2WWobe7oOhYf6oVbE4Ixb+JIeLk4QqPRICendEjNX4rB/vsPdJykJEyj0eChhx6Cj4+PwZsFDRMhiZ1JWAYw6Y5eh+PDlACAYyV1UGu0cJDLLBwgEZF1XO5Dyv4+wBzM2L7k5OQYNc5U4y1lrGc0XOvPoXD3Z6gNniNp7CgvoFQFfHfoFNwbPXocs5f5mwvnb//zr2vVYE9RK3YVtKCwTt31vrezDLPDXXBlhAtCPB0A1CD/TM9luUNh/oNh7vlLSsJ0Oh3mzZuHt99+G7NnzzZXTGTrQrrtCzNglL87PJwc0NCmRm55I8YFeVowOCIi61AqlQafWNXV1QHAZT+8HMzYy4mLizNqOZH4SXiO0eMtTai4Gkg7hwgUIzw+XtLYazqKsbvwBIpbFYjvHGtv8zc1zt++59+u1mLXmUpsPFqKX3KroO623PDqsQG4dXIwZkT79vkhub3Pf7AGO3/9+P5ISsIcHBzg5+cHnU4nOSAaQkKSxNfy40BHC+Do0uOwTCZgUqgS+85VIbO4lkkYEQ0LMTEx2LJlC9RqdY99Ybm5uQCA0aNHX3as/rzuBjL2cuRy+aB+iRrseIuJmg2kvQ1Z4X5AYrxTo8UliJnFdVDr0KP4gN3M30w4f/uZf/fqht9mlf5quaESt00JwfyJQfByHXjvLnuavzmYe/6S14nNmzcPmzZtMkMoZDe8QgG3AECrBi5kGzwlPlQJAMgqUlkuLiIiK5o7dy6am5uxffv2Hu9/8803CAgIwKRJky47Ni8vD9nZl36mqtVqbN68GZMmTWJRjv6ETQMEGVB9Dqi/IGlolJ8b/NwVaFdrkVNSZ6YAicyjqrEN7+3Nw/Vv7MWNq/bhowMFqG3uQICHEx6aHYWfnpiFTYtn4PdTwyUlYGR+kgtzxMbG4ocffsA999yDa665Bv7+/r3Wql9zzTUmC5BskCCIT8POfC8uSQyb2uuUhM59YZnFKsvGRkRkJbNnz8aMGTPw3HPPobGxEWFhYfj++++xd+9erFy5susT1eXLl2PTpk3YsWMHgoODAQC33XYb1q1bh8ceewxPPvkkfH19sW7dOuTn5+PDDz+05rTsg4sSGDERuJAlVkmcePuAhwqCgKQIH2w9fhFp+TVIjPAxW5hEpiAuN6zAhsMl+OVMxaXlhnIZrh4fiNumhCB1lB/35Ns4yUnY3/72NwBAeXk50tPTex0XBAGnTp0afGRk20ISLyVhBuifhJ2raERdSwe8XPjpCxENfatWrcJrr72GN998EyqVClFRUXj11Vcxb968rnO0Wi00Gk2Ppf0KhQIfffQRVq5ciRdffBEtLS0YO3Ys3n33XSQnJ1tjKvYnMtWoJAwQS9VvPX4R6fk1WHylecIjGqwTZXWdyw31zZRFk7qWG46E0pX9e+2F5CTs448/NkccZG/0+8JKDPeE83V3QpiPK4pqmnGsRIXU0f4WDI6IyDrc3Nzw9NNP4+mnn+7znBUrVmDFihW93vfz88PLL79szvCGtohU4MAqsWmzREmdT7+OFNZ29UwisgVVjW34NqsMXx0pwakL9V3vB3g44ebJwbhtcghGB3pc5gpkqyQnYfxEjgAAQQni+vv6EqC+DPAM6nVKfKgSRTXNyCxiEkZERGYWNg0Q5EBtPlBXAnj17tnWl7EjPbuq+p66UI+xI9zNGCjR5emXG351pAS7TnO54VBldGv4hoYGZGVloba2FrNnz2bfsOHGyR0IGCdWSCw5DIxb0OuUhDAlNmeXIYv7woiIyNycPYGgeKD0CFCwD5h054CHymUCpkR445czlUjPr2ESRlbB5YbDi1FJ2Jo1a/Duu++itbUVgiDgq6++gpeXF+69917MmDEDDz74oKnjJFsUkigmYaV9JWHeAIDMolrodDqjm40SERENSMRMMQnL3yspCQPEfWH6JOzeaWFmCpCop+rGNmwysNzQ38MJtyQE49YpIYjhcsMhSXIS9tlnn2HNmjW46667kJqaioceeqjr2JVXXont27czCRsughOBIx+JT8IMGDvSAwq5DLXNHSiqaUa4r5tl4yMiouElYhaw/w2gYI/kocmd+8IyCmrYD5XMqkOjxa7T4nLDn3+93HBc53LD0VxuONQZlYQtXLgQf/3rX6HRaHocCw8PR2FhocmCIxunL85Rlglo1IC85/+cnBzkGB/sicwiFTKLVEzCiIjIvMKmivvCVEVAbSHgHT7goXEhXnBykKG6qR15VU1mDJKGq5PdmilXd19uGOIlLjecFMTlhsOI5CSsuLgYqampBo+5ubmhvr7e4DEagvxiACdPoK0eqDgJjJzY65T4UCUyi1TIKlbhNwnBVgiSiGyRTqdDeX0rWtVaa4dCQ4mTOxA8WWyfUrBPUhLm5CBHfKgSafk1yCioRSw7q5AJVHerbniSyw2pG8lJmIeHB6qqqgweKy0tha+v76CDIjshk4k3u7xfxBuegSQsIcwbH+4vQGZRreXjIyKrE5OtNuSWN+BsRSPOljd0fd3QqoaPswwHE7RdjYyJBi0itTMJ2wsk/E7S0JRIn0tJ2GgzxUdDHpcb0kBITsKmTZuG9957D1dddRWcnJwAiA2a1Wo11q9fj5kzZ5o8SLJhIUmdSdhhIOkPvQ4ndDZtPnmhHq0dGjg78hctoqGov2TLELlMwGhfR/4iQqYVmQrse1V8EqbTARKKQiVFXtoXdvdopZkCpKGqr+WGEzuXGy7gckPqRnIS9uijj+K2227DvHnzMHfuXAiCgE8//RSnTp1CWVkZXn/9dTOESTarq2lzhuHD3i7wc1egqrEdJ8rqMSXc24LBEZGpGZtshfu6IibAAzGB7hgVKL6Gebvg1PFjFp4BDXmhKYDMEagrBmoLAJ/IAQ+dHOYNuUxAqaoVlc2a/gfQsFfT1I5NmaW9lhv6uTvhlsnBuHVyCMaM4HJD6k1yEhYeHo7169fjpZdewvr166HT6fDtt98iJSUF//73vxEU1LtpLw1hwYnia/VZoKUWcOmZZAmCgPhQb/x0qhyZRbVMwojshD7ZOlvRgNxyMdk6W9GI3PIGyclWpJ8bnBx6PwX/dXEnIpNQuAHBU4DiQ+LTMAlJmJuTAyYEeSK7pA4nK9txtRnDJPvVodHilzOV+OpIMX4+XYEOzaXlhnPHBeC2KSGYNdqfT/npsozqEzZq1Ci8//77aG9vR21tLby8vODs7Gzq2MgeuPkC3pFAbb7Ym2XU3F6nJIQp8dOpcjZtJrJBlki2iCwuMrUzCdsLTL5b0tDkSB9kl9Thg6x6+I0owu+mRkAuY59LAk5dEJcbbso0vNxw/sQgeLtxuSENjOQkbNmyZXjkkUcQGhoKhUKBwMDArmOlpaVYvXo1XnrpJZMGSTYuJElMwkoOG07COveFZRapLBsXEXUZbLI1OtAdo5lskb2ImAnsWSk2bZa4L+yB1Cjszq1Ebnkj/rH5JNZnlOD5BeOR3LlfjIaXmqZ2fJslLjc8UcblhmQ6kpOwb775Bv/v//0/hIaG9jpWW1uLTZs2MQkbbkKSgJwv+2zaHBfiBUEASlUtqGhoRYAHn5oSmYtOp0NFg7hnK7e8Eee6JV31TLZouAhJBuQKoKEMqMkDfKMHPDTQ0xnfLZ6OV745iA2nWnDqQj1uf+cgFkwKwvIbxmKEF+9hQ12HRouMsla8cyITu85cWm7oKBe6qhtyuSENllHLEftSV1cHhYKPYYedkCnia0mGwU8cPZwdERPggTPlDcgqUuGa8SOsECTR0MJki+gyFK7inuWiA+KSRAlJGAA4yGW4YZQbHro+Ca/9dA6fZxRhc3YZfjpVjsVXjsIfZkay2u8Q1NqhwaeHCvHf3edR1cjlhmReA0rCMjIykJaW1vXnDRs2YM+ePT3OaWtrw86dOxEdLe0HHQ0BgXGA3AloVQHV5wG/Ub1OiQ9V4kx5AzKLmYQRSTGYZGt0gDtiAj0wOtADowPcEeXPZIuGkchUMQnL3wtMWWjUJXzdFHjpljj8LiUMz24+gSOFtVj54xl8ebgYz8wbh6vGBkCQsNSRbJNGq8PGoyV4/aezKFW1AACUTjLcmhSG2xPDuNyQzGJASVhaWhpWr14NQKx2t2HDBoPnBQUF4R//+IfpoiP74KAAguKB4jTxaZiBJCwhTIkvDhcji/vCiAzqnmydLW/ssXeLyRaRESJSgd0vG9Uv7NcmBHvhq0XTsCmrFC/9cBqF1c144OPDmB3jj3/MH4dof3cTBk6WotPpsONkOVb+eAZnKxoBACM8nfHonGhEy6uQODmWjeTJbAaUhD3wwAP43e9+B51Oh+nTp+P999/HuHHjepyjUCjg5uZmliDJDoQkiUlY6WEg/v/1OpwQJpamP1aigkarY6UpGtZ0Oh0Kq5ux92wFdh+rQ03aIZyraGSyRWRKIUniKo3Gi0D1OcBv9KAuJwgCbk4IwdXjRmD1z+fw/r487M6txHWv78H9MyKxZM4oeDg7mih4Mre0vGq8vO00jnZ+OOzl4ohHrojGvdMj4CgDsrKqrRsgDXkDSsKcnZ27StDv3LkT/v7+3PtFPQV32xdmwKgAd7gp5Ghq1+BsRQNiR3haMDgi66tsaMOB81XYf64K+89Vdy15EYlfM9kiMiFHZyA0WdwTlr9n0EmYnruTA/5+fSzuSArFC9+dwK4zlXhnTx42ZpZi2fWx+E18MGT8oNFmnSyrxys/nsYvZyoBAM6OMtw/IxIPzY6Gl4uYRLOHIVmC5MIcwcHB5oiD7F1Ikvh68TjQ3ixuiu5GLhMwKVSJA+erkVmkYhJGQ15jmxrp+dXYd7YaB85X4fTFhh7HFXIZEsKUCHFuw8y4aMSO9GKyRWRqEaliElawD0j6g0kvHennhg/vS8bPp8vxwncnUVDdjCe+zManhwrx/IIJiAvxMun3o8Epqm7Gf3acwbdZZQDE30vuTArFY1eNRoAnK16S5UlOwjo6OvDuu+9iy5YtKCsrQ1tbW4/jgiDg5MmTJguQ7IRXCOA+Qlz2cSEbCJ/W65T4ziQsq0iF/5ccZoUgicynXa1FVrGq80lXFbKKVVBrdV3HBQEYN9ITM0f5YcYoPyRF+EAhB7KyshA/KYj7DojMIWKm+GqCfWF9mRMbiBmj/PDBvgKs+vksjhapsGDNPtyZFIo/XzMGvu5OJv+eNHCVDW1Y9fNZrEsr6vqZPH9SEJ64OgaRftxGQ9YjOQl79dVX8dFHH2HWrFmYO3euVZclNjU14fXXX8fWrVtRV1eHqKgoPPjgg5g3b16/Y6urq7Fy5Urs2rULra2tiI2NxeOPP45p03onDzQAggCEJAKnt4hLEg0kYfp9YZnFtZaOjsjktFodzpQ3YP+5Kuw7V4X0/Bo0t/dcwhLu64rp0X6YOcoP06J94fOr0sZc8kJkZiGJgIMz0FQBVJ4BAmLN8m2cHOR4+Ipo3JwQjBVbT2FTVhnWpxdjy7ELeOLqGPx+ajgc2VPKoupbO/Dunjy8vy+/62fzrBh//PXaMZgQzKeUZH2Sk7CtW7di8eLFWLJkiTnikWTp0qXIycnBk08+iYiICGzZsgVPPPEEtFot5s+f3+e49vZ2LFy4EPX19Xjqqafg6+uLzz77DA888AA+/PBDJCcnW3AWQ0j3JMyA+FAlAOBsRSMaWju4gZnsTnFNs/ik63w1DpyrQnVTe4/jvm4KTB/lh5mjfDE92g+hPq59XImILMLBCQhNAfJ3i8sSzZSE6Y3wcsbrdybg91PD8ezmEzhRVo/nvzuJ9elFeG7+eEwf5WfW70+Xen2t2XUOtc0dAIBJoUr87boxmB7Nv3+yHZKTsLq6OiQmJpojFkl2796N/fv34z//+Q9uvPFGAMDUqVNRVlaGV155BTfccEOfy3s2bNiA3NxcfP7550hISAAApKSk4KabbsLKlSv7LMFP/dDvCys5bPCwv4cTQrxdUFLbgmMldZjBmxHZuJqmdhw8X41956pw4HwVCqubexx3VciREumDGZ1LDMcEenBDPpGtiUi9lIQl/9Ei3zIxwgebl8zEFxnFWPnjaeSWN+Ku99Jw/YQReGreWIR48wMaU1NrtNiYWYrXd+SirK4VABDt74a/XDsG144fwX5uZHMkJ2FJSUk4ffo0pk6dao54BmzHjh1wdXXFdddd1+P9W265BU8++SSys7MxefJkg2N/+uknREZGdiVgAODg4IAFCxbg1VdfRXl5OQIDA80a/5A0Mh4QZEBDGVBXCnj1LuKSEOaNktoWZBbVMgkjm9PSrkF6QQ0OdC4xPHmhHrpL27oglwlICFV2JV3xoUooHLjEiMimRaYCuyDuC9NqAZll/j8rlwm4KyUMN8SNwGs7cvHJoUJsPX4RP5+uwMNXRGPR7Gg4O3Iv6GDpdDps7+z1da6z19dIL2f8aW4MbpkcDAcuAyUbJTkJe/rpp/HII48gKCgIV1xxhdX2hJ09exbR0dFwcOg5hTFjxnQd7ysJO3v2LKZMmdLr/e5jpSZhxu7t0I8bEntDHFwgCxgHofw4NMXpgPuCXqdMCvbEd9llyCyqhUajGVrzNwLnb935qzVa5JTWi8sLz1chs0iFdo2uxzljAt0xPdoXM6J9kRTpA3en7j9zdIOK3drzt7bBzn+4/r2RREGTAUdXoLkaqDwNBI7rf4wJKV0VeP6mCbgzOQzPbT6BtPwavP7TWWw4XIJnbhzLpzSDcKiz11dmt15fi6+Mxj3TIpjgks2TnITddNNNUKvVeOyxxyAIQlf/MD1BEHDkyBGTBdgXlUqFkJCQXu97eXl1Hb/cWP15Usf2JScnR/IYU463FWHOkfDHcVRm/oDStt4VEN1axT00GfnVyMzM7LrxDJX5G4vzt8z8dTodSho0OFbehpyKdpyoaEezumfS5ecqw8QAJ0wMVGBCgALeznIAbUBrGc6dKjNLXPz3H97zJzNzUIj7wvJ2iUsSLZyE6Y0d6YnPH5yK73Mu4F/fn0KpqgWLPj2KGaN88ez88YgJ9LBKXPboeGkdVv54BrtzxV5fLo5y/GFmJP44K6qr1xeRrZOchF177bU284nN5eLoL8bBjDUkLi7OqBLTGo0GOTk5Ro+3NYJwLVD4HQI7iuEfH9/r+NgODf6x+yfUt2nhFz4GQV5OQ2r+Ug21f3+pLDH/C3WtOHC+uuu/ioaebTWULo6YGuWDGdG+mD7KF+E+rhb7Gcd//8HNXz+eqF+RqWISlr8HSHnIamEIgoAbJwZhTmwA/vvLefx3Tx72n6vG9W/sxb3TIvDY3NFMIi6jsLoJ/9mei83Z4gdiDjIB/y85DEvnjGKvL7I7kpOwFStWmCMOyZRKpcEnVnV1dQBg8EmXKcb2RS6XD+qXqMGOtxmhYmVJoSwLcmgBec+biatcjnFBXsguViG7tB6hPiMADKH5G4nzN93865o7cDCvurOKYRXyKpt6HHdykCFZX0wj2g/jgjwht3IxDf77D+/5kwVEzBJfC/dbdF9YX1wVDnjimjH4bWIo/m/LSWw/WY4P9ufj26xS/PW6MfjtlFAW+emmoqEVq3aew/r0S72+FnT2+opgry+yU5KTMFsRExODLVu2QK1W99gXlpubCwAYPXr0Zcfqz+tuIGOpH76jAScvoK0OKD8BBMX3OiUhVInsYhUyi1S4MW6E5WOkIaW1Q4MjhbVdTZJzSuvQrUcyZAIwMUSJGaN8MWOUHyaHeXOvANFwExQPOLoBLbVAxQlgRJy1IwIAhPq4Yu09idiTW4nnvzuB85VN+NvXOfgsrQjPLRiPyZ39NYer+tYOrN0t9vpq6RD3gM6O8cdf2OuLhoABJWEnTpyQdNHx48cbFYwUc+fOxZdffont27fjhhtu6Hr/m2++QUBAACZNmnTZsc8//zyys7O7zlOr1di8eTMmTZrEyoiDIZMBIVOA8z8DpYcNJ2FhSnx0AMgqVlk8PLJ/Gq0OJ8rqxLLx56qRUVCDNrW2xznR/m6YOcoP00f5YWqUL5f3EA13ckcgfBpw7icgf6/NJGF6s2L8se3xWfjfgQK8/tNZHCupwy1vHcCtk0Pwt+vHIMBjeC21a+3Q4JODhVjzyzmoOnt9xYcq8bfrYjEt2tfK0RGZxoCSsFtvvXVAeyR0Oh0EQcCpU6cGHVh/Zs+ejRkzZuC5555DY2MjwsLC8P3332Pv3r1YuXJl19KW5cuXY9OmTdixYweCg8WS6bfddhvWrVuHxx57DE8++SR8fX2xbt065Ofn48MPPzR77ENecKKYhJUcBpIe6HU4IVT8ZO9kWX2vX56Jfk2n0yG/qgn7z1dj/9kqHMyrRl1LR49zAj2dMCPar6t0/Aiv4fULCxENQESqmIQV7AOmPWLtaHpxlMvwQGoUFsQHYeW2M9hwpARfHy3Bjycu4tGrRmHh9Mgh3xJDrdHi66MleP2ns7jQ2etrVIA7/nLtGFwzLtBmahIQmcKAkrCXXnrJ3HEYZdWqVXjttdfw5ptvQqVSISoqCq+++irmzZvXdY5Wq4VGo4GuW7MfhUKBjz76CCtXrsSLL76IlpYWjB07Fu+++y6Sk5OtMZWhpatpc4bBw6E+LvBxU6CmqR2nLtRbMDCyFxUNrThwrrNJ8rmqrsabeh5ODpjaWTZ+5mg/RPu78+ZMRJcXkSq+Fu4DtBpAZpvLkgM8nLHyt5Pwu6nheHbzCWQXq/CvH07j84xiPDt/PGbH+Fs7RJPT6XT48cRFrPzxDM537uMN8nLG41fH4JYE9vqioWlASdjNN99s7jiM4ubmhqeffhpPP/10n+esWLHCYDERPz8/vPzyy+YMb/gKSRRfq88BzTWAq0+Pw4IgNrzdeboCmcUqJLhaIUayKQ2tahwuFAtp7D9Xhdzyxh7HFXIZJocrMbPzSVdcsBdvykQkzchJgMIDaK0DLuYYXC5vS+JDlfjm4en46mgJXtl2GnmVTbj3g3TMHRuIf9w4DmG+Q+PmeeB8FV7edgbZnVsUlK6OWHLlKPx+ajj379KQZreFOciGufoAPtFAzXmg9Cgwem6vU+I7k7Ds4jokjLFCjGRVOp0OueWN+OFYGbZlV+Pc1zuh6VZNQxCA8UGeXRUMkyJ84KLgzZiIBkHuAIRPB87+KC5JtPEkDABkMgG3J4biugkj8OZPZ/HRgQL8dKoce85W4sHUKDxyZTRcFfb5q9zx0jq88uMZ7OnW6+uBVLHXl6cz9/GSiXW0Aq0qoEUlFuhp7Xw18GdZeyO8/eYABlotmZJ9/j+XbF9IopiElWQYTMISOis+ZRWrgDGscDQc6HQ6nCirx9bjF7A15yLyqnqWjo/wdcX0UX6YOcoP06J84e2msFKkRDRkRczsTML2AtOXWDuaAfN0dsTTN47DncmheP67k9h7tgqrd53DV0dKsHzeWMyfONJulmQXVDXh39vPYMuxCwDEXl93pYRhyZxRw64ACUmk1YhPsvtIni792cAxdcuAv40AwLtdDuBJ08+hGyZhZB4hScCxL/rcFzYx1AuCABTXtqCu1d3CwZGlaLU6ZJWosO34RWw9fgHFNZd+CCocZEgd5YsYtzbceWU8wv08rBgpEQ0Lkfp9YQcAjVp8OmZHRgV44OP7k7H9ZDn+b8tJlNS24NH1mfj0YCGeWzAe44I8rR1inyrqW/HGzrP4IqO4q9fXTfFBePLqMUNmaSUNgE4HtDUMPHnqfqxtkHUEBBng7AW4eAPOSvHVRdntz+LXGicvFDR4Y+Lgvlu/7OunD9kP/b6w0iMGG2N6OjtilL87zlY0IremA7OtECKZh0arw5HCWvyQcwE/nrjYVeEKAJwdZbhyTACumzACc2ID4OooQ1ZWFkK8eQMmIgsYMfFSL8uLx4DgydaOSDJBEHDt+BGYHeOPd/fkYc0v55BeUIMbV+3F71LC8cTVMTa1kqCupQPv7D6PD/bno7VDrIh8xRix19f4IK6EsVsdrb0Tpsss8euRTOk0g/veCo/OhEl52WSq1zGFx8AatWs00GZlDS7GAWASRuYROAFwcBb/D1dzHvDr3QA7IUwpJmHVHb3Hk11Ra7RIy6/B1uMXsO14Oaoa27qOuSnkmDM2EDdMGIHZY/x77F/QaAb5g5iISAqZXNwXlrtVXJJoh0mYnrOjHEuvGo1bpoTgXz+cwvfHLuCTQ4X47lgZnrxmDO5KDoNcZr0liq0dGvzvQAHe+uV8V1uRyWFK/PW6WEyNYq8vm9WignDqO4zIPQKhYoO4/M/QUyp1az8X6ofcyUDy5H2ZxEp/zEvs+zcEMAkj85A7AiPjgeJD4pJEA0lYfKg3vjxcggMlrfjycAmmj/JDmI+r3axrH+7a1VrsP1+FbTkXsf3kRdQ2X0qmPZ0dMHdcIK6fMBKpo/1Y4YqIbEdkqpiE5e8FZjxm7WgGLVjpgjV3TcbvU6rx/HcncPpiA57ZdBzr0orw/ILxSI706f8iJqTWaPHVEbHX18V68Rf10Z29vq5mry/bVXoUOPw+kPM1ZOoWBA9kjCAbePL066dUji7mmondYBJG5hOSeCkJi7+r1+GpUT4QBOBiowbLvjkOABjp5YypUb6YGuWDaVF+CPVx4Q9sG9LaocHes1XYmnMBO06Vo6FV3XXM29UR144fgesmjMD0aL8h31SUiOyUvl9Y0UG73BfWl2nRvtiydCY+SyvCf7afwakL9bj9nYNYMCkIy28Ya/Ym9jqdDtuOX8TK7WeQ163X15+ujsEtk0Os+lSO+tDeDBz/Cjj8AVCW2fW2zj8WVS7R8A2OhszNp+9Ea6DL+8igofGTh2yTfl9YyWGDh6P83bFx0TR89ssxFDQrkF2iwoW6VnyTWYpvMksBiD/AxaTMF9OifRHizaTM0prb1fjlTCW2Hr+In0+Vo6n90hJCfw8nXDs+EDdMGInkSB/27iIi2xc4QfxFslUFXMi6dK8aAhzkMtw7PQLzJwXh39vPYH16ETZnl+GnU+VYfOUo/GFmpFlWJhw4V4WXt51GdkkdAPFDuSVzRuN3KWFcCWGLKk4DRz4EstaL+yMBQK4Axv0GSLwf2uAkFGVnwyc+HpDz389cmISR+YQkia/lJ4D2JkDh1uuUiSFe0E7wQHx8PNo1wNGiWhzKq8ahvGpkFatQVteKjZml2NiZlAUrXZAS5SMmZVG+CPVhQQdzaGjtwM+nK7A15yJ+ya3o2kwNiE8rr5swAtdPGIkp4d78dJOI7ItMJpaqP70FyN8zpJIwPR83Bf51cxzuSg7Dc5tP4HBhLVb+eAZfHi7GM/PG4aqxASb5QDOnpA6v/Hgae89WAQBcFXI8kBqFP6ZGwoO9vmyLuh04tRk4/CFQuO/S+94RwJT7gITfA25+4nvcr20RTMLIfDyDAY+RQMMFoCwLiJhx2dNdFHKxOe8o8YdAc7saRwtVPZKyUlULNh4txcajl5Iy/fLFqUzKBqWuuQM7TpVj2/EL2JNbhXbNpcQr1McFN0wYiesmjMCkECVkTLyIyJ5FpIpJWME+IPUJa0djNhOCvbBh0TR8m1WGf/1wCoXVzXjg48OYHeOPf8wfh2h/41rE5Hf2+vq+s9eXo1zA71LCsfjKUfD3cDLlFGiwaguBIx8BmZ8ATWJjbAgyIOZ6IOl+IGoOlxRaCZMwMh9BED9hPPUdUHq43yTs11wVDpg52g8zR19Kyo4U6p+U1SC7Myn7+mgJvj5aAgAI8XbpWr44NcqHpc/7Ud3Yhu0ny7H1+EUcOFfV1bsFAKL83HB9nPjEa3yQJ5eBEtHQETFTfC06BGg6hky1NUMEQcBvEoIxd1wg1uw6h/f25mF3biWue30P7p8RiSVzRg34qVV5t15fGq0OggD8Jj4Yf5obw15ftkSrAc7uEAttnN0BoPPe7j4CmHIvMPlewGtApTfIjJiEkXkFdyZhfTRtlsJV4YDU0f5IHe0PQEzKDhdcWr54rKQOJbUt+OpICb46IiZloT4umBrZmZRF+yJYyWo8FfWt+PHERfyQcxFp+dXolndhTKBHV+IVE+jOxIuIhqaAcYCLD9BSI1aFC0uxdkRm5+7kgL9dF4vbE0Px4paT2Hm6Au/sycPGzFIsuz4Wv4kP7nOVQ11zB/675zw+7Nbra05sAP5y7RiMHWm7DaKHnYZyIPNj4Mj/gLriS+9HXQEk/gEYc/2Q/sDB3jAJI/PS7wsrzhC7pJvwl3pXhQNmxfhjVoyYlDW1qXG4sGdSVlzTguKaEmz4VVI2LVpMzIKGSVJWqmrBtuMXse34BRwurIWuW+I1IdgT108YiesnjECUkUtTiIjsin5f2KnNYr+wYZCE6UX6ueH9hUnYdboCL2w5ifyqJjzxZTY+PVSI5xdMQFzIpQbKrR0afLKvAG936/U1Jdwbf7su1uKl76kPOp34v+GM98UlttrOqsUu3kD874DE+wHfaOvGSAYxCSPzCooHBDnQeBGoLwW8Qsz2rdycHDA7xh+zO5OyxjZx+eLB82JSllPaOykL83EVy+F3JmUjvYZOUlZY3YStxy9i6/GLyC5W9TiWEKbE9Z3FNbiPjoiGpYjUS0nYrD9bOxqLuzI2ANNH+eLD/QVYtfMsjhapsGDNPtyRGIpH50RjR14zHtm2B+UNbQCAmEB3/PXaWJMV9aBBaqkVqxse/gCoPnvp/ZBkIOkPwLib2IvLxjEJI/NSuAGB44CLOWKpejMmYb/mbiApO1xQg0N5NTiYV43jpXUo+v/t3XlclXXe//HXOSwKqCAiYqAiKChLuLG4m2mpaWplzm8abTentO5smsammdG5K2ua7kobM8fGrPEum7LuMrV9MVPc0nDLDUzcRREVRZbr98eXc+AoGgqcI/B+Ph7XA/1e18X5fs85nM/5XNd3OZrPz0fzeWeNScraNPM33Rejg2tlUrbj0EmWbtzP4owDbN6f5yy32SC5TTCDE8O4Pj6s3twBFBG5oLaO9cLSoagAvOvfhBINvL0Y3zeakZ3DeWbJVt7/YS9vr97D26vLurKFB/kxaWAMIzqHazZcT7OsskWVN74HRWYxbHwbwdW3mrteYYmeraNUmpIwqXkRyaVJ2GqIH+GxajRq4E2/2FD6xYYCZhr2NeUm+sjIzmV3Tj67c/JZsMYEoMhm/uUm+mhW44tdXirLsvjp4AkWZ5iuhtsOnnTu87LbSIsKZlBCS66Pb0Fo4yur7iIiHtW8A/iHQP4R88W2TXdP18hjWjRpyAujO3Fbamv+8uEmNu3Lo4mvjQcHxjKmeyQNvLVWlEedPQUZ/zF3vfZvKCsPjTczHF49Gho09lz95LIoCZOaF5FsPjgusGizpzRu6MM1saFcUz4pKzfRR8be42Tl5JOVk++8Ktg2JMA5HX5aVDNaNHF/YmNZFhv35rFk436WbDxA5pFTzn0+XjZ6tgthcEIYA+PCCA7wdXv9RERqBZvNjAvb/IHpkliPkzCHbpHBfDihF2uycig8lEn35Ei8tFiv5xzaYr4/bXgbCkp7t3g1MBe0u90NrVKqday9uJeSMKl5jsk59q+/oqcCbtzQh2s6hHJNB5OU5Z0pdHZfXFnafTHzyCkyj5zirVUmKYsKCSC13DplNZWUlZRY/LAnl6WliVf2sdPOfb7edvq0b86QxDCu7diCQL8r8/kVEbnitO1tkrDMb6Hv7z1dmyuCl91GtzZNWX9st6erUj8VFcDmD03y9fP3ZeVN25ruhp1ug4BmnqufVBslYVLzgqOhYSCcOQ4HN8JVnT1do0pp0tCH/h1a0L9DC8AkZaszjzq7L27ad5xdR06x68gp3lr1M2CSsrTSST7S2gYTWoWkrLjEYk3WUZZsPMDSjQc4kHfGuc/Px4trOjRnUEJL+ncIpVED/SmLiFyyyD7mZ/ZqKDwDPuq2LR5yNLN0UeV/my6yYCY2ix1sJtpo20+LKtcx+uYmNc9uN+uF7fzCdEmsJUnYuZo09OHaji24tqNJyo6fLpeUZeawaV+eMyn73/TSpKx5AGlRzege1YzUqOBfHJdVVFzCyl1HWbJxP59sOsCRk2ed+xo18ObajqEMTgijb0wofr7qIiIiUiUh7aFRCzh5EPauKVvEWcQdiotg+6dmoo0dX+BcVLnxVaWLKo+FJld5tIpSc5SEiXtEJJclYSn3ero21SLQz4cBcS0YEOealK0oHVO2eX8euw6fYtfhsqQs2pGURTcjtW0zgv29KSyx+Pqnw3yy+SCfbT7IsfxC52M0aejNwLgwhiSG0bNdCA19lHiJiFQbx7iwje9B5jIlYeIeJw7AujfMna+8vWXl0f3NWK+YQeClr+h1nV5hcY+IbuZn9mrP1qMGnZeU5ReyKsvcKVuxM4ctB/LYefgUOw+fYn56WffFA8fzyS886Pw9wQG+XB/fgkEJLeke1Qxfb3U/EBGpMZG9TRKW9Z2nayJ1mWVB5jdmUeWfFpdbVDkYOv8Gut6hRZXrGSVh4h7hXc3Pozsh/yj4B3u2Pm4Q6O/DwLgWDCxNynLzz7Iqs2yijy0HTPdFgOaNGjA4MYxBCWGkRAbj7aXES0TELSJL1wvLXgWFp7XArVSv/KOw/n9h7VzI2VFW3irNTLQRN1xjEespJWHiHv7B0Kyd+QDKXgMx13m6Rm4X5O/LdfFhXBcfBpikbHVmDoeys7i1fzI+PvpzFBFxu2bR0LglnNhvemu07ePpGkltZ1nmu86a12DjQiguMOW+jcyaXt3ugrAEz9ZRPE7f+sR9wruZJGxv/UzCzhXk70v/DqGsP7MPu13rfEgdYFlQfBYK8+FsfunPU+X+f8rlp63gJE3OBAKdPF1zqc9sNnM3LOMdMy5MSZhcroKT5n205l9wIKOsvEWiWVQ5cZQWVRYnJWHiPhHd4Me36/S4MJErXkmJSYoKT5dLisonSxUlTRc6Nv/8cqu40lWxA9H2BlgD7wEtCCueFNnLfHnOWubpmkhtdHBT6aLKC+DsCVPm1QASbjITbUR006LKch4lYeI+jkWbs9eaL4Ja70KkYkVnTXJTeLrCO0gVJkLnHXuBZKno9C8/fnWw+4CvP/iUbr7+4BNQVuYbQIm3H1mE08auUCQe1tYxLmyN+TvxauDZ+siVr/AMbP4/k3ztWVlWHhxduqjyr+vF+He5fIp84j4t4sHbDwqOm26JzWM8XSMR9yspNt1Usr7DnvUdHQ9sx77cck2WHLNm1bQLJUgXSJpcyn38zjnmnGO9fH7x4a3iYo6tX08bNzRV5KKatoUmEZCXDXvSyxZxFjnX0V2wZq5ZVPn0UVNm84ION5hFlSP76CKzVIqSMHEfLx+4qhP8vMJ0SVQSJvVBSTEc3Gimv85cBru/NxciABvgf7Fz7d7nJDeXkSxdKGny9tMXBREHx3phP75tuiQqCZPyiotg21Iz0cbOL8vKm4SbqeU7j4EmLT1WPamdlISJe0V0K0vCOt/m6dqIVL+SkrKkK+s72L0czuS6HuPbGNr0oKRND3aeaEBUh6vxatioXNLkZ/7t7euRJojUS217lyZhWi9MSuXtgw3zYe08OLGvtNAG7a41XQ7bX69FleWy6Z0j7uUcF7bGs/UQqS4lJXBos7l67ki8Kky6upsr7ZG9ICwJvLyxiovJW78eWnfSxBQinuZYL2zvWjh70rN1Ec+xLNj1NVGr/wf7ohVlkw35NytdVPlOCG7r2TpKnaAkTNwrvJv5eWiTmTTASwsUSi1TUgKHt5R2L/zW3Ok6fcz1GN9G0DrNfKmL7A0tk3S1tJ44deoUL774IkuWLOH48eNERUUxbtw4brjhhl88d+HChUyePLnCfd999x3Nmzev7upKeU3bQGBrOP6zGRdGM0/XSNypuBA2vgfLp+N1aBNNHeWtu5sZDuNuBG9N2CLVR98KxL0Cw6HxVea2/r4foFV3T9dI5OJKSuDw1tK7XN9C1vKywdgOPgEm6WpbPun65YkppO6ZOHEiGRkZPPLII0RGRrJo0SImTZpESUkJw4YNq9TvmDZtGlFRUS5lQUFBNVBbOU/b3rB+Pras5dDsRk/XRtyh4ITpbrjyFTMxC2D5BHA4fADNrn8Ur5aJHq6g1FVKwsT9IrrBlg/NuDAlYXKlsaxySVdpF8P8HNdjfPxL73T1MgP4r+qkpEv45ptvWL58Oc8//zxDhw4FIC0tjX379vG3v/2NIUOG4FWJbqft27cnMVFf/DwisjQJ271MSVhdd+IgpM+C1a85J0siIBTSxlPS+Q72/JRFs9A4z9ZR6jQlYeJ+ziRM48LkCmBZcPgn1zFd+Udcj/H2K5d09YarOmvSDDnPZ599hr+/P4MGDXIpv+mmm3jkkUfYsGEDXbp08VDtpFIie5mf+9Zjvzrfs3WRmnFkO3w/HTa8DcVnTVmzdtBjIlz9K/BpCMWVX3Re5HIpCRP3c07Osdp8ARZxJ8syQTjr27Kk69Rh12O8/aB1armkq4uSLvlF27dvJzo6Gm9v19AaGxvr3F+ZJGz8+PEcPXqUxo0bk5KSwoMPPkhMzOUt6VF8mV8mHedd7vm1VuOrsDeNxHYsi0Y5GRQXp3q6Rh5RJ1//PenYv58B25Zgw3z3sCKSKen+IMQOBlvpkh3FxXWz/ZdA7a9a+yt7npIwcb+WnczChicPQt5eT9dG6jrLMouDZy0z63RlfQenDrke490QWqWYroWRvSC8iwZgyyXLzc0lIiLivPLAwEDn/osJCQlh/PjxdOrUiUaNGrFt2zZmz57N6NGjeeutt+jQocMl1ykjI+OSz6nO82ujNo06EnIsi9YZL3E4bwc5EddR6Fc/J0Wp9a+/VULgwRWE7XibRsc2OYtzW/TgQLtfcSo4Ac4AG36s8PRa3/4qUvtrtv21NgnTDFS1mK8/hCXA/g3YslcDmupVqpFlQc5O1+6FJw+4HuPVoDTp6m0G4od3VdIlLtLT0xk7dmyljv3ggw/o2LEjADab7YLHXWwfQJ8+fejTp2yR4OTkZPr27cuwYcN46aWXeOWVVypVn/ISExMrNQ7tXMXFxWRkZFz2+bVa8ESst5bR4PQBwre+xlU/zYWoflhJv8aKHWIu2tRxtf71LzqDLeMdbCv+gS1nOwCWly9W4q1YaQ/QuHksjS9yeq1vfxWp/VVrv+P8X1JrkzDNQFXLhXeD/Rtg31poriRMqsCy4Ogu16TrxH7XY5xJV2n3wvCupt+/yAW0bduWJ598slLHtmzZEjDxo6K7XcePm0H/jjtilyIiIoKuXbuyYcOGSz4XwMvLq0pfoqp6fq3UtifFD29mzycv0+bod9h+/h52folt55fQMAgSR0Hn20p7dVw8sa7tat3rf/oYrPkXpL9qetsANAiE5LuwpY7H1jjskn5drWt/NVP7a7b9tTIJ0wxUdUBEMqx5DVv2Gmh+i6drI7WJM+n6rlzStc/1GC9fiEgpWxw5IllJl1yS0NBQRo0adUnnxMTEsGjRIoqKilzGhW3btg0wMedyWJaF3W6/rHPlMvk2IqfVIFoN+wNex3fD+v+F9W+ZKcxX/9NsofEmGbt6NASEeLrG9dvxbDPF/NrXyxbabhIOab+FLrdDwyYerZ5IRWplEqYZqOoAx+Qc+zdgSyr0bF3kymZZcCzL9U7XuWMJ7T7mPdW2d7mky88j1ZX6a8CAAbzzzjt8+umnDBkyxFn+/vvvExoaSlJS0iX/zj179rBu3Tp69OhRnVWVSxEcBf2fgH6TIfMb+OHfsGURHNoEnzwOn/0ZYgZB599Au4FamN2dDm6C5dNh47tQUmTKQuOgx4OQcLMmVJIrWq38pNAMVHVAUCT2hkHYzuTil7eL4uL6mTTX29e/VIXttyzI/RnbbpNw2XZ/h+2cpMuy+0B4V6w2PbEie5tlD3z8z/3lNV39KtPr754ZqNylb9++9OzZkylTpnDy5Elat27Nxx9/zLJly3juuedcemg8/vjjfPDBB3z22WeEh4cDcMcdd9CtWzc6dOhAQEAA27ZtY86cOdhsNh566CFPNUsc7F4Q3d9sp4/Bxvfgh/mwbx1sXWS2gFBIGg2dfgOhlz6RilSCZZmLcstfgh2fl5VH9oaeD0G7AXW+m6jUDbUyCdMMVHVDu8YxBJ5ZRcCxzfWy/eXV9/b/lP4ZjXPW0+jIBhrn/ECD066zF1o2L04FdeRESBInmnXmZNM4LMfg+OPA8W3ur3Q1qu+vf11q/4wZM3jhhReYPn06ubm5REVF8T//8z/nTRpVUlJCcXExVrllOmJiYliyZAn/+te/KCgoIDg4mLS0NO6//37attXY2SuKX1NIvsdsBzfD+vnw4wIz8+r3M8wW3s10V0y4GRpe+nhAOUdxkVlj9PvpsO8HU2azQ8cboeeDZqyvSC3i8SRMM1DV3xlobMevgcOraJTzI2HDnsDL28fTVXK7evv6nziALWsZ1q6vKNr+NQ1Ou85eaNm94aouWG16YUX2hIgU/HwD8ANCPVPjGlFvX/9S7pqByp0CAgJ44okneOKJJy563DPPPMMzzzzjUvb444/XZNWkprSIg+ufggFTYPun5u7Y9k9g7xqzLZ0MHYdBp9ugbV/Q+L5LczbfJLkrXjZd08HMUNn5N9D9AdNdVKQW8ngSphmoquf8Wql1CgDB+7/BerEjtra9oW0fE6SatatX3Qnq/Ot/Jg92L4ddX8Oub+DwFucuL8ydLlt4F9OdJLIXtlap0KAR9eUdUOdf/19Q39svdYSXD3S4wWwnD5k7Yz/MN593Gf8xW2Br6PT/oNOvoWmkp2t8ZTuVYyZAWTUb8nNMmV8wpIyDlHs1GYrUeh5PwjQDVT0W2YeSuJFYPy3B6/RR2Px/ZgNo3LJ0Dac+ZmvaxrN1lUtTVAB7VplB7Lu+hr3rwCo/fscGLa+mJLIPO0vCier3a7z81F1HROqIRqHQYyJ0n2DGjP0wHzLeheM/wzfPmi2yt7k7Fncj+AZ4usZXjqOZsOIfZgKUotOmLKiNeS4736bnSuoMjydhl0MzUNUR3r5YN7/G+nVr6NS8GK/dy82X9j2rzDpPGe+YDcwHsOMuWdvecIlrfUgNKymBAz+WJV27V5QFT4fgKPP6RfUzr6V/MFZxMXnr14NvIw9UWkSkhtlsZqxSeFfTZXHrxya52PV16Yyvy2Dxo5Aw0kzm0SqlXvUCcbF3nRnvtfn/wCoxZS07mfFeHYdr1kmpc2rlO1ozUNUxdm9o1Q0ie0DfR6HwdOldlG/Ntnct5O6GH940G0BIbNldsshe4B/s2TbUN461unZ9bRKvzGVw+qjrMQHNSxOuvhDVF4Jae6KmIiJXBh8/SLzFbLl7YMPbsP7fZpzTujfM1qy96aqY9P+gSUtP17jmWRbs+AKWv2gSUofoa81Mh2371N+kVOq8WpmEgWagqtN8/MyX9qi+5v8FJ8ydlcxvTFJ2IAOO/GS21f8EbBCWWHanrE13aNDYo02ok04eMuO5Mr82P4/vcd3v28gkxI67XaEdFTxFRCoS1MpcdOz9CPz8vemuuPkDyNkOX0yFL//bTLXe6TaIHQzeDTxd4+pVXGim+F8+3ay3BuaCbMLNphtnWKJn6yfiBrU2CdMMVPVIg8YQc53ZAPKPmkkeHHfKDm81XeEO/GhmT7J5ma4fjjtlrVK0cO/lKDgBWcvLuhge2uy63+5jnltH0hXexQxMFxGRyrHbzcWryF4w5G+w6QMzE+DPK8xMi9s/NdPhJ95qZgNsebWna1w1BSfMHb8VMyEv25T5BEDXOyDttyY5Faknam0SJvWYf7CZ7rfjMPP/Ewcg67uyO2XHsiB7ldmW/R28GpQmC6VJWXhXJQsVKToL2avLuhjuXQslRa7HhCWWdjHsZ+44aoC0iEj1aNAYuowx25EdJhnb8Dac2AerXjVbWKIZO5Y4CgKaebrGlXfiIKTPgjWvwRkzkzUBoZA2HrrdZRJNkXpGSZjUfo3DyvrZAxzbbfqWO+6UndhfNgD6q6fMVbc23cuSsrCrwV4Pp8cuKYGDG8uSrt3fQ2G+6zFNI8vGdbXtoymBRUTcIaQdDPgL9H8Cdn5lxo5t/dh0x1/6GHz6hOmm2Pk3ZvzUlTppxZHtZrKNDW9D8VlT1qwd9HgQrh4NPg09Wz8RD7pC/2pFqqBpG7N1/o0Z9Juzo+wumWMCiR2fmw2gYaDrdPjNO9TdsUxHM8tNpvFt2dorDv4hZiyeYzINrWMjIuI5di9oP8Bs+UfNNPfr/w37N8CWD83WKAySfmViXsjlLdFT7X5ON8nX1o+B0jH5ESlmso3YIVqwWgQlYVLX2WwmKIW0h+R7zN2fQ5vK7pLt/t50jdi6yGxgZvVzzrzY20ytXluTspOHy8Z0ZX4DuT+77vcJgMieZXe7QuMUHEVErkT+wZA6zmwHNpruij8ugJMHzOyCy180iU7n2yD+JmjYxL31KymBbUvMZBt7VpaVxw4xyVfrNPfWR+QKpyRM6he73fSpD0uE7g9AcZG5oui4M/TzSjh12MzatPE9c06TiLKkrG0fCAz3bBsupuCkSSwdSdfBja777d4QkVyWdIV3BW9fT9RUREQuV1gCDJoGA6bCtqUmIdv+Wdl46CV/gLjhJiFr06tmL64VFZhkcPl0M7sjgJev6W7YYyI0j625xxapxZSESf3m5Q0RXc3We5IJJtlryu6UZa82Mzht+F+zAQRHu94pa9Tcc/UvOgt715ROHf+Nqe+5k2m0SChLutr0gAZaGFlEpE7w9oW4G8124oBJhn6Yb5Zw+fFtswW1MWuPdfp19a7XeDoX1vzLTLhx8qApaxAIyXdB6ngzXltELkhJmEh53g1M97zInnDNZDh7ytwdcyRl+9fD0Z1mWzvXnBMaX5aUtekBfkE1Vz9Hd8pdpV0Md38PhadcjwlqbZKuqH4Q2cezSaKIiLhH4zDT7a/Hg+Zi4vp/w8aFkLsbvp4GXz9j4lTn35jZhS936Zbj2bDyFVj7Opw9acqahEPa/dD1dq3TKVJJSsJELsY3ANpdazYwV/52f28SsqxlprvfoU1mS38FbHZo2aksKWudVvVp3I9llSVdmd9C/hHX/f7NzGM57nYFa8FxEZF6y2aDVslmu36aGe/8w79Lu92Xbg2aQMJNZrr7iG6VG/d8cJPpcrjx3bIeF6FxJvGLv0ld20UukZIwkUvhFwQdhpgN4NQR1+nwc3bAvnVmW/6iWdA4Ihnals6+GJFs7rZdzKkj5nc5xnUdy3Ld7+Nv7rg5kq4WCZpMQ0REzufrD1ffarZju2HDW2b8WO7P5k7W2tchJNaMHbv6V9C4hev5lmXi0fLpsOOzsvLI3ib5ajeg9k5cJeJhSsJEqiIgBOJHmg3g+N6ypGzXN2Y82c/fm+2bZ8HbD1qnlt4p6wstErEXnTbBLWuZOedghutj2LxKJ9PoaxKv8G664igiIpemaRvo9wfo83vY/Z0ZO7b5/8z4sc/+DJ9PhfYDTXfFttcQtO9r7Gsegf0/mPNtduh4I/R80EzqJCJVoiRMpDoFhpv1WpJ+Za4gHsssu0uW+a2ZeXHX12YD7L6NSCo8g906ZzKN0PiypKtND/WxFxGR6mG3l3WZH/I32PS+SciyV5mZFrctxW73JtrR5dDbz9wp6/6AWbJFRKqFkjCRmmKzmYAVHAVd7zBJ2eGtZsHozG8gaxm2M8exAVZgK2yOyTTa9oFGoZ6tu4iI1H0NA0186noHHN5muipueBvbyQMU+TTB3n089tT7TK8PEalWSsJE3MVmg9COZksdByXFFB/YxOYdWcT1GIKXt/4cRUTEQ5rHwMCp0P9PFB/cwo978kjqlgZeXp6umUidpNH8Ip5i94IW8ZwNCNfAZhERuTJ4eUOLOCzvhp6uiUidpiRMRERERETEjZSEiYiIiIiIuJGSMBERERERETdSEiYiIiIiIuJGSsJERERERETcSEmYiIiIiIiIGykJExERERERcSMlYSIiIiIiIm6kJExERERERMSNlISJiIiIiIi4kZIwERERERERN1ISJiIiIiIi4kZKwkRERERERNxISZiIiIiIiIgbeXu6ArWdZVkAFBcXX9b5jvMu9/zaTu1X+8v/rG/U/qq133Ge43NYyig2VY3ar/aX/1nfqP3uiU02S9GrSs6ePUtGRoanqyEiUm8lJibi6+vr6WpcURSbREQ865dik5KwKiopKaGoqAi73Y7NZvN0dURE6g3LsigpKcHb2xu7Xb3ry1NsEhHxjMrGJiVhIiIiIiIibqRLhyIiIiIiIm6kJExERERERMSNlISJiIiIiIi4kZIwERERERERN1ISJiIiIiIi4kZKwkRERERERNxISZiIiIiIiIgbKQmrQQsXLiQ2Nta5xcXF0atXLx5++GGysrJcjl2zZg1//OMfuemmm0hISCA2Npbs7GzPVLyaVLb9xcXFzJ07l7vvvps+ffqQlJTE4MGD+fvf/05eXp7nGlBDzn1ezt3S09M9XcXLtnTpUmJjY1m8ePF5+2688UZiY2NZtmzZefsGDBjAyJEjAfjqq6/4/e9/z7Bhw4iPjyc2NrbG611dqtr+kydP8sorrzBmzBh69uxJ586dGTZsGLNnz6agoMAdTaiS6nj9X3jhBUaMGEFKSgqJiYlce+21/OlPf2Lv3r01Xv/6QrFJsakiik2KTedSbKrZ2OR92WdKpU2bNo2oqCgKCgpYt24ds2bNIj09nSVLlhAYGAjAypUrWbFiBR07diQgIIBVq1Z5uNbV55faf+bMGWbMmMHQoUMZNWoUTZs2ZfPmzbzyyit89dVXvPfeezRs2NDTzah2juflXO3atfNAbapHSkoKNpuNlStXMmTIEGd5bm4u27Ztw9/fn/T0dHr37u3cd+DAAfbs2cOdd94JwGeffcaGDRvo2LEjPj4+bNq0ye3tuFxVbf++ffuYN28ew4cP54477sDf35+1a9fy8ssv8/333zN37lxsNpsnmlYp1fH65+XlccMNNxAdHU1AQAA7duzglVde4csvv2TRokU0bdrU7e2qqxSbFJsqothkKDYpNtV0bFIS5gbt27cnMTERgNTUVIqLi5kxYwaff/45N998MwD3338/EyZMAOC1116rU4Hul9rfsGFDvvjiC5c3cGpqKi1btuShhx7ik08+Yfjw4Z6qfo0p/7zUFcHBwbRv3/689+/q1avx9vbm5ptvPu9q6sqVKwHzmgM8+eST2O3mJv1f//rXWhXoqtr+iIgIvvzyS/z9/Z37u3fvjp+fH3/7299Yu3Yt3bp1q/mGXKbqeP3/8pe/uOx3PC/jxo3jiy++4JZbbqnBFtQvik2KTRVRbDIUmxSboGZjk7ojeoDjwy0nJ8dZ5vjDrg/Obb+Xl1eFVxCuvvpqwFyNkNojNTWVzMxMDh065CxLT08nISGBvn37smnTJk6ePOnct2rVKry8vJwf4LX9b6Eq7ff393cJcg616W+hqq9/RYKDgwHw9tZ1w5qk2KTYVJcpNik2XWmxqXa/o2opR3/6yMhIz1bEQyrbfsdViNrcBeJiSkpKKCoqctmKi4s9Xa0qS0tLA3C54pSenk5KSgpdunTBZrOxdu1al31xcXE0btzY7XWtCTXR/tr0t1Bd7S8qKuLMmTNs3ryZp59+msjISAYOHOieRtRTik2KTaDYVH6fYpNiU03GJiVhbuD4QDt16hTLli3jlVdeITk5mf79+3u6am5xOe0/ePAgzz//PAkJCVxzzTVurK373HrrrcTHx7tsdaELSHJyMna73flBd+zYMbZv305ycjIBAQHExcU5P7j3799Pdna283Z/XVDd7d+6dStz5sxh4MCBdOjQwS1tqIrqaP/hw4eJj48nKSmJkSNHUlxczBtvvEFAQIDb21OXKTYpNlVEsUmxSbHJPbFJfTvc4NZbb3X5f3R0NDNnzqw3XWsutf25ubnce++9WJbFiy++WOu7AFzIs88+S3R0tEvZlTywtbICAwPp0KGDs3/16tWr8fLyokuXLoD5IHR80DmOqUuBrjrbn52dzfjx4wkLC+PJJ590Q+2rrjra37RpU959913Onj3Lrl27mDNnDmPHjuXNN98kNDTUja2p2xSbFJsqotik2KTY5J7YVDc/Qa4wzz77LO+++y7z5s1j9OjR7Ny5k0mTJnm6Wm5zKe0/fvw4d911FwcPHuRf//oXrVq1cnNt3Sc6OprExESXLSEhwdPVqhapqalkZWVx8OBB0tPTiY+Pd14pSklJYcuWLZw4cYL09HS8vb3p2rWrh2tcvaqj/Xv37mXs2LF4eXkxb948goKC3NyKy1fV9nt7e5OYmEjXrl0ZNWoU8+bNIzs7m9mzZ3uiOXWWYpNiU0UUmxSbFJvcE5uUhLmB4wMtLS2Nv/71r4waNYply5axdOlST1fNLSrb/uPHj3PnnXeSnZ3N3Llza8XtbamY4+rRqlWrWLVqFcnJyc59jg+11atXk56eTmJiYp3rZlbV9u/du5cxY8YA8MYbbxAWFuammleP6n79w8LCCA0NPW8NK6kaxSbFpvpGsUmxCa6c2KQkzAMeffRRAgMDmT59OiUlJZ6ujttV1H5HkNuzZw+vvfYacXFxHq6lVEVycjJeXl588sknbN++nZSUFOe+xo0b07FjRz744AP27t1bp7p7OFSl/fv27WPMmDGUlJQwb948wsPD3V39Kqvu13/37t0cOHCANm3a1GS16z3FJsWmuk6xSbHpSopN9aPj9xUmMDCQcePG8dxzz/HRRx8xfPhwjh496hwsuG3bNgC+/fZbgoODCQ4Odnmj1Hbntv/666/n7rvvZvPmzTz++OMUFxezfv165/HBwcG0bt3acxWuIdu3b69wxqnWrVs7pz2trRo1akRcXByff/45drv9vFv6ycnJzJs3Dzi/z/XevXvJyMgA4OeffwZwXpkODw+vFQPEL7f9OTk5jB07lsOHD/PUU0+Rk5PjMl14WFhYrbjyeLnt37p1K9OmTeP666+nVatW2O12tm3bxuuvv05QUBB33XWXW9tR3yg2KTaBYpNik2ITuCc2KQnzkDFjxjB//nxmzpzJ0KFD2b59Ow899JDLMVOnTgVMP9U333zTE9WsMeXb37lzZ+cH21NPPXXesSNHjuSZZ55xdxVr3OTJkyssf/LJJxk1apSba1P9UlNTycjIoGPHjjRq1MhlX3JyMq+//jo+Pj507tzZZV96evp5z43jb6M2vRcup/07duxgz549gLkqf64JEyYwceLEmq14Nbmc9oeEhBAaGsrcuXM5fPgwRUVFhIWF0a9fP8aPH0/Lli3d3Yx6R7FJsUmxSbFJsck9sclmWZZVpdaIiIiIiIhIpWlMmIiIiIiIiBspCRMREREREXEjJWEiIiIiIiJupCRMRERERETEjZSEiYiIiIiIuJGSMBERERERETdSEiYiIiIiIuJGSsJERERERETcSEmY1DoLFy4kNjbWucXFxdGrVy8efvhhsrKyPF09AGbNmsXnn39+Xnl6ejqxsbGkp6d7oFbGl19+yfjx4+nRowcJCQmkpKRw++238+GHH1JYWOixep2roufqD3/4A/3796/Rxz148CAzZsxgy5YtNfo4IlK3KDZVjWLTxSk21T3enq6AyOWaNm0aUVFRFBQUsG7dOmbNmkV6ejpLliwhMDDQo3V79dVXuf766xkwYIBLeXx8PAsWLKBdu3Zur5NlWTz++OMsXLiQvn378oc//IGWLVty4sQJ0tPTmTp1KseOHeP22293e90q6/7772fs2LE1+hiHDh3i5ZdfJjw8nI4dO9boY4lI3aPYdGkUmypHsanuURImtVb79u1JTEwEIDU1leLiYmbMmMHnn3/OzTff7OHaVaxRo0Z06tTJI489Z84cFi5cyMSJE5kwYYLLvv79+3PPPfewe/dut9bpzJkzNGzYsNLHt27dugZrIyJSdYpNl0axSeordUeUOsMR9HJyclzKMzIyGD9+PCkpKSQmJjJixAgWL17scszRo0eZMmUKQ4YMoXPnznTv3p2xY8eyZs2a8x7n7NmzvPzyywwePJjExERSU1MZM2YM69atAyA2Npb8/Hzef/99Z7eUMWPGABfu8vHFF18wevRokpKS6Ny5M3feeSc//PCDyzEzZswgNjaW7du3M2nSJLp27UqPHj2YPHkyJ06cuOhzU1hYyJw5c4iKiuKBBx6o8JjmzZvTrVs35/9zc3OZMmUKvXv3JiEhgWuvvZYXXniBs2fPupxXUFDA888/T//+/UlISKB3795MnTqVvLw8l+P69+/Pfffdx6effsqIESNITEzk5ZdfBmDnzp3cfffdJCUlkZqayp///GdOnTp1Xh0r6vIRGxvLX//6Vz744AMGDx5MUlISN954I1999ZXLcbt372by5Mlcd911JCUl0bt3b8aPH89PP/3kPCY9PZ1bbrkFgMmTJztfvxkzZjiPqcz7SUTEQbHpwhSbFJvqM90JkzojOzsbgMjISGfZypUrueeee0hKSmLKlCk0btyYxYsX8/DDD3PmzBluuukmwHyoA0yYMIGQkBDy8/P57LPPGDNmDK+//jqpqakAFBUVcc8997B27VrGjh1LWloaxcXFbNiwgf379wOwYMECbr/9dlJTU7n//vsBc5XxQj766CN+97vf0atXL55//nnOnj3LnDlznI9dPvgATJw4kSFDhnDLLbewbds2nn/+ecB0gbmQjRs3kpuby6hRo7DZbL/4XBYUFDB27Fj27NnDxIkTiY2NZc2aNcyePZstW7Ywe/ZswHQjuf/++1m5ciXjxo2jW7du/PTTT8yYMYP169ezYMECfH19nb9306ZN7Ny5k9/+9rdERETg5+fHkSNHGDNmDN7e3vzlL3+hWbNmfPTRR/z3f//3L9bT4euvvyYjI4MHH3wQf39/5syZw4QJE1i6dCmtWrUCTFeOoKAgHnnkEYKDgzl+/Djvv/8+t956K++//z5RUVHEx8czbdo0Jk+ezG9/+1v69esHQFhYGFD595OIiINik2KTYpNUyBKpZd577z0rJibGWr9+vVVYWGidPHnS+vbbb62ePXtat912m1VYWOg8dtCgQdaIESNcyizLsu677z6rZ8+eVnFxcYWPUVRUZBUWFlq333679cADDzjL33//fSsmJsZ65513LlrHTp06WY899th55StXrrRiYmKslStXWpZlWcXFxVavXr2soUOHutTl5MmTVvfu3a3Ro0c7y6ZPn27FxMRY//znP11+55QpU6zExESrpKTkgvX5+OOPrZiYGOutt966aL0d3nrrLSsmJsZavHixS/ns2bOtmJgY67vvvrMsy7K+/fbbCuvkeLwFCxY4y6655hqrY8eO1q5du1yOfe6556zY2Fhry5YtLuV33nmny3NlWZb12GOPWddcc43LcTExMVaPHj2sEydOOMsOHz5sdejQwXr11Vcv2MaioiLr7Nmz1nXXXWc9/fTTzvIff/zRiomJsd57773zzrnc95OI1H2KTYpN5Sk2yS9Rd0SptW699Vbi4+Pp0qUL99xzD02aNGHmzJl4e5sbvLt372bXrl0MGzYMMFcKHVufPn04fPgwmZmZzt/31ltvMXLkSBITE4mLiyM+Pp4VK1awc+dO5zHLli2jQYMG1davPzMzk0OHDjF8+HDs9rI/x4CAAK677jo2bNjA6dOnXc6pqMtDQUHBeV1dqmLlypX4+/szaNAgl3LH1bQVK1Y4jytf7jB48GD8/f2dx5Wva9u2bV3K0tPTad++PR06dHApHzp0aKXrm5qa6nJFNyQkhGbNmrF3715nWVFREbNmzWLIkCEkJCQQFxdHQkICWVlZLq/xhVzq+0lE6ifFJkOxSbFJLk7dEaXWevbZZ4mOjubUqVMsXryYBQsWMGnSJObMmQPAkSNHnMc9++yzFf6OY8eOATB37lyeeeYZfvWrX/HQQw/RtGlT7HY7L730Ert27XIef/ToUUJDQ12CUlU4Hr958+bn7QsNDaWkpIS8vDz8/Pyc5UFBQS7HObpUnDlz5oKP07JlS6CsW8wvyc3NJSQk5LzuIc2aNcPb29vZRSY3Nxdvb2+Cg4NdjrPZbISEhDiPc6ionbm5uURERJxXHhISUqm6wvnPCZjnpaCgwPn/Z555hvnz53PvvfeSnJxMYGAgNpuNJ554wuW4C7mU95OI1F+KTYZik2KTXJySMKm1oqOjnQOe09LSKCkp4T//+Q9Lly5l0KBBNG3aFID77ruPgQMHVvg7HFe+PvzwQ1JSUpg6darL/nMH4AYHB7N27VpKSkqqJdg56nj48OHz9h06dAi73U6TJk2q/DgJCQkEBQXxxRdf8Mgjj/xi3/ugoCA2bNiAZVkux+bk5FBUVOSsd1BQEEVFRRw9etQl2FmWxZEjR5yvj0NFjxsUFOQMIuVVVFYVH374ISNGjGDSpEku5ceOHavUc3wp7ycRqb8UmypPsUmxqT5Td0SpMx599FECAwOZPn06JSUlREVFERkZydatW0lMTKxwc3QTsNlsLoN0AbZu3cr69etdynr37k1BQQELFy68aF18fX0vevXPoW3btrRo0YJFixZhWZazPD8/n08//ZROnTq5XGm8XD4+Ptxzzz3s2rWLf/zjHxUek5OTw9q1awHo3r07+fn55y3q+cEHHzj3l//54Ycfuhz3ySefkJ+f79x/MampqWzfvp2tW7e6lC9atOiXG3YJbDYbPj4+LmVff/01Bw8edCm70NXbS3k/iYg4KDZdmGKTYlN9pjthUmcEBgYybtw4nnvuOT766COGDx/O1KlTuffee7n77rsZOXIkLVq04Pjx4+zcuZNNmzYxffp0APr168fMmTOZPn06ycnJZGZmMnPmTCIiIiguLnY+xtChQ1m4cCFTpkwhMzOT1NRULMtiw4YNREdHc8MNNwAQExPDqlWr+PLLL2nevDkBAQFERUWdV2e73c6jjz7K7373O+677z5Gjx7N2bNnee2118jLy+ORRx6ptufHEehmzJhBRkYGQ4cOdS6IuXr1at555x0mTpxI165dGTFiBPPnz+exxx5j7969xMTEsHbtWl599VX69u1Ljx49AOjZsye9evXi73//OydPnqRLly789NNPTJ8+nbi4OIYPH/6L9br99tt57733GDduHP/1X//lnIGqfFeb6tCvXz/nTFOxsbFs2rSJ1157zTm7lEPr1q1p2LAhH330EdHR0fj7+xMaGkqLFi0q/X4SEXFQbLo4xSbFpvpKSZjUKWPGjGH+/PnMnDmToUOHkpaWxn/+8x9mzZrF008/TV5eHkFBQURHRzN48GDneePHj+f06dO8++67zJkzh3bt2jFlyhQ+//xzVq1a5TzO29ubf/7zn7z66qt8/PHHzJs3j4CAADp06EDv3r2dx/3xj39k6tSpTJo0idOnT5OSksKbb75ZYZ2HDRuGn58fs2fP5uGHH8bLy4ukpCTeeOMNunTpUm3Pjc1mY9q0aQwYMIB33nnH+Xw46v+73/3OOYi5QYMGvPHGG7zwwgvMmTOHY8eO0aJFC+666y6XxTRtNhszZ85kxowZLFy4kFmzZhEUFMTw4cOZNGnSeVdwK9K8eXP+/e9/89RTTzFlyhT8/PwYMGAAf/rTn5zTKFeHP/7xj3h7ezN79mzy8/OJi4tjxowZvPTSSy7H+fn58fTTT/Pyyy9z9913U1hYyIQJE5g4cWKl308iIuUpNl2YYpNiU31ls8rfZxYREREREZEapTFhIiIiIiIibqQkTERERERExI2UhImIiIiIiLiRkjARERERERE3UhImIiIiIiLiRkrCRERERERE3EhJmIiIiIiIiBspCRMREREREXEjJWEiIiIiIiJupCRMRERERETEjZSEiYiIiIiIuNH/B/k2T0gV4NOSAAAAAElFTkSuQmCC",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2EAAAHaCAYAAACJnkGgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADC5UlEQVR4nOzdeXxU5dn/8c9kspF1srBlYw9hCQlhVwEXqlZUqmLpU1vF1rbUDVvbpxW11T72J0qrVqRWtGq1ikpVRCwoigsqmwRCUCTs2SAEksm+zszvj8kMhKyTZGayfN+vF6+Bc+4zue6gnFxz7vu6DDabzYaIiIiIiIh4hI+3AxAREREREelLlISJiIiIiIh4kJIwERERERERD1ISJiIiIiIi4kFKwkRERERERDxISZiIiIiIiIgHKQkTERERERHxICVhIiIiIiIiHqQkTERERERExIOUhImIiIiIiHiQr7cDEOkIi8XCm2++ydq1a8nKyqKiooKwsDCio6OZMGECF198MZdccolz/OjRowHYv39/o/dxHG/Jww8/zLXXXtulX3f16tXcd999zJw5k+eee67Zr/vzn/+cTz/9lD/96U8sWLCgXd+TZcuWsXfvXo4ePUpxcTGBgYHExMQwZ84cbrjhBiIiItr1PufG3pJzvzfdxaFDh3j11VfZtm0bx48fp6amBpPJxNixY/nOd77D1VdfTUBAQJPrMjMzefXVV9m+fTuFhYX4+voSGxvLBRdcwMKFCxk4cKAXZiMiPYHuSU319XtSS3/HZ7v44ovJy8vjo48+Ii4urkNfR/eunktJmPQ4FouFX/ziF2zevJmwsDBmz57NoEGDKCkp4dixY7zzzjscPny40Y2nLbfffnuzx8eMGdPlX/f6669n06ZNbNq0iVdeeYUbbrih0flXX32VTz/9lAsvvLDdNzuAf/3rX4wdO5bzzjuPqKgoqqqq2L17N8uXL+f111/n9ddfJyYmpt3v59Ce70138dRTT7FixQqsViupqalcc801BAcHc+rUKb766ivuu+8+Vq1axVtvveW8xmaz8Ze//IXnnnsOX19fzjvvPC6//HLq6urYtWsXzz//PKtWrWLp0qVcfvnlXpydiHRHuic1T/ck99K9qxewifQwa9assSUmJtquvvpqW2lpaZPzZrPZ9sUXXzQ6lpiYaEtMTGwytqXj7v66p06dsk2fPt2WkpJiO3TokPP44cOHbSkpKbZp06bZCgsL2xWXQ3V1dbPHH3vsMVtiYqLtD3/4g0vv58r3pjv4+9//bktMTLTNnj3btnv37mbHfPrpp7Yf//jHjY4tX77clpiYaLvoootsWVlZTa7ZsGGDLTk52TZmzBjbl19+6ZbYRaTn0j2peX39ntSeeC+66CJbYmKiLScnx+X3172r59OeMOlx0tPTAbjmmmsIDQ1tcj48PJzzzjuvW3/dqKgo/u///o+qqip++9vfUl9fT319Pb/97W+pqqrioYceIjo62qX4mltiB/Dd734XgJycHJfez1UZGRnceeednH/++YwfP57Zs2fzhz/8gYKCArd+XYDc3FxWrFiBn58fK1euJCUlpdlxs2bNarTcJicnh6effho/Pz+efvppRo0a1eSayy67jHvuuQeLxcIDDzyA1Wp12zxEpOfRPal5ffme5G66d/UOSsKkx4mMjATg6NGjPfrrzpkzh+uuu469e/eyYsUKVqxYQWZmJtdeey1z5szpkq8BsGnTJqDt9fSd8eabb/I///M/bN68menTp3PjjTcyfvx4Vq9ezXXXXUd+fr7bvjbAW2+9RV1dHZdeeimJiYmtjvX39290XX19PZdcckmr35/rr7+e/v37c/ToUbZv395lcYtIz6d7kmv6wj3J3XTv6h20J0x6nMsuu4xnn32W1157jfLyci655BLGjx9PfHx8h99z+fLlTY7FxsY22uTrjq+7ZMkStm3bxjPPPOP8mvfee2+H3w/gn//8J5WVlZSVlbF371527tzJ2LFj+fnPf96h92vre3PkyBH++Mc/Eh8fz8svv8yAAQOc47Zs2cJPfvITHnroIf7+9793bELt8NVXXwEwY8YMl67buXMnAOeff36r43x9fZk2bRrr1q0jPT2d6dOndyxQEel1dE9qXV+8J7UVr0NpaWmH3lP3rt5BSZj0OElJSfzlL3/hoYce4t133+Xdd98FwGQyMXXqVObPn8/s2bNdes+nnnqqybGpU6c2uuG54+uGhIRw2223cc899wDwwAMPEBIS4tJ7nOv555/n1KlTzj/PmjWLpUuXulyJyqGt782qVauoq6tjyZIljW52YE+KLr74YjZt2kR5eXmn59YSx3xdrQLluG7QoEFtjnWMOXnypIvRiUhvpntS6/riPamteDtL967eQUmY9EiXX345l1xyCdu2bWPnzp3s27ePnTt38sEHH/DBBx9w3XXX8ec//xmDwdCu92uthKw7v251dTXPPvus88/vv/8+s2bNanZsc5+mXXPNNU3K2n7xxReA/R/pXbt28Ze//IV58+bxzDPPMG7cOJffr63vze7duwHYtm0be/bsaXL+9OnTWK1Wjh49yvjx41t9r/bGdC6bzQbQ7u97R65zjDl77DPPPMMHH3zAkSNH8Pf3JzU1lV//+tdtLokUkd5F9yQ73ZOaak+J+rO1577S2XuXdA9KwqTH8vPz44ILLuCCCy4A7OV633//fe69917efPNNLr744i5dx+6Or7ts2TIOHz7MjTfeyI4dO/jPf/7DnDlzuOiii5qMbenTv5ZuBtHR0XznO99h3LhxXHrppfzud79j3bp1HX6/lpjNZsC+5KQ1lZWVbb5XR2MaMGAAhw8f5sSJE21+jbP179+/3dc5xvTv3995bPv27fzwhz8kOTkZm83Gk08+yc0338x7772HyWRyKRYR6dl0T9I9qSu0577S2XuXdA9KwqTXMBqNXHHFFWRlZfH000+zdetWt9zwuurrfv7557zyyiskJiby29/+lqNHj3Lddddx//338+677zZZqtHeT0bPFRMTw8iRI9m3bx9FRUXOzdwdfb9zOZZz7Ny5s9NLOzoa06RJk9i6dStbt27l+uuvd+m6bdu28eWXX7Z6ncViYdu2bQCkpaU5j597k3/00UeZPHky6enpXHzxxS7OQkR6E92TmtcX7kmd0Z77SmfvXdI9qDqi9DrBwcHAmcf13fHrms1m7rnnHnx9fVm2bBn+/v4kJiayePFiCgsLeeCBB7o0NsdacKPR2KXvC5CamgqcKY7hDddeey1+fn68//77HDx4sNWxtbW1ja4zGo1s3Lix1evefPNNTp48ybBhw5g6dWqL4yoqKrBarYSFhbk+CRHplXRPaqq335O6UnP3la6+d4l3KAmTHmfdunV88cUXzfa8KCwsZPXq1QBMnjy5237dBx54gJMnT3LXXXeRlJTkPP6Tn/yEyZMns2HDhkbLNNpy6NAhCgsLmxy3Wq08/vjjnD59mokTJxIeHt7u92yvG264AT8/Px5++GGOHDnS5Hxtba3bb4ZxcXHcfvvt1NXV8fOf/5zMzMxmx3322Wfccsstzj/Hx8fzi1/8grq6OhYtWtTszezDDz/kz3/+M0ajkT/+8Y/4+LT8z+af//xnxowZw8SJEzs/KRHpEXRPaqqv35O6UnP3la6+d4l3aDmi9DgZGRm89NJL9O/fn7S0NOfa7NzcXD799FOqq6u55JJLuPzyy7vl112zZg3r169nypQp/OQnP2l0zsfHh6VLl3L11Vfzpz/9iSlTprSr4t/mzZtZtmwZkydPJiEhAZPJxKlTp9ixYwc5OTn079+fhx56qOOTb8WIESP485//zL333suVV17JzJkzGTp0KPX19eTn57Nz504iIiLYsGGDW76+w6JFi6ivr2fFihXMnz+fiRMnMn78eIKDgzl16hRfffVVsxux77jjDqqqqnjhhReYN28eF1xwASNHjqS+vp5du3aRkZFBYGAgf/3rX1stgf/II4+wc+dOVq1a5ZZPd0Wke9I9qSndk7pGa/eVrrp3ifcYbJ5+Pi7SScePH2fTpk18+eWXHDx4kMLCQmprazGZTIwZM4Yrr7ySq666qtGnPo5mhueu727puLu+bn5+PldffTU2m421a9cSGxvb7NdavXo19913HzNnzuS5555rM7asrCxWrVpFeno6J06coKysjH79+jF06FAuvPBCfvzjH7tcKMKV741j3AsvvMC2bdsoLCwkKCiIAQMGkJaWxne/+12P3QQOHTrEq6++yrZt28jPz3f+HSUlJXHZZZcxb968Rg2bHfbs2cMrr7zCjh07OHXqFEajkdjYWGbOnMlNN93Uainghx9+mPfee49//etfjBgxwp3TE5FuRvekpnRPal+8juqIH330UZNiH+29r3Tm3iXepSRMRKQTHnroIf773//y8ssvKwETEZFO032lb9ByRBGRDnrggQdYu3YtK1asICwszLkHIigoyLkpXkREpL10X+k79CRMRKSDHMtNznX77bdzxx13eDgaERHp6XRf6TuUhImIiIiIiHiQ6lWKiIiIiIh4kJIwERERERERD1ISJiIiIiIi4kFKwkRERERERDxIJeo7yWq1Ul9fj4+PDwaDwdvhiIj0GTabDavViq+vb6OGtKJ7k4iIt7T33qQkrJPq6+vJzMz0dhgiIn1WcnIy/v7+3g6jW9G9SUTEu9q6NykJ6yRHhpucnIzRaHT5eovFQmZmZoev7+k0f81f89f8O/vvp56CNaV7U+do/pq/5q/5u/vepCSskxzLPIxGY6f+Q+3s9T2d5q/5a/6af0dpuV1Tujd1Dc1f89f8Nf+OauvepI8PRUREREREPEhJmIiIiIiIiAcpCRMREREREfEgJWEiIiIiIiIepCRMRERERETEg5SEiYiIiIiIeJCSMBEREREREQ9SEiYiIiIiIuJBSsJEREREREQ8SEmYiIiIiIiIBykJExERERER8SBfbwfQUfv27ePxxx8nKyuLoqIiAgMDGTZsGD/84Q+ZN29em9efPn2aZcuW8fHHH1NdXU1SUhJ33XUXM2bM8ED0IiIiIiLSV/XYJKy0tJRBgwYxd+5cBg4cSFVVFe+++y7/+7//S15eHrfeemuL19bW1rJw4UJKS0u59957iYqK4pVXXuGWW27hhRdeYOrUqR6ciYiIiIiI9CU9NgmbNm0a06ZNa3TsoosuIjc3lzfeeKPVJGz16tVkZWXx2muvMXHiROf7zZs3j2XLlrF69Wq3xu5QWVvP3W/sZmhAFampHvmSIiIirdp3vJT/9943XDkEUr0djIhIL9Xr9oRFRERgNBpbHfPhhx8ybNgwZwIG4Ovry9VXX82ePXsoKChwd5gAHDtdyfq9BbyytxybzeaRrykiItKazw+cYvPB07ybVeHtUEREeq0e+yTMwWq1YrVaKS0tZf369Xz++efcf//9rV5z4MABJk2a1OT46NGjnecHDhzoUhwWi8Wl8QBDIgLx9TFQWmMlp6iChKgQl9+jp3N83zry/esNNH/N/+zXvqaz8++r3zd3SxocCkDW6TovRyIi0nv1+CTsgQce4PXXXwfAz8+Pe++9lx/84AetXmM2mwkPD29y3HHMbDa7HEdmZqbL1wAkhBk5bK7nvS17mREX2KH36A06+v3rLTR/zb8v6+vz725S400YDHCy0kJhWQ2DTEHeDklEpNfp8UnYokWLuP766ykqKmLTpk383//9H1VVVfz0pz9t9TqDwdChcy1JTk5ucxlkc6YeyeTwV3mUGE2kpia5fH1PZ7FYyMzM7PD3r6fT/DV/zb/j83dcL10rNNCPUQNCyCooJz3bzBVKwkREulyPT8JiYmKIiYkBYPbs2QA89thjXHPNNURGRjZ7jclkavZpV0lJCUCzT8naYjQaO/RDRGp8BK99lceevNI++UOYQ0e/f72F5q/5a/59d/7d0cR4E1kF5ezKMXPFhBhvhyMi0uv0usIcEyZMoL6+npycnBbHJCYmkpWV1eS449ioUaPcFt+5JsTZE76v80uwWFWcQ0REvC8twQTArmyzV+MQEemtel0Stm3bNnx8fIiPj29xzJw5czh8+DAZGRnOY/X19axdu5aUlBSXi3J0xoj+wQQYDZTXWDhcWO6xrysiItKSiQ1JWGZeCbX1Vu8GIyLSC/XY5Yj3338/ISEhJCcnEx0dTXFxMRs2bOC///0vP/3pT51LEZcsWcKaNWvYuHEjsbGxAMyfP59XX32VxYsXc/fddxMVFcWrr77KkSNHeOGFFzw6D1+jD8MjfNl3qo6M3BJGDQz16NcXERE517CoYEL8DJTXWdl3vJSUeJO3QxIR6VV6bBKWmprKW2+9xdtvv01ZWRlBQUEkJSXx6KOPMm/ePOc4q9WKxWJp1IfL39+fF198kWXLlvHQQw9RVVXFmDFjePbZZ5k6darH5zIy0s+ehOWYmT8pzuNfX0RE5Gw+PgZGRfmx60Qt6dnFSsJERLpYj03CrrvuOq677ro2xy1dupSlS5c2OR4dHc0jjzzijtBcNirSD4A9uWbvBiIiItJgdJR/QxJm5ubzvR2NiEjv0uv2hPVEIyLsSdg3x0upqVfzURER8b7EKPu9Kf1YsZcjERHpfZSEdQMDg41EBPlRZ7Hx7fEyb4cjIiLCqEg/DAbIM1dxsrTa2+GIiPQqSsK6AYPBQHKsvVS9liSKiEh3EOTnQ+KAEADSs/U0TESkKykJ6yZSGvqF7c4p8XIkIiIido5S9enqFyYi0qWUhHUTjqbNehImIiLdhTMJ074wEZEupSSsm3AkYQcLyymvqfdyNCIiIpDWUJp+j5o2i4h0KSVh3UR0SACxpn7YbJCZqyWJIiLifcOigzEF+VFbb+Wb46XeDkdEpNdQEtaNOJ6GZWhJooiIdAMGg4GJDU/DtCRRRKTrKAnrRlIcyz6UhImISDeRlhABqEKiiEhXUhLWjTifhKlCooiIdBNpQ+xJ2C5VSBQR6TJKwrqR5NhwZ2PMU+U13g5HRESElHgTPg33pgI1bRYR6RJKwrqR0EA/RvS3N8bUkkQREekOQgJ8SRwYCmhfmIhIV1ES1s2kxJkANW0WEZHuw7EkUfvCRES6hpKwbiYlXk2bRUSkezlTnMPs3UBERHoJJWHdzISGJ2EZOWZsNpt3gxEREQHSEkwAZKpps4hIl1AS1s2MGRyKn9FAcWUducVV3g5HRESEYdHBRDQ0bf46X8vlRUQ6S0lYNxPga2TM4DAAdueYvRuMiIgIDU2btSRRRKTLKAnrhhzFObQvTEREugvHkkQV5xAR6TwlYd2Qs2lzrpZ8iIhI9+AozrFLZepFRDpNSVg3lBpvAmBvXgkWq4pziIiI9zmaNueXVHOiRE2bRUQ6Q0mYN1ktGNL/RZA5q9Hh4f1DCPY3Ullr4eDJci8FJyIickZwgC+jB9n3LGtJoohI5ygJ86bCb/F571cM3fVwo8NGHwPJjiWJKs4hIiLdhHNfmJYkioh0ipIwbwodDEC/8mNQZW50ylGcI0PFOUREpJs407RZSZiISGf4ejuAPi0oElvEMAzFR+D4Lhg1x3lqgpIwEZEeZ8uWLaxdu5Zdu3Zx4sQJQkNDGT9+PLfddhvjx49v8/rTp0+zbNkyPv74Y6qrq0lKSuKuu+5ixowZHoi+bWlD7EnY3rxSauotBPgavRyRiEjPpCdhXmaLmQiAIX9Xo+Mp8fbliN8eL6O6zuLxuERExHWrVq0iLy+PG2+8kZUrV3LvvfdSVFTEggUL2LJlS6vX1tbWsnDhQrZs2cK9997L3//+d6KiorjlllvYvn27h2bQuqFRQUQG+1NrsfJ1fqm3wxER6bH0JMzbYibC1281ScJiTf2ICvbndEUt3xwvdS4BERGR7uuPf/wjUVFRjY7NnDmTSy+9lGeeeabVJ1qrV68mKyuL1157jYkT7R/QTZs2jXnz5rFs2TJWr17t1tjbw2AwMDHexEffniT9WLHuTSIiHaQnYV5mi0mz/yY/vdFxg8FASkOp+j0qziEi0iOcm4ABBAcHM2LECI4fP97qtR9++CHDhg1zJmAAvr6+XH311ezZs4eCgoIuj7cjHEsSd2WbvRuIiEgPpidh3jZoAjZ8MJQdh9LjEDbYeWpCXDibvj3JHjVtFhHpscrKyvjmm2+YPn16q+MOHDjApEmTmhwfPXq08/zAgQNd+toWS8eWszuua+76lDh7mfqd2cUdfv/urrX59wWav+Z/9mtf09n5t/c6JWHe5h9MVehQgsoO25+Ghc11nnI8Cdut4hwiIj3Wgw8+SFVVFYsWLWp1nNlsJjw8vMlxxzGz2ezy187MzHT5mjavr7fiY4ATJdV89OVOooJ6b3GOzn7/ejrNX/Pvy9w9fyVh3UClabQ9CctLh6SzkrCGComHCysora4jLNDPSxGKiEhHPPHEE7z77rvcf//97aqOaDAYOnSuJcnJyRiNridJFouFzMzMFq8fs/VLvj5eSk1oLKnJg1x+/+6urfn3dpq/5q/5d3z+juvboiSsG6gwjSY6Z32TfWGRwf7ER/Yjp6iKzNwSzh8Z7aUIRUTEVU899RRPP/00v/rVr/jRj37U5niTydTs066SEvuS9OaekrXFaDR26oeolq5PGxLB18dL2Z1bwlWpsR1+/+6us9+/nk7z1/w1f/fNX4U5uoFKU5L9N3npYLM1Oqd+YSIiPc9TTz3F8uXLueOOO9pchuiQmJhIVlZWk+OOY6NGjerSGDsjbYgJUNNmEZGOUhLWDVSFDcNm9IdqMxQdbnQuJc7+yWeGKiSKiPQIK1asYPny5fzyl7/k9ttvb/d1c+bM4fDhw2RkZDiP1dfXs3btWlJSUlwuyuFOjtL0Xzc0bRYREdcoCesGbD5+MCjZ/odzmzY3PAlThUQRke7v+eef58knn2TmzJlceOGF7N69u9EvhyVLljB27Fjy8vKcx+bPn8+oUaNYvHgx7777Ll9++SV33XUXR44c4Te/+Y0XZtOyhMggohqaNu/NU9NmERFXaU9YN2GLScOQt9O+JDF5vvP4+NhwfAxwvKSak6XVDAgL9GKUIiLSmo8//hiAzZs3s3nz5ibn9+/fD4DVasVisWA7awm6v78/L774IsuWLeOhhx6iqqqKMWPG8OyzzzJ16lTPTKCdDAYDExMi+HBfAbuyi5k0RE2bRURcoSSsuxjc0JzznOIcwQG+jBoQyv6CMjJyS/jOWCVhIiLd1csvv9yucUuXLmXp0qVNjkdHR/PII490dVhukTbExIf7CrQvTESkA3psErZlyxbWrl3Lrl27OHHiBKGhoYwfP57bbrutzTLAb731Fvfcc0+z5z7//HP69+/vjpBbZYtxJGG7wVIPxjN/NRPiwtlfUMaeXDPfGdt99gSIiEjf5dgXln7M7N1ARER6oB6bhK1atQqz2cyNN97IyJEjKSoq4oUXXmDBggU899xzzJgxo833ePjhhxk+fHijYyaTyU0RtyF6FPiHQm0ZFH4Lg84kkinxJlbvzGW3inOIiEg3MSEuHKOPgROl1eSbq4gx9fN2SCIiPUaPTcL++Mc/EhUV1ejYzJkzufTSS3nmmWfalYSNGjWK5ORkd4XoGoMPxKTC0c32JYlnJ2FnFeew2WwdatgpIiLSLjYbnD4EttarHgb5+zJmcCh780pJzy5WEiYi4oIeWx3x3AQMIDg4mBEjRnD8+HEvRNQFYtPsr3mN94WNHhSKv68PJVV1HDtd6YXARESkz8h4DePfpzDgyNttDtWSRBGRjumxSVhzysrK+Oabb9rd0HLRokWMGTOGqVOncvvttzfbJNOjYhqSsHOKc/j7+jB2cBigps0iIuJmlhoAwk982eZQZxKm4hwiIi7pscsRm/Pggw9SVVXFokWLWh0XHR3NokWLSE1NJSQkhKysLFauXMmCBQtYtWoVSUlJLn9ti6VjzSod11ksFhiUihGwFXyNtaYCfM9UQkyODWN3jpnd2cVcmTyoQ1+rO2o0/z5I89f8z37tazo7/776fXO7+OkABJu/BUsdGI0tDnU2bc4vobrOQqBfy2NFROSMXpOEPfHEE7z77rvcf//9bVZHnDVrFrNmzXL+ecqUKcyePZurrrqKv/3tbzz99NMuf/3MzEyXr2lyvc3GBP8I/GqLObD5LSoixjrPm6xVAGzZn8/u2JpOfa3uqLPfv55O89f8+7K+Pv9uJzoRW2A4xuoSLCe/hrhJLQ6Nj+xHdIg/p8pr+Tq/hElDIj0YqIhIz9UrkrCnnnqKp59+ml/96lf86Ec/6tB7xMXFMWnSJDIyMjp0fXJyMsZWPi1sicViITMz03m9z/4pcOADEoPLsaWmOseFxpazfPvnHC21MD55Ar7G3rGS9Nz59zWav+av+Xd8/o7rpYv5+EDcVDi4EUPOtlaTMEfT5o3fFLDzWLGSMBGRdurxSdhTTz3F8uXLueOOO9pchtgWm82Gj0/Hkhuj0dipH6Kc18dOggMf4HN8d6MlICMHhBEa4EtZTT2HTlUxNiasw1+rO+rs96+n0/w1f82/786/O7LFT8NwcCPkbIcZt7Y6Nq0hCVNxDhGR9uvRj1NWrFjB8uXL+eUvf8ntt9/eqffKyckhPT2dlJSULoqugxzFOfJ2Njrs42MgOS4cgD0qziEiIm5ki5sKgCF3W5tj0xJMgL04h81mc2dYIiK9Ro99Evb888/z5JNPMnPmTC688EJ2797d6Hxqw1K+JUuWsGbNGjZu3EhsbCwACxcuZPLkySQlJREcHExWVhbPPfccBoOBxYsXe3gm53CUqT99AKpLIDDceSol3sSXh06TkWvmB1MTvBSgiIj0erFp2Aw+GErzwZwDpvgWh06IM+HrY+BkWQ155iriIoI8GKiISM/UY5Owjz/+GIDNmzezefPmJuf3798PgNVqxWKxNPp0LjExkfXr1/P8889TU1NDZGQk06dP59Zbb2XYsGGemUBLgqPBlADmbMjfDcNnO0+lNDwJy8gp8VJwIiLSJ/gFURk2iuCS/ZCzrdUkrJ+/kTGDw8jMKyE926wkTESkHXpsEvbyyy+3a9zSpUtZunRpo2NLlixxR0hdJyatIQlLb5yExZsA2F9QRlWthX7+2kMhIiLuUR457kwSljy/1bFpCSZ7EnasmKtTYjwUoYhIz9Wj94T1Wo4liXmNmzYPCgukf2gAFquNb47raZiIiLhPeWRDu5ecduwLG2LvF7ZLTZtFRNpFSVh3FNN8EmYwGJxLEndrSaKIiLhRRcQ4+29O7IWa8lbHnmnaXEp1nZpoi4i0RUlYdxSTChigNBfKTzY6lRJnAlQhUURE3KuuX39s4fFgs0DeV62OjYvoR3RIAPVWG5l5+pBQRKQtSsK6o4BQ6D/a/vtznoZNaNgXlpFj9mxMIiLS5zhK1ZOzvdVxBoPhTKn6Y1qSKCLSFiVh3ZVjSWJ+4yTMsRzx6OlKSirrPB2ViIj0JfHT7K/ZW9sc6tgXlq59YSIibVIS1l3FNt+02RTkz5Aoe/nfPXlmDwclIiJ9ic2RhOXuAGvre70c+8LSs81q2iwi0oYOlag/cOAA6enpFBQUUF1dTUREBCNHjmTKlCmEhIR0dYx909nFOWw2MBicp1LiTBw7XUlGjpmZo/p7KUAREen1BowB/xCoKYXCb2HguBaHTogLx9fHQGFZDbnFVcRHql+YiEhL2p2ElZSU8Prrr/P666+Tn5/f7Kdcvr6+zJo1ix//+MfMmDGjSwPtcwaNBx8/qCoC8zGIGOo8NSEunLUZ+WTkavOziIi4kY8vxE2Gw5/YlyS2koQF+hkZGxPGntwS0rOLlYSJiLSiXUnYSy+9xIoVKwC44oormDp1KuPGjSMyMpKAgABKSkrIyclh9+7dfPTRR/zkJz/hvPPO4w9/+ANDhgxx6wR6Ld8AeyKWv8v+NOysJCxVxTlERMRT4qfZk7Cc7TDlp60OTUuIYE9uCbuyzcxLjfVMfCIiPVC7krCXX36Ze+65h7lz5+Ln59fkfHR0NNHR0UycOJGbb76Z7Oxsnn76adavX8+iRYu6POg+IybNnoTlp8P4a52Hx8WEY/QxcLKshhMl1QwKD/RikCIi0qs59oXltF2cY2KCiRe/VHEOEZG2tCsJW79+Pb6+7d8+lpCQwMMPP4zFooaNnRKbBl/9s0mZ+n7+RkYNCOHbE2XszjFzefggLwUoIiK9XtwUwADFR6GsAEIHtjjUUZzjm4amzYF+Rs/EKCLSw7SrOuKBAwc69OZGo/7x7ZTYSfbX/N1NqlI5liSqabOIiLhVYNiZvWA521odGhfRj/6h9qbNe7RvWUSkRe1Kwq655hquvfZaXn31VcrKytwdkzhEJ4JfMNRVwKmsRqcmxJkAyFASJiIi7uZckth6EtaoabOWJIqItKhdSdgvfvELioqK+NOf/sQFF1zAb37zG7ZubXttuHSSjxFiUu2/P2dJYkq8vWnzntwSrFb1YxERETdqZxIGZ/ULO6YkTESkJe1Kwn71q1/x8ccfs3LlSi666CI++OADbr75Zi655BL+/ve/c/z4cXfH2XfFTLS/5jdOwhIHhhLg60NZdT1HT1d4ITAREekzEhqSsPzdUFfV6tC0IWraLCLSlnYlYWBfYjBr1iyeeOIJPv/8c+69917Cw8N58sknmTNnDj/96U/ZsGEDdXV17oy374l1NG3e2eiwn9GH8bH2p2FakigiIm5lGgIhg8BaZ6/a24rkWHvT5lPl9qbNIiLSVLuTsLOFhYXxox/9iLfeeos1a9bwwx/+kG+++YZf/epXzJo1q6tj7NscxTlO7IX6mkanJsQ1JGE52vwsIiJuZDBA/FT779tYkhjoZ2RcTBigfWEiIi3pUBJ2tqSkJK6++mouvvhiAMxmc2ffUs5mGgL9Iu2fPhbsbXTK2bRZT8JERMTdEqbbX7Pb3hc2UfvCRERa1f7mX+coKipi7dq1vPnmmxw8eBCj0chFF13E/PnzuzI+MRjsSxIPfmgvzuF4MsaZColf55dSZ7HiZ+x0Ti0iItK8s4tz2Gz2+1ML0oZE8OKXR0nPNnsmNhGRHsalJMxqtfLZZ5/x5ptv8sknn1BXV8fQoUP59a9/zTXXXEN0dLS74uzbYs5Kws4yNCqIsEBfSqvr2X+izLlHTEREpMsNmgC+gVBVBKcPQvSoFoc6ytTvO15KVa2Ffv7qGyoicrZ2JWFHjhzhzTff5J133uHUqVMEBgZy5ZVXct111zF58mR3xyjOps2NkzCDwUBKvInNB06RkWtWEiYiIu7j62+/Hx37ArK3tpqExZr6MSA0gJNlNezJNTNteJQHAxUR6f7atX7tu9/9Ls899xyDBw/mwQcf5PPPP+fhhx9WAuYpjgqJhfuhpnGz7DPFOcweDkpERPqcdhbnsDdtPlOqXkREGmvXk7CbbrqJ+fPnM2pUy596iRuFDICwOCjNheMZMPQC56mUhn1he3JVIVFERNwsvqE4R3uaNg8xseHrE6qQKCLSjHY9CbvnnnuaTcAOHz7Mzp07qays7PLA5ByxDU2bz9kXltJQITGroIzK2noPByUiIn2K40nYqSyoLGp1qONJ2K7sYjVtFhE5R4fK6a1Zs4ZZs2Yxd+5cfvSjH3HkyBEAFi9ezBtvvNGlAUqDmOabNg8MC2RQWCBWG+zNK/VCYCIi0mcERUJ0ov33OdtbHTo+Nhw/o4FT5bXkFKlps4jI2VxOwtavX8/vf/97xo4dy/3339/o061x48axfv36Lg1QGrRQnAPO7Avbo35hIiLibs5S9VtbHRboZ2RsjP3+pCWJIiKNuZyErVy5kmuvvZZ//OMfLFiwoNG54cOHc/DgwS4LTs4Sk2p/NWdDxalGpxxLEnerOIeIiLibMwlr/UkYnClVryRMRKQxl5OwQ4cOMXfu3GbPmUwmzGZzZ2OS5gSGQ1TDvrz8XY1OqTiHiIh4TEJDcY68nVBf2+rQMxUSlYSJiJzN5SSsX79+lJWVNXuuoKCA8HD1qnKb2Ob3hSU3LEfMLqqkqKL1G6KIiEinRI2EfpFQXw0nMlsdmjbEnoTtO67iUSIiZ3M5CZs4cSKvvPJKs5WO3nrrLaZOndolgUkznMU5Gu8LC+/nx/DoYED7wkRExM0MhnbvC4sJD2RgWAAWq02rNUREzuJyEnbbbbexe/du5s+fz8svv4zBYOCDDz5g0aJFfPXVVyxatMgdcQo0Ls5xThJ8pmmzbnIiIuJmCQ1JWHbrSVjjps1akigi4uByEpacnMyzzz5LZWUlS5cuxWaz8cwzz3DkyBFWrlxJYmKiO+IUgEHJ4OMLFYVQktvolKM4h56EiYiI2zmfhG1r8qHguZxJ2DGzm4MSEek5fDty0fTp01m/fj3Z2dmcOnWKiIgIhg0b1tWxybn8AmHAWDixx/40zBTvPDWhoThHRm4JNpsNg8HgpSBFRKTXi5kIPn5QXgDmYxAxtMWhaUNMwJmmzbo/iYh0sFmzQ0JCAmlpaUrAPKmF4hzjYsLw9TFwqryG/JJqLwQmIiJ9hl8/GJxi/30bperHxdibNp+uqCW7qNIDwYmIdH/tSsL++9//uvzGBQUF7Ny5s+2B4hrHvrBzinME+hkZPSgUgD3qFyYi4hXl5eU8+uij/OQnP2H69OmMHj2a5cuXt+vat956i9GjRzf7q7Cw0M2Rd4CjVH0b+8IC/YyMU9NmEZFG2pWE/elPf2LevHmsXr2a8vLyVsfu3buXBx98kMsuu4xvv/22S4KUszgqJB7PAKu10Sln02btCxMR8Qqz2cwbb7xBbW0tc+bM6dB7PPzww7z++uuNfplMpq4NtCucvS+sDdoXJiLSWLv2hG3cuJHly5fz5z//mT/96U+MHTuWsWPHEhUVhb+/PyUlJeTk5LB7924KCwsZNWoUy5cvZ+bMme6Ov+/pnwS+/aCmFE4fhP5nCqGkxIXz6jbYowqJIiJeERsby44dOzAYDBQVFbF69WqX32PUqFEkJye7Ibou5kjCCr6G6lIIDGtxaNoQE89/oSdhIiIO7UrCQkNDWbJkCbfddhtvvfUWn376KWvWrKGqqso5Jj4+npkzZ3LVVVcxffp0twXssGXLFtauXcuuXbs4ceIEoaGhjB8/nttuu43x48e3ef3p06dZtmwZH3/8MdXV1SQlJXHXXXcxY8YMt8feKUZf+zr8nK32fWFnJWGO4hyZeSVYrTZ8fLT5WUTEk/pU0YnQgfaCHMVHIXcHjLykxaGOJ2HfnrA3bQ7y71BdMBGRXsOlfwXDw8O5+eabufnmmwEoKyujuroak8mEn5+fWwJsyapVqzCbzdx4442MHDmSoqIiXnjhBRYsWMBzzz3XajJVW1vLwoULKS0t5d577yUqKopXXnmFW265hRdeeKH7N5yOTbMnYfnpkPo/zsOjBoTQz89IeU09h0+VM3JAqBeDFBGRjli0aBFFRUWEhoYydepU7rzzzu7b/iV+mj0Jy9neahIWY+rHoLBATpRWk5FTwowRUZ6LUUSkG+rUR1GhoaGEhnrnB/0//vGPREU1/kd85syZXHrppTzzzDOtJmGrV68mKyuL1157jYkTJwIwbdo05s2bx7Jlyzq0fMSjWijO4Wv0YXxsGDuOFpORU6IkTESkB4mOjmbRokWkpqYSEhJCVlYWK1euZMGCBaxatYqkpCSX39NisXQoFsd1bV1viJuKz57XsWVvwdrG2IkJ4azfW83OY6eZOtTUobg8pb3z7600f83/7Ne+prPzb+91PXY9wLkJGEBwcDAjRozg+PHjrV774YcfMmzYMGcCBuDr68vVV1/NY489RkFBAQMHDuzymLtMTEPcJzKhvhZ8/Z2nUuJM9iQs18x1k+K8FKCIiLhq1qxZzJo1y/nnKVOmMHv2bK666ir+9re/8fTTT7v8npmZmZ2Kqa3rAyvCGQdYs7ezO30n+BhbHDvAaC9P/0lmNjPCyzoVl6d09vvX02n+mn9f5u7599gkrDllZWV88803be5JO3DgAJMmTWpyfPTo0c7zriZh7v60sZHwIfgEmjBUm7Gc2HumVwswPta+MTojx9wjPsHQpy2a/9mvfY3m75lPG3uyuLg4Jk2aREZGRoeuT05OxmhsOTFqicViITMzs+3rrcnYtv4KY00ZqTH+MKjlgiK2SDP/ytjK4RIrKSkp3Xr/XLvn30tp/pq/5t/x+Tuub0uvSsIefPBBqqqqWLRoUavjzGYz4eHhTY47jpnNZpe/trs/bTzXqJARhFXvJHfbO5waanMe9yuvB+Dr/BJ2pO/Cr4cU59CnLZp/X6b59+35t8Vms+Hj066OMk0YjcZO/RDV5vVGI8RNhUMfYczbAbGpLQ5Njjfhb/ShqLKOXHMNQ6ODOxyXp3T2+9fTaf6av+bvvvn3miTsiSee4N133+X+++9vV3XE1j6B68inc27/tPEchuIL4fOdxBsLiUtNdR632WxEfLqJ4so6AgYMZ0Jc02SzO9GnLZq/5q/5u/vTxp4sJyeH9PR0zjvvPG+H0rL4aXDoI3u/sKk/a3FYgK+R8bFhpGebSc8u7hFJmIiIu/SKJOypp57i6aef5le/+hU/+tGP2hxvMpmafdpVUmLvr9XcU7K2uP3TxnPF2ZdT+uTvtn8SeZYJcSY+zSpkb34pE4dEdjgmT9KnLZq/5q/59xaffvopVVVVVFRUAHDw4EE2bNgAwOzZs+nXrx9LlixhzZo1bNy4kdjYWAAWLlzI5MmTSUpKIjg4mKysLJ577jkMBgOLFy/22nzalNDQLyy7fU2bHUnYtWnatywifZfLSdj//d//ccMNNzB8+HB3xOOyp556iuXLl3PHHXe0uQzRITExkaysrCbHHcdGjRrVpTG6RUya/bVwH9RWgP+ZTxRT4sL5NKuQjNwSfuyl8ERE+qoHH3yQvLw85583bNjgTMI++ugj4uLisFqtWCwWbLYzy8kTExNZv349zz//PDU1NURGRjJ9+nRuvfVWhg0b5vF5tFvsZDD4QEk2lOZDWEyLQ9OGRMDnR0g/ZvZcfCIi3ZDLSdiaNWt49dVXmT59OjfccAOXXHKJ1zbXrlixguXLl/PLX/6S22+/vd3XzZkzhwcffJCMjAxSUuxFLerr61m7di0pKSnduzKiQ9hgCB0MZcfh+B4YcqYkv6Npc0aO2TuxiYj0YZs2bWpzzNKlS1m6dGmjY0uWLHFXSO4VEAIDx8OJPfYlieOuaXHomabNpVTU1BMc0CsW5IiIuMzlnb6bN2/mvvvuo7CwkNtvv52LL76YlStXUlRU5I74WvT888/z5JNPMnPmTC688EJ2797d6JfDkiVLGDt2bKNPJefPn8+oUaNYvHgx7777Ll9++SV33XUXR44c4Te/+Y1H59EpjqdheTsbHZ4Qb19OebCwnPKaek9HJSIifU1CQ1XiNpYkDgoPJCY8EKsNMnLN7o9LRKSbcvkjqKCgIG644QZuuOEGtmzZwiuvvMLf/vY3nnrqKa644gpuuOEGkpNbLlHbVT7++GPAnhRu3ry5yfn9+/cDNLvkw9/fnxdffJFly5bx0EMPUVVVxZgxY3j22WeZOnWq22PvMrFpsP89yG/ctHlAqP0ml19Szd68EqYPb9pTTUREpMvET4PtKyFna5tDJw6JIH/PcXZlmzlvRLQHghMR6X46tQ5gxowZzJgxgxMnTvC73/2Od955h3feeYfx48fzy1/+kosvvrir4mzi5Zdfbte45pZ8AERHR/PII490dVieFet4Epbe5FRKvIn8khNk5JiVhImIiHvFNxTnOL6nyT7lc6UlRPDenuOkHyv2UHAiIt1PxxqPNKiurmb16tUsWrSIbdu2MWLECG677TYsFgu33XYbK1as6Ko4pTkxE+2vxUegsvFyUMe+sD25JR4OSkRE+hxTPITFgs3S7AeDZ0tLMAGwK8fcaJWKiEhf0qEkLDs7m4cffphZs2bxxz/+kUGDBvH888+zbt06br/9dt566y1+9rOf8e9//7ur45Wz9YuAyIYqlecsSUxp2Be2W8U5RETEE+IblvPntL4vbFxMOP6+PhRV1HL0dKUHAhMR6X5cTsJuueUWLr/8cv7zn/8wb948NmzYwD/+8Y8mjSQvuugiiou11MDtnMU5djU6nBwbjsEAeeYqTpXXeCEwERHpU+IbinO0kYT5+/qQHGv/oFBLEkWkr3I5CcvJyeGee+7hs88+49577yUhIaHZcaNGjeKll17qdIDShlh70+Zzn4SFBvoxon8IAHtUgUpERNzt7CdhVmurQx1LEtOzlYSJSN/kcmGO999/v13jQkJCelalwZ6qleIcE+LCOXiynIycEi5O6gG9z0REpOcalAx+QVBdAqeyYEBSi0Pt/cKOkJ5t9lh4IiLdSacKc0g3MGgCGIxQfgJK8xudSnE0bdaTMBERcTej35nVGW2Uqk8bYm/avP9EqfpZikif5PKTsIsvvhiDwdDsOR8fH0JDQ0lOTubGG29kxIgRnQ5Q2uAfBAPGQMFee9PmsBjnqZR4E2CvkGiz2Vr8exMREekS8dPg6GbI2Q6TFrY4bGBYILGmfuSZq9iTY+a8keoXJiJ9i8tPwqZOnYrNZqOgoIDY2FhSUlKIiYmhoKAAi8XC4MGD2bhxI9dddx2ZmZnuiFnO1cKSxDGDQ/EzGiiqqCW3uMoLgYmISJ+S0FCcI7sdTZu1L0xE+jCXk7ALLrgAf39/Nm7cyEsvvcRjjz3Gyy+/zAcffIC/vz9z5szh/fffZ+jQoSxfvtwdMcu5HBUSzynOEeBrZMzgMEBLEkVExAPiJttfiw5BeWGrQ+37wtC+MBHpk1xOwv7xj39wxx13MHjw4EbHY2JiuO2221i5ciWhoaEsXLiQ3bt3d1Wc0hrHk7D8XU0qUk2Is5cBVtNmERFxu34R0H+M/fe521sd6tgXtiu7WE2bRaTPcTkJO3bsGCEhIc2eCwsLIy8vD4DY2FiqqrQEziMGjAXfQHtFqqLDjU45inOoabOIiHhEwjT7axtLEscODiPA14fiyjqOnKrwQGAiIt2Hy0lYTEwMb7/9drPn3nzzTecTMrPZTHh4eOeik/Yx+tlLA0OTJYmO4hx780qwWPVJo4iIuFl8QxKW0/qTsEZNm7UkUUT6GJeTsJ/+9Kds2LCBH/zgB7z44ousW7eOF198kR/84Ads3LiRW265BYBt27Yxfvz4Lg9YWuAoC3xOcY4R/UMI9jdSWWvh4MlyLwQmIiJ9iiMJy98F9TWtDnUsSVRxDhHpa1wuUf/9738fm83G8uXLWbp0qfN4dHQ0Dz74INdffz0AixYtwt/fv+silda1UJzD6GNgfGw4244UkZFrZvSgUC8EJyIifUbkcAjuDxWFkL/7zPLEZqQ5KiQeUxImIn2LS0mYxWIhOzub7373u3z/+9/n8OHDmM1mTCYTw4cPb9SHKjpaPT88ylGc4/gesNTZlyg2SIk32ZOwHDPfnxzvpQBFRKRPMBjsT8O+XQc529pIwhqaNheUUVZdR2igX4tjRUR6E5eWI9psNubOncuuXbswGAyMGDGCSZMmMWLECDUC9rbIERAQBvVVcHJfo1OO4hyqkCgiIh7h3Be2rdVhAxqaNttskJGje5SI9B0uJWG+vr5ER0erlGx35OMDMRPtvz9nSaKjTP23J0qprrN4OjIREelrzk7C2viZQfvCRKQvcrkwx9y5c1mzZo0bQpFOcyxJPKc4R1xEP6KC/amz2Nh3vNQLgYmISJ8SkwrGAPu+sHNap5zLuS9MSZiI9CEuF+ZISkriv//9LzfeeCOXXnop/fv3b7IU8dJLL+2yAMUFLRTnMBgMTIgL5+P9hezJLWFiwxp8ERERt/ANsK/OyNlqfxoWNaLFoY59YbuyzVitNnx8tL1BRHo/l5Ow3/3udwAUFBSwfXvTHiAGg4F9+/Y1OS4e4HgSVvAN1FWBXz/nqZR4Ex/vLyRDTZtFRMQT4qeeScJSf9jisDENTZtLquo4fKqCkQNCPBikiIh3uJyEvfTSS+6IQ7pCWCwED4CKk/YqiWdVpHIU58jINXsnNhER6VsSpsOXT0J268U5/H19mBAXzo6jxaRnFysJE5E+weUkbOrUqe6IQ7qCwWBv2py13r4k8awkzFGc41BhBaXVdYSpDLCIiLhTXMPPC4X7oMoM/UwtDk1LiGDH0WJ2ZRerlYqI9AkuF+ZwKCsrY/Pmzaxdu5aSEpWV7TZaKM4RFRJAXIR9eeJelaoXERF3C+lvb58CkLuj1aGOvcrpx8xuDkpEpHvoUBK2YsUKZs6cyc9+9jN+97vfkZubC8BNN93EypUruzRAcVELxTngzJLE3VqSKCIinpAw3f6avbXVYWlDTABknSyjtLrOzUGJiHify0nYK6+8wooVK5g/fz7PPPNMo55hF110EZ988klXxieucvQKO33QvvzjLCnx9iWJe9QQU0REPCG+YUliW02bQwOJi3A0bTa7Py4RES/rUBK2cOFC7rvvPi644IJG54YMGcKxY8e6LDjpgOAoMA2x/z5/V6NTExqehO3RkzAREfGE+IYnYXk7wdL6E640LUkUkT7E5SQsJyeHmTNnNnsuODiY0lI1A/a62En213OWJCbHhuNjgPySak6WVXshMBER6VOiEyEwHOoqoWBvq0PVtFlE+hKXk7DQ0FBOnTrV7Lm8vDyioqI6HZR0UgvFOYIDfJ2lf7UkUURE3M7HB+IbKvW2Uao+bYijaXMxVqut1bEiIj2dy0nYjBkzeO6556isrHQeMxgM1NfXs2rVqiZLFMULnMU5djU5pX5hIiLiUY4kLKf14hxjBocR6OdDaXU9h0+VeyAwERHvcTkJu/POO8nPz2fu3LksXboUg8HAv//9b66//nqOHTvGrbfe6o44xRWDU8DgA6V5UHai0akJ8SYAMlSmXkREPMGZhG1vdZif0YcJsSZA+8JEpPdzOQkbMmQIq1atYvjw4axatQqbzcY777xDREQEr776KjExMe6IU1wREAL9k+y/P2dJYupZxTnOrmwpIiLiFrGTwGC0fzBozml16MSGUvXaFyYivZ1vRy4aOXIk//znP6mtraW4uJjw8HACAwO7OjbpjJg0OPmNvThH0hXOw6MHheJv9MFcWUd2USVDooK9GKSIiPR6/kEweIJ9iXzONjDFtzjUWSFRSZiI9HIdatbs4O/vz8CBA5WAdUexDf3CznkS5u/rw5iYMAB2qxeLiIh4gqNUfRv9whxJ2IGT5WraLCK9WoeehOXm5rJ+/Xry8/Oprm5c6txgMPD//t//65LgpBOcxTnSwWYDg8F5KjUunIwcM3tyS5iXGuulAEVEpM9ImAbbnobs1otz9A8NID6yHzlFVezONjMrsb+HAhQR8SyXk7BPPvmE22+/HavVSmRkJP7+/o3OG876YV+8aOB4MPpDVTEUH4HI4c5T9qbNx9S0WUREPMNRnKNgL9SU2/cutyAtIYKcoirSs4uVhIlIr+VyEvb444+TlpbG448/rp5g3ZmvPwxKhryd9iWJZyVhKQ0VEjPzSqi3WPE1dmpVqoiISOvCYiA8AUqyIe8rGH5hi0PTEiJ4Z3c+6dlmj4UnIuJpLv/0fezYMX72s595PQErLy/n0Ucf5Sc/+QnTp09n9OjRLF++vF3XvvXWW4wePbrZX4WFhW6O3INa6Bc2PDqY0ABfquusHDipXiwiIuIB8VPtr22UqnfsC1PTZhHpzVx+EhYTE9OoUbO3mM1m3njjDZKSkpgzZw6rV692+T0efvhhhg8f3uiYyWTqogi7gdg02EGT4hw+PgaS48L58tBpMnLMjBkc5p34RESk70iYDnv/0+a+sKTBoQT6+VBWXc+hwnJGDQz1UIAiIp7jchL2i1/8gueff55Zs2bRr18/d8TULrGxsezYsQODwUBRUVGHkrBRo0aRnJzshui6CceTsOO7wVIPxjN/3RPiTPYkLLeEH0z1TngiItKHOPaF5e4AqwV8jM0O8zP6MCHOxPYjRaRnFysJE5FeyeUkLDMzk9OnT/Od73yHadOmERER0WTMfffd1yXBtUYFQNohehT4h0JtGZzaDwPHOU+lxocDkKEy9SIi4gkDxoJ/CNSUQuG3je5J50pLiLAnYcfMLJiS4MEgRUQ8w+Uk7N///rfz9++9916T8waDwSNJWFdYtGgRRUVFhIaGMnXqVO68804SExO9HVbX8TFCTCoc3WxfknjWDc9eIRH2F5RRXWch0K/5TyRFRES6hNEX4ibD4U/sSxJbTcJMgJo2i0jv5XIS9u2337ojDo+Kjo5m0aJFpKamEhISQlZWFitXrmTBggWsWrWKpKQkl9/TYrF0KBbHdR29vi2Gwan4HN2MNW8ntpQfOo8PCPEjOsSfU+W17MkpZtKQpk80PcHd8+/uNH/N/+zXvqaz8++r37ceLX6aPQnL2QZTftrisLQhZ5o2l1TVEd7Pz0MBioh4RoeaNfd0s2bNYtasWc4/T5kyhdmzZ3PVVVfxt7/9jaefftrl98zMzOxUTJ29viWm2ghGAFUHv+Db3bsbnRsaauBUOazf/g3G4mC3fP32ctf8ewrNX/Pvy/r6/PsUx76wnG2tDosOCSAhMojsokp255iZrX5hItLLtCsJ27FjB2PHjiU4uPUf1IuKiti0aRPz58/vkuA8KS4ujkmTJpGRkdGh65OTkzEaXV/SZ7FYyMzM7PD1bRoaCTv/RFDZYVLHJ4FvoPPUBUUH+er4QYpsIaSmpnT9124Ht8+/m9P8NX/Nv+Pzd1wvPUjcFMAAxUehrABCB7Y4NC3BRHZRJenHipWEiUiv064k7MYbb+T1119nwoQJAFitViZMmMAbb7zB2LFjneNycnK4//77e2QSBmCz2fDx6VjjYqPR2Kkfojp7fYsih0JQNIbKUxgL99nX4zeYOCQSgD15pV7/AdBt8+8hNH/NX/Pvu/PvUwLD7HvBCvban4aNvbrFoWlDIlizO1/7wkSkV2pXxmGz2Zr8ub6+vsnxniwnJ4f09HRSUrzzRMhtDAZ7vzBo0i9sQqy9QuKRUxWUVNZ5OjIRkV6nvLycRx99lJ/85CdMnz6d0aNHs3z58nZff/r0aX7/+98zbdo0UlJSWLBgAVu2bHFjxF7QziWJjqbNu3PMatosIr1Oxx77dBOffvopGzZs4OOPPwbg4MGDbNiwgQ0bNlBVVQXAkiVLGDt2LHl5ec7rFi5cyFNPPcWHH37Ili1b+Ne//sUPf/hDDAYDixcv9spc3MrRLyy/cRIWEezPkKggAPbkmT0clIhI72M2m3njjTeora1lzpw5Ll1bW1vLwoUL2bJlC/feey9///vfiYqK4pZbbmH79u1uitgLHElYW02bB4XSz89IWXU9BwvLPRCYiIjn9OjCHA8++GCj5MqRgAF89NFHxMXFYbVasVgsjZ7aJSYmsn79ep5//nlqamqIjIxk+vTp3HrrrQwbNszj83A755OwnU1OTYgzcex0JXtyS5g5SmvuRUQ6IzY2lh07dmAwGCgqKmL16tXtvnb16tVkZWXx2muvMXHiRACmTZvGvHnzWLZsmUvv1a0lNCRhxzOgrgr8+jU7zNfow4S4cLYdKSL9WDGJatosIr1Ij07CNm3a1OaYpUuXsnTp0kbHlixZ4q6QuifHk7BTB6C61L4mv0FKXDjvZuSzW02bRUQ6zWAwdPjaDz/8kGHDhjkTMABfX1+uvvpqHnvsMQoKChg4sOVCFj2GaQiEDILyE5C/C4ac1+LQtCER9iQsu5gfTFXTZhHpPdqdhB0+fNi5cdrRm+Xw4cNNxkg3FNIfwhOgJBuO74ZhZ8rzp8SbANiTa/ZKaCIiYnfgwAEmTZrU5Pjo0aOd511NwrprD0ufuCkYvn0X67Gt2OKmtTguNc6+dzn9WLFH+8Kph5/mf/ZrX6P5e6aHZbuTsHvuuafJsf/93/9t9GebzdapTwHFjWIn2pOwvPRGSdi4mDB8DFBQWsOJkmoGhQe28iYiIuIuZrOZ8PDwJscdx8xms8vv2V17WA7wiSMeKP36Aw4Fz25xnF+1/YeZg4UVfL49nRB/z25l7+stEDR/zb8vc/f825WEPfzww24NQjwgJg2+eadJcY4gf18SB4by7YkyMnLNDAof5KUARUSktQ8yO/IhZ7ftYdm/Hr55mvDS/aSmpNgr+bYg4YvPyC6qxGKKJ9VD/cLUw0/z1/w1f3f3sGxXEnbNNde4HIB0My2UqQdIiTPx7Yky9uSauWyckjAREW8wmUzNPu0qKSkBaPYpWVu6bQ/LmIngG4ihqgij+QhEj2px6KQhEWQXVbI7t5SLx3j2HtXXe9hp/pq/5u+++ffoEvXigsGpgAFKcqC8sNEpx76wjJwSj4clIiJ2iYmJZGVlNTnuODZqVMuJSo/j6w+xDfvf2ihVn5ZgAmCXmjaLSC+iJKyvCAyD6ET7789ZkjihYePznlw1xBQR8ZY5c+Zw+PBhMjIynMfq6+tZu3YtKSkpvaMy4tnip9pf22raPKShaXO27lEi0nsoCetLWliSOHpQKAG+PpRW13P0dIUXAhMR6T0+/fRTNmzYwMcffwzAwYMHnX0sq6qqAHurlLFjxzbqdTl//nxGjRrF4sWLeffdd/nyyy+56667OHLkCL/5zW+8Mhe3ip9uf20jCRs9MJQgfyNlNfUcOKmmzSLSO/ToPmHiopg0yFjVpGmzn9GHcTFhpGeb2ZNbwvD+IV4KUESk53vwwQcbJVeOBAzgo48+Ii4uDqvVisViwWY782TH39+fF198kWXLlvHQQw9RVVXFmDFjePbZZ5k6darH5+F2jidhp7KgsgiCIpsd5mv0ISXOxJbDp0nPLmb0IDVtFpGeT0lYX+J4EpafDjZbo2pUKfEm0rPN7M4x872JsV4KUESk59u0aVObY5YuXcrSpUubHI+OjuaRRx5xR1jdT1CkfZn8qSzI2Q6jL29xaNqQhiTsWDH/o6bNItILuLQcsbq6mh/84Ad8+eWX7opH3GngePDxg8rTYM5udColzgSoabOIiHhQfEOj5py2inPY94WlqziHiPQSLiVhgYGBZGVl9elylT2aXyAMHGf/fQvFOb7OL6XOYvV0ZCIi0hc5k7DtrQ6b2JCEHSqswFxZ6+6oRETczuXCHBMnTmTPnj3uiEU8oYXiHEOjggkL9KWm3sr+E2VeCExERPqchIbiHHk7ob7l5Coy2J9h0cEA7MoxeyAwERH3cjkJ+93vfsfrr7/OmjVrqKhQJb0eJ6b5JMzHx8AE55JE9QsTEREPiBoJ/SKhvhpOtP4B70RHv7BjWpIoIj2fy0nYggULOHHiBPfccw+TJ09m4sSJpKWlOX9NmjTJHXFKV3E0xzy+G6yWRqdS4u1LEjP0KaOIiHiCwXDWksQ2+oU594WZ3RyUiIj7uVwd8bLLLsNwVlU96WH6jwa/YKgth1MHYECS85TjSViGinOIiIinJEyDrPWQvRVm3NbiMEcStjvHjMVqw+ijn0VEpOdyOQlrrqSu9CA+RhicAtlf2otznJWEpcabAMgqKKOytp4gf3UwEBERNzv7Sdg57VPONnpQKMH+Rspr6jlwsoykQWEeDFJEpGu5vBxRegFncY7GTZsHhgUyMCwAq81eJVFERMTtYiba26eUF4D5WIvDjD4GUho+LEw/ZvZMbCIibtLhRx1ZWVkcOnSImpqaJue+973vdSYmcbeYifbXc4pzgL1f2AffFJCRY2bK0EgPByYiIn2OXz/7Co28ryB7G0QMbXFoWkIEXx46TXp2MT+cpqbNItJzuZyEVVVV8ctf/pKtW7diMBiw2WwAjfaJKQnr5hzFOQr22ksC+/o7T6XENyRhqpAoIiKekjDdnoTlbIOUBS0OSxtiAtS0WUR6PpeXI/79738nLy+Pf//739hsNp566ileeOEFvvOd7zBkyBDefvttd8QpXSliqL0ksKXWnoidxdG0eY+Kc4iIiKe0s0LixHh7cY7DatosIj2cy0nYRx99xM9+9jMmTrQvaRs8eDAzZszgySefZNy4cbz66qtdHqR0MYPhzJLE/MZLEifEmgA4drqS4grd4ERExAMcSVjB11Dd8p7kiGB/hjuaNqtUvYj0YC4nYXl5eQwfPhyj0YjBYKCqqsp57qqrruKjjz7q0gDFTWKbb9ocHuTHsIYb3J48LUkUEREPCB3YsBfMBrk7Wh060dkvTEsSRaTncjkJCw0NpbKyEoCoqCiOHTtTyai+vt55Trq5mOaTMICUODVtFhERD2tv02btCxORXsDlJGz06NEcPXoUgGnTpvHMM8/w1VdfsWfPHlasWEFSUlLrbyDdg+NJ2Kn9UFPe6JSjabP2hYmIiMe0NwlzNG3OtjdtFhHpiVxOwq677joqKioAuOuuu6iqquLHP/4xCxYsID8/n9///vddHqS4QeggCIsFmxWOZzQ65ejDsjunxFn9UkRExK0Spttfc78CS32LwxIHhhIS4EtFrYWsgjIPBSci0rVcLlF/xRVXOH8fHx/P+++/7yxXP3HiREwmU1fGJ+4UMxFK8+zFOYae7zw8LiYMXx8Dp8prOF5STYypnxeDFBGRPqF/EgSEQU0pnPwGBk9odpi9aXM4Xxy09wsbMzjMw4GKiHSey0/CzhUUFMTFF1/MRRddpASsp3EW59jZ6HCgn5HRg0IB7QsTEREP8TFC3BT779u5JDH9mNnNQYmIuEenkzDpwRxNm5spzuHYF6amzSIi4jGOfWHZW1sd5kjCdqk4h4j0UO1ajpiUlITBYGjXGxoMBr755ptOBSUeMjjV/mo+BhWnITjKeSolLpxV21WcQ0REPCjBUZxje6vDJiaYADh8qoLiiloigv3dHJiISNdqVxJ22223tTsJkx6knwmiRsLpg5C/C0bNcZ5yFOfIzC3BarXh46O/fxERcbPYyWDwgZJsKM2HsJhmh5mC/BneP5jDhRXsyinm4qSBHg5URKRz2pWE3XHHHe6OQ7wlJs2ehOXtbJSEjRoQQqCfD2U19Rw+VcHIASFeDFJERPqEgBAYOB5O7LHvCxt3TYtD0xIiOFxYQfoxs5IwEelxtCesr3MU58hvvC/M1+hDcqyaNouIiIc5StVnt7M4h/aFiUgP5HKJ+jVr1rQ55nvf+14HQhGvOLs4h80GZy07nRBnYsfRYvbkmrluUpyXAhQRkT4lfhpsXwk5bRTnGGICYHeOmXqLFV+jPlcWkZ7D5SSspWbMZ+8ZUxLWgwxKBh9fqDhp7xkWfibZcjZtVoVEERHxFEeFxON7oLYC/IObHTZqgL1pc3lNPfsLyhgXE+7BIEVEOsflJOyjjz5qcqy4uJiPPvqI//73vzz++ONdEph4iF8/GDAGTmTan4adnYTF2W9o+/JLqa234u+rTxlFRMTNTPEQFmv/YDAvHYbNbHaY0cdAaryJzw+eIj3brCRMRHoUl3+qjo2NbfJr/PjxLF68mEsvvZSXXnrJHXGKO8U037Q5ITIIU5AftRYr354o9UJgIiLSJ8VPtb+22bTZBMCuY9oXJiI9S5c+2pgxYwabNm3qyrcUT3DsCzunOIfBYFDTZhER8bz4huIcbSRhE4eoOIeI9ExdmoTl5eXh4+OZJWvl5eU8+uij/OQnP2H69OmMHj2a5cuXt/v606dP8/vf/55p06aRkpLCggUL2LJlixsj7sacFRJ3g9Xa6JRjSeIeVUgUERFPOftJ2Dn3pbOlxduTsKOnKzldXuOJyEREuoTLe8J27NjR5FhtbS379+/nmWeeYcaMGV0SWFvMZjNvvPEGSUlJzJkzh9WrV7f72traWhYuXEhpaSn33nsvUVFRvPLKK9xyyy288MILTJ061Y2Rd0P9x4BvP6gphaJDED3KeSrF+STM7J3YRESk7xmUDH5BUF0Cp7JgQFKzw8KD/BjRP5hDhRXsyjYzZ6z6hYlIz+ByEvbjH/+4USVEAJvNBsB5553H/fff3zWRtSE2NpYdO3ZgMBgoKipyKQlbvXo1WVlZvPbaa0ycOBGAadOmMW/ePJYtW+bSe/UKRl8YPMH+iWPezkZJ2IR4+5OwAyfLKa+pJyTA5f9kREREXGP0sy+VP7rZXqq+hSQM7P3CDhVWkJ5drCRMRHoMl3+ibq7wRkBAALGxsURHR3dJUO1xbiLoig8//JBhw4Y5EzAAX19frr76ah577DEKCgoYOLCP/UMek9aQhKVDyg+chweEBhITHkh+STV780qYPjzKi0GKiEifET/NnoRlb4NJC1scljYkgtU7c7UvTER6FJeTsN6wVO/AgQNMmjSpyfHRo0c7z7uahFkslg7F4riuo9d3FcPgifgAtrydWM+JJTkunPySanZnFzOloTlmV+ku8/cWzV/zP/u1r+ns/Pvq963PSGhfcY60BPu+sIycEjVtFpEew+Uk7MiRIxQWFjabjG3fvp0BAwYwdOjQrojNbcxmM+HhTfuJOI6ZzWaX3zMzM7NTMXX2+s4KKA9kPGA7vofd6V/ZGzg36O9TAcCne48xJdQ9VRK9PX9v0/w1/76sr89fWhA32f5adAjKCyGkf7PDRg0IITTAl7Kaer49Ucb4WPULE5Huz+UkbOnSpQwdOrTZJOzjjz/myJEj/OMf/+iS4NypteWMHVnqmJycjNFodPk6i8VCZmZmh6/vMrYUbFvC8akuIXWwv32PWIPK0NP8O3MHORUGUlNTu/TLdpv5e4nmr/lr/h2fv+N66aX6RdgLRxXug9ztkDS32WE+PgZSE0xsPnCKXdnFSsJEpEdwOQnLzMzk+uuvb/bclClTePfddzsdlLuZTKZmn3aVlNif8jT3lKwtRqOxUz9Edfb6LhEzEQ5/gvHELog7s18uJSECgwFyi6swV9UTFRLQ5V+6W8zfizR/zV/z77vzl1YkTLMnYdlbW0zCACYmRLD5wCnSs8382DNFmkVEOsXlhdNlZWUEBQU1ey4wMNCZyHRniYmJZGVlNTnuODZq1Kgm5/qEmIZ+YXmNmzaHBfoxPDoYgD1q2iwiIp4SP83+2ua+MBOgps0i0nO4nIQNHDiQPXv2NHtuz5499O/f/Jrt7mTOnDkcPnyYjIwM57H6+nrWrl1LSkpK36uM6BDbUKwkf1eTU+oXJiIiHudIwvJ3QX3LzZgnNjRtPna6klNq2iwiPYDLSdicOXNYuXIlW7dubXR827ZtPPvss3znO9/psuDa8umnn7JhwwY+/vhjAA4ePMiGDRvYsGEDVVVVACxZsoSxY8eSl5fnvG7+/PmMGjWKxYsX8+677/Lll19y1113ceTIEX7zm994LP5uJ7bhSdjJfVBb2ehUSrwJgIwcs2djEhGRvityOARFg6UW8ne3OCw8yI+RA0IA2JVt9kxsIiKd4PKesNtuu43PP/+cm2++maFDhzJo0CBOnDjB0aNHGTlyJHfccYc74mzWgw8+2Ci5ciRgAB999BFxcXFYrVYsFouzoTSAv78/L774IsuWLeOhhx6iqqqKMWPG8Oyzz/aKEvwdFhYDIYOg/ASc2HOmPDAwIc6+T25Pbgk2m61TfdpERETaxWCw34u+XWdfkpgwrcWhaQkmDp4sJz27mO+oabOIdHMuJ2GhoaG8/vrrvPjii2zevJn8/HwiIiK44447uOmmmwgODnZHnM3atGlTm2OWLl3K0qVLmxyPjo7mkUcecUdYPVtsGuz/L+TtbJSEjRkchp/RwOmKWnKLq4iPbH5foIiISJeKn3YmCWtFWkIEb3yVS/ox7QsTke7P5SQMIDg4mNtuu43bbrutq+MRb3MmYY2LcwT6GUkaFEZmXgl7ckuUhImIiGc49oVlbwWbzf50rBlpQ+z7wvbkqmmziHR/Hf4XqqysjM2bN7N27doeURFR2slRITE/vcmplHj7kkQV5xAREY+JSQWjP1SegqLDLQ4b2T+E0EBfquosfHuizHPxiYh0QIeSsBUrVjBz5kx+9rOf8bvf/Y7c3FwAbrrpJlauXNmlAYqHxTT0Bys6DJVFjU5NcFRIVHEOERHxFN+AM/emVpYk+vgYSG0oIqVS9SLS3bmchL3yyiusWLGC+fPn88wzzzQqeHHRRRfxySefdGV84mlBkRAxzP77c0rVO25umXklWKw2REREPKLd/cLsSxK1L0xEursOJWELFy7kvvvu44ILLmh0bsiQIRw7dqzLghMviW1+SeKI/iEE+RuprLVwqLDcC4GJiEif5CgUld1GEtawLyxdZepFpJtzOQnLyclh5syZzZ4LDg6mtLS000GJlzmaNuc1fhJm9DEwPrZhX5iWJIqIiKfENbSPKdwHVS0/5XKs2MguUtNmEeneXE7CQkNDOXXqVLPn8vLyiIqK6nRQ4mWtFOdw3OBUnENERDwmpD9EjrD/PverFoeF9/NjVEPTZi1JFJHuzOUkbMaMGTz33HNUVlY6jxkMBurr61m1alWTJYrSAw2eAAYfKDsOpfmNTp3dtFlERBqrqKjgz3/+MxdccAHJycnMmzeP9957r83r3nrrLUaPHt3sr8LCQg9E3gOcXaq+Fc59YVqSKCLdmMt9wu68807mz5/P3LlzmTNnDgaDgX//+9/s27eP/Px8nnjiCTeEKR7lHwz9x8DJr+39wsJinKdSGiok7jteSk29hQBfo5eCFBHpfu644w4yMzO5++67GTp0KOvWrePXv/41VquVq666qs3rH374YYYPH97omMlkclO0PUzCNMh4te3iHENMvP5Vjiokiki35nISNmTIEFatWsXDDz/MqlWrsNlsvPPOO0ybNo2//OUvxMTEtP0m0v3FptmTsPx0GHOl83BcRD8ig/0pqqhl3/Ey5/JEEZG+7tNPP+WLL77gr3/9K1deaf93c/r06eTn5/Poo49yxRVXYDS2/sHVqFGjSE5O9kS4PU98Q3GOvJ1gqQOjX7PDHE/C9uSaqbNY8VPTZhHphjr0L9PIkSP55z//SXp6Op9++ik7d+7k+eefZ8SIEV0dn3iLo0JiXuN9YQaDgZQ4FecQETnXxo0bCQoK4vLLL290/Nprr+XkyZNkZGR4KbJeIjoRAsOhrhJOZLY4bET/EMICfamus/LtcTVtFpHuyeUnYWfz9/dn4MCBXRWLdCdnF+ew2cBgcJ6aEGfi4/2FKs4hInKWAwcOMGLECHx9G99aR48e7TyflpbW6nssWrSIoqIiQkNDmTp1KnfeeSeJiYkdjslisXTquo5e7y4+cVMxHNyINXsrtkEpLY5LiTex+cApvjp6mrGDQ1z+Ot11/p6i+Wv+Z7/2NZ2df3uva1cStmbNGpe++Pe+9z2Xxks3NHAcGAOgugSKDkPUmaeczgqJehImIuJkNpuJi4trcjw8PNx5viXR0dEsWrSI1NRUQkJCyMrKYuXKlSxYsIBVq1aRlJTUoZgyM1t+YuSJ67vaIGM8sYA5832O+E9rcVyMXzUAm/YcYUK/ju8N627z9zTNX/Pvy9w9/3YlYb///e/b/YYGg0FJWG9g9INByZD3lX1J4llJmKNC4uFTFZRV1xEa2Py6fBGRvsZw1qoBV87NmjWLWbNmOf88ZcoUZs+ezVVXXcXf/vY3nn766Q7Fk5yc3OY+tOZYLBYyMzM7fL3bmMph//NElGcRnpra4rCy4FO8/s1XHC0zkNrKuJZ02/l7iOav+Wv+HZ+/4/q2tCsJ++ijj1wOQHqB2En2JCw/HSZc7zwcFRJArKkfeeYqMvNKOG9EtBeDFBHpHkwmU7NPu0pK7C09HE/E2isuLo5JkyZ1ai+Z0Wjs1A9Rnb2+y8VPAYMRQ2k+xrJ8MMU3OyxtaCQGA+QUV1FUWU//0IAOfbluN38P0/w1f83fffNvVxIWGxvrtgCkG2uhOAfYlyTmmavIyFESJiICkJiYyLp166ivr2+0LywrKwuwVz50lc1mw8dH1f2c/IPsvSzzd9lL1beQhIUF2ps2ZxWUk55dzGXjBnk4UBGR1nX4X/by8nI+//xz1q1bxxdffEF5eXlXxiXdgaM4x/EMsNQ3OnWmabPZw0GJiHRPc+bMobKykg8++KDR8bfffpsBAwaQktJyIYnm5OTkkJ6e7vJ1vZ6jVH1b/cKcTZvVL0xEup8OVUf85z//yVNPPUV1dTU2mw2DwUBgYCB33nknN998c1fHKN4SNRICwqCmFAr32feINUhRcQ4RkUZmz57N+eefzwMPPEB5eTkJCQm89957bN68mWXLljmXtSxZsoQ1a9awceNG50qThQsXMnnyZJKSkggODiYrK4vnnnsOg8HA4sWLvTmt7id+Kmx7GrK3tjosbUgEr+3IYdcxs2fiEhFxgctJ2Jo1a1i2bBmzZs3immuuYcCAAZw8eZI1a9bw6KOPEhERocIcvYWPDwxOgaOb7UsSz0rCxseGYzBAfkk1J8uqGRAa6MVARUS6h+XLl/P444/z5JNPYjabGT58OI899hhz5851jrFarVgsFmw2m/NYYmIi69ev5/nnn6empobIyEimT5/OrbfeyrBhw7wxle4roeFJWMFeqCmHgOZL0DubNuepabOIdD8uJ2EvvvgiV155JX/5y18aHf/ud7/Lb37zG/71r38pCetNYifZk7D8dJh0k/NwSICvc739npwS5oxVEiYiEhwczH333cd9993X4pilS5eydOnSRseWLFni7tB6j7AYCE+Akmx78ajhFzY7bHh0MOH9/CipqmPf8VImxJk8GqaISGtc/ljo8OHDXH311c2eu/rqqzl06FCng5JupJXiHI4bmvaFiYiIR8VPtb9mt7wvzMfHwMQEEwDpx7QvTES6F5efhAUGBjrL7Z6rpKSEwEA9EelVHMU5Cr6Guirw6+c8lRJv4j87c9md2/x/DyIiIm6RMB32/qddxTk+2V9IeraZhed7KDYR6RHqLFZOlFSTU1RJTnElOUVV5BRXcqKkmhkDLHSgxaBLXE7CJk2axFNPPcXUqVMZOHCg83hhYSErVqxg8uTJXRqgeFl4HAT3h4pCOJF55tNHIOWsComOAi0iIiJu57gX5e4AqwV8mu/lowqJIn2X1WrjZFkNOcWV5DqSrLMSrhOl1VistuYvrg3gDjfH53IS9utf/5of/OAHXHrppcyYMYP+/ftTWFjI1q1b8fX15amnnnJHnOItBoN9X1jWBvuSxLOSsKRBYfgbfTBX1pFTVEVCVJAXAxURkT5jwDjwD2mo3vstDBzX7LCUeHsRqdziKhWREullbDYbxZV1jRKr3OJKcoqryC2qJNdcRW29tdX38Pf1IS6iH/ERQfbXyCBiwwOJrMl3e/wuJ2GjRo3iP//5D8uXL2fbtm2YzWZMJhOXXHIJt99+u6o49UYxafYkLL/xvjB/Xx/GxISRkWNmd65ZSZiIiHiG0RfiJsPhT+yl6ltIwkID/Rg9MJRvT5SRfszM5ePVtFmkJymvqbcnWUX25CqnyP5UK7fh9xW1llavN/oYGBweSHxEEPGRDclWw2t8ZBD9QwLw8Wm8kstisbB79wl3TgvoYJ+wYcOG8dhjj3V1LNJdtVKcIyUunIwcM3tyzFydEuPhwEREpM+Kn2ZPwnK2wZSftjhsYkIE354oY1d2sZIwkW6mus5CbnHjJ1hn788yV9a1+R4DQgOIjwwivuFJ1tmJ1uDwQHy7aXuKDiVh0sc4inOcPgBVZuhncp5KiTMBx8hQhUQREfGk+Gn21zaLc5hYtT1b+8JEvKDeYuX4WcUvHE+wHE+1TpbVtPkeEUF+xEcGnVk2eFbCFWvqR6Bf83tCu7sOJWHffPMN7777Lvn5+dTUNP7mGQwGnn766S4JTrqJ4CgwJYA5G47vbtSTJSXeXpxjb14p9RZrt/20QUREepm4yYABio9CWQGEDmx2WNqQhqbNuSXU1lvx99V9SqSrWK02CstrGlcYLGpItoorOV7SSvGLBsH+xoYky75kMC7iTJIVF9GP0EA/D83Gs1xOwtasWcM999yDj48PkZGR+Pk1/saoQl4vFTvJnoTlpTdKwoZHhxAS4Et5TT0HTpYzZnCY92IUEZG+IzDcvhesYK/9adjY5nuYDo8OxhTkh7nS3rQ5Jd7k2ThFejBH8Yvcs5YIOp5ktbv4hdFe/CLu3CWDDb+PCPLrk/mDy0nY008/zezZs3nkkUcIDw93R0zSHcWkwddvNynO4eNjIDk2nC2HT7Mn16wkTEREPCd+WptJmMFgYGK8iY/3F5KeXawkTKQVxRW1PLv5EDuyiin97HNyi6vaXfzCsVwwPvJMEYyWil9IB5KwkydP8sc//lEJWF/jLM6xq8mplHgTWw6fJiO3hAVTPByXiIj0XfHT4Kt/2isktiItIaIhCTNzs5o2izRr4zcF3PNWJqfKHVuNzmw5Orv4RVxE4yRrUHggftqO4jKXk7AxY8ZQUFDgjlikOxucAhigNLfJ2ntH0+aMHLN3YhMRkb4poaE4x/EMqKsCv37NDnPsC0s/puIcIucqqazjwXVf81Z6HgAj+wdzYZwPM5ITGRIdQlxEzy1+0Z25nLb+7//+LytXruTbb791RzzSXQWEQv8k++/PWZI4oWFpx/4TZVTXtf7IWkREpMuYhkDIQLDWQX7TlRoOKfEmfAyQZ67iZGm1BwMU6d4+3n+SS5/4lLfS8/AxwC9mD2ftbefx3ZHBXDi6PyMHhCgBcxOXn4SlpqZy6aWXcs0119C/f/8myxINBgNr167tsgClG4lNg8J99uIco7/rPBwTHkh0SACnymv4Or+USQ2fOIqIiLiVwWBfkrhvrX1J4pDzmh0WEuBLoqNpc3Yxl48f7OFARbqX0uo6/rxuH69/lQPAsOhg/nJ9CpOGRGCx6AN1T3D5SdjKlSt55plniIiIICYmBpPJ1OiX9or1YjET7a/nPAkzGAzOJYl71C9MREQ8KWG6/TVne6vDnEsSs81uDkike/v8wCkuf/wzXv8qB4MBfnrBMP5750x9iO5hLj8Je+mll7juuuv405/+hNGox5N9irM4x06w2eyfQDZIiTfx0bcntS9MREQ86+ymzefcm86WlhDBq9uytS9M+qyKmnr+33/38cq2bACGRAWxbH4KU4dFejmyvsnlJKyiooIrr7yyWyRgFRUVPPHEE6xfv56SkhKGDx/Oz3/+c+bOndvqdW+99Rb33HNPs+c+//xz+vfv745we76B48HHD6qK7c0xI4c5T01wPgkr8VJwIiLSJw2aAL6BUFUEpw9C9Khmh6UlmADYk6emzdL3bDl0mt/+J4Pc4ioAbpoxhN99N4kgf5dTAekiLn/n09LSOHToEDNmzHBHPC654447yMzM5O6772bo0KGsW7eOX//611itVq666qo2r3/44YcZPnx4o2Mmk8lN0fYCvgEwKNm+HDE/vVESlhJnAuDwqQpKquoI79c7u5uLiEg34+tv72WZ/aV9X1gLSdiw6GAigvworqzjm+OlpKpfmPQBlbX1PLphPy9+eRSAWFM/ls2fwHkjo70bmLiehN17773ceeedDBo0iFmzZuHv7++OuNr06aef8sUXX/DXv/6VK6+8EoDp06eTn5/Po48+yhVXXNHm07pRo0aRnJzsiXB7j9g0ewKWlw7jr3Mejgj2JyEyiOyiSjJzS7hglP7nFhERD0mYZk/CcrZC2o+bHWIwGJiYEMGmb0+SfqxYSZj0ejuOFvHb1RkcPV0JwA+nJbDkijGEBOjpV3fg8t/CddddR319PXfccQcGg4HAwMBG5w0GAzt37uyyAFuyceNGgoKCuPzyyxsdv/baa7n77rvJyMggLS3N7XH0OTEN39NmSgGnxJvILqokI9esJExERDwnvp3FORJM9iQsu5ifMKzVsSI9VXWdhb+8v59/fnEEmw0GhwfyyHUTmJWo7TbdictJ2GWXXYahhU2vnnTgwAFGjBiBr2/jKYwePdp5vq0kbNGiRRQVFREaGsrUqVO58847SUxMdFvMvYKjOEf+brBawOfM08aUuHDezchXcQ4REfGs+Kn211NZUFkEQc0XGkhLsFd/26UKidJL7cou5u7VGRwurADg+5PjuO/KsYQFaptId+NSEmaxWPjFL35BZGSk10vRm81m4uLimhx3xGU2m1u8Njo6mkWLFpGamkpISAhZWVmsXLmSBQsWsGrVKpKSklyOp6M9FRzX9ZieDBEj8PELxlBXgaXgGxgw1nlqfEwoYC9T39759Lj5dzHNX/M/+7Wv6ez8++r3TZoRFAnRifYkLGc7jL682WFnN20uKK1mYFhgs+NEeprqOgtPfHiAlZ8dwmqDAaEBLL0umYuTBno7NGmBS0mYzWZj7ty5PP3008yePdtdMbVba0/kWjs3a9YsZs2a5fzzlClTmD17NldddRV/+9vfePrpp12OJTMz0+VruvJ6T0oMG0no6Qxytr7D6YRa53FLvRUf4ERpDZu27CSyX/sraPak+buD5q/592V9ff7SReKnNiRhW1tMwoIDfBk9KIx9x0tJP1bMd5PVtFl6vj25Zu5+I4MDJ8sBuGZiLA9cNY7wID396s5cSsJ8fX2Jjo7GZrO5K552M5lMzT7tKimxl0h39UldXFwckyZNIiMjo0PxJCcnd6hsv8ViITMzs8PXe4Ph1EzYkkGC72niU1MbnRv15efsLyjHEh5H6ti2P33pifPvSpq/5q/5d3z+jutFAPu+sF3/huxtrQ5LSzDZk7BsJWHSs9XWW1m+6QB//+QQFquN6BB//nxNMpeNG+Tt0KQdXN4TNnfuXNasWcOFF17ohnDaLzExkXXr1lFfX99oX1hWVhZgr3zoKpvNho9Px/qGGI3GTv0Q1dnrPSp2EgA++elwTsyp8RHsLygnM7+Uy5Nj2v2WPWr+bqD5a/6af9+dv3SRhIbiHPnpUF9rL13fjLSECF7Zlk269oVJD/Z1fgl3v5HBtyfKALgqJYYHrx5HZLB3qpaL61xOwpKSkvjvf//LjTfeyKWXXkr//v2bLP279NJLuyzAlsyZM4c33niDDz74gCuuuMJ5/O2332bAgAGkpKS49H45OTmkp6dz3nnndXWovY+jOEfB11BfY+8f1mBCfDivf5Wjps0iIuJZUSOhX6S9afOJPRA3udlhaUPsxTky1bRZeqA6i5WnPznEkx8doN5qIzLYn/+bN565E/RUt6dxOQn73e9+B0BBQQHbtzctBWswGNi3b1/nI2vD7NmzOf/883nggQcoLy8nISGB9957j82bN7Ns2TLnp6pLlixhzZo1bNy4kdjYWAAWLlzI5MmTSUpKIjg4mKysLJ577jkMBgOLFy92e+w9nmkIBEVB5Wk4sRfiJjlPOZo2Z+SYsdls3aKSpoiI9AEGA8RPg6z1kLOtxSRsaFQQkcH+FFXU8nV+CRMbKiaKdHf7T5Rx9+rd7M0rBeDycYN46JrxRIcEtHGldEcuJ2EvvfSSO+LokOXLl/P444/z5JNPYjabGT58OI899hhz5851jrFarVgslkb72BITE1m/fj3PP/88NTU1REZGMn36dG699VaGDVPfkDYZDPZ+YQc32pd9nJWEjR4USoCvD6XV9Rw9Xcmw6GAvBioiIn1K/FR7Epa9FWbc1uwQg8HAxHgTH317kvRss5Iw6fbqLVae+ewwf/vwALUWK+H9/PjTvHFcnRKjD7t7MJeTsKlTp7ojjg4JDg7mvvvu47777mtxzNKlS1m6dGmjY0uWLHF3aL1fbEMSlpfe6LCf0YdxMWGkZ5vZk2tWEiYiIp7j2BeWsw1sNvuHhs1IGxLRkIQV81M1bZZu7ODJMu5evcfZg3XOmAH8v2uSGaD2Cj1ehxdCl5WVsXnzZtauXeusSCh9SEzDvrC8nU1OTWhYkrhbTZtFRMSTYiaCjx+UF4D5WIvDJiaYANh1rNhDgYm4xmK18exnh7niyc/JyDETGujLX69P4dkbJysB6yVcfhIGsGLFCp599lmqq6sxGAz85z//ITw8nJtuuonzzz+fn//8510dp3Q3juIcp7KgpgwCQp2nUuLt7QFUnENERDzKrx8MToG8r+yl6iOGNjssJc7etDm/pJrjJVUMDu/n2ThFWnHkVAW/WZ3BzoYPCWYn9mfpdcn677SXcflJ2CuvvMKKFSuYP38+zzzzTKO9VhdddBGffPJJV8Yn3VXIAAiPB2yQv7vRKUdxjr15JdRZrB4PTURE+rCzlyS2IDjAl6RBYQCkHzN7ICiRtlmtNp7//Ajf/dtn7DxWTEiAL49cl8yLN09RAtYLdSgJW7hwIffddx8XXHBBo3NDhgzh2LGWH/9LLxMz0f6a33hf2NCoYEIDfampt5JVUOaFwEREpM+Kb9i73koSBpA2xARAeraWJIr3ZZ+u5AfPbuVP676hus7K+SOj2HDXTBZMSVDxjV7K5SQsJyeHmTNnNnsuODiY0tLSTgclPYRjSeI5xTl8fAxnlarXkkQREfGg+IYnYQVfQ3XL96C0hqqISsLEm6xWGy9vPcblf/uM7UeKCPI38tD3xvPvn04jLiLI2+GJG7mchIWGhnLq1Klmz+Xl5REVFdXpoKSHiGk+CQOYEOfYF2b2YEAiItLnhQ5s2Atmg9yvWhzmSMK+ziulpt7imdhEzpJbXMmPn9/G/Wv2UllrYdqwSDYsnsWPpg/R068+wOUkbMaMGTz33HNUVlY6jxkMBurr61m1alWTJYrSi8WkAgYoyYaKxol5SrwJUIVEERHxgvhp9tdWliQOaWjaXGuxOpvfiniCzWbjte3ZXP7EZr44eJpAPx/+eNVYVv1sOglRevrVV7ichN15553k5+czd+5cli5disFg4N///jfXX389x44d49Zbb3VHnNIdBYZD9Cj77895GuZYjnjgZDlVtfqEUUREPKgdSZjBYCDNUapeSxLFQ46XVHHTCzv4/VuZlNfUM2lIBOsXz+Lm84fh46OnX32Jy0nYkCFDWLVqFcOHD2fVqlXYbDbeeecdIiIiePXVV4mJiXFHnNJdOZYknlOcY1B4IAPDArBYbXydr31hIiLiQY4kLPcrsNS3OGyi9oWJh9hsNv6zM5dLH/+Mz7IK8ff14b65Y3jjFzMYFh3s7fDECzrUJ2zkyJH885//pLa2luLiYsLDwwkMVOO4Pik2Dfa81mLT5o3fFLA7x8zkoZFeCE5ERPqkAWMgIAxqSuHk1/beYc1wFudQmXpxo5Ol1Sx5O5MP950E7Fs2/np9CiMHhHg5MvEml5+E3XPPPeTk5ADg7+/PwIEDnQlYXl4e99xzT9dGKN3b2cU5zuoZB5ASp6bNIiLiBT5GiJti/33O9haHpcSHY/QxcKK0mnxzlYeCk77CZrPxzu48vvP4Z3y47yT+Rh/+9/LRvLlohhIwcT0Je/vttykubv6xfXFxMWvWrOlsTNKTDEoGH1+oPAUlOY1OOYpzZKhCooiIeJpjSWL21haHBPn7kjQoFNCSROlap8prWPTvnSx+bTclVXWMjw3j3Tsu4NYLR+JrdPnHb+mFuvS/gpKSEvz9/bvyLaW78wuEgePsvz+nOMeEWBMAx05XYq6s9XBgIiLSpyU4inO0/CQMtCRRut57e45z6eOf8f7XBfgZDdz9nUTevvV8Rjck/N1eTSm+1aehygx1VWC1ejuiXqlde8J27NjBtm1nKgytXr2azz77rNGYmpoaPvroI0aMGNG1EUr3F5MGxzPsxTnGfc95ODzIj2HRwRw5VUFGbgmzE/t7L0YREelbYieBwcfeRqU0H8KaLxyWNsTEy1uP6UmYdFpRRS1/eGcv6/YcB2DM4DD+en0KY2PCvBxZO9lssOUpfD58kBRrHWw865zRH3wDwTeghdfANs6f9erXr4Xrm7umHxj9oBf2TWtXErZt2zaeeuopwF7SdfXq1c2Oi4mJ4Q9/+EPXRSc9Q2wa7HyhxabNR05VsCfHrCRMREQ8JyAUBo6HE3vsSxLHX9vsMGfT5vwSqussBPoZPRml9BLvf32Ce9/O5FR5LUYfA7ddOILbLx6Fv28PWXpYWwFr74C9b2IAbPhg4KwnYJZa+68abwRn6GCC19Y1zSWDAWAMaFLnwB3alYTdcsst3HDDDdhsNs477zz++c9/Mnbs2EZj/P39CQ5Wic0+yVmmfrf9kbXPmX9wUuJMvLM7X/vCRETE8xKm25OwnO0tJmEJkUFEBftzuqKWr/NLmDRE1Xyl/cyVtTz47je8vSsPgMSBIfz1+lSSG4qT9QhFh+G1H9krifr4Yr30z+zynUxqSjJGax3U10B99Tm/atp+ratq5nhL1zQz1snWcN4zxXOMQPzQeTDxBbd+nXYlYYGBgc4KiB999BH9+/fX3i85o38S+AVBbRmcPgD9RztPpcTb/xHKyC3BZrNh6IWPk0VEpJuKnwbbV0JOy8U5DAYDExMi+HBfAenHzErCpN02fVvA79/M5GRZDT4G+MXsEdw1ZxQBvj3oaeqBD+HNn0B1CQQPgO//C1vcNNi92154zS8AArxQydFmsz95ay5pqzs3mWstGXQhaWx4b5u1jvqACLdP0eU+YbGxse6IQ3oyo6+9B0v2FvuSxLOSsHEx9vK/hWU1nCitZnB4Py8GKiIifYqjQuLxPfblVv7Nr9hJG2KyJ2HaFybtUFpdx/+9+w2rd+YCMLx/MH+9PsXZ/LtHsNlg819h00OADWInw4KX7XsnLRZvR2ffA+YbYP/lYVaLheO7dzPQzV/H5SSsrq6OZ599lnXr1pGfn09NTePFoQaDgW+++abLApQeIiatIQnbCan/4zwc6Gdk9MBQvjleSkaOWUmYiPRqFRUVPPHEE6xfv56SkhKGDx/Oz3/+c+bOndvmtadPn2bZsmV8/PHHVFdXk5SUxF133cWMGTM8EHkvZYqHsFgozbN/SDhsZrPDnBUSs4uxeWAviPRcn2UV8rs393C8pBqDAW65YBh3Xzq6Z+0lrC6FNb+Eb9fZ/zxpIXz3Ua8kPH2Zy0nYY489xosvvsisWbOYM2eOliWKXaxjX1jT4hwp8eH2JCy3hMvHD/ZwYCIinnPHHXeQmZnJ3XffzdChQ1m3bh2//vWvsVqtXHXVVS1eV1tby8KFCyktLeXee+8lKiqKV155hVtuuYUXXniBqVOnenAWvUz8VPj6bfuSxBaSsAlx9lUbBaU15JdUMyhUP9tIY+U19fz5vX2s2p4NwNCoIP5yfQqTh/aw5aunDsBrP4RTWfaKh1f8BSbd5O2o+iSXk7D169dz2223cfvtt7sjHumpHEnYiUyorwXfMzewlDgTq7bnkJFj9k5sIiIe8Omnn/LFF1/w17/+lSuvvBKA6dOnk5+fz6OPPsoVV1yB0dj8p+WrV68mKyuL1157jYkTJwIwbdo05s2bx7Jly1qsSiztED+9IQlruV9YkL8vYwaHsjevlPRjxVwx3t0LkaQn+fLgKX77nz3kme2FIRaeN5T/vXw0Qf4u/xjtXd++B2/9wr6HPzTGvvwwbrK3o+qzXK6bWVJSwuTJ+guTc0QMg34R9k2UJ79udGpCnAmAzNwSrFYt8xCR3mnjxo0EBQVx+eWXNzp+7bXXcvLkSTIyMlq89sMPP2TYsGHOBAzA19eXq6++mj179lBQUOC2uHu9+IaniDnbWm06e/aSRBGAipp6/vDOXn743DbyzFXER/Zj1c+m88DV43pWAma1wqY/25+A1ZZBwnnwi0+VgHmZy0nYlClT+Pbbb90Ri/RkBgPENPzwcE6/sMSBIQT6+VBWU8/hUxVeCE5ExP0OHDjAiBEj8PVt/MPZ6NGjnedbu9YxztVrpQ2Dku0VfKtL7EuwWnAmCTN7KDDpzr4prOXKp77gpS3HAPjR9AQ2LJ7FjBFRXo7MRVVmWLUAPnvU/udpi+CmtRAywKthSQeWI953333ceuutxMTEcOGFF2pPmJwRkwaHNtmTsCk/dR72NfowPiacr44VsyfXzMgBXih1KiLiZmazmbi4uCbHw8PDnedbu9YxztVrW2PpYJUzx3Udvb578cEndhKGo5uxHvsSW9SoZkelxIUB8E1+CZXVtUBvmb/retffv2vKqut54sMs/rWlCBsQYwpk6TXjOX9kNNDDvicnv8HnjR9jKD6CzTcQ29zHsU1YYD/Xyjz68t8/dH7+7b3O5SRs3rx51NfXs3jxYgwGg7N/mIPBYGDnzp2uvq30Bq0W5zDx1bFiMnLMXJvW9IcUEZHeoLVeiG31SezMtS3JzMzs0HVddX13EeOXwGCgKGMDx3xSmh1js9kID/ChpMbK2s93kxTt32vm31F9af41FhvvH6zkrW/LKau1b52YM6wfN6WEElSey+7duV6O0DUR+Z8wZPejGCzV1PQbyKHJD1JlTbT3/2qnvvT33xx3z9/lJOyyyy5Tw11pXuwk+2vht036sUyIO9O0WUSkNzKZTM0+sSopsf+719yTrq64tjXJycktFgNpjcViITMzs8PXdzshV8OBV4iqPEhEamqLw6Z8nc6H+05S6hcFlPWe+buo1/39t6LeYuU/6Xks33SQE6X2tkvDooP4YVIAN106uefN31qPYdP/4bNzOQC2YbPxvfY5Rge1fxllX/r7b05n5++4vi0uJ2FLly51ORjpI0IH2avtlOXD8QwYcp7zVGq8CYBvjpdSW2/F39fl7YgiIt1aYmIi69ato76+vtG+sKws+z6kUaOaXwbnuNYx7mztubY1RqOxUz9Edfb6biPB3rTZUHQIY1URhPRvdtikIZF8uO8ku/NKmRpu6D3z76DePH+r1cZ/9x7nrx9kcaRhv3pMeCB3zUlkXsog9mbu6XnzrzgN/7kZjnxq//P5izFc/AeMxo4VEelx8+9i7p6/fhKWruVYkpjXeElqQmQQpiA/auut7D9R5oXARETca86cOVRWVvLBBx80Ov72228zYMAAUlKaXwbnuPbw4cONKijW19ezdu1aUlJSGDhQJdM7pV8E9B9j/31uy6Xq0xJMAOzKNqtpcy9ls9n4ZP9Jrnrqc25/dRdHTlUQGezP/VeOZdNvLuT7U+LxNfbAH4+PZ8DKC+0JmF8QzH8BvvMn6GACJu7Xrr+Zr7/+uu1BZxk3blyHgpFeIGaivQP7ORUSDQYDybHhbD5wioxcM8lxHVtaIyLSXc2ePZvzzz+fBx54gPLychISEnjvvffYvHkzy5Ytc36iumTJEtasWcPGjRuJjY0FYP78+bz66qssXryYu+++m6ioKF599VWOHDnCCy+84M1p9R4J06BwH2RvhaS5zQ6ZEGfC18fAybIaCitbLmcvPdPOY0U8smE/248UARAS4MstM4dxy8zhhAT04GQl4zV4dzHUV9tbBv3gVRg41ttRSRva9V/cdddd1659YDabDYPBwL59+zodmPRQjn1hzRTnSI032ZOwHDM/mj7Ew4GJiLjf8uXLefzxx3nyyScxm80MHz6cxx57jLlzz/zQb7VasVgsjZ60+Pv78+KLL7Js2TIeeughqqqqGDNmDM8++yxTp071xlR6n/hpsPNFe7+wFvTzNzJmcBiZeSVkna7lUs9FJ2707YlS/vL+fj7cdxIAf18fbpw+hFsvGklkcA+u8m2pgw/ug23/sP951KVw7Ur7k1/p9tqVhD388MPujkN6C0evsOKjUFkEQZHOU46mzXtUnENEeqng4GDuu+8+7rvvvhbHLF26tNn91dHR0TzyyCPuDK9vi7fvCyN/F9TXgG9As8PSEkxk5pXwwu4yrMEH+dGMofQPbX6sdG/Zpyt5bON+3snIx2YDHwN8f3I8d14yihhTP2+H1znlJ2H1Qjj2hf3Ps/4XLrwHfHrgUso+ql1J2DXXXOPuOKS36GeCyBFQdMj+NGzkHOeplIYliAdOllFRU09wT370LyIdVmexcqq8huPFlZir+2YfGvGCyOEQFA2VpyB/t7NYx7m+PyWe978+wYnSGv626SBPf3qYKycMZuH5Q50fJkr3drK0mic3HeC17TnUW+1PnOcmD+bXlyYyon8v6FWa+xW8/mN7ITT/ULj2mRaX2Er3pZ+CpevFptmTsLzGSdiAsEAGhwdyvKSavXklTBvew7rOi0ir6ixWCstqKCit5mRZDScbXgucrzUUllVzuqIWx0q8UH8DX02x9ukKXOIhBgMkTLfvW87Z2mISNi4mnE9+M5uV/93GJ/kG0rPNvLUrj7d25TFpSAQLzxvK5eMH4dcTizf0ciWVdfzjs0O88MURquvse/pmJfbnt5eO7j170Xf+C/77G7DUQnQiLHgF+id6OyrpACVh0vVi0iBzdZPiHAApcSaOl5wgI9esJEykh6itt1JY3pBMldZwssz+WnBWklVYVsPpitp2v6evj4Ho0AAmRBl6ZiUy6ZnipzUkYS1XSATwM/pwfnw/brsqlb35Zfzry6O8uyefnceK2XmsmEFhgfx4xhB+MCWeqBAtVfS2ytp6XvjiKM98eojS6nrAvqz0fy9PYnpv+VmjvgbW/699XyNA0pXwvachMMyrYUnHKQmTrnd2cQ6bzf7pY4MJ8eFs+PqEmjaLdAM19ZaGJ1f2J1QFDQmW/fXMk6wiF5OrAaEB9A8LZGBoAAPCAhgYGsiAsAAGhAUyIDSAgWGBRAb5Y7NZ2b17t/smKHIux76w7K1N7k8tSYk38diCVH5/RRKvbsvm31uzOVFazbL39/O3jw4wLyWGhecPZVxML3nS0oPU1lt5bUc2yzcdpLDM3mh59MBQfnPZaOaMGdCuonI9Qmk+vHEj5O4ADHDxfXDBr7X/q4dTEiZdb1AyGIxQXmD/hyM81nkq1Vmcw+yd2ET6gJp6SwtPrM4cO1lWTXFlXbvf089oYEBoIP1DAxgYFsCA0EDn64Cz/hwR5I+PT/t+8LFoO5h4WkwqGP3t+8KKDkPUiHZfOiDU3sj31gtH8t/M47zwxREycktYvTOX1TtzmToskpvPG8p3xg7U0103s1htrM3I47GNWeQUVQEQH9mPX38nkatTYjG289+gHuHYFnsCVnESAsPhun/CqO94OyrpAkrCpOv5B8GAsVCQaX8adlYSNr5hTXZOURWny2sw9dN/giLtVV1nabTn6tzlgI4/mzuQXJ39xGpgmCPZOvPkytTPr93JlUi35Rtgr+Kbs83+y4UkzMHf14fvTYxlXmoMu3LMvPjFUf6beZztR4rYfqSIWFM/51JFU1APLn/eDdlsNj7cd5K/vL+f/QVlAESHBLD4kpEsmJKAv28vSn5tNtj+LLx/D1jrYcA4+MG/7QVmpFfo0T8BV1RU8MQTT7B+/XpKSkoYPnw4P//5zxv1Y2nJ6dOnWbZsGR9//DHV1dUkJSVx1113MWPGDA9E3gfETrQnYXk7YcxVzsNhgX4M7x/M4cIK9uSVMGtkL1mrLdIJ1XUWTptrKDjnydW5hS1KqtqfXPkbfRqeUJ1Jps5eDuhIukxBfr1nyY5Ie8RPsydg2Vsh9YcdfhuDwUBaQgRpCREsuWIMr2w7xqvbsskzV7F0/bc88WEW10yMY+F5Qxk9KLQLJ9A3bT18mkc3fEt6thmAsEBffjF7BDefP5Qg/x7942xTdVWw7leQscr+5/HXwdXLwT/Yu3FJl+rR/9XecccdZGZmcvfddzN06FDWrVvHr3/9a6xWK1dddVWL19XW1rJw4UJKS0u59957iYqK4pVXXuGWW27hhRdeUGPMrhCTBukvNVucIzXOxOHCCjJyzErCpM+oqrVw+FQ5hworOHSynEOF5Rw6WU726XIqVp9o9/v4+/q0uhzQ8RreT8mVSLMSpsOXT7ZZnMMVg8IDufvS0dx20UjezcjnhS+O8s3xUlZtz2bV9mzOGxHFzecP4+KkAb1rqZwH7M0r4dH39/NZViEAgX4+3Hz+MBbNGkF4kJ+Xo3MDcza8/iM4ngEGH/jOn2DG7e3avyg9S49Nwj799FO++OIL/vrXv3LllVcCMH36dPLz83n00Ue54oorWix5vHr1arKysnjttdeYONHeXHjatGnMmzePZcuWsXr1ao/No9dyFufYDVZro82jE+LCeWtXnpo2S69js9koLK/h0MkKe5JVeCbpyjNXtXptgK9Po+V/5y4HdDy5Cuvnq+RKpDPiGj5oLdwHVcXQL6LL3jrQz8j1k+OZPymOr44V88IXR3j/6wK+PHSaLw+dJj6yHzfNGMr1k+MJ79cLE4gudKiwnMc+yOK9zOOAvejP/0xN4I6LRzIgLNDL0bnJ4U/tDZiriiAoCua/AMNnezsqcZMem4Rt3LiRoKAgLr/88kbHr732Wu6++24yMjJIS0tr9toPP/yQYcOGORMwAF9fX66++moee+wxCgoKGDhwoFvj7/UGjAHfQKgpsW9+jh7pPJUSbwIgI8eMzdEsSKQHqbNYOXa68kyidVbSVdZQHrk5piA/RvYPYUT/EEYMCGZYVBDlBce4cGoqpuAAJVcinhDSHyJH2PtZ5n7lliIHBoOBKUMjmTI0kjxzFS9vOcZrO7LJKarioff28djGLK5Li+Om84YyckAvaB7chfLNVfztwwP8Jz0Xi9WGwQDzUmL41XcSGRLVS5fj2Wyw5SnY+AewWWFwCiz4N5gSvB2ZuFGPTcIOHDjAiBEj8PVtPIXRo0c7z7eUhB04cIBJkyY1OX72ta4mYZYOlvlyXNfR67svH3wGJWPI3YE1Zwe2iGHOM6MHBOPrY+B0RS05RRVAb5x/+/Tev//26e7zL62qsz/JOlXO4cIKDhVWcLiwguyiSuqtzX+A4GOAuIggRvQPZnj/YEZEBzOifwjD+wcTGdx4k77FYiGzOp9gfx+sVqsnptStdPbvv7v+dyM9QPw0exKWvdXtleZiTf34/XeTWHzJKNbszuPFL46yv6CMl7ce4+Wtx5iV2J+bzxvK7MT+fbr4TVFFLX//+CAvbT1Gbb3938M5Ywbwm8tGkzSoF/fCqq2AtXfA3jftf075IVz5GPj1825c4nY9Ngkzm83ExcU1OR4eHu4839q1jnGuXtuSzMxMl6/pyuu7ozi/eAayg8I9H5BrbdzNfUi4kUPF9az7ci/nxQf2yvm7QvP33vytNhunKi3klVnIK60nr6zhV6kFc03LiVGg0UBsmJHYUF/7rzBfYkONDArxxd/o+EGq2v7LfJpsM2S38F76++/b8xcvSJgGGa/aC3R4SD9/I/8zNYEfTIlny+HTvPDFUT7cV8BnWYV8llXIsOhgbpoxhOsmxREa2HeWKpbX1PPc5sM8t/kI5TX2lQRTh0Xyu8tHM2lIpJejc7Oiw/Daj+Dk1+DjC5cvhSm3aP9XH9FjkzCg1aU7bS3r6cy1zUlOTm5xD1prLBYLmZmZHb6+OzMYL4MjbzGgLofo1NRG56Yd+5pD23MoMYYDNb1y/u3Rm//+28OT86+qtXDkVAWHTlVwuGGv1uHCCo6crqC6ruVka1BYAMP7hzAiuuHJVv9ghvcPYVBY55cP6u+/c/N3XC/isvjp9te8nWCpA6Pnkh6DwcB5I6I5b0Q0OUWVvLTlKK/tyOHIqQoeePcb/vJBFvMn2asqDo3upcvvsFeFfWVbNis+PuhsCD8uJozfXjaa2Yn9e//y7AMb4c2fQnUJBA+A7/8Lhpzn7ajEg3psEmYymZp9YlVSYi/20NyTrq64tiVGo7FTP0R19vpuKW4yAIYTmRixNrrJpSZE8Or2HDLzy/hujH/vnL8LNP+umX9HC2P4GQ0Ma1g26NivNaJ/CMOigz3yibT+/vv2/MULohPtjW+rS+BEJsQ2v33B3eIjg7h37ljumpPIW7vyePGLIxwqrODFL4/yry1HuWj0ABaeN5SZo6J7TVJSb7HyVnoeT3yYRX5JNQDDo4P59aWJXDF+cO9fkmm1wud/hU1/BmwQNwW+/xKExXg7MvGwHpuEJSYmsm7dOurr6xvtC8vKygJg1KhRrV7rGHe29lwrLogcDgHh9uIcJ/fB4AnOUylxJsBeetYyKdpLAUpP1VWFMRxJV1xEP3yNvajJp4i0zsfHvi/swAf2UvVeSsIcggN8+fH0IfxoWgKfHzzFC18cZdO3J52/Rg4I4abzhnLtxFiCA3rmj242m431e0/w1w/2c6jQvh98cHggiy8Zxf9v787joqr3x4+/ZlhkBwHZQQVl5+IKuKWZLZqmLeb93vvVssys9PrN6tu1uvdqt9LyVvdqqZll1q2+dkv9ueXWaqlomkSKggoqoILs+zJzfn8cZmAEDVlmWN7Px+M8gDPnzLw/M8N85n0+232DA7rHZ3BlMWx+DE5uU/8ePBPGv6ouIi66nc75nwyMGzeOzz77jN27dzNhwgTj/k2bNuHl5UVsbOx1z128eDFJSUnG42pra9myZQuxsbEyM2Jb0WrBbwCkf6d2+WiQhPXzcsLB1oqyah3ZJToaT5MiBBRV1Bi7Dp7JLeV03fpa5/OuPzFGoLtDXYJVl2h5qcnW1RNjCCG6scC4uiTsICTMsXQ0gNpVcVT/Xozq34v0K2V8eCCD//yUyemcUv6y+Vde23mS3w8NZMawPgS6O1g63GZRFIV9aVdYtusUyVlqj6OeDjY8cXM//juhN3Y23aQVPDcVNvwRrqSClS1M+AcMfsDSUQkL6rRJ2OjRoxkxYgSLFi2itLSUoKAgtm/fzr59+1i2bJmxa8tzzz3H5s2b2bNnD/7+/gDcd999fPLJJ8yfP5+nnnoKDw8PPvnkE9LT01m3bp0li9X1+A9Sk7Dso8BM424rrYZof1cOpeeTll9tufiExekVhayCCtLzK+oXMa5LvHJLqq55noOtVZOJVm8Ph+5TqQshWs4wLux8ojpFeAfr7tfX05G/TYpiwa2hfHEkk/UHzpF+pYx396Wz9od0xkV4M3NEH4YFe3TYroo/ny/gtZ2nOHA2DwBHWyseHhXMI6P6dqvJRzi5HTY+CtUl4OwH0z4yDtkQ3VenTcIAVqxYwZtvvsny5cspLCwkODiYN954gzvvvNN4jF6vR6fTmaxHZWtrywcffMCyZct46aWXqKioICIignfffZe4uDhLFKXrMizanPVzo5tiA9Qk7Ez+tbuPia6lskbHqUslJGcVcTy7iOTMIlIvF1Otu3zNc3xc7Ey6Dhq6Evq42HXYLx5CiE7AfzBorKAkG4oywS3Q0hE1ydnOhgdH9GXGsD58l5rLuv0ZfJ+ay54Tl9lz4jJh3s48OKIPUwb4Y2/bMS5ApV4uYdmuU+w5oX6221pp+WNCEE/c3A9Pp27U9U6vh2+XwPevqX/3HgFTPwAnL4uGJTqGTp2EOTo68sILL/DCCy9c85ilS5eydOnSRvs9PT159dVX2zM8AeBX188+5wRUl4NtffcJw6LN32RUMOP9w0T6uRDhq279vJyw6Q79w7uwimodJy4WG5OtX7OLSbtc0mQ3QktPjCGE6IZsHdRu8tk/q1PVd9AkzECr1XBzuBc3h3txOqeU9fsz+OJoJqcul7BwYzKv7jzJ74cGMX1Yb/zdLLPG1IX8ct7cm8qmn7NQFLV7+L2DApg/rj8BPTtH98k2U1EAG2erXV4B4h+D2/5u1pk4RcfWqZMw0Qm4+IGTN5Rehku/QFCC8abhIZ64O9qSX1bNj2fy+PFMnvE2GysN/b2c65IyZyLrkrOeMqanQyqrquV4djG/ZhXxa3YRv2YVcTqnlKaGbbk72hLt70q0nwtRvs7oCzK5bfggethKxSSEMLPAhPokLOY+S0fTbP28nPj7lGievj2M//x0gfUHMriQX8Hq787w7r6z3B7lzYPD+zK0T0+z9BjILanira/T+OTQeWp06gf/+GgfnrotlH5ezu3++B3O5RPwf3+AgnSwtoNJyyF2mqWjEh2MJGGifWk0amtY6peQddQkCXN3tOWHZ0azdd9RdM4+nLpcSsrFElIuFlNSVcuJi8WcuFhscnc+LnZE+DobW8wifF3o6+mIVVef0rYDKa6s4XhWfcKVnFVE+pUylCYSrl7OPYipS7ii/V2J9nfF17W+G6FOp+PYsUvdY1YsIUTHExgHiavg/EFLR9IirvY2zBoVzMwRffn6ZA4f7E/nx9N57Ei+xI7kS0T5ufDg8D5MivVrl7GyRRU1rPn+DO//kEFFjQ6AUf09eeb2MH5XNwtyt/PrRvh/T0BNObgGqeO//AZYOirRAUkSJtqf/2A1Ccs+2uimHjZW9HO3YcCAQONkKoqikFlQwYmLxaQYtxLO55dzqbiSS8WVfHMq13gfdjZawnxciGyQnIX7OEs3tjZQWF7Nr1nFxmTreFYRGXnlTR7r62pHlJ+rmnT5uxDj74qXi52ZIxZCiBtguDB4+VeoKoEenbPVxkqr4dZIb26N9ObUpRI+2J/Bpp8zOZ5dzDOf/8KSL0/yh7gg/juhNz6urf9crqjWsf5ABqu+PUNRRQ2gDjF49vYwhvfrpsvO6Grhq8Wwf7n6d/AYuPd9cPSwaFii45IkTLQ//4Hqz6zGSVhTNBoNge4OBLo7cHuUj3F/SWUNpy6pLWUn6lrMTl4qprJGT9KFQpIuFJrcT6C7PRE+9S1mkb4uBLrby2QO15BXWsWvhi6FWWrSlVnQ9ALH/m72xmQr2t+VKD9Xejl3o8HWQoiuwcVPba0oOq8upRI8xtIRtVqYjzNL7onh2TvC+L/DF/jowDmyCit465vTrP7uDONjfHlweB8GBbndcH1Yo9Oz4fAFln+VRk7d7LX9vZx4+vYwbov07r71a1kefD5TnQ0aYMR8GPtXsJKv2eLa5N0h2p9hco78M+pAVfueLbobZzsbhvRxZ0gfd+M+nV4hI6/MpMUs5WIxF4squZBfwYX8CnafqJ95z7mHNeFXdWcM83buMDNKmUtOSWVdslVsbOHKLqps8tjeHg5E+7nWdSd0IdrPVcbmCSG6jsA4NQk7n9glkjADNwdb5owOYdbIvuxNucz7P2ZwKD2frUnZbE3KJjbAlQdH9GFCjC89rK9fB+r1Clt/yeaNPamcq+sN4e9mz4JbQ5ky0L97DwnIPgYbpqvvIRtHmPwWRN9j6ahEJyBJmGh/Du7Qsw8UZKgDoEPGttldW2k1xhn1Jv7Oz7i/oKyalEtqUnYiW03QTueUUlJVy+GMAg5nFBiP1Wqgj6ejsbVMnQjEFW+XHp3+qp6iKFwqrjRJtpKzioxXMK8W7OlYn2zVtXC52ku3TiFEFxaUAL9+rk7O0QVZW2m5I9qXO6J9OZ5dxPr9GWw+lk1SZhFPbkji5e0n+e+EIP4QH4SXs2lXRUVR+PrkZZbtSiWlboy2p5Mtc2/ux3/FB/1m8tblJf0fbJ0PtZXQsy/8/hPwjrR0VKKTkCRMmIffIDUJyzrapknYtfR0tGV4iCfDQ+r7ptfo9JzJLTVpMUu5WMyV0mrO5pZxNreM7b9crL8PBxuTFrMIX2f6ezlja90xJ5FQFIWswgrTFq7sIq6UNl4MW6uBkF5Oxskyov1ciPRzkXF0QojuJ7BufdDMw6DXgbbrJhZRfq68dl8sz94RbuyqeKm4kn/uTePtb04z8Xd+zBzRhyhfZ07kVvPKu4kcOVcIqD1JHh2tTgLi2KObf33U1cCu5+HQO+rf/W+De94FezeLhiU6l27+XyTMxn8wHN+otoRZiI2VlnAfF8J9XLh7YP3+nJLKutay+sTs7JUyCspr2H8mj/0Nps631mro5+XUYOp8VyJ8nfEw8+KTiqJwPr/cJNn6NauIgvKaRsdaaTX093IyJlsxAa5E+LrgYCv//kIIgVcU2DpBVTHkpIBPtKUjanceTj144uZ+zL4pmJ2/XuKD/RkcOVfApp+z2PRzFkHu9pzPV8cE97DW8uCIPjw2OgQ3B+mKTmkOfPYAnN+v/j36WRj9Z9B2zAu0ouOSb2HCPPzrxoU1c3IOc/JytsMrzI4xYfUr2FfW6Ei7XFo3CUj9LI3FlbWcvFTCyUslbPq54X30MGkxi6ybOr8tpl7X1417U5Ot4rqFj4soqaxtdKyNlYZQb2d1DFeAmnRF+Lq0y9TEQgjRJVhZQ8AQOPut2iWxGyRhBjZWWibF+jEp1o+kC4Ws35/B1l+yOZ9fgZUGpg0NZP64ULxlpltV5k/q+K+SbLB1hnvegfA7LR2V6KQkCRPm4RsLGq36wVV8EVx8LR3RddnZWBET4EpMgKtxn6IoZBdVGseYGbaMvHJySqrIKcnlu9T6qfN7WGsJ9XY2WWw63NflumOsdHqFs7ml6pTwmerU8Ceyiymtapxw2VprifBxJsrflei6qeFDfZykj74QQtyowPj6JGzow5aOxiJiA914Y9oA/jwhnB/TcrEpyWb8yCjj8jHd3pEPYMczoKsGz1CY9jH0CrV0VKITkyRMmIetI/QKh5wT6nphLp3vypFGo8HfzR5/N3tujfQ27i+rUlvHDEnZiYvFnLpUQnm1juS6iTAa8nezr5sExJkwbydOZJTz/zJPcDxbnUTEsOBlQ3Y2WiJ8XeoWPlbHcfX3dsJGFjkWQojWC4xXf3bRyTluhJezHXfF+nHsWI6lQ+kYaqvgy/9VkzCA8IkwZRXYuVg0LNH5SRImzMdvkJqEZR3tUs33jj2sGdy7J4N710+9r9crnMsvN2kxS7lYQlZhhXHbm3K5wb0UG39zsLUiys+lwcLHroT0apuujUIIIZoQMATQqBNIlVwGh2664LAwVZwNX8xUJ21BA2NfgJELZPyXaBOShAnz8R8Ex/6ttoR1cVqthr6ejvT1dGRCTH3Xy6Lymrqp8+s3XVUFCWF+/C6gJ9H+rvT1dOzea64IIYS52bmCdxRc/hUuHISwiZaOSFiYU94vaL9+Bcpy1PfHve9D/3GWDkt0IZKECfNpODmHokAnX4OrJVwdbEgI9iAh2AMAnU7HsWPHGDAgQvrdCyGEJQXG1yVhhyQJ6870ejSH1hB64Hk0ik6dPfP3/wb3YEtHJroYaU8V5uMVBVa2UFkI+WctHY0QQghRzzAu7PxBy8YhLKO6HH56H1bGo931ZzSKDn3UPTBrjyRgol1IS5gwH2tb8ImBrCPqemEeIZaOSAghhFAF1SVhF5OgpsKysQjzKbkMh9+Fw+9BRT4Aiq0Tmf2m43f3S2AtX5VF+5B3ljAv/8FqEpZ1FGLus3Q0QgghhMqtNzh5Q+lluHgMsLd0RKI9XUqGAyvh18/VaecB3IIg/jH0sf9FTspZ/LrhsAlhPpKECfPyqxsX1g0m5xBCCNGJaDRql8SULWguJILjGEtHJNqaXg+n98CBtyH9u/r9gfGQ8Lg6/byVNegaLxUjRFuTJEyYl2FyjotJoKsF5CqTEEKIDiIooS4JOwThYywdjWgr1eXwy/+pLV95aeo+jRVE3gUJT0DgUMvGJ7olScKEeXn0B1tnqC6B3JPQK8LSEQkhhBAqw+QcmYcgTLFsLKL1Si7BoXfVCTfqxnvRwwUGzYD4R9Xuh0JYiCRhwry0WvAbABn71C6JkoQJIYToKHx+B9Z2aCry6VF2ARho6YhES1z8BQ6uhOTPQV+j7nMLUrscDvxv6OFs2fiEQJIwYQn+g9QkLOsoxP7R0tEIIYQQKmtbdezy+f24Xj4IyiRLRySaS6+HtN1w8G1I/75+f2ACDKsb76WV9ThFxyFJmDA/mZxDCPULQ1Em9kVn4JIVaDWg6NWFzFHUn8bf9c38nRs8vq67leF3Rd/gsa/3Ozd4vKLGdtV+jV6HS7UHMMAsT7kQzRKUAOf3E3hiNUrWdoi4CyImQWCcfInviKrLIelTteUr77S6T2MFkZNh2BMQMMSy8QlxDZKECfMzTM5x+TjUVlo2FiHaW3U55J+BK6lwJa1uS4W801jVlBMJ8P1v3UnXpAVCtD1Qbp0FVvLlVnQQ8Y+izz+LcmonVkUX1JaVg2+r09eH36kmZH1GgZWNpSPt3oovqut7/fQ+VBSo+3q4wOAHIO5RcAu0bHxC/AZJwoT5uQaCgyeUX1HX6UAqMtHJKYq6ttDVidaVNCi6QF0TVePTtNbU2jhjbdMDjUYDGi2gUafK1mjqftc283du8Pi6mUl/65gmY7p6/7V+v/7xeiBD50VvrVRFogNx9kG5932SjiQS63gFq1Pb4dSX6v/4T++rm50bhE1QZ9cLvhls7CwddffR5Hiv3nXjvf4o471EpyE1nzA/jUZdtDltF5rsn8E2ztIRCdE8tVWQf9Y0yapr1aKq+Nrn2fcEz1Dw7K/+9FB/6l0C+CX5OAMGDMCqG7YEKTodBceO0dvSgQjRBMWqh9ryFXUX1FZDxvdwYguc3K5eREz6RN1snaD/bWoLWf9bJQloD3o9pO1S1/fK2Fe/P2hY3fped0pXUdHpSBImLMN/kPqBmv0z9JEkTHQwZXl1SVZqfZJ1JRUKMurHRF1No4WefeqSrH51SVfd5ujR9DmyIKgQnYO1LfQbp24T34TzByBlq7oVZ8Hxjepm1QP63aImZGHj1QswouWqy+rGe60yHe8VNUVd3ytgsEXDE6I1JAkTllE3OYcm+yj0sWwoopvS1apJlTHRatCN0DC+oCm2zvUtWg1/ugeDdQ+zhS+EsBCtFfQZqW53LFVn+k3Zom75Z+HUDnXTWqtjxyLvgrA7wdnb0pF3HsUX4dAaOLKuwXgv17rxXrNlvJfoEiQJE5ZRNzmHJi8NbU2phYMRXVpFoZpc5V3VhTA/vX48QVNcgxokWQ1atpy868dTCSG6N41GbY0JGAzjFkHOCbXLYspWyDkOZ79Rt20L1FkXI+6CiImySPC1XEyCAyvh1y/qP5979lG7HA74g3T1FF2KJGHCMhw91S+5RedxLEoFRlo6ItGZ6XXqBBjGsVqpcKWuC2FZzrXPs3Go6zp4VcuWewjYOpgvftFllJWV8c9//pMvv/ySoqIigoODmT17Nnfeeedvnrtx40YWLlzY5G0//PADvXr1autwRVvSaMA7St1uXgh5Z+payLZC1hG1C+P5A7BrIfgNVLssRkxWL/J0Z9cc7zVcXd8rbIKM9xJdkiRhwnL8B0HReRwKT1k6EtFZVJU26DbYoGUr7zToqq59nrNvg0SrwZgtF3/Qas0Xv+jy5s2bR3JyMk899RR9+vRh27ZtLFiwAL1ez6RJzVv4d8mSJQQHB5vsc3Nza4doRbvyCIGRT6pbUSakbFOTsnP71fHQ2T/DVy9Crwg1IYu8C7yju09Le3UZHPtEHe+Vf0bdp7GCqLvV5MtfxnuJrk2SMGE5/oPgxGZccg6rXTh6hcqYGqFO916cZdqaZZgcozjr2udZ2da3ank0aNny6Ad2LuaLX3Rb3333HT/++COvv/46EydOBCAhIYHs7Gxee+01JkyY0KxZMPv3709MTEx7hyvMyTUAEuaoW2mOOsNiylZI/w5yU9Tt+9egZ9+6FrK71CSkK14kKs5Wx3v9tA4qC9V9PVxhyIPqeC/XAEtGJ4TZSBImLMdfXcXeJe8YvDNSvQLmEQK9wqBXeP3m2V+Ss66ougxyT9Mz+1s0xbvVJCsvTU28asqufZ5jr7okq0HLlmc/dZ0Y6bIiLGjPnj04ODhwxx13mOy/5557eOqpp0hKSmLQoEEWik50GE5eMGSmulUUQOoudRzZma+gIB32L1c3Zz91/FjEXepU7Fad/Ctb9jF1fa9fvwB9rbqvZ19IeAwG/BF6OFk0PCHMrZP/R4tOLWgY+uH/Q3nKbhzLL6CpKqlv9UjZWn+cRqvOPNcwMfMKV7+IywKZHVtttToDYf6ZuiSrwc+SbKyA4KbO01qrlbNxnFb/+m6EDu7mLYMQzZSWlkZISAjW1qZVa1hYmPH25iRhc+bMIT8/H2dnZ+Li4vjTn/5EaGhoi2LStXAZBMN5LT2/szNb+W1dIHqqulWXwumv0JzciiZtN5qSuhajQ2tQHDxQwiaghE+EvqPVlv921GblV/SQugtt4ko0536s3x00DH384xB6R/3Fsw70XpP3v5S/4c+Wnv9bJAkTlqPVotzyV0553MWA2FisynMg9yTknFR/Gn6vKqr74n4aTm6rP1+jVb+o9wpXW8+8ItSfnqFgY2+5cnU3ep063sGQXDVMuArPXXtdLUCxc6PM3g+HoFi0htfOM1SdDcvKxnxlEKINFBYWEhDQuCuVq6ur8fbr8fT0ZM6cOQwYMAAnJydSU1NZs2YN06ZN49NPPyU8PPyGY0pOTr7hc9ry/M7O/OXvDcFz0fSejcuVI7hd3Ifbpf1Yl+eh+fkj+PkjdNaOFHoPo9B3JEW94lCs2+9iZEvLr62twOPCLrzSv8CuTO1GrmisyPcbQ07wfZS7hUEl8EvHfn/J+1/K354kCRMdg0YDLn7qFjK2fr+iQOllyEmB3FN1fedPqX9XFqpf+PPPwKntDe9M/RJvaDEzdmsMlRnvWsrwOhhbsk6r6+EYfuqqr32ujSN4BKutWO4h6k+PfuARgr6HK6eOHWPAgAHQjLEyQphLYmIiM2bMaNaxmzdvJiIiAgDNdSZVuN5tADfddBM33XST8e+hQ4cyevRoJk2axL/+9S9WrVrVrHgaiomJadY4tKvpdDqSk5NbfH5n1zHKHwc8BroadOf3ozm5Dc3J7ViVXsIjay8eWXtRrO2h3y0o4Xeh9L+tzca/trj8xVloDq9Fc3Q9mrrxXoqdK8qgB1GGzsLNxR+3NomwfXWM199ypPytK7/h/N/SaZMwmQa4m9BowNlH3UJurt+vKOrg5tyrWs1yU9Q+9gXp6pb6ZcM7U9dmMbSY9TL8DANbR7MXrUMqz69Prq5OuKqvs56b1kbtMurRr3HC5exz7dm+umlXB9Hx9e3bl5deeqlZx/r6+gLqDIZNtXYVFRUB9S1iNyIgIIDBgweTlJR0w+cCWFlZtepLVGvP7+w6RPmtrKDfWHWb8A/IPGxcHFpTeB5ObkNzcpvaRTF4jDqxR9id4OjRBg/dzPJn/6yu73V8Y/14L/dgiH8MzYA/oOmk4706xOtvQVL+9i1/p03CZBrgbk6jAWdvdQseXb9fUaDsimmLmaEFrTxP7R5XeA5Sd5ren1tQ4zFnnmFdc6BwdVnjboOGhKsi/9rnabTq82RszQqp2/qBa6BMiiG6FC8vL6ZOnXpD54SGhrJt2zZqa2tNxoWlpqYC6qyHLaEoCtquOEueuHFaLQTFq9ttL6mLG6dsVZOyK6mQtlvdNPOh94j6xaFd/No+Fr1OrUsPvA0NxnvRewQMe8J0vJcQopFOmYTJNMDimjQacOqlbn1vMr2t7Epdi5khMatrQSvLhcLz6pa22/Qc18CrxpzV/d7D2XxlagnDhBh5pxsnWyXZ1z/X2beuJSvYpOsgPfvILJVCXMe4ceP47LPP2L17NxMmTDDu37RpE15eXsTGxt7wfV64cIGjR48yfPjwtgxVdAUaDfgNULdb/qLWayfUFjIu/aIufJyxD758BgKG1iVkk8C9b+set6pUXd8rcZXaSwLUyZSi7lHX9/Ib2NqSCdEtdMokTKYBFi3i6AmOI6HPSNP9ZXmm3RoNXRvLcqDogrqd3mN6jkuA6WQgvSLUdc7sbry7UYvpdWpsDVuyDAlX4fnrToiBvXt9K5ZHSH3rlntw12z9E8IMRo8ezYgRI1i0aBGlpaUEBQWxfft29u3bx7Jly0wuDj733HNs3ryZPXv24O/vD8CDDz7IkCFDCA8Px9HRkdTUVNauXYtGo2H+/PmWKpboLHqFwehn1C0/XZ3IKmUrXEhUuzBmHoY9fwGfmPqErFd48xeHLspSZ2s8sg4q1S622LnCkIfU9b3ao7VNiC6sUyZhHXEaYNGJOXqA4wjoM8J0f3l+g8SsQdfG0ktQnKluZ74yPcfZz3QyEEPLmb1by2IzTohxunHXwYL060+IYevUoDWrwYQY7sEyzbsQ7WTFihW8+eabLF++nMLCQoKDg3njjTcajVfW6/XodDoURTHuCw0N5csvv+T999+nqqoKd3d3EhISePzxx+nbt5WtF6J7ce8Lw+epW/HFuoRsC2T8CJeS1e2bl9WlXiImQeRd4Dug6YQs66i6vtfxTabjvRIeh9j/kgt3QrRQp0zCOuI0wLIWS8t06PL3cIWAeHVrqKIArpxCU9elUXPlFOSeQlNyUe3qV5INZ742OUVx9gXPUJS6pEzpFQ6e4ehs1W6NutIrUJiOxjjj4Bn19/yzaK4zIYZiZatO0+8eglI3Rktxr2vZcvLu8BNidOjX3wyk/OZZi8WcHB0deeGFF3jhhReue9zSpUtZunSpyb7nnnuuPUMT3ZWLL8Q9om5leXBqh9pCdvYbyEuDH95QN9cgNSGLmAS+A3G9+APapBfg/P76++o9ssF4LxmnKERrWDwJ6yrTAMtaLK3T+cpvB9pY8I4Fb3WPVU0pdiUZ2JWcw770HHYlGdiXnMO2MrcuQbuIJv07k3vR93AnVl+LdU3xNR9JQUu1gzeVjoFUOgVQ5ehPpWMAVU6BVNv3As1V4x8LgIJLwKW2LXI76nyvf9uS8nfv8gthNo4eMGi6ulUWq+OgU7ZA2h4oOg8H34aDb6O16kE/XZV6jtYaou9VW778Blg0fCG6EosnYV1lGmBZi6Vlul75Rzbao6ssVlvOrtS1nBla0IqzsKmqn41QqZsQQ3EPVlu23EOME2JYW9niBHS1Th9d7/W/MVJ+86zFIoRogp0LxNynbtXlag+OlC1waieaqiJqbZzRxs1CGy/jvYRoDxZPwrrKNMCyFkvrdOnyO/YExwTonWC6v7IYXe4pTqWdJWzYeKzs1UU2mzlEukvp0q9/M0j5u3f5hbA4Wwd1KvuIiVBbje7yCZIzS/ndkGHqOmVCiDbXKTv0jhs3jvLycnbvNp1OvC2mAW7JuUK0iJ0L+A2iwrWfLBYthBCiY7C2BZ8Y9Nb2lo5EiC7N4i1hLSHTAAshhBBCCCE6q06ZhIFMAyyEEEIIIYTonDptEibTAAshhBBCCCE6o045JkwIIYQQQgghOitJwoQQQgghhBDCjCQJE0IIIYQQQggzkiRMCCGEEEIIIcxIkjAhhBBCCCGEMCNJwoQQQgghhBDCjCQJE0IIIYQQQggzkiRMCCGEEEIIIcxIkjAhhBBCCCGEMCNJwoQQQgghhBDCjCQJE0IIIYQQQggzsrZ0AJ2doigA6HS6Fp1vOK+l53d2Un4pf8Of3Y2Uv3XlN5xn+BwW9aRuah0pv5S/4c/uRspvnrpJo0jt1SrV1dUkJydbOgwhhOi2YmJisLW1tXQYHYrUTUIIYVm/VTdJEtZKer2e2tpatFotGo3G0uEIIUS3oSgKer0ea2trtFrpXd+Q1E1CCGEZza2bJAkTQgghhBBCCDOSS4dCCCGEEEIIYUaShAkhhBBCCCGEGUkSJoQQQgghhBBmJEmYEEIIIYQQQpiRJGFCCCGEEEIIYUaShAkhhBBCCCGEGUkSJoQQQgghhBBmJElYO9q4cSNhYWHGLTIykpEjR/Lkk0+SkZFhcuxPP/3E888/zz333EN0dDRhYWFkZmZaJvA20tzy63Q61q1bx8MPP8xNN91EbGws48eP5x//+AfFxcWWK0A7ufp5uXpLTEy0dIgttnPnTsLCwtixY0ej2+666y7CwsLYt29fo9vGjRvH3XffDcA333zD//7v/zJp0iSioqIICwtr97jbSmvLX1payqpVq5g+fTojRoxg4MCBTJo0iTVr1lBVVWWOIrRKW7z+b775JlOmTCEuLo6YmBhuueUW/vKXv5CVldXu8XcXUjdJ3dQUqZukbrqa1E3tWzdZt/hM0WxLliwhODiYqqoqjh49yurVq0lMTOTLL7/E1dUVgIMHD3LgwAEiIiJwdHTk0KFDFo667fxW+SsrK1mxYgUTJ05k6tSp9OzZkxMnTrBq1Sq++eYbvvjiC+zs7CxdjDZneF6u1q9fPwtE0zbi4uLQaDQcPHiQCRMmGPcXFhaSmpqKg4MDiYmJjBo1ynjbpUuXuHDhAjNnzgRgz549JCUlERERgY2NDcePHzd7OVqqteXPzs5m/fr1TJ48mQcffBAHBweOHDnCW2+9xf79+1m3bh0ajcYSRWuWtnj9i4uLufPOOwkJCcHR0ZHTp0+zatUqvv76a7Zt20bPnj3NXq6uSuomqZuaInWTSuomqZvau26SJMwM+vfvT0xMDADx8fHodDpWrFjB3r17uffeewF4/PHHmTt3LgDvvfdel6rofqv8dnZ2fPXVVyZv4Pj4eHx9fZk/fz67du1i8uTJlgq/3TR8XroKd3d3+vfv3+j9e/jwYaytrbn33nsbXU09ePAgoL7mAC+99BJardpI/+KLL3aqiq615Q8ICODrr7/GwcHBePuwYcOwt7fntdde48iRIwwZMqT9C9JCbfH6/+1vfzO53fC8zJ49m6+++or77ruvHUvQvUjdJHVTU6RuUkndJHUTtG/dJN0RLcDw4ZaXl2fcZ/jH7g6uLr+VlVWTVxB+97vfAerVCNF5xMfHk56eTk5OjnFfYmIi0dHRjB49muPHj1NaWmq87dChQ1hZWRk/wDv7/0Jryu/g4GBSyRl0pv+F1r7+TXF3dwfA2lquG7YnqZukburKpG6Suqmj1U2d+x3VSRn60/fp08eygVhIc8tvuArRmbtAXI9er6e2ttZk0+l0lg6r1RISEgBMrjglJiYSFxfHoEGD0Gg0HDlyxOS2yMhInJ2dzR5re2iP8nem/4W2Kn9tbS2VlZWcOHGCV155hT59+nDrrbeapxDdlNRNUjeB1E0Nb5O6Seqm9qybJAkzA8MHWllZGfv27WPVqlUMHTqUsWPHWjo0s2hJ+S9fvszrr79OdHQ0N998sxmjNZ/777+fqKgok60rdAEZOnQoWq3W+EFXUFBAWloaQ4cOxdHRkcjISOMH98WLF8nMzDQ293cFbV3+kydPsnbtWm699VbCw8PNUobWaIvy5+bmEhUVRWxsLHfffTc6nY4PP/wQR0dHs5enK5O6SeqmpkjdJHWT1E3mqZukb4cZ3H///SZ/h4SEsHLlym7TteZGy19YWMgjjzyCoij885//7PRdAK7l1VdfJSQkxGRfRx7Y2lyurq6Eh4cb+1cfPnwYKysrBg0aBKgfhIYPOsMxXamia8vyZ2ZmMmfOHHx8fHjppZfMEH3rtUX5e/bsyeeff051dTVnz55l7dq1zJgxg48++ggvLy8zlqZrk7pJ6qamSN0kdZPUTeapm7rmJ0gH8+qrr/L555+zfv16pk2bxpkzZ1iwYIGlwzKbGyl/UVERDz30EJcvX+b9998nMDDQzNGaT0hICDExMSZbdHS0pcNqE/Hx8WRkZHD58mUSExOJiooyXimKi4sjJSWFkpISEhMTsba2ZvDgwRaOuG21RfmzsrKYMWMGVlZWrF+/Hjc3NzOXouVaW35ra2tiYmIYPHgwU6dOZf369WRmZrJmzRpLFKfLkrpJ6qamSN0kdZPUTeapmyQJMwPDB1pCQgIvvvgiU6dOZd++fezcudPSoZlFc8tfVFTEzJkzyczMZN26dZ2ieVs0zXD16NChQxw6dIihQ4cabzN8qB0+fJjExERiYmK6XDez1pY/KyuL6dOnA/Dhhx/i4+NjpsjbRlu//j4+Pnh5eTVaw0q0jtRNUjd1N1I3Sd0EHadukiTMAp555hlcXV1Zvnw5er3e0uGYXVPlN1RyFy5c4L333iMyMtLCUYrWGDp0KFZWVuzatYu0tDTi4uKMtzk7OxMREcHmzZvJysrqUt09DFpT/uzsbKZPn45er2f9+vX4+/ubO/xWa+vX/9y5c1y6dInevXu3Z9jdntRNUjd1dVI3Sd3Ukeqm7tHxu4NxdXVl9uzZLFu2jK1btzJ58mTy8/ONgwVTU1MB+P7773F3d8fd3d3kjdLZXV3+22+/nYcffpgTJ07w3HPPodPpOHbsmPF4d3d3goKCLBdwO0lLS2tyxqmgoCDjtKedlZOTE5GRkezduxetVtuoSX/o0KGsX78eaNznOisri+TkZADOnz8PYLwy7e/v3ykGiLe0/Hl5ecyYMYPc3Fxefvll8vLyTKYL9/Hx6RRXHlta/pMnT7JkyRJuv/12AgMD0Wq1pKam8sEHH+Dm5sZDDz1k1nJ0N1I3Sd0EUjdJ3SR1E5inbpIkzEKmT5/Oxx9/zMqVK5k4cSJpaWnMnz/f5JjFixcDaj/Vjz76yBJhtpuG5R84cKDxg+3ll19udOzdd9/N0qVLzR1iu1u4cGGT+1966SWmTp1q5mjaXnx8PMnJyURERODk5GRy29ChQ/nggw+wsbFh4MCBJrclJiY2em4M/xud6b3QkvKfPn2aCxcuAOpV+avNnTuXefPmtW/gbaQl5ff09MTLy4t169aRm5tLbW0tPj4+jBkzhjlz5uDr62vuYnQ7UjdJ3SR1k9RNUjeZp27SKIqitKo0QgghhBBCCCGaTcaECSGEEEIIIYQZSRImhBBCCCGEEGYkSZgQQgghhBBCmJEkYUIIIYQQQghhRpKECSGEEEIIIYQZSRImhBBCCCGEEGYkSZgQQgghhBBCmJEkYUIIIYQQQghhRpKEiU5n48aNhIWFGbfIyEhGjhzJk08+SUZGhqXDA2D16tXs3bu30f7ExETCwsJITEy0QFSqr7/+mjlz5jB8+HCio6OJi4vjgQceYMuWLdTU1Fgsrqs19Vz9+c9/ZuzYse36uJcvX2bFihWkpKS06+MIIboWqZtaR+qm65O6qeuxtnQAQrTUkiVLCA4OpqqqiqNHj7J69WoSExP58ssvcXV1tWhs77zzDrfffjvjxo0z2R8VFcWGDRvo16+f2WNSFIXnnnuOjRs3Mnr0aP785z/j6+tLSUkJiYmJLF68mIKCAh544AGzx9Zcjz/+ODNmzGjXx8jJyeGtt97C39+fiIiIdn0sIUTXI3XTjZG6qXmkbup6JAkTnVb//v2JiYkBID4+Hp1Ox4oVK9i7dy/33nuvhaNrmpOTEwMGDLDIY69du5aNGzcyb9485s6da3Lb2LFjmTVrFufOnTNrTJWVldjZ2TX7+KCgoHaMRgghWk/qphsjdZPorqQ7ougyDJVeXl6eyf7k5GTmzJlDXFwcMTExTJkyhR07dpgck5+fz6JFi5gwYQIDBw5k2LBhzJgxg59++qnR41RXV/PWW28xfvx4YmJiiI+PZ/r06Rw9ehSAsLAwysvL2bRpk7FbyvTp04Frd/n46quvmDZtGrGxsQwcOJCZM2fy888/mxyzYsUKwsLCSEtLY8GCBQwePJjhw4ezcOFCSkpKrvvc1NTUsHbtWoKDg3niiSeaPKZXr14MGTLE+HdhYSGLFi1i1KhRREdHc8stt/Dmm29SXV1tcl5VVRWvv/46Y8eOJTo6mlGjRrF48WKKi4tNjhs7diyPPvoou3fvZsqUKcTExPDWW28BcObMGR5++GFiY2OJj4/nr3/9K2VlZY1ibKrLR1hYGC+++CKbN29m/PjxxMbGctddd/HNN9+YHHfu3DkWLlzIbbfdRmxsLKNGjWLOnDmcOnXKeExiYiL33XcfAAsXLjS+fitWrDAe05z3kxBCGEjddG1SN0nd1J1JS5joMjIzMwHo06ePcd/BgweZNWsWsbGxLFq0CGdnZ3bs2MGTTz5JZWUl99xzD6B+qAPMnTsXT09PysvL2bNnD9OnT+eDDz4gPj4egNraWmbNmsWRI0eYMWMGCQkJ6HQ6kpKSuHjxIgAbNmzggQceID4+nscffxxQrzJey9atW3n66acZOXIkr7/+OtXV1axdu9b42A0rH4B58+YxYcIE7rvvPlJTU3n99dcBtQvMtfz6668UFhYydepUNBrNbz6XVVVVzJgxgwsXLjBv3jzCwsL46aefWLNmDSkpKaxZswZQu5E8/vjjHDx4kNmzZzNkyBBOnTrFihUrOHbsGBs2bMDW1tZ4v8ePH+fMmTM89thjBAQEYG9vz5UrV5g+fTrW1tb87W9/w8PDg61bt/L3v//9N+M0+Pbbb0lOTuZPf/oTDg4OrF27lrlz57Jz504CAwMBtSuHm5sbTz31FO7u7hQVFbFp0ybuv/9+Nm3aRHBwMFFRUSxZsoSFCxfy2GOPMWbMGAB8fHyA5r+fhBDCQOomqZukbhJNUoToZL744gslNDRUOXbsmFJTU6OUlpYq33//vTJixAjlj3/8o1JTU2M89o477lCmTJlisk9RFOXRRx9VRowYoeh0uiYfo7a2VqmpqVEeeOAB5YknnjDu37RpkxIaGqp89tln141xwIAByrPPPtto/8GDB5XQ0FDl4MGDiqIoik6nU0aOHKlMnDjRJJbS0lJl2LBhyrRp04z7li9froSGhirvvvuuyX0uWrRIiYmJUfR6/TXj2b59uxIaGqp8+umn143b4NNPP1VCQ0OVHTt2mOxfs2aNEhoaqvzwww+KoijK999/32RMhsfbsGGDcd/NN9+sREREKGfPnjU5dtmyZUpYWJiSkpJisn/mzJkmz5WiKMqzzz6r3HzzzSbHhYaGKsOHD1dKSkqM+3Jzc5Xw8HDlnXfeuWYZa2trlerqauW2225TXnnlFeP+X375RQkNDVW++OKLRue09P0khOj6pG6SuqkhqZvEb5HuiKLTuv/++4mKimLQoEHMmjULFxcXVq5cibW12sB77tw5zp49y6RJkwD1SqFhu+mmm8jNzSU9Pd14f59++il33303MTExREZGEhUVxYEDBzhz5ozxmH379tGjR48269efnp5OTk4OkydPRqut/3d0dHTktttuIykpiYqKCpNzmuryUFVV1airS2scPHgQBwcH7rjjDpP9hqtpBw4cMB7XcL/B+PHjcXBwMB7XMNa+ffua7EtMTKR///6Eh4eb7J84cWKz442Pjze5ouvp6YmHhwdZWVnGfbW1taxevZoJEyYQHR1NZGQk0dHRZGRkmLzG13Kj7ychRPckdZNK6iapm8T1SXdE0Wm9+uqrhISEUFZWxo4dO9iwYQMLFixg7dq1AFy5csV43KuvvtrkfRQUFACwbt06li5dyu9//3vmz59Pz5490Wq1/Otf/+Ls2bPG4/Pz8/Hy8jKplFrD8Pi9evVqdJuXlxd6vZ7i4mLs7e2N+93c3EyOM3SpqKysvObj+Pr6AvXdYn5LYWEhnp6ejbqHeHh4YG1tbewiU1hYiLW1Ne7u7ibHaTQaPD09jccZNFXOwsJCAgICGu339PRsVqzQ+DkB9Xmpqqoy/r106VI+/vhjHnnkEYYOHYqrqysajYYXXnjB5LhruZH3kxCi+5K6SSV1k9RN4vokCROdVkhIiHHAc0JCAnq9nv/85z/s3LmTO+64g549ewLw6KOPcuuttzZ5H4YrX1u2bCEuLo7Fixeb3H71AFx3d3eOHDmCXq9vk8rOEGNubm6j23JyctBqtbi4uLT6caKjo3Fzc+Orr77iqaee+s2+925ubiQlJaEoismxeXl51NbWGuN2c3OjtraW/Px8k8pOURSuXLlifH0MmnpcNzc3YyXSUFP7WmPLli1MmTKFBQsWmOwvKCho1nN8I+8nIUT3JXVT80ndJHVTdybdEUWX8cwzz+Dq6sry5cvR6/UEBwfTp08fTp48SUxMTJOboZuARqMxGaQLcPLkSY4dO2ayb9SoUVRVVbFx48brxmJra3vdq38Gffv2xdvbm23btqEoinF/eXk5u3fvZsCAASZXGlvKxsaGWbNmcfbsWd5+++0mj8nLy+PIkSMADBs2jPLy8kaLem7evNl4e8OfW7ZsMTlu165dlJeXG2+/nvj4eNLS0jh58qTJ/m3btv12wW6ARqPBxsbGZN+3337L5cuXTfZd6+rtjbyfhBDCQOqma5O6Seqm7kxawkSX4erqyuzZs1m2bBlbt25l8uTJLF68mEceeYSHH36Yu+++G29vb4qKijhz5gzHjx9n+fLlAIwZM4aVK1eyfPlyhg4dSnp6OitXriQgIACdTmd8jIkTJ7Jx40YWLVpEeno68fHxKIpCUlISISEh3HnnnQCEhoZy6NAhvv76a3r16oWjoyPBwcGNYtZqtTzzzDM8/fTTPProo0ybNo3q6mree+89iouLeeqpp9rs+TFUdCtWrCA5OZmJEycaF8Q8fPgwn332GfPmzWPw4MFMmTKFjz/+mGeffZasrCxCQ0M5cuQI77zzDqNHj2b48OEAjBgxgpEjR/KPf/yD0tJSBg0axKlTp1i+fDmRkZFMnjz5N+N64IEH+OKLL5g9ezb/8z//Y5yBqmFXm7YwZswY40xTYWFhHD9+nPfee884u5RBUFAQdnZ2bN26lZCQEBwcHPDy8sLb27vZ7ychhDCQuun6pG6Suqm7kiRMdCnTp0/n448/ZuXKlUycOJGEhAT+85//sHr1al555RWKi4txc3MjJCSE8ePHG8+bM2cOFRUVfP7556xdu5Z+/fqxaNEi9u7dy6FDh4zHWVtb8+677/LOO++wfft21q9fj6OjI+Hh4YwaNcp43PPPP8/ixYtZsGABFRUVxMXF8dFHHzUZ86RJk7C3t2fNmjU8+eSTWFlZERsby4cffsigQYPa7LnRaDQsWbKEcePG8dlnnxmfD0P8Tz/9tHEQc48ePfjwww958803Wbt2LQUFBXh7e/PQQw+ZLKap0WhYuXIlK1asYOPGjaxevRo3NzcmT57MggULGl3BbUqvXr3497//zcsvv8yiRYuwt7dn3Lhx/OUvfzFOo9wWnn/+eaytrVmzZg3l5eVERkayYsUK/vWvf5kcZ29vzyuvvMJbb73Fww8/TE1NDXPnzmXevHnNfj8JIURDUjddm9RNUjd1VxqlYTuzEEIIIYQQQoh2JWPChBBCCCGEEMKMJAkTQgghhBBCCDOSJEwIIYQQQgghzEiSMCGEEEIIIYQwI0nChBBCCCGEEMKMJAkTQgghhBBCCDOSJEwIIYQQQgghzEiSMCGEEEIIIYQwI0nChBBCCCGEEMKMJAkTQgghhBBCCDOSJEwIIYQQQgghzOj/A5UZoq7osU+UAAAAAElFTkSuQmCC",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2EAAAHbCAYAAABCwpIFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACyBUlEQVR4nOzdeXxU1d0/8M+dmUz2zGTfZgYIEMKSDQIJKiCKS8WlbrW/tlpttUWB2mqfKopP1cdWLE+1FdAHXOsCVaqioqCIlqJC2LKxBgiQmezbTPZllt8fNzMQZrJMktkyn/frxWuGuefOfE8Cufnec873CBaLxQIiIiIiIiJyC4mnAyAiIiIiIvInTMKIiIiIiIjciEkYERERERGRGzEJIyIiIiIiciMmYURERERERG7EJIyIiIiIiMiNmIQRERERERG5EZMwIiIiIiIiN2ISRkRERERE5EZMwoiIiIiIiNyISRgRjTqdTocpU6bg0Ucf9XQoREREvC6R15F5OgCi4TKZTPjggw/wySefoLS0FG1tbYiIiEBMTAwyMjJwxRVX4Morr7S1nzJlCgDgxIkTfd7H+np/nn32Wdxyyy2j+rmbN2/GypUrMW/ePLz66qsOP/dXv/oVdu3ahaeffhp33HHHkL4mq1evxuHDh3H27Fk0NTUhKCgISUlJWLRoEX76058iMjJySO9zcexJSUnYvn07AgMD7dpcccUVqKiowJEjRyCTeeZHyunTp7Fx40bk5+ejqqoKXV1dUCqVmDZtGq666irceOONDmMvKSnBxo0bsW/fPtTV1UEmkyE5ORmXXXYZ7r77bsTHx3ugN0Tkq3hdsudv16X+vqcXssa3c+dOqFSqYX8Wr2G+jUkY+SSTyYRf//rX2L17NyIiIrBgwQIkJCTAYDDg3Llz+Pjjj1FWVtbnojOYZcuWOXx96tSpo/65t99+O77++mt8/fXXePfdd/HTn/60z/GNGzdi165duPzyy4d8oQOAf/zjH5g2bRouueQSREdHo6OjA4WFhVizZg3ee+89vPfee0hKShry+1lVVlbiH//4B371q18NqX18fDw+//xzhIeHO/1Zzlq7di3WrVsHs9mMrKws3HzzzQgNDUV9fT0OHDiAlStXYtOmTfjwww9t51gsFvzv//4vXn31VchkMlxyySW49tpr0dPTg4KCArz++uvYtGkTVq1ahWuvvdblfSAi38frkmP+eF1yNV7DxggLkQ/asmWLJTU11XLjjTdampub7Y7r9XrLd9991+e11NRUS2pqql3b/l539efW19db8vLyLJmZmZbTp0/bXi8rK7NkZmZacnNzLXV1dUOKy6qzs9Ph688//7wlNTXV8t///d9OvV9qaqpl9uzZljlz5lhmzpxpaWhosGuzcOFCS2pqqqWnp8ep9x4NL730kiU1NdWyYMECS2FhocM2u3btstx55519XluzZo0lNTXVsnDhQktpaandOdu3b7ekp6dbpk6davn+++9dEjsRjS28Ljnmb9eloXzvrPFptdphfQavYWMD14SRTzp06BAA4Oabb3Z4V0uhUOCSSy7x6s+Njo7G//zP/6CjowP/9V//BaPRCKPRiP/6r/9CR0cHnnnmGcTExDgVn6NpGQDwgx/8AACg1Wqdej8ACAoKwv3334/W1lasW7duSOe4Y+69TqfDunXrEBAQgA0bNiAzM9Nhu/nz5/eZWqPVavHyyy8jICAAL7/8MiZPnmx3zjXXXIMVK1bAZDLhySefhNlsdlk/iGhs4HXJMX+6LrkDr2FjB5Mw8klRUVEAgLNnz/r05y5atAi33norDh8+jHXr1mHdunUoKSnBLbfcgkWLFo3KZwDA119/DWDwdQb9+elPfwqNRoP33nsPZ86cGbW4RuLDDz9ET08Prr76aqSmpg7YVi6X9znPaDTiyiuvHPDrcfvttyM2NhZnz57Fvn37Ri1uIhqbeF1yzli8LrkDr2FjB9eEkU+65ppr8Morr+Cf//wnWltbceWVV2LGjBlQq9XDfs81a9bYvZacnNxn8bMrPvexxx5Dfn4+1q9fb/vMxx9/fNjvBwCvvfYa2tvb0dLSgsOHD+PgwYOYNm3akOfOXywgIAAPP/wwHnzwQfz1r3/F2rVrRxTfaDhw4AAAYO7cuU6dd/DgQQDApZdeOmA7mUyG3NxcbN26FYcOHUJeXt7wAiUiv8Dr0sD84bp0IUffO6vm5uZhvy+vYWMHkzDySWlpafjf//1fPPPMM/j000/x6aefAgCUSiXmzJmD2267DQsWLHDqPR39AJ8zZ06fi50rPjcsLAxLly7FihUrAABPPvkkwsLCnHqPi73++uuor6+3/X3+/PlYtWqV01WoLnTttdciOzsbO3bswIEDB5CTkzOiGEfK2j9nqz9Zz0tISBi0rbVNbW2tk9ERkb/hdWlg/nBdupCrkkJew8YOJmHks6699lpceeWVyM/Px8GDB3Hs2DEcPHgQX375Jb788kvceuut+NOf/gRBEIb0fgOVk3Xl53Z2duKVV16x/f2LL77A/PnzHbZ1dGft5ptvtitx+9133wEQf1gXFBTgf//3f3HTTTdh/fr1mD59utPvZ/XII4/gxz/+MZ577jm8//77Q+7jYJyNAxCrQwFwOgZnzrO2ubDt+vXr8eWXX+LMmTOQy+XIysrCQw89NOiUSCIa+3hdEvnrdelCQylRf7GhXF9Geg0j78EkjHxaQEAALrvsMlx22WUAxFK9X3zxBR5//HF88MEHuOKKK0Z1DrsrPnf16tUoKyvDXXfdhf379+Nf//oXFi1ahIULF9q17e+uaH8XhZiYGFx11VWYPn06rr76ajzyyCPYunXrsN8vOzsb11xzDb744gts27YN11133ZD6OBhn4wCAuLg4lJWVobq62qnPio2NHfJ51jaxsbG21/bt24ef/OQnSE9Ph8ViwYsvvoh77rkHn332GZRKpVOxENHYw+uS/16XRmoo15eRXsPIezAJozFFKpXiuuuuQ2lpKV5++WXs3bvXJRe70frcb7/9Fu+++y5SU1PxX//1Xzh79ixuvfVWPPHEE/j000/tpmkM9a7oxZKSkjBp0iQcO3YMjY2NtoXcw3m/3//+9/j666/x17/+ddS+tsOJY9asWdi7dy/27t2L22+/3anz8vPz8f333w94nslkQn5+PgBg5syZttdfe+21Pu3+8pe/ICcnB4cOHcIVV1zhZC+IaKzjdcmxsXhdGqmhXF9Geg0j78HqiDQmhYaGAjg/bO+Nn6vX67FixQrIZDKsXr0acrkcqampePDBB1FXV4cnn3xyVGOzzgmXSqUjeh+NRoP/9//+H3Q6Hd55553RCG1YbrnlFgQEBOCLL77AqVOnBmzb3d3d5zypVIodO3YMeN4HH3yA2tpaTJgwAXPmzOm3XVtbG8xmMyIiIpzvBBH5DV6X7I2169Joc3R9Ge1rGHkOkzDySVu3bsV3333ncO+Luro6bN68GQBGfZHuaH7uk08+idraWvz2t79FWlqa7fVf/OIXyMnJwfbt2/tM0RjM6dOnUVdXZ/e62WzGCy+8gIaGBmRnZ0OhUAz5PfuzdOlSRERE4P/+7//Q1tY24vcbDpVKhWXLlqGnpwe/+tWvUFJS4rDdf/7zH9x77722v6vVavz6179GT08PlixZ4vAi9tVXX+FPf/oTpFIp/vjHP0Ii6f9H5Z/+9CdMnToV2dnZI+8UEfksXpfs+dt1abQ5ur6M9jWMPIfTEcknFRUV4a233kJsbCxmzpxpm6Ot0+mwa9cudHZ24sorr8S1117rlZ+7ZcsWbNu2DbNnz8YvfvGLPsckEglWrVqFG2+8EU8//TRmz549pAqAu3fvxurVq5GTkwONRgOlUon6+nrs378fWq0WsbGxeOaZZ4bf+QsolUr8+te/xurVq0fl/YZryZIlMBqNWLduHW677TZkZ2djxowZCA0NRX19PQ4cOICzZ89ixowZfc5bvnw5Ojo68MYbb+Cmm27CZZddhkmTJsFoNKKgoABFRUUICgrCX//61wFL4D/33HM4ePAgNm3aNOI7uUTk23hdsueP16XRMtD1ZbSuYeRZgsXd4+JEo6Cqqgpff/01vv/+e5w6dQp1dXXo7u6GUqnE1KlTcf311+OGG27oc/fHuqnhxfO8+3vdVZ9bWVmJG2+8ERaLBZ988gmSk5MdftbmzZuxcuVKzJs3D6+++uqgsZWWlmLTpk04dOgQqqur0dLSguDgYIwfPx6XX3457rzzTqcLR0yZMgXx8fH4z3/+Y3esu7sb1157ra3C05EjRyCTifd1dDodrrzyStx8881YtWqVU585HKdPn8bGjRuRn5+PyspK2/ckLS0N11xzDW666aY+GzZbFRcX491338X+/ftRX18PqVSK5ORkzJs3Dz//+c8HLAH87LPP4rPPPsM//vEPTJw40ZXdIyIfwOuSPX+8Lg3le2etjrhz506HhT6Gen0ZyTWMPI9JGBGRk5555hl8/vnnePvtt5mAERHRqOH1xX9wOiIRkROefPJJfPLJJ1i3bh0iIiJs6x1CQkJsC+CJiIicxeuLf+FIGBGRE6xTTS62bNkyLF++3M3REBHRWMHri39hEkZERERERORGrFlJRERERETkRkzCiIiIiIiI3IhJGBERERERkRsxCSMiIiIiInIjlqgfIbPZDKPRCIlEAkEQPB0OEZHfsFgsMJvNkMlkfTaiJV6biIg8ZajXJiZhI2Q0GlFSUuLpMIiI/FZ6ejrkcrmnw/AqvDYREXnWYNcmJmEjZM1w09PTIZVKnT7fZDKhpKRk2Of7Ovaf/Wf/2f+R/vzkKJg9XptGhv1n/9l/9t/V1yYmYSNkneYhlUpH9A91pOf7Ovaf/Wf/2f/h4nQ7e7w2jQ72n/1n/9n/4Rrs2sTbh0RERERERG7EJIyIiIiIiMiNmIQRERERERG5EZMwIiIiIiIiN2ISRkRERERE5EZMwoiIiIiIiNyISRgREREREZEbMQkjIiIiIiJyIyZhREREREREbsQkjIiIiIiIyI2YhBEREREREbkRkzAiIiIiIiI3YhJGRERERETkRkzCPKi924ilGwvwVVm7p0MhIiICAByrasbdb+zHqcYeT4dCRDRmMQnzoHMN7dh+pAbvlrTAYrF4OhwiIiLsPlmH3aca8NnJNk+HQkQ0Zsk8HcBw7dmzB5988gkKCgpQXV2N8PBwzJgxA0uXLsWMGTMGPPfDDz/EihUrHB779ttvERsb64qQ7aTEhkIuFdDcbYG2qQMTYsPd8rlERET9mRwvXos4EkZE5Do+m4Rt2rQJer0ed911FyZNmoTGxka88cYbuOOOO/Dqq69i7ty5g77Hs88+i5SUlD6vKZVKF0VsL1AmxdTECBTpDCjU6pmEERGRx2WqlACAylYTmjt6EBkm9WxARERjkM8mYX/84x8RHR3d57V58+bh6quvxvr164eUhE2ePBnp6emuCnFIMtUKFOkMKNIZcPNMtUdjISIiigqVQx0ZDG1TB0oqDJg/JcjTIRERjTk+uybs4gQMAEJDQzFx4kRUVVV5IKLhyVYrAQCFWr1H4yAiIrLKUCkAAMUVBg9HQkQ0NvlsEuZIS0sLjh49ismTJw+p/ZIlSzB16lTMmTMHy5YtQ2lpqYsjtGed9nG0shldRpPbP5+IiOhi1iSsSMskjIjIFXx2OqIjTz31FDo6OrBkyZIB28XExGDJkiXIyspCWFgYSktLsWHDBtxxxx3YtGkT0tLSnP5sk2l4CVSyQo4IuVic44hOj8zekTF/Yf26Dffr5+vYf/b/wkd/M9L+++vXzR0ye5OwEo6EERG5xJhJwv72t7/h008/xRNPPDFodcT58+dj/vz5tr/Pnj0bCxYswA033IC///3vePnll53+/JKSEqfPsZocLcfBqi5s3XsElobQYb+PLxvJ128sYP/Zf3/m7/0fyObNm7Fy5UqEhISgoKDAbZ87PSkCEgDVzV2oae5EfATXhRERjaYxkYStXbsWL7/8Mn73u9/hZz/72bDeQ6VSYdasWSgqKhrW+enp6ZBKna8gZTKZMPnoHhys6kK9JQxZWZnD+nxfZTKZUFJSMuyvn69j/9l/9n/4/beeP1bV1NTgueeeQ1xcHFpbW9362SFyGVQKGcoNRhRp9bh6eoJbP5+IaKzz+SRs7dq1WLNmDZYvXz7oNMTBWCwWSCTDWyYnlUqH/UvU5KgAAECRzuCXv4gBI/v6jQXsP/vP/vtv//vzxz/+ETk5OVAqlfjiiy/c/vmTIgPEJEzHJIyIaLT5dGGOdevWYc2aNbj//vuxbNmyEb2XVqvFoUOHkJnp/pEoaxJ2rqEdDa1dbv98IiLyLh9//DH27duHJ5980mMxWK9NxTquCyMiGm0+OxL2+uuv48UXX8S8efNw+eWXo7CwsM/xrKwsAMBjjz2GLVu2YMeOHUhOTgYA3H333cjJyUFaWhpCQ0NRWlqKV199FYIg4MEHH3RzT4BQuQQTY0Nxuq4NRTo9rkiLd3sMRETkHRoaGvDnP/8ZDz/8MBISPDcCNck6S0Orh8VigSAIHouFiGis8dkk7JtvvgEA7N69G7t377Y7fuLECQCA2WyGyWSCxWKxHUtNTcW2bdvw+uuvo6urC1FRUcjLy8MDDzyACRMmuKcDF8lUKXC6rg2F5UzCiIj82VNPPYUJEybgJz/5yYjfaySVJzUKGeQyCZo7jThd24IJMf5TOIqVS9n/Cx/9Dfvvnsq9PpuEvf3220Nqt2rVKqxatarPa4899pgrQhqRbLUSHxZUooCbNhMR+a0vvvgCX3/9NbZs2TIqI08jKVwikwgYHyFFaaMZn35XjPnjgkccj68Zy4VfhoL9Z//9mav777NJ2Fhj3R+sUKuH2WyBRMJpH0RE/qStrQ1PP/007rzzTsTFxaG5uRkA0NPTAwBobm6GTCZDSEjIkN9zpJUn81ITULpXC4NMiaysqU6/j69i5VL2n/1n/11duZdJmJeYEh+GoAAJWjqNKKtvw6S4ME+HREREbtTU1IT6+nq8/vrreP311+2Oz549G1deeSVeeumlIb/nSCtPZqojgb1aFPtp9V5/r9zJ/rP/7L/r+s8kzEvIpBJkJCux72wjCsqbmIQREfmZ2NhYvPXWW3avb9iwAfv378crr7yCyMhIt8aUqVIAAI5UNqPHZEaA1KeLKhMReQ0mYV4kSyMmYYVaPW7PUXs6HCIicqPAwEDk5ubavf7RRx9BKpU6POZq46JCEB4kQ0unESeqWzAjWeH2GIiIxiLe0vIiWResCyMiIvI0iURApkoJgPuFERGNJiZhXiRbowQAHK9uQUe3f5YFJSKivlatWoWCggKPfX5G75TEIt4gJCIaNUzCvEiiIhjxEYEwmS0oqeAdRyIi8jxr9d4ind6jcRARjSVMwrzM+SmJTZ4NhIiICLBNRyytaUF7t9GzwRARjRFMwrxMtkasfFVQrvdsIERERAASFEGIjwiE2SJWSSQiopFjEuZlWJyDiIi8jXU0jOvCiIhGB5MwL5OerIBEAKoMnag2dHo6HCIiogvWhXG9MhHRaGAS5mVCA2WYkhABgOvCiIjIO3AkjIhodDEJ80LWKYkFvNgREZEXSO8tU1/e2I6mtm4PR0NE5PuYhHmhbOu6MBbnICIiL6AIDkBKTCgAlqonIhoNTMK8kHXT5pIKA4wms2eDISIiwvlNm4u5LoyIaMSYhHmhibFhCA+Uob3bhNKaVk+HQ0REdL44B6fKExGNGJMwLySRCMhQi3ccWaqeiIi8QYa1OIfOAIvF4tlgiIh8HJMwL5WtFjdtZoVEIiLyBtOTIiCTCKhv7UIlt1AhIhoRJmFeylYhkcU5iIjICwQFSDElIRwAUMxZGkREI8IkzEtl9RbnOFXXipbOHs8GQ0REhPPrwgpZIZGIaESYhHmpmLBAqKOCYbGwEhUREXmHTGuFRC2vS0REI8EkzItl9a4LKyjnujAiIvI860hYSYUBZjOLcxARDReTMC9mXRfGColEROQNJsWGIThAitYuI8rquYUKEdFwMQnzYtZNmwu1epYDJiIij5NJJUhPtm6hwimJRETDxSTM0xrLIOlxfDdxWmIEAqQC6lu7oWvqcHNgRERE9jKs68JYnIOIaNiYhHlS01lIXpqDiQeecng4KECKaYkRAIACTkkkIiIvYF0XVsTrEhHRsDEJ8yRBAsFiRnhDIdDjeKQrW9O7aTP3CyMiIi+QqVICAI5VtaDLaPJsMEREPopJmCcp1LCExUOwmIDqIodNbJs2a1khkYiIPE8dFYzIkAB0m8w4XtXi6XCIiHwSkzBPEgQgaZb4tOKgwybWJOxIZTO6jWZ3RUZEROSQIAjI6B0NK+K6MCKiYWES5mGWZDEJQz9J2LjoEPGOo9GMY1XNboyMiIjIsfPrwlghkYhoOJiEeZg1CetvJEwQhPNTErlpMxEReYHM3gqJHAkjIhoeJmGelpQFCwQIBi3QWuuwSZa6tzgHK1EREZEXsE5HPF3XipbOHs8GQ0Tkg5iEeVpgBDrDx4nPdQccNsm6YNNmIiIiT4sND0SyMhgWC1BSwSmJRETOYhLmBdqUU8UnFf0kYb13HM82tKOxrdtNUREREfUvU23dtJlJGBGRs5iEeYG2yN4krJ+RMEVIAFJiQwFwc0wiIvIOtgqJvC4RETmNSZgXsCVhFYcAs+ONL8/vF6Z3T1BEREQDsG7azJEwIiLnMQnzAh3h42EJCAW6W4D6UodtsjVicQ5WSCQiIm+QrlJAEIAKfQfqWro8HQ4RkU9hEuYNBCmQlCU+72dKYrZtTxY9zGaLe+IiIiLqR1igDJNiwwAAxSxVT0TkFCZhXsKSZN202XESNiUhHIEyCZo7jTjT0ObGyIiIiBzjujAiouFhEuYlrJs2Q+d40+YAqQQZvZtjFpTr3RQVERFR/7LU1k2buS6MiMgZTMK8hTUJqz0CdDse6bIW5yjUcl0YERF5nm0kTKeHxcKp8kREQ8UkzFtEJAHhSYDFDFQWOmySpRaLc3DTZiIi8gZpieGQSyXQt/dA29jh6XCIiHwGkzBvohp4XVi2RgkAOFbVgo5ux6XsiYiIRsTYDRzfColx8KQqUCbF1MRwAEAhi3MQEQ2ZzyZhe/bswYoVK3DttdciKysL8+bNw/3334/Dhw8P6fyGhgY8+uijyM3NRWZmJu644w7s2bPHxVEPQjVbfNTtd3g4URGEuPBAmMwWHK7k/HsiInKBA69DuvkuJJzaOKTmmb1T5Ys5S4OIaMh8NgnbtGkTKioqcNddd2HDhg14/PHH0djYOKRkqru7G3fffTf27NmDxx9/HC+99BKio6Nx7733Yt++fW7qgQPJOeJjP8U5BEE4vy6MxTmIiMgVQqIAABF1jq9FF7twXRgREQ2NzNMBDNcf//hHREdH93lt3rx5uPrqq7F+/XrMnTu333M3b96M0tJS/POf/0R2djYAIDc3FzfddBNWr16NzZs3uzT2fiVliXuGtVQCzZXiOrGLZGsi8eXRGhSwOAcREbmCJg8AEGI4CXNPOyANH7C5tULi4YpmGE1myKQ+e3+XiMhtfPYn5cUJGACEhoZi4sSJqKqqGvDcr776ChMmTLAlYAAgk8lw4403ori4GDU1NaMe75DIQ4G4aeLzfjZt5kgYERG5lEINS3giBIsJqCwYtHlKTBjCAmXo6DHhZG2rGwIkIvJ9PjsS5khLSwuOHj2KvLy8AdudPHkSs2bNsnt9ypQptuPx8fFOfbbJNLxCGdbzrI9C8kxIakpg1u6HZcpiu/bTE8MgEYBKQycqm9oQHxE0rM/1Fhf339+w/+z/hY/+ZqT999evm8sJAizqXAhHt0DQ5gMp8wdsLpEISE9WYE9ZA4p1ekxNjHBToEREvmtMJWFPPfUUOjo6sGTJkgHb6fV6KBQKu9etr+n1eqc/u6SkxOlzHJ0fbYrDeABtpbtQGlPosK06QoZzBiO27C5EbrJvJ2FWI/36+Tr2n/33Z/7ef6+kzgWOboGg3Tuk5hlqMQkr1Bpwx2wXx0ZENAaMmSTsb3/7Gz799FM88cQTmDFjxqDtBUEY1rH+pKenQyqVOn2eyWRCSUnJ+fOTAoGi1QhrPoWsjHRAYv+eeWcO49wBHQyySGRlTXH6M72JXf/9DPvP/rP/w++/9XwafRZ1rvhEtx8wmwHJwKsXsnqLcxSzOAcR0ZCMiSRs7dq1ePnll/G73/0OP/vZzwZtr1QqHY52GQxi2XdHo2SDkUqlI/olynZ+/FRAHg6huwXShlIgwT6hnDkuEu8d0KFIZxgzv7iN9Ovn69h/9p/999/+e6X4GTBJgyDtNAB1x4H4aQM2z+hdr3y8ugWdPSYEBfD7SUQ0kGElYSdPnsShQ4dQU1ODzs5OREZGYtKkSZg9ezbCwsJGO8YBrV27FmvWrMHy5csHnYZolZqaitLSUrvXra9Nnjx5VGN0ikQKJM8EzuwS70A6SMKyNZEAgGKdASazBVKJ8yN3RERE/ZLI0BY5FRH1BYB276BJWJIiCDFhgahv7cKRymbMGhfppkCJiHzTkJMwg8GA9957D++99x4qKythsVjs30wmw/z583HnnXcOWCJ+tKxbtw5r1qzB/fffj2XLlg35vEWLFuGpp55CUVERMjMzAQBGoxGffPIJMjMznS7KMepUOWISVnEAyLnH7vDEWLESVWuXEaU1LVwETUREo641coaYhJXnAzm/GLCtIAjIVCmw83gtirR6JmFERIMYUhL21ltvYd26dQCA6667DnPmzMH06dMRFRWFwMBAGAwGaLVaFBYWYufOnfjFL36BSy65BP/93/+NcePGuSTw119/HS+++CLmzZuHyy+/HIWFhX2OZ2VlAQAee+wxbNmyBTt27EBycjIA4LbbbsPGjRvx4IMP4uGHH0Z0dDQ2btyIM2fO4I033nBJvE4ZZNNmqURAhkqB7083oFDLSlRERDT6WqN6Z2IMsThHplqJncdruS6MiGgIhpSEvf3221ixYgUWL16MgIAAu+MxMTGIiYlBdnY27rnnHpSXl+Pll1/Gtm3bhjxF0FnffPMNAGD37t3YvXu33fETJ04AAMxmM0wmU5+RO7lcjjfffBOrV6/GM888g46ODkydOhWvvPIK5syZ45J4naLqTcLqjgOdzUCQfZKVrVHi+9MNKChvwv+bo3FzgERENNa1RU6DRZBAaDoLtNQA4QPPEslQieupi3QGN0RHROTbhpSEbdu2DTLZ0JePaTQaPPvssy7dw+Xtt98eUrtVq1Zh1apVdq/HxMTgueeeG+2wRkdYHKDQAIZycaPMlAV2TbLU4lSPQq3ezcEREZE/MAeEAnHTgJrD4mjYtJsGbJ/ZWyHxTH0bDO09UITY37QlIiLRwDVne508eXJYb85qVyOg6t1MuuKAw8NZvZWoTta2oqWzx01BERGRP7GVqi8ffEpiZKgcmqgQAEBxhd6FURER+b4hJWE333wzbrnlFmzcuBEtLS2ujomAQdeFxYYHQhUZDItFrJJIREQ06lRDT8IAcV0YwOsSEdFghpSE/frXv0ZjYyOefvppXHbZZfj973+PvXuH9gOZhsm6LqziAOCgEiVwfjSMUxKJiMgVbCNh1cVAd/ug7TN714XxukRENLAhJWG/+93v8M0332DDhg1YuHAhvvzyS9xzzz248sor8dJLL6GqqsrVcfqfxExAIgNaawCD1mETaxJWUK53X1xEROQ/FCogPAkwG4EKxzMzLnR+JEzv2riIiHzckJIwQNwDZP78+fjb3/6Gb7/9Fo8//jgUCgVefPFFLFq0CL/85S+xfft29PRwfdKoCAgG4nvLA+scrwuzbtpcqG1yuG8bERHRiAgCoOkdDRtCqfrpSRGQCEBNcxeqDZ0uDo6IyHcNOQm7UEREBH72s5/hww8/xJYtW/CTn/wER48exe9+9zvMnz9/tGP0X7YpiY7vPk5PikCAVEB9azd0TR1uDIyIiPyGOk98LM8ftGmIXIbU+HAAQBFHw4iI+jWsJOxCaWlpuPHGG3HFFVcAAPR6/UjfkqxsxTkcj4QFBUhtGzVz/j0REbmEpjcJ0+0DzOZBm1unyhfxukRE1K+hb/51kcbGRnzyySf44IMPcOrUKUilUixcuBC33XbbaMbn36wjYVWFgKkHkNrvuZKtVqJYZ0BBuR43ZCa5Nz4iIhr74mcAAaFApwGoOw7ETxuweYZKiX/u17JCIhHRAJxKwsxmM/7zn//ggw8+wL///W/09PRg/PjxeOihh3DzzTcjJibGVXH6p6iJQJBCvPDVHAGSsuyaZGmU+MeecyjUNrk/PiIiGvukMvGm4Jld4rqwQZKwTLVYIbFIp4fZbIFEIrgjSiIinzKkJOzMmTP44IMP8PHHH6O+vh5BQUG4/vrrceuttyInJ8fVMfoviQRIngWc/losVe8oCVOLxTkOVzaj22iGXDbiGaZERER9afLEJKx8L5DziwGbpsaHI1AmQUunEWcb2pASG+amIImIfMeQkrAf/OAHAICMjAwsX74cixcvRmhoqEsDo17JOWISpjsIzL7X7vD46BAoQwKgb+/BsapmW3lgIiKiUaMe+qbNAVIJZiQrcPBcE4p0eiZhREQODCkJ+/nPf47bbrsNkydPdnU8dDHVbPFRt9/hYUEQkKVW4t8n6lCo1TMJIyLyUceOHcMLL7yA0tJSNDY2IigoCBMmTMBPfvIT3HTTTZ4NTjUbECSA/hzQUg2EJwzYPEPVm4RpDbg5W+WmIImIfMeQkrAVK1Y4fL2srAxNTU2YOnUqQkJCRjUw6pU8S3xsOAl0NAHBkXZNLkzCfu7m8IiIaHQ0NzcjISEBixcvRnx8PDo6OvDpp5/iD3/4AyoqKvDAAw94LrigCCBuOlBTIo6GTf/hgM1tFRJZpp6IyKFhVUfcsmULnn/+edTV1QEA/vWvf2H69Ol48MEHcemll+JHP/rRqAbp10KjgcgJQNMZoOIQMOlKuybWTZsLylmcg4jIV+Xm5iI3N7fPawsXLoROp8P777/v2SQMEDdtrikBtPmDJmEZKiUA4EhlM3pMZgRIuV6ZiOhCTv9U3LZtGx599FFMmzYNTzzxBCwWi+3Y9OnTsW3btlENkDDops1ZvRe7sw3taGrrdlNQRETkDpGRkZBKpZ4O44JNmwdfFzY+OgQRQTJ0G804Ud3i4sCIiHyP0yNhGzZswC233II///nPMJlMePrpp23HUlJS8Pbbb49qgASxOEfJ5n43bVaEBCAlJhRl9W0o1OmxcEqcmwMkIqLRYjabYTab0dzcjG3btuHbb7/FE088Maz3MplMIzqvz/mqOZACsFQXw9zZAgQMvAwhQ6XAt6caUFDeiKkJvlWcw2H//Qj7z/5f+OhvRtr/oZ7ndBJ2+vRp/P73v3d4TKlUQq/XO/uWNBjbSNgBwGIBBPs9V7I0SpTVt6GgnEkYEZEve/LJJ/Hee+8BAAICAvD444/jxz/+8bDeq6SkZESxXHx+elAs5J11OLXrfbTGZA14bnxAJwDgm6IzmCZvHFEcnjLSr5+vY//Zf3/m6v47nYQFBwejpcXx1IKamhooFIoRB0UXSUgHpHKgvQFoOgtETbBrkq1W4sNDFSjU6t0eHhERjZ4lS5bg9ttvR2NjI77++mv8z//8Dzo6OvDLX/7S6fdKT08f1lRGk8mEkpISu/OF05cBRz/C5MB6WLKyBnyPOnkNPjhWgIoOKbIGaett+uu/v2D/2X/2f/j9t54/GKeTsOzsbLz77ru45ppr7I59+OGHmDNnjrNvSYORBYqJWMVBcUqigyTMumlzkVYPs9kCicR+tIyIiLxfUlISkpKSAAALFiwAADz//PO4+eabERUV5dR7SaXSEf0SZXf+uLnA0Y8g0e0DBnnfmePEWE/WtqLLZEGIfFi1wDxqpF8/X8f+s//sv+v673RhjqVLl6KwsBC33XYb3n77bQiCgC+//BJLlizBgQMHsGTJElfESdb9wiocrwtLSwxHoEwCQ0cPzjS0uTEwIiJypYyMDBiNRmi1Wk+Hcn7TZu1+wGwesGlcRBASIoJgtgCHK5rdEBwRke9wOglLT0/HK6+8gvb2dqxatQoWiwXr16/HmTNnsGHDBqSmproiTkruXRfWT3GOAKkE6cniVNDCcr2bgiIiIlfLz8+HRCKBWq32dChA/AwgIBToMgB1xwZtnqkWr0tFnCpPRNTHsOYG5OXlYdu2bSgvL0d9fT0iIyMxYYL9FDkaRareTZuriwFjlzhF8SJZaiUOnGtCoVaPW2ep3BwgERGNxBNPPIGwsDCkp6cjJiYGTU1N2L59Oz7//HP88pe/dHoqoktIZWKxqDO7xFL18dMHbJ6hUuKLIzUo5KbNRER9jGiCtkajgUajGa1YaCCRE4CQaLE4R/Xh80nZBcRNm8+gQMtNm4mIfE1WVhY+/PBDfPTRR2hpaUFISAjS0tLwl7/8BTfddJOnwztPkycmYdp8YPbAxUKy1EoAQDGTMCKiPoaUhH3++ee47rrrnHrjmpoa6HQ6zJplnyzQMAgCkDwLOPmluC7MQRKWpVECAI5XtaCzx4SgAP9dTElE5GtuvfVW3HrrrZ4OY3CaoW/aPKN3mry2sQMNrV2IDrOfxUFE5I+GtCbs6aefxk033YTNmzejtbV1wLaHDx/GU089hWuuuQbHjx8flSCp1yDrwpIUQYgND4TRbMHhCoMbAyMiIr+hmg0IEkB/DmipHrCpIjgAKbGhAIBiXpeIiGyGNBK2Y8cOrFmzBn/605/w9NNPY9q0aZg2bRqio6Mhl8thMBig1WpRWFiIuro6TJ48GWvWrMG8efNcHb9/sY5+9VMhURAEZKuV+PJoDQrK9cgZ7wXrB4iIaGwJDBfXglWXiKNh0384YPNMlRJldW0o0uqxcEqce2IkIvJyQ0rCwsPD8dhjj2Hp0qX48MMPsWvXLmzZsgUdHR22Nmq1GvPmzcMNN9yAvLw8lwXs15J7k7DGMqCtAQiNtmuSpRGTMG7aTERELqPOcyIJU+CjggoU6zgSRkRk5VRhDoVCgXvuuQf33HMPAKClpQWdnZ1QKpUICAhwSYB0geBIIHoy0HBS3Lg59Wq7JtZF0EzCiIjIZTR5wP5XAO3g68Iyeq9LRVo9LBYLBEFwcXBERN7P6X3CLhQeHo7Y2FgmYO6k6l0X1s+UxAyVEhIBqNB3oLa5042BERGR37Bu2lxVDHS3Ddh0WmIEZBIBDW3dqNB3DNiWiMhfjCgJIw+wTknspzhHWKAMqfHhAIACjoYREZErKNVARDJgMYkzMwYQFCBFWqJ4XSrSckoiERHAJMz32EbCDgIWi8MmnJJIREQuZx0NK88ftGmmSgmA+4UREVkxCfM18TMAWRDQqQcaTjtsYkvCyvVuC4uIiPyMdb+wIawLsyZhvDlIRCRiEuZrpAFAYqb4vJ91YdmaSADiHUeT2fFoGRER0YjYkrD9gNk8YNPM3puDhysMvC4REYFJmG8aZNPmSXFhCJVL0dZtwsnaFjcGRkREfiNuOiAPA7oMQN2xAZtOigtDSO916XRdq5sCJCLyXk4nYf/zP/+DsrIyV8RCQ2XdtFm33+FhqURAhnXqB6ckEhGRK0hl59cpl+8ZuKlEwIxkBQCxVD0Rkb9zOgnbsmULFi9ejHvuuQdfffUVLP0UhyAXUs0WH2sOAz2Oy/1ma5QAgAImYURE5Crq3imJQyrO0ZuEsTgHEZHzSdju3buxcuVK1NXVYdmyZbjiiiuwYcMGNDY2uiI+ckShBkLjALNR3KPFAVZIJCIil9P0VkgcSnGO3utSsY5l6omInE7CQkJC8NOf/hRbt27FG2+8genTp+Pvf/87Lr/8cjz66KMoKSlxRZx0IUEYdNPmrN6RsNLaFrR2Gd0UGBER+RXVbECQAPpyoLlqwKbWConHqprRZTS5ITgiIu81osIcc+fOxdq1a7Fz505kZ2fj448/xo9+9CPcfvvt+Prrr0crRnJkkE2b48KDkKwMhsUCFHM0jIiIXCEwHIifLj4fZDRMFRmMqFA5ekwWHKti0Sgi8m8jSsI6OzuxefNmLFmyBPn5+Zg4cSKWLl0Kk8mEpUuXYt26daMVJ11skJEw4PxoWAGTMCIicpUhrgsTBAEZKhbnICIChpmElZeX49lnn8X8+fPxxz/+EQkJCXj99dexdetWLFu2DB9++CHuu+8+vPPOO6MdL1klzQQgiFNAWuscNsnmujAiInK1YWzazOIcROTvZM6ecO+99+L7779HcHAwbrnlFtx5553QaDR27RYuXIgNGzaMSpDkQFAEEDsFqDsujoZN+YFdkwsrJFosFgiC4OYgiYhozLMmYVXFQHcbIA/tt2mmmiNhRETAMJIwrVaLFStW4JZbbkFoaP8/aCdPnoy33nprRMENpLW1FS+99BKOHz+Oo0ePoqmpCcuWLcPy5csHPffDDz/EihUrHB779ttvERsbO9rhukZyjpiE6fY7TMKmJykgkwiob+1Chb4DqsgQDwRJRERjmkIFRKiAZp24TjllQb9NrXtYltW3obmzBxFBAW4KkojIuzidhH3xxRdDahcWFoY5c+Y4HdBQ6fV6vP/++0hLS8OiRYuwefNmp9/j2WefRUpKSp/XlErlKEXoBqpZQOE7/RbnCAqQYmpiBEoqDCjU6pmEERGRa2hygcM6QJs/YBIWExaIZGUwKvQdOKwz4JJJMW4MkojIezidhHmL5ORk7N+/H4IgoLGxcVhJ2OTJk5Genu6C6NzEumlzZQFgNgMS+yV+2RolSioMKCjX4/qMJDcHSEREfkGdBxz+ACgffF1YllqJCn0HipiEEZEfczoJu+KKK/pdWySRSBAeHo709HTcddddmDhx4ogD7A/XNwGInQoEhABdzUB9KRCXZtckS63EW3vOsTgHERG5jnXTZt1+wGwCJNJ+m2aoFPispIrrwojIrzldHXHOnDmwWCyoqalBcnIyMjMzkZSUhJqaGphMJiQmJmLHjh249dZbvX7j5iVLlmDq1KmYM2cOli1bhtLSUk+H5BypDEjKFp/3t2lzb4XEwxUGdBvNbgqMiIj8Stx0QB4m3hSsPTZg08ze61IxKyQSkR9zeiTssssuQ2FhIXbs2IHExETb65WVlfjFL36BRYsWYdWqVbjzzjuxZs0ar6yQGBMTgyVLliArKwthYWEoLS3Fhg0bcMcdd2DTpk1IS7MfURqMyWQaVizW84Z7vpA0E5Jz38Gs3Q9Lxv+zO66JDIIiOACGjh4cqdDb9mjxFiPtv69j/9n/Cx/9zUj7769fN68klYn7V5b9WyxVnzCj36YzkhUQBKDS0Inalk7EhQe5L04iIi/hdBL2f//3f1i+fHmfBAwAkpKSsHTpUrz00ku4+eabcffdd+PPf/7zqAU6mubPn4/58+fb/j579mwsWLAAN9xwA/7+97/j5Zdfdvo9RzrqN9zzld3RmAig89S3OFZY6LBNikJAQQfw2d7DME/qv6KlJ3n7qKmrsf/svz/z9/6PGeo8MQkrzwdm39tvs7BAGSbHhaG0phXFWgMWTWMSRkT+x+kk7Ny5cwgLC3N4LCIiAhUVFQDEwhkdHR0ji86NVCoVZs2ahaKiomGdn56eDqm0/znw/TGZTCgpKRn2+UiJBQ4+ieCWM8iaNtnh/izzGk6ioPo06i3hyMrKcP4zXGjE/fdx7D/7z/4Pv//W88lLOLFpc4ZKidKaVhTp9Fg0Ld7FgREReR+nk7CkpCR89NFHWLDAvgTtBx98YBsh0+v1UCi8a+rbYCwWCyQOKgwOhVQqHdEvUcM+P1IDhCdCaKmCtKYEGH+pXZOZ46IAnEaRzuC1v+iN9Ovn69h/9p/999/+jxmqHECQAPpyoLkSiOi/Im+mWol/HdShSGdwY4BERN7D6Yzjl7/8JbZv344f//jHePPNN7F161a8+eab+PGPf4wdO3bg3nvFKQj5+fmYMaP/OeHeRqvV4tChQ8jMzPR0KM5LniU+DlKc40x9G/Tt3W4KioiI/EpgOBDfe90fpFR9Zu/65GKdHhaLxdWRERF5HadHwn70ox/BYrFgzZo1WLVqle31mJgYPPXUU7j99tsBiJUH5XL56EXqwK5du9DR0YG2tjYAwKlTp7B9+3YAwIIFCxAcHIzHHnsMW7ZswY4dO5CcnAwAuPvuu5GTk4O0tDSEhoaitLQUr776KgRBwIMPPujSmF1CNRs4vrXfTZuVIXJMiAnFmfo2FGr1uHxKnJsDJCIiv6DJA6qLxU2bZ9zSb7O0hAjIpRLo23tQ3tiOcdHeuV6ZiMhVnErCTCYTysvL8YMf/AA/+tGPUFZWBr1eD6VSiZSUlD57d8XEuH4Dxqeeesq2Bg0Atm/fbkvCdu7cCZVKBbPZDJPJ1OdOW2pqKrZt24bXX38dXV1diIqKQl5eHh544AFMmDDB5XGPOlWO+FhxsN8m2WolztS3oaCcSRgREbmIOhfYt2HQkTC5TIKpSREo0upRqNUzCSMiv+NUEmaxWLB48WK8/PLLWLBggUs3Yx6Kr7/+etA2q1at6jNiBwCPPfaYq0LyjMQscR5+cwXQXAVEJNo1ydIo8WFBBTdtJiIi17EW56guAbpagUDHhbwAIEulQJFWj2KdATdlJbspQCIi7+DUmjCZTIaYmBjO3/Y2gWFA3DTx+SDrwgq1nH9PREQuolABESrAYhpwdgYgVkgEgCLeHCQiP+R0YY7Fixdjy5YtLgiFRsRanKOfdWFpCREIlElg6OjBmfo2NwZGRER+RZMrPmrzB2yW2Xtz8HClAUaT2cVBERF5F6cLc6SlpeHzzz/HXXfdhauvvhqxsbF91oIBwNVXXz1qAdIQqXKAQ//o986jXCbBjGQFDp5rQqFWj5TY/qeIEBERDZs6Dzj8waDrwlJiQhEeKENLlxGlNa2YlhThpgCJiDzP6STskUceAQDU1NRg3759dscFQcCxY8dGHhk5J9lanOMQYDYBEvs9d7LUSlsSdstMlZsDJCIiv2BdF6bb3+/1CAAkEgHpKgW+P92AYp2eSRgR+RWnk7C33nrLFXHQSMVOAeRhQHcrUHsMSLDfoy1bowQAFJTr3RsbERH5j/jpgDwc6GoGao8CCen9Ns1QKfH96QYU6fT48RyNG4MkIvIsp5OwOXPmuCIOGimJFEieCZz5j1icw0ESZi3OcayqGZ09JgQFOL47SURENGwSqThFvuwbcUriAElYllrctLlIa3BXdEREXsHpwhxWLS0t2L17Nz755BMYDPzh6RWsUxL7Kc6RrAxGTFggjGYLjlTye0ZERC5inZI4xOIcJ2pa0NFtcnFQRETeY1hJ2Lp16zBv3jzcd999eOSRR6DT6QAAP//5z7Fhw4ZRDZCcMMimzYIgcEoiERG5nrq3QmL5wElYQkQQYsMDYTJbcLSKNweJyH84nYS9++67WLduHW677TasX7++z55TCxcuxL///e/RjI+cYR0Jqz0GdLU4bGKdkljAfVmIiMhVVDmAIAEM5UBzZb/NBEFAZu9+YYWckkhEfmRYSdjdd9+NlStX4rLLLutzbNy4cTh37tyoBUdOCo8HFGoAFqCywGGTbOumzRwJIyIiVwkMB+J71yYPUqo+UyWuCyvW6V0cFBGR93A6CdNqtZg3b57DY6GhoWhubh5xUDQCg2zanKFWQhCACn0Hals63RgYERH5FSfXhRVxhgYR+RGnk7Dw8HDU19c7PFZRUYHo6OgRB0UjoBq4OEdYoAypceEAOBpGREQuZFsXNvBIWEbvSNjZhnbo27tdHRURkVdwOgmbO3cuXn31VbS3t9teEwQBRqMRmzZtspuiSG5m27T5AHDBer0LWdeFFfKuIxERuYpmrvhYXQJ0tfbbTBkix/joEABAsY7rwojIPzidhP3mN79BZWUlFi9ejFWrVkEQBLzzzju4/fbbce7cOTzwwAOuiJOGKjETkMiA1hrAoHPYhBUSiYjI5RTJ4jpli0m8MTiAjN7iHJySSET+wukkbNy4cdi0aRNSUlKwadMmWCwWfPzxx4iMjMTGjRuRlJTkijhpqOQhQPx08Xk/F72s3iSsWKeHyex4tIyIiGjEhliq3rYujCNhROQnZMM5adKkSXjttdfQ3d2NpqYmKBQKBAUFjXZsNFzJOUBVkbgubPrNdocnx4UjVC5FW7cJp2pbMSUh3ANBEhHRmKfJAw7/C9AOrUJikU4Pi8UCQRDcER0RkccMa7NmK7lcjvj4eCZg3maQTZulEsE29aOgvMlNQRERkd+xjoRp9wNmU7/NpicpIJUIqGvpQnUzK/cS0dg3rJEwnU6Hbdu2obKyEp2dfX9YCoKAP//5z6MSHA2TtThHZSFg6gGkAXZNsjRK7ClrQKFWjx/P0bg3PiIi8g/x0wF5ONDdAtQeBRLSHTYLlkuRGh+OY1XNKNLqkagIdnOgRETu5XQS9u9//xvLli2D2WxGVFQU5HJ5n+OcQuAFoicBgQqgyyBe9BIz7ZqwQiIREbmcRCrOzij7RixV308SBgBZaoWYhOkMuHZGohuDJCJyP6eTsBdeeAEzZ87ECy+8wD3BvJVEAiTPFC96uv0Ok7Ds3iTsRE0LWruMCAsc1qAoERHRwDR54vVImw/Mua/fZhkqJTbt07JCIhH5BafXhJ07dw733XcfEzBvZ9u02fG6sLiIICQrg2GxiFUSiYiIXEKTJz4OViGxd61yic4AMyv3EtEY53QSlpSU1GejZvJSqtni4wB7s3BKIhERuVxyDiBIAUM5YKjot1lqfBiCAiRo6TKirL7NjQESEbmf00nYr3/9a7z++uvo6OhwRTw0WpJniY/1pUCH3mETbtpMREQuFxgGJMwQnw9Qql4mlWBGkliqnjM0iGisc3ohUElJCRoaGnDVVVchNzcXkZGRdm1Wrlw5KsHRCITGAJHjgaazQOUhYOIVdk0uHAnjvixEROQy6jxx/8ryfGDGrf02y1ApceBcE4q0etwyU+XGAImI3MvpJOydd96xPf/ss8/sjguCwCTMWyTniEmY7qDDJGxGsgKy3n1ZKg2dSFayJDAREbmAJhfYt37wTZvV1k2bDe6IiojIY5xOwo4fP+6KOMgVVDnA4X/1uy4sKECKqYkRKKkwoKC8iUkYERG5hrq3OEf1YaCrVZyi6IC1OMfRymZ0G82Qy5xeNUFE5BP4020ss27arDsAWBxXmrJNSeS6MCIichVFMqBQAxbTgAWjxkWHQBEcgG6TGSeqW9wYIBGRew0pCdu/fz/a2gavVNTY2Ih//etfIw6KRklCOiAJANrrxWmJDrBCIhERuYU6V3wcoFS9IAjIUIlTEgtZnIOIxrAhJWF33XUXTp8+bfu72WzGjBkzcPTo0T7ttFotnnjiidGNkIYvIEhMxACgwvF+YdYKiSUVBvSYzG4KjIiI/I51v7BB1oVZbw4W8+YgEY1hQ0rCLBdNZbNYLDAajXavkxey7hemczz9Y0JMKBTBAegymnG8ilM/iIjIRWxJ2H7AbOq3WUbvurAijoQR0RjGNWFjnap3XVg/c/AFQUCmbUpik5uCIiKii+3ZswcrVqzAtddei6ysLMybNw/3338/Dh8+7OnQRkfcNCAwAuhuAWqO9Nsss3c64snaVrR2Gd0VHRGRWzEJG+usmzZXFQPGbodNsnuTMG7aTETkOZs2bUJFRQXuuusubNiwAY8//jgaGxtxxx13YM+ePZ4Ob+Qk0vM3BrX9rwuLiwhCoiIIFgtwuIKl6olobHK6RD35mKgUIDgK6GgEakrOJ2UXyOpdF8biHEREnvPHP/4R0dHRfV6bN28err76aqxfvx5z5871UGSjSJ0HnP4aKN8LzLmv32aZKiWqDNUo1umRlxLdbzsiIl815CSsrKwMUqkUAGAymWyvXdyGvIwgiInXqR3ips2OkrDe+fdl9W3Qt3dDGSJ3c5BERHRxAgYAoaGhmDhxIqqqqjwQkQtoeiskDjASBgAZagW2H6lGkZYjYUQ0Ng05CVuxYoXda3/4wx/6/N1isUAQhJFHRaNLlSMmYRUHAPzK7nBkqBwTYkJxpr4NhVo9Lp8S5/4YiYjITktLC44ePYq8vLxhnW+9aTrc84Z7fr8SsyERpBAMWpiayoGIZIfN0pMiAIjFOUY9hiFwWf99BPvP/l/46G9G2v+hnjekJOzZZ58dVhDkJWybNu/vt0mWWskkjIjIyzz11FPo6OjAkiVLhnV+SUnJiD5/pOc7khaRglDDSZzb/T6akhc6bGPpEbdM0TV1YFf+ISgCPbOE3RX99yXsP/vvz1zd/yElYTfffLNLgyAXS54pPjaWAe2NQEiUXZMstRIfFVRwXRgRkZf429/+hk8//RRPPPEEZsyYMaz3SE9Pty0lcIbJZEJJScmwzx+IUL0Q2H8S46U1GJeV1W+7id/txum6NpiVamRNiR3VGAbjyv77Avaf/Wf/h99/6/mDYWEOfxASBURPAhpOiZs2T77KrkmWrUy9ntNKiYg8bO3atXj55Zfxu9/9Dj/72c+G/T5SqXREv0SN9HyHxuUB+zdAot0LDPDemSolTte1oaSiGYumJYxuDEPkkv77EPaf/Wf/Xdd/lqj3F7YpiY73C5uaGAG5TAJ9ew/ONrS7MTAiIrrQ2rVrsWbNGixfvnzY0xC9mrp3fVvNYaCrpd9m1j0si7lpMxGNQUzC/MUgmzbLZRLM6F0IzU2biYg8Y926dVizZg3uv/9+LFu2zNPhuIYiGVBoAIu53xuDAJDRu2lzkc4Ai8XiruiIiNyCSZi/sJamrzgI9HMxy1JHAuCmzUREnvD666/jxRdfxLx583D55ZejsLCwz58xZQil6qcmRiBAKqCxrRu6pg43BUZE5B5cE+Yv4mcA0kCgo0ks0BE90a5JtkYJfMdNm4mIPOGbb74BAOzevRu7d++2O37ixAl3h+Q66lygZLO4aXM/ggKkSEuIQEmFAUU6PdRRIW4MkIjItZxKwjo7O3H33XfjN7/5DS655BJXxUSuIJMDiZmAbp84/cNBEmYtznG0shmdPSYEBfjvYkwiInd7++23PR2C+2h614XpDgBmEyBxfL3JVCtQUmFAsc6A6zOS3BggEZFrOTUdMSgoCKWlpV5RKaW1tRV/+ctf8Itf/AJ5eXmYMmUK1qxZM+TzGxoa8OijjyI3NxeZmZm44447sGfPHhdG7AVUA+8XpooMRkyYHEazBUcqDW4MjIiI/ErcNCAwAuhuAWqO9NssQ6UEwBkaRDT2OL0mLDs7G8XFxa6IxSl6vR7vv/8+uru7sWjRIqfO7e7uxt133409e/bg8ccfx0svvYTo6Gjce++92Ldvn4si9gK2dWGOF0ILgsB1YURE5HoS6fkbgwOsC7PO0DhcYYDJzOIcRDR2OJ2EPfLII3jvvfewZcsWtLW1uSKmIUlOTsb+/fvxzjvv4KGHHnLq3M2bN6O0tBR/+9vfcOONN+LSSy/Fiy++iPHjx2P16tUuitgLqGaLj9WHgZ5Oh02yNUoAvOtIREQuZi1VP8C6sImxYQiRS9HebcKp2lY3BUZE5HpOJ2F33HEHqqursWLFCuTk5CA7OxszZ860/Zk1a5Yr4rQjCMKwNxT+6quvMGHCBGRnZ9tek8lkuPHGG1FcXIyamprRCtO7KDVAaCxg7gGqHY9mXrhpMxERkctoBk/CpBIB6cnWUvV6NwRFROQeTldHvOaaa4ad/HiLkydPOkwWp0yZYjseHx/v1HuaTKZhxWI9b7jnO0uSNAvCye0wa/fBkmT/NZieGA5BAHRNHagxtCMmLNCl8bi7/96G/Wf/L3z0NyPtv79+3cYMVQ4gSIFmHWDQAQqVw2aZaiXyzzSiSKvHj3LUbg6SiMg1nE7CVq1a5Yo43Eqv10OhUNi9bn1Nr9c7/Z4lJSUjimmk5w9VgiQJyQD0h7/CmcC5DtuowmXQNhvx0X8KMDspyC1xuav/3or9Z//9mb/332/JQ4GEdKCqUBwNS7/NYbPM3uIcxToWjCKiscNv9wkbaDRvOCN96enpw6oaaTKZUFJSMuzznRahB068jsj2Miiyshw2ySsrgfZgBQyyKGRlpbo0HLf338uw/+w/+z/8/lvPJx+myROTMG1+v0lYhkq8QXqsitunENHYMewkrLS0FKdPn0ZXV5fdsR/+8IcjicnllEqlw9Eug0G8y+ZolGwwUql0RL9EjfT8IVPnABAg6M9B2tEIhMXaNZk5LgqbD1agSGdw2y+Gbuu/l2L/2X/233/779fUuUD+/w24LkwVGYzoUDka2rpxrKoZ2ZpINwZIROQaTidhHR0duP/++7F3714IggCLRSwZe+HokbcnYampqSgtLbV73fra5MmT3R2S+wQpgJhUoP6EWKp+yg/smliLcxTrxJLAUolvrwEkIiIvZS3OUXMY6GoBAsPtmgiCgAyVAt+cqEORVs8kjIjGBKerI7700kuoqKjAO++8A4vFgrVr1+KNN97AVVddhXHjxuGjjz5yRZyjatGiRSgrK0NRUZHtNaPRiE8++QSZmZlOF+XwObZNmx3vF5YaH44QuRStXUacrmNJYCIicpGIJEChASzmfq9JgFicA+C6MCIaO5xOwnbu3In77rvPVt49MTERc+fOxYsvvojp06dj48aNox5kf3bt2oXt27fjm2++AQCcOnUK27dvx/bt29HR0QEAeOyxxzBt2jRUVFTYzrvtttswefJkPPjgg/j000/x/fff47e//S3OnDmD3//+926L32OsSVg/mzZLJYJtDn5BeZO7oiIiIn+kyRUfB9i02Vqco5Bl6olojHA6CauoqEBKSgqkUikEQbAlOwBwww03YOfOnaMa4ECeeuopPPjgg3jssccAANu3b8eDDz6IBx98EA0NDQAAs9kMk8lkmzYJAHK5HG+++SZyc3PxzDPPYMmSJairq8Mrr7yCOXPmuC1+j0m2JmGHALPZYZMstTjdg/uFERGRS6l7k7DyPf02sd4YLKtrQ3NnjzuiIiJyKafXhIWHh6O9vR0AEB0djXPnziEnR/yl3mg02o65w9dffz1om1WrVjksqx8TE4PnnnvOFWF5v7hpQEAI0NUMNJwEYqfYNbGuCyso17s3NiIi8i+a3u1SdAcAkxGQ2v9qEh0WCFVkMHRNHSjRGXDppBg3B0lENLqcHgmbMmUKzp49CwDIzc3F+vXrceDAARQXF2PdunVIS0sb7RhptEllQGKW+LyfOfjZGiUAoLSmBW1dRvfERURE/iduKhAYAXS3ArVH+m1mXRdWxCmJRDQGOJ2E3XrrrWhrawMA/Pa3v0VHRwfuvPNO3HHHHaisrMSjjz466kGSC6hmiY/9rAuLjwhCkiIIZgsXQhMRkQtJpIBqtvi8fKB1YeKUxCJOkyeiMcDp6YjXXXed7blarcYXX3xhK1efnZ0NpVI5mvGRqyQPXCERALI0SlSWVKNQq8fcidFuCoyIiPyOJg84vRPQ7gVyf+WwibU4B28MEtFYMOzNmq1CQkJwxRVXjEYs5E7WCok1R4DudkAeYtckWx2Jz0uqWSGRiIhcy1aco/+RsBnJCkgEoMrQidrmTsRFBLkpOCKi0ef0dEQaIyKSgbAEwGICqgodNsnqXRdWqNX3qS5JREQ0qlQ5gCAFmnWAQeewSWigDJPjxM2cizgaRkQ+bkgjYWlpaRAEYUhvKAgCjh49OqKgyA0EQbzoHd8qTkkcd4ldkxlJCkglAmpbulBl6ESSMtgDgRIR0ZgnDwUS0sWbguV7gfTbHDbLVCtwoqYFRVo9rpoW794YiYhG0ZCSsKVLlw45CSMfYk3C+inOESyXYmpiOA5XNKOgXM8kjIiIXEeTN2gSlqFS4v0DOlZIJCKfN6QkbPny5a6OgzzBVpzjYL9NstRKHK5oRqG2CYszEt0UGBER+R11LpD/f2Jxjn5Y97As6p0mzxvEROSruCbMnyVlA4JEnIPfUu2wSZY6EoC4LoyIiMhlNHniY80RoKvFYZMpCeGQyyRo7jTibEO7G4MjIhpdTldH3LJly6BtfvjDHw4jFHK7wDAgdqq4OabuADD1ersm1k2bi3UG9JjMCJAybyciIheISAKUGkBfDuj2AxPtKy8HSCWYnhSBgnI9inV6TIgJ9UCgREQj53QS1t9mzBdOCWAS5kNUs8QkrMJxEjYhOhQRQTI0dxpxoroFM5IVHgiSiIj8gjpPTMLK8x0mYYC4X1hBuR6FWj1uykp2c4BERKPD6SRs586ddq81NTVh586d+Pzzz/HCCy+MSmDkJsk5wKG3+t20WSIRkKlWYvfJehRo9UzCiIjIdTS5QMn7A64Ly1SL1yFu2kxEvszpJCw52f6uU3JyMmbMmAGj0Yi33noLq1atGpXgyA2smzZXFgBmEyCR2jXJ1kSKSVh5E+7MG+fmAImIyG+oe9eF6Q4AJiMgtf81JUOlBAAcruA0eSLyXaP6k2vu3Ln4+uuvR/MtydVi0wB5GNDdCtQdd9gku7caFYtzEBGRS8VNBQIjxGtS7RGHTSZEhyI8SIYuoxmlNY4LeBARebtRTcIqKiogkfCOlE+RSMUqiUC/UxIze5Owsro2GNp73BQYERH5HYkUUM0Wn5fnO24iEZChEqckFmk5JZGIfJPT0xH3799v91p3dzdOnDiB9evXY+7cuaMSGLmRKgc4u1sszjHr53aHo0LlGB8dgrMN7SjU6bEgNdYDQRIRkV/Q5AGndwLle4DcXzlskqlS4rtTDSjW6fGTXI2bAyQiGjmnk7A777zTbnNEi8UCALjkkkvwxBNPjE5k5D5D3LT5bEM7CsuZhBERkQtZ9wvTOh4JA86vC+M0eSLyVU4nYW+99Zbda4GBgUhOTkZMTMyoBEVuZi3OUXcM6GoV9w+7SJZaiS2FlSjUNrk5OCIi8ivJswBBCjRXAHotoFTbNcnqnSZ/srYV7d1GhMid/nWGiMijnP6pNWfOHFfEQZ4UngBEqIBmnVglccI8uybZmkgA4l1Hi8ViNxpKREQ0KuShQGKGeD3S5jtMwhIUQYgLD0RtSxeOVDZj9vgoDwRKRDR8TlfROHPmDPbt2+fw2L59+3D27NmRxkSeoJolPurs1/wBwNTECMhlEjS19+BcQ7sbAyMiIr9jLVVfPtB+YUoAQBGnJBKRD3I6CVu1apXDDZsB4JtvvuEeYb7Kui6swvG6MLlMgulJEQA4B5+IiFxMkys+DrRps7VCIjdtJiIf5HQSVlJSgtmzZzs8Nnv2bBw+fHjEQZEHWNeF6Q4AvYVWLpatFqckFpRzXRgREbmQdSSs5gjQ5XgvMOtIWLFO756YiIhGkdNJWEtLC0JCQhweCwoKgsHAO1I+KTFLXAjdWi0uhnYgS6MEwJEwIiJysYhEQKkBLOZ+p8lnJCsBAOca2tHU1u3G4IiIRs7pJCw+Ph7FxcUOjxUXFyM2luXLfZI8BIifLj7vZ9Pm7N67jkermtHZY3JTYERE5JcGWRemCAnAhJhQAEBxBW8AE5FvcToJW7RoETZs2IC9e/v+UMzPz8crr7yCq666atSCIzezTkmscJyEqSKDERMmR4/JgiOVzW4MjIiI/I51XdgAxTkyrOvCOEODiHyM0yXqly5dim+//Rb33HMPxo8fj4SEBFRXV+Ps2bOYNGkSli9f7oo4yR2Sc4ADr/e7abMgCMhSK/HVsVoUavWYNS7SzQESEZHf0MwVH3UHAJMRkNr/ypKpUuLjwkquCyMin+P0SFh4eDjee+89LFu2DAqFApWVlVAoFFi+fDn++c9/IizMfqNf8hHWkbDKAvGC54B1g0yuCyMiIpeKnQoEKoCeNqDGcdGvTLU4ElaoNcDST1EpIiJvNKwt5kNDQ7F06VIsXbp0tOMhT4qeLF7wugxA7REgMdOuiXXTZlZIJCIil5JIAPVs4NRX4qbNSVl2TaYnKSCVCKhv7UKVoRNJymD3x0lENAxOj4RZtbS0YPfu3fjkk09YEXGskEiA5GzxeT/FOTJUCggCoGvqQH1rlxuDIyIivzNIcY6gACmmxIcD4LowIvItw0rC1q1bh3nz5uG+++7DI488Ap1OBwD4+c9/jg0bNoxqgORmg2zaHB4UgEmx4pTTwnK9m4IiIiK/ZNu0Ob/fJtb9wrhpMxH5EqeTsHfffRfr1q3DbbfdhvXr1/eZg71w4UL8+9//Hs34yN1UvRtx9zMSBgDZvfuFFWg5JZGIiFwoeZa4h2VzBaDXOmySyQqJROSDhpWE3X333Vi5ciUuu+yyPsfGjRuHc+fOjVpw5AHW4hz1pUCn47uKWWpxXRiLcxARkUvJQ4HEDPF5P1MSrSNhJRUGmM0szkFEvsHpJEyr1WLevHkOj4WGhqK5mftH+bTQGEA5DoAFqDjksIm1QmKR1gATL3hERORK1nVhWsdJ2OS4MAQFSNDaZURZfasbAyMiGr5hlaivr693eKyiogLR0dEjDoo8bJBNm1PjwxAil6K1y4jTdbzgERGRC9k2bXa8LkwmlSA92TolkevCiMg3OJ2EzZ07F6+++ira29ttrwmCAKPRiE2bNtlNUSQfZC3O0c+mzRde8Ficg4iIXMo6ElZ7BOh0PNsmQ6UEABRx02Yi8hFOJ2G/+c1vUFlZicWLF2PVqlUQBAHvvPMObr/9dpw7dw4PPPCAK+Ikd7KOhOn2A/1sfpllK86hd09MRETknyISxWnyFrN4XXKAFRKJyNc4nYSNGzcOmzZtQkpKCjZt2gSLxYKPP/4YkZGR2LhxI5KSklwRJ7lTQgYgCQDa6wG940Ir2Wpu2kxERG6isa4Lczwl0Voh8VhlM7qNZndFRUQ0bLLhnDRp0iS89tpr6O7uRlNTExQKBYKCgkY7NvKUgCAgYQZQWSCWqo8cb9fEWqa+tKYFbV1GhAYO658SERHR4NS5QPF7/VZI1ESFQBkSAH17D45XN9umJxIReathbdZsJZfLER8fzwRsLLLuF9bPps3xEUFIVATBbBHLAhMREbmMdSRMdwAwGe0OC4Jwfl0Yp8kTkQ8Y0vDFli1bnHrTH/7wh8MIhbxKcg6ADQNu2pylVqLKUI2Ccj3yUlgVk4iIXCR2KhCoALoMQM1hICnLrkmWSoH/lNahSGfAne6PkIjIKUNKwh599NEhv6EgCEzCxgJrcY6qIsDYDcjkdk2yNUpsO1yNQi3XhRERkQtJJIB6NnDqK3FKooMkjCNhRORLhpSE7dy509VxkLeJSgGCI4GOJvGuY/JMuyZZtuIcelgsFgiC4O4oiYjIX6jzxCRMuxfIW2J3OEMtFuc4VdeK1i4jwrhWmYi82JB+QiUnJ7s6DvI2ggAkzxIveBUHHSZh6ckKSCUCalu6UGXoRJIy2AOBEhGRX7CuCyvPF7dPuejGX1x4EJIUQag0dKJEZ8DciZwmT0Tea9iFOVpbW/Htt99i69at+O6779Da2jqacQ1JW1sb/vSnP+Gyyy5Deno6brrpJnz22WeDnvfhhx9iypQpDv/U1dW5IXIfkXzBfmEOBMulSEsIBwAUcvoHERG5UvIsQCIDWioBg9ZhE+t+YcXctJmIvNywxupfe+01rF27Fp2dnbZpaEFBQfjNb36De+65Z7Rj7Nfy5ctRUlKChx9+GOPHj8fWrVvx0EMPwWw244Ybbhj0/GeffRYpKSl9XlMqlS6K1gfZNm0euDjHkcpmFGr1uC490U2BERGR35GHiPtYVh4SR8OUGrsmGSpxrXIRkzAi8nJOJ2FbtmzB6tWrMX/+fNx8882Ii4tDbW0ttmzZgr/85S+IjIx0S2GOXbt24bvvvsNf//pXXH/99QCAvLw8VFZW4i9/+Quuu+46SKXSAd9j8uTJSE9Pd3msPit5lvjYeBpobwRCouyaZKmVeDe/nJs2ExGR62nyxCRMuxfIuN3ucGbvurAiLbdOISLv5vR0xDfffBPXX389NmzYgB/84AeYNWsWfvCDH2D9+vVYvHgx/vGPf7giTjs7duxASEgIrr322j6v33LLLaitrUVRUZFb4hjTQqKAqIni84pDDptka8TiHCUVBvSYzO6KjIiI/JE6V3wsz3d4OD1ZAUEAKvQdqG/tcmNgRETOcXokrKysDA899JDDYzfeeCOWLVs24qCG4uTJk5g4cSJksr5dmDJliu34zJn2xSQutGTJEjQ2NiI8PBxz5szBb37zG6Smpg4rHpPJNKLzhnu+qwnJsyBpPA2zdh8sKQvtjo+LDEJ4kAwtnUYcqzRgelKEU+/v7f13Nfaf/b/w0d+MtP/++nXza9biHLVHgE4DEKToczg8KAATY8NwqrYVxTo9rkiL90CQRESDczoJCwoKgsHgeJjfYDAgKChoxEENhV6vh0qlsntdoVDYjvcnJiYGS5YsQVZWFsLCwlBaWooNGzbgjjvuwKZNm5CWluZ0PCUlJU6fM5rnu0qsJR4aAC3Hv8EpxTUO26QoJCjqBD7dcxg9E0OG9Tne2n93Yf/Zf3/m7/2/UGtrK1566SUcP34cR48eRVNTE5YtW4bly5d7OjTvEJ4AKMcB+nNi0ahJi+yaZKgUOFXbikKtgUkYEXktp5OwWbNmYe3atZgzZw7i48//cKurq8O6deuQk5MzqgEOZKB9qQY6Nn/+fMyfP9/299mzZ2PBggW44YYb8Pe//x0vv/yy07Gkp6cPugbNEZPJhJKSkmGf73JxZuDwGkS0nEJWZqZdSWAAmFd/EkU1p9FgCUNWVoZTb+/1/Xcx9p/9Z/+H33/r+WOJXq/H+++/j7S0NCxatAibN2/2dEjeR5MnJmHl+Q6TsCy1Eh8eqmCFRCLyak4nYQ899BB+/OMf4+qrr8bcuXMRGxuLuro67N27FzKZDGvXrnVFnHaUSqXD0S7rKJ11RGyoVCoVZs2aNey1ZFKpdES/RI30fJdJzASkgRA6GiE1nAOiJ9o1mTlOXBdWpDMMuw9e2383Yf/Zf/bff/t/oeTkZOzfvx+CIKCxsZFJmCPqXKD4PbE4hwMZKiUAoEirt1VwJiLyNk4X5pg8eTL+9a9/4corr0RJSQk+/PBDlJSU4Morr8TmzZsxadIkV8RpJzU1FadPn4bRaOzzemlpqS1OZ1ksFkgkw946bWySyYHE3tGtfkrVZ/Ze8E7XtcHQ3uOmwIiIxh5BEJg0DEYzV3zUHQRMRrvDUxPDESAV0NTeA11Th5uDIyIammHtEzZhwgQ8//zzox2LUxYtWoT3338fX375Ja677jrb6x999BHi4uKQmZnp1PtptVocOnQIl1xyyWiH6vuSc8S59xUHgMw77A5HhwViXHQIzjW0o0inx/zUWA8ESUREFxuTRaOiJ0MSpIDQaYCpqghIzOpzWCYAaQnhKKloxqFzjUhSBDr9EV7dfzdg/9n/Cx/9jbuKRg0rCfMGCxYswKWXXoonn3wSra2t0Gg0+Oyzz7B7926sXr3aNrXlsccew5YtW7Bjxw4kJycDAO6++27k5OQgLS0NoaGhKC0txauvvgpBEPDggw96slveSZUD5GPQTZvPNbSjUMskjIjIW4zVolGTIqZA0bkPFXs+RF2K/fHkICNKAOwsOAmVuWbYn+Ot/XcX9p/992eu7v+wkrCjR4/i008/RWVlJbq6+u7DIQjCsApbDMeaNWvwwgsv4MUXX4Rer0dKSgqef/55LF682NbGbDbDZDLBYrHYXktNTcW2bdvw+uuvo6urC1FRUcjLy8MDDzyACRMmuCV2n6LqLbZSXQL0dAIB9hUws9RKfFxYyU2biYi8yFgtGiW0XAXU7oPKokNyVpbd8YVmHbafPoyq7kBkOTg+GG/vv6ux/+w/++/6olFOJ2FbtmzBihUrIJFIEBUVhYCAgD7H3TmXPTQ0FCtXrsTKlSv7bbNq1SqsWrWqz2uPPfaYq0MbW5TjgJAYoL1eTMTUs+2aWDdtLuRCaCIirzFmi0aNE9eFSbT7AInErnLvTE0UAOBwRTMsECCTDm+9t9f2303Yf/af/Xdd/51Owl5++WUsWLAAzz33nNMVCMlHCYI4Gla6XVwX5iAJm5oYDrlUgqb2HpQ3tmNcdKgHAiUiIr+QPAuQyICWSsCgBZSaPodTYsMQKpeirduEU3WtSEuI8FCgRESOOX1rqLa2FnfddRcTMH+T3DslsZ91YYEyKaYliRe5gnK9m4IiIiK/JA8BEnor95bbl6qXSgSkq8TfU4q0ejcGRkQ0NE4nYVOnTkVNzfAXuZKPUs0SHyv6L86RrVECEKckEhHR8OzatQvbt2/HN998AwA4deoUtm/fju3bt6OjgyXXbTR54qODJAw4v31Kkc7gpoCIiIbO6emIf/jDH7BixQpMnToVaWlproiJvFHSTPGx6SzQVg+Extg1yVIrAQAFTMKIiIbtqaeeQkVFhe3v1gQMAHbu3AmVSuWp0LyLOhfY+xKgzXd4OLP3msSRMCLyRk4nYVlZWbj66qtx8803IzY21m5aoiAI+OSTT0YtQPISwUogJhWoLxWnJE651q5JtlosznGsshldRhMCZf67mJOIaLi+/vprT4fgG6wjYTVHgE4DENT39xFrEnaiugWdPSYEBfCaRETew+npiBs2bMD69esRGRmJpKQkKJXKPn+4VmwMs64L62dKojoqGNGhcnSbzDhS2ezGwIiIyO+EJwCR4wFYAN1+u8NJiiDEhMlhNFt4TSIir+P0SNhbb72FW2+9FU8//bRfl630S6ocoGhjv8U5BEFAllqJncdrUViux8zesvVEREQuoc4Tp8mX5wOTFvU5JAgCMlXiNalYp8escbwmEZH3cHokrK2tDddffz0TMH9k3bS54hBgNjtsYl0XxuIcRETkcppc8VHruDhHhrU4B69JRORlnE7CZs6cidOnT7siFvJ2cdMBWTDQZQAaTjlsYt20uUDb5M7IiIjIH6l714XpDgKmHrvDmWpxiUQxKyQSkZdxOgl7/PHH8c9//hNfffUVuru7XRETeSupDEjKEp/3sy4sQ62AIADaxg40tHa5LzYiIvI/sWliQY6eNqC6xO6wdSSsrL4Nhg77JI2IyFOcXhN26623wmg0Yvny5RAEAUFBQX2OC4KAgwcPjlqA5GWSZwHle8R1YVk/sTscERSAibFhOFXbikKtHldOjfdAkERE5BckEkA1Bzi1QyxVnzyzz+GoUDk0USEob2xHic6Ayybbb69CROQJTidh11xzDQRBcEUs5Aus68IcVKKyylYrcaq2FQXlTMKIiMjFNLliEla+F8i73+5whkqB8sZ2FOn0TMKIyGs4lYSZTCb8+te/RlRUFEvR+ytrmfqaI0B3OyAPsWuSpVFi80Edi3MQEZHraeaKj9p8wGIBLrpRnKVWYmtxFYtzEJFXcWpNmMViweLFi1FYWOiicMjrKVRAWDxgMQFVRQ6bWCskFmn1MJstbgyOiIj8TtJMQCIDWqoAfbndYVuFRJ3evXEREQ3AqSRMJpMhJiYGFgt/sfZbggCoZovP+ynOMSU+HMEBUrR0GXG6rtWNwRERkd+RhwCJmeJzbb7d4RnJEZAIQE1zF6oNnW4OjojIMaerIy5evBhbtmxxQSjkM5JniY/9bNosk0qQrhKnqxZw+gcREbmatVR9uf1+YSFyGVLjwwFwNIyIvIfThTnS0tLw+eef46677sLVV1+N2NhYu0IdV1999agFSF7Itmlz/1Uws9VK7DvTiEKtHj/KUbspMCIi8kuaXGDvOocjYQCQqVLieHULinV6XDM9wc3BERHZczoJe+SRRwAANTU12Ldvn91xQRBw7NixkUdG3ispG4AAGLRASw0Qbl8BMVujBAAUlOvdGhoREfkh60hYzRGgQw8EK/sczlAr8N4BLYq03LSZiLyD00nYW2+95Yo4yJcEhgNxU4Hao+K6sLTFdk2y1JEAgBPVzWjvNiJE7vQ/NSIioqEJjwcixwNNZ8Wp8pMX9Tmc2Vuco1gnFoySSLjVDhF5ltO/Gc+ZM8cVcZCvSZ4lJmG6/Q6TsARFEBIiglDd3IkSnQG5KdEeCJKIiPyGOk9MwrR77ZKwKQnhCJRJ0NxpxNmGNqTEhnkmRiKiXk4X5rBqaWnB7t278cknn8Bg4PC+37Ft2uy4OAdwwZREFucgIiJX0+SKjw6KcwRIJZieFAEAKNbxdxYi8rxhJWHr1q3DvHnzcN999+GRRx6BTqcDAPz85z/Hhg0bRjVA8lLWTZsrCwCzyWET635hhVwXRkRErmbdtLniIGDqsTts3S+skDcGicgLOJ2Evfvuu1i3bh1uu+02rF+/vs+eYQsXLsS///3v0YyPvFXcVCAgFOhuBepOOGxiS8J4wSMiIleLmQIEKYCedqC6xO6w9ZpUzDL1ROQFhpWE3X333Vi5ciUuu+yyPsfGjRuHc+fOjVpw5MUkUiB5pvi8n02b01UKSCUCqps7UWXocGNwRETkdyQSQN07JdFBqfqM3v0rj1Q2o8dkdmdkRER2nE7CtFot5s2b5/BYaGgompubRxwU+YhBNm0OkcswpXeDTE5JJCIil1P3vy5sfHQoIoJk6DKacaK6xc2BERH15XQSFh4ejvr6eofHKioqEB3NKnh+YwibNmf1FufglEQiInI5Te9+Ydp84ILlEgAgkQi2dWFFnJJIRB7mdBI2d+5cvPrqq2hvb7e9JggCjEYjNm3aZDdFkcYwa3GO2qNAV6vDJtm9c/C5aTMREblc0kxAIgNaqgC9/fKITLU4JbGYmzYTkYc5nYT95je/QWVlJRYvXoxVq1ZBEAS88847uP3223Hu3Dk88MADroiTvFFEIhCRDFjMYpVEB6xl6ksqDDByDj4REbmSPARIzBSflztaF6YEwJEwIvI8p5OwcePGYdOmTUhJScGmTZtgsVjw8ccfIzIyEhs3bkRSUpIr4iRvZV0X1k9xjpSYMIQHydDRY8KJGs7BJyIiF1NbpyTarwuzVkgsrWlBe7fRjUEREfUlG85JkyZNwmuvvYbu7m40NTVBoVAgKChotGMjX6DKAY590m9xDolEQJZaid0n61FQrsf0JIWbAyQiIr+iyQX2rnM4EhYfEYT4iEDUNHfhcEUz5kyI8kCARETDGAlbsWIFtFotAEAulyM+Pt6WgFVUVGDFihWjGyF5N9Vs8XGg4hzcL4yIiNzFOhJWexTo0Nsdzuydksj9wojIk5xOwj766CM0NTU5PNbU1IQtW7aMNCbyJYlZgCAVF0EbKhw2YRJGRBcymS0ob2jHrtI66Jo5JYxGWXg8EDkBgMXhLI1MXpOIyAsMazpifwwGA+Ry+Wi+JXk7eQgQPw2oLhHXhSmS7ZpYk7BTta0wdPRAERzg5iCJyBOaO3tQVteG07WtKKtvRVldG8rq2nCmoQ3dRrFQT4hMwLWXmiGVSj0cLY0pmjyg6Yy4Lmzyoj6Hzo+EsUIiEXnOkJKw/fv3Iz///NzqzZs34z//+U+fNl1dXdi5cycmTpw4uhGS90vOEZMw3QFg2k12h6PDAqGJCkF5YzuKdXrMmxzrgSCJyBWMJjN0TR22JOt0XRtO14nP61u7+j1PLpNgfHQIMqMtkEmdnpRBNDB1LlC0yeGmzekqcW1yeWM7Gtu6ERXKm8dE5H5DSsLy8/Oxdu1aAOKeYJs3b3bYLikpCf/93/89etGRb1DlAAffGHRdWHljOwrLmYQR+SJDew9O17f2jmq1oaw30TrX0I7uAbafiAsPREpsKCbGhiElNkx8HhOG5MhgwGJGYWGh+zpB/sO6abPuAGDqAaTnZ2AoggOQEhOKsvo2FOv0uHxKnIeCJCJ/NqQk7N5778VPf/pTWCwWXHLJJXjttdcwbdq0Pm3kcjlCQ0NdEiR5OeumzZUFgMkISO3/WWVrlPikqBIFnINP5LWMJjPKG9vFaYO2kS3xsaGtu9/zAmUSTIixJlqhtqRrQkwowoP6n35sMrmiF0QAYqYAQQqg0wBUF5/fTqVXhkqBsvo2FGkNTMKIyCOGlIQFBQXZKiDu3LkTsbGxXPtF58WkAoERQFezWI0qMcOuyYXFOSwWCwRBcHOQRGTV1NaNsvrWPlMHy+paUd7Yjh6Tpd/zEiKCLhjVChVHtmJCkawMhkTC/9PkRSQScUriyS/FUvUXJWGZaiW2FFayQiIReYzThTmSk+0LL5Cfk0iApGzgzC6xOIeDJGxaUgTkUgka27qhbeyAJjrEA4ES+Y8ekxnnGtrFaYMXTB88XdeKpvaefs8LCpBgQkwYJvYmWRMvGNUKDRzVWk5ErmVNwrR7gbkP9DmU0Vuco0jHG4NE5BlOX1F7enrwyiuvYOvWraisrERXV9+F14Ig4OjRo6MWIPkIVY6YhOkOAjm/sDscKJNiWlIECrV6FGibmIQRjQKLxYLGtm5bknW67nyyVd7YDqO5/1GtJEWQbY1WSkwoJsaJa7YSI4I4qkVjg2au+FieD1gswAWJ1vSkCMgkAupbu1Fp6ESyMthDQRKRv3I6CXv++efx5ptvYv78+Vi0aBGnJZLItmmz/Z4sVllqpZiEletxUxZHVImGqttoRnljG07Vtl1Q6l1Mugwd/Y9qhcilmBBzfkTLOn0wJTYUIXKOatEYlzwTkAQArdWA/hwQOd52KChAiikJ4ThS2YwirZ5JGBG5ndNX4W3btmHp0qVYtmyZK+IhX2UtzlF3AuhsBoIi7Jpka5R483tukEnkiMViQX1rd5/pg9aRLW1TB0wDjGolK4P7rNWyPiZEBHGaFfmvgGAgMVO8OVie3ycJA8R1YUcqm1Gk0+O69ETPxEhEfsvpJMxgMCAnJ8cVsZAvC4sFlBpAXw5UHgJSLrdrYi3OcbSyGV1GEwJl3JyV/JPRZMaRymbsLavHnqN66Pfuwem6NrR0Gvs9J1QuPV/i3TaNUFyrFSzn/yUihzR5YhKm3Qtk3tHnUKZKgY35QBFvDBKRBzidhM2ePRvHjx9HXl6eK+JxSltbG/72t79h27ZtMBgMSElJwa9+9SssXrx40HMbGhqwevVqfPPNN+js7ERaWhp++9vfYu7cuW6IfIxKzhGTMN0Bh0mYJioEUaFyNLZ142hlM7I1ke6PkcgDuowmFOsM2HemEflnGnHwbCPaui+sz94JQFyykqwM7lN9cGLveq248ECOahE5S50L7FnrcNPmzN4bg4crmmEyWyDlWkgiciOnk7CVK1figQceQFJSEi6//HKPrglbvnw5SkpK8PDDD2P8+PHYunUrHnroIZjNZtxwww39ntfd3Y27774bzc3NePzxxxEdHY13330X9957L9544w3MmTPHjb0YQ1Q5wJEPxSTMAUEQkKVW4uvjtSjU6pmE0ZjV0W1CQXkT9p5pxL4zDSgo16PL2HdD4/AgGWaPi0ScrAOXpk/C5IRwjI8ORVAAR7WIRo110+baY0CHHghW2g5Nig1DcIAUrV1GlNW1YnJ8uEdCJCL/5HQSdtNNN8FoNOLBBx+EIAi2/cOsBEHAwYMHRy3A/uzatQvfffcd/vrXv+L6668HAOTl5aGyshJ/+ctfcN1110EqdfzLzObNm1FaWop//vOfyM7OBgDk5ubipptuwurVq7F582aXxz8mWdeFVRywq0RlZU3CCsr1uOdSN8dH5CItnT04cK5JHOkqa0BJhcFuv63oUDnmTIjCnAlRyJ0QjSkJ4YDFjMLCQmSlJ/T784qIRiAsDoicADSdAXT7gclX2Q7JpBKkJyuw72wjinQGJmFE5FZOJ2HXXHONV0yJ2bFjB0JCQnDttdf2ef2WW27Bww8/jKKiIsycOdPhuV999RUmTJhgS8AAQCaT4cYbb8Tzzz+PmpoaxMfHuzT+MSkxA5DIgLY6cVpi5Di7JtkaJQAW5yDf1tTWjX1nG3unFzbgaGUzLq6bkRARhNwUa9IVhYmxYXY/O00mEJGrafLEJKx8b58kDAAyVL1JmFaP22apPBQgEfkjp5OwVatWuSIOp508eRITJ06ETNa3C1OmTLEd7y8JO3nyJGbNmmX3+oXnMgkbhoBgIH4GUFUojoY5SMKsG2SWN7ajobULymCWySbvV9vcifwzYtK170wjTtS02LXRRIUg94KRLnVUsFfcsCLye+pcoGgToM23O2RdF1as07s3JiLyez77G7Ber4dKZX/XSqFQ2I4PdK61nbPn9sc0zFva1vOGe763EZJzIKkqhFm7H5apP7Q7HiaXYGJsKE7XteHQuUYsmBwNYOz031lj7fvvLG/tf0VTB/LPNmL/mSbsO9uIsw3tdm0mxYZizoQozB4fidnjo5Co6Ds122w2251zMW/tv7uMtP/++nUjJ1k3bdYdAEw9gDTAdiiz98bg0SpW7SUi9xpSEnbkyBGn3nT69OnDCsZZA91lHuwO9EjOdaSkpMTpc0bzfG8RZYzBBADtpf/BibhCh200oWacrgO+OHACUZ3iHPyx0v/hYv8913+LxYKqVhOO1nXjSF03jtZ3o769bwIlABivlGFqjBzTY+WYGhMARZAUQA9gqUXNmVrUjCAGfv/9u//kYjGpQJAS6NQD1cVA8vmZMOqoYESGBKCpvQfHqlpsW6kQEbnakJKwW2+9dUiJicVigSAIOHbs2IgDG4xSqXQ4YmUwGADA4UjXaJzbn/T09GEtrDeZTCgpKRn2+V5HHQYUrkJoy2lkpU/vc8fR6oqucnxz9iiqe4KQnp4+tvrvpDH3/XeSJ/pvNltwsra1d01XE/adbUJ9a3efNlKJgPTkCMweH4U54yORMy4SEcH2/5ZHit//kfXfej7RgCQScUriyS/ETZsvSMIEQUCGSoldpXUo1umZhBGR2wwpCXv22WddHYfTUlNTsXXrVhiNxj7rwkpLSwEAkydPHvBca7sLDeXc/kil0hH9EjXS871GrHjHUejUQ1p/DEjKtmuSPS4KAFCkNUAQJADGUP+Hif13Xf+NJjOOVjXb9ujaf7YR+vaePm3kMgmy1Erbmq6ZmkiEBrpvtja///7df3IDTW8Spt0LzH2gz6FMtZiEFWr1uItbhRKRmwzpt4ybb77Z1XE4bdGiRXj//ffx5Zdf4rrrrrO9/tFHHyEuLg6ZmZkDnvvUU0+hqKjI1s5oNOKTTz5BZmYmi3KMhCCIdxlP7xTn3ztIwtISwhEUIEFLlxFl9W0eCJLGsm6jGSUVeuwtE4toHDzXhNYuY582wQFSzBoXaUu6MtVK7s9FNJape/cLK99rt4VKpkqc/VKsM3giMiLyUz5bmGPBggW49NJL8eSTT6K1tRUajQafffYZdu/ejdWrV9vuqj722GPYsmULduzYgeTkZADAbbfdho0bN+LBBx/Eww8/jOjoaGzcuBFnzpzBG2+84clujQ2qnPNJ2Jz77A7LpBJkJCux72wjCnV6TJJ4IEYaMzq6TSjQWvfoakSBtgmdPQ42Rh5/vlz8jGQFAqT8h0fkN5JnApIAoLUGaDoLRE2wHbJW7T1d14qWzh6EB43+1GMioov5bBIGAGvWrMELL7yAF198EXq9HikpKXj++eexePFiWxuz2QyTyQSL5fwmPnK5HG+++SZWr16NZ555Bh0dHZg6dSpeeeUVzJkzxxNdGVsu3LS5H1ma3iSs3IBJ490TFo0NLZ09OGjdGPlMI4p1eruNkaNC5ZjTm3TNmRCFqYkRkEpYLp7IbwUEA4mZ4nVJm98nCYsND0SyMhgV+g6UVBhwycQYDwZKRP7Cp5Ow0NBQrFy5EitXruy3zapVqxzubRYTE4PnnnvOleH5L+ui54ZTQEcTEBxp1yS7d/FzkU6P28aHujE48jX69m7b/lz7zjbicIXBbmPk+IhA5E6Ito10TYqz3xiZiPycJk9Mwsr3Apk/7nMoU61Ahb4DRVomYUTkHj6dhJGXCo0GolKAxjKg4iAwaZFdkyyNEgBwoqYVncZgNwdI3qy2pfN80nWmEcer7TdGVkcFY874aOSmiEmXJiqESRcRDUydC+xZ63DT5gyVEp+XVHPTZiJyGyZh5BrJOWISpnOchCUqghEfEYia5i6cbjIizwMhkneoazdhS2El9p8Vpxg6KtYyMTYUcyZEIy8lCrPHRyFJycSdiJyk6b3S1B4DOvRAsNJ2yLppc5FW7+6oiMhPMQkj11DlACXvD7guLFsdie1HqnGysaffNjS2WCwWnKlvs41y5Z9pQIW+E0CdrY0gAGkJEbbKhbPHRyE2PNBzQRPR2BAWd36Whm4/MPkq26F0lQKCAFQaOlHb0onoEBbnICLXYhJGrmEtzqE7YFcO2CpLo8T2I9UoqOrCuYZ2TIjlOp6xxmy24ERNywVJVyPqW7v6tJEIwIwkBfImRmPOeDHpUvAXICJyBXWemISV7+2ThIUFyjApNgwna1tRrDVg4RSuCyMi12ISRq6RMAOQyoGORvGCFz3RrslMjViw43BdN654/j+ICpUjW61EtkaJbE0kMlQKlgr2MUaTGUcq+26MbOi4aGNkqbgx8pwJUcgZp4RMX465s2dys14icj1NLlC0UUzCLpKpVopJmE7PJIyIXI5JGLmGLBBIyBCnI1YcdJiEzR4fid9eOQnbCs/hjN6IxrZu7Dxei53HawGIg2epceGYOU6JbHUksjVKTIwNg4Slxr1GZ48JxToD9p1pQH7vxsjt3aY+bULk4sbI1pLxF26MbDKZUFio80ToROSPrJs2VxwETD2A9PyNvkyVAv86qEMhN20mIjdgEkauo8oRkzDdASDjR3aHBUHA8ismYV5UK6bOyMCJmlYUlOtRoNWjoLwJuqYOnKhpwYmaFmzapwUAhAfKkKVRiiNm4yKRrVZCGSJ3d8/8VluXEYfKz+/RVajVo9vYd2PkiCCZbX+uOROiMT0pghsjE5F3iEkFgpRApx6oKgZUs2yHMnu3TinW6fvsLUpE5ApMwsh1hrBps1WgTIJsTSSyNef3FKtt6URhuR6HysWkrFhnQEuXEbtP1mP3yXpbu5SYUDEx04hJWVpCOGT8pX9UGNp7sP+suD9X/hlxjy7TRZt0xYQF2opozJkQhSnx4RytJCLvJJGIpepPfgFo9/ZJwtISIiCXSqBv70F5Y4cHgyQif8AkjFxH1ZuEVZcAxi5xiqIT4sKDcPX0BFw9PQGAuN7oRE2LOFrWm5iV1bfZ/nx4qAIAEBwgRYZK0ZvUiWvM4sKDRrVrY1VtSyf2n2myTS88UdOCi28IJyuD+yRdE2JCWVCFiHyHpjcJK98LzF1qe1kuk2BqUgSKtHoUVxig9mCIRDT6uo1mNLR1ob6lG3Wtnb2PXahr6UL9BY/69h5cmyJHVpZr42ESRq4TOR4IiQbaG8REzJqUDZNMKsH0JAWmJynws7xxAICmtm4U6s4nZYVaPVo6jcjvnS5nlawMRrZGiZm9idm0pAgEylgIokLfgX1nGsTphWWO9+hKiQlFbsr5cvGqyBAPREpENEo0c8VHbb5d9d5MlUJMwnR6qJM8FB8RDZnRZEZjWzdq+yRS3XaJVV1vcjVUtW2u/x2RSRi5jiCIUxJPfiGuCxthEuZIZKgcC6fEYeGUOABiSfSy+lYcOqdHgbYJBeV6nKhpQYW+AxX6DmwtrgIgVuibnhxhK/gxc1wkkhRBY3pEx36PrkZU6PtOuREEYEp8eO9IVzRmT4jkKCKRG7W1teFvf/sbtm3bBoPBgJSUFPzqV7/C4sWLPR3a2JGUDUgCgNYaoOksEDXBdkjctPkcinXNWJzE/QmJPMFktqCxzUEidUFCVd/SjfrWLjS2d9vN2BmITCIgOkyO2PBAxISJf6zPxUc5okMC0FJx0nUdtMbi8k8g/6bqTcKGsC5sNEgkAibFhWNSXDh+NFucTNLS2YMSnQEFWj0OnWtCgVaPxrZu27RGfCeeGxceaCuPn61WIl2lQIjcd/+LDGWPLqlEwIxkhZh0jY9CzvhIFjoh8qDly5ejpKQEDz/8MMaPH4+tW7fioYcegtlsxg033ODp8MaGgGAgKUvcsFmb3zcJUysAAIcrDTCZYz0UINHYYzZb0NTebUugLpwOWN/SdcG0wG40tnXB7ERiJRGA6LC+iVRseCBi7RKsQCiDAwZdt24ymVBY6fqb8r77Gyb5huTeRc+6/R4LITwoAJdMisElk8R9XywWC8ob221TGAu0ehytbEZtSxe+OFKDL47UABATlKmJ4bbRsmxNJMZHh3jtaFmPbY+uBlvi1dxp7NNGLhP36LKu6ZqpiURoIH8MEHmDXbt24bvvvsNf//pXXH/99QCAvLw8VFZW4i9/+Quuu+467qc3WtS54nWpfA+Q+WPbyykxYQgLlKG1ywhtsxGzBngLIn9nsVigb+9xmEhdPHrV0NZtV9hrIIIARIfKHY5UXZxYRYbIIfXBgmD87Ytcy5qENZ0F2uqBUM9vgCkIAsZFh2JcdCh+mJ0MAOjoNuFwpUFMysr1OFTehJrmLhyuaMbhima8vfccACAyJABZajEhm6mJRIZagQgPbSjd2WNCkVYvJlxnB96jyzq9MEOlsO3RRUTeZceOHQgJCcG1117b5/VbbrkFDz/8MIqKijBz5kwPRTfGaPKAPWuB8vw+L0skAtKTFdhT1oCj9d34oWeiI/Kolk4jdM1GdJY1oLHdOOB0QKMzQ1YAokLlfROpsEDEOEiyokLkY77SNZMwcq1gJRA9GWg4KW6OmXqNpyNyKFguxezxYuEJqypDh5iQ9U5hLKkwoKm9B9+cqMM3J+oAiHdqJseF9Rktmxznmg2l27qMOHiuyTbKVajVo9vUd48uRXAAZo+Pso10TU+KGPM/xIjGipMnT2LixImQyfpemqdMmWI7ziRslKhzxce6Y0BHExB8fnuUTLUSe8oa8FpBC/Jrvsf1mUlYnJ4IdRSLEtHY0mU04XRtG07UNON4dQtO9P6pMnT2tqgf8HwrZUhA7/oqOWLDg+xGq6zTAqNC5dw39AJMwsj1VDliEqY74LVJmCOJimAkpgfjuvREAGJp02NVzbYpjIfKm6Bt7EBpTStKa1rx3oHzG0pnqpW28vhZ6khEhTq/zmrIe3SlnE+6UuO4RxeRr9Lr9VCpVHavKxQK23FnmUymwRsNcN5wz/d6wdGQRKVAaCyD6Vw+MPkq26GfzFbhsE6P70834HBlMw5XNmPVtuPISFZgcUYCrpuRgCRlsAeDd70x//0fxFjrv9lsQYW+AydqWsVEq6YFpTWtOFPf1u9IVkiAgHhF8AUjVXLxeVggYsPkiO5NrKJD5ZDLhppYWXziazrS7/9Qz2MSRq6nygGKNrmtOIeryGUSZKqVyFQrcXfva3UtXSjU6m3TGIt0erR0GfHtqXp8e+r8HaTx0SG28vjZmkhMSQi3uxs0lD26VJHBmDMhyja90JvXqBGR8wb6/zyc/+slJSUjCWfE53uzcSGTEdNYhtoDn6CyrW8Rjt/NDMAvpschX9eJ73WdOFLbjeIKA4orDHh22wmkRgXgEnUQ5qqCEBMydqd4j+Xv/1D4Yv9busw4Z+hBucGIcwYjyg1GlDcb0WnsP9kap5BBo5BBowgQn0fIECq/OLHq7v3TAnQC5k6gph6ocXWHPMjV338mYeR6yb2l6SsOAmYzIBk7Q9Gx4YG4alo8rpoWD0Dcr6K0ptVWHr+gvAmn69pwtqEdZxva8WGBuKF0UIAEGclKZKgicLbCgNPf/Adn6tvt3j8lNhS5E6KROyEKsydEIXmM330l8mdKpdLhaJfBYABwfkTMGenp6cMq5mEymVBSUjLs832BYL4W0H2BhJ6ziLtoV1Zr/x/+YS7+IJWivrUL2w/X4PPDVdh3tgmljT0obezBm0UtmDVOietmJOAHMxIQHzE2tvTwh+//QHyh/109JpysbRVHt2paUFrdghM1raht6XLYPkAqYGJsGKbEh2FKQjhS48MxJT4MiQ625/GF/rvSSPtvPX8wTMLI9eKnA7IgoNMANJ4GYiZ7OiKXkUklmJYUgWlJEfhprrihtKG9p3dD6SYcKtejsLwJzZ1G7OudamglCEBaQoRtauHs8VGIDec+NUT+IjU1FVu3boXRaOyzLqy0tBQAMHmy8z87pVLpiH6JGun5Xm38pQAAoeIQpDADUvsiS9b+xytC8PNLJ+Dnl05AbXMnth2uxmfFVdh/rhEHz+lx8Jwez3x+HLPHRWFxRiJ+kJ4wJvZYHNPf/yHwhv6bzWJFZ9uard71W2fr2/ot466KDEZaQjimJIRjSkIE0hLCMSEm1On1WN7Qf09ydf+ZhJHrSQOAxCxAu1dcFzaGkzBHFCEBWJAaiwWp4nQXcUPpNhSUN6GwvAmthkZcP2cK5kyIgSLEM5UWicjzFi1ahPfffx9ffvklrrvuOtvrH330EeLi4pCZmenB6Mag6MliQY6OJqCqGFANrSB9XEQQfn7JePz8kvGoNnTi85IqfFZSJRZO6r259uSnR5A7IQqLM5Jw7fQE3lCjIalv7cKJ6pbehKsZJ6rFtVsdPY7XGClDAjAlPrw34YroTbrCEcatZ3wCv0vkHqqc3iRsP5D1/zwdjUeJG0qHYVJcGG7JTkJhYSGy0uL8+m4TEQELFizApZdeiieffBKtra3QaDT47LPPsHv3bqxevZo/I0abRCJWSSzdLl6fhpiEXShBEYRfXDYBv7hsAir1HbaErKBcj71ljdhb1og/fnwYeSnRuD4jCddMj0d0GBMyf9fRbUJpTcv5hKtGTLjqW7sdtpfLJJgcJ04jTLtgdCsuPJDrwn0YkzByD+t+YT5enIOIyJXWrFmDF154AS+++CL0ej1SUlLw/PPPY/HixZ4ObWyyJmHle4C5S0f0VknKYNw7LwX3zkuBrqldTMiKq1CkM+D70w34/nQDnvj4MC6ZGI3F6Ym4ZnoCIodROZd8h8lswdmGNrvRrXON7XaFtwBxWcK4qBDbNMIp8eLI1vjoEG43MwYxCSP3UPUW56g5AvR0AAEsMEFEdLHQ0FCsXLkSK1eu9HQo/kGTJz6W5wMWi/hb8ChQRYbgV/Mn4lfzJ0Lb2I7PehOykgoDdp+sx+6T9Vi55TAumRSD6zMScc20BE5H92EWiwV1LV22dVvW0a2TNa3oMpodnhMTJheTrfgI2/qtyfFhCJHzV3N/we80uYdCDYTGAW21QFXR+QsfERGRpyRlA5IA8drUdAaIShn1j1BHhWDJgolYsmAizta32RKyo1XN+E9pHf5TWofHpSW4bFIMFmck4app8VAEMyHzVm1dRpyoOb+x8fHe0a2m9h6H7YMDpEjtrUhonUY4JSEcMZyW6veYhJF7CAKgmg2c+EwszsEkjIiIPC0gGEjKEtcrl+e7JAm70PiYUCxdOAlLF05CWV0rPi+pwtbiKhyvbsE3J+rwzYk6yKUSzE+NweKMRCyaGo/wICZknmAyW3CythUna9v6jG5pGzsctpcI4vc3rXd0y7p+SxMVAomE67bIHpMwch/VLDEJ47owIiLyFupcMQnT7nVr4aiU2DAsu2Iyll0xGadqW/BZcTU+K6lEaU0rvjpWi6+O1UIuk2BBaiyuz0jElVPjWfXOBTq6TSirb8Xpujacrm3F6bpWnKptxanaFhjNjrcijgsPtCuSMSkuDEEBLJ5DQ8f/zeQ+1k2bdQc9GwcREZGVJg/Ys1YcCfOQSXHheHBROB5cNBmlNS34rLgKW4srcbquDTuO1mDH0RoEyiRYOCUOizMScUVaHEKZkA2ZxWJBXWsXTte24XRda+8fMemq0Dse2QKAULkUqdZkK/58wsWCKjQa+D+Y3CcpG4AAGMqBlhogPN7TERERkb9T906Przsm7hkWHOnRcFLjw5F6VTh+u2gyTtgSsiqcqW/D9iPV2H6kGkEBElyRFofrM5KwcEocguUcgQGAHpMZ5xrazydaFyRdLZ3Gfs9ThgRgUmwYJsaGYWJcKMZHhcDYWI6r5s5CQAB/VSbX4L8scp+gCCA2TbzQVRwA0lhymYiIPCwsFoiaCDSeBrT7gdSrPR0RAEAQBKQlRCAtIQIPXZWKY1Ut+KykEluLq3CuoR2fl1Tj85JqBAdIceXUOFyfkYjLp8T5xZQ4Q3sPTtlGtMRkq6yuFeca22EyO6j9DnHNliYqBCmxYZgYG9qbcImJV9RFI1smkwmFhZVcy0UuxSSM3Es1S0zCdEzCiIjIS2jyxCSsfI/XJGEXEgQB05IiMC0pAr+/egqOVDZja3EVPiuphLaxA1t7R8tC5VJcOTUe12ckYn5qrE8nZCazBZX6DjHZqu2dPljXirK61n43NQbEKYTW5OrCZGtcdAgCZb779aCxh0kYuVdyDlDwDotzEBGR91DnAoXvAlrPrQsbKkEQMCNZgRnJCjxy7RQU6wy2svcV+g58UlSJT4oqERYow1XT4rE4PRHzUmO8NgFp7zairK7t/Dqt3qTrTH1bv3tsAUCiIuh8omVLusIQHxEIYZT2eyNyJSZh5F7WTZsrCgCzybOxEBERAee3Tak4CBi7AcE7E5aLCYKATLUSmWolVvwgDYVaPT4rrsJnJVWoMnTio4IKfFRQgfAgGa6eloDrMxJx6aQYyGUSt8Zp3cz4VF3fKoRldW0DFsaQSyWYEBOKiXGhtiRrYmwYJsSGslIk+Tz+Cyb3ip0KBIQC3S1AfSkQnerpiIjIVcxmwGISb7hYH81GwGIWnxu7xb8TeVr0ZLEgR0cTUF0MJGZ7OiKnCYKAbE0ksjWReOy6qSjQNmFrcRU+L6lCTXMXPjikwweHdIgIkuGa6QlY3JuQBUhHLyHrNppxrqGtT/VB6/PWrv7/r0eFys9PHewtjjExNgyqyBBIuS6LxigmYeReUplYJfHct+K6MCZh5K86m4GqYiir9gPyswAs55MTs/GC5MXRayYxwRn2axc9d9VrcLxA3koKYHqoCsg6BEh9Y+SBxiiJRJySWLodKN/rk0nYhSQSAbPGRWHWuCg8sXgaDpY32UbI6lq6sPmgDpsP6qAMCcC1vQnZ3JRoyIaYkOnbu+2qD56ua0P5IIUxxkWH9km2UmJDkeKgMAaRP2ASRu6nmiUmYRUHgMyfeDoaItdrqweqisQ77FVFQFUx0HgaUgATAcAvl0gKsEik6A6OR4CPTP2iMc6ahGn3Arn3ezqaUSORCJg9Pgqzx0fhieunYf/ZRnxWXIVth6tQ39qNf+7X4p/7tYgKleOa6Qm4ISMRszQKmCwWlDe242xDh13J94a2/gtjhAXKLqo+KD7XsDAGeZrZDJh7AFM3YOoR/9j+bhQfzT3ic3P/6xFHC5Mwcj9u2kxjlcUCNFfaJ1zNOsfNI5LQJo1EaLgCgkQKSKTiWhSJFJDIAEHi4DWpeNe+39dkF5zj6DVp7/sO5TXrZwz3NVk/sUoBQYDZZMLJwkJkcRE9eQPNXPGxPF/8vzwGSSUC8lKikZcSjSdvnI78Mw34rLgK2w9Xo6GtG5v2lWPTvnJEBMnQ0W1Ej7mm3/dKUgQ5rEIYF87CGGOaxdKbwFgTlp4L/m7sP8EZUvLTz3sN9L79nuvgfSxDq0UgBTAhaSEw8wOXfimZhJH7WYtz1B4Buls9GwvRcJnNQNMZ+4Srvd5x+6gUIDETSMgQHxMzYQ6KxInCQmRlZUHK6XhEnpWUDUjlQFst0HTW09G4nFQi4JKJMbhkYgyeunE69pY14rOSSmw/XI2m9h4AgFwmQUpMqF0VwgkxoQhlYYyxo7MZqC4BqgqBqiJIqkswo6UBkm+EvgmOuWfsreOVBIj/76Uy8VESAIssEC0x2VC4+KP5P4jcLyIJCE8CWnpHDBDq6YiIBmYyioVkLk64ulvs2wpSIHZK34QrYQYQ5ODHuYkVQom8RkAQkJgF6PZB0O4FMNXTEbmNTCrBZZNjcNnkGDx90wwc1ulRefYkrrpkFuQB/FVxTOnQi9exysLea1kh0HCqTxMBQKAz79mbvEBq/SMXZz70eS4/f/zCtg6SoCEdG/Jn9HdMbpuVcTGzyYT6wkKohv9VHhL+zyLPUM0CjlVCqDgIhMz3dDRE5/V0ArVHey9OvUlXzRHA2GnfVhr4/9u787io6v1/4K8ZQFlEFlkVEUEYthFcANc0s3LB1Eq9v8d9gJmmZppXrVu2fNOuuWReS7wuhJl2/frVEn2oqeVSN7vJuAWSopA7iIAgm8g2c35/HGaYkUFB4IwDr+fjcR7Gmc9hPp+ZYd69z+dz3gdwD9ZLuMLFn61sJO82ETUD7ygg86R4vzCvtpOE6bOykKOnlwM0dyxZmdDclRXUJlrZKWLidfeq8bYOXWtWaYRD7a5EelY+AgJDYGFlbTwpekQiQ4/GJIxMo0tfIG0fZFmnAX8mYWQiFSU1SzDO1SZceReNL7do1wHwUOqWEsKjpzjjZWElfb+JqGV07QcgDrKbKsDrFVP3hqjh7uUD2b8bznAV3jDe1rGbGMc6h4snDz3DADuX2sfVapTdSxZjHpfKtxgmYWQaXhHiv1lnAH/TdoXaiHv5wO0Uw4Qr/zKMllG3ca5JtrTLCcPEa7rk0t7glIgk1jUKACC7cwkWlcUm7gxRPUpzDZOtW8n1FoCCU3fDZMszDLB1lqyrVD8mYWQancMBmQVkJdmwup9n6t5QayIIQEl27XVb2mWF9QUo+84PJFw9AQcvLq8gaos6uALOfkDBZdjdvQCAKzXIxIqzDZcTZieLMc6YTj3EZKtzeG08s3GUqqfUSEzCyDTa2QFuwUBOKuwK0wA8a+oekTkShNoKhfoJV30VCp26153h6uAqbZ+J6Mnm3Q8ouIxu5/4JWXkq4DMA8B4AdPLjyRlqOYIAFGcZJlvZKUCpsdsEyACXgNpkyzNcXDpo3VHSLlPTmG0Sdu/ePXz++ec4ePAgioqK4Ovri+nTp2P06NGPPDYxMRELFy40+tivv/4KV1f+T5kkvPqISdjdNFP3hMyBuhrIzzBMuG6fAyqMLBmSyQHXQL1y8D1rAlRLF5wlIrOnfBlC6rdoV34HOLdd3ADAzlVM0LwHAN36A+5KsUABUWMJgni9lv5ywvpOIGrjmXY5YedwwD0UaN9B2j5TszPbb485c+YgNTUVCxYsgI+PD/bv34/58+dDo9FgzJgxDfody5Ytg6+vr8E+R0fHFugtGdWlL3DmazhnHYXs2BLAq7d4n5aOXXi2sa2rrjCsUJh9Dsj5o54Khe0A9xCD+2/BLRhoZyt9v4nI/PkNg2Z+Oq78Zzv8rPIgv5kkXr98Lw9I2ydugFisp2tkbVLWpQ8ro1Jd+is2dNdxpQD3C+q2lVsCrkFA55rZLc9wMb4xnrVKZpmE/ec//8F///tfrFq1CtHR0QCAfv364datW/j0008xatSoBt341N/fH0qlsqW7S/XpPhiCzEI82/jff9but3MVk7HOvYDOvcWzPvYeJusmtSx5dRlwIwnI/aM24cpLe3iFQv2EixUKiai5WXdEsXsUhPBwsTpcVTlw63fgxm/A9RNiCfuKYuDyMXEDxJLdnXuJCZn3ALHcvY2TSYdBEtNoxITr1u+1ywmzU4Dyorpt5Va1tzjRXsflFiLer47aBLNMwg4fPgxbW1uMGDHCYP+LL76IBQsWICUlBb179zZR76jBnHygef0EMo//L7pa3IE8O0Wc/biXB2T8KG5a9p31ErNe4peVfjlVevKpq4GCK0DueSA3Dci9AHnOBYQXXIHMaIVCJ8Ny8J7hrFBIRKZhZS0mV936A4MBaNTi/QNvnBC36yeA0tviPcYyTwL//QKATJyV79Yf8O4PdBsAdOxs6pFQc9GoxQq7+ssJ61sib9FenNHSlYWvWbFh2ahbIlMrY5ZJWEZGBvz8/GBpadh9hUKhe7whSdjMmTNRUFAAe3t7REZG4s0330RAQMBj9UmtVjfpuMc93typHbvjjs8L8FQqxdnLqvtAzh+Q1XypybJ/B+6kQ1ZyC7h0C7j0ve5YwaEr4BkOoXMvCNppezOrAtQq33/txcW5FyDLTQPy0iDLvSC+j+pKg6baRaeCvSfg0RNCzQbPMOPLUgUBaEWvVat8/xuhqeNvq68bPQHkFjUFfnoCUTNql5xdP1E7W1Zwueak03ngVIJ4nGO3moSsZrbMxZ/L782B9ppk/YIZ2eeAqnt121pai9ds6ZeFdwviig2qwyyTsMLCQnh5edXZ7+DgoHv8YVxcXDBz5kyEh4ejQ4cOSE9PR3x8PCZNmoTt27cjMDCw0X1KTU1t9DHNeby5Mxy/FWAVAXSLALoB8ur7sCn6E3ZFl2BbmA67wkuwvncTsqKbQNFNyC7u0x1ZbtsZZY4KlDkG4J6DAmUO/tBY2Uk/oEYy1/ffoqIINiVXYFNyFTbF12r++xosqsuMtldbWKPc3gf37bvjvr0P7nf0xf2O3VHdXu+eJeUArt4BUE+Fw1bIXN//5tLWx0+tgEwmztQ7+wK9/iruK8kBbibVJma3U4HC6+J27v/ENrYuYrGPbgPE5MyjJ4t9mFpFCXDnMjrdOAjZ7e01M1ypQPX9um2tbMUl8vpFM1wUfA+pQUz+KVGpVIiNjW1Q2z179iAoKAgAIHvImaOHPQYATz31FJ56qvbeHxERERgyZAjGjBmDL774AuvXr29Qf/QptTM5jaRWq5GamvrYx5u7ho+/v+FxFcVA9jlxpuxWMmTZyZDdvQrrsluwLrsF51s/6doKnfzFmbLO4RA8e4lfmO2ejMTMbN7/ylIg76LezFYakJsG2b1co80FuSXQyR+CWxDgGgTBLVg8E+joDWuZHNYAnGBG428hHH/Txq89nuiJZO8OBI8VNwAoLxaXKl6vWcKYeVqshndxv7gBgJUd0DVCr9hHXxZlaG7qKqAoE7h7TUyI714D7l6v/bksHxYAfB48rl0HMUnWLwvv4i/OihI9BpMnYd27d8eSJUsa1NbT0xOAWMHQ2GxXUZF44aN2RqwxvLy80KdPH6SkpDT6WACwsLBo0v9ENfV4c9fo8ds6AX5DxE2rrKCm+tDvNVsyUHQDsvwMyPIzgD++FdvJ5OKZKv1rzDxCTVrV6ol5/6srxSUXuWni9Q41126h8Hr9xzj5iGvbtYmWWzBknXoAlu3Q0EU2T8z4TYTjb9vjpzbCuiPQY7i4AWIV2FvJesU+ksQCDld+FjegpthHeO01ZV2jAFtn47+fRIIgXluuS6yu1SZahdfFBEzQPPxX2Dij1NYbdv4DINcWCHP24zXJ1KxMnoS5ublhwoQJjTomICAA+/fvR3V1tcF1Yenp6QDEqoePQxAEyPkHZr5snQG/p8VN694dMcjpErPfgZJbYvW9vDQg5X/FdjILMYnoHF6bmLmHtN6LZjUaMTDlpgE5F8REKzdNTMCMVSUEgA7uNUlWiC7ZgquC9yohInoclu3FCoreUcCgeeL3cu6FmkIfv4n/lmQDmafE7bc14nGuQbXXlHXrDzjUvTyj1asorZnFum58NqvK+JJ4HUtr8fo8p27iiUTHmn+dugGO3aCxskN6cjLCtdUxiVqAyZOwxzF8+HDs3LkTP/74I0aNGqXbv3v3bri5uSEsLKzRv/PmzZs4e/YsBgwY0JxdJVOzcwH8h4ubVsntBxKzs+JZs5xUcfv9G7Gd3EpMxPRnzMzt4lpBAEpzxMCec6F2ZivvYv1Bqn3H2iRLb3YLdp2k7TsRUVsil4urMjxCgcjXam7oe92w2Ed+Ru1JxNNficc5eBtWYHQJMP9iH+pqoDjTMLHST7SM3dTYgEws7qRNrB5MtOzcHj6rxaI/JAGzTMKGDBmCgQMHYtGiRSgtLYW3tze+//57HD9+HCtXrjRY1vLee+9hz549OHz4MLp06QIAeOWVV9C3b18EBgbCzs4O6enpSEhIgEwmw9y5c001LJKKvQegGCFuQE01v1uGs2W3fhdvpJidLG5nNottLdqL15TpJ2auiidjTfj9QjG50i0jrEm4jN0QEhDH4qowTLTcg3mzbCKiJ4FMVpM0+ADh/0/cV5qnVxb/N7EketEN4NwN4NwOsY1tJzEh8+4nzpZ59nzyTh4KAlCWX5NYXaubaBVlAsIjEiEbp3pms3zE2cHWupKFWg2zTMIAIC4uDqtXr8aaNWtQWFgIX19f/POf/8To0aMN2mk0GqjVaghC7X2IAgICcPDgQXz11VeoqKiAs7Mz+vXrh1mzZqF79+5SD4VMTSYDHLqIW5B482/xDOSNBxKzZKCiCMg6LW5aVrY1F+vqJWaderTc2vGq+8CddMNlhLkXxLLwRscnF9ey6ydabsGAU3dWcCIiMicdXIHgF8QNECv5ZZ7SK/ZxSkxuHiz24dW3tgKjV4Q0xT4q74lx9MGlgtqfjZV312fRHnD0rn82y7rx1/8TPUnM9v/A7Ozs8MEHH+CDDz54aLvly5dj+fLlBvvee++9luwatQYyWc2XfjcgZJy4TxDEmw3rJ2XZyWLlwJtJ4qbVzr62XK02MXP2bdwMk7pavO+MfoGM3AtiH+q7qLijV02yFSQupXQLEpemmLDoCBERtZD29oDfMHEDxOJK2cm115TdSALKC4Gr/xE3AJBbipX99EvjP06xD3W1ePJPP7HS/+96qufWkok3r9ZPrHSJVjeggwcLYVCrZrZJGJHkZDKgk5+4KV8W92k0QP6fhjNm2SlAZQlw/Vdx07J2EAOf/oyZfRcxuSvKBO5c0pvZOg/kpQPqCuN9sXGqLZChndlyDTS7m1UTEVEzsmwHdI0UN/xNjFF5F2uvKbtxQkyctCs6TqwVj3MNrL2mzLs/YN+5dslg8U3js1lFmfUXctKydjBMrJx8AEefmn+7cskgtWlMwoiaQi4HXAPELWySuE9dLS4X1E/MbqeKpYf1z0YCkNs4I7yqAhbV9SzLsLIVg6NuGWHNksIO7rxui4iIHk4uF2OHezAQMa12qb3uurIT4gnAvIviVnP9s7yDB8LLi2Gx/xFVBi3aiUsG65vNsnFq8SESmSsmYUTNzcKyNuj1+qu4T10lznDpJ2Y55yG7XwALiDc3lnXyN0y03ILFQMblGERE1Bz0l9qH/UXcd++OuGxRW+wjOwWy0tvQlZuy96x7PZb2Z3tPxiiix8QkjEgKFlZihSrPnkCfyeK+6gqob5/HxYzLCBwYDYt2vG6LiIgkZuciFqXSFqaqKIX6dirSrt5GUP/nYNHezrT9I2qlePqCyFQs2wOeYSjv6Csu6SAiIjK19h0Ar0hU2HuLNzUmohbBJIyIiIiIiEhCTMKIiIiIiIgkxCSMiIiIiIhIQkzCiIiIiIiIJMQkjIiIiIiISEJMwoiIiIiIiCTEJIyIiIiIiEhCTMKIiIiIiIgkxCSMiIiIiIhIQkzCiIiIiIiIJMQkjIiIiIiISEJMwoiIiIiIiCTEJIyIiIiIiEhCTMKIiIiIiIgkZGnqDpg7QRAAAGq1+rGO1x73uMebO46f49f/t63h+Js2fu1x2u9hqsXY1DQcP8ev/29bw/FLE5tkAqNXk1RWViI1NdXU3SAiarOUSiXatWtn6m48URibiIhM61GxiUlYE2k0GlRXV0Mul0Mmk5m6O0REbYYgCNBoNLC0tIRcztX1+hibiIhMo6GxiUkYERERERGRhHjqkIiIiIiISEJMwoiIiIiIiCTEJIyIiIiIiEhCTMKIiIiIiIgkxCSMiIiIiIhIQkzCiIiIiIiIJMQkjIiIiIiISEJMwlpQYmIiFAqFbgsODsagQYMwb948XLt2zaDt6dOn8f777+PFF19EaGgoFAoFMjMzTdPxZtLQ8avVamzevBlTp07FU089hbCwMIwcORKfffYZiouLTTeAFvLg6/LgplKpTN3Fx3bo0CEoFAocOHCgzmMvvPACFAoFjh8/Xuex4cOHY/z48QCAn376CX//+98xZswYhISEQKFQtHi/m0tTx19aWor169cjJiYGAwcORK9evTBmzBjEx8ejoqJCiiE0SXO8/6tXr8a4ceMQGRkJpVKJZ555Bh9++CGysrJavP9tBWMTY5MxjE2MTQ9ibGrZ2GT52EdSgy1btgy+vr6oqKjA2bNnsWHDBqhUKhw8eBAODg4AgKSkJJw4cQJBQUGws7PDyZMnTdzr5vOo8ZeXlyMuLg7R0dGYMGECnJyccOHCBaxfvx4//fQTdu3aBWtra1MPo9lpX5cH9ejRwwS9aR6RkZGQyWRISkrCqFGjdPsLCwuRnp4OW1tbqFQqDB48WPfY7du3cfPmTUyZMgUAcPjwYaSkpCAoKAhWVlY4f/685ON4XE0d/61bt7BlyxaMHTsWr7zyCmxtbXHmzBmsXbsWv/32GzZv3gyZTGaKoTVIc7z/xcXFGD16NPz8/GBnZ4c///wT69evx7Fjx7B//344OTlJPq7WirGJsckYxiYRYxNjU0vHJiZhEvD394dSqQQAREVFQa1WIy4uDkeOHMFLL70EAJg1axZmz54NANi0aVOrCnSPGr+1tTWOHj1q8AGOioqCp6cn5s6dix9++AFjx441VfdbjP7r0lo4OzvD39+/zuf31KlTsLS0xEsvvVTnbGpSUhIA8T0HgCVLlkAuFyfpP/74Y7MKdE0dv5eXF44dOwZbW1vd4/3794eNjQ0+/fRTnDlzBn379m35gTym5nj/P/roI4PHta/L9OnTcfToUbz88sstOIK2hbGJsckYxiYRYxNjE9CysYnLEU1A++WWn5+v26f9w24LHhy/hYWF0TMIPXv2BCCejSDzERUVhatXryI3N1e3T6VSITQ0FEOGDMH58+dRWlqqe+zkyZOwsLDQfYGb+99CU8Zva2trEOS0zOlvoanvvzHOzs4AAEtLnjdsSYxNjE2tGWMTY9OTFpvM+xNlprTr6X18fEzbERNp6Pi1ZyHMeQnEw2g0GlRXVxtsarXa1N1qsn79+gGAwRknlUqFyMhI9O7dGzKZDGfOnDF4LDg4GPb29pL3tSW0xPjN6W+hucZfXV2N8vJyXLhwAUuXLoWPjw+effZZaQbRRjE2MTYBjE36jzE2MTa1ZGxiEiYB7RfavXv3cPz4caxfvx4REREYNmyYqbsmiccZf05ODlatWoXQ0FA8/fTTEvZWOhMnTkRISIjB1hqWgEREREAul+u+6O7evYuMjAxERETAzs4OwcHBui/u7OxsZGZm6qb7W4PmHv/FixeRkJCAZ599FoGBgZKMoSmaY/x5eXkICQlBWFgYxo8fD7Vaja1bt8LOzk7y8bRmjE2MTcYwNjE2MTZJE5u4tkMCEydONPjZz88P69atazNLaxo7/sLCQrz22msQBAGff/652S8BqM+KFSvg5+dnsO9JvrC1oRwcHBAYGKhbX33q1ClYWFigd+/eAMQvQu0XnbZNawp0zTn+zMxMzJw5Ex4eHliyZIkEvW+65hi/k5MTvvvuO1RWVuLKlStISEhAbGwsvvnmG7i5uUk4mtaNsYmxyRjGJsYmxiZpYlPr/AZ5wqxYsQLfffcdtmzZgkmTJuHy5cuYP3++qbslmcaMv6ioCK+++ipycnLw1VdfoWvXrhL3Vjp+fn5QKpUGW2hoqKm71SyioqJw7do15OTkQKVSISQkRHemKDIyEmlpaSgpKYFKpYKlpSX69Olj4h43r+YYf1ZWFmJjY2FhYYEtW7bA0dFR4lE8vqaO39LSEkqlEn369MGECROwZcsWZGZmIj4+3hTDabUYmxibjGFsYmxibJImNjEJk4D2C61fv374+OOPMWHCBBw/fhyHDh0yddck0dDxFxUVYcqUKcjMzMTmzZvNYnqbjNOePTp58iROnjyJiIgI3WPaL7VTp05BpVJBqVS2umVmTR1/VlYWYmJiAABbt26Fh4eHRD1vHs39/nt4eMDNza3OPayoaRibGJvaGsYmxibgyYlNTMJM4O2334aDgwPWrFkDjUZj6u5Iztj4tUHu5s2b2LRpE4KDg03cS2qKiIgIWFhY4IcffkBGRgYiIyN1j9nb2yMoKAh79uxBVlZWq1ruodWU8d+6dQsxMTHQaDTYsmULunTpInX3m6y53//r16/j9u3b6NatW0t2u81jbGJsau0YmxibnqTY1DYWfj9hHBwcMH36dKxcuRL79u3D2LFjUVBQoLtYMD09HQDwyy+/wNnZGc7OzgYfFHP34Piff/55TJ06FRcuXMB7770HtVqN5ORkXXtnZ2d4e3ubrsMtJCMjw2jFKW9vb13ZU3PVoUMHBAcH48iRI5DL5XWm9CMiIrBlyxYAdddcZ2VlITU1FQBw48YNANCdme7SpYtZXCD+uOPPz89HbGws8vLy8MknnyA/P9+gXLiHh4dZnHl83PFfvHgRy5Ytw/PPP4+uXbtCLpcjPT0dX3/9NRwdHfHqq69KOo62hrGJsQlgbGJsYmwCpIlNTMJMJCYmBtu2bcO6desQHR2NjIwMzJ0716DN4sWLAYjrVL/55htTdLPF6I+/V69eui+2Tz75pE7b8ePHY/ny5VJ3scUtXLjQ6P4lS5ZgwoQJEvem+UVFRSE1NRVBQUHo0KGDwWMRERH4+uuvYWVlhV69ehk8plKp6rw22r8Nc/osPM74//zzT9y8eROAeFb+QbNnz8acOXNatuPN5HHG7+LiAjc3N2zevBl5eXmorq6Gh4cHhg4dipkzZ8LT01PqYbQ5jE2MTYxNjE2MTdLEJpkgCEKTRkNEREREREQNxmvCiIiIiIiIJMQkjIiIiIiISEJMwoiIiIiIiCTEJIyIiIiIiEhCTMKIiIiIiIgkxCSMiIiIiIhIQkzCiIiIiIiIJMQkjIiIiIiISEJMwsjsJCYmQqFQ6Lbg4GAMGjQI8+bNw7Vr10zdPQDAhg0bcOTIkTr7VSoVFAoFVCqVCXolOnbsGGbOnIkBAwYgNDQUkZGRmDx5Mvbu3YuqqiqT9etBxl6rd999F8OGDWvR583JyUFcXBzS0tJa9HmIqHVhbGoaxqaHY2xqfSxN3QGix7Vs2TL4+vqioqICZ8+exYYNG6BSqXDw4EE4ODiYtG8bN27E888/j+HDhxvsDwkJwY4dO9CjRw/J+yQIAt577z0kJiZiyJAhePfdd+Hp6YmSkhKoVCosXrwYd+/exeTJkyXvW0PNmjULsbGxLfocubm5WLt2Lbp06YKgoKAWfS4ian0YmxqHsalhGJtaHyZhZLb8/f2hVCoBAFFRUVCr1YiLi8ORI0fw0ksvmbh3xnXo0AHh4eEmee6EhAQkJiZizpw5mD17tsFjw4YNw7Rp03D9+nVJ+1ReXg5ra+sGt/f29m7B3hARNR1jU+MwNlFbxeWI1Gpog15+fr7B/tTUVMycORORkZFQKpUYN24cDhw4YNCmoKAAixYtwqhRo9CrVy/0798fsbGxOH36dJ3nqaysxNq1azFy5EgolUpERUUhJiYGZ8+eBQAoFAqUlZVh9+7dumUpMTExAOpf8nH06FFMmjQJYWFh6NWrF6ZMmYLff//doE1cXBwUCgUyMjIwf/589OnTBwMGDMDChQtRUlLy0NemqqoKCQkJ8PX1xRtvvGG0jaurK/r27av7ubCwEIsWLcLgwYMRGhqKZ555BqtXr0ZlZaXBcRUVFVi1ahWGDRuG0NBQDB48GIsXL0ZxcbFBu2HDhmHGjBn48ccfMW7cOCiVSqxduxYAcPnyZUydOhVhYWGIiorC//zP/+DevXt1+mhsyYdCocDHH3+MPXv2YOTIkQgLC8MLL7yAn376yaDd9evXsXDhQjz33HMICwvD4MGDMXPmTFy6dEnXRqVS4eWXXwYALFy4UPf+xcXF6do05PNERKTF2FQ/xibGpraMM2HUamRmZgIAfHx8dPuSkpIwbdo0hIWFYdGiRbC3t8eBAwcwb948lJeX48UXXwQgfqkDwOzZs+Hi4oKysjIcPnwYMTEx+PrrrxEVFQUAqK6uxrRp03DmzBnExsaiX79+UKvVSElJQXZ2NgBgx44dmDx5MqKiojBr1iwA4lnG+uzbtw9vvfUWBg0ahFWrVqGyshIJCQm659YPPgAwZ84cjBo1Ci+//DLS09OxatUqAOISmPr88ccfKCwsxIQJEyCTyR75WlZUVCA2NhY3b97EnDlzoFAocPr0acTHxyMtLQ3x8fEAxGUks2bNQlJSEqZPn46+ffvi0qVLiIuLQ3JyMnbs2IF27drpfu/58+dx+fJlvP766/Dy8oKNjQ3u3LmDmJgYWFpa4qOPPkKnTp2wb98+/OMf/3hkP7V+/vlnpKam4s0334StrS0SEhIwe/ZsHDp0CF27dgUgLuVwdHTEggUL4OzsjKKiIuzevRsTJ07E7t274evri5CQECxbtgwLFy7E66+/jqFDhwIAPDw8ADT880REpMXYxNjE2ERGCURmZteuXUJAQICQnJwsVFVVCaWlpcIvv/wiDBw4UPjrX/8qVFVV6dqOGDFCGDdunME+QRCEGTNmCAMHDhTUarXR56iurhaqqqqEyZMnC2+88YZu/+7du4WAgABh586dD+1jeHi48M4779TZn5SUJAQEBAhJSUmCIAiCWq0WBg0aJERHRxv0pbS0VOjfv78wadIk3b41a9YIAQEBwpdffmnwOxctWiQolUpBo9HU25/vv/9eCAgIELZv3/7Qfmtt375dCAgIEA4cOGCwPz4+XggICBB+/fVXQRAE4ZdffjHaJ+3z7dixQ7fv6aefFoKCgoQrV64YtF25cqWgUCiEtLQ0g/1TpkwxeK0EQRDeeecd4emnnzZoFxAQIAwYMEAoKSnR7cvLyxMCAwOFjRs31jvG6upqobKyUnjuueeEpUuX6vafO3dOCAgIEHbt2lXnmMf9PBFR68fYxNikj7GJHoXLEclsTZw4ESEhIejduzemTZuGjh07Yt26dbC0FCd4r1+/jitXrmDMmDEAxDOF2u2pp55CXl4erl69qvt927dvx/jx46FUKhEcHIyQkBCcOHECly9f1rU5fvw42rdv32zr+q9evYrc3FyMHTsWcnntn6OdnR2ee+45pKSk4P79+wbHGFvyUFFRUWepS1MkJSXB1tYWI0aMMNivPZt24sQJXTv9/VojR46Era2trp1+X7t3726wT6VSwd/fH4GBgQb7o6OjG9zfqKgogzO6Li4u6NSpE7KysnT7qqursWHDBowaNQqhoaEIDg5GaGgorl27ZvAe16exnyciapsYm0SMTYxN9HBcjkhma8WKFfDz88O9e/dw4MAB7NixA/Pnz0dCQgIA4M6dO7p2K1asMPo77t69CwDYvHkzli9fjr/85S+YO3cunJycIJfL8cUXX+DKlSu69gUFBXBzczMISk2hfX5XV9c6j7m5uUGj0aC4uBg2Nja6/Y6OjgbttEsqysvL630eT09PALXLYh6lsLAQLi4udZaHdOrUCZaWlrolMoWFhbC0tISzs7NBO5lMBhcXF107LWPjLCwshJeXV539Li4uDeorUPc1AcTXpaKiQvfz8uXLsW3bNrz22muIiIiAg4MDZDIZPvjgA4N29WnM54mI2i7GJhFjE2MTPRyTMDJbfn5+ugue+/XrB41Gg2+//RaHDh3CiBEj4OTkBACYMWMGnn32WaO/Q3vma+/evYiMjMTixYsNHn/wAlxnZ2ecOXMGGo2mWYKdto95eXl1HsvNzYVcLkfHjh2b/DyhoaFwdHTE0aNHsWDBgkeuvXd0dERKSgoEQTBom5+fj+rqal2/HR0dUV1djYKCAoNgJwgC7ty5o3t/tIw9r6Ojoy6I6DO2ryn27t2LcePGYf78+Qb7796926DXuDGfJyJquxibGo6xibGpLeNyRGo13n77bTg4OGDNmjXQaDTw9fWFj48PLl68CKVSaXTTLhOQyWQGF+kCwMWLF5GcnGywb/DgwaioqEBiYuJD+9KuXbuHnv3T6t69O9zd3bF//34IgqDbX1ZWhh9//BHh4eEGZxofl5WVFaZNm4YrV67gX//6l9E2+fn5OHPmDACgf//+KCsrq3NTzz179uge1/937969Bu1++OEHlJWV6R5/mKioKGRkZODixYsG+/fv3//ogTWCTCaDlZWVwb6ff/4ZOTk5BvvqO3vbmM8TEZEWY1P9GJsYm9oyzoRRq+Hg4IDp06dj5cqV2LdvH8aOHYvFixfjtddew9SpUzF+/Hi4u7ujqKgIly9fxvnz57FmzRoAwNChQ7Fu3TqsWbMGERERuHr1KtatWwcvLy+o1Wrdc0RHRyMxMRGLFi3C1atXERUVBUEQkJKSAj8/P4wePRoAEBAQgJMnT+LYsWNwdXWFnZ0dfH196/RZLpfj7bffxltvvYUZM2Zg0qRJqKysxKZNm1BcXIwFCxY02+ujDXRxcXFITU1FdHS07oaYp06dws6dOzFnzhz06dMH48aNw7Zt2/DOO+8gKysLAQEBOHPmDDZu3IghQ4ZgwIABAICBAwdi0KBB+Oyzz1BaWorevXvj0qVLWLNmDYKDgzF27NhH9mvy5MnYtWsXpk+fjr/97W+6ClT6S22aw9ChQ3WVphQKBc6fP49NmzbpqktpeXt7w9raGvv27YOfnx9sbW3h5uYGd3f3Bn+eiIi0GJsejrGJsamtYhJGrUpMTAy2bduGdevWITo6Gv369cO3336LDRs2YOnSpSguLoajoyP8/PwwcuRI3XEzZ87E/fv38d133yEhIQE9evTAokWLcOTIEZw8eVLXztLSEl9++SU2btyI77//Hlu2bIGdnR0CAwMxePBgXbv3338fixcvxvz583H//n1ERkbim2++MdrnMWPGwMbGBvHx8Zg3bx4sLCwQFhaGrVu3onfv3s322shkMixbtgzDhw/Hzp07da+Htv9vvfWW7iLm9u3bY+vWrVi9ejUSEhJw9+5duLu749VXXzW4maZMJsO6desQFxeHxMREbNiwAY6Ojhg7dizmz59f5wyuMa6urvj3v/+NTz75BIsWLYKNjQ2GDx+ODz/8UFdGuTm8//77sLS0RHx8PMrKyhAcHIy4uDh88cUXBu1sbGywdOlSrF27FlOnTkVVVRVmz56NOXPmNPjzRESkj7GpfoxNjE1tlUzQn2cmIiIiIiKiFsVrwoiIiIiIiCTEJIyIiIiIiEhCTMKIiIiIiIgkxCSMiIiIiIhIQkzCiIiIiIiIJMQkjIiIiIiISEJMwoiIiIiIiCTEJIyIiIiIiEhCTMKIiIiIiIgkxCSMiIiIiIhIQkzCiIiIiIiIJPT/Aa4WuuoKnq41AAAAAElFTkSuQmCC",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2EAAAHaCAYAAACJnkGgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACw40lEQVR4nOzdd3xb1d0/8M+V5D0k7yHJGU4cZ3jFiZ1ABiEpK5AwC78OCi0FWkhpoU9b1lPgoQ+BtJQSAg+bslIaRoAAgSTQEEa2VxInTuwktuQ9JE/Z1vj9cSXZjuUhW9P+vF+vvKTce670PRm++uqc8z2CxWKxgIiIiIiIiDxC4u0AiIiIiIiIJhMmYURERERERB7EJIyIiIiIiMiDmIQRERERERF5EJMwIiIiIiIiD2ISRkRERERE5EFMwoiIiIiIiDyISRgREREREZEHMQkjIiIiIiLyICZhREREREREHiTzdgBEzjCZTHjvvffw0UcfoaysDB0dHYiMjERsbCwyMzNx4YUXYuXKlfb2s2bNAgCcOHFiwOvYjg/lsccew9VXX+3S992yZQseeOABLF26FC+99JLD97311luxe/duPPLII7j++utH9WeyYcMGHDlyBGfOnEFLSwuCg4ORnJyMVatW4cc//jGioqJG9ToAcOGFF0Kr1Y6q7VVXXYX169eP+rU9pby8HG+//Tb27duHmpoadHd3Q6FQYM6cOfjBD36ANWvWICgoaNB1JSUlePvtt7F//340NDRAJpNBqVRiyZIluOmmm5CQkOCF3hCRr+N9aTDel0RD/V33Z+vfrl27oFKpxvxevIf5HyZh5DdMJhNuu+027NmzB5GRkVi+fDkSExOh1+tx9uxZfPjhh6ioqBhw0xnJnXfe6fD47NmzXf6+1113Hb788kt8+eWXeOutt/DjH/94wPm3334bu3fvxgUXXDDqGx0A/POf/8ScOXNw3nnnISYmBl1dXSgsLMTGjRvxzjvv4J133kFycvKoXuvGG29EW1vbkOe7urrw2muvwWQyYebMmaOO0VOeeeYZbNq0CWazGdnZ2bjqqqsQFhaGxsZGHDx4EA888AA2b96M999/336NxWLBX//6V7z00kuQyWQ477zzcMkll6C3txcFBQV45ZVXsHnzZqxfvx6XXHKJF3tHRL6G9yXHeF/yHN7D/JiFyE9s3brVkpaWZlmzZo2ltbV10HmdTmf59ttvBxxLS0uzpKWlDWo71HF3v29jY6Nl0aJFlqysLEt5ebn9eEVFhSUrK8uSn59vaWhoGFVcNgaDweHxJ5980pKWlmb57//+b6debyhms9mybt06S1pammXdunUWs9nsktd1lWeffdaSlpZmWb58uaWwsNBhm927d1t++tOfDji2ceNGS1pammXFihWWsrKyQdds377dkpGRYZk9e7blu+++c0vsROSfeF9yjPcl0Wj+TlesWGFJS0uzVFVVjek9eA/zX1wTRn7j8OHDAMTpBhEREYPOy+VynHfeeT79vjExMfif//kfdHV14b/+679gNBphNBrxX//1X+jq6sKjjz6K2NhYp+JzNLUOAC699FIAQFVVlVOvN5R//OMf+PzzzzFnzhw8/vjjEATBfk6j0WDWrFn405/+BI1Gg9/97nfIz89HRkYGrr76auzatcslMQxFo9Fg06ZNCAgIwAsvvICsrCyH7ZYtWzZgyk1VVRWee+45BAQE4LnnnnP4LerFF1+Me++9FyaTCQ899BDMZrPb+kFE/oX3Jcd4X/IM3sP8G5Mw8hvR0dEAgDNnzvj1+65atQrXXHMNjhw5gk2bNmHTpk0oKSnB1VdfjVWrVrnkPQDgyy+/BDDyOoPR+OSTT/Dcc88hLi4Ozz33HEJCQhy202q1uO6666DVarF27VpcdtllOHnyJO644w58//33445jKO+//z56e3tx0UUXIS0tbdi2gYGBA64zGo1YuXLlsH9O1113HeLi4nDmzBns37/fZXETkX/jfck5k+m+5Am8h/k3rgkjv3HxxRfjxRdfxL/+9S+0t7dj5cqVmDdvHtRq9Zhfc+PGjYOOKZXKAYuf3fG+9913H/bt24fnn3/e/p7333//mF8PAF5++WV0dnaira0NR44cwaFDhzBnzhzceuut43rd4uJi3HvvvQgKCsKmTZuQmJg4ZNv9+/dj3bp1A9Y0XH755bjlllvw8ssvY/HixeOKZSgHDx4EAKdf/9ChQwCA888/f9h2MpkM+fn52LZtGw4fPoxFixaNLVAimlB4XxreZL4v9efo79SmtbV1zK/Le5h/YxJGfiM9PR1//etf8eijj+Ljjz/Gxx9/DABQKBTIy8vDtddei+XLlzv1ms8888ygY3l5eQNudu543/DwcNxxxx249957AQAPPfQQwsPDnXqNc73yyitobGy0/37ZsmVYv369U1WozlVXV4df//rX6O7uxoYNG4ac5mejVCrxq1/9asCxpUuXIjk5GSUlJWOOYyS2fjtb/cl23XA3cBtbm/r6eiejI6KJivel4U3m+1J/jv5OXYH3MP/GJIz8yiWXXIKVK1di3759OHToEEpLS3Ho0CF88cUX+OKLL3DNNdfgL3/5y4B54cMZrmysO9/XYDDgxRdftP/+888/x7Jlyxy2dfQN2lVXXTWolO23334LQPyhXFBQgL/+9a9Yu3Ytnn/+ecydO9fp1+vq6sKvfvUrNDQ04LbbbsOaNWtG7Nfs2bMhlUoHHU9MTERhYeGI1zsTX38WiwUARv3nP5brbG36t33++efxxRdf4PTp0wgMDER2djbuvvvuEadEEtHEwfuSiPeloY2mRH1/o723jPceRt7FJIz8TkBAAJYsWYIlS5YAEEv1fv7557j//vvx3nvv4cILL3TpHHZ3vO+GDRtQUVGBG2+8EQcOHMC7776LVatWYcWKFYPaDvWt6FA//GNjY/GDH/wAc+fOxUUXXYQ//vGP2LZtm1OvZ7FY8Mc//hFHjx7FypUr8bvf/W5U/XK0QBwQp0KMdjGws/0FgPj4eFRUVKC2tnZU72ETFxc36utsbeLi4uzH9u/fjx/96EfIyMiAxWLB008/jZtvvhmffPIJFAqFU7EQkf/ifYn3JVca7b1lvPcw8i4mYeT3pFIpLrvsMpSVleG5557D3r173XKzc9X7fvPNN3jrrbeQlpaG//qv/8KZM2dwzTXX4MEHH8THH388aJrGaL8VPVdycjJmzJiB0tJSNDc32xdyj+b1nn76aXz++eeYNWsWNmzY4NFvzsbS39zcXOzduxd79+7Fdddd59R1+/btw3fffTfsdSaTCfv27QMAzJ8/33785ZdfHtDuiSeewIIFC3D48GFceOGFTvaCiCYK3pccm0z3pfEY7b1lvPcw8i5WR6QJIywsDEDf8Lwvvq9Op8O9994LmUyGDRs2IDAwEGlpabjrrrvQ0NCAhx56yKWx2eZ+O5qKMZRPPvkEzz77LGJiYvDcc8/Z++fLrr76agQEBODzzz/HqVOnhm3b09Mz4DqpVIodO3YMe917772H+vp6TJs2DXl5eUO26+jogNlsRmRkpPOdIKIJh/elwSbLfcmVhrq3uPoeRp7FJIz8xrZt2/Dtt986nD7Q0NCALVu2AAAWLFjgs+/70EMPob6+Hr/97W+Rnp5uP/7zn/8cCxYswPbt2wdM0RhJeXk5GhoaBh03m834+9//jqamJuTk5EAul4/q9WwVpwICArBx40YolcpRx+JNKpUKd955J3p7e3HrrbcOudj666+/xi233GL/vVqtxm233Ybe3l7cfvvtDm9iO3fuxF/+8hdIpVL8+c9/hkQy9I/Nv/zlL5g9ezZycnLG3yki8nm8Lw3G+5LrDXVvcfU9jDyL0xHJbxQVFeH1119HXFwc5s+fb5+LrdFosHv3bhgMBqxcuRKXXHKJT77v1q1b8dlnn2HhwoX4+c9/PuCcRCLB+vXrsWbNGjzyyCNYuHDhqCr97dmzBxs2bMCCBQuQkpIChUKBxsZGHDhwAFVVVYiLi8Ojjz46qn62t7fbK05lZGTgu+++w3fffTdk+3NLJnvb7bffDqPRiE2bNuHaa69FTk4O5s2bh7CwMDQ2NuLgwYM4c+YM5s2bN+C6devWoaurC6+++irWrl2LJUuWYMaMGTAajSgoKEBRURGCg4Pxt7/9bdhSxo8//jgOHTqEzZs3O/UNLxH5L96XBuN9ybVGure46h5GnsckjPzGz3/+c0ydOhXfffcdTpw4gW+++QY9PT32kryXX345rrjiCpfPE3fF+1ZXV+PRRx9FeHg4Hn/8cYffRKnVatx333144IEHcP/99+Oll14aMbbzzjsPP/zhD3H48GEcP34cbW1tCAkJwdSpU7F27Vr89Kc/HXWBCJ1OZ//2sqSkZMTSveeWTPYFd955Jy699FK8/fbb2LdvH95//33731V6ejpuueUWrF27dsA1EokEf/rTn3DZZZfhrbfewoEDB/D9999DKpVCqVTi5z//OX72s58NWwL4sccewyeffIJ//vOf49qnh4j8C+9Lg/G+5Dqjube44h5G3iFYPD1RmYhoAnn00Ufx6aef4o033kBqaqq3wyEiogmA95aJjyNhRERj9NBDD+Gjjz7Cpk2bEBkZaf/GNjQ0dNItHCciItfgvWVy4EgYEdEYzZo1y+HxO++8E+vWrfNwNERENBHw3jI5MAkjIiIiIiLyINapJCIiIiIi8iAmYURERERERB7EJIyIiIiIiMiDmIQRERERERF5EEvUj5PZbIbRaIREInH5ZoxERDQ0i8UCs9kMmUzmcKPZyYz3JiIi7xjtvYlJ2DgZjcYRd3AnIiL3ycjIQGBgoLfD8Cm8NxEReddI9yYmYeNky3AzMjIglUqdvt5kMqGkpGTM1/s79p/9Z//Z//H+/OQo2GC8N40P+8/+s//sv7vvTUzCxsk2zUMqlY7rH+p4r/d37D/7z/6z/2PF6XaD8d7kGuw/+8/+s/9jNdK9iV8fEhEREREReRCTMCIiIiIiIg9iEkZERERERORBTMKIiIiIiIg8iEkYERERERGRBzEJIyIiIiIi8iAmYURERERERB7EJIyIiIiIiMiDmIQRERERERF5EJMwIiIiIiIiD2ISRkRERERE5EFMwoiIiIiIiDyISRgREREREZEHMQnzos4eI+7cXICdFZ3eDoWIiAgAUFrTiptePYBTzb3eDoWIaMJiEuZFZ5s68dmROrxV0gaLxeLtcIiIiPB1WQP2nGrCJyc7vB0KEdGExSTMi6bHhSFQKqC1x4Kqli5vh0NERIS0hAgAQHkLR8KIiNyFSZgXBcmkmJMcCQAorNJ5NxgiIiIAGSo5AKC6zYQ2g9HL0RARTUxMwrwsW60AABQwCSMiIh8QGx6EZEUwLACOVuu9HQ4R0YTEJMzLsqzfOBZV8UZHRES+IUMp3ptKtK1ejoSIaGJiEuZlOdaRsGM1rTD0mrwbDBEREYAMpThVvkTLLwiJiNyBSZiXqaJCIA+SoNdkwdFqfuNIRETel2kfCWMSRkTkDkzCvEwQBKTFBAAACipbvBwNERERMM+ahFU2d0HX2ePlaIiIJh4mYT5gZrSYhLFCIhER+QJ5SAASw6QAOBpGROQOMm8HMFbff/89PvroIxQUFKC2thYRERGYN28e7rjjDsybN2/E65uamrBhwwZ89dVXMBgMSE9Px29/+1ssXrzYA9EP1DcSpvP4exMRETmSGh2A2g4TijV6LJ0Z5+1wiIgmFL8dCdu8eTO0Wi1uvPFGvPDCC7j//vvR3NyM66+/Ht9///2w1/b09OCmm27C999/j/vvvx/PPvssYmJicMstt2D//v0e6kGfGVEBEARAq+tCfavB4+9PRER0rhlR4heExRqddwMhIpqA/HYk7M9//jNiYmIGHFu6dCkuuugiPP/888OOaG3ZsgVlZWX417/+hZycHABAfn4+1q5diw0bNmDLli1ujf1cIQESpMWH40RdOwqqdLh4bqJH35+IiOhcqdap8iUaTkckInI1vx0JOzcBA4CwsDCkpqaipqZm2Gt37tyJadOm2RMwAJDJZFizZg2Ki4tRV1fn8nhHkmUtVc91YURE5AumK2QQBKBab0BDW7e3wyEimlD8diTMkba2Nhw7dgyLFi0att3JkyeRm5s76PisWbPs5xMSEpx6b5NpbHt82a7LUkbi3weBw2dbxvxa/sjW18nU5/7Yf/a//+NkM97+T9Y/N08JCZAgNTYMpxo6UKLV4cJ05+6LREQ0tAmVhD388MPo6urC7bffPmw7nU4HuVw+6LjtmE6nc/q9S0pKnL6mv9AucfStqLIFhw4XQCoRxvV6/ma8f37+jv1n/yezyd5/XzZPKcephg4Ua/RMwoiIXGjCJGFPPfUUPv74Yzz44IOjqo4oCEMnOcOdG0pGRgakUqnT15lMJpSUlODS83Lw4O7/oL3biNCkVMxOinT6tfyRrf9j/fPzd+w/+8/+j73/tuvJfTKUkdhaWM11YURELjYhkrBnnnkGzz33HH73u9/hJz/5yYjtFQqFw9EuvV68yTgaJRuJVCod14eogAAZstRyfHuqCcXaNsxTRY35tfzReP/8/B37z/6z/5O3/74sUyXeD4s0elgsljF9SUlERIP5bWEOm2eeeQYbN27EunXrRpyGaJOWloaysrJBx23HZs6c6dIYRytHLSZeBZUtXnl/IiKi/mYnRkIqEdDY3o1abqFCROQyfp2Ebdq0CRs3bsSvfvUr3HnnnaO+btWqVaioqEBRUZH9mNFoxEcffYSsrCyni3K4Sk6KAgBQwAqJRETkA0ICpZgZHw4AKOaURCIil/HbJOyVV17B008/jaVLl+KCCy5AYWHhgF829913H+bMmQOtVms/du2112LmzJm466678PHHH+O7777Db3/7W5w+fRq///3vvdAbUba1TP2p+nbou3q9FgcREZGNbUoi14UREbmO364J++qrrwAAe/bswZ49ewadP3HiBADAbDbDZDLBYrHYzwUGBuK1117Dhg0b8Oijj6KrqwuzZ8/Giy++iLy8PM90wIGY8CCkRIeisrkTxRodls6M81osREREAJCpUuDfBzUo0ui8HQoR0YTht0nYG2+8Map269evx/r16wcdj42NxeOPP+7qsMYtJ0WByuZOFFQyCSMiIu+zj4RpWZyDiMhV/HY64kSVY52SyOIcRETkC2YlRiBAKkDX2QtNS5e3wyEimhCYhPmYnBSxQmJhlW7AFEoiIiJvCJJJ7XtXsjgHEZFrMAnzMbOTIhEok6Clsxdnmzq9HQ4REREylOKUxGKuCyMicgkmYT4mUCbBvGTxG8eCKk5JJCIi77OtC+NIGBGRazAJ80G2KYkFlTrvBkJERAQgQ6kAABzR6mE2c6o8EdF4MQnzQfZNm5mEERGRD0hLCEeQTIK2biNON3V4OxwiIr/HJMwH2TZtLq1phaHX5N1giIho0pNJJZhrnSrPTZuJiMaPSZgPUipCEBcRBKPZgiNa3uyIiMj7MlUKAFwXRkTkCkzCfJAgCP32C9N5NRYiIiKg/6bNOu8GQkQ0ATAJ81H24hyskEhERD7AloQd0bbCaDJ7ORoiIv/GJMxH2daFFXIkjIiIfMC02HCEBUrR1WtCeQOLcxARjQeTMB+VqZJDIgDVegNq9QZvh0NERJOcVCJgLjdtJiJyCSZhPiosSIZZiWIlqkJOSSQiIh+QxU2biYhcgkmYD+N+YURE5EsybBUSWbmXiGhcmIR5m2Xoxc22dWEFVTrPxEJERDSMTOt0xNKaVvQYWZyDiGismIR5U3sDJE/NRUrx3x2enm8dCSvW6FiJioiIvG5KTCgig2XoMZpRVtfm7XCIiPwWkzBv6mqG0F6HaM0OwGwadHp6bDgigmUw9JpxvJY3OyIi8i5BELhpMxGRCzAJ86aYGbAEhkNqMgANJwadlkgETkkkIiKfksFNm4mIxo1JmDdJpEBSNgBAqD7ksEkO9wsjIiIfkqlkhUQiovFiEuZlFmWu+KT6sMPzOSlRAIAClqknIiIfkGn9cvBEbRsMvYOn0hMR0ciYhHmZJXk+AEDQOh4Js01HrGjogK6zx1NhEREROZQsD0ZMWCCMZgtKa1q9HQ4RkV9iEuZtSjEJQ30p0NMx6HRUWCCmxoQCAAq5LoyIaMIqLS3FrbfeigsuuACZmZnIy8vD9ddfjw8//NDboQ0gCEK/dWGckkhENBYybwcw6UUq0RMcg0BDE1BTDExZPKhJTkoUzjR1orBKhwtmxXshSCIicrfW1lYkJiZi9erVSEhIQFdXFz7++GP84Q9/gFarxa9//Wtvh2iXqVLgPycauC6MiGiMmIT5gA5FOgJrvwW0B4dIwhT4oECLAhbnICKasPLz85Gfnz/g2IoVK6DRaPDvf//bt5Iwe3EOnXcDISLyU5yO6AM6FbPFJ0OsC8tRi8U5Cqt0MJstngqLiIh8QFRUFKRSqbfDGMA2HfFUfTs6uo1ejoaIyP8wCfMBHVHp4pMhkrD0pAgEySTQd/XidNPgdWNERDRxmM1mGI1GNDc346233sI333yDX/7yl94Oa4CEyGAkRAbBbAGOsTgHEZHTOB3RB3TI02CBAEFXCbQ3AOFxA84HSCXIUMpx8GwLCit1SI0L91KkRETkbg899BDeeecdAEBAQADuv/9+3HDDDWN6LZNpbCXkbdcNd32GUo661noUVrZgvlo+pvfxVaPp/0TG/rP//R8nm/H2f7TXMQnzAeaAcCB2JtBYJo6GzbpkUJucFAUOnm1BQVULrslVeSFKIiLyhNtvvx3XXXcdmpub8eWXX+J//ud/0NXVhV/84hdOv1ZJScm4Yhnu+jhJJwDg6yNnMD9MN6738VXj/fPzd+w/+z+Zubv/TMJ8hEWZC6GxTCzO4TAJiwJwmsU5iIgmuOTkZCQnJwMAli9fDgB48skncdVVVyE6Otqp18rIyBjTejKTyYSSkpJhr9eHNmDz0UPQdEqQnZ3t9Hv4stH0fyJj/9l/9n/s/bddPxImYb4iORco2jzkujDbps3Ha9vQ1WNCSODk+09BRDQZZWZm4l//+heqqqqcTsKkUum4PkQNd312ihjL6cZOdPSaERkcMOb38VXj/fPzd+w/+8/+u6//LMzhIyy2TZu1hwDL4AqISXJxEbTJbOHmmEREk8i+ffsgkUigVqu9HcoA0WGBUEWFAACOcL8wIiKncCTMV8TPBaRBgEEPNJUDsTMGnBYEATnqKGw/WouCyhbkTXPu21AiIvJtDz74IMLDw5GRkYHY2Fi0tLRg+/bt+PTTT/GLX/zC6VEwT8hUyaFp6UKxVo/zZsR6OxwiIr/BJMxXSAOApCxAs18cDTsnCQPE4hxiEqbzfHxERORW2dnZeP/99/HBBx+gra0NoaGhSE9PxxNPPIG1a9d6OzyHMpQKfFpSixKOhBEROYVJmC9R5vYlYVnXDzptWxdWUNXi4cCIiMjdrrnmGlxzzTXeDsMpWdZNm4s0Ou8GQkTkZ7gmzJeoFoiP2oMOT2eo5JBKBNS1dqNG3+XBwIiIaNKoLoDk1UsQ1nxkxKZzlWISpmnpQnNHj7sjIyKaMJiE+RJbcY7aEsDYPeh0aKAM6YkRAMApiURE5B5nvoGg2Y/40x+M2FQeEoBpsWEAwKJRREROYBLmS6KmASHRgKkHqHP8DWROigIAUFDJKYlEROQGSVkAgPDmo6NqnmEdDSvhlEQiolFjEuZLBEFcFwYAmqH2C4sCwJEwIiJyk+T5sAgSBBrqAb1mxOaZ9nVhHAkjIhotJmG+xpaEDbFps20krESrR6/J7KGgiIho0ggKBxLmAQAEzYERm2eqFADAColERE5gEuZrRkjCpsWEQR4SgG6jGcdr2jwYGBERTRYWVZ74RLN/xLZzkyMhEYDaVgPqWw1ujoyIaGJgEuZrbElY00mga/C6L4lEYKl6IiJyL2sSNpqRsLAgGWbEhwMAijkaRkQ0KkzCfE1YDBA1VXxeXeCwiT0J47owIiJyA4vaOhJWWwz0jrwlSoZSAQAoZoVEIqJRYRLmi0a5LqywSueZeIiIaHKRq9EbFA3BbBzyC8H+bMU5WCGRiGh0ZGO56OTJkzh8+DDq6upgMBgQFRWFGTNmYOHChQgPD3d1jJOPcgFw5L1hKiQqAACnGzvQ0tGDqLBADwZHREQTniCgPWouomr3AFX7gCnnDds8w5aEafWwWCwQBMETURIR+a1RJ2F6vR7vvPMO3nnnHVRXV8NisQx+MZkMy5Ytw09/+lMsXrzYpYFOKv1HwiwWsXR9P4rQQEyPC0NFQwcKq3RYkR7vhSCJiGgia4+2JWEjF+eYkxQJmURAY3sPqvUGKBUhHoiQiMh/jSoJe/3117Fp0yYAwGWXXYa8vDzMnTsX0dHRCAoKgl6vR1VVFQoLC7Fr1y78/Oc/x3nnnYf//u//xpQpU9zagQkpKROQyIAO6x4tCvWgJtlqBSoaOlBQ2cIkjIiIXK4jaq74pGq/wy8E+wsOkCItIQLHalpRotExCSMiGsGo1oS98cYbuPfee/HNN9/gz3/+My699FKkpKQgPDwcAQEBiI2NRU5ODm6++Wa8+eab+PzzzxEfH4/PPvvM3fFPTAEhQIL15qc96LBJTop102auCyMiIjfolM+ERRoIdDYCzRUjtretC2OFRCKikY1qJOyzzz6DTDb65WMpKSl47LHHYDKZxhzYpKfMBWqKxCmJc68adDrHui6ssEoHs9kCiYTz74mIyHUs0kAgKQvQHBBHw2JSh22fqVLgXweqmIQREY3CqEbCTp48OaYXl0qlY7qOIBbnAADtYYen0xMjEBwgQZvBiIrGdg8GRkREk4V90+aqfSO27RsJ0zlcN05ERH1GlYRdddVVuPrqq/H222+jra3N3TER0Feco7oAMBkHnZZJJci07stymPuFERGRG/QlYSMX50hLiECgVIJWgxGVzZ1ujoyIyL+NKgm77bbb0NzcjEceeQRLlizB73//e+zdu9fdsU1usTOBwAigtxNoOO6wCfcLIyIit1ItFB/rjwGG1mGbBsokmJ0UAYDrwoiIRjKqJOx3v/sdvvrqK7zwwgtYsWIFvvjiC9x8881YuXIlnn32WdTU1Lg7zslHIgWUOeLzIYtzKAAABRwJIyIid4hIBBRTAFiGvBf1l6lSABCnJBIR0dBGlYQBgCAIWLZsGZ566il88803uP/++yGXy/H0009j1apV+MUvfoHt27ejt7fXnfHatbe344knnsDPf/5zLFq0CLNmzcLGjRtHde3777+PWbNmOfzV0NDg5sid0H+/MAdsFRJP1Laio3vwlEUiIqJxU49+SmIGKyQSEY3K6Ese9hMZGYmf/OQn+MlPfoLjx4/jvffew7Zt2/C73/0OCoUC33//vavjHESn0+Hf//430tPTsWrVKmzZssXp13jssccwffr0AccUCoWLInQBexLmuDhHQmQwkuTBqNEbUKzRY3FqjAeDIyKiSUGdD5Rscao4xxGtnpV7iYiGMaYkrL/09HSsWbMGnZ2deP/996HT6VwQ1siUSiUOHDgAQRDQ3Nw8piRs5syZyMjIcEN0LmKrkFh/DOhuB4LCBzXJSVGgpqQWhVU6JmFEROR6tpEwzUHAbAYkQ0+imREXjpAAKTp6TKhobMeM+AgPBUlE5F9GPR3xXM3NzXjttddwxRVX4Ic//CE+/PBDrFixAps2bXJlfEMSBAGCMMG/YYtMAiKSAYtZ3DPMgRy1ddPmyhZPRkZERJNF/FwgIAzobh2yUJSNTCrB3ORIAJySSEQ0HKdGwsxmM77++mu89957+M9//oPe3l5MnToVd999N6666irExsa6K063uP3229Hc3IyIiAjk5eXhN7/5DdLS0sb0WmPdmNp23VDXS5LnQzhRDbPmACzqRYPOZ6rEm11BpQ5Go9HvEtOR+j/Rsf/sf//HyWa8/Z+sf24eJ5UBqlzg9NfilMSEOcM2z1DJcfBsC4o1elw9X+WhIImI/MuokrDTp0/jvffew4cffojGxkYEBwfj8ssvxzXXXIMFCxa4O0aXi42Nxe23347s7GyEh4ejrKwML7zwAq6//nps3rwZ6enpTr9mSUnJuGIa6voESRJUAPRHd6EiZOmg8yaTBVIBaGjvxo7vDiM+zD83yB7vn5+/Y//Z/8lssvffL6jyrEnYfmDBzcM2ta0LK9FyJIyIaCijSsIuvfRSAEBmZibWrVuH1atXIywszK2BudOyZcuwbNky++8XLlyI5cuX44orrsA//vEPPPfcc06/ZkZGBqRS5xMgk8mEkpKSoa9XtAGlL0LRWYHs7GyHrzF773c4Ut2K3shkZGckOR2DN43Y/wmO/Wf/2f+x9992PXmAOl98HFVxDgUA4Gi1HkaTGTLpmFc+EBFNWKNKwn72s5/h2muvxcyZM90dj9eoVCrk5uaiqMjx2quRSKXScX2IGvJ65XwAAgS9BtLORiAiYVCT+VOicKS6FUWaVqzJ9s+pH+P98/N37D/7z/5P3v77BZV11ktzOdDRCIQNvfxgWkwYwoNkaO824mR9O2YnRXooSCIi/zGqr6fuvfdehwlYRUUFDh06hM7OTpcH5g0WiwWSYao+eUVwJBBnnR455H5hCgAszkFERG4SGg3EzhKfaw4M21QiETBPKSZeJSzOQUTk0Jgyjq1bt2LZsmVYvXo1fvKTn+D06dMAgLvuugv//ve/XRqgp1RVVeHw4cPIysrydiiDjbBpc7a1QuKR6lb0GM2eioqIiCYT+6bNI09JzLJOSSzS6NwXDxGRH3M6Cfvss8/wpz/9CXPmzMGDDz4Ii8ViPzd37lx89tlnLg1wOLt378b27dvx1VdfAQBOnTqF7du3Y/v27ejq6gIA3HfffZgzZw60Wq39uptuugnPPPMMdu7cie+//x7//Oc/8aMf/QiCIOCuu+7yWPyjppwvPg6RhE2NCYUiNAA9RjNKa1o9GBgREU0a9iRs/4hNM1icg4hoWE5v1vzCCy/g6quvxv/+7//CZDLhkUcesZ+bPn063njjDZcGOJyHH354QHJlS8AAYNeuXVCpVDCbzTCZTAOSxbS0NHz22Wd45ZVX0N3djejoaCxatAi//vWvMW3aNI/FP2q2ufjaww43yhQEATlqBb460YCCyhZkqRWej5GIiCY2W3EO7SHA1AtIA4ZsmqlUAABKa1rRbTQhSMY1f0RE/TmdhJWXl+P3v/+9w3MKhQI6nW68MY3al19+OWKb9evXY/369QOO3Xfffe4KyT3i5wCyYKBbLy6Kjh28Pi8nJUpMwqp0uMnzERIR0UQXMxMIVgAGHVBb3DdV3gF1dAgUoQHQdfairLbdPjJGREQip6cjhoSEoK2tzeG5uro6yOX8Qety0gAgybpWbch1YQoA4qbNRERELieR9JuSOHxxDkEQkKEUPw9wXRgR0WBOJ2E5OTl46623Bkzvs3n//feRl5fnksDoHErrlETNQYenbVMQK5s70dTe7aGgiIhoUnGiOId902ZWSCQiGsTpJOyOO+5AYWEhrr32WrzxxhsQBAFffPEFbr/9dhw8eBC33367O+KkEYpzyEMCMCM+HABQWKXzUFBERDSpqJwozmFdF1bM4hxERIM4nYRlZGTgxRdfRGdnJ9avXw+LxYLnn38ep0+fxgsvvIC0tDR3xEm24hy1JYDR8UhXDqckEhGROylzAUECtGoAvWbYpllqcSSsrK4NXT0mT0RHROQ3nC7MAQCLFi3CZ599hsrKSjQ2NiIqKso3qwpOJIopQGgM0NkkJmK2pKyf7BQFthzSoKCKmzYTEZEbBIUDCfPEwhxV+wG5asimiZHBiA0PQmN7N47VtCJ3SpQHAyUi8m1j2qzZJiUlBfPnz2cC5gmCMOKmzTnWTZuLqvQwmQev2SMiIho3W6l6zcjFOfrWhencHBQRkX8ZVRL26aefOv3CdXV1OHTIcbJAY2QrzjFEEpaWEI7QQCnau40ob2j3YGBERDRp2JKwURTnsFVI5LowIqKBRpWEPfLII1i7di22bNmC9vbhP9wfOXIEDz/8MC6++GIcP37cJUGSlW0kbIgKiTKpxP6tY0ElpyQSEZEbqBeKjzVFQG/XsE1t68KKWSGRiGiAUa0J27FjBzZu3Ii//OUveOSRRzBnzhzMmTMHMTExCAwMhF6vR1VVFQoLC9HQ0ICZM2di48aNWLp0qbvjn1xsFRKby4HOZiA0elCTbHUU9lY0o6BSh+sXpng4QCIimvAUU4DwBKC9DqguAKacN2TTedaRsPKGdrR3GxEeNKal6EREE86ofhpGRETgvvvuwx133IH3338fu3fvxtatW9HV1fcNmFqtxtKlS3HFFVdg0aJFbgt4UguNBqKnA80V4o1vxspBTXJSFABYpp6IiNxEEMT9wko/FqckDpOExUcEI0kejBq9AUe1euRPj/FgoEREvsupr6Tkcjluvvlm3HzzzQCAtrY2GAwGKBQKBAQEuCVAOocyV0zCtIccJ2HWMvUn6tr4rSMREbmHOt+ahA1fnAMQN22u0RtQwiSMiMhuXNURIyIiEBcXxwTMk0aokBgfGQylIgQWC1DM0TAiInKH/sU5LMNX481UKQAARVwXRkRkN64kjLzAViFRc3DIG1+2dUpiAZMwIiJyh6QsQBoIdDaKszOGYauQyDL1RER9mIT5m8QMQCITb3y6SodNbFMSCyp1nouLiIgmD1kQkJQtPq/aP2xTWxJ2pqkT+s5eNwdGROQfmIT5m4BgIGGe+HyoTZtTxE2bC6taYBlhmggREdGYqPPExxH2C4sKC0RKdCgAoIT7hRERAWAS5p9Uw2/aPDc5EgFSAY3tPdC0DL+HCxER0ZjY1oVpRi7OkaGybdqsc2NARET+g0mYPxqhOEdwgBRzkiIBAIe5aTMREbmDbSSs7ihgaB22aaZ9XRhHwoiIgDEkYf/zP/+DiorhF+GSm9mSsOpCwGR02KRvSqLOMzEREdHkEpEIKFIAWADtwWGb2iokFjMJIyICMIYkbOvWrVi9ejVuvvlm7Ny5k2uOvCFmJhAUCRi7gPpjDpvYNm1mcQ4iInIbe6n64YtzzFOKszO0ui40tXe7OyoiIp/ndBK2Z88ePPDAA2hoaMCdd96JCy+8EC+88AKam5vdER85IpEAyTni8yGmJGZbKyQeq25Ft9HkocCIiGhS6b9f2DAiggMwPS4MAFDM4hxERM4nYaGhofjxj3+Mbdu24dVXX8XcuXPxj3/8AxdccAH+9Kc/oaSkxB1x0rlGWBeWEh2K6LBA9JjMOFo9/Fx9IiKiMbGtC9McBMzmYZtyXRgRUZ9xFeZYvHgxnnnmGezatQs5OTn48MMP8cMf/hDXXXcdvvzyS1fFSI6MUCFREAT7fmGFnJJIRETuED8XCAgDuluBhuPDNu1bF6Zzf1xERD5uXEmYwWDAli1bcPvtt2Pfvn1ITU3FHXfcAZPJhDvuuAObNm1yVZx0LttIWH0p0N3msIl9XRiLcxARkTtIZYByvvh8hCmJmbYy9RwJIyIaWxJWWVmJxx57DMuWLcOf//xnJCYm4pVXXsG2bdtw55134v3338cvf/lLvPnmm66Ol2wiEoFIJQALUFPksEm2WqyQWMAy9URE5C6jLM4xJzkSEgGob+tGXavBA4EREfkup5OwW265BZdccgneffddrF27Ftu3b8f//d//4bzzzhvQbsWKFWhp4Yd/t7KNhmkclwbOVMshCICmpQsNbaxGRUREbjDK4hyhgTKkJUQA4GgYEZHTSVhVVRXuvfdefP3117j//vuRkpLisN3MmTPx+uuvjztAGsYIxTkigwMwMz4cAPcLIyIiN7GtUW4uBzqahm2aobRNSdS5OSgiIt/mdBL2+eef46c//SnCwsKGbRceHo68vLwxB0ajYC/OcXjIJjmckkhERO4UGg3EzhKfa4afksh1YUREonEV5iAvS8oGBAnQqgHaah02yeamzURE5G7qheLjCFMSM6wVEku0elgsFjcHRUTku2TOXnDhhRdCEASH5yQSCSIiIpCRkYEbb7wRqamp4w6QhhEUDsSlA/XHxCmJ6asHNbFVSCzW6GAyWyCVOP67IyIiGjN1PlDw5ojFOWYnRSBAKqC5oweali6oo0M9FCARkW9xeiQsLy8PFosFdXV1UCqVyMrKQnJyMurq6mAymZCUlIQdO3bgmmuu4cbNnjDCurCZ8REIC5Sio8eEk/WOS9kTERGNi604h/YwYOodslmQTIpZiWJxjhItpyQS0eTldBK2ZMkSBAYGYseOHXj99dfx5JNP4o033sAXX3yBwMBArFq1Cp9//jmmTp2KjRs3uiNm6m+EColSiYAs66bNnJJIRERuETMTCFYAxi6gdvgvYDOUCgBcF0ZEk5vTSdj//d//Yd26dUhKShpwPDk5GXfccQdeeOEFRERE4KabbkJhYaGr4qSh2JKw6gLAbHbYJNuehLE4BxERuYFEAqitxbhGmJJoK85RotW5OSgiIt/ldBJ29uxZhIeHOzwXGRkJrVYLAFAqlejq6hpfdDSy+DmALATobgWaTjlskpNiq5Co82BgREQ0qahsSdjwxTn6V0g0m1mcg4gmJ6eTsOTkZHzwwQcOz7333nv2ETKdTge5XD6+6GhkUhmQnC0+1zqekmgbCTvV0I5Ww9Bz9YmIiMZslCNhaQkRCJRJ0GYw4mxzpwcCIyLyPU4nYb/4xS+wfft23HDDDXjttdewbds2vPbaa7jhhhuwY8cO3HLLLQCAffv2Yd68eS4PmBwYoThHXEQQ1NEhsFiA4irOwSciIjdQ5vZtm6LXDtksQCrBnKRIANy0mYgmL6dL1P/whz+ExWLBxo0bsX79evvx2NhYPPzww7juuusAALfffjsCAwNdFykNbYQkDACy1VGoau5CQWULlsyM9VBgREQ0aQSFAwnzgNpicdNm+VVDNs1SyVFYpUOxRo+12UoPBklE5BucSsJMJhMqKytx6aWX4oc//CEqKiqg0+mgUCgwffr0AfuHxcbyg77H2JKw2iNArwEICB7UJEetwMdF1Sio0nk2NiIimjzU+WISVrUfmDt0EiZu2nwWJayQSESTlFPTES0WC1avXo2CggIIgoDU1FTk5uYiNTV1yA2cyQMUKUBoLGDuHbI0sG3T5sIqHSwWLoQmIiI3UDtXnONItR4mFucgoknIqSRMJpMhNjaWH+J9jSAAqgXi8yGKc8xJjkSgVILmjh5UciE0ERG5gy0JqykCeoeukJwaF47QQCk6e0yoaGj3UHBERL7D6cIcq1evxtatW90QCo3LCOvCgmRSzEkWF0KzVD0REbmFYgoQngCYjeL+lUOQSgTMSxZHw4o4JZGIJiGnC3Okp6fj008/xY033oiLLroIcXFxg6YiXnTRRS4LkEZJOV98HKY4R06KAoVVOhRUtuDKHC6EJiIiFxMEcTSs9GNxXdiU84ZsmqGSY/+ZZpRodLg2V+XBIImIvM/pJOyPf/wjAKCurg779w/eC0QQBJSWlo4/MnJOsjUJa64AOpuB0OhBTXJSovDqt2dQyOIcREQ+5/vvv8dHH32EgoIC1NbWIiIiAvPmzcMdd9zhX1u+qPP7krBh2Ddt1nIkjIgmH6eTsNdff90dcdB4hUYD0alAczmgPQzMXDWoSY510+aj1a0w9JoQHCD1cJBERDSUzZs3Q6fT4cYbb8SMGTPQ3NyMV199Fddffz1eeuklLF682Nshjo6qX3EOi0UcHXMgU6UAAByrbkWvyYwAqdMrJIiI/JbTSVheXp474iBXUOZak7BDDpMwVVQIYsMD0djeg6PVeuROGTxaRkRE3vHnP/8ZMTExA44tXboUF110EZ5//nn/ScKSsgBpINDZKM7OiEl12GxKdCgigmVoMxhRVteGudY1YkREk8GYv3Zqa2vDnj178NFHH0Gv51QCnzBChURBEJCtjgLA4hxERL7m3AQMAMLCwpCamoqamhovRDRGAcFAUrb4fJgpiRKJgAylmHhxvzAimmzGlIRt2rQJS5cuxS9/+Uv88Y9/hEajAQD87Gc/wwsvvODSAMkJ/SskDrGNgG2/MG7aTETk+9ra2nDs2DHMnDnT26E4x1aqXjP8urAMrgsjoknK6emIb731FjZt2oQf/ehHWLp0KW677Tb7uRUrVuCLL77Arbfe6tIgaZQS5gGSAKCzCdCdBaKmDmpi37SZI2FERD7v4YcfRldXF26//fYxXW8ymcZ13Vivh3IhpAAslftgHuY1MqxbpxRV6cb+Xm4w7v77Ofaf/e//ONmMt/+jvW5MSdhNN92EP/zhD4PeZMqUKTh79qyzL0muEhAMJGYA1YcBzUGHSVimSgFBALS6LtS3GhAfGez5OImIaERPPfUUPv74Yzz44INjro5YUlIyrhjGer3MEIosAKg/huID38IcEOawnbTDCAA4UdOK/YcKECh1XMTDW8b75+fv2H/2fzJzd/+dTsKqqqqwdOlSh+fCwsLQ2to67qBoHJS5YhKmPQxkXDvodHiQDLMSInC8tg0FVTpcPDfRC0ESEdFwnnnmGTz33HP43e9+h5/85Cdjfp2MjAxIpc5XwjWZTCgpKRnz9QBgOZACQVeJzJgeYPr5jttYLIj6z5do6exFcMJ0e9l6b3NF//0Z+8/+s/9j77/t+pE4nYRFRESgsbHR4TmtVutwYTF5kGoBcODFETdtPl7bhoJKJmFERL7mmWeewcaNG7Fu3boxT0O0kUql4/oQNa7r1fmArhJS7UGHFXttMlUK7C5rwJHqVuT4WNXe8f75+Tv2n/1n/93Xf6cLcyxevBgvvfQSOjs77ccEQYDRaMTmzZuxZMkSlwZITrIV56gpBEy9Dpvk2CsktngoKCIiGo1NmzZh48aN+NWvfoU777zT2+GMjzpffBztps2skEhEk4jTI2G/+c1vcO2112L16tVYtWoVBEHAm2++idLSUlRXV+Opp55yQ5g0atGpQJAc6NYD9cfE/VrOkW0tzlGs0cNoMkPGDTKJiLzulVdewdNPP42lS5figgsuQGFh4YDz2dnZXolrzOwVEg8AZjMgcXyvsZepZ4VEIppEnE7CpkyZgs2bN+Oxxx7D5s2bYbFY8OGHHyI/Px9//etfkZyc7I44B2lvb8ezzz6L48eP49ixY2hpacGdd96JdevWjer6pqYmbNiwAV999RUMBgPS09Px29/+1n82wxyKRAIo5wMVX4lTEh0kYTPiwhERJENbtxFlde2YY61ORURE3vPVV18BAPbs2YM9e/YMOn/ixAlPhzQ+8XOBgDCguxVoOA4kzHHYLFOlAACU1bWhq8eEkMDJO/2JiCYPp5MwAJgxYwZefvll9PT0oKWlBXK5HMHBnq2yp9Pp8O9//xvp6elYtWoVtmzZMupre3p6cNNNN6G1tRX3338/YmJi8NZbb+GWW27Bq6++iry8PDdG7gHKXDEJ0xwCFvx80GmJRECWWoFvTjWioKqFSRgRkQ944403vB2Ca0ll4peCZ/YAVfuGTMIS5cGIjwhCfVs3jlbrsWCqb60LIyJyh3HNQwsMDERCQoLHEzAAUCqVOHDgAN58803cfffdTl27ZcsWlJWV4amnnsKaNWtw/vnn4+mnn8bUqVOxYcMGN0XsQf03bR6CfdNm7hdGRETuwnVhREQOjWkkTKPR4LPPPkN1dTUMBsOAc4Ig4H//939dEtxwBGHse4ns3LkT06ZNQ05Ojv2YTCbDmjVr8OSTT6Kurg4JCQmuCNM7bElYw3Gguw0IihjUJFutAMDiHERE5Ea2JEwzfBKWoVRgZ2k914UR0aThdBL2n//8B3feeSfMZjOio6MRGBg44Px4kiNPOXnyJHJzcwcdnzVrlv28s0nYeHfVdumu5KGxkMhVEPQamDSHgKmD93XLUIpTEMsbOtDSbkBkSIDr3t8J3JWd/e//ONmw/+Pr/2T9c/MrqgXiY9MpoKMJCHO8jU2mWhwJK9LoPBQYEZF3OZ2E/f3vf8f8+fPx97//3W/3BNPpdJDLB28IaTum0+mcfs3x7qrt6l25p4dOR5Reg5qD21CnGzwSBgCJYVLUdpjw/u7DyE4Mcun7O4u7srP/kxn7P7n7P6GFRgOxaUBjmTgaNutSh81sFRIrGjrQZuhFRLB3vhgkIvIUp5Ows2fPYuPGjX6bgNkMN2I3ltG88e6q7epdyYWulUDN11BaapA0RFnj/LIifFhUg7bAGGRnz3DZezuDu7Kz/+w/+z/en5/k49R5YhJWtW/IJCw2PAhKRQi0ui4c0bZicap/f8YgIhqJ00lYcnLygI2a/ZFCoXA42qXXi3PRHY2SjWS8u2q7fFdu1UIAgKA9POTr5qRE4cOiGhRq9F7/AMhd2dl/9p/9pwlKnQ8UvDlicY4MpRxaXRdKtDomYUQ04TldHfG2227DK6+8gq6uLnfE4xFpaWkoKysbdNx2bObMmZ4OyfWSsgBBArRVA63VDpvkpEQBAAqrdLBYLJ6MjoiIJgtbcQ7tYcDUO2SzvnVhLM5BRBOf0yNhJSUlaGpqwg9+8APk5+cjKipqUJsHHnjAJcG5y6pVq/Dwww+jqKgIWVniZsZGoxEfffQRsrKy/Lsyok1QOBA/B6g7Ipaqjxy8ifbspEgEyiTQdfbiTFMnpsWGeSFQIiKa0GJmAsEKwKADakvEvcMcyFQqAAAlTMKIaBJwOgl788037c8/+eSTQecFQfBYErZ79250dXWho6MDAHDq1Cls374dALB8+XKEhITgvvvuw9atW7Fjxw4olUoAwLXXXou3334bd911F+655x7ExMTg7bffxunTp/Hqq696JHaPUM7vS8JmXzHodKBMggylHIfOtqCgsoVJGBERuZ5EIk6RP7VDnJI4RBJmK85R2dwJXWcPFKGBDtsREU0ETidhx48fd0ccY/Lwww9Dq9Xaf799+3Z7ErZr1y6oVCqYzWaYTKYB0+0CAwPx2muvYcOGDXj00UfR1dWF2bNn48UXX0ReXp7H++E2ylzg8OvDbtqcrVZYkzAdrp6v8mBwREQ0aajzrUnYPmDR7Q6byEMDMDUmFGeaOlGs0WNZWpyHgyQi8pwxbdbsK7788ssR26xfvx7r168fdDw2NhaPP/64O8LyHUrr/izaAsBsAiSDF77npCgAiOvCiIiI3EJt/YJzpOIcKgXONHWiRMskjIgmtlEV5jhw4IB9yt9wmpub8e677447KHKRuHQgIBToaQMaTzpsYivOUVrTiq4ebnxKRERuoMwVi0W1agC9dshmmdYpicXctJmIJrhRJWE33ngjysvL7b83m82YN28ejh07NqBdVVUVHnzwQddGSGMnlQFJ2eLzIaYkJsuDER8RBKPZgiPVXAxNRERuEBQOJMwTn2uGHg3LUIlJGItzENFEN6ok7Nzy5RaLBUajkWXN/YEqV3zUHnR4WhAEZKsVAICCyhYPBUVERJPOKKYkzlPKIQhAtd6AhrZuDwVGROR5Tu8TRn5GaUvChi7O0X+/MCIiIrew7RdWtW/IJuFBMqTGhQMASrQ6DwRFROQdTMImOlsSVncU6HW8wbatOEdBpc4zMRER0eRjGwmrKRryfgT0XxfGKYlENHExCZvo5GogLB4wG4GaYodNMlVySASgRm9AjX7oGyMREdGYKaYA4Qni/ai6cMhmmSomYUQ08Y26RH1FRQWkUrHEuclksh87tw35GEEQR8PKPhOnJKbkD2oSGijDrMRIlNa0orBSh6SMEC8ESkREE5ogiKNhpR+LUxKnLHbYLEOlACAmYRaLBYIgeDBIIiLPGHUSdu+99w469oc//GHA7/nD0kf1T8KGkJOiEJOwKh0uzUjyYHBERDRpqGxJ2NDFOeYkRUIqEdDY3o3aVgOS5PxikIgmnlElYY899pi74yB3GqFCIgDkqBV4e18l14UREZH79C/OYbGIo2PnCAmUYmZ8OI7XtqFYo2cSRkQT0qiSsKuuusrdcZA7Jc8XH1vOAB1NQFjMoCa24hzFWh16TWYESLlckIiIXCwpC5AGAp2NQHMFEJPqsFmWSmFNwnS4eG6ih4MkInI/ftKeDEIUQMxM8Xn1YYdNpseGIyJYBkOvGSdq2zwXGxERTR4BwUBStvhcc2DIZhkszkFEExyTsMnCVqpe43hKokTSb9Nm7hdGRETuYt+0eej9wmwVEku0YnEOIqKJhknYZOHEps0FlS2eiIiIiCYjexI2dHGOWYkRCJRKoOvsRVUzt04hoomHSdhkoeqXhA3xrWKOdSSskMU5iIjIXVTWJKzuKGBoddgkSCZFelIEAHGtMhHRRMMkbLJImCcuhu5qBlpOO2xim45Y0dgBXWePB4MjIqJJIzIJUKQAsAxbtTdDaZ2SyHVhRDQBOZWEGQwG3HDDDfjuu+/cFQ+5iywISMwQn2sdF+eICgvEtNgwAEAh14UREZG72EvVD12cI5PFOYhoAnMqCQsODkZZWRmkUqm74iF3Ui4QH4dbF2YrzsEpiURE5C799wsbQqZKAQA4otXDbGZxDiKaWJyejpiTk4Pi4mJ3xELuNkKFRADItu4XxgqJRETkNqqF4qPmAGA2O2wyMz4cQTIJ2rqNON3U4cHgiIjcz+kk7I9//CPeeecdbN26FR0d/KHoV2xJWE0RYOp12CRHLVZILKxs4TePRETkHgnzgIBQoLsVaDjusIlMKsHc5EgAXBdGRBOP00nY9ddfj9raWtx7771YsGABcnJyMH/+fPuv3Nxcd8RJrhCTCgTLAVO3WJXKgfSkCATJJGg18JtHIiJyE6ms74vBUUxJLNLo3B8TEZEHyZy94OKLL4YgCO6IhdxNEMSbXvmXYkWq5OxBTQKkEmSq5DhwpgUFlTqkxoV7Pk4iIpr41PnAmT3ilMQFNztsYt+0mSNhRDTBOJ2ErV+/3h1xkKfYk7DDwELHTbLVCmsS1oJrc1WejY+IiCaHURXnEJOwo9WtMJrMkEm5sw4RTQz8aTbZ2CokDlOcIydFXBfGColEROQ2Kuv9qOkU0NHksMm02HCEBUrR1WtCeQOnyBPRxOH0SJhNWVkZysvL0d3dPejclVdeOZ6YyJ2U88XHxjLAoBfXiJ0jx1oh8URdGzp7jAgNHPM/EyIiIsdCo4HYNPF+pNkPzLp0UBOpRMA8pRz7TjejSKPDrMQILwRKROR6Tn+67urqwq9+9Svs3bsXgiDAYhEr6PVfJ8YkzIeFxwPyFEBfCVQXAtOXD2qSJA9BYmQwalsNKNHokT89xvNxEhHRxKfOE5Owqn0OkzBAnJK473QzSjR6/HCB2sMBEhG5h9PTEZ999llotVq8+eabsFgseOaZZ/Dqq6/iBz/4AaZMmYIPPvjAHXGSK6msFam0w+wXZtu0mfuFERGRu9jXhR0YskmGtUJisZbFOYho4nA6Cdu1axd++ctfIicnBwCQlJSExYsX4+mnn8bcuXPx9ttvuzxIcjFbWWDt4SGb2KYkFlS2eCAgIiKalGxJmPbQkPtXZirFafOlNa3oMTre2JmIyN84nYRptVpMnz4dUqkUgiCgq6vLfu6KK67Arl27XBoguYE9CTs0ZJP+xTlsU06JiIhcKmamuDbZ2AXUljhsMiUmFJHBMvQYzSira/NwgERE7uF0EhYREYHOzk4AQExMDM6ePWs/ZzQa7efIhyVlAYIUaKsB9FqHTTKUckglAurbulGjN3g4QCIimhQkEkCVJz6v2u+wiSAI9k2bi7lfGBFNEE4nYbNmzcKZM2cAAPn5+Xj++edx8OBBFBcXY9OmTUhPT3d1jORqgWFA/Bzx+RCjYSGBUqRbq1CxVD0REbnNKPYLy7Bt2qzVeSAgIiL3czoJu+aaa9DRIe7V8dvf/hZdXV346U9/iuuvvx7V1dX405/+5PIgyQ1speqHnZKoAMB1YURE5EZq60iYZujiHFnWJKyoiiNhRDQxOF2i/rLLLrM/V6vV+Pzzz+3l6nNycqBQKFwZH7mLagFw+J/DJ2HqKLy5txKFrJBIRETuoswFBAmgrxKnyMuVg5rYKiSW1bXB0GtCcIDUw0ESEbmW0yNh5woNDcWFF16IFStWMAHzJ7biHNUFgNnksIltJKxEq2dFKiIico+gcCBhrvhc43hdWLI8GDFhgTCaLSitafVgcERE7jHuJIz8VFw6EBAG9LSLG2U6MC02DPKQAHQbzThey5seERG5iX1d2NDFOfrWhXFKIhH5v1FNR0xPT4cgCKN6QUEQcOzYsXEFRR4gkQLJOcDZbwDNQSB+9qAmgiAgW63A7rIGFFTq7NWpiIiIXEqdDxx4adjiHJkqBf5zokFcF7bYg7EREbnBqJKwO+64Y9RJGPkR5XwxCdMeAub/1GGTnBQxCSus0uFnHg6PiIgmCVtxjppioLcLCAgZ1MS2aTMrJBLRRDCqJGzdunXujoO8QbVAfBzVps2skEhERG6imAKEJwDtdUB1ITBl8FBXpnU64qn6dnR0GxEW5HRtMSIin8E1YZOZrThH3VGgx/Em29nWKYhnmjrR3NHjocCIiGhSEQRAtVB8PsSUxPjIYCRGBsNsAY5Wc50yEfk3p79G2rp164htrrzyyjGEQh4Xqez75rG2GEhZNKiJPDQA0+PCUNHQgcKqFlyYnuCFQImIaMJT5wPHtw1ZnAMQN22uPWZAsUaHvGnRHgyOiMi1nE7ChtqMuf+aMSZhfkIQAOUC4MQn4pREB0kYIO4XVtHQgcJKHZMwIiJyD3uFxH2AxSLeo86RqZRjx7E6VkgkIr/ndBK2a9euQcdaWlqwa9cufPrpp/j73//uksDIQ5TzxSRMc3DIJjkpCrx3WIMCbtpMRETukpQFSAOBzkag5TQQPX1QE3uZeg2TMCLyb04nYUrl4J3slUol5s2bB6PRiNdffx3r1693SXDkAbZ1YcMU58hWKwAAhZU6mM0WSCSslElERC4WEAwkZYsbNlftd5iE2bZKqWjsgL6rF/KQAM/GSETkIi4tzLF48WJ8+eWXrnxJcjflfPFRdxboaHTYJD0xAsEBErR1G1He0O7B4IiIaFKxlaofojhHdFggVFFi+fqjnJJIRH7MpUmYVquFRMKCi34lWA7EponPhxgNk0kl9m8fOSWRiIjcxp6EDV2cw1aqvphJGBH5MaenIx44cGDQsZ6eHpw4cQLPP/88Fi/mNvZ+R5kLNJaJSVjaxQ6b5KQosP90MwoqdfjhArWHAyQioklBZU3C6o4ChlYgOHJQk0yVAp+W1KJYo/NsbERELuR0EvbTn/50QCVEALBYLACA8847Dw8++KBrIiPPUeYCRZuHL85hXRfGTZuJiMhtIpMARQqgqxS/GExdMahJptI6EsbiHETkx5xOwl5//fVBx4KCgqBUKhEbG+uSoMjD+hfnGKIscE5KFACgrK4NHd1GhAU5/U+HiIhoZOp8MQmr2u8wCZtrTcI0LV1o7uhBdFigpyMkIho3pz9J5+XluSMO8qaEeYA0CDDogOYKICZ1cJPIYCTLg1GtN6BYo8fi1BjPx0lERBOfKg8o2TJkcQ55SACmxYbhdGMHSrR6LE+L83CARETj53QVjdOnT2P/fscLZvfv348zZ86MNybyNFkgkJQpPh+mVL1tNKygilMSiYjITWzFOTQHAbPZYRN7cQ4WiyIiP+V0ErZ+/XqHGzYDwFdffcU9wvyVE/uFFVTq3B8PERFNTgnzgIBQoFsPNJ5w2CRDyQqJROTfnE7CSkpKsHDhQofnFi5ciCNHjow7KPKCUSRhOSkKAGISZivGQkRE5FJSWd89aYgpibZtU0pYnIOI/JTTSVhbWxtCQ0MdngsODoZezx+Ifsl2w6spBow9DpvMU8ohkwhobO+GVtflweCIiGhSUeeLj0PsFzY3ORISAahtNaC+1eDBwIiIXMPpJCwhIQHFxcUOzxUXFyMuznMLZDs6OvCXv/wFS5YsQUZGBtauXYtPPvlkxOvef/99zJo1y+GvhoYGD0Tug6KnA8EKwNQN1DkezQwOkGJOsrhnC6ckEhGR29g3bXY8EhYWJMOM+HAALFVPRP7J6eqIq1atwgsvvIDs7GwsWrTIfnzfvn148cUXce2117o0wOGsW7cOJSUluOeeezB16lRs27YNd999N8xmM6644ooRr3/ssccwffr0AccUCoWbovVxgiCOhpXvEqckKuc7bJatVqBYo0dBpQ5XZCV7OEgiIpoUVNZlD02ngI4mIGxwRd4MpQJlde0o1uqxak6ChwMkIhofp5OwO+64A9988w1uvvlmTJ06FYmJiaitrcWZM2cwY8YMrFu3zh1xDrJ79258++23+Nvf/obLL78cALBo0SJUV1fjiSeewGWXXQapVDrsa8ycORMZGRmeCNc/qBb0JWH4pcMmOSkKvP79WVZIJCIi9wmNBmLTgMYyQHMAmHXJoCaZKjneO6xBiUbn+fiIiMbJ6emIEREReOedd3DnnXdCLpejuroacrkc69atw7/+9S+Eh4e7I85BduzYgdDQUFxyycAfzFdffTXq6+tRVFTkkTgmlNEU51CLZeqPVrei22jyRFRERDQZjTAl0V6mXqNnsSgi8jtOj4QBQFhYGO644w7ccccdro5n1E6ePInU1FTIZAO7MGvWLPv5+fMdT6mzuf3229Hc3IyIiAjk5eXhN7/5DdLS0sYUj8k0toTEdt1Yr3epxGxIAaCxDKaOFiA4clATlSIIUaEBaOnsxVGNDlnWsvVj5VP99wL2n/3v/zjZjLf/k/XPbdJQ5wMFbw5ZnGN2UiRkEgFNHT2o1hugVIR4OEAiorEbUxIGiFUSCwsL0dLSguXLl0Mul7syrhHpdDqoVKpBx21x6HS6Ia+NjY3F7bffjuzsbISHh6OsrAwvvPACrr/+emzevBnp6elOx1NSUuL0Na683lXmhSYhqLMG5Xu2oC0u12GbaZEStHQC2/YehaUpzCXv6yv99xb2n/2fzCZ7/2kIKutImPYQYOoFpAEDTgcHSJGWEIFjNa0o0eiYhBGRXxlTErZp0ya8+OKLMBgMEAQB7777LuRyOX72s5/h/PPPx6233urqOB0SBGFM55YtW4Zly5bZf79w4UIsX74cV1xxBf7xj3/gueeeczqWjIyMEdegOWIymVBSUjLm611NKF8EHPsAM0L0sGRnO2yzrPkUDteeQoM5HNnZWeN6P1/rv6ex/+w/+z/2/tuupwkqNg0IlgMGPVBb4rBgVJZajmM1rSjS6HHJvCQvBElENDZOJ2FvvfUWNm3ahB/96EdYunQpbrvtNvu5FStW4IsvvvBIEqZQKByOdtn2KXN2ZE6lUiE3N3fMa8mkUum4PkSN93qXUS8Ejn0ASXUBMEQ8uVOjAQBFGr3LYvaZ/nsJ+8/+s/+Tt/80BIlEHA07tUMszuEgCctQKrAZVdy0mYj8jtOFOd566y3cdNNNeOCBB7BkyZIB56ZMmYKzZ8+6LLjhpKWloby8HEajccDxsrIyAGLlQ2dZLBZIJE7/kUws9uIcB4EhFjpnqRUQBKCyuRON7d0eDI6IiCYV+6bNIxXn0LE4BxH5FaczjqqqKixdutThubCwMLS2to47qNFYtWoVOjs78cUXXww4/sEHHyA+Ph5ZWc5Nk6uqqsLhw4edvm7CScwEBCnQXge0ah02iQwOQGqcWAWzkJs2ExGRu9grJDouzpGWEIFAqQStBiMqmzs9GBgR0fg4PR0xIiICjY2NDs9ptVrExAzeUNEdli9fjvPPPx8PPfQQ2tvbkZKSgk8++QR79uzBhg0b7FNb7rvvPmzduhU7duyAUqkEANx0001YsGAB0tPTERYWhrKyMrz00ksQBAF33XWXR+L3WYGhQMJcoLZYXAwtH1z8BABy1Aqcqm9HQVULN8kkInKR9vZ2PPvsszh+/DiOHTuGlpYW3HnnnR7bg9PnKHMBQQLoqwC9FpArB5wOlEkwOzkSRVU6FGn0mBLjmmJRRETu5vRI2OLFi/HSSy+hs7PvGydBEGA0GrF58+ZBUxTdaePGjVizZg2efvpp3HLLLSgqKsKTTz6JNWvW2NuYzWaYTKYB0xTS0tLw2Wef4Q9/+ANuueUWvPTSS1i0aBHee++9MZeon1BsUxI1B4dskpMi7hdWWKXzQEBERJODTqfDv//9b/T09GDVqlXeDsf7gsLFLwYBQON4NCxTKU5J5KbNRORPnB4J+81vfoNrr70Wq1evxqpVqyAIAt58802UlpaiuroaTz31lBvCdCwsLAwPPPAAHnjggSHbrF+/HuvXrx9w7L777nN3aP5NmQscehXQHh6ySU6KAgBQVKWHyWyBVDJ0NUoiIhodpVKJAwcOQBAENDc3Y8uWLd4OyfvU+WJ1xKoDwNyrBp3O6LdpMxGRv3B6JGzKlCnYvHkzpk+fjs2bN8NiseDDDz9EVFQU3n77bSQnJ7sjTvIk1QLxsboAMDveDDUtIQKhgVK0dxtxqr7dg8EREU1cgiAMu8XKpDRCcY4slQIAcEQrfilIROQPxrRP2IwZM/Dyyy+jp6cHLS0tkMvlCA4OdnVs5C2xaUBgONDTDjQc75sK0o9UIiBTJcfeimYUVLZgVmKEFwIlIqLhmEyOv0gb7XVjvd6lkhdACsBSUwSzoR0IGLgp89ToYIQESNHRY8KpulbMiA8f91v6VP+9gP1n//s/Tjbj7f9orxtTEmYTGBiIhAQWZZhwJFIgOQc4s0cszuEgCQPEdWF7K5pRWKXDDXkpHg6SiIhGMt7NrH1iM2yLBZlBUQjobsHJr99FR0zGoCZTIiU43mTCtu9LcMGUEAcvMjY+0X8vYv/Z/8nM3f0fVRK2detWp170yiuvHEMo5FOUuX1J2PwbHTbJVisAAAUsU09E5JMyMjLGtBG2yWRCSUnJmK93NcnJ84ET25AW0gJLdvag84u0pTj+3Vm0ShXIzp497vfztf57GvvP/rP/Y++/7fqRjCoJ+9Of/jTqNxYEgUnYRGCvkHhoyCY51iSsrL4NbYZeRAQHeCAwIiIaLalUOq4PUeO93mVS8oET2yDRHgQcxJOtjgJwFiVavUvj9Zn+ewn7z/6z/+7r/6iSsF27drktAPJRtiSs/hjQ0wEEDt57JT4yGEpFCLS6LhRr9Dh/RqyHgyQiokmhf3EOiwU4p3iJrULi0epWGE1myKRO1x0jIvKoUSVhtk2OaRKRK4GIJKCtBqgpAqac57BZTooCWl0XCqt0TMKIiMg9krIAaSDQ0QC0nAaipw84PS0mDBFBMrR1G3Gyvh2zkyK9FCgR0eiM+aui9vZ2fPPNN9i2bRu+/fZbtLezTPmEYxsN0w49JbFvXViLBwIiIpr4du/eje3bt+Orr74CAJw6dQrbt2/H9u3b0dXV5eXovCQgWEzEAKBq8KbNEomAeUrbfmE6DwZGRDQ2Y6qO+PLLL+OZZ56BwWCAxWKBIAgIDg7Gb37zG9x8882ujpG8RTkfOL5t2CQsJyUKgFicw/ZvgYiIxu7hhx+GVqu1/96WgAHi8gCVSuWt0LxLnQ9oDohTErNuGHQ6UyXH9xVNKNbocf1CL8RHROQEp5OwrVu3YsOGDVi2bBmuuuoqxMfHo76+Hlu3bsUTTzyBqKgoFuaYKJTWTZuHKc4xNzkSAVIBTR09qGruQkpMqIeCIyKamL788ktvh+Cb1HnA9wCqDjg8bVsXVqLVezAoIqKxcToJe+2113D55Zfjr3/964Djl156KX7/+9/jn//8J5OwiSI5G4AA6CuB9nogPH5Qk+AAKeYky1FUpUNBVQuTMCIicg9VnvhYfxQwtALBA9d9ZSoVAIDSmlZ0G00Ikk3eqm5E5PucXhNWUVGBNWvWODy3Zs0alJeXjzso8hHBciA2TXyuPTxksxzuF0ZERO4WmQQoUgCL2eE0eXV0CBShAeg1WXCits0LARIRjZ7TSVhwcDD0esdD/Xq9HsHBweMOinyIyjolUXtwyCY5KQoAQEGVzv3xEBHR5GUbDXNQnEMQBGTYi3NwSiIR+Tank7Dc3Fw888wzqKurG3C8oaEBmzZtwoIFC1wWHPkA5XzxcbjiHGqxOMexaj0MvSZPREVERJNR//3CHMi0rQtjEkZEPs7pNWF33303brjhBlx00UVYvHgx4uLi0NDQgL1790Imk+GZZ55xR5zkLbbiHNpDDjfIBMQpIDFhgWjq6MGxmlbMt1ZMJCIicim1dSRMcxAwmwHJwO+SM1UKAEARy9QTkY9zeiRs5syZePfdd7Fy5UqUlJTg/fffR0lJCVauXIktW7ZgxowZ7oiTvCVhLiANAgx6oMnxej9BEPrtF6bzXGxERDS5JMwDAkKBbj3QeGLQadtI2Mn6dnT1cGYGEfmuMe0TNm3aNDz55JOujoV8kTRA3CBTs18cDYt1nGTnpCiw63i9ddPmaZ6NkYiIJgepDFDmAmf2iFMS42cPOJ0YGYzY8CA0tnfjWE0rcqdwZgYR+SanR8JoElL1m5I4hP6bNhMREbmNevjiHH3rwnQeDIqIyDljGgk7duwYPv74Y1RXV6O7u3vAOUEQ8Nxzz7kkOPIRylzxcZgKiZkqOQQB0Oq6UN9mQHwEq2QSEZEbjKI4x5fH61khkYh8mtNJ2NatW3HvvfdCIpEgOjoaAQEBA84LDgo3kJ+zVUisLQGM3YAsaFCTiOAAzIwPR1ldOwordbhobqKHgyQioklBtVB8bDoFdDQBYTEDTttGwoq1TMKIyHc5nYQ999xzWL58OR5//HHI5XJ3xES+JmoaEBINdDUDdUf6RsbOkaOOQlldOwqqmIQREZGbhEYDsWlAYxmgOQDMumTA6QylAgBQ3tCO9m4jwoPGNOmHiMitnF4TVl9fjxtvvJEJ2GQiCH2Jl2a4dWEKALAW5yAiInIT+7qwwVMS4yKCkCwPhsUCHOFoGBH5KKeTsNmzZw/aqJkmAfu6sJGLcxRr9DCZLZ6IioiIJiPV0MU5ACCDmzYTkY9zOgn7wx/+gBdeeAHHjx93Rzzkq0ZRIXFGfDjCAqXo7DGhrK7NQ4EREdGkYyvOoT0EmHoHnbZt2sx1YUTkq5yeKJ2dnY2LLroIV111FeLi4gZNSxQEAR999JHLAiQfkWwtztF0EuhqAUIG770ilQjIUivwXXkTCip1mJ0U6eEgiYhoUohNA4LlgEEvrlVOzhlwOkPJMvVE5NucHgl74YUX8PzzzyMqKgrJyclQKBQDfnGt2AQVFgNETRWfVxcM2YzrwoiIyO0kkmGnJNoqJJ5p6oS+c/BIGRGRtzk9Evb666/jmmuuwSOPPAKpVOqOmMhXKRcALWfE6R+pFzpskqMWR8gKq3Sei4uIiCYfdT5waodYnCP/tgGnFKGBSIkORWVzJ0q0eiyZGeulIImIHHN6JKyjowOXX345E7DJaBQVErOtI2En69uh7+K3j0RE5CZq635hIxTnKNbqPBQQEdHoOZ2EzZ8/H+Xl5e6IhXxd/wqJFsfVD2PDg6CODgEAFHMuPhERuYsyFxAkgL4KaK0edDrTui6suIrFOYjI9zidhN1///3417/+hZ07d6Knp8cdMZGvSsoEJDKgox7Qa4ZsZpuSWFCp81BgREQ06QRFAAlzxecO14UpAAAlrJBIRD7I6TVh11xzDYxGI9atWwdBEBAcHDzgvCAIOHRo6Olq5McCQsQbXk0RoD0IKNQOm+WkKPBRUTXXhRERkXup84HaEjEJm3vlgFPzlGKFXq2uC43t3YgND/JCgEREjjmdhF188cUQBMEdsZA/UOZak7BDwNyrHDbJVisAiBUSLRYL/70QEZF7qPOBAy+JxTnOEREcgOlxYaho6ECJVo8Vs+K9ECARkWNOJWEmkwm33XYboqOjWYp+slIuAA6+MmxxjjnJkQiUStDS2YuzTZ2YGhvmwQCJiGjSUFmLc9QUAb1d4oyNfrJUClQ0dKC4ikkYEfkWp9aEWSwWrF69GoWFhW4Kh3yerThHTSFgMjpsEiSTYq51GkhBFfcLIyIiN4maCoTFA+ZeoLpw0Gn7ps2skEhEPsapJEwmkyE2NhaWISrj0SQQOxMIjAB6O4GG40M2s+8XxuIcRETkLoIAqK2bNmuG3rS5WMPiHETkW5yujrh69Wps3brVDaGQX5BIAWWO+Fx7cMhmtv3CClicg4iI3EmdLz46qJA4JzkSEgGob+tGXavBw4EREQ3N6cIc6enp+PTTT3HjjTfioosuQlxc3KDCCxdddJHLAiQfpMwFTn8tFufIvclhkxxrcY5j1a0w9JoQHMDNvYmIyA3sSdg+cQ/Lfp9JQgNlSEuIwPHaNhRV6XDR3EQvBUlENJDTSdgf//hHAEBdXR327x/8rZMgCCgtLR1/ZOS7lAvER+3hIZuookIQGx6ExvZuHNHqsWBqtIeCIyKiSSUpC5AEAB0NQMtpIHr6gNMZSjmO17ahRKtnEkZEPsPpJOz11193RxzkT2zFOeqPAd3tQFD4oCaCICAnRYEdx+pQWKVjEkZERO4REAwkZwOaA+KUxHOSsEyVHFsOabgujIh8itNJWF5enjviIH8SmQREJANt1WJZ4KnnO2yWrRaTsAIW5yAiB7p7TTCz0BO5gjq/LwnLumHAqUyVAgBQrNFx70oi8hlOJ2E2bW1tKCwsREtLC5YvX859wyYbVS5QWi2uCxsiCcuxFeeoZJl6osnMYrGgRm9AaU0rjte24VhNK0prWnGmsQOJYVL8J8sCKZeN0nio84Dv4bA4R3pSBAKkAlo6e6Fp6YI6OtTz8RERnWNMSdimTZvw4osvwmAwQBAEvPvuu5DL5fjZz36G888/H7feequr4yRfo8wFSj8etkJipkoBiQBU6w2oazUgITLYgwESkTcYek0oq2vD8Zq+ZOt4bRv0Xb0O2yuCJZBwYILGS2WdpVN/FDC0AsGR9lNBMilmJUbgiLYVJVo9kzAi8glOJ2FvvfUWNm3ahB/96EdYunQpbrvtNvu5FStW4IsvvmASNhnY1oUNU5wjPKivKlVBpQ6XzOOCaKKJwmKxoK61G6U1rThmTbRKa1pR0dAOs4MZhlKJgNS4MMxOirT/SosLhba8lNPDaPwikwB5CqCvFGdopK4YcDpDqcARbSuKNXpclpHkpSCJiPqMKQm76aab8Ic//AEmk2nAuSlTpuDs2bMuC458WHIOAAHQVwFtdUBEgsNmOSkKMQmramESRuSnDL0mnKpvF5Otmjbr6FYrWjodj25FhQbYE630xAjMTorEzIRwBMkGzjk0mUyoZgJGrqLOE5Owqv2DkrAslRyb94vrwoiIfIHTSVhVVRWWLl3q8FxYWBhaW1vHHRT5gaAIIC4daCgVv3VMv8xhsxx1FDbvr2JxDiI/YLFYUN8mjm6VWpOt0ppWVDR2wORgeEsqETA9VhzdSk8Sk605SZGIjwji6BZ5njofOPIuoBm8LixDJa5bL9HqYTZbIOEcWCLyMqeTsIiICDQ2Njo8p9VqERMTM+6gyE8oc0dOwqzFOUo0ehhNZsikEg8GSERD6TaKo1ul/Ua2Smva0NzR47C9PCQAs62J1uykSMxOFEe3uBE7+Qy1dV1Y1QHAbAYkffebtIQIBMkkaDMYcba5E9Niw7wUJBGRyOkkbPHixXjppZewcuVKBAUFARD3hDIajdi8eTOWLFni8iDJR6lygcI3xSRsCKlx4YgIkqGt24gTdW2Ym8wqmkSeVt9mQGlNG45bR7ZKa9pQ3tAOo4PRLYkATIvtv3ZLTLwSI4M5ukW+LWEeEBAKdOuBxhNA/Gz7qQCpBHOSI1FQqUOxRsckjIi8zukk7De/+Q2uvfZarF69GqtWrYIgCHjzzTdRWlqK6upqPPXUU24Ik3xS/+Ic53zraCORCMhSK/DNqUYUVOqYhBG5UY/RjPKGdvs0wtKaNhyvbUVju+PRrchg2aBkKy0hgqNb5J+kMvG+dGYPULVvQBIGAJlKuTUJ02NtttJLQRIRiZxOwqZMmYLNmzfjsccew+bNm2GxWPDhhx8iPz8ff/3rX5GcnOyOOMkXxc8BZMHit47N5UDsTIfNclL6krCfLJri4SCJJqbG9m57smUrB1/e0I5e0+DRLcE2upXYl2ylJ0UiWc7RLZpg1HnWJGw/kHvTgFMZKgWAsyjR6L0RGRHRAGPaJ2zGjBl4+eWX0dPTg5aWFsjlcgQHcw+oSUcaACRlA1V7xSmJwyRhAFBYxU2biZzVa+ob3erbe6sNje3dDttHBMsGJVuzEiIQEsjRLZoE1Pnio4NNmzOtxTmOVOthMlsgZXEOIvIip5Owe++9F7/+9a+hVqsRGBiIhIS+0uRarRbPPPMMHnvsMZcGST5MmSsmYZqDQNYNDptkq6MAAOUNHdB39kIeGuDJCIn8RlN7t32/LVs5+FP17egxmQe1FQRgakwYZidFID2xb0qhUhHC0S2avFQLxcemk0BHExDWVywsNS4coYFSdPaYUN7QjrSECC8FSUQ0hiTsgw8+wP/7f/8ParV60LmWlhZs3bqVSdhkopwvPg5TnCM6LBBTYkJxtqkThRodlqfFeSg4It/V0W3E7hP1+KK4Df8oPIjjtW2obxtidCtIhvRzkq1ZiREIDRzTZAaiiSs0GohNAxrLAM0BYNYl9lNSiYB5yXLsP9OMYo2eSRgReZVL7+B6vR6BgYGufMlhdXR04KmnnsJnn30GvV6P6dOn49Zbb8Xq1atHvLapqQkbNmzAV199BYPBgPT0dPz2t7/F4sWLPRD5BKJaID7WlgDGbkAW5LBZjlqBs02dKKhsYRJGk1a1rgu7Suuwo7Qee8ub+o1wddjbTIkJtU4nFPfempMUCVUUR7eIRk2VJyZhVfsGJGGAuF/Y/jPNKNHocG2uyksBEhGNMgk7cOAA9u3bZ//9li1b8PXXXw9o093djV27diE1NdW1EQ5j3bp1KCkpwT333IOpU6di27ZtuPvuu2E2m3HFFVcMeV1PTw9uuukmtLa24v7770dMTAzeeust3HLLLXj11VeRl5fnsT74PcUUIDQG6GwSEzFbUnaOnJQobC2sRmGVzrPxEXmR2WzBkWo9dh6rw87SehyrGbiZfUp0KNIVFiydNw1zlAqkJ0YgLIijW0Tjos4Tt08ZZl1YEYtzEJGXjepuv2/fPjzzzDMAxD3BtmzZ4rBdcnIy/vu//9t10Q1j9+7d+Pbbb/G3v/0Nl19+OQBg0aJFqK6uxhNPPIHLLrsMUqnjhehbtmxBWVkZ/vWvfyEnJwcAkJ+fj7Vr12LDhg1D9o8cEARxXdjJL8QpiUMmYQoAQEGlDhaLhd/q04Rl6DXh21ON2Flah12l9QOmGEoEYH5KFFbNScCq2fGYGh2CoqIiZGenDPnzioicZCvOUX0YMPWKRaSsMlUKAMCxmlb0mswIkA7eWoWIyBNGlYTdcsst+PGPfwyLxYLzzjsPL7/8MubMmTOgTWBgIMLCPLf54Y4dOxAaGopLLhk41eDqq6/GPffcg6KiIsyfP9/htTt37sS0adPsCRgAyGQyrFmzBk8++STq6uoGFByhESgXiEmY5iCQf5vDJumJkQiUSaDv6sXpxg5Mjwv3cJBE7lPfZsCXpfXYWVqPb041wNDbV0gjLFCKZWlxWDk7AStmxSEmvG/Krslk8ka4RBNbbBoQLAcMeqDuCJDcd6+fEh2KiGAZ2gxGlNW1ce9KIvKaUSVhwcHB9hL0u3btQlxcnEfXfjly8uRJpKamQiYb2IVZs2bZzw+VhJ08eRK5ubmDjve/1tkkbKwfpmzX+fWHsaRsSAFYtIdgHqIfUgGYlxyJw5U6HDrbjCnRIQAmSP/Hgf33z/5bLBacqGvHztJ6fHm8ftDUpiR5MFalx+PC2XHInxaDIFnft+39++qv/XeV8fZ/sv650QgkEnFd2Kkd4pTEfkmYRCIgQynHd+VNKNHomYQRkdc4vfhAqfSNXeZ1Oh1UqsGLauVyuf38cNfa2jl77VBKSkqcvsaV13uTtCcA2QCE5nKU7P8apsBIh+2UwT04DGBXQTmmCw0Dzvlz/12B/ff9/veaLDja0IODNd04UG1AY+fAsvEzogKwIDkIC5ODMEUugyD0AB1alB7Rjvja/tB/d5rs/Sc3UNuSsH2DZmhkqhT4rrwJRRo9buAScCLyEqeTsN7eXrz44ovYtm0bqqur0d09sKSyIAg4duyYywIcznDrikZaczSeax3JyMgY05oOk8mEkpKSMV/vKywHpkNorkBGTC+Qmu2wzUXSWnxcVoiqLhmys8U2E6X/Y8X++3b/mzt68J+yBnx5vB57Tjaivbtv5CVIJsGSGTG4MD0eF86KQ3yk8xvW+3r/3W28/bddTzSI2ppdDVOco0Sr82BAREQDOZ2EPfnkk3jttdewbNkyrFq1ymvTEhUKhcMRK71enBbkaKTLFdcORSqVjutD1Hiv9zplLtBcAWlNIZB2kcMm86dGAwCO17ahxwSEBPb11+/7P07sv2/032KxoLyhA7tK67CztA6HzrbAbOk7HxcRhJXp8Vg1OwHnz4gd8G94PHyl/94y2ftPbqDMBQQJoK8CWquByGT7qQyleI8/UdsGQ68JwQH8t0dEnud0EvbZZ5/hjjvuwJ133umOeEYtLS0N27Ztg9FoHLAurKysDAAwc+bMYa+1tetvNNfSEJS5QMmWYTdtTpYHIz4iCPVt3SjR6pE3LdqDARI5ZjSZcfBsC3Yeq8Ou4/U43dgx4PzspEismi0mXhlKOSQSVvYk8nlBEUDCXHHrlKr9wNwr7adUUSGIDgtEc0cPjte2IVut8FqYRDR5OV2bVa/XY8ECx2XIPWnVqlXo7OzEF198MeD4Bx98gPj4eGRlZQ17bUVFBYqKiuzHjEYjPvroI2RlZbEy4lgorf8mNAcBi8VhE0EQ7KXqC6taPBQY0WCthl58XFSNu/5VgNxHd+KGF/bipW9O43RjBwKkApalxeGRtXPxzR9X4LO7luKei2YhS61gAkbkT2yl6s+ZkigIgn00rESj83BQREQip0fCFi5ciOPHj2PRokXuiGfUli9fjvPPPx8PPfQQ2tvbkZKSgk8++QR79uzBhg0b7FNb7rvvPmzduhU7duywFxW59tpr8fbbb+Ouu+7CPffcg5iYGLz99ts4ffo0Xn31VW92y38lZgCSAKCzEdBVAlFTHDbLVkfh86N1KKjUeTY+mvQqmzrFvbuO12FfRTOM/eYZRoUGYEV6PH4wOwFL0+IQzg2TifyfKg848JJYnOMcmSo5dpc1oJibNhORlzj9SeOBBx7Ar3/9ayQnJ+OCCy7waqn6jRs34u9//zuefvpp6HQ6TJ8+HU8++SRWr15tb2M2m2EymWDpNzoTGBiI1157DRs2bMCjjz6Krq4uzJ49Gy+++CLy8lgqaUwCgoHEeUB1gTglcYgkrP+mzUTuZDJbUFils26aXIeyuvYB52fEh2OldZrh/JQoSDnKRTSx2Ipz1BQBvQbxPmVlHwnTMgkjIu9wOglbu3YtjEYj7rrrLgiCYN8/zEYQBBw6NPS6IFcKCwvDAw88gAceeGDINuvXr8f69esHHY+NjcXjjz/uzvAmH2VuXxI272qHTTJVckgEoLbVgBp9F+LDvbvfHE0sHd1G7DnZiF2ldfjyeD2aOnrs56QSAQunRmHV7ASsmp2AqbGe21yeiLwgaioQFg901AM1hUBK3wyeLOs6sLK6NnT2GBEayNFvIvIsp3/qXHzxxWMq4U6TgDJXnPoxTHGO0EAZ0hMjcaymFYWVOlw0J96DAdJEVKPvws7SeuwqrcN35U3oMfbt3xURLMMFs+KxanY8LkiLhzw0wIuREpFHCYI4GnZ8mzglsV8SlhDZVyjqWHUrFkxloSgi8iynkzBHo0pEAPqKc1QXAiYjIHX8zys7RYFjNa0oqGISRs6zWCw4om3FTmsZ+aPVrQPOp0SHWke74rFwWjQCpE7XHyKiiUKdb03CHO8XtrO0HsUaPZMwIvI4jr+T68TMAIIige5WoP4YkJTpsFmOWoG391WioJIVEml0DL0mfFfeaB/xqmvt2yReEID5KVFYOVssrDEjPpyj9UQksm/avE+s3NvvZ0OmSmFNwnTeiY2IJrVRJWFHjx516kXnzp07pmDIz0kkQHIOcHq3OCVxqCQsJQoAUKzRo9dkdtiGqKGtG18dr8eO0jp8c7IRXb0m+7nQQCmWzYzDytnxWJEej9jwIC9GSkQ+KylbrNzb0QC0nAaip9tPZajE4hzFLM5BRF4wqiTsmmuuGdU3yxaLBYIgoLS0dNyBkZ9SLehLwhbc7LDJ9NgwRAbL0Gow4kRtm4cDJF9lsVhwoq4Nu0rrsbO0DoVVugFbziXJg+3VDBdNj0FwgNR7wRKRfwgIBpKzAc0BoOrAwCTMWiGxoqEDbYZeRARzzSgRec6okrDHHnvM3XHQRKHMFR+HKc4hkQjIUiuw52QjCqv0mBc8ZFOa4HqMZhTVdePDbcfw5fEGaFq6BpzPVMmxMj0Bq+bEY05SJKcZEpHz1PnWJGwfkHW9/XBseBCUihBodV04om3F4tQYLwZJRJPNqJKwq666yt1x0ERhS8LqS4HuNiAowmGznJQo7DnZiIIqHebN9GB85FW20a5vTjbi21ON2H+6GR09JgDi+sAgmQTnz4jFqtkJWDk7HgmRzNCJaJzUecD3GLI4h1bXhWKNjkkYkZeYzBb0GM3oMZnRa/tltKDHZEKP0WI/1tem71i30dZePN5jbWd/HZOlr439dcR2vf2O95gs6DGa0GuywGQ245JpAcjOdm+/WZiDXCsiEYhUAa0acYPMqUscNrNt2lxYpcNPZ0Z6MEDyNE1LJ7471YRvTjXiu/JGNLb3DDivCJLgonnJ+MHcRJw/I4b79RCRa6msxTnqjwKGViC4756ToZLjsyO1XBdGZGXoNeHbkw0oOtuFk0YNjBackwRZ7ElPT7+kZnCi1JcsDTjWLwGyHTNbRo7L0042uf89+GmHXE85X0zCNAeHTMKyVQoAwJmmTrR1h3swOHK3lo4efF9hTbpONeJMU+eA8yEBUuRNi8aSGbFYNC0KhrpyzM+ZB6mUa7yIyA0ikwB5CqCvFKfKp66wn8pUKgAAJRomYTR5mcwW7K1owtYCLbYfqUVbt9F6xjv/LwKlEgRIBQTIJAiQShAolSBQZj0mtR6TSfraDfi9BAEyB8esbYNk/X4vs7220K+NBIESoKuu3O39ZBJGrqfMBUo/GnZdWFRYIKbFhuF0YwdONvdiqQfDI9fq6jHh4NlmfHNKnGJ4tLp1QEENqURAtlqB81NjcP6MWOSkRCFQJu7dZTKZUFjPdV5E5GbqPDEJ0xwYkITZinNUNneipaMHUWGB3oqQyKNse25uLdTi46Jq1Lf1bf2SJA9GfLAZ0Qo5gmRSazIk2BOaQHtyJAxIZsRH4Zw2fQmQ/Zhs4LFzEyVvr//21GcTJmHkeirrps3aw8M2y1ErcLqxA2XNPcO2I99iNJlRotXju/ImfHOyEYfOtqDnnK0G0hLCcf6MWJyfGov86dGsOkZE3qXOB468Kxbn6EceGoCpMaE409SJEq0ey9LivBQgkWdUNnVia6EWWwu1qGjosB+XhwTgsowkXJmdjPlqOYqLi5Cdnc1ZKm7EJIxcLykbECTilMS2WnGdmAM5KQq8X6DFt1UGvLm3EnOUcsxKjEAkP7D7FIvFgvKGDnxrHen6vqIJbQbjgDZJ8mCcPyMWS2bE4rzUGMSzoAYR+RL7ps0HALNZ3NfSKkOlYBJGE1pTeze2Fddga6EWBZU6+/EgmQSr5iTgymwllqfFDZilQu7HJIxcLygciEsH6o+JUxLTVztslj9drERV3WbCnz8+Zj+uigpBemIkZidF2B+nxIRBKuG0NU+pazXg21ON1nVdTahtNQw4Hxksw+LUGCyZEYvzZ8RiWmyY16cPEBENKWEeEBAKdOuBxhNA/Gz7qUylHB8XVaNYo/NefEQu1tFtxI5jddhaqMWek40wWatfSATg/BmxWJutxMVzEzhTxYuYhJF7KHNHTMLSEiLw+s0LsPX7UrRYQnGitg3VegM0LV3QtHRhZ2mdvW1wgASzEvqSsvSkSKQnRkARyvn7rtBq6MXe8iZxiuGpRpyqbx9wPlAmwcKpUfYphvOUcibFROQ/pDLxvnRmjzglsX8SphLXhRWzOAf5uV6TGd+cbMTWQi2+OFqHrt6+Ea1MlRxrs5W4IjOJs1V8BJMwcg9lLlDwhlghcRjnz4hFWHuEfd6xrrMHx2vbcLymFcdr21Ba04oTdW0w9JpRpNGj6JybZJI8GLOtCVl6UiRmJ0ZgWmwYZFLJEO9IANBtNOHwWZ04xbC8EUVVugElYgVBXLBum2KYOyUKwQGcF05EfkydZ03CDgC5N9kPz1XKIQhAjd6A+jYD4iP4AZX8h8ViweFKHT4s1GJbcQ2aO/rW2U+JCcXabCXWZicjNY6VqH0NkzByD9umzdUFg+bfD0cRGohF02OwaHrfppkmswVnmzrsSVlpTRuO17ZC09KFGr0BNXoDvjxeb28fKJMgLSEc6YlicjYnKRLpSZGInsRVr8xmC47VtNqnGB440wxD78BiGtNjw3DeDHGK4aLpMRxlJKKJRZ0vPp5TnCM8SIbUuHCcqm/HEa0eF6YzCSPfd6q+DVsLqvFhkRZVzV3247Hhgbg8Mxlrs5ORrVZwqYAPYxJG7hE/B5CFAN2tQNNJIG7WmF9KKhEwPS4c0+PCcVlGkv14q6EXJ6yjZqW2UbPaNnT2mHBE24oj2taBIUUEiaNlSRGYnRiJ9KQITI8Nty9EnUgsFgsqmzvta7q+K29ES2fvgDax4UFYMiMG51nXdSkVIV6KlojIA1QLxcemk0BHExDW92VfpkqOU/XtKKrS48L0BC8FSDS8ulYDPiqsxtZCLY5W933GCQ2U4uK5iVibnYwlM2I5G8hPMAkj95DKgORsoPJ7cV3YOJKwoUQGB2Dh1GgsnBptP2Y2W1DV0onSGjEpO14rTms829SJ+rZu1Lc14OuyBnv7AKmAGfERmJ0YgXR7IZBIxEUEuTxed2ts78Z35U349qQ4xVDT0jXgfHiQDPnTosV1XTNikZYQzm/IiHxMR0cHnnrqKXz22WfQ6/WYPn06br31Vqxe7XhtLTkhNBqImSkmYZoDwKxL7KcylXK8f1iLEi3XhZFvaTX0YntJLbYWavF9RZN9H06ZRMDytDiszVHiB7MTEBLIJQP+hkkYuY8yty8Jy/6RR95SIhEwJSYMU2LCcMm8vtL47d1GcdSsthXHa/oe27qN1imOrUBB3+vEhgfapzPOThJHzWbEhyNI5js/5Dq6jdh/utk+xfB4bduA8wFSATkpUTg/NRZLZsYgU6VAAL8dI/Jp69atQ0lJCe655x5MnToV27Ztw9133w2z2YwrrrjC2+H5P3W+mIRV7RuQhGWoFADE4hyW/rvNE3lBt9GEr4434MNCLXYdr0ePsW/5wIIpUVibo8TqjKRJvcxiImASRu5jWxc2QnEOTwgPkiF3ShRyp0TZj1ksFmhauuyFQEqtidnppg40tvfgG2tyYyOVCEiNC7MWAhETs9mJkUiIDPLIiFKvyYyiKp19iuHhyhYYzQM/LMxOirRPMcybGo2wIP4XJ/IXu3fvxrfffou//e1vuPzyywEAixYtQnV1NZ544glcdtll3Dh1vNR5QOGb4khYP3OSIiGVCGhs70ZtqwHx4fxwS55lNluw73QzPizU4tOSGrT2249zZnw4rsxRYk1WMtTRoV6MklyJn9DIfWxJWN0RoNcABPjWYmdBEKCODoU6OhQ/mNO3BqCrx4SyOtt0xjb7SFmrwYiyunaU1bXjQ1Tb20eFBgxIymYnRWJmQvi4qwlaLBacqGvDt6ea8O2pRuyraEJHz8ANFFVRIfa9uhanxiA23P+mURKRaMeOHQgNDcUll1wy4PjVV1+Ne+65B0VFRZg/f76XopsgbMU5tIcAUy8gFfdICgmUIi0hAqU1rSiq0uMHs7lpM7mfxWJBaU0bPizU4qOiatTo+/bkTIwMxppsscDGnKRILh+YgJiEkfsoUoCwOKCjAagtAdQLvR3RqIQESpGlViBLrbAfs1gsqNEbcLy2td96szZUNLSjpbMX31c04fuKJnt7iQBMiw1DelKkWJ3RWkI/WR487A9Sra5LLBt/qhHfnmpCY3v3gPNRoQE4LzXWXjo+JYbfiBFNFCdPnkRqaipksoG35lmzZtnPO5uEmUymkRsNc91Yr/dZ0amQBMshGPQw1RQDSdn2UxnJkdYkrAUXpolrjSdc/0dpwv79j5K7+69p6cRHRTX4qKgGJ/vtyxkRLMOlcxOxJjsJeVOj7ftxms3moV7KLfj3P77+j/Y6JmHkPoIgjoaVbQe0B/0mCXNEEAQkK0KQrAgZUDnL0GvCqfp2HKvpW2tWWtOKls5elDd0oLyhA58U19jbRwbL7PuZpSdFYmZcGPZqDHj/7FF8V9GM040dA943OECCvGkx4hTD1FjMSYqEhJskE01IOp0OKpVq0HG5XG4/76ySkpJxxTTe633RjIhZkBv2Q7v3fTRM6zuusHQCAL47rsGqePH5ROy/M9h/1/W/rduMbzUG7DnbheNNfdWKZRIgNykIy1JCMD8pCIFSI9BahZLiKpe991jx79+9/WcSRu5lT8IOeTsStwgOkGKeUo55Srn9mMViQX1b94DpjMdr2lDe0I5Wg1hMY//p5nNeSQdAXHeWqZLbpxjmpCh8qhgIEbnXcCPlY5mOlJGRMaZ1ZCaTCSUlJWO+3pcJrSuB3fuhslRDmZ1tPy6J1eOFw9/jbKsF8+bNw5EjRyZk/0djIv/9j4ar+t/VY8LO4/X4qLAaX59stK/jFgRg0bRorM1KxsVzExAZEuCq0F2Cf//j67/t+pEwCSP3sq0Lm6BJmCOCICAhMhgJkcG4YFa8/Xi30YTy+o4BpfNP1LYhUDDhwrnJWDozHvnToxEZ7Fs/jInIMxQKhcPRLr1eLJtuGxFzhlQqHdeHqPFe75OmLAIASDQHgX59m6OUI1Aqga6rF9WtPQAmaP+dwP4733+jyYxvy5vwYYEWnx+tHbCWe25yJK7MVuKKrGQkyn1rnbwj/Pt3b/+ZhJF7JeeIj80VQGezuE/LJBUkk2JOciTmJEfaj5lMJhQWFiI7e86k/kFHREBaWhq2bdsGo9E4YF1YWVkZAGDmzJneCm1iUeYCggTQVwKt1UBkMgDxZ3R6UgSKNXqUaPVQejlM8h8WiwVFGj22Fmixrbgaje099nPq6BCszVLiypxkzIiP8GKU5GuYhJF7hUYD0alAczmgPQzMXOXtiIiIfNKqVavw73//G1988QUuu+wy+/EPPvgA8fHxyMrK8mJ0E0hQBJAwVywYVbUfmHul/VSGUm5NwlqhTBz6JYgAoKKhHR8WVuPDQi3ONHXaj0eHBWJ1RhKuzEnG/JQoVjYkh5iEkfupFliTsENMwoiIhrB8+XKcf/75eOihh9De3o6UlBR88skn2LNnDzZs2MDRcldS5TlMwrJUCry1rxLFGj0uSeReYTRYfZsBHxfV4MNCLYo1evvxkAApfjAnAVfmJGPpzDgESCVejJL8AZMwcj9lLlD8jlghkYiIhrRx40b8/e9/x9NPPw2dTofp06fjySefxOrVq70d2sSizgcOvgxU7RtwOEMlrrs7Wq2H2RLrjcjIB7UZevH50Tp8WKjFt6caYa2vAalEwNKZsVibnYyL5iQiLIgfq2n0+K+F3K9/cQ6LRSwLREREg4SFheGBBx7AAw884O1QJjZ1nvhYUwT0GoAAsUjCzPhwBMkkaO82oaZ9cu6RRKJeswU7S+vxUXENdh6rQ7exb6+unBQFrsxWYnVmEmLDg7wYJfkzJmHkfokZgCQA6GwCdGeBqKnejoiIiCazqKlAWDzQUQ/UFAIpYsVEmVSCucmROFypw6nm3mFfgiaexvZu7D/djN0n6vFJcT3ae+rs56bHheHKbCXWZidjSkyYF6OkiYJJGLmfLEhMxKoPA5qDTMKIiMi7BEEcDTu+TZySaE3CACBTpcDhSh2ePaDHN7V7sWh6DPKmRSN3ShQiuIXIhNLQ1o19p5uwr6IZeyuacLK+fcD5+IggXJGVjCuzlZinjGSBDXIpJmHkGcpcMQnTHgYyrvV2NERENNnZk7D9Aw5fm6vCF8dqUa0z4HClTkzI/lMOiQDMTZYjb1q0+GtqNKLCWLzDn9S3GewJ177TzTh1TtIFAOmJEVg4NQrTAtvwkx/kITCAH5XJPfgvizxDtQA48OKk2rSZiIh8mDpffKzaN2C98jylHF//fjk+//YQ2kMSceCsDvtON6GquQslWnEPsZe/OQ0AmJUQYU/K8qdFIz7S9zfgnUzqWw3Ye9qadFU0obyhY1Cb9MQILJoeYx/xjA4LtO/hKZVw5Ivch0kYeYatOEdNIWDqBaSc0kFERF6UlC2uV+5oAFrOANHT7KcEQUBiuAzZ2SpcnzcFAFCt68KBM83Yd7oZ+62jKCfq2nCirg1v7D0LAJgWG4a8qdH2xEwdHeqFjk1eda0G7K1owt6KZuyraEJF48CkSxCA2YmRyJ8eLSZdHM0kL2ISRp4RnQoEyYFuPVB/DEjipqNERORFAcFAcjagOSBOSeyXhDmSrAjB2mwl1mYrAYhFHA6c7kvKSmtbcbqxA6cbO/DOwSoAgFIR0jd9cVo0pseGcV2RC9XqDdh3usmeeJ12kHTNSYrEoukxyLf+HShCmXSRb2ASRp4hkQDK+UDFV+KURCZhRBODxQJYzIDZCJhNgMVkfW62Prf+3va8f1tjLyS9g6cHEXmMOt+ahO0Dsq536tLY8CBcmpGESzOSAAD6rl4cOtuMfRViYlai1UOr68IHBVp8UKC1XhNonbooTn2blRABCae8jVqNvsu+pmtvRRPONHUOOC8IwNzkSCyaFoN860iXPJQzb8g3MQkjz1HmikmY5hCw4OfejobIu3o6gNPfIObsPgimQgBmB8mMaeDzQQlO/7bmc5IdB9ebjdb3MDm4fpjrhkusLOaRejokKYB5QdFA7nFAKnXVnyzR6KnzgO8xqDjHWMhDAnBhegIuTE8AAHR0G1FQKa4n23e6GYVVOjS29+DTklp8WlJrv2bh1Ch7UjY3ORIyqWTcsUwU1bou63quZuw93YSz5yRdtmIpi6aLie3CadGQhzDpIv/AJIw8p/+mzUSTjcUC1JcCp3YC5buAs99BaurBVAAo9nJs7iRIAYm077Hfc4sgRZt8DuQCEzDyEpV10+b6o0B3GxAU4bKXDguSYcnMWCyZGQsAMPSaUKzRY781KTt0tgX6rl7sLK3HztJ68ZpAKeZPibJOnYtBllqOINnk+f+h1XVhb3mTdYphMyqbBydd85RyayGNaCyYGo1IbhtAfopJGHmOLQlrOO7ymx2RT+psBir+IyZdp74E2qoHnLbI1dAHKyFXxEKQSs9JWGTiNF578iKzPpf0Oy/tO2Y/7zjhGXz9SK95zvXDxiQFBInjY8OsfzGbTDhdWIhsrpEhb4lMAuQpgL5S/IJw+gVue6vgAKl9bdidAHpNZhytbsX+003Yb11X1mowYs/JRuw52QgACJRJkKNW2JOy+VMUCA2cOB/dNC2d2GsvGS9WoOxPKhHEpGuaWEgjd2oUky53M/UCVfsR1nQSqA8CwmKAkChxDSW51MT5n0y+LyIBkKsBfRVQXQBMW+btiIhcy2wS98KzjXZpDw2cricLAaYuAWasBFJXwhw1HeVFRcjOzoaU0/GIvEOdJyZhVfvdmoSdK0AqQbZagWy1ArcuS4XZbMGJujbsq2jC/jNiUtbY3oN91uIfwCnIJAIyVHJ7SfzcKf41/a6qubOveuHpJmhaBiddGdaRrvzp0VjADbI9o7cLKP8KKP0IOPEZpAYd0gHgu35tZMFAsEJMyEIUTjxXsCL2EJiEkWcp54tJmPYQkzCaGFqrgVO7xKSr/CvAoBt4Pm62mHTNWAmknDfw20STyaOhEpED6nzgyLticQ4vkkgEzE6KxOykSNx0/jRYLBZUNHZg/2mx3Pq+082o0RtQUKlDQaUOz++uGFByPX9aNBZOjUZMeJBX+2FjsVigaenC99YiGvsqmqHVDU66MlVye/XCBVOjER7Ej6Ye0d0GnPwCKP0YKPsC6FckyRIai24hGEHmTggGvbj+12gA2mvFX84KDD8nOZOPLoELlouzKiYo/ksnz1IuAI59CGgOejsSorHpNQCV31tHu74Ut1zoL1gufps+YxWQeiEgV3klTCIaJbV1XVjVAbH4jMQ3CmMIgoDUuHCkxoXj/+Wl2JMa29TF/WfEkuzHalpxrKYVr357BgAwIz7cPlKWPy0GiXLPTCOzWCyoau6yVy7cW9GEar1hQBtZv6Rr0fQY5E6JQhiTLs/pbAZOfCYmXuVfAqbuvnORKmD2FcCcNTAnL8DR4hJxloZEIiZsXS3il4xdulE+14nbEgFAT7v4q1XjZMACEBzZN6IWEjX650ERw06H9wX8l0+eZS/Ocdi7cRCNlsUCNJX3TTE8vQcw9v82VxD/XVunGEKZC0j5o5XIbyTMAwJCxQ+MjSeA+NnejsghQRCgjg6FOjoU1+SKX+7UtRr6krLTzThR14ZT9e04Vd+Ot/dVAgBSokPta9EWTYuBOjrEJXuVWSwWnG3qtBfR2FvRhBoHSVeWWoFF1s2Rc6dETag1bX6hrRY4vk1MvE7vEUe1bKJTgTlrgNlrgOScvqSl/ywNwZYIRQKY4tx7m02AQT/6pK3/8d4OABbxeoMe0J117r0F6cApkc4kcBLP7CXH/wnkWcnZ4mL9tmpxGldYgrcjIhrM0Aqc/tpaUGMnoKsceD48sW+K4fQVQGi0d+IkovGTysQvT87sEdeF+WgS5khCZDCuyErGFVnJAICWjh4cONO3gfTRaj0qmztR2dyJdw+JoxCJkcH2pCx/WjRmxIePKimzWCw409SJfRV9myPXtg5MugKkArLVCuRPE0e6JlohEb/RclZMuko/tk6ztfSdS8iwj3ghLt29o0USqXh/HMs90tjjRAJ3znNTt5hsdjaJv5wNWxaMhJk3AtnZzsftBP7PIM8KDAPi5wB1R8R1YWmXeTsiInEKUm1x3xTDqn3iPlg20kAgZZF1iuFKIGGuz09zICInqPP6krDcn3k7mjGLCgvERXMTcdHcRABAm6EXh8622JOyYo0Ota0GfFRUjY+KxGqt0WGByJsabU/MZidFAhCTrtONHdh/Rmcd7WpCXWv3gPcLkArIUUch3zrSNT8lCiGBE3cNj09rKANKPxQTr5qigedUC8XEa/YVQPR078TnLFkgEB4n/nJWb5dzSVv/5xYTBKMBwR3OTp10HpMw8jzlfCZh5H3tDWLCVb5LfOxoGHg+OtU62rVKrGgYGOadOInI/dT54qOXi3O4WkRwAC6YFY8LZsUDALp6TCioarEW+2jG4coWNHf0YPvRWmw/KhZciAiSYa4yEieqdWgx1A14vUCpBNkpCnFN17Ro5DDp8h6LRfzy8NhHYuLVeKLvnCABppwvTjNMXw3Ild6L0xsCQsRfkUnOXWexAD3tMHXpcfZULaLcE50dkzDyPOUC4PDr3LSZPMu694l9iuG53xQGhosVO21ru6KneSdOIvI81ULxsekk0NEkrguZgEICpTgvNRbnpYobSPcYzSjR6uwjZQfPtKCt24i9Fc0A+vYpsxXSyElRIDiASZfXmM2A5oBYSr70o4FT5SUBQOoKcbRr1mVAWKz34vRXgiAW9JCFAkLdyO3HiUkYeZ69OEeBuGiTyF1azvZNMazYDfS0DTyfmNE3xVCdL05/IKLJJzQaiJkpJmGaA8CMH/z/9u48vKkqjxv4N2mA7htdbdlaSLplytaWHURUliKgAvO88xZEEBBBBtBRUGeKgywig1KGpRYRHB4eUAovIKAsOuKMDQgDlqW0lMVSoC1dKd2T+/5xmzS3DVC6JE37/TzPfVLuPbc5Jwn59XfPuedYukZm0V4hR58u4npjc4YBVVodUu7ex28Z+agquIOXh/WBvS2/Fy1KWwXc/Ln6Hq+D0iniFXZAjxFA8DhA+Zw4Oy9ZDSZhZH6eQeJMVBX3xYBH1FQqSoAbP9f0duVelR637yhOGx/4jPjoxIlhiKhap6jqJOxUm0nCalPYyBHm54JgH0ecO5eLDuz1sozKMuDaj2LideVb8V4lvQ7OgHKkOLFG4DNAe3uLVZMah0kYmZ+NQpwK9eZ/ILt9FkCIpWtE1koQgOzLNdPH3/xFuu6JzEa84V4/xNC3Z4tZA4iIWphOkcC5f4nDlonMrbwYuHq0ZvFk45Eb9h3Fe7uCx4nD5jlqo1VgEkaW4dcbuPkf8b6wp5iE0RMoyROvEKYfB66eEJc7MObSqSbpChjK4RlEVD/6yTkyz4j3kBI1t9J84MqR6sWTjwNVRlP+Oz1VM5V8p35cf7IVstp39MGDB/j0009x+PBhFBYWIiAgADNnzsSYMWMee25iYiIWL15s8tjPP/8MT88GTIdJT6b6vjBZ5lngqRgLV4ZaNJ1WXNxbP8Qw8wwg6GqOK2zF2Qv193Z59OD08UT05DyU4kWbskIg+6Kla0OtVXG20eLJP0mXQ3HrZrR4cm+O3GjlrDYJmzdvHpKTk7Fo0SJ07doVBw8exMKFC6HT6TB27Nh6/Y4VK1YgIEC6XoKrq2sz1Jbq8OsrPmZfhExb/uiy1PYU3QauHq+ePv4HcQ0PY55B1UnXcKDLAHEqWiKixpDLxVkSrx6DLOMU0D7S0jWi1qIgo2bx5N9/gWTxZK/QmjW8uAZlm2KVSdi///1v/Oc//8GaNWsQHR0NAOjXrx9u376Njz/+GKNHj4aNzeNvJu3RowfUanVzV5dMcfEHHLwge5AN+8I0AFGWrhFZUlU5cENT3dt1HMi+JD1u6wIEDBN7uro/I35+iIiaWqcoscf91mkggEkYNcK9qzWLJ9/+n/TYU73FHq+gsYBHd8vUjyzOKpOwo0ePwt7eHiNHjpTsf/HFF7Fo0SKcP38evXv3tlDtqF5kMnFIYuphOBSkWLo2ZG4P7gF3kyG7cx7dfzsE+ZFkoLLEqIBMvG9QP8TQrw/HwxNR8+skJl6yW6eAgDcsXBmyKoIAZF2oWTw557LRQZk4akO/eLJrJ4tVk1oOq/yrJi0tDYGBgVAopNVXqVSG4/VJwmbPno28vDw4OTkhMjISb775JpRKZbPUmUzwF5Mwp5yz4hhpZx92w7c22krgXhqQdRHISgbuXhB/rl7nRA7AMG2Go3fNEMPA4eK6PURE5uTXB5DJISvMQLvSHEvXhlo6nU68T/lydeKVf73mmFwBdBsq9nipRgOOXparJ7VIVpmEFRQUwN+/7nAkFxcXw/FH8fDwwOzZs9GzZ084OjoiNTUV8fHxmDx5Mnbu3ImgoKAnrpNW27BFh/XnNfR8q+bbCzYAXLOTgLVBEOzcAA8VBE+V5BFOvq02OWtV739JHpB1AbKsC+K9flkXgZwUyLQVJosLbt0geIXgttwP3gP/D+Q+aun73Bpek8doVe9/AzS2/W31daNm1MFJvC/nbjIc834D0DbXC6NH0FYBv/+3ZvFk4xl6FbbixcTgsYDyecDOzXL1pBbP4kmYRqPBlClT6lV23759CA4OBgDIHvFH+aOOAcCQIUMwZMgQw78jIiIwdOhQjB07Fp999hk2btxYr/oYS05OfuJzmvJ8q6RzRpfOo+GYex4dHtyBrDQfyEiCLCNJUkyrcECpUxeUOXZBqVNXlDl1QaljF1TaebWa5Myq3n+dFrYPMmBXdA12RemwL0qHXVE62pflmiyutbFDqXMASpwDUeocgNLqR52iZjKNrCwdkHXeXC1ocazq/W8Gbb391ML4RwJ3kxFw9iMIKZuAjt0B90Cgo37rDrgHAO0dLF1TMpeqcuDav8UeryuHgBKjeNfeSUy4gscCPZ7l54LqzeJJWLdu3bBs2bJ6lfX19QUgzmBoqrersLAQQE2P2JPw9/dHnz59cP58w/4QVKvV9ZoMpDatVovk5OQGn2/ttOHbxPYHdYdNwQ3I7l0Re0/uXQFyrgB512BT9QCO+ZfgmC+drEFo7wh4KCF4qABPleERrp0BmXVM69ri3//SfCDroti7lXUBsuxL4vtjvJaJEcGtK+AVCsE7FIJ3mDjrk1sX2MnkMDV/YYtvfzNj+xvXfv35RE2q1/+FkPY9ZIUZkJXkin9wZ2jqlnN6SkzK3APExEyfoLl1BRQdzF5talryqtLqpOtbIPU7oLyo5qCdOxA0WrzHK2AY329qEIsnYV5eXpg4ceITnaNUKnHw4EFUVVVJ7gtLTU0FIM562BCCIEDewDUZbGxsGvVHVGPPt3Y2to6w8QsH/MKlB6oqgLx0ICdFTMqyL4uPuVchqygGbp+F7PZZ6TkKO3GtKM8gMSnzChZ/dusKyFvma2zx91+nBXLTxfu2si5W37t1ASjKNF2+nQPgHQJ4h4lDd3zUgFcIZLbOAIAn7Z+0ePstjO1v2+2nFsavN3Rvnsdvv/4Xf/BzgE3BdfH7MTddjEe5V8ULVPdvi9uNk9LzZXJx0fiOgdU9aN1retFcOnOSoZaksgy4f0dcFkX/WHQb8rxrCE//EXKd0RI6jj41U8l3Gcj3kRrNKj9BI0aMwO7du/H9999j9OjRhv179+6Fl5cXwsPDH3G2aRkZGTh79iwGDBjQlFWlxlK0F5Mor2Dpfm0lkHe9JjnTP95LBapKgbu/iZsxmw7VyZmqJkHzDBKvYtq0M1+bLK20oHqijAvA3WTxMfsy8JDeLbh2BrzV1clWmJh4uXXjIpJE1KrpFPaAbzjgb2Kir5I8aVJm+DkdqCgGCm6KW/oJ6XnyduIFQUOCZjTE0ekpfq82FUEQF90uqk6Ui+4Y/Vz97/u3pcMKjciqN8G1C2T6xZP9+vL9oSZllUnY0KFDMXDgQMTGxqK4uBidO3fGt99+i5MnT2L16tWSK6pLlizBvn37cPToUfj5+QEAXnnlFfTt2xdBQUFwcHBAamoqEhISIJPJMH/+fEs1i56ETTvAUyluxnRaIP9GdWJ22ShBq07OqofVScgVYgCUJGfBYmC05iEGOq2YqBrPSph1ASjMMF1eYVfTu+Wjru7lChHX6CIiohr27uLWKUK6XxDE2X5zr9ZK0K6Jj9pyIDdN3GpT2FYnZgG1etC6Aw6ereYe6EbTaYEHOeJIDUlydUfcp+/Rkix78ggKO8DZV0yCnZ8CnH2hc/RFSqk7VENego3CKv9UJitgtZ+suLg4rF27FuvWrUNBQQECAgLwj3/8A2PGjJGU0+l00Gq1EISa1cmVSiUOHz6ML774AuXl5XB3d0e/fv0wZ84cdOvWzdxNoaYkt6m5shhU00sKnQ4o/F3aa6Z/rCiu/jkFwP+rOUdmI/aSGZKz6gTNowfQztQdThZUVlidZF2U9m49LAi5dKpOtqqHE3qrAfduLXa4JhGRVZDJACdvces6UHpMpxOTBEOCZjTEMf+GOBoh+6K41dbeqSa21R7i2Jpm4KssM9FzVSu5un8XEOo5M6qdmyS5grOfOOOyc/U+J1+xTK0EV9BqUXruHBNfalZWm4Q5ODjg/fffx/vvv//IcitXrsTKlSsl+5YsWdKcVaOWSC4Xh4C4dRVnMdITBPHLPTulJhHLqZ4UpLyw5oplykGjXyYTf4/xkEbP6klBmntWJJ1OXIck60LNfVtZF4CC302XV9iJQzn1923pe7daU9AmIrIGcrm4SK9rJyDwaekxbaX4PW5qiGNBBlBxH7hzTtxqs3OvScqMhzi6BwIdHM3RsscTBKCsoGYYYJGJ5KroNlCaV7/fJ5OL92g5VydUhkTLKLly8gXa2zdrs4gaw2qTMKImIZMBLv7i1mNEzX5BEK+21e41y7ks3pCdf13cUg9Lf59r51rJWRDgoQSqJ6x4IuX3jXq2qocSZl0CKh+YLu/sL71vyztMDMTs3SIiatls2tUkT7VVlok9ZaZ60O7fEROXW6fErTZHn+oErdYQR7duQDvbpqm7TisOwXxUcnX/zpMPDzTVa+XsJx5z8OLEGGT1+AkmMkUmqw4CvtIrloIgjkWvk5yliPsLfhe3tO+lv8/Zr+6EIJ4qoL0zIOjEe7fuXZb2buXfMF03mw5i75ZxsuUdKt6fQERErUs7W8ArSNxqKy+uvt9Mn6AZ/VySCxTfFbebP9c6UVYzg2PtIY6unQFUT0BRVQYUZj06uXrS4YGG5Mo40fKr6dWydeUwQGoTmIQRPQmZDHD0ErduQ6THHuQC1euc1QxvvCIGwKJMcas1U5bc0Rs9S4tgoy01/XxOTxndt1U9YYZ7IK8AEhGRONzQ9w/iVltpvjQpy60e5ph3TVzzqvB3cbv2g/Q8uQJyZz+EP8iHzYGiur/XFMPwwNr3XlUnV/oerZZ2PzWRBfEvOaKm4tARcBgAdKm1zEFpvjg7Y+3es6JbkBVnwQaAYNMeMs8go/u2qpMuh44WaQoREVk5OzfAv4+4GdOP6DAkZcZDHK8BVaWQFdys+QNRYVf3fivDz9WPjl4c+k70hJiEETU3Ozegc5S4GSsrgjbnClLSbyJoQDRs2jfR+HwiIqKHMR7R0aW/9JhOB9y/DW3eDaTcuIOgiOGwcXDn8ECiZsAkjMhSbJ2Bp3qjLFvethaLJiKilkkuFyeqcvRFWd45wM6VCRhRM+HS30RERERERGbEJIyIiIiIiMiMmIQRERERERGZEZMwIiIiIiIiM2ISRkREREREZEZMwoiIiIiIiMyISRgREREREZEZMQkjIiIiIiIyIyZhREREREREZsQkjIiIiIiIyIyYhBEREREREZkRkzAiIiIiIiIzYhJGRERERERkRkzCiIiIiIiIzEhh6QpYO0EQAABarbZB5+vPa+j51o7tZ/uNH9satr9x7defp/8ephqMTY3D9rP9xo9tDdtvntgkExi9GqWiogLJycmWrgYRUZulVqvRvn17S1ejRWFsIiKyrMfFJiZhjaTT6VBVVQW5XA6ZTGbp6hARtRmCIECn00GhUEAu5+h6Y4xNRESWUd/YxCSMiIiIiIjIjHjpkIiIiIiIyIyYhBEREREREZkRkzAiIiIiIiIzYhJGRERERERkRkzCiIiIiIiIzIhJGBERERERkRkxCSMiIiIiIjIjJmHNKDExESqVyrCFhIRg0KBBWLBgAW7cuCEp++uvv+K9997Diy++iLCwMKhUKty6dcsyFW8i9W2/VqvF1q1bMX36dAwZMgTh4eEYNWoUPvnkExQVFVmuAc2k9utSe9NoNJauYoMdOXIEKpUKhw4dqnPshRdegEqlwsmTJ+scGzFiBCZMmAAA+OGHH/CXv/wFY8eORWhoKFQqVbPXu6k0tv3FxcXYuHEjYmJiMHDgQPTq1Qtjx45FfHw8ysvLzdGERmmK93/t2rUYP348IiMjoVar8cwzz+CDDz5AZmZms9e/rWBsYmwyhbGJsak2xqbmjU2KBp9J9bZixQoEBASgvLwcZ8+exaZNm6DRaHD48GG4uLgAAJKSkvDLL78gODgYDg4OOHXqlIVr3XQe1/6ysjLExcUhOjoaEydOhJubGy5duoSNGzfihx9+wJ49e2Bra2vpZjQ5/etSW/fu3S1Qm6YRGRkJmUyGpKQkjB492rC/oKAAqampsLe3h0ajweDBgw3H7t69i4yMDEybNg0AcPToUZw/fx7BwcFo164dLl68aPZ2NFRj23/79m1s27YN48aNwyuvvAJ7e3ucOXMG69evx3//+19s3boVMpnMEk2rl6Z4/4uKijBmzBgEBgbCwcEBV69excaNG3HixAkcPHgQbm5uZm9Xa8XYxNhkCmOTiLGJsam5YxOTMDPo0aMH1Go1ACAqKgparRZxcXE4duwYXnrpJQDAnDlzMHfuXADAli1bWlWge1z7bW1tcfz4cckHOCoqCr6+vpg/fz6+++47jBs3zlLVbzbGr0tr4e7ujh49etT5/J4+fRoKhQIvvfRSnaupSUlJAMT3HACWLVsGuVzspP/www+tKtA1tv3+/v44ceIE7O3tDcf79+8POzs7fPzxxzhz5gz69u3b/A1poKZ4///2t79Jjutfl5kzZ+L48eN4+eWXm7EFbQtjE2OTKYxNIsYmxiageWMThyNagP7LLTc317BP/x+7LajdfhsbG5NXEP7whz8AEK9GkPWIiorC9evXkZ2dbdin0WgQFhaGoUOH4uLFiyguLjYcO3XqFGxsbAxf4Nb+f6Ex7be3t5cEOT1r+r/Q2PffFHd3dwCAQsHrhs2JsYmxqTVjbGJsammxybo/UVZKP56+a9eulq2IhdS3/fqrENY8BOJRdDodqqqqJJtWq7V0tRqtX79+ACC54qTRaBAZGYnevXtDJpPhzJkzkmMhISFwcnIye12bQ3O035r+LzRV+6uqqlBWVoZLly5h+fLl6Nq1K5599lnzNKKNYmxibAIYm4yPMTYxNjVnbGISZgb6L7QHDx7g5MmT2LhxIyIiIjB8+HBLV80sGtL+rKwsrFmzBmFhYXj66afNWFvzmTRpEkJDQyVbaxgCEhERAblcbviiy8/PR1paGiIiIuDg4ICQkBDDF/edO3dw69YtQ3d/a9DU7U9JSUFCQgKeffZZBAUFmaUNjdEU7c/JyUFoaCjCw8MxYcIEaLVabN++HQ4ODmZvT2vG2MTYZApjE2MTY5N5YhPHdpjBpEmTJP8ODAzEhg0b2szQmidtf0FBAV577TUIgoBPP/3U6ocAPMyqVasQGBgo2deSb2ytLxcXFwQFBRnGV58+fRo2Njbo3bs3APGLUP9Fpy/TmgJdU7b/1q1bmD17Nnx8fLBs2TIz1L7xmqL9bm5u+Oabb1BRUYFr164hISEBU6ZMwVdffQUvLy8ztqZ1Y2xibDKFsYmxibHJPLGpdX6DtDCrVq3CN998g23btmHy5MlIT0/HwoULLV0ts3mS9hcWFuLVV19FVlYWvvjiC3Tq1MnMtTWfwMBAqNVqyRYWFmbpajWJqKgo3LhxA1lZWdBoNAgNDTVcKYqMjMTly5dx//59aDQaKBQK9OnTx8I1blpN0f7MzExMmTIFNjY22LZtG1xdXc3cioZrbPsVCgXUajX69OmDiRMnYtu2bbh16xbi4+Mt0ZxWi7GJsckUxibGJsYm88QmJmFmoP9C69evHz788ENMnDgRJ0+exJEjRyxdNbOob/sLCwsxbdo03Lp1C1u3brWK7m0yTX/16NSpUzh16hQiIiIMx/RfaqdPn4ZGo4FarW51w8wa2/7MzEzExMQAALZv3w4fHx8z1bxpNPX77+PjAy8vrzprWFHjMDYxNrU1jE2MTUDLiU1Mwizg7bffhouLC9atWwedTmfp6pidqfbrg1xGRga2bNmCkJAQC9eSGiMiIgI2Njb47rvvkJaWhsjISMMxJycnBAcHY9++fcjMzGxVwz30GtP+27dvIyYmBjqdDtu2bYOfn5+5q99oTf3+37x5E3fv3kWXLl2as9ptHmMTY1Nrx9jE2NSSYlPbGPjdwri4uGDmzJlYvXo1Dhw4gHHjxiEvL89ws2BqaioA4KeffoK7uzvc3d0lHxRrV7v9zz//PKZPn45Lly5hyZIl0Gq1OHfunKG8u7s7OnfubLkKN5O0tDSTM0517tzZMO2ptXJ0dERISAiOHTsGuVxep0s/IiIC27ZtA1B3zHVmZiaSk5MBAL///jsAGK5M+/n5WcUN4g1tf25uLqZMmYKcnBx89NFHyM3NlUwX7uPjYxVXHhva/pSUFKxYsQLPP/88OnXqBLlcjtTUVHz55ZdwdXXFq6++atZ2tDWMTYxNAGMTYxNjE2Ce2MQkzEJiYmKwY8cObNiwAdHR0UhLS8P8+fMlZZYuXQpAHKf61VdfWaKazca4/b169TJ8sX300Ud1yk6YMAErV640dxWb3eLFi03uX7ZsGSZOnGjm2jS9qKgoJCcnIzg4GI6OjpJjERER+PLLL9GuXTv06tVLckyj0dR5bfT/N6zps9CQ9l+9ehUZGRkAxKvytc2dOxfz5s1r3oo3kYa038PDA15eXti6dStycnJQVVUFHx8fDBs2DLNnz4avr6+5m9HmMDYxNjE2MTYxNpknNskEQRAa1RoiIiIiIiKqN94TRkREREREZEZMwoiIiIiIiMyISRgREREREZEZMQkjIiIiIiIyIyZhREREREREZsQkjIiIiIiIyIyYhBEREREREZkRkzAiIiIiIiIzYhJGVicxMREqlcqwhYSEYNCgQViwYAFu3Lhh6eoBADZt2oRjx47V2a/RaKBSqaDRaCxQK9GJEycwe/ZsDBgwAGFhYYiMjMTUqVOxf/9+VFZWWqxetZl6rd59910MHz68WZ83KysLcXFxuHz5crM+DxG1LoxNjcPY9GiMTa2PwtIVIGqoFStWICAgAOXl5Th79iw2bdoEjUaDw4cPw8XFxaJ127x5M55//nmMGDFCsj80NBS7du1C9+7dzV4nQRCwZMkSJCYmYujQoXj33Xfh6+uL+/fvQ6PRYOnSpcjPz8fUqVPNXrf6mjNnDqZMmdKsz5GdnY3169fDz88PwcHBzfpcRNT6MDY9Gcam+mFsan2YhJHV6tGjB9RqNQAgKioKWq0WcXFxOHbsGF566SUL1840R0dH9OzZ0yLPnZCQgMTERMybNw9z586VHBs+fDhmzJiBmzdvmrVOZWVlsLW1rXf5zp07N2NtiIgaj7HpyTA2UVvF4YjUauiDXm5urmR/cnIyZs+ejcjISKjVaowfPx6HDh2SlMnLy0NsbCxGjx6NXr16oX///pgyZQp+/fXXOs9TUVGB9evXY9SoUVCr1YiKikJMTAzOnj0LAFCpVCgpKcHevXsNw1JiYmIAPHzIx/HjxzF58mSEh4ejV69emDZtGv73v/9JysTFxUGlUiEtLQ0LFy5Enz59MGDAACxevBj3799/5GtTWVmJhIQEBAQE4I033jBZxtPTE3379jX8u6CgALGxsRg8eDDCwsLwzDPPYO3ataioqJCcV15ejjVr1mD48OEICwvD4MGDsXTpUhQVFUnKDR8+HLNmzcL333+P8ePHQ61WY/369QCA9PR0TJ8+HeHh4YiKisJf//pXPHjwoE4dTQ35UKlU+PDDD7Fv3z6MGjUK4eHheOGFF/DDDz9Iyt28eROLFy/Gc889h/DwcAwePBizZ8/GlStXDGU0Gg1efvllAMDixYsN719cXJyhTH0+T0REeoxND8fYxNjUlrEnjFqNW7duAQC6du1q2JeUlIQZM2YgPDwcsbGxcHJywqFDh7BgwQKUlZXhxRdfBCB+qQPA3Llz4eHhgZKSEhw9ehQxMTH48ssvERUVBQCoqqrCjBkzcObMGUyZMgX9+vWDVqvF+fPncefOHQDArl27MHXqVERFRWHOnDkAxKuMD3PgwAG89dZbGDRoENasWYOKigokJCQYnts4+ADAvHnzMHr0aLz88stITU3FmjVrAIhDYB7mwoULKCgowMSJEyGTyR77WpaXl2PKlCnIyMjAvHnzoFKp8OuvvyI+Ph6XL19GfHw8AHEYyZw5c5CUlISZM2eib9++uHLlCuLi4nDu3Dns2rUL7du3N/zeixcvIj09Ha+//jr8/f1hZ2eHe/fuISYmBgqFAn/729/QsWNHHDhwAH//+98fW0+9H3/8EcnJyXjzzTdhb2+PhIQEzJ07F0eOHEGnTp0AiEM5XF1dsWjRIri7u6OwsBB79+7FpEmTsHfvXgQEBCA0NBQrVqzA4sWL8frrr2PYsGEAAB8fHwD1/zwREekxNjE2MTaRSQKRldmzZ4+gVCqFc+fOCZWVlUJxcbHw008/CQMHDhT+9Kc/CZWVlYayI0eOFMaPHy/ZJwiCMGvWLGHgwIGCVqs1+RxVVVVCZWWlMHXqVOGNN94w7N+7d6+gVCqF3bt3P7KOPXv2FN555506+5OSkgSlUikkJSUJgiAIWq1WGDRokBAdHS2pS3FxsdC/f39h8uTJhn3r1q0TlEql8Pnnn0t+Z2xsrKBWqwWdTvfQ+nz77beCUqkUdu7c+ch66+3cuVNQKpXCoUOHJPvj4+MFpVIp/Pzzz4IgCMJPP/1ksk7659u1a5dh39NPPy0EBwcL165dk5RdvXq1oFKphMuXL0v2T5s2TfJaCYIgvPPOO8LTTz8tKadUKoUBAwYI9+/fN+zLyckRgoKChM2bNz+0jVVVVUJFRYXw3HPPCcuXLzfs/+233wSlUins2bOnzjkN/TwRUevH2MTYZIyxiR6HwxHJak2aNAmhoaHo3bs3ZsyYAWdnZ2zYsAEKhdjBe/PmTVy7dg1jx44FIF4p1G9DhgxBTk4Orl+/bvh9O3fuxIQJE6BWqxESEoLQ0FD88ssvSE9PN5Q5efIkOnTo0GTj+q9fv47s7GyMGzcOcnnNf0cHBwc899xzOH/+PEpLSyXnmBryUF5eXmeoS2MkJSXB3t4eI0eOlOzXX0375ZdfDOWM9+uNGjUK9vb2hnLGde3WrZtkn0ajQY8ePRAUFCTZHx0dXe/6RkVFSa7oenh4oGPHjsjMzDTsq6qqwqZNmzB69GiEhYUhJCQEYWFhuHHjhuQ9fpgn/TwRUdvE2CRibGJsokfjcESyWqtWrUJgYCAePHiAQ4cOYdeuXVi4cCESEhIAAPfu3TOUW7VqlcnfkZ+fDwDYunUrVq5ciT/+8Y+YP38+3NzcIJfL8dlnn+HatWuG8nl5efDy8pIEpcbQP7+np2edY15eXtDpdCgqKoKdnZ1hv6urq6ScfkhFWVnZQ5/H19cXQM2wmMcpKCiAh4dHneEhHTt2hEKhMAyRKSgogEKhgLu7u6ScTCaDh4eHoZyeqXYWFBTA39+/zn4PD4961RWo+5oA4utSXl5u+PfKlSuxY8cOvPbaa4iIiICLiwtkMhnef/99SbmHeZLPExG1XYxNIsYmxiZ6NCZhZLUCAwMNNzz369cPOp0OX3/9NY4cOYKRI0fCzc0NADBr1iw8++yzJn+H/srX/v37ERkZiaVLl0qO174B193dHWfOnIFOp2uSYKevY05OTp1j2dnZkMvlcHZ2bvTzhIWFwdXVFcePH8eiRYseO/be1dUV58+fhyAIkrK5ubmoqqoy1NvV1RVVVVXIy8uTBDtBEHDv3j3D+6Nn6nldXV0NQcSYqX2NsX//fowfPx4LFy6U7M/Pz6/Xa/wknyciarsYm+qPsYmxqS3jcERqNd5++224uLhg3bp10Ol0CAgIQNeuXZGSkgK1Wm1y0w8TkMlkkpt0ASAlJQXnzp2T7Bs8eDDKy8uRmJj4yLq0b9/+kVf/9Lp16wZvb28cPHgQgiAY9peUlOD7779Hz549JVcaG6pdu3aYMWMGrl27hn/+858my+Tm5uLMmTMAgP79+6OkpKTOop779u0zHDd+3L9/v6Tcd999h5KSEsPxR4mKikJaWhpSUlIk+w8ePPj4hj0BmUyGdu3aSfb9+OOPyMrKkux72NXbJ/k8ERHpMTY9HGMTY1Nbxp4wajVcXFwwc+ZMrF69GgcOHMC4ceOwdOlSvPbaa5g+fTomTJgAb29vFBYWIj09HRcvXsS6desAAMOGDcOGDRuwbt06RERE4Pr169iwYQP8/f2h1WoNzxEdHY3ExETExsbi+vXriIqKgiAIOH/+PAIDAzFmzBgAgFKpxKlTp3DixAl4enrCwcEBAQEBdeosl8vx9ttv46233sKsWbMwefJkVFRUYMuWLSgqKsKiRYua7PXRB7q4uDgkJycjOjrasCDm6dOnsXv3bsybNw99+vTB+PHjsWPHDrzzzjvIzMyEUqnEmTNnsHnzZgwdOhQDBgwAAAwcOBCDBg3CJ598guLiYvTu3RtXrlzBunXrEBISgnHjxj22XlOnTsWePXswc+ZM/PnPfzbMQGU81KYpDBs2zDDTlEqlwsWLF7FlyxbD7FJ6nTt3hq2tLQ4cOIDAwEDY29vDy8sL3t7e9f48ERHpMTY9GmMTY1NbxSSMWpWYmBjs2LEDGzZsQHR0NPr164evv/4amzZtwvLly1FUVARXV1cEBgZi1KhRhvNmz56N0tJSfPPNN0hISED37t0RGxuLY8eO4dSpU4ZyCoUCn3/+OTZv3oxvv/0W27Ztg4ODA4KCgjB48GBDuffeew9Lly7FwoULUVpaisjISHz11Vcm6zx27FjY2dkhPj4eCxYsgI2NDcLDw7F9+3b07t27yV4bmUyGFStWYMSIEdi9e7fh9dDX/6233jLcxNyhQwds374da9euRUJCAvLz8+Ht7Y1XX31VspimTCbDhg0bEBcXh8TERGzatAmurq4YN24cFi5cWOcKrimenp7417/+hY8++gixsbGws7PDiBEj8MEHHximUW4K7733HhQKBeLj41FSUoKQkBDExcXhs88+k5Szs7PD8uXLsX79ekyfPh2VlZWYO3cu5s2bV+/PExGRMcamh2NsYmxqq2SCcT8zERERERERNSveE0ZERERERGRGTMKIiIiIiIjMiEkYERERERGRGTEJIyIiIiIiMiMmYURERERERGbEJIyIiIiIiMiMmIQRERERERGZEZMwIiIiIiIiM2ISRkREREREZEZMwoiIiIiIiMyISRgREREREZEZ/X9SQ6keuy1W7gAAAABJRU5ErkJggg==",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2EAAAHbCAYAAABCwpIFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC/UUlEQVR4nOzdd3yUVdr/8c/MpEES0imp1NAJSSAUKRasrLq2dYv9cRUV1+2uZZ9d93F/4rLr7oroinVtrLIqVrBgQ6UmBCItQCAVQtqkkTqZ3x+TGRKSQCbJzKR836+Xrwn3fe6Z6yTIyXXf51zHYLVarYiIiIiIiIhbGD0dgIiIiIiIyECiJExERERERMSNlISJiIiIiIi4kZIwERERERERN1ISJiIiIiIi4kZKwkRERERERNxISZiIiIiIiIgbKQkTERERERFxIyVhIiIiIiIibqQkTERERERExI2UhIlIj8vLy2P8+PH87ne/83QoIiIywGlMkt7Iy9MBiHTF+PHjnWr/yCOPcOWVVzqu279/v1PvZ78ewGKx8Oabb/Luu++SmZlJdXU1Q4YMITw8nGnTpnHuuedy3nnntfv+LT93zZo1PPjgg8yfP59nn3223c+97bbb+PLLL/nTn/7Etdde26m+Ll++nO+++44jR45QVlaGn58fkZGRLFq0iJ/85CeEhIR06n1OjT0yMpL169fj6+vbps25555Lfn4+u3fvxsvLM/+sHDp0iNdee40tW7Zw9OhR6urqCA4OZtKkSZx//vlcdtll7caekZHBa6+9xtatWykqKsLLy4uoqCjmzZvHTTfdxLBhwzzQGxHpSzQmdWygjUkd/Uxbsse3YcMGoqOju/xZGr/6NiVh0ictXbq0zbF///vfVFZWcsMNNzBkyJBW5yZOnNjl9215vcVi4fbbb2fjxo0MGTKEhQsXMnz4cMrLy8nOzuadd94hKyurzYDXnmuuuYbPPvuMzz77jFdffZWf/OQnrc6/9tprfPnll5x99tmdHuzA9n2YNGkSc+fOJSwsjJqaGtLT01mxYgWvv/46r7/+OpGRkZ1+P7uCggL+/e9/c9ttt52x7bBhw/jwww8JDAx0+nO64oknnmDlypU0NTUxffp0rrjiCvz9/SkuLmb79u08+OCDrF69mrfeestxjdVq5a9//SvPPvssXl5ezJ07l4suuoiGhgZ27NjB888/z+rVq1m2bBkXXXSRW/ohIn2TxqSODcQxydU0fvUTVpF+4pxzzrHGx8dbc3NzO2wTHx9vjY+P7/TxU61du9YaHx9vveyyy6wVFRVtzpvNZus333zT6fcvLi62zp4925qQkGA9dOiQ43hWVpY1ISHBOmvWLGtRUdEZ42qptra23eOPPfaYNT4+3vq///u/Tr1ffHy8debMmdaUlBRrUlKStaSkpE0b+/e+oaHBqffuCU8++aQ1Pj7eunDhQmt6enq7bb788kvr9ddf3+rYihUrrPHx8dZzzjnHmpmZ2eaa9evXW6dOnWqdOHGi9dtvv3VJ7CLSf2lMshloY1Jnfnad+btxOhq/+getCRNxQlpaGgBXXHFFu3fUgoKCmDt3bqffLywsjP/7v/+jpqaG3/zmNzQ2NtLY2MhvfvMbampqePjhhwkPD3cqxvamZgBcfPHFAOTm5jr1fgB+fn7ccccdVFVVsXLlyjO2d9f8+7y8PFauXIm3tzerVq0iISGh3XYLFixoNb0mNzeXp556Cm9vb5566inGjRvX5poLL7yQ++67D4vFwh//+Eeamppc1g8Rka7QmNS7xiR30PjVfygJE3FCaGgoAEeOHOmx91y0aBFXXXUV3333HStXrmTlypVkZGRw5ZVXsmjRoh77nM8++wxwfu2C3U9+8hNiY2N5/fXXOXz4cI/F1R1vvfUWDQ0NXHDBBcTHx5+2rY+PT6vrGhsbOe+88077/bjmmmuIiIjgyJEjbN26tcfiFhHpCRqTeteY5A4av/oPrQkTaWHFihVtjkVFRTkWQF944YU888wz/Oc//6GqqorzzjuPKVOmEBMT063Pvf/++9myZQtPP/204zMfeOCBbr3nc889x4kTJ6isrOS7774jNTWVSZMmdWr+fHu8vb351a9+xT333MPf/vY3nnjiiW7F1xO2b98OwJw5c5y6LjU1FYCzzjrrtO28vLyYNWsW77//PmlpacyePbtrgYqIdIHGpI71xjGppfZ+dnYVFRVdfl+NX/2HkjCRFtr7RzwlJcUx4E2YMIG//vWvPPzww7z33nu89957AAQHB5OSksLVV1/NwoULnf7cgIAA7rrrLu677z4A/vjHPxIQENCNnsDzzz9PcXGx488LFixg2bJlTleiaumiiy4iMTGRTz75hO3btzNjxoxuxdhd9v45WwHKft3w4cPP2Nbe5vjx405GJyLSPRqTTq+3jUktuSop1PjVfygJE2nhdCVl7S666CLOO+88tmzZQmpqKnv37iU1NZWPP/6Yjz/+mKuuuoo///nPGAyGTn9ubW0tzzzzjOPPH330EQsWLGjTrr07a1dccUW7JW6/+eYbwPYP9o4dO/jrX//K5ZdfztNPP83kyZOdfj+7e++9lx/+8Ic8+uijvPHGG071syNdiQNsFaIAp2Nw5jp7m5Ztn376aT7++GMOHz6Mj48P06dP55e//OUZp0SKiDhDY1LfGpNa6kyJ+pY6O650d/yS3kNJmEgXeHt7M2/ePObNmwfYygR/9NFHPPDAA7z55puce+65Ts2dX758OVlZWdxwww1s27aN//73vyxatIhzzjmnVbuO7oqebmAIDw/n/PPPZ/LkyVxwwQXce++9vP/++11+v8TERC688EI++ugj1q1bxyWXXNLZbnaoK3EADB06lKysLI4dO+bU50VERHT6OnubiIgIx7GtW7fy4x//mKlTp2K1Wnn88ce5+eab+eCDDwgODnYqFhGR7tKY1DvGpO7o7LjS3fFLeg8lYSI9wGQycckll5CZmclTTz3F5s2bOz3gff3117z66qvEx8fzm9/8hiNHjnDVVVfx+9//nvfee6/VVI3O3BXtSGRkJGPHjmXv3r2UlpYSGhra5ff79a9/zWeffcbf/va3Hlmo3dU4kpOT2bx5M5s3b+aaa65x6rotW7bw7bffnvY6i8XCli1bAEhKSnIcf+6551q1+8tf/sKMGTNIS0vj3HPPdbIXIiI9S2NS93SnX13V2XGlu+OX9B6qjijSg/z9/YGT0wXOxGw2c9999+Hl5cXy5cvx8fEhPj6ee+65h6KiIv74xz/2aHz2eeEmk6lb7xMbG8uPfvQj8vLyeOWVV3oitC658sor8fb25qOPPuLgwYOnbVtfX9/qOpPJxCeffHLa6958802OHz/OqFGjSElJ6bBddXU1TU1NbTZkFRHxJI1JfVdH40pPj1/iOUrCRJzw/vvv880337S750ZRURFr1qwB6PTi4D/+8Y8cP36cn//850yYMMFx/JZbbmHGjBmsX7/eMU2jMw4dOkRRUVGb401NTfz973+npKSExMREgoKCOv2eHbnrrrsYMmQI//rXv6iuru72+3VFdHQ0S5cupaGhgdtuu42MjIx223311Vfceuutjj/HxMRw++2309DQwJIlS9odyD799FP+/Oc/YzKZ+MMf/oDR2PE/l3/+85+ZOHEiiYmJ3e+UiEgnaUw6qTeMST2po3Glp8cv8RxNRxRxws6dO3nppZeIiIggKSnJMT88Ly+PL7/8ktraWs477zwuuuiiM77X2rVrWbduHTNnzuSWW25pdc5oNLJs2TIuu+wy/vSnPzFz5sxOVQDcuHEjy5cvZ8aMGcTGxhIcHExxcTHbtm0jNzeXiIgIHn744a51/hTBwcHcfvvtLF++vEfer6uWLFlCY2MjK1eu5OqrryYxMZEpU6bg7+9PcXEx27dv58iRI0yZMqXVdXfffTc1NTW88MILXH755cybN4+xY8fS2NjIjh072LlzJ35+fvztb387bQn8Rx99lNTUVFavXt3tu7kiIs7QmHRSbxmTesKZxpWeGr/Es5SEiTjhlltuYeTIkXz77bfs37+fr7/+mvr6ekc54O9973tceumlZ6xEVFBQwMMPP0xAQACPPvpou3epYmJiuP/++3nwwQd54IEHePbZZ88Y39y5c/nBD35AWloa+/bto7KykkGDBjFy5Eguv/xyrr/++h4tHHHDDTfw2muvtany5G5Lly7l4osv5rXXXmPLli289dZbjp/LhAkTuPXWW7n88stbXWM0Gvnd737HJZdcwquvvsq2bdvYtGkTJpOJqKgobrnlFm688cbTlgF+5JFH+OCDD/j3v//d7X15REScpTGptd4yJnVHZ8aVnhi/xPMM1s5OFBYREYeHH36YDz/8kJdffpkxY8Z4OhwREenjNK4MLHoSJiLipD/+8Y+8++67rFy5kiFDhjjWPAwePNixEF5ERKSzNK4MPHoSJiLipPHjx7d7fOnSpdx9991ujkZERPo6jSsDj5IwERERERERN1LNShERERERETdSEiYiIiIiIuJGSsJERERERETcSEmYiIiIiIiIG6lEfTc1NTXR2NiI0Wg842aIIiLSc6xWK01NTXh5ebW7uexAprFJRMQzOjs2KQnrpsbGRjIyMjwdhojIgDV16lR8fHw8HUavorFJRMSzzjQ2KQnrJnuGO3XqVEwmk9PXWywWMjIyunx9X6f+q//qv/rf3X8/9RSsLY1N3aP+q//qv/rv6rFJSVg32ad5mEymbv1F7e71fZ36r/6r/+p/V2m6XVsam3qG+q/+q//qf1edaWzS7UMRERERERE3UhImIiIiIiLiRkrCRERERERE3EhJmIiIiIiIiBspCRMREREREXEjJWEiIiIiIiJupCRMRERERETEjZSEiYiIiIiIuJGSMBERERERETdSEiYiIiIiIuJGSsJERERERETcSEmYiIiIiIiIGykJExERERERcSMlYR5UXdfI0tU7+CTrhKdDERERAWDv0QpuemEbB0sbPB2KiEi/5eXpAAaynNITrPuukCE+Bn59hdXT4YiISDdt2rSJd999lx07dnDs2DECAwOZMmUKd911F1OmTDnttW+99Rb33Xdfu+e+/vprIiIiXBFy2886UMzGgyVY6/y4+ly3fKSIyICjJMyDRkf44+NlpKK+iSMlJxg7bIinQxIRkW5YvXo1ZrOZG264gbFjx1JaWsoLL7zAtddey7PPPsucOXPO+B6PPPIIo0ePbnUsODjYRRG3NXGEbSzKLNGTMBERV1ES5kG+XiamRQWxPbuM1JwyJWEiIn3cH/7wB8LCwlodmz9/PhdccAFPP/10p5KwcePGMXXqVFeFeEYJMUEYDHD8hIXCiloiQ/w9FouISH+lNWEelhQbDEBqttmjcYiISPedmoAB+Pv7M2bMGI4ePeqBiJwX6OfN+GGBAOzIMXs2GBGRfkpPwjwsOS4ENh7WQCci0k9VVlayZ88eZs+e3an2S5YsobS0lMDAQFJSUvjZz35GfHx8lz7bYrF06brp0UPYd6yS1OwyLpoyvEvv0ZfZv29d/f71deq/+t/ydaDpbv87e52SMA9LbH4SduB4FeYT9QQP9vFsQCIi0qMeeughampqWLJkyWnbhYeHs2TJEqZPn05AQACZmZmsWrWKa6+9ltWrVzNhwgSnPzsjI6NLMUcYagD4Zn8B6VF1XXqP/qCr37/+Qv1X/wcyV/dfSZiHhdUXMNa/noPVPuzIMXPOhKGeDklERHrIP/7xD9577z1+//vfn7E64oIFC1iwYIHjzzNnzmThwoVceuml/POf/+Spp55y+vOnTp2KyWRy+rrAyApWbPuWLHMjE6dMw9drYK1esFgsZGRkdPn719ep/+q/+t/1/tuvPxMlYZ5UdgTjypn8w3sq3+O3bM8uVRImItJPPPHEEzz11FP84he/4LrrruvSe0RHR5OcnMzOnTu7dL3JZOrSLxGjIwIZ4mOgot7K3mNVtqnzA1BXv3/9hfqv/qv/ruv/wLq11QsZrBYmNnyHDw2kZpd5OhwREekBTzzxBCtWrODuu+8+4zTEM7FarRiN7h2uDQYD48Nt0+N35GhsEhHpaUrCPCk4DuugUEzWRiYYckjPNdNgafJ0VCIi0g0rV65kxYoV3HHHHSxdurRb75Wbm0taWhoJCQk9FF3nxYd5A+gGoYiIC2g6oicZDBCZCIc2MMs3m121Y9h7tIJp0cGejkxERLrg+eef5/HHH2f+/PmcffbZpKentzo/ffp0AO6//37Wrl3LJ598QlRUFAA33XQTM2bMYMKECfj7+5OZmcmzzz6LwWDgnnvucXNPYHyY7UlYWk4ZVqsVg8Hg9hhERPorJWEeZo1MxHBoAwv8c3imFrYfKVMSJiLSR33++ecAbNy4kY0bN7Y5v3//fgCampqwWCxYrVbHufj4eNatW8fzzz9PXV0doaGhzJ49mzvvvJNRo0a5pwMtjA3xxstooLCijnxzDdEhg90eg4hIf6UkzMOskUkATLIeBCA1p4xbcP9gKyIi3ffyyy93qt2yZctYtmxZq2P333+/K0LqMl8vAxNHBJKRX0FajllJmIhID9KaME+LTAQgtOYIg6klTXPvRUSkl7DvZamxSUSkZykJ87SAYdT7RWCwNjHNdISj5bXkm2s8HZWIiAhJsbbS9CrOISLSs5SE9QLVweMBuCAoH9BgJyIivUNSTDAAe45WcKK+0bPBiIj0I0rCeoETwRMASPE9AkDqkVIPRiMiImITGezHsCG+WJqs7Mor93Q4IiL9hpKwXsD+JGxUfSZgK84hIiLiaQaDwTElMU1jk4hIj1ES1gucaE7C/KtzCaaSvUcrqa7TtA8REfG85LjmJExT5UVEeoySsF7A4h2ANXQMAOcE5mNpsrIz1+zZoERERIAkexKWY261r5mIiHSdkrBewtpcqv68oDwAtuuOo4iI9AKTI4fgYzJSWl3PkZITng5HRKRfUBLWWzQnYdMMWYAqJIqISO/g62VianQQoCmJIiI9RUlYL2F/Ejaieg9gWwDd1KRpHyIi4nlJzZs2q3CUiEjPUBLWWwyfBgYT3ieOM9KnnMraRg4cr/J0VCIiIirOISLSw5SE9Rbeg2HoRAAuCz8GwPZs7RcmIiKeZy9Tv7+wksraBg9HIyLS9ykJ602apySeNSgb0LowERHpHYYO8SM6ZBBWK6Sreq+ISLcpCetNopIAGGc5ACgJExGR3sOxaXO22bOBiIj0A0rCepNIWxIWbN6NwWAlu+QERZV1Hg5KRETk5LowFecQEek+JWG9ybDJYPLFWGvm7DBbUY40DXYiItIL2J+E7VD1XhGRbuuzSdimTZu47777uOiii5g+fTrz58/njjvu4LvvvuvU9SUlJfzud79j1qxZJCQkcO2117Jp0yYXR30GJm8YPhWAC0MLAE1JFBGR3mHCiEAGeZuorG3kYJGq94qIdEefTcJWr15Nfn4+N9xwA6tWreKBBx6gtLS0U8lUfX09N910E5s2beKBBx7gySefJCwsjFtvvZWtW7e6qQcdaF4Xlux1GFASJiIivYO3yUhCjDZtFhHpCV6eDqCr/vCHPxAWFtbq2Pz587ngggt4+umnmTNnTofXrlmzhszMTP7zn/+QmGirSDhr1iwuv/xyli9fzpo1a1wa+2k1rwuLqdkHXERGXjm1DRb8vE2ei0lERATblMTNWaWkZpfxw5RYT4cjItJn9dknYacmYAD+/v6MGTOGo0ePnvbaTz/9lFGjRjkSMAAvLy8uu+wydu3aRWFhYY/H22nNT8J8i79jmL+JeksTuwvKPRePiIhIM8emzVqvLCLSLX32SVh7Kisr2bNnD7Nnzz5tuwMHDpCcnNzm+Pjx4x3nhw0b5tRnWywWp9qfep3j+pDRGH0CMNRXcXFUOS8eCmDr4VKmRwd16f17uzb9H2DUf/W/5etA093+D9TvmyclNhfnOFRUjflEPcGDfTwckYhI39SvkrCHHnqImpoalixZctp2ZrOZoKC2SY39mNlsdvqzMzIynL6mo+vjA8cSWJJOQuN3wGw+33WElMD+/TSsu9+/vk79V/8HsoHe/74k1N+H0eH+ZBVXsyPHzDkThno6JBGRPqnfJGH/+Mc/eO+99/j973/PlClTztjeYDB06VxHpk6disnk/Loti8VCRkZGq+sNxfNhUzpzg4oBOFhuJSEhoUtx9Xbt9X8gUf/Vf/W/6/23Xy/ulRgbQlZxNanZZUrCRES6qF8kYU888QRPPfUUv/jFL7juuuvO2D44OLjdp13l5banTe09JTsTk8nUrV+iWl0fbZsqGVG5Bx/TZZRW15NnrmNkuH+X37+36+73r69T/9V/9X/g9r+vSY4L4c20PK0LExHphj5bmMPuiSeeYMWKFdx9991nnIZoFx8fT2ZmZpvj9mPjxo3r0Rid1lwh0Vi4m8SoQQBsVzlgERHpBZLiggFIzzXTaGnybDAiIn1Un07CVq5cyYoVK7jjjjtYunRpp69btGgRWVlZ7Ny503GssbGRd999l4SEBKeLcvS44FgYHAZNDVwcbpuSqP3CRETELbK+wPjYeIKOfdPu6XFDAwn09eJEvYV9xyrdHJyISP/QZ5Ow559/nscff5z58+dz9tlnk56e3uo/u/vvv59JkyaRn5/vOHb11Vczbtw47rnnHt577z2+/fZbfv7zn3P48GF+/etfe6A3pzAYHE/DUnyzAUjNLvVkRCIiMlAU7sFQXUR4zvp2T5uMBqbHBgOwQ1MSRUS6pM+uCfv8888B2LhxIxs3bmxzfv/+/QA0NTVhsViwWq2Ocz4+Prz44ossX76chx9+mJqaGiZOnMgzzzxDSkqKezpwJlFJcPATRtfvByaQWVhFeU0DQYO8PR2ZiIj0Z1G2dcn+ZbuhxdjZUlJsCBsPFJOaXcb1c0a6MTgRkf6hzyZhL7/8cqfaLVu2jGXLlrU5Hh4ezqOPPtrTYfWc5idhfsd3MjLsRxwpOUFaThnnjFclKhERcaERCViN3njXm7GUHYGIsW2anNy02eze2ERE+ok+Ox2x34uyJWEU7WdutB8AaVoXJiIirubtByOmAWDI29Zuk+mxwRgMkFN6gqLKOndGJyLSLygJ660ChsKQaMDKuUEFgIpziIiIe1ijZ9q+yG8/CRvi50380EAAlaoXEekCJWG9WVQiAAmmLEDlgEVExE2ibElYR0/C4GSpes3SEBFxnpKw3qx5XVh4+W4C/VQOWERE3MMa01ykqnA31FW12yYp1r4uTEmYiIizlIT1Zs3rwgwFaY7BbvsRlaoXEREXGxJFvV8EBqsFCtLabZLUXJxjZ1459Y2apSEi4gwlYb3ZiOm2V3M28yINAKSqEpWIiLhBVcgk2xe5W9s9Pzrcn+DB3tQ3NrHnaIUbIxMR6fuUhPVmg4IhzFYa+KzBOQCk6kmYiIi4QbU9CetgXZjBYHDM0lDhKBER5ygJ6+2a14WNbTiAyWigoLyWAnONh4MSEZH+rjp0su2LvG0dbtrs2C9MSZiIiFOUhPV2zevCfArTmTjCVg5YdxxFRMTVTgwZi9XkAydKoDSr3TaJscGAinOIiDhLSVhv1/wkjII0Zmjah4iIuInV5HNybXIH68ISooMxGQ0c1SwNERGnKAnr7YZPBYMJqgqZO6weUBImIiLu4di0Oa/9JMzf18sxS0NPw0REOk9JWG/nMxiG2hZHz/A6DMCeoxWcqG/0ZFQiItKOTZs2cd9993HRRRcxffp05s+fzx133MF3333XqetLSkr43e9+x6xZs0hISODaa69l06ZNLo66Y44krIMnYYCKc4iIdIGSsL4gKhGAUPN3jAjyw9JkJT3X7NmYRESkjdWrV5Ofn88NN9zAqlWreOCBBygtLe1UMlVfX89NN93Epk2beOCBB3jyyScJCwvj1ltvZevWjpMgl7InYcf3QF1lu00cxTm0hYqISKd5eToA6YTIJEh7CQrSSI67lPd3HSUtu4y5Y8I9HZmIiLTwhz/8gbCwsFbH5s+fzwUXXMDTTz/NnDlzOrx2zZo1ZGZm8p///IfERNvNt1mzZnH55ZezfPly1qxZ49LY2xU4AoJioDwX8lNh9NltmtifhO3OL6e2wYKft8nNQYqI9D16EtYXRNmLc+wgubkS1XZN+xAR6XVOTcAA/P39GTNmDEePHj3ttZ9++imjRo1yJGAAXl5eXHbZZezatYvCwsIej7dTHFMS298vLDpkEBGBvjQ2WcnIL3djYCIifZeehPUFQyeBlx/UljM3pAKw7cnS1GTFaDR4ODgRETmdyspK9uzZw+zZs0/b7sCBAyQnJ7c5Pn78eMf5YcOGOfXZFovFqfanXmexWDBEz8S4+y2suVto6uD9EmOC+XhPIdsOl5AUE9Slz+xNWvZ/IFL/1f+WrwNNd/vf2euUhPUFJm9blcS8bYxp2M8g7yAqahs5VFTFuGGBno5ORERO46GHHqKmpoYlS5actp3ZbCYoqG0CYz9mNpud/uyMjAynrzn1+sEngpgIWLK3sHNHGhjaTqIZ7nUCgC8yspk1pKJbn9mbdPf719ep/+r/QObq/isJ6ysikyBvG17H0pkeczmbskrYnl2mJExEpBf7xz/+wXvvvcfvf/97pkyZcsb2BkPHsxtOd64jU6dOxWRyfo2WxWIhIyPDdj2TsG76JV4NFUyPCYDw+DbtG0PKeGnXFg6VW0lISOhSrL1Jq/534fvX16n/6r/63/X+268/EyVhfYV9XVh+GslxN7Epq4TU7DJ+lBLr2bhERKRdTzzxBE899RS/+MUvuO66687YPjg4uN2nXeXltnVW7T0lOxOTydStX6Js1/tAZCLkbMJUkArDJrZplxATgrfJQEl1PfnldcSF+Xf5M3uT7n7/+jr1X/1X/13XfxXm6Csim5OwozuZEWN7+qU9WUREeqcnnniCFStWcPfdd59xGqJdfHw8mZmZbY7bj40bN65HY3TKGfYL8/M2MTnSliRq02YRkTNTEtZXhI0F3yHQWEPy4OMAHC6upqSqzsOBiYhISytXrmTFihXccccdLF26tNPXLVq0iKysLHbu3Ok41tjYyLvvvktCQoLTRTl6VEyK7TWv/QqJcHK/MN0gFBE5MyVhfYXRCCMSAAgs3cW4oQGABjsRkd7k+eef5/HHH2f+/PmcffbZpKent/rP7v7772fSpEnk5+c7jl199dWMGzeOe+65h/fee49vv/2Wn//85xw+fJhf//rXHuhNC9HNSdjxvVDbfhl6x6bN2WY3BSUi0ndpTVhfEpUERzZCfhozRk7nwPEqUnPKuGDycE9HJiIiwOeffw7Axo0b2bhxY5vz+/fvB6CpqQmLxYLVanWc8/Hx4cUXX2T58uU8/PDD1NTUMHHiRJ555hlSUlLc04GOBA6D4DgwZ9s2bR5zbpsm9k2b9x2roKqukQBf/YohItKRLv0LeeDAAdLS0igsLKS2tpaQkBDGjh3LzJkzCQgI6OkYxc6+LqwgjaTkX7F6ay6pR/QkTESkt3j55Zc71W7ZsmUsW7aszfHw8HAeffTRng6rZ8Sk2JKw3K3tJmHDg/yICh5EvrmGXblm5o4N90CQIiJ9Q6eTsPLycl5//XVef/11CgoKWt29c7yZlxcLFizg+uuvZ86cOT0aqHCyQmLhbmZGDwZgV345dY0WfL0GbvUaERFxg+gUyFjTYXEOgMTYYPLNNaRmlykJExE5jU4lYS+99BIrV64E4JJLLiElJYXJkycTGhqKr68v5eXl5Obmkp6ezoYNG7jllluYO3cu//u//0tcXJxLOzCgBMXA4HA4UUxcQxZh/j6UVNfzXX6FYy6+iIiIS8Q0V0jM2w5NTba1yqdIjgvh/V1HVSFRROQMOpWEvfzyy9x3330sXrwYb2/vNufDw8MJDw8nMTGRm2++mZycHJ566inWrVvX6dK80gkGg+1p2IGPMRTsICkuiU/2FJKWXaYkTEREXGvYFPAaBHXlUJwJQye0aWJfF5aWY6apyYrR2Lc3bRYRcZVOVUdct24d3//+99tNwNoTGxvLI488wk9/+tNuBSftaLEuzJ54bc8u9WBAIiIyIJi8T06Lz2t/SuKkyCH4eRspr2kgq7jajcGJiPQtnUrCDhw40KU3H8i7bLuMfQDMT2OGY08Wc7tr9ERERHqUfb+wDtaFeZuMTIsKBiBNW6iIiHSoU0nYFVdcwZVXXslrr71GZWWlq2OS07E/CSvOZEq4ER+TkeKqOnJKT3g2LhER6f+iz7xpc5J9vzCtCxMR6VCnkrDbb7+d0tJS/vSnPzFv3jx+/etfs3nzZlfHJu0JiLAV6MCKX1EGU6KGANq0WURE3CC6uThH0T6oaX/cSXbM0tC4JCLSkU4lYb/4xS/4/PPPWbVqFeeccw4ff/wxN998M+eddx5PPvkkR48edXWc0lJkou21xbowDXYiIuJyAREQMsr2dV5qu00SY4MBOHC8ivITDW4KTESkb+lUEgZgMBhYsGAB//jHP/j666954IEHCAoK4vHHH2fRokX8z//8D+vXr6ehQf/gulyLdWHJcaGAkjAREXET+7qwDopzhAf4MjLMtpfljlyNTSIi7el0EtbSkCFDuO6663jrrbdYu3YtP/7xj9mzZw+/+MUvWLBgQU/HKKdqUSExKS4YgP2FlVTUKgEWEREXs09JPM2mzY5S9bpBKCLSri4lYS1NmDCByy67jHPPPRcAs9nc3beUM4mcbns15zDUWEVs6GCsVtiRY/ZkVCIiMhDEzLK95qfaNm1ux8niHGY3BSUi0rd0arPm9pSWlvLuu+/y5ptvcvDgQUwmE+eccw5XX311T8Yn7fELgrBxUHIACnYwIy6CnNITpGaXsTA+wtPRiYhIfzZ0Enj7Q12FrUDHsEltmtifhO3IKcPSZMWkTZtFRFpxKglramriq6++4s033+SLL76goaGBkSNH8stf/pIrrriC8PBwV8Upp4pMtCVh+Wkkxf2Qt3bkk6pNm0VExNVMXra1yUc2Qu6WdpOw8cMD8fcxUV1vIbOwkokjhnggUBGR3qtTSdjhw4d58803eeeddyguLsbPz4/vfe97XHXVVcyYMcPVMUp7opIg4w0oSGPGuXcAkJ5jptHShJep27NMRUREOhaTYkvC8rbBjJvbnDYZDUyPDeabgyWkZpcpCRMROUWnkrCLL74YgGnTpnH33XezePFi/P39XRqYnEHkyQqJ4yICCPT1orKukX3HKpkSFeTZ2EREpH+zb9p8muIcybEhfHOwhLScMq6bHeemwERE+oZOJWE33ngjV199NePGjXN1PNJZw6eCwQTVxzFVFZAYF8JXmUWk5ZQpCRMREdeyV0gsOQAnSmFwaJsmiXGqkCgi0pFOzVu777772k3AsrKySE1N5cSJEz0emJyBz2Db4miw7RfWvAh6+xENdiIi4mL+YRA6xvZ13vZ2myTF2MalIyUnKKmqc1dkIiJ9QpcWD61du5YFCxawePFirrvuOg4fPgzAPffcwxtvvNGjAcppRCXaXgvSmDHSNthp02YREXELe6n6DjZtDhrszbihAYBK1YuInMrpJGzdunX87ne/Y9KkSfz+97/HarU6zk2ePJl169b1aIByGi3WhSXEBGM0QL65hmPltZ6NS0RE+r+Yzm/arBuEIiKtOZ2ErVq1iiuvvJJ//etfXHvtta3OjR49moMHD/ZYcHIGUc1JWEE6Ad5GR/UpDXYiIuJy9uIc+anQZGm3SbJj02aNSyIiLTmdhB06dIjFixe3ey44OBiz2dzdmKSzhk4CLz+oK4fSLMdgt137hYmIiKsNnQg+gVBfBcf3tNskKS4YgF15ZhosTW4MTkSkd3M6CRs0aBCVlZXtnissLCQoSJX53MbkbauSCFCQdvKOo56EiYiIqxlNJ2dkdDAlcXR4AEGDvKltaGLv0Qo3Bici0rs5nYQlJiby6quvtloLZvfWW2+RkpLSI4GdSVVVFX/5y1+45ZZbmD17NuPHj2fFihWduvatt95i/Pjx7f5XVFTk4sh7WIt1YfYkbHdBBTX17U8NERER6TExzWN+3rZ2TxuNBhJjgwFNlRcRaalT+4S1dNddd/HjH/+Yq6++mksvvRSDwcDHH3/MihUr2L59O2vWrHFFnG2YzWbeeOMNJkyYwKJFi7r0uY888gijR49udSw4OLiHInQTx7qwNKKCBzF8iB/HKmrZmWdm9ugwz8YmIiL9m71C4hk2bf5ifxFpOWZuPstNcYmI9HJOJ2FTp07lmWee4aGHHmLZsmUAPP3008TFxbFq1Sri4+N7PMj2REVFsW3bNgwGA6WlpV1KwsaNG8fUqVNdEJ0b2Z+EHd2FoclCclwIH2QcJTW7TEmYiIi4VvQM22vpIaguse0fdookTZUXEWnD6SQMYPbs2axbt46cnByKi4sJCQlh1KhRPR3baRkMBrd+Xq8VNhZ8h0BdBRTtJalFEiYiIuJSg0IgPB6KM237hY2/uE2TU7dQGR7k54FARUR6ly5t1mwXGxtLUlKS2xOwnrJkyRImTpxISkoKS5cuJTMz09MhOc9ohBEJtq/z05jRohxwU1PbdXsiIiI9yl6qvoMpiQG+XowfbttCRaXqRURsOvUk7MMPP+SSSy5x6o0LCwvJy8sjOTm5S4G5Unh4OEuWLGH69OkEBASQmZnJqlWruPbaa1m9ejUTJkxw+j0tlq4VwrBf19XrAQwjEjEe2UhTfirjp/4YP28j5hMNHCisYOzQgC6/rzv0RP/7MvVf/W/5OtB0t/8D9fvW68TMhPRXOizOAZAcF8zeoxWkZZdxydQRbgxORKR36lQS9qc//Ymnn36a6667josvvpiAgI5/sf/uu+948803efvtt/nNb37TK5OwBQsWsGDBAsefZ86cycKFC7n00kv55z//yVNPPeX0e2ZkZHQrpu5cH1wfwhig9uA37M3YxZhgE7uLmlj7zS4WjRrcrbjcpbvfv75O/Vf/B7KB3v8+r+WmzZZGMLX91SI5LoRXNueQqidhIiJAJ5OwTz75hBUrVvDnP/+ZP/3pT0yaNIlJkyYRFhaGj48P5eXl5Obmkp6eTlFREePGjWPFihXMnz/f1fH3mOjoaJKTk9m5c2eXrp86dSomk8np6ywWCxkZGV2+HoCRYZD6EIOqjjB9ygQWHM9h95dZFDUFMn167y480iP978PUf/Vf/e96/+3Xi4dFTDi5Nvn47pNT5FtIirVNlf8uv5zaBgt+3gPv77uISEudSsICAwO5//77ueuuu3jrrbf48ssvWbt2LTU1NY42MTExzJ8/n0svvZTZs2e7LGBXslqtGI1dWyZnMpm69UtUt64PjYPB4RhOFGM6voeZo2J56sss0nLNfeYXu+5+//o69V/9V/8Hbv/7PKPRViXx0Ge2dWHtJGGxoYMJD/ChuKqe3QXlJMeFeiBQEZHew6nqiEFBQdx8883cfPPNAFRWVlJbW0twcDDe3t4uCdBdcnNzSUtLY+7cuZ4OxXkGg22/sAMfQ0EaSVNtA2BWUTWl1fWE+vt4OEAREenXolNOJmEpP21z2mAwkBgbwid7CknNLlMSJiIDXpdK1NsFBgYSGBjYU7E47csvv6Smpobq6moADh48yPr16wFYuHAhgwYN4v7772ft2rV88sknREVFAXDTTTcxY8YMJkyYgL+/P5mZmTz77LMYDAbuuecej/WnWyKbk7D8NIJn3c7YoQEcPF5FWnYZiyYN83R0IiLSn8XMtL3mnWbT5jhbEpaWbXZPTCIivVi3kjBPe+ihh8jPz3f8ef369Y4kbMOGDURHR9PU1ITFYsFqPVmuPT4+nnXr1vH8889TV1dHaGgos2fP5s477+yz5faJat60uSANgOTYEA4er2K7kjAREXG1qOZNm8uOQFURBES0aWJfF5aaU4bVatV+nyIyoPXpJOyzzz47Y5tly5axbNmyVsfuv/9+V4XkOZHNSVjxAaitIHlkCK9vzyVNmzaLiIirDQq2Fego2md7GjZhcZsm06KD8DIaKKqsI6+shpjQvlG9V0TEFbq1WbP0IgEREBQDWOFoOsnNmzbvzDNT39jk2dhERKT/i26ektjBps1+3iYmR2rTZhERUBLWv0Qm2l7z0xgd7k/IYG/qGpvYXVDu2bhERKT/i5llez3Nps1JzTcINUtDRAY6JWH9SYt1YQaDwfE0LFWDnYiIuFqMfdPmNLA0tNuk5bowEZGBzOkk7P/+7//IyspyRSzSXfZ1Yfk7ABwlgJWEiYiIy4WNA78gaKyBY+1vom2/Obj3aCUn6hvdGZ2ISK/idBK2du1aFi9ezM0338ynn37aquqgeFjkdNtreQ5UFzsGu+3ZZfo5iYiIaxmNJ9eFdTAlMTJ4ECOC/LA0WdmZq6nyIjJwOZ2Ebdy4kQcffJCioiKWLl3Kueeey6pVqygtLXVFfOIMvyDbnUiA/DSmRQfhbTpZiUpERFyrqqqKv/zlL9xyyy3Mnj2b8ePHs2LFik5d+9ZbbzF+/Ph2/ysqKnJx5D0kunlKYgfFOeDklEQV5xCRgczpJGzw4MH85Cc/4f333+eFF15g8uTJ/POf/+Tss8/md7/7HRkZ7U9BEDdpsS7MVokqCNCURBERdzCbzbzxxhvU19ezaNGiLr3HI488wuuvv97qv+Dg4J4N1FU6sWmzinOIiHRzn7A5c+YwZ84cjh07xr333ss777zDO++8w5QpU7jjjjs499xzeypO6azIJNj1um1hNLb59+m5ZrZnl/L9xCgPByci0r9FRUWxbds2DAYDpaWlrFmzxun3GDduHFOnTnVBdG4QNQMwgDkHKgshcFibJkmxwYDtSZg2bRaRgapb1RFra2tZs2YNS5YsYcuWLYwZM4a77roLi8XCXXfdxcqVK3sqTumsFk/CsFqZ4aiQaPZcTCIiA4TBYBjYSYXfEBg6yfZ1B0/DJkcG4eNlpOxEA4eLq90YnIhI79GlJCwnJ4dHHnmEBQsW8Ic//IHhw4fz/PPP8/7777N06VLeeustfvrTn/LKK6/0dLxyJsOngtELqougPM9RnGP/sQoqa9svGSwiIr3HkiVLmDhxIikpKSxdupTMzExPh+Qc+5TE3C3tnvbxMjItSlPlRWRgc3o64q233sq3337LoEGDuPLKK7n++uuJjY1t0+6cc85h1apVPRKkOMF7EAydaCsPXJDG0EmXExM6iNzSGtJzzcwfF+HpCEVEpB3h4eEsWbKE6dOnExAQQGZmJqtWreLaa69l9erVTJgwwen3tFgsXYrFfl1XrjdEzcCY+iLW3K00dXB9Ymww27PLSM0u5crEyC7F6Erd6X9/oP6r/y1fB5ru9r+z1zmdhOXm5nLfffdx5ZVX4u/v32G7cePG8dJLLzn79tITIpOak7AdMOlykmNDyC2tYfuRMiVhIiK91IIFC1iwYIHjzzNnzmThwoVceuml/POf/+Spp55y+j27WyyrK9f7VgUwBbDmp7EzbRtWo3ebNiGWWgC+3X+M9PTeu1/YQC82pv6r/wOZq/vvdBL20UcfdapdQEAAKSkpTgckPSAqCdL+fbI4x8hQ1qYXqBywiEgfEx0dTXJyMjt37uzS9VOnTsVkMjl9ncViISMjo2vXWxOwbg7BWFNGwjAjRE1v0yRqTB1/+fZzcisbGTNhMoF+bRM1T+pW//sB9V/9V/+73n/79WfSreqI0ktF2otzpENTE8nNe7LsyDFjabJiMg7gReMiIn2M1WrFaOxaHS2TydStX6K6fH10Chz4CFNBKsS2vSE7PHiwY6r8rvxKFsT3zlka3f3+9XXqv/qv/ruu/04nYeeee26HlZ+MRiOBgYFMnTqVG264gTFjxnQ7QOmCoRPByw/qyqE0i/HDxxDg60VVXSP7j1UyKXKIpyMUEZFOyM3NJS0tjblz53o6FOfEzIQDH9k2bZ59R7tN7FPl03LKem0SJiLiKk7fWktJScFqtVJYWEhUVBQJCQlERkZSWFiIxWJhxIgRfPLJJ1x11VUDfi6px5i8Yfg029cFaZiMBhKb92VJzS71XFwiIgPAl19+yfr16/n8888BOHjwIOvXr2f9+vXU1NQAcP/99zNp0iTy8/Md191000088cQTfPrpp2zatIl///vf/PjHP8ZgMHDPPfd4pC9dFt389CtvW4dNkh1bqGiqvIgMPE4/CZs3bx7p6el88sknjBgxwnG8oKCAW265hUWLFrFs2TKuv/56VqxYoQqJnhKVZNujJT8Npv2A5LgQNh4oJjW7jOvnjPR0dCIi/dZDDz3UKrmyJ2AAGzZsIDo6mqamJiwWC1ar1dEuPj6edevW8fzzz1NXV0doaCizZ8/mzjvvZNSoUW7vR7dEJYPBCOW5UFEAQ9pWQExsniqfnmOmqcmKUVPlRWQAcToJ+9e//sXdd9/dKgEDiIyM5K677uLJJ5/kiiuu4KabbuL//b//12OBipMiW2zaTIs7jirOISLiUp999tkZ2yxbtoxly5a1Onb//fe7KiT38w2AoZOhMMM2JXHy99s0mTA8kME+JirrGjlwvIrxwwPdH6eIiIc4PR0xOzubgICAds8NGTLEcfcvKirKMe1CPCCqOQk7ugssjUyPCcZogNzSGo5X1Ho2NhER6f/smzZ3MCXRy2QkIToY0JREERl4nE7CIiMjefvtt9s99+abbzqekJnNZoKCgroXnXRd6BjwHQKNNVC0l0A/b8YPtxXk0GAnIiIuFzPL9pq7tcMm9lka2kJFRAYap5Ow//mf/2H9+vX88Ic/5MUXX+T999/nxRdf5Ic//CGffPIJt956KwBbtmxhypQpPR6wdJLRCJHTbV837xc2o3mw264kTEREXC26+UnY0XRorGu3SVJcMABpGpdEZIBxek3YD37wA6xWKytWrGg1nz08PJyHHnqIa665BoAlS5bg4+PTc5GK8yKT4PBXtnVhyTeSHBfCy5uz9SRMRERcL3Q0DA6DEyW2qfH26YktJMbYbg5mFVdTWl1PqL9+bxCRgcGpJMxisZCTk8PFF1/MD37wA7KysjCbzQQHBzN69OhW+4eFh4f3eLDiJPu6sPzWxTl2F5RT22DBz3vgbsAnIiIuZjDYStVnroPcLe0mYSH+PoyO8CerqJodOWWcN3GYBwIVEXE/p6YjWq1WFi9ezI4dOzAYDIwZM4bk5GTGjBnT4QbO4kH2ConH90BDLdEhgxga6EuDxcquvHLPxiYiIv2fozjHadaFxWpdmIgMPE4lYV5eXoSHh7fa10R6saBo8I+ApkY4loHBYHA8DduuTZtFRMTV7Js253a8aXOSNm0WkQHI6cIcixcvZu3atS4IRXqcwdDhfmFaBC0iIi4XlQQGE1QWQHleu03s49LO3HIaLU3ujE5ExGOcLswxYcIEPvzwQ2644QYuuOACIiIi2kxFvOCCC3osQOmmqCQ48FGbdWGp2WVYrVZNIxUREdfx8YfhU+DoTlup+qDoNk3GRgQQ6OdFZW0j+45VMiVK29uISP/ndBJ27733AlBYWMjWrW3neBsMBvbu3dv9yKRnnPIkbHJkEL5eRspONJBVXM2YiPY33hYREekR0Sm2JCxvG0y5ss1po9FAYmwIX2UWkZZTpiRMRAYEp5Owl156yRVxiKvYKyQWH4DaCnz8hpAQHczWI6WkHilTEiYiIq4VkwLbnrFVSOxAcnMSlppdxg1zRrovNhERD3E6CUtJSXFFHOIq/uEQFAvlObYNM0ctIHlkiC0Jyy7jBzNjPB2hiIj0Z45Nm3dBQy14+7VpYt+0WcU5RGSgcLowh11lZSUbN27k3Xffpbxc5c57tahE26t9XVisKiSKiIibhIxsrtTbYLsZ2I7pMcEYDJBXVsPxilq3hici4gldSsJWrlzJ/Pnz+elPf8q9995LXp6t4tGNN97IqlWrejRA6QGnrAuzlwM+VFRNWXW9p6ISEZGBwL5pM9iKc7Qj0M+b8cMCAe0XJiIDg9NJ2KuvvsrKlSu5+uqrefrpp1vtGXbOOefwxRdf9GR80hPs68LydwAQ6u/D6Ah/AHbkarATEREXi2lOwk6zabP9BmFajtkNAYmIeFaXkrCbbrqJBx98kHnz5rU6FxcXR3Z2do8FJz1kxHTAYFsXVl0MwAz7ps1HlISJiIiLxbTYtLnFzduWkmK1abOIDBxOJ2G5ubnMnz+/3XP+/v5UVFR0OyjpYX5DIHyc7et29gsTERFxqchEMHpB1TEoz223iX1cysgvp67R4s7oRETczukkLDAwkOLi4nbP5efnExYW1u2gxAVOWReWHBcKwM48Mw2WJk9FJSIiA4H3IBg+1fZ1B+vCRoYNJtTfh/rGJnYX6IauiPRvTidhc+bM4dlnn+XEiROOYwaDgcbGRlavXt1miqL0Eo51YbYkbHS4P8GDvaltaGKPBjsREXG1MxTnMBgMJMUGA5CmWRoi0s85nYT97Gc/o6CggMWLF7Ns2TIMBgOvvPIK11xzDdnZ2dx5552uiFO6q+WTMKsVo9HgmH+/XYOdiIi4mlPFOTQuiUj/5nQSFhcXx+rVqxk9ejSrV6/GarXyzjvvEBISwmuvvUZkZKQr4pTuGj7VNh+/ugjKbVsK2Off646jiIi4nD0JO5YBDTXtNmlZnMPaQQEPEZH+wKsrF40dO5bnnnuO+vp6ysrKCAoKws/Pr6djk57k7QdDJ8GxXbanYcExjiRse3YpVqsVg8Hg4SBFRKTfCoqBgOG24hwFOyBubpsmCdHBmIwGCivqKCivJSp4kAcCFRFxvS5t1mzn4+PDsGHDlID1FaesC0uIDsarebDLN7d/V1JERKRHGAwQM9P2dQfrwgb5mJg0YgigWRoi0r916UlYXl4e69ato6CggNra2lbnDAYD/+///b8eCU56WGQSpL7oqJA4yMfE5Mgh7MwrJzW7jOiQwZ6NT0RE+rfoFNj7XodJGNimymfk28alSxO0xEFE+ienk7AvvviCpUuX0tTURGhoKD4+Pq3Oa0pbL2Z/ElaQDk1NYDSSHBfqSMIunx7l0fBERKSfa1mcw2q1PR07RWJsMC9+q+IcItK/OZ2E/f3vfycpKYm///3v2hOsr4mYCF6DoK4CSg9B+DiS40J4/pvDbD+iwU5ERFxsxHQwetuKRJUdgdBRbZrY1yvvKaigpt7CIB+Te2MUEXEDp9eEZWdn89Of/lQJWF9k8oIR02xfN68LmzHSNtjtO1ZBVV2jpyITEZGBwNvv5DiUt63dJlHBgxga6Etjk5VdeWb3xSYi4kZOJ2GRkZGtNmqWPqblfmHAsCF+RAUPoskK6Tlmz8UlIiIDQ8ws2+tpNm12bKGicUlE+imnk7Dbb7+d559/npoaVdPrk06pkAgnn4alqhKViIi4WnRzhcTTbdocq3FJRPo3p9eEZWRkUFJSwvnnn8+sWbMICQlp0+bBBx/skeBOp6qqiieffJJ9+/axZ88eysrKWLp0KXfffXenri8pKWH58uV8/vnn1NbWMmHCBH7+858zZ84cF0fuYfYnYcd2gaUBTN4kx4XwTnoBqVoELSIirubYtPk7qK8GH/82TZKan4TtyCnTPpYi0i85nYS98sorjq8/+OCDNucNBoNbkjCz2cwbb7zBhAkTWLRoEWvWrOn0tfX19dx0001UVFTwwAMPEBYWxquvvsqtt97KCy+8QEpKigsj97DQ0eAbBHXlcHwvjJjmmPaxI7sMS5MVk1GDnYiIuEhQNARGQmWBbVbGqPltmkyJGoKPyUhJdT3ZJScYGd42URMR6cucTsL27dvnijicFhUVxbZt2zAYDJSWljqVhK1Zs4bMzEz+85//kJiYCMCsWbO4/PLLWb58uVPv1ecYjRA5HQ5/aVsXNmIa44cF4u9jorKukQPHK5kwfIinoxQRkf4sZibsecc2JbGdJMzXy8SUqCGk5ZhJyylTEiYi/Y7Ta8J6C4PB0OXpCZ9++imjRo1yJGAAXl5eXHbZZezatYvCwsKeCrN3OmVdmJfJSGLz/HuVqhcREZeLbp5xktt+hUQ4Wape68JEpD/qVBK2bds2qqurz9iutLSU//73v90OytUOHDjA+PHj2xy3Hztw4IC7Q3KvUyokwsn592ka7ERExNXsFRLtmza3w16cQxUSRaQ/6tR0xBtuuIHXX3+dadNse3s0NTUxbdo03njjDSZNmuRol5uby+9//3uuvvpq10TbQ8xmM0FBQW2O24+ZzWan39NisXQpFvt1Xb2+S4YnYAKshXtoqq0C70EkxtimIG7PLnVrLB7pfy+i/qv/LV8Hmu72f6B+3/qFEdPA5AMnSqA0C8LGtGlivzm4/1gFlbUNBPp5uztKERGX6VQSZj3lLpXVaqWxsbHN8b7kdFMZuzLNMSMjozvhdPt6p1itTPMNwbuujAMb36I6dDKmhiYMQE5pDZ9vTiXEz+S+eHBz/3sh9V/9H8gGev8HJC9fGDHd9iQsb1u7SZh9H8t8cw07c8uZNy7c/XGKiLiI04U5+oPg4OB2n3aVl5cDtPuU7EymTp2KyeR84mKxWMjIyOjy9V1l3J8CBz4iPqAK6/TpAMRv+pr9hVXUB0YxffJwt8Thqf73Fuq/+q/+d73/9uulj4pJsSVhuVsg4YftNkmOCyHfXENaTpmSMBHpVwZkEhYfH09mZmab4/Zj48aNc/o9TSZTt36J6u71TotKhgMfYTyaDs2fO2NkKPsLq9iRW84l06LcFwse6H8vo/6r/+r/wO3/gGXftPk0xTmSYoN5d2eBinOISL/TZ6sjdseiRYvIyspi586djmONjY28++67JCQkMGzYMA9G5yanVEiEk5WotmuwExERV7Nv2nx8N9RVttskOS4UsG3a3NTUd5dAiIicqtNPwrKyshx3Ku2LobOystq0cacvv/ySmpoaR+XGgwcPsn79egAWLlzIoEGDuP/++1m7di2ffPIJUVG2pztXX301r732Gvfccw+/+tWvCAsL47XXXuPw4cO88MILbu2Dx9grJJYcgNpy8AtiRvNg911+ObUNFvy8dWdaRERcZEgkBMVAea7thuDohW2aTBgRiJ+3kYraRg4VVTFuWKAHAhUR6XmdTsLuu+++Nsd++9vftvqz1Wrt8t5dXfHQQw+Rn5/v+PP69esdSdiGDRuIjo6mqakJi8XSqoiIj48PL774IsuXL+fhhx+mpqaGiRMn8swzz5CSkuK2+D3KPwyCY8GcAwXpMHohMaGDCA/wpbiqjoz8cmaODPV0lCIi0p9Fz7QlYXlb203CvE1GEqKD2XK4lLScMiVhItJvdCoJe+SRR1wdR5d89tlnZ2yzbNkyli1b1uZ4eHg4jz76qCvC6jsik5qTMNsdSIPBwIy4ENbvPkZqdpmSMBERJ1VVVfHkk0+yb98+9uzZQ1lZGUuXLuXuu+/u1PUlJSUsX76czz//nNraWiZMmMDPf/5z5syZ4+LIPSQmBXa/dcZNm7ccLiU1u4xrZ8a6MTgREdfpVBJ2xRVXuDoO8YSoJNizts26MHsSJiIizjGbzbzxxhtMmDCBRYsWsWbNmk5fW19fz0033URFRQUPPPAAYWFhvPrqq9x666288MIL/XOmRnRzn+ybNrczm0abNotIfzQgqyNKM/u6sIIdjkPJI5sHu+wyt08vFRHp66Kioti2bRsGg4HS0lKnkrA1a9aQmZnJf/7zHxITEwGYNWsWl19+OcuXL3fqvfqM4VPByw9qyqDkIIS3rU5s37T54PEqzCfqCR7s4+4oRUR63ICsjijNIqcDBtt8/KoiACZHDsHHy0hJdT1HSk54NDwRkb7GYDB0+ebVp59+yqhRoxwJGICXlxeXXXYZu3btorCwsKfC7D28fGybNgPkbm23Sai/D6PC/QHYkWt2T1wiIi6mJ2EDmW8ghMdD8X7burD4C/H1MpEQHcS2I2VsP1LqGPhERMS1Dhw4QHJycpvj48ePd5x3dgsVezVjZ9mv6+r1zjBEz8CYu5mm3C1Yp7W/aXNiTBCHi6vZfriUBWPDXB6TO/vfG6n/6n/L14Gmu/3v7HVKwga6qCRbEpZvS8LANvVj25Ey0nLKuGZGjIcDFBEZGMxmM0FBQW2O24+ZzWan3zMjI6NbMXX3+s4IbohgDFB7YCN709PbbRNhsM3M+GpPLudGVLs8Jjt39L83U//V/4HM1f1XEjbQRSbBztW2J2HNZsSF8jRZbD+i4hwiIu50uqmMXZnmOHXqVMcen86wWCxkZGR0+XqnjB0B2//AoMrDTJ84GnyHtGkyaHglT6d9Q5bZwpSp0/AyuXY1hVv73wup/+q/+t/1/tuvPxOnkrDa2lpuuukmfvaznzF37lyng5JeKKq5OEd+mqMyVVJsMAAHjldRfqKBoMHenotPRGSACA4ObvdpV3l5OUC7T8nOxGQydeuXqO5e3ylBkRAci8Gcg+loOow5p02T8SOCCPD1oqqukYPFJ5gc6fz3oivc0v9eTP1X/9V/1/XfqVtJfn5+ZGZmDugfSL8zbAoYveBEsa1ABxAW4OtYC5aWo6dhIiLuEB8fT2ZmZpvj9mPjxrWtHNhv2EvVd1Ccw2Q0kNh8g1Cl6kWkP3D6eX5iYiK7du1yRSziCd5+MGyy7etT9gsDtF+YiIibLFq0iKysLHbu3Ok41tjYyLvvvktCQoLTRTn6lJgW+4V1IDH25BYqIiJ9ndNJ2L333svrr7/O2rVrqa523+JYcSHHfmFtk7Dt2aWeiEhEpM/68ssvWb9+PZ9//jkABw8eZP369axfv56amhoA7r//fiZNmkR+fr7juquvvppx48Zxzz338N577/Htt9/y85//nMOHD/PrX//aI31xm+iZtte8bdDU1G4T+7ikGRoi0h84XZjj2muvpaGhgfvuu4/77rsPPz+/VouFDQYDqampPRqkuFhUEqS+0OpJ2IzmwW5nbjkNlia8XbwIWkSkv3jooYdaJVf2BAxgw4YNREdH09TUhMViwWq1Otr5+Pjw4osvsnz5ch5++GFqamqYOHEizzzzDCkpKW7vh1sNnwpeg6C2HEoOQMT4Nk2mxwRjMEB2yQmKq+oID/D1QKAiIj3D6STswgsv7PJGlNJL2Z+EHd1puwNpNDImIoAhfl5U1Day92gF06KDPRqiiEhf8dlnn52xzbJly1i2bFmb4+Hh4Tz66KOuCKt3M3nbbghmf2NbF9ZOEhY0yJtxQwPILKwiLbuMCyYP90CgIiI9w+kkrL1BQ/q4iAm2O5B1FVByECLiMRoNJMeF8Pn+IlKzy5SEiYiIa0XPtCVheVsh6fp2myTHhZBZWEVqjpIwEenbNMdMwOQFIxJsX7e7Lkzz70VExMViTl8hEU4W59iRbXZDQCIirtPlzZozMzM5dOgQdXV1bc59//vf705M4glRSZC72bYuLOGHACTHhQKqRCUiIm5gL1NftA9qzDAouE0T+83BnXlm6hub8PHSvWQR6ZucTsJqamq444472Lx5MwaDwbGouOU6MSVhfVA7FRITYoIwGQ0cLa+lwFxDZPAgDwUnIiL9XkAEhIyEsiOQvx3GLmrTZHS4P8GDvTGfaGDv0QoSYoLdHaWISI9w+hbSk08+SX5+Pq+88gpWq5UnnniCF154gfPPP5+4uDjefvttV8QprhbVnIQdywBLAwCDfbyYHDkE0JREERFxg5hZttfcbe2eNhgMJMVqH0sR6fucTsI2bNjAT3/6UxITEwEYMWIEc+bM4fHHH2fy5Mm89tprPR6kuEHoaPALgsZaOL7HcThJm2OKiIi7OPYL63hdWFJsMACp2i9MRPowp5Ow/Px8Ro8ejclkwmAwODaeBLj00kvZsGFDjwYobmIwQKQtsW61X9hIbdosIiJuYi/OkZfa4abNSXH24hxKwkSk73I6CQsMDOTEiRMAhIWFkZ2d7TjX2NjoOCd9UDvrwuyLoPceraS6rtETUYmIyEAxdDJ4+0NdORTvb7dJQnQwRgMUlNdytLym3TYiIr2d00nY+PHjOXLkCACzZs3i6aefZvv27ezatYuVK1cyYcKEno5R3MW+Lix/h+PQiKBBRAUPwtJkZWeu2TNxiYjIwGDyOjkW5W5pt4m/rxcTR9jWK6epVL2I9FFOJ2FXXXUV1dXVAPz85z+npqaG66+/nmuvvZaCggJ+97vf9XiQ4ib2J2HH90D9ySea9qkfWgQtIiIuZ18X1kFxDjg5S0Pjkoj0VU6XqL/kkkscX8fExPDRRx85ytUnJiYSHBzck/GJOw2JhIBhUFVoq5IYa6tSlRwbzHs7C1QhUUREXM+xLux0xTlCeGlTNmkqziEifVS3dzkcPHgw5557Luecc44SsL7OYGh3XdiMkc2bNueU0dRk9URkIiIyUNg3bS7OhBPtF4WyPwnbXVBObYPFXZGJiPQYbTUvrTnWhZ1MwiYMD2Swj4nK2kYOHK/yUGAiIjIg+IdB6Bjb1/mp7TaJDhlEeIAvDRYr3+WXuzE4EZGe0anpiBMmTMBgMHTqDQ0GA3v27DlzQ+md2nkS5mUyMj0mmG8PlZCaXcb44YEeCk5ERAaEmBQoPQS5W2Hc+W1OGwwGkuOC+Wh3IanZZY4ZGyIifUWnkrC77rqr00mY9HH2vcJKDkKNGQYFA7apH98eKmF7dik/nhXrsfBERGQAiJ4JO1d3WCERbOvCPtpdqHVhItIndSoJu/vuu10dh/QW/mEQHAfmbDiaDqPPBk7Ov09TcQ4REXE1e3GO/FRosoDR1KbJyQqJZqxWq24Wi0ifojVh0pb9aViLdWGJsSEYDHCk5ARFlXUeCkxERAaEoZPAJwDqq+D43nabTIkKwttkoLiqjtxSbdosIn2L0yXq165de8Y23//+97sQivQaUUmwZ22rdWFBg7yJHxrI/sJK0nLKuHDycM/FJyIi/ZvRBFHJcPhLW6n64VPaNPHzNjE5Moj0XDNpOWXEhg32QKAiIl3jdBLW0WbMLacBKAnr4+zFOfJ3tDqcFBdiS8KylYSJiIiLxaTYkrDcbTDjlnabJMWGkJ5rJjW7jO8nRrk5QBGRrnM6CduwYUObY2VlZWzYsIEPP/yQv//97z0SmHhQ5HTAABV5UHUcAoYCMCMuhNVbc7Rps4iIuF70mTdtTo4L4flvDqs4h4j0OU4nYVFRbe80RUVFMWXKFBobG3nppZdYtmxZjwQnHuIbCOHxULzfti5s/EXAyUXQGXnl1DVa8PVqu1BaRESkR0TPsL2WHITqElvhqFMkxQUDsPdoBdV1jfj7Ov1rjYiIR/RoYY45c+bw2Wef9eRbiqdEtd0vLC5sMOEBPtRbmrQ5poiIuNbgUAgbZ/s6b1u7TUYEDSIyyI8mK+zMM7svNhGRburRJCw/Px+jUQUX+wXHurCTSZjBYCAp1l4SWFM/RETExWLOPCUxSVuoiEgf5PRz+23b2t6Nqq+vZ//+/Tz99NPMmTOnRwITD2v5JMxqhebCKzNGhvDxnkK2HynjtgUejE9ERPq/mBRIfxVyT5OExYbw/q6jpOWY3ReXiEg3OZ2EXX/99W02RLRarQDMnTuX3//+9z0TmXjWsClg9IITJWDOgZA4oMWmzTll2hxTRERcy16cIz8NLI1gavtri8YlEemLnE7CXnrppTbHfH19iYqKIjw8vEeCkl7A2w+GTYajO21Pw5qTsMmRQfiYjBRX1ZNdcoKR4f4eDlRERPqtiAngOwTqKuD4HhgxrU2TiSOG4OtlxHyigaziasZEBHggUBER5zidhKWkpLgiDumNIpNsSVh+Gky+ArBtjjk1OojU7DJSs8uUhImIiOsYjbZNm7M+t60LaycJ8/EykhAdzNYjpaRmlykJE5E+wekqGocPH2br1vbnZm/dupUjR450NybpLRzrwlpv2myf+qH9wkRExOXsxTlOsy4ssblUvYpziEhf4XQStmzZsnY3bAb4/PPPtUdYf2KvkFiQDk1NjsPJqkQlIiLuEn3mJCw59uS6MBGRvsDpJCwjI4OZM2e2e27mzJl899133Q5KeomICeA1COoroeSA47C9TH3m8UrKaxo8FZ2IiAwE0cm217LDUFXUbhN7mfrMwiqNSyLSJzidhFVWVjJ48OB2z/n5+VFerk18+w2TF4xIsH3dYr+wiEBfRoYNxmqFHbrrKCIirjQoxHZTEDrctDk8wJe4MNvvJum5ZjcFJiLSdU4nYcOGDWPXrl3tntu1axcRERHdDkp6kZb7hbVgv+uoTZtFRMTloptn4Jxm02b7lESNSyLSFzidhC1atIhVq1axefPmVse3bNnCM888w/nnn99jwUkvYF8Xlt86CZsRFwposBMRETdwFOdo/0kYQGLzzUHN0BCRvsDpEvV33XUXX3/9NTfffDMjR45k+PDhHDt2jCNHjjB27FjuvvtuV8QpnmJ/EnYsAxrrwcsHOFmcIz3XTKOlCS+T0/m8iIhI5zg2bU4FSwOYvNs0sT8J25FjxtJkxWTUps0i0ns5/ZtzYGAgr7/+OkuXLiUoKIiCggKCgoK4++67+c9//kNAgPbn6FdCR4NfEFjqbBtlNhs3NIBAPy9O1FvYd6zSgwGKiEi/Fx5vG4saa6Cw/QJg44cH4u9joqqukQPHNS6JSO/m9JMwAH9/f+666y7uuuuuno7HKdXV1fzjH/9g3bp1lJeXM3r0aG677TYWL1582uveeust7rvvvnbPff3111rX1pLBAJGJkPWFbV1Y5HQAjEYDSbEhfJlZRGp2GVOigjwapoiI9GNGI0TNgEMbbFMSIxPbNDEZDUyPDeabgyWkZpcxYfgQDwQqItI5XUrCwFYlMT09nbKyMhYuXEhQkPt/Cb/77rvJyMjgV7/6FSNHjuT999/nl7/8JU1NTVx66aVnvP6RRx5h9OjRrY4FBwe7KNo+LDLJloTlp8GMWxyHZ8TZkrDt2WXcOHekx8ITEZEBIGaWLQnL2wqzbmu3SVJsCN8cLCEt28xPZsW5OUARkc7rUhK2cuVKnnnmGWprazEYDPz3v/8lKCiIG2+8kbPOOovbbmv/H8ee9OWXX/LNN9/wt7/9je9973sAzJ49m4KCAv7yl79wySWXYDKZTvse48aNY+rUqS6Ptc9zVEjc0eqwNm0WERG3iWmukHiaTZvtlXu1abOI9HZOrwl79dVXWblyJVdffTVPP/00VqvVce6cc87hiy++6Mn4OvTJJ58wePBgLrroolbHr7zySo4fP87OnTvdEseAYK+QeHwv1J9wHE6ICcZkNJBvruFoeY2HghMRkQEhagZgAHM2VB1vt0lSjC0JO1xcTWl1vRuDExFxjtNPwl599VVuuukmfvvb32KxWFqdi4uLIzs7u8eCO50DBw4wZswYvLxad2H8+PGO80lJSad9jyVLllBaWkpgYCApKSn87Gc/Iz4+vkvxnPq9cPa6rl7vFv7DMAYMw1BViKVgB8TMBsDPy8CE4YHsLqhg2+ESFk8d4fRb94n+u5D6r/63fB1outv/gfp9G7D8hsDQibYiUblbYeL32jQJGuzN2KEBHDxeRVp2GYsmDfNAoCIiZ+Z0Epabm8v8+fPbPefv709FRUW3g+oMs9lMdHR0m+P2tWlms7nDa8PDw1myZAnTp08nICCAzMxMVq1axbXXXsvq1auZMGGC0/FkZGQ4fU1PXu9qY/xHE1xVSMG29zle4uc4Hju4kd3A+u0HiLIUdvn9e3v/XU39V/8Hsv7UfxWMcrHomc1J2JZ2kzCApNhgDh6vIjVHSZiI9F5OJ2GBgYEUFxe3ey4/P5+wsLBuB9VZBkPHe4Cc7tyCBQtYsGCB488zZ85k4cKFXHrppfzzn//kqaeecjqWqVOnnnENWnssFgsZGRldvt5dDBVnQ+EmogzHiZw+3XH8QuNR1h3cSW6NF9NbHO+svtJ/V1H/1X/1v+v9t1/fm6hglIvFpEDavyGv402bk+NCeGN7ntYri0iv5nQSNmfOHJ599lnOO+88fH19AVvC09jYyOrVq5k3b16PB9me4ODgdp92lZeXAzhdrTE6Oprk5OQuryUzmUzd+iWqu9e7XPQMAIwFO6BFnDNH2ZLuPUcrqbNYGezTtYKbvb7/Lqb+q//qf9/vvwpGuUHMLNtrwQ5orAcvnzZN7EWjduaZabA04W1yevm7iIjLOf0v089+9jMKCgpYvHgxy5Ytw2Aw8Morr3DNNdeQnZ3NnXfe6Yo424iPj+fQoUM0Nja2Op6ZmQnYBjJnWa1WjEb9Y90u+54spYegxuw4HBU8iBFBfliarOzMLfdMbCIivYAKRrlB2FgYFAKNtVDY/lPQ0eEBDPHzorahiX1HtWmziPROTj+2iIuLY/Xq1TzyyCOsXr0aq9XKO++8w6xZs/jrX/9KZGSkK+JsY9GiRbzxxht8/PHHXHLJJY7jb7/9NkOHDiUhIcGp98vNzSUtLY25c+f2dKj9g38YBMfZqlIV7IAx5zhOJcWF8MGuo6RmlzJnjPumo4qI9Ca9rWAU9M+iUcaoGRgOfkJTzhasw6e32yYxNpgvM4vZdqSESSMCnP6M3tx/d1D/1f+WrwONu4pGdWnu2NixY3nuueeor6+nrKyMoKAg/Pz8znxhD1q4cCFnnXUWf/zjH6mqqiI2NpYPPviAjRs3snz5cseUj/vvv5+1a9fyySefEBUVBcBNN93EjBkzmDBhAv7+/mRmZvLss89iMBi455573NqPPiUqqd0kbIYjCdP8exEZuHpbwSjon0WjhpuiiQLMGR9z2GdWu21GeNcC8NnOwyQM6vrY1Bv7707qv/o/kLm6/11bwNPMx8eHYcM8V3loxYoV/P3vf+fxxx/HbDYzevRoHnvssVZVqJqamrBYLK32M4uPj2fdunU8//zz1NXVERoayuzZs7nzzjsZNWqUJ7rSN0Qmwe63oSCt1WH7/PvU7DKamqwYjR0XRRER6c96U8Eo6KdFo4LKYf8LhFQfIKiDglDVgSX8Z/c2DleiolFdoP6r/+q/64tGdSoJW7t2rVMf/v3vf9+p9l3l7+/Pgw8+yIMPPthhm2XLlrFs2bJWx+6//35Xh9Y/RTVPo8nf0erwxBFDGORtoqK2kUNFVYwbFuiB4EREPKu3FYyCflo0KmYmGIwYyvMwVR+HIW33qEyKC8VogHxzLcXVDQwb0rXZOr2y/26k/qv/6r/r+t+pJOx3v/tdp9/QYDC4LQkTNxuRABigIg+qjkPAUAC8TUYSYoLYnFVKanaZkjARGZDi4+N5//33aWxsbLUuTAWjephvIAydBIXfQd5WmHR5myYBvl6MHz6EvUcrSMsu4+KpbRM1ERFP6lQStmHDBlfHIX2BbyBEjIeifZCfBuNPVgCbERfK5qxStmeX8cOUWA8GKSLiGSoY5UYxKbYkLLf9JAxsmzbvPVpBWo6SMBHpfTqVhNkLWogQmWRLwgpaJ2H2dWHaHFNEBioVjHKj6BTY/vwZN21+dUuOikaJSK/U5cIcVVVVpKenYzabCQkJISEhgYAA58vASh8TlQQ7X7M9CWshKdaWhGUVV1NSVUdYgK8nohMR8SgVjHKTmBTba0E6NNaBV9sxxz4ufZdfQV2jBV+vgbu2RUR6ny4lYc899xxPPPEEtbW1WK1WDAYDfn5+/OxnP+Pmm2/u6RilN4lsLs5RkAZWKzRX+woa7M24oQEcOF5FWo6Z8yd5rmqmiIinqGCUm4SOhsFhcKIEju6yFes4RVzYYML8fSiprue7/ArHjA0Rkd7A6dW+a9euZfny5cycOZPHHnuMV199lccee4yUlBT+8pe/OF1JUfqY4VPA6G0b+Mw5rU7NGGkb4LZnl3oiMhERGSgMBohuTrzytnbQxECSpsqLSC/ldBL24osv8r3vfY9Vq1Zx8cUXk5yczMUXX8zTTz/N4sWL+fe//+2KOKW38PKFYZNtXxe0PyVRg52IiLicPQnLbT8JgxbjUo7GJRHpXZxOwrKysrjsssvaPXfZZZdx6NChbgclvZxjv7D2N23emVdOXaPF3VGJiMhAEjPL9nqG4hwAqdllrdbgiYh4mtNJmJ+fn2PjyVOVl5fj59e1DRGlD3GsC2u9afOocH9C/X2ob2xid0GFBwITEZEBIyoJDCaoyIfy/HabTIsOwsto4HhlHfnmGjcHKCLSMaeTsOTkZJ544gkKCwtbHS8qKmLlypXMmDGjx4KTXsr+JKwgHZqaHIcNBoNj6kfqEU39EBERF/LxPzk9voN1YX7eJiZHDgFQqXoR6VWcTsJ++ctfUlxczAUXXMCSJUv4/e9/z5IlSzj//PMpLi7ml7/8pSvilN4kfDx4D4b6Sig50OqUvTiHBjsREXE5e6n63I6nJCY23xzckWN2Q0AiIp3jdBI2btw4/vvf/3LeeeeRkZHBW2+9RUZGBueddx5r1qxh7NixrohTehOTF4xIsH3dwbqw7Zp/LyIirhZtT8K2dNik5bowEZHeokv7hI0aNYrHHnusp2ORviQyCXI22SokTv+R4/DUqCC8TQaKq+rILa0hNmywB4MUEZF+zb4/2NGd0FAL3m3XpdvL1O85WsGJ+kYG+3TpVx8RkR7l9JMwEaDDCol+3iamRAUB2i9MRERcLGQU+EdAU4MtEWtHZJAfw4f4YWmysiuv/cJiIiLu1qXbQXv27OG9996joKCAurq6VucMBgNPPfVUjwQnvVhkou31WAY01oOXj+PUjLgQduSYSc0u48qkaA8FKCIi/Z7BYJuSuP8DW3GO2FntNDGQFBfMhxnHSM0uY/boMA8EKiLSmtNJ2Nq1a7nvvvswGo2Ehobi7e3d6rzBYOix4KQXCx0NfsFQa4bjeyByuuNUclwIz2w8rPn3IiLiejEzbUnYGTZt/jDjGDu0abOI9BJOJ2FPPfUUCxcu5NFHHyUoKMgVMUlfYDDYnoZlfW5bF9YiCbPPv99fWElFbQND/Lw7eBMREZFushfnyNsGVqttfDqFvThHWo4Zq9WqG8Yi4nFOrwk7fvw4N9xwgxIw6XBd2NBAP2JDB2O1QrpKAouIiCtFJoLRCyqPQnluu00mRwbh42WktLqeIyUn3BygiEhbTidhEydObLNRswxQkfZNm3e0OTWjRal6ERERl/EZDMOm2L7uYEqij5eRac1FozRVXkR6A6eTsN/+9resWrWKffv2uSIe6UvsT8KO74X61ncW7VMS0zTYiYiIq8W0mJLYAce4pHVhItILOL0mbPr06VxwwQVcccUVREREtJmWaDAYePfdd3ssQOnFhkRCwHCoOgbHdkHsbMepGSNtg92OnDIaLU14mbQbgoiIuEjMLNi66ozFOUA3B0XkpAZLE7mlJ8gqquZwcTVZxVXklZ5gZngj06e79rOdTsJWrVrF008/TWhoKJGRkW2qI8oAE5UE+z+0rQtrkYSNGxpIoK8XlXWN7C+sZHKk1hCKiIiLRDdv2nxsFzTUgPegNk2S4oIBW9GoytoGAlU0SmRAsFqtFFXVkVVU3ZxsVTmSrpzSEzQ2WdtcU3fCl7tcHJfTSdhLL73EVVddxZ/+9CdMJpMrYpK+JLI5CStoXZzDZDQwPTaYjQeKSc0uUxImIiKuExwLAcOgqhAK0iFuTpsmQwP9iAkdRG5pDem5ZuaPi3B/nCLiMifqG22JVnE1h4tsT7UON39dWdfY4XWDvE2MCvdndIQ/o8P9GRk2mKENx1wer9NJWHV1Nd/73veUgIlNVPOmzadUSASYERfqSMJumDPSvXGJiMjAYTDYnobte9+2aXM7SRjYpiTmltaQlq0kTKQvarQ0kW+ucSRbWUW2RCurqJpjFbUdXmc0QHTI4OZEK4BREf6MCfdnVIQ/w4f4tdq2wmKxkJ5+3OV9cToJS0pK4tChQ8yZ0/4/cDLA2Csklh6CGjMMCnacsu/Lsv2I5t+LiIiLxaTYkrDTrAtLjgvhnfQCUlWcQ6TXslqtlFbXO55oHSquan6yVU1OyQnqLU0dXhvm7+N4qjUqPMDxdCs2bDC+Xr3rAZLTSdgDDzzAz372M4YPH86CBQvw8fFxRVzSVwwOhZCRUHbEVqp+zDmOU9NjgzEaIN9cw7HyWoYH+XksTBER6efsmzbnbu1w02Z7cY4dOWU0NVkxGrVps4in1DZYbNMFm59oZTU/0coqqqKituPpg75exhaJ1sknW6PD/Qke3HfyEqeTsKuuuorGxkbuvvtuDAYDfn6tf7E2GAykpqb2WIDSB0QmNSdhaa2SsABfLyYMH8KeoxWkZpexeNoIz8UoIiL9W+R0MHpD9XEwZ9tuEJ5iwvBABnmbqKxt5GBRFfHDAt0epshA0tRkJd9c40i0bBUIbclWQXkN1rY1MQDbPZTIoEGOJ1mjIwIcSVdk0KB+cQPF6STswgsvbDVvUoSoJNj9VvvrwkaGKAkTERHX8x4EI6ZBfirkbms3CfMyGZkeE8ymrBJSs8uUhIn0EPOJ+lZPsuzrtI6UVFPX2PH0waBB3o51WvaEa1SEPyPD/PHz7l3TB3uaU0mYxWLh9ttvJzQ0tM3+YDKA2deFFexocyo5LoSXNmWTml3q5qBERGTAiU6xJWF5W2HaNe02SYqzJWFp2WX8KCXWzQGK9F11jRZySk5wyF550F6JsLia0ur6Dq/zMRmJCxvcZp3W6IgAQgZ7D9iHO04lYVarlcWLF/PUU0+xcOFCV8Ukfc2IBDAYoSIfKgshcJjjlL04x+6CCmrqLQzy6d93NURExINiZsKWp85YnANQcQ6RDhRX1bGrsI7vNudwpMVGxnllJ2hnSy2HEUF+bdZpjQkPICpkEKZ+MH2wpzmVhHl5eREeHo61owmcMjD5BkD4eCjaa1sXNv5ix6mo4EEMG+JLYUUdu/LMzBod5sFARUSkX7MX5ziWAfXV4OPfpklijC0Jyyqqpqy6nhD/vrOQX8RVrFYrqdllPP1VFp/uLWxeq9X2RkWgr9fJRCsioFWBjME+Tq9yGtCc/m4tXryYtWvXcvbZZ7sgHOmzopJsSVh+6yTMYDAwIy6UDzKOsj27TEmYiIi4TlA0BI6AyqO2KfIj57VpEuLvw+gIf7KKqtmRW8a5E4a180YiA4OlycrHu4+xamMWO3LMjuORASYmRocyZmigbZ1Wc9IVHuAzYKcP9jSnk7AJEybw4YcfcsMNN3DBBRcQERHR5odxwQUX9FiA0kdEJkL6q7YnYadIigvhg4yjpGVr6oeIiLiQwWDbL2zPO7Ypie0kYWArVZ9VVE1atllJmAxINfUW/puay7NfHya75AQAPl5GrkqK4ua5cVTmH2T69OmYTFpG4ipOJ2H33nsvAIWFhWzd2nbOtcFgYO/evd2PTPqWqObiHPlpbfZnmdFi/r32ZREZuKxWK4UVdewvrCTzWCX7j1UwuLGa6dM9HZn0K9HNSVjetg6bJMeF8N/UPFJ1c1AGmKLKOl7edISXN2dTdqIBgODB3lw/O44b5owkItAXi8VCer6HAx0AnE7CXnrpJVfEIX3dsCm2/VlqStvszzIpcgh+3kbMJxrIKq5m7NAAz8UpIm5RVl1vS7YKK9l/7OTrqRtw+hjhgaubdLdVek5M5zdt3plnptHShJfJ6M4IRdzuUFEVz248zJtpedQ3l4yPCR3ErfNGc82MaK3n8gCnv+MpKSmuiEP6Oi9fGD7FNgc/P61VEuZtMpIQHcyWw6WkZpcqCRPpR6rqGjngSLaqbK+FlRRV1rXb3mQ0MCrcn/HDAhk31J8oQ5l+AZaeNSIBTD5wohjKDkPo6DZNxg0NINDXi8q6RvYdq2RKlLbdkf7HarWy7UgZq5qLbdglxARz+4LRXDh5uKoWelCX097KykrS09MpKytj4cKF2jdMbPuFFeywrQubcmWrU8lxIc1JWBnXztS+LCJ9TW2DhUNFVY5k60BzspVXVtPhNTGhgxg/LJD4YYGMH257HR3hj6+X7amXxWIhPT3dTT2QAcPL15aI5W2zPQ1rJwkzGg0kxoXwVWYRO3LKlIRJv2JpsvLR7mOs+iqL9Fyz4/iiicO4feFoZsSFqLhGL9ClJGzlypU888wz1NbWYjAY+O9//0tQUBA33ngjZ511FrfddltPxyl9QVQSbH8O8tvftBlgu+bfi/RqjZYmjpScaD2NsLCSI8XVHe4PM2yIry3RGhZI/HDb69ihAfj7anqLeEh0yskkLOGH7TZJig3mq8wiUrPLuH7OSPfGJ+ICJ+obWbM9j+e+PkxOactiG9HcOn8UYyI0E6k3cXqEfPXVV1m5ciU//vGPmT9/Prfffrvj3DnnnMPHH3+sJGygimwuznE0HZosYDy5xsM+/z6ryLareqj2ZRHxqKYmK/nmGkeSlXmskv2FVRw6XkW9panda4IGeTN+eOtkK35YAMGD9f+z9DIxM2EzkKdNm6X/K6qs46XmYhvm5mIbIYO9uX7OSG6YE0d4gK+HI5T2dCkJu+mmm/jtb3+LxWJpdS4uLo7s7OweC076mIjx4O0P9VVQfACGTnCcCvH3YUyEP4eKqknLLmPRJJUEFnEHq9VKUWVzRcLCquZkq5IDhZVU11vavWawj4lxwwIZPyzAMZVw/LBAIgJ9NYVF+gb7ps2Fu6GuCnzbPgGYHhOMwQC5pTUcr6xlaKCfm4MU6Z6Dx6t47uss3kzLdxTbiAsbzK3zRnF1cgyDfFTwqDdzOgnLzc1l/vz57Z7z9/enoqKi20FJH2U02ebh53xrWxfWIgkDmBEXyqGialJzlISJuEL5iQb2t3qyZZtOaL8zeiofk5HREf6O9VrjmxOuqOBB2kpC+ragKBgSDRV5tvFo1II2TQL9vBk/LJB9xypJyzZz0ZThHghUxDlWq5Wth0t5ZmMWn+497jg+vbnYxgUqttFnOJ2EBQYGUlxc3O65/Px8wsLCuh2U9GFRSbYkLD8Npv+41ankuBBe355L6hFN/RDpjhP1jRworGqTbBVWtF+R0GiAkWH+xLeYRjh+eABxYf54qzKh9FcxM2F3nm1dWDtJGEBibAj7jlWyI6dMSZj0ao2WJj7aXciqrw6xM68csO2+cP7EYdy2YDTJKrbR5zidhM2ZM4dnn32W8847D19f2xxTg8FAY2Mjq1evZt689nenlwEiMtH2WpDW5lTyyJP7stQ3NuHjpV/+RE6nrtHC4eLqFvts2aoT2hdctycqeNDJJ1vDbdMJx0QE4OetaSkywESnwO63z7hp8+qtOdq0WXqt6rpG1mzP5blvDpNbaqtG6+tl5KrkaG6dN4rRKrbRZzmdhP3sZz/j6quvZvHixSxatAiDwcArr7zC3r17KSgo4B//+IcLwpQ+I6q5OMexDGisB6+TC/ZHh/sTMtibshMN7C4oJ7G5WIfIQGdpspJdWtVmr63DxdVYOihJGB7g60iy7IUyxg0NINDP283Ri/RSndq0ORiAXfnlujkovcrxylr+/e0RXtmcQ3nNyWIbN8wZyfUqttEvOJ2ExcXFsXr1ah555BFWr16N1WrlnXfeYdasWfz1r38lMjLSFXFKXxEyCgaFQE0ZHN998skYtiemyXEhfLr3OKnZZUrCZMAqq67nm0PFbMwsYuvBYgre/oS6xvYrEgb6eZ1SjdBWkTBMA7DI6Q2fBiZfqCmFkkMQPrZNk1G6OSi9zMHjlTzz1WHe3pHvqFQ7Mmwwt84fzVVJ0Sq20Y90aROXsWPH8txzz1FfX09ZWRlBQUH4+amqkGC70xiZCIc+s60La5GEASQ1J2FpKgksA0htg4XtR8r4+mAxXx8sYndBBdZTHnD5eRsZN7T1NMLxwwMZPsRP8/z7kOrqav7xj3+wbt06ysvLGT16NLfddhuLFy8+47UlJSUsX76czz//nNraWiZMmMDPf/5z5syZ44bI+yEvH9sYlLvZVqq+nSTMYDCQFBvChn3HScsxKwkTj7BarWw5XMozX2WxYd/JYhtJscHctmAM508apmIb/ZDTSdh9993HnXfeSUxMDD4+PgwbdrLKXX5+Pk888QSPPPJIjwYpfUxkki0JK0gD/qfVqRlxoQBsP1KG9dTfQkX6iaYmK3uOVvD1wWK+OVjM1sOlbZ50TRgeyNwxoYRby7lw9lRGhgdqkO0H7r77bjIyMvjVr37FyJEjef/99/nlL39JU1MTl156aYfX1dfXc9NNN1FRUcEDDzxAWFgYr776KrfeeisvvPACKSkpbuxFPxIz05aE5W5tUyzKLimuOQnLLuN/5o1yc4AykDVamlj33TGe2ZjFrhbFNi6YZC+2EerhCMWVnE7C3n77bX70ox8RExPT5lxZWRlr1651WxKmO469lH1dWP6ONqemRQfhbTJwvLKOvLIaIoM0pUr6h3xzDV8fKOLrgyV8e7CYkur6VueHDfFl3tgI5o0L46yx4QwN9MNisZCens7IMH8lYP3Al19+yTfffMPf/vY3vve97wEwe/ZsCgoK+Mtf/sIll1yCydT+VKI1a9aQmZnJf/7zHxITbTMIZs2axeWXX87y5ctZs2aN2/rRr9j3CztDcQ5AMzTEbarrGnljey7PfX2YvLKTxTaumRHN/8wbzahwfw9HKO7QpemIHSkvL8fHx+fMDXuI7jj2UpHNSVjRXqivBp+T/5j4eZuYHBlEeq6Z1OwyIqepJLD0TRW1DWw6VMLXB2xPu7KKq1ud9/cxMXt0GPPGhTNvbDhjhwZoWmE/98knnzB48GAuuuiiVsevvPJKfvWrX7Fz506SkpLavfbTTz9l1KhRjgQMwMvLi8suu4zHHnuMwsLCVjNPpJPsxTmO74HaCvAb0qbJtOggTEYDR8trKTDXEBk8yM1BykBxvKKWF789wiubs6mobQQg1N+HG+bEcf3sOK31HWA6lYRt27aNLVu2OP68Zs0avvrqq1Zt6urq2LBhA2PGjOnZCDugO4692JAREDgCKo/C0V0Q1/rpYnJciCMJu1RJmPQR9Y1NpOea+fpAERsPFrMz10zLwoUmo4GE6CDmjYtg/rhwpscEaw+uAebAgQOMGTMGL6/WQ+v48eMd5ztKwg4cOEBycnKb4y2vVRLWBYHDISgWynMgPxXGnNOmyWAfLyaNGEJGfrnt5qCSMOlhBworeWZjFmt3FDiKbYwK9+fW+aO4KilaW4gMUJ1KwrZs2cITTzwB2BaxdpSkREZG8r//+789F91p6I5jLxeZBPs/sK0LOyUJmxEXwnNfH2a79mWRXsxqtXLgeBVfHyjm64PFbM4q4US9pVWb0RH+zBtre9I1e0wYQ1QefkAzm81ER0e3OR4UFOQ4f7pr7e2cvfZ0LBbLmRud5rquXt+bGKJnYCzPoSlnC9aR7W/aPD0mqDkJK+WSKcP6Vf+7Qv3vfv+tViubD5fy7MYjfJFZ5DieHBfMT+eN4rwJQzE2T0Pvbd9n/fy71//OXtepJOzWW2/lJz/5CVarlblz5/Lcc88xadKkVm18fHzw93ffHNbedsdRA11rhhHTMe7/gKa8VKyn9C0h2jYdZP+xCsqr64D+1//O6q8//87qbf0/XlHLN4dK+OZQCd8eLKGwsq7V+VB/H84aE2b7b2xYmzvmzvajt/Xf3dw10LnT6aacnmk6aneu7UhGRkaXruup63uDCEMksUDl3g0cHHJ+u23CrLZ1OV/vLSA96uT/9/2h/92h/jvff0uTlU15tbybWc2hMtuUQwMwK8qXy8b7Mz7MB+qPsmvX0R6Otufp5+/a/ncqCfPz83OUoN+wYQMRERFuXfvVnt52x1EDXWuBNUOIB+qPbGZ3enqb80MHmzh+wsLar9NJGObb7/rvLPXfM/2vbWxid1EDuwrr2FVYT05FY6vzPkaYGOHDtGG+JAzzIS7IC6PBChRz/Egxx9t/W6fp598/+h8cHNzu+FFebqt61t640xPXns7UqVM7nJp/OhaLhYyMjC5f36sMtcJ3TzCkIpPpCdPA0HaacHjcCf6x5SuOlDcyYfJUvI30n/53Qb/6+XdBV/pfVdfImtQ8XvjmCPnmWsC29cjVSdHcfFYcI8P6TrEN/fy713/79WfidGGOqKgop4Nxld50x1ED3Slq4mDLvfhV5zN9/EgYFNzq9JzMnbyz8yhlphDgRP/rfyf1259/J7m7/5YmKxn55bYKhoeKScsx02A5ubDLYIDJI4Ywb2wYc8eGMyM2GF8XztXXz989A527xMfH8/7779PY2NhqlkZmZiYA48aNO+219nYtdeba0zGZTN36u9Xd63uFyATwGoSh1oyp7DBExLdpEhsWwNBAX45X1rH7aBXJsbakt1/0vxvU/zP3v7C52MarLYpthPn7cOPckVw3O45Qf88+tOgO/fxd23+nk7CGhgaeeeYZ3n//fQoKCqiraz1dx2AwsGfPnh4LsCO97Y6jBrpTBIRDyCgoO4ypcCeMObfV6RkjQ3ln51F25JZzdrh3/+u/k9R/1/TfarWSXXKCjQeL+fpAEZsOlTgGSbvokEHMHxfOvLERzBkT5pEBUz///tH/RYsW8cYbb/Dxxx9zySWXOI6//fbbDB06lISEhNNe+9BDD7Fz505Hu8bGRt59910SEhK0Trk7TN62TZtzvrVt2txOEmbftHn97mOk5ZQ5kjCRjmQWVrLqqyzeSc933MwbHe7PrfNHc2VSlIptyBk5nYQ99thjvPjiiyxYsIBFixZ5bFpib7zjKKeISoKyw5Cf1iYJs29AmJ5rxjI93BPRST9VWl3Pt4eK+fpAMRsPFJNvrml1foifF3PHhDtKx8eFDVbpeOkRCxcu5KyzzuKPf/wjVVVVxMbG8sEHH7Bx40aWL1/uSDTvv/9+1q5dyyeffOKYXXL11Vfz2muvcc899/CrX/2KsLAwXnvtNQ4fPswLL7zgyW71DzEzbUlY7lZIvK7dJslxtiQsNbuMn84b6d74pE+wWq1sOlTCqo1ZfLH/ZLGNlJGh/HTB6FbFNkTOxOkkbN26ddx1110sXbrUFfF0mu449gGRSfDdm1DQdtPm8cMDCfD1oqqukdzyRtqWSRHpnNoGC9uPlPH1wWK+PljE7oIKrC1Kx3ubbHe4548LZ964CKZGBWljZHGZFStW8Pe//53HH38cs9nM6NGjeeyxx1i8eLGjTVNTExaLBWuLv6g+Pj68+OKLLF++nIcffpiamhomTpzIM888o70re4J90+bcrR02SYoLBmBHTlmrn41Ig6WJDzOO8szGLL7LrwDAaICLpgznp/NHkxgb4uEIpS9yOgkrLy9nxowZrojFKbrj2AdENVenzE9rc8pkNJAYG8zGA8XsK2lwc2DSlzU1WdlztIKvD9o2Sd56uJS6xqZWbSYMD+SssbanXbNGhTLYp0f3pRfpkL+/Pw8++CAPPvhgh22WLVvGsmXL2hwPDw/n0UcfdWV4A5d90+aifVBbDn5tpxtOjgzCx2SkuKqenNKaNudl4LEV28huLrZh+zvh523k2hkx3DJvFHF9qNiG9D5O/2Yyc+ZM9u3bx+zZs10Rj1N0x7GXG5Fgq0JVWQCVx2ybZraQFBvCxgPF7C2q91CA0lfkm2tsmyQfKObbQyWUVrf+OzNsiC/zxkYwb1wYZ40NZ2ign4ciFZFeKWAohIyEsiOQtx3GntemiZ+3iSlRQ0jLMbMj18xId8covcax8lpe3lXJhve+oLJ5HXF4gA83zrEV2wjpw8U2pPdwOgl78MEHufPOO4mMjOTss8/2aKl63XHs5Xz8IWICHN9jexo24ZJWp2eMtD2+/zq3lmue3swNc0Zy8dTh+HppMetAV17TwOasEsdGyYeLq1ud9/cxMXt0mGNd19ihAVrXJSKnF53SnIRtazcJA9vNwbQcM2nZZYyMc2944nk5JSd46suD/Dc172SxjQh/bps/mu8nqtiG9Cynk7DLL7+cxsZG7rnnHgwGg2P/MDuDwUBqamqPBSh9XGSSLQkraJuEzR4dxhWJkbybXmAb9HLS+b/3fbh2Zgw/nhVLdMhgDwUt7lbf2ERGTrntadfBYnbmmmlqsSTDZDSQEB3EvHERzB8XzvSYYLxNbff6ERHpUEwKZLxx2nVhyXEhPPv1YXbkmrkyTlPNBopDRVU8+fkh1qbnY2kefCaGe/OLi6ayaNJwFdsQl3A6Cbvwwgt1x1k6LyoR0l9pd12Yt8nIX6+exuLoBr47EcR/tuVxrKKWJ784xL++PMS5E4Zx/Zw45o8N1z+A/VBZdT3vpufz7vYy9r6zgRP1llbnR4f7O550zR4TxhA/bw9FKiL9QvRM22vedmhqAmPbGzlJcbYZGvuOVVLTMMid0YkH7D9WyROfH+T9XQWOgk4L4yO48+zReJVlM32iqh2K6zidhLU3tU+kQ5HNxTkK0sBqte2Ge4oQPxN3zx7L0nPH8ene47y8+QjfHCzh072FfLq3kLiwwVw3K45rZkQTPFjzsPuy+sYmvth/nDfT8vhs3/FWGyWH+vtw1thw5o8N56xx4UQF6xcgEelBw6aA92CoK4fi/TB0YtsmQ/yICh5EvrmGA6UNzPFAmOJ63+WXs+KzA3y0u9BxbNHEYdx97lgSYoKxWCykl2V7MEIZCFQyTFxr2BQw+UBNmW0ufuioDpt6mYxcNGU4F00ZzsHjVby6JZv/puaRXXKCP3+4l79+vJ/LEiK5fk4c06KD3dYF6R6r1cp3+RW8mZbHuzsLWhXVmBw5hKSwJn6wYBqTo4J1x1FEXMfkZbsxmP21bUpiO0kY2J6G5ZtreC/zBHMSq5gwQhs39xdpOWU88dlBPtt3HLDdF75kygjuOmcskyKHeDi6XqLqOIa0l4nKycRQFmX7/8boBUYTGEwnv+70seave+SYV7tPsPuqTiVhu3fvdupNJ0+e3KVgpB/y8rElYgVptv9Ok4S1NHZoAH+4dDK/uXA876QX8NKmbPYerWBNah5rUvNIiAnm+tlxfG/aCC2U7aWOV9Ty9o583kzLI7OwynE8ItCXKxKjuCopmrERg0lPT2dS5BAlYCLiejEptiQsbysk39huk3PGR/DezgLSjtVx0T+/Zu6YMG6cO5LzJgzFS2tR+6QtWSWs+OwgXx8sBmx7fF2WEMld54xl3LBAD0fXS9SUwTePw5Z/YWw4wXCAg54OqgPtJWZOJ3WnJI8tjhmM3gQEzgamu7QbnUrCrrrqqk6tA7NarRgMBvbu3dvtwKQfiUqyJWD5aTDlKqcuHezjxY9SYvnhzBjScsy8sjmbD3YdZWeumZ25Zh7+YA/XzojhJ7PiiA1TIQ9Pq22w8PGeQt5MzWPjgSJHcQ0fLyMXTBrGVcnRzB8b7vhFxmKxnObdRER6mH2/sNxtHTa5MimaiAAfnvhoF9sK6vj2UAnfHiohKngQP5kdyw9nxhKqEuW9ntVq5euDxazYcJCtR0oB8DIauDIpijvPHsvIcBVeAaCuEjb/C75dYZuqC1gjkzjuN5qI8FCM1iZoskBTo+3Vav+6+c9tjjWd/Npx/NRjLd6v3WNn2D+2qRFoBEudS74lRmDYsGw4r/0bNT2lU0nYI4884tIgpJ9zrAvb0eW3MBgMJMeFkBwXwgOLJ/LG9lxe3ZxDvrmGp7/KYtXGLBbGR3DDnDgWxg/FpKcqbmO1WknNLuPNtDze33XUsacKwIy4EK5KjuaSqSMIGqTCGiLiYfbiHMX7bXf+B4W022zumDAGzw0hIm48q7fn8Z+ttvHmL+v3849PD3DptEhunKup8b2R1Wrl8/3HeXzDQdJzzQD4mIxcMyOaJQvHEBOqG7YANNTC9udg42NwwvaEkKGT4NwHaRp7IXk7dxI+fTqYPDTbqKmpRRLXXhLoTGJoOSXhO/2xpiYLuZY4Jrm4i51Kwq644goXhyH9WpQ9CUu3/QU3du9/6PAAX+48eyy3LxjD5/uO8/LmbL7MLOKL/bb/okMG8ZNZcfxgRjRhAb7dj1/alVt6grfS8nlrh23dnl1U8CCuSoriyqRo3WkUkd7FPxxCR0NpFuSlwrhFp20eFTKIey+awD3njeP9XUf597dHyMgv5820PN5My2N6TDA3zo3jkqkjtMelhzU1Wfl4zzFWfHaQ3QUVAPh6GfnxrFhuXzCG4UF+Z3iHAcLSADtehi+XQ2WB7VjoaDjnAZh8pW1qX2+YpWI0AkYwuf8GrtVioT493eWfo8Ic4nrh8eDtDw3VUJzZ4WJoZ5mMBhZNGsaiScM4UlzNq1uyeWN7HnllNTy6fh9//yST700bwXVz4kiMCdbWCj2gqq6RDzOO8mZqHlsOlzqO+/uYuGTqCK5MimbWqFCt7xKR3is6xZaE5W45YxJm5+dt4urkaK5KiiI918xLm7J5f1cB6blm0l838/D7e/lRSiw/mR3LiCBVdnUnS5OVDzKOsvKzg+wvrARgsI+J62fHcev80UQE6mYsYLsJnvFf+OL/2QqlAQyJhoW/hek/9kiyM9ApCRPXM5ogcjpkf2NbF9ZDSVhLI8P9eWDxJH51wXje21nAy5uz2ZVXzls78nlrRz6TI4dww5w4LkuIYpCP7lY6w9Jk5dtDxbyZmsf63ceobWgCbFWlzhoTzlXJUVw4eTiDffTPiYj0ATEzYdd/bMU5nGQwGEiMDSExNoT7L5nI69tyeGVzDscqanni84M89eUhLpw8jBvmjGTWqFDd/HOhBksT76QX8OTnB8kqrgYg0NeLm84ayS1njSJE6/ZsrFbY+x58/mco2mc75h8B838NyTeBt54Qeop+axL3iEy0JWEFaZD4E5d9jJ+3iWtmxHDNjBh25pp5eXM27+4sYHdBBfe+mcGfP9jL1ckxXDc7ltERAS6Loz84eLyKN9PyWLsjn6PltY7joyP8uSopmisSo4jUXl4i0tfEzLK95qV2a4p8RKAvS88dx5KFY/hkTyH/3nSEzVmlfJhxjA8zjjF+WCA3zI3j+9Oj8PfVr1s9pb6xiTfT8njyi4PkltYAEDzYm/85axQ3zB2p9cd2Visc3ACf/R8cTbcd8wuCs+6BWUvAR8sFPE3/Koh72NeF5ae57SMTYoJJiAnmgUsmsiY1l1c255BTeoLnvznM898cZv64cK6bHaeywy2YT9Tz3s4C/puWz87mBc0AQYO8uTRhBFclRTNdUztFpC8bOgl8AqC+0vZkYFj3ttXxMhm5eOoILp46gn3HKnhpUzZvp+Wzv7CSB97+jmXr9nFNcgzXz4ljlNbJdlltg4XXt+Xyry8POW4Mhgf4cOv80Vw3O44AJbonZX8LG/4Pcr61/dnbH+bcCXOWwqBgj4YmJ+lvrLiHvUJi4XfQWG/bP8xNQvx9uG3BGG6dN5qvDhTx8qZsPtt/nI0Hitl4oJjIID9+PCuWa2fGDsi54w2WJr7YX8RbaXls2HuceottuqHJaOCc8RFclRTNuROHatG5iPQPRpPtxuDhr2ybNnczCWtpwvAh/L8rpnLvRRP4b2oeL286wpGSkzf/FsZHcOPcOM6OH6q1s510or6RVzfnsGpjFkWVtpLkw4b4cvuCMfwoJVZLDFrKT4PPHoZDG2x/NvlCyk9h3i9sRWmkV1ESJu4RMhIGhUJNqS0Rsz8ZcyOj0cDZ44dy9vih5Jae4LWtOby+LZeC8lr++nEm/9xwgIumjOCGOXHMiAvp1097rFYruwsqeDMtj3fTCyiprnecmzRiCFclR3P59EjCVV1SRPqj6BRbEpa3DWbc3ONvHzTIm/+ZN4qb547kqwNFvLQpm8/3H+fLzCK+zCwiNnQw18+O4wczYggarOlz7amsbeClTdk89/VhSpvHqKjgQSw5ewzXJEfj563ky+H4Xlvyte9925+NXpB4PSz4DQRFeTY26ZCSMHEPg8G2LuzQBtu6MA8kYS3FhA52lB1e991RXt6UTVqOmfd2FvDezgImDA/kutlxXJHYv+byH6+o5Z30At5My2PfsUrH8fAAX65IjOTKpGgmjhjiwQhFRNzAsWmz88U5nNHy5l92STWvbM7m9W255JSe4M8f7uVvn+znisQorp89kkmR+rcXoPxEA89/c5gXvjlMRfO+k3Fhg7nr7LF8PzEKHy8tH3AozYIvlsGuNwArYIBp18LZ99rKzkuv1n9+u5TeLyrJloTl74CZng7Gxs/bxBWJ0VyRGM13+eW8sjmbten57DtWyYNrbXP5r0qK4rrZcYwbFujpcLuktsHCJ3sKeTMtj68yi2iy2o77eBk5f9Iwrk6KZv64cK2LE5GBw75pc8kBOFEKg0Nd/pFxYbYqvr88fzzvpOfz4rdH2HesktVbc1m9NZeUkaHcMDeOCycPx3sA/ntcUlXHc18f5qVN2VTV2ZKvMRH+LD13LJdOi9QY1VJ5Pnz1F9jxim2TYYCJl9n2+ho6wbOxSacpCRP3sa8LK3BfcQ5nTIkKYtlV07jvkom8mZrHK5uzySqu5t+bsvn3pmxmjw7lhjkjOX/SsF4/QFqtVtJyyvhvaj7v7yqgsvluIkBSbDBXJUfzvamRmgYjIgPT4FAIGwslB21TEuMvdNtHD/Ix8cOUWK6dGcP27DJe/PYIH313jK1HStl6pJShgb78ZFYcP5oVw9DA/l8+/HhFLc9szOKVzTnUNNg2CZ4wPJC7zx3HRVOGY9LauZOqiuDrv8O2Z8FiWx/H2EVw7oO22UbSpygJE/exT0Es2gf11b22PGrQIG9umTeKm+aO5NtDJby8+Qif7Clkc1Ypm7NsA+SPUmL58axYhg3pXQNkXtkJ3k6z7Y12uHnfFLDNo78yKYorEqNUml9EBGyl6ksO2qYkujEJszMYDMwcGcrMkaEcK6/lta05vLYlh+OVdfz900ye+PwAF08ZwY1z40iK7X/rlAvMNTz95SFWb8ulvtFWEGpadBBLzxnLoonDVLikpRozfLsCNj8FDc1je9xZcO7vIW6OR0OTrlMSJu4TOBwCI6GyAI7uhLi5no7otIxGA/PGhTNvXDgF5hpWb81h9dZcjlfW8c8NB3ji84NcOHkY182OY87oMI8NkNV1jXyYcZQ30/LYnFXqOD7Yx8TFU0ZwVXIUs0eFaUATEWkpeiakv9qlTZt72vAgP355fjxLzxnLuu+O8tKmbFKzy3h3ZwHv7ixgcuQQbpwzksumR/b5ghQ5JSd46suD/Dc1jwaLbX58clwId587loXxEf0u2eyWuirY8i/49nGoLbcdi0y0JV9jzrWtt5c+S0mYuFdUEuwrsJVR7eVJWEuRwYP41QXjufvccXy0+xgvb8pm65GTm3KOHRrA9bPjuCIpiiF+rp/i19RkZVNWCW+m5rHuu2OOKRwGA8wdE8aVidFcNGV4vyoqIiLSo+zFOfLTurVpc0/y8TJy+fQoLp8e9f/bu/O4qOr1geOfGRZlURYRN1AEZRMCRRb3JSs118zs/kptMTPTFm3TujftmpbmrcSr5rXMylt2c8klNfelBA2XVFxwB1RQFBUXluH8/vjK4AQqCsww8Lxfr/Pi5TlnmOc7M87Dc853YV/qJb7ZdoKfd59m/+nLvLXwTyauPMCAlt48HdMIb3dHS4d7T46ey2LGhqMs2Z2K4ebg5Fa+tRjZuQmt/Cx3IbNCyr0BCXNhy1S4ek7tqx0End+FwB5SfFUS8heaMK/64WoK1Qo6Luxu7G319AyrT8+w+hw8e5nv4tSinEfSs3h/6X4+XnWQPs0bMKhVIwLrlv1MV0fPZbEwIYUlu1I5fXOxSgBfDyf6RXjRp3kDGrg6lPnzCiFEpVM7EOxrqEWb0xOhbqilIzIR0sCFyY+HMaZbED/+kcy3cSdJuXidLzYfY/aWYzwY6Mng1j608fOo0D0dDp29wvQNR1jx52njxFDt/WvzSucmtPQp/wlRrIohV92d3TQZLqeqfW6NodNYCOlXIS4UiLIjRZgwr4LJOVKtswi7VWDdmkzooxblXLwrlW+3nSQpPYv/xqt+/ZE+bjwd04huIfVKNaVu5rUclv15hoUJKexOzjTur1ndlp5h9ekX4UVzb1e5iiiEEPdCbwNeEXBsIyTHV7girICbkz0vdvBjSDtfNhxMZ962E2xJOs/aA+msPZCOb20nBsU0ol+EFzXM0BOjpPalXiJ2fRKr96cZ93UJqsOIzk0I93a1XGAVUX4+7FsIGyeqaecBajaADm9B+FNgU3HeV1F2pAgT5lUwe8/F42pa4Goulo2nDNSobsegVj4MjGlE3LELfBd3ktX7z7LjxEV2nLjIP50TeTKyIX+Lbljiu1S5hnw2Hz7Hwp0prE1MJ8egBi3b6HV08K9NvxZePBjkafVjA4QQwqK8om4WYTsgcoilo7kjG72OLsF16BJch6Pnsvh220l+Skjh2LmrjFuWyJTVh3ishReDWll2SZVdpy4Su/4I6w+mA6rnXLeQurzcqQnN6lt/zi9TmgYHV8CGD9XdWABHD2g3Glo+B3YVa/IvUbakCBPm5eiubq1fPA6nd0HjjpaOqMzodDpa+dWilV8t0i7f4Iftyfx3+0nSLmczfcMRZmw8QpegOgxs1ei23Uf2n77Eop2p/Lw7lfNZOcb9QfVq0q+FGidQu0Y1czZLCCEqL+9o9bMCTM5xL/xqOzOuVzPeeCSAxTtTmLftJEfSs/g27iTfxp2ktV8tBrXyoUuQp9nW14o/lkHs+iNsPXIeAL0OeoXV5+VOTax2nc1yo2lwdD2sn1A4PKO6C7R+BaKHQTWZxbgqkCJMmF+DFjeLsJ2Vqgi7VZ2a1Xm1S1OGd/JjbWIa38ad5PejGfyamMaviWk09nDi6ZhG9A2vR+YNA19uPc6iXac5ePaK8Xd4ONvTO7wB/Vp4EVy/7MeXCSFElecVoX5eOAZXz4OTh2XjuUfO1WwZ2MqHp2Mase1oBvO2qSVVfj+awe9HM6jvUp2nYhrxZKQ3tZzL/gKepmn8diSDaeuT2H5czc5rq9fxWIsGvNSxCY09KuZSNBZ1Kg7W/RNOblX/tnOCmGHQeiQ4uFk2NmFWUoQJ86vfQvV9Tt1l6UjKnZ2Nnm6h9egWWo8j6Vf4Lu4UCxNSOH7+Kv9cnsjkVQfJNeSTr6nZj+xt9HQJ9qRfCy/a+9eu8ItCCyGEVXNwA48AOH9ILdoc0M3SEd0XnU5H6yYetG7iQWrmdebHneSHHcmcvnSDKasP8fm6JHo+UJ/BrRvxgJdrqZ9P0zQ2HEpn2rojxrHK9jZ6+rf0YlgHP6ubudEsTu9Wd76OrFH/tqkGkc9D21HgXNuioQnLkCJMmF/Bos1WOkPi/WriWYNxvZrx5iMBLNmtJvIouPPV3NuFfhHe9HigHq6O9haOVAghqhDvSFWEJW+32iLsVg1cHXirayCvPNiUFX+eYd62E/yZcomFO1NYuDOFcG9XBrduRPfQelSzvbdxxfn5Gr8mpjF9QxL7Ui8DUM1Wz/9FN2Roe1/qucjsvEWkH1Rjvg4sVf/W2UCLgdD+TXDxsmxswqKkCBPmVy8MdHq4ckZtVYxTNVueim7E/0U1JPH0JY4fOUS3ti2xsZFJNoQQwuy8omDXd+pOWCVS3c6GfhFe9IvwYndyJt/8foLlf55hd3ImuxdkMmH5Af4W1ZD/i25I/btMGmXI11ix9wz/Xn+EQ2nq4qGjvQ0DYxoxpJ2vjFUuzoXjsOlj+HMBaPmADkL7Q8d3oJafpaMTFYAUYcL87J3U+izpiWpyDupbOiKL0Ol0BNatwY2z8t9QCCEsxrhocwIY8sCm8n0nh3u7Ej4gnLGPBvHD9lN8F3eKs5dvMH3DEWZuOsrDwXUY1MqHGF93k+VO8gz5LN59hhkbjnDs/FUAalSzZXBrH55r2xh3J+m5UcTl07B5Cuz8BvLz1L7AHtDpXagTbNnYRIVS+b5phHWo3wLSE9Gd3gVuVbMIE0IIUQF4BKjlUrIvQdo+qB9u6YjKjYdzNUZ0bsqwDn6sSUxj3rYTxB27wMp9Z1m57yz+dZwZ1MqHbs08WXPsGq+t3ULyxesAuDra8Vybxgxu7YOLg6xbVcTVDNj6L9gxB/JuqH1+naHze9AgwrKxiQpJijBhGQ2aw+7v0J3eCW6PWjoaIYQQVZVeD14t4eg61SWxEhdhBWxvmTTq0NkrfLPtBIt2pnI4LYv3luzjvSWF59ZysueF9r48HdMI52ryZ2MRNy7B79MhbgbkZKl9DVtB57+DTxvLxiYqNPnfJCyj/s3JOc7shmDNoqEIIYSo4ryjVBGWvB2iXrB0NGYVULcGH/YN5a2ugSxMSOHbuJMcP38Vt+p6Xu7sz1MxPjjYy5jlInKuQvwX8NvncCNT7asXBp3/AU0eVKtUC3EHUoQJy6gTAjb26K5fxP7aaaC5pSMSwvxuXMbuWhpcy1CLc9o5SOIWwhK8ItVPK1u0uSy5ONjxXNvGPNPah+Pnr5B+4jBRET4yadRf5WVDwtew+RO4mq72eQRA53chqJd8h4sSkyJMWIatvSrETu/EKfMQIF0SRSWnaZBxBJLjb2470J87yANosO6W8+wcVTFm/Onwl31/Pf6X8+wd7/DYmz/18keVECa8WgI6uHgCstLBoZalI7IYvV6HTy0nMpOlmDBhyIM9/4VNk+FSstrn5gMdx6hZD+V7VdwjKcKE5TRocUsRJkQlk52l1sK7WXCRsh2uXzQ5RQfk6+3Q5+cW7sy9pjYyyi82m2olKORuU8AZz3O6c7FoK7OmCStS3UXN2nvugOqS6G/964WJMpKfD/sXwYaJcOGo2lejHnR4C5oPBBuZpETcHynChOXcHBdWM327uvroIetmCCulaZB5Uv3xlrxdFV5p+0EzmJ5nW1197r2jwDsKQ/0IdielEv5AKDb5OZB7/WYRdh1yr978eeu+W37mFLPP5PxijhcwZKutYBxDedDb3uWOnAM6W0dq6b0hPLz84hCipLwjVRGWIkWYQH2vH1oJmyapWTMBHGtB21EQ+bz6HhOiFKQIE5bTuD2anSMOWSfRZkRB86dlBXlhHXJvqEllCgqulB2QlVb0vJpexoIL7yioE2p6h8hgAFJVNxY7ZzUurLxompo2+dbCLOfqbQq4OxRyt56Xc+0v+67eXJQUtT5O9mW13YYeaKivhvboGyDjToSleUertZ2SK9eizeIeaRoc20jA1nexyTyg9lVzgdYjIWYYVKth2fhEpSFFmLAcV2/yBy8n6+e3cTm3Qw103f1faPmcutJUo46lIxRCuXy68C5XynY4vRtu7UIIoLdTM2MVFFxeUeDSwCLhFkunK7wrhXv5PIemgSG3xIVcfnYWR6464aeXVCQqAK+bizaf3qU+x6Jq0TQ4uh42TcYmOQ5nQLNzRBf9IrR+BRzL6XtTVFmS+YRl1QvnSMzHhLtfx2bjRDj5G8TPUlcjo16ANq/JF58wL0MunN1bWHAlby8chH0rJ0/Tgqt+uHRP0enUnT5be3BwvevpmsHAld27yz0sIUqkVhOo7qq66abtQ43aFJWepkHSr7DpY0hNULtsqnGuYXdq9ZmIjUt9CwcoKispwkTF0LAVPLMCjm2E9RMg9Q+19saOr6DVcGj1sho4LURZu3retOBK3Ql5103P0emhTjPVXcnrZuHl5iNTEYsirl69ymeffcbKlSu5dOkSvr6+DB06lEcfvfsMsIsWLWLMmDHFHtu6dSu1a9cu63DFrfR6NVX9kTXoUnaAfZSlIxLlKT8fDv0CmyfDmT1qn60DtHyW/JiXST6aRi1n6ZEjyo8UYaLi0OnArxP4doTDq2HDBHVHYtPHakHENq9A1IvlO25GVG75Bkg/UDiOKzkeLhwrel5118I7XN5RaiZPGQcgSmDkyJHs3buX0aNH4+Pjw/Llyxk1ahT5+fn07NmzRL9j0qRJ+Pr6muxzdXUth2hFEd5RcGSNuijjK0VYpZRvgMSf1Tpf6fvVPjsnNdlG65Hg7HlzvG4x43yFKENShImKR6eDgK7Q9GE4sBQ2ToJzB2HdB7BtBrQbpcaNVfWuX+LurmdCyh8373LFQ0oC5Fwpel7tQHUF3DtabbWaqKviQtyDTZs28dtvvzF16lR69OgBQExMDKdPn2by5Ml07969RAvfNm3alNDQ0PIOVxTn5qLNupQd4HuXc4V1yTfAvkWweQqcv7k0jn0NiB4KMS+DU9VdG05YhhRhouLS66FZHwjqCfsWqjU6Lh6H1WPh91ho/wY0HyTrEQlF0+B8UmHBlbxDFe9opufZO0ODiMKCyysCHNwsErKoXNasWYOjoyNdu3Y12f/YY48xevRo9uzZQ4sWLSwUnSiRBhGg06O7lIztjXJcq0+YjyEX9v5P3fkqWOerugtEv6RmO5Tvf2EhUoSJik9vAw88Ac36wp7vC1erXzFajRvr8DY88CTYyMe5SinBYsgAuDW+WXDdvNPlGaw+U0KUsaSkJPz8/LC1Nf0uCggIMB4vSRE2bNgwLly4QI0aNYiKiuKVV17B39//vmIyGAx3P+kOj7vfx1stOyf0tYPQpe/H+eJ+DIaOlo7IIirF+2/IQffnD+i2foou8yQAmoMbWvRwtMgXoHrNm+cVbWOlaH8pSPtL1/6SPk7+ahXWw8YOWgyCBwao2RM3T4HMU/Dzy7DlX9BpLDR7TLqRVUbFLoa8r3BNqgJ/WQwZryhwlskMhHlkZmbi5VV0nUMXFxfj8Tvx8PBg2LBhhIeH4+zszOHDh5k9ezYDBgzg+++/JzAw8J5j2rt37z0/piwfb40aOvhSm/147Z/JuSunyPB+hFyHqvk9Yo3vv86Qg0fySuoc+Z5q19MByLV3Jc3vCc759Cbf1gEOFjMWuBjW2P6yJO0v3/ZLESasj201NX19+FPwx5ew9VPVxWDh87BlqirGAnvIzHXW7K+LISdvh6vpRc+722LIQtyn+Ph4Bg0aVKJzlyxZQlBQEAC6O3zv3OkYQPv27Wnfvr3x35GRkXTo0IGePXvy+eefM3PmzBLFc6vQ0NASjUP7K4PBwN69e+/78Vat1kto/91AtetpNDj0FfUPzQW/Tmhh/4cW0F1d7KnkrPL9z72Obuc8dNti0V05A4DmXAet1Uj0Ec9Qz86ReiX8VVbZ/jIk7S9d+wsefzdWW4TJNMACe0c1k1HEM2ptsd9iIT0RFjwN9cKh83vQpIsUY9bg8mk4nVBYdJ3Zc5vFkB+42bWwAi6GLCqVxo0bM2HChBKdW6+e+tPO1dW12Ltdly5dAgrviN0LLy8vIiIi2LNnzz0/FsDGxqZUf0SV9vFWyacNhtcTSV49nUYXtqI79TscXY/u6Ho1c2ro49D8Zp6p5PnFKt7/nKvwx1fw27TCi3U1G0Cb19C1GIiuFJN4WUX7y5G0v3zbb7VFmEwDLIyq1YD2b0LkENj2b4ibqe6izH9c/cHe+T1o3P6uv0aYUe519UfN/p8JObIBm+vF3OVyqm1acMliyMKMPD096d+//z09xt/fn+XLl5OXl2cyLuzw4cOAmvXwfmiahl66WZuXvTMZ3l3x7vkONpdOwu7/wu7v4XIK7JijNs9m0Pwp1UXeycPSEVc92Vdg+39g23S4dnMSFZeGagbl8P9TvWaEqMCssgiTaYBFsRzcVMEVPQx++0x9OSfHw7yeqgjr9B40jLZ0lFVXzlVI+hUSl6p14HKvogeqAZpOj04WQxZWrkuXLvz444/8+uuvdO/e3bh/8eLFeHp6EhYWds+/Mzk5mZ07d9K6deuyDFXcC3dflVs6joHjm2DXd3BguVpjavVYWPMP8O+q7o41eUgmiSpv1zPV2qFxM+BGptrn1ljNmPzAADV+XAgrYJXfFDINsLgjJw94eAK0GqHGiP0xF45vhuMPq7XHOo2F+s0tHWXVcOOyKrgSl8CRdZB3vfBYTS/yg3pyROeHX/v+2Di6WipKIcpEhw4daNOmDePGjSMrK4uGDRuyYsUKtmzZwpQpU0wuDo4dO5YlS5awZs0aGjRQ3WqfeeYZWrZsSWBgIE5OThw+fJg5c+ag0+l49dVXLdUsUUBvA36d1Xb9olo6Zdd8NUvrweVqc/KEsAEQ/jR43vtEKuIOrl1QhVf8F5B9We2r1VT1hAnpJ8WvsDpW+YmtiNMAiwqoRl3oPkWNG9s8RSXLpF/VFtQTOo6FOsGWjrLyuXYBDq1UC20fXQ+GnMJjbj4Q3Ftt9Vug5edzZfdu1aVUiEogNjaWTz/9lGnTppGZmYmvry//+te/ioxXzs/Px2AwoGmF69j5+/uzcuVKvvrqK7Kzs3F3dycmJobhw4fTuHFjczdF3ImDm+oCHzkE0hJh93z4c4Eak/R7rNoaRKi7YyH91LpU4v5cPa9ezx1zICdL7asdBB3ehOA+suSIsFpWWYRVxGmAZS2W+2OW9tdoAI9+Bq1eQbd5Mrq9/0N3YBnageVoIf3Q2r8FtZqU3/PfQaV5/6+eR3doBboDS+HEFnT5ecZDWq2maEG90IJ6QZ2Qwi6GN/8IhUrQ/vsk7TfPWizm5OTkxHvvvcd77713x/M++ugjPvroI5N9Y8eOLc/QRHmpEwyPfAhdxqmLfLvmQ9JqSE1Q26ox6sJf+FPQuIMso1JSV9Lg92lq0o3ca2pfnVDo8JaaAVleR2HlLF6EVZZpgGUtltIxW/t9hlG9VlfqH/oatzOb0e37CW3/IjK8HuaM/yByHOuaJ46/sMb33/ZGBm5nt+J6ehM1Mv5ER+GaXddq+JJZvz0X67XnRg0ftfOsAc4WP8ObNba/LEn7q3b7RSVhYweBj6otK13dGds1H84dgL3/U5tLQwj/m5o4ws3H0hFXTJdS4bfPYec8yLuh9tVvDh3eVmPvZKywqCQsXoRVlmmAZS2W+2OZ9odDuz4YzvyJftMkdEmr8UheRa3UdWjNB6K1HQU165slEqt7/y+loDu4DN2BZZAcj47CrlRavXC0wJ5oQT2pVqsJdYA6d/l1Vtf+MibtN89aLEKYnbOn6grfaoQaM7ZrPuz9CS6dgk0fq82nnbo7FtwL7J0sHbHlZZ5S637u+q6wG7tXlCq+mjwoxZeodCxehFWWaYBlLZbSsUj7vZrDUz9C8g7YMAHdsY3oEr5Sffsjh0Db18HZPGvGVej3/8JxNb4r8WfVteZWXpFqfFdQT3RuPtxviqzQ7TcDaX/Vbr+oxHQ6NTasQYTqsnhwhSoyjm2EE1vU9subENJXTebhHVX1io0Lx2DLv2DP91DQlb1RWzXmq3GHqvd6iCrD4kXY/ZBpgEWZ8o6EQT/Dia2wfgKc2gZx/4aEryH6RXU109Hd0lGa1/kkVXQl/gxn/7zlgA4atjIWXrJYshBClJCdg1roOfRxyEyGPT/A7u/g4gnY+Y3aajVVXRXD/gY161k64vJ1/ghs+QT+/BG0m+M7G3dQY7582lo2NiHMwCqLMJkGWJQLn7bw7Eo4uk4VY6d3wdZ/qRmZWo2AmJegek1LR1k+NA3SD6ii68BSSE8sPKazUa9NcC8I7Ak17tbJUAghxB25eqs7Pe1Gw6nfVXfFxCWQkQTrxsP6f0KTLqq7YkC3yrXwcPoB2PwJ7F8E2s2xxE0eUsWXd5RlYxPCjKyyCAOZBliUE51OJT6/B+HQL7D+Q7Ug58aJED8T2rwGUS9Ujv77mqbuchXc8co4UnhMbwu+HdUdr4BHwamWxcIUQohKS69XF7l82kL3ybB/ieoSf2pb4ZIqDm4Q+oSa7r7eA5aO+P6d3auWi0lcCgXjiQO6q0WWG0RYNDQhLMFqizCZBliUK51OzXDl3w0SF8OGSeoK5dr3Ydu/1dXLiGfArrqlI703mqbGdRUUXpknC4/ZVFODn4N6QUBXlfiFEEKYR7Ua0GKg2s4fUcXYnh/gymnY/oXa6oaqsWMPPGE93eRP74JNU+DQisJ9Qb3UIsvWXFQKUUpWW4QJYRZ6vVpoM6i3ml544yRVuKx6W61f0v5NdXXSxs7Skd5efj4kx9/sargMLqcUHrN1gKYPqTteTR+uvN0thRDCmng0gS7vQ+f34OgGNXbs4Ap1N2nV2/DrexDYXRVkfp3BpgL+OZe8AzZPVnfzANBByGPQ7g21tpoQVVwF/F8rRAVkY6vWdgl9XM1stXkKXE6F5a/Bb59Bh3fUlUl9BZnhzZCnxhkUFF5ZaYXH7J3B/xFVeDXpUjm6VgohRGWkt4GmXdR27YKa5n73d3BmT2GPBue6EPakuiDocX+zQ5epk7/DpslwbIP6t06vulO2Gw21/S0bmxAViBRhQtwLGzto+ayauSrha9gyVc1stWSYmsSj4xgI7qPuoJmbIReOb1L97Q8uh2sZhcequairpkG91FVTa+tGKYQQVZ2jO0QPVdvZfaq74p8LIOusuhj422dqXa3mT0Ozvubt2aBparr9TZPVT1Bji8OehLajoJaf+WIRwkpIESbE/bCrDjHDVN/97f9Rye/8YfjpWagzFTq9q2a0Ku/1TfKyVVeVxJ/VRCI3MguPObircW3BfaBxe7C1L99YhBBCmEfdEOg6CbqMh8OrVEGWtAZStqtt5duqt0Pzp9SaW+V1YVDT4Oh6VXwlx6l9ejtVCLZ9Hdwalc/zClEJSBEmRGnYO0Hb16DlcxA3E7ZNh7R98MPfoH4L1Z/fr3PZFmM519Q0+ok/w6FVkHOl8JiTJwT1UMm3UduKOU5ACCFE2bC1V8uHBPeCK2fVnbFd8+H8IfjzB7W5NlJT3Yf/DVwbls3zahocXq3GfKUmqH021SBiMLR5FVy8yuZ5hKjE5C80IcpC9ZrQ8W01ff3vsRA/C07vhO8eg4atVTHm0+b+f392FiStVl0Nk36F3GuFx2rUVwk4qBc0jKk449KEEEKYT426qgBq/Qqk/KHGju1bpCaT2jhRTSzVuL26SxXUUy0efa/y89Ush5smqyVOQE3w1PI5aPOKikEIUSJShAlRlhzd1YxWMcNh66dqoedTv8PX3dW6W53eA+/Ikv2uG5fUna7En9Wdr7wbhcdcG6qiK7iPWl/FEmPQhBBCVDw6ncoz3pHwyCQ1RnjXd2rMcMFWzUXNVNj8aZVD7tZbI9+gctHmT9TamQB2ThA1BFqNBOfa5d8uISoZKcKEKA/OtaHrRGg9QiWtnd/AsY1q8++qxowVtz7KtQtqGuIDS9VYr/zcwmPufqqbYXAvqBde/uPNhBBCWDd7RzVz7wNPwMWTsOd7NX4s8xQkzFWbR4AaO/bAk1Cjjunj8w2wf5GaEfj8IbWvWk2IGqouNjrVMn+bhKgkpAgTojzVrA89/qW6aWyaAnv+qwZRH16lCqr2b2ObfQFdwtdwcBkc3wyaofDxtQNvFl69wTNYCi8hhBD3x60RdHwH2r8FJ7eqsWOJP6vias0/YO14tV5k86egcUdqJa9C/9sLcOGoenx1F1V4Rb8IDm4WbYoQlYEUYUKYg5sP9Pm3mi1q4yTYtxASf0afuJQH0KEjv/DcuqFqcejgXlA7wGIhCyGEqIT0ejU2rHF76D4Z9i9WBVnKdji8Eg6vRK+zwafggqCDO7R6Wd39Mue090JUclKECWFOHk3g8S+h3SjYMBHdweWAhla/BbqCrobuvpaOUgghRFVQ3QUinlHbucOqq+KeH9BlnSXX3g2b9q+hjxwC1ZwtHakQlY4UYUJYQp1m8OR8DBnH2X/gIM1aPYyNjcxqKIQQwkJq+8ND46Hz3zGkH2DvqcuEtYwByU1ClAuZUk0IS3JtSK6Dp6WjEEIIIRQbW/AMRrOtbulIhKjUpAgTQgghhBBCCDOSIkwIIYQQQgghzEiKMCGEEEIIIYQwIynChBBCCCGEEMKMpAgTQgghhBBCCDOSIkwIIYQQQgghzEiKMCGEEEIIIYQwIynChBBCCCGEEMKMpAgTQgghhBBCCDOSIkwIIYQQQgghzEiKMCGEEEIIIYQwIynChBBCCCGEEMKMpAgTQgghhBBCCDOSIkwIIYQQQgghzMjW0gFYO03TADAYDPf1+ILH3e/jrZ20X9p/68+qRtpfuvYXPK7ge1gUktxUOtJ+af+tP6saab95cpNOk+xVKjk5Oezdu9fSYQghRJUVGhqKvb29pcOoUCQ3CSGEZd0tN0kRVkr5+fnk5eWh1+vR6XSWDkcIIaoMTdPIz8/H1tYWvV56199KcpMQQlhGSXOTFGFCCCGEEEIIYUZy6VAIIYQQQgghzEiKMCGEEEIIIYQwIynChBBCCCGEEMKMpAgTQgghhBBCCDOSIkwIIYQQQgghzEiKMCGEEEIIIYQwIynChBBCCCGEEMKMpAgrR4sWLSIgIMC4BQcH07ZtW15//XVOnDhhcu4ff/zBu+++y2OPPUZISAgBAQGkpKRYJvAyUtL2GwwG5s6dy/PPP0/79u0JCwujW7dufPLJJ1y+fNlyDSgnf31d/rrFx8dbOsT7tmrVKgICAvjll1+KHOvVqxcBAQFs2bKlyLEuXbrQt29fADZs2MBbb71Fz549adasGQEBAeUed1kpbfuzsrKYOXMmAwcOpE2bNjRv3pyePXsye/ZssrOzzdGEUimL9//TTz+lT58+REVFERoayoMPPsjf//53UlNTyz3+qkJyk+Sm4khuktz0V5Kbyjc32d73I0WJTZo0CV9fX7Kzs9m5cyezZs0iPj6elStX4uLiAkBcXBzbtm0jKCgIJycntm/fbuGoy87d2n/jxg1iY2Pp0aMH/fv3x83NjcTERGbOnMmGDRtYuHAh1atXt3QzylzB6/JXTZo0sUA0ZSMqKgqdTkdcXBzdu3c37s/MzOTw4cM4OjoSHx9Pu3btjMfOnj1LcnIyzz77LABr1qxhz549BAUFYWdnx/79+83ejvtV2vafPn2aefPm0bt3b5555hkcHR1JSEhg+vTp/P7778ydOxedTmeJppVIWbz/ly9f5tFHH8XPzw8nJyeOHDnCzJkzWb9+PcuXL8fNzc3s7aqsJDdJbiqO5CZFcpPkpvLOTVKEmUHTpk0JDQ0FIDo6GoPBQGxsLGvXrqVfv34ADB8+nBEjRgDw5ZdfVqpEd7f2V69enXXr1pl8gKOjo6lXrx6vvvoqq1evpnfv3pYKv9zc+rpUFu7u7jRt2rTI53fHjh3Y2trSr1+/IldT4+LiAPWeA0yYMAG9Xt2k/+CDD6wq0ZW2/V5eXqxfvx5HR0fj8VatWuHg4MDkyZNJSEigZcuW5d+Q+1QW7//7779vcrzgdRk6dCjr1q3j8ccfL8cWVC2SmyQ3FUdykyK5SXITlG9uku6IFlDw5ZaRkWHcV/Afuyr4a/ttbGyKvYLwwAMPAOpqhLAe0dHRHD9+nPT0dOO++Ph4QkJC6NChA/v37ycrK8t4bPv27djY2Bi/wK39/0Jp2u/o6GiS5ApY0/+F0r7/xXF3dwfA1lauG5YnyU2SmyozyU2SmypabrLuT5SVKuhP7+PjY9lALKSk7S+4CmHNXSDuJD8/n7y8PJPNYDBYOqxSi4mJATC54hQfH09UVBQtWrRAp9ORkJBgciw4OJgaNWqYPdbyUB7tt6b/C2XV/ry8PG7cuEFiYiITJ07Ex8eHhx56yDyNqKIkN0luAslNtx6T3CS5qTxzkxRhZlDwhXb16lW2bNnCzJkziYyMpHPnzpYOzSzup/1paWlMnTqVkJAQOnXqZMZozeeJJ56gWbNmJltl6AISGRmJXq83ftFdvHiRpKQkIiMjcXJyIjg42PjFfebMGVJSUoy3+yuDsm7/wYMHmTNnDg899BCBgYFmaUNplEX7z507R7NmzQgLC6Nv374YDAa++eYbnJyczN6eykxyk+Sm4khuktwkuck8uUn6dpjBE088YfJvPz8/ZsyYUWW61txr+zMzM3nhhRfQNI3PPvvM6rsA3M7HH3+Mn5+fyb6KPLC1pFxcXAgMDDT2r96xYwc2Nja0aNECUF+EBV90BedUpkRXlu1PSUlh2LBh1K1blwkTJpgh+tIri/a7ubnx008/kZOTw7Fjx5gzZw6DBg3i22+/xdPT04ytqdwkN0luKo7kJslNkpvMk5sq5zdIBfPxxx/z008/MW/ePAYMGMDRo0cZNWqUpcMym3tp/6VLl3juuedIS0vjq6++wtvb28zRmo+fnx+hoaEmW0hIiKXDKhPR0dGcOHGCtLQ04uPjadasmfFKUVRUFAcOHODKlSvEx8dja2tLRESEhSMuW2XR/tTUVAYNGoSNjQ3z5s3D1dXVzK24f6Vtv62tLaGhoURERNC/f3/mzZtHSkoKs2fPtkRzKi3JTZKbiiO5SXKT5Cbz5CYpwsyg4AstJiaGDz74gP79+7NlyxZWrVpl6dDMoqTtv3TpEs8++ywpKSnMnTvXKm5vi+IVXD3avn0727dvJzIy0nis4Ettx44dxMfHExoaWum6mZW2/ampqQwcOBCAb775hrp165op8rJR1u9/3bp18fT0LLKGlSgdyU2Sm6oayU2Sm6Di5CYpwizgzTffxMXFhWnTppGfn2/pcMyuuPYXJLnk5GS+/PJLgoODLRylKI3IyEhsbGxYvXo1SUlJREVFGY/VqFGDoKAglixZQmpqaqXq7lGgNO0/ffo0AwcOJD8/n3nz5tGgQQNzh19qZf3+nzx5krNnz9KoUaPyDLvKk9wkuamyk9wkuaki5aaq0fG7gnFxcWHo0KFMmTKFZcuW0bt3by5cuGAcLHj48GEANm/ejLu7O+7u7iYfFGv31/Y/8sgjPP/88yQmJjJ27FgMBgO7d+82nu/u7k7Dhg0tF3A5SUpKKnbGqYYNGxqnPbVWzs7OBAcHs3btWvR6fZFb+pGRkcybNw8o2uc6NTWVvXv3AnDq1CkA45XpBg0aWMUA8fttf0ZGBoMGDeLcuXN8+OGHZGRkmEwXXrduXau48ni/7T948CCTJk3ikUcewdvbG71ez+HDh/n6669xdXXlueeeM2s7qhrJTZKbQHKT5CbJTWCe3CRFmIUMHDiQ+fPnM2PGDHr06EFSUhKvvvqqyTnjx48HVD/Vb7/91hJhlptb29+8eXPjF9uHH35Y5Ny+ffvy0UcfmTvEcjdmzJhi90+YMIH+/fubOZqyFx0dzd69ewkKCsLZ2dnkWGRkJF9//TV2dnY0b97c5Fh8fHyR16bg/4Y1fRbup/1HjhwhOTkZUFfl/2rEiBGMHDmyfAMvI/fTfg8PDzw9PZk7dy7nzp0jLy+PunXr0rFjR4YNG0a9evXM3YwqR3KT5CbJTZKbJDeZJzfpNE3TStUaIYQQQgghhBAlJmPChBBCCCGEEMKMpAgTQgghhBBCCDOSIkwIIYQQQgghzEiKMCGEEEIIIYQwIynChBBCCCGEEMKMpAgTQgghhBBCCDOSIkwIIYQQQgghzEiKMCGEEEIIIYQwIynChNVZtGgRAQEBxi04OJi2bdvy+uuvc+LECUuHB8CsWbNYu3Ztkf3x8fEEBAQQHx9vgaiU9evXM2zYMFq3bk1ISAhRUVEMHjyYpUuXkpuba7G4/qq41+qdd96hc+fO5fq8aWlpxMbGcuDAgXJ9HiFE5SK5qXQkN92Z5KbKx9bSAQhxvyZNmoSvry/Z2dns3LmTWbNmER8fz8qVK3FxcbFobF988QWPPPIIXbp0MdnfrFkzFixYQJMmTcwek6ZpjB07lkWLFtGhQwfeeecd6tWrx5UrV4iPj2f8+PFcvHiRwYMHmz22kho+fDiDBg0q1+dIT09n+vTpNGjQgKCgoHJ9LiFE5SO56d5IbioZyU2VjxRhwmo1bdqU0NBQAKKjozEYDMTGxrJ27Vr69etn4eiK5+zsTHh4uEWee86cOSxatIiRI0cyYsQIk2OdO3dmyJAhnDx50qwx3bhxg+rVq5f4/IYNG5ZjNEIIUXqSm+6N5CZRVUl3RFFpFCS9jIwMk/179+5l2LBhREVFERoaSp8+ffjll19Mzrlw4QLjxo2je/fuNG/enFatWjFo0CD++OOPIs+Tk5PD9OnT6datG6GhoURHRzNw4EB27twJQEBAANeuXWPx4sXGbikDBw4Ebt/lY926dQwYMICwsDCaN2/Os88+y65du0zOiY2NJSAggKSkJEaNGkVERAStW7dmzJgxXLly5Y6vTW5uLnPmzMHX15eXX3652HNq165Ny5Ytjf/OzMxk3LhxtGvXjpCQEB588EE+/fRTcnJyTB6XnZ3N1KlT6dy5MyEhIbRr147x48dz+fJlk/M6d+7Miy++yK+//kqfPn0IDQ1l+vTpABw9epTnn3+esLAwoqOj+cc//sHVq1eLxFhcl4+AgAA++OADlixZQrdu3QgLC6NXr15s2LDB5LyTJ08yZswYHn74YcLCwmjXrh3Dhg3j0KFDxnPi4+N5/PHHARgzZozx/YuNjTWeU5LPkxBCFJDcdHuSmyQ3VWVyJ0xUGikpKQD4+PgY98XFxTFkyBDCwsIYN24cNWrU4JdffuH111/nxo0bPPbYY4D6UgcYMWIEHh4eXLt2jTVr1jBw4EC+/vproqOjAcjLy2PIkCEkJCQwaNAgYmJiMBgM7NmzhzNnzgCwYMECBg8eTHR0NMOHDwfUVcbbWbZsGW+88QZt27Zl6tSp5OTkMGfOHONz35p8AEaOHEn37t15/PHHOXz4MFOnTgVUF5jb2bdvH5mZmfTv3x+dTnfX1zI7O5tBgwaRnJzMyJEjCQgI4I8//mD27NkcOHCA2bNnA6obyfDhw4mLi2Po0KG0bNmSQ4cOERsby+7du1mwYAH29vbG37t//36OHj3KSy+9hJeXFw4ODpw/f56BAwdia2vL+++/T61atVi2bBn//Oc/7xpngY0bN7J3715eeeUVHB0dmTNnDiNGjGDVqlV4e3sDqiuHq6sro0ePxt3dnUuXLrF48WKeeOIJFi9ejK+vL82aNWPSpEmMGTOGl156iY4dOwJQt25doOSfJyGEKCC5SXKT5CZRLE0IK7Nw4ULN399f2717t5abm6tlZWVpmzdv1tq0aaM99dRTWm5urvHcrl27an369DHZp2ma9uKLL2pt2rTRDAZDsc+Rl5en5ebmaoMHD9Zefvll4/7Fixdr/v7+2o8//njHGMPDw7W33367yP64uDjN399fi4uL0zRN0wwGg9a2bVutR48eJrFkZWVprVq10gYMGGDcN23aNM3f31/7z3/+Y/I7x40bp4WGhmr5+fm3jWfFihWav7+/9v33398x7gLff/+95u/vr/3yyy8m+2fPnq35+/trW7du1TRN0zZv3lxsTAXPt2DBAuO+Tp06aUFBQdqxY8dMzp0yZYoWEBCgHThwwGT/s88+a/JaaZqmvf3221qnTp1MzvP399dat26tXblyxbjv3LlzWmBgoPbFF1/cto15eXlaTk6O9vDDD2sTJ0407v/zzz81f39/beHChUUec7+fJyFE5Se5SXLTrSQ3ibuR7ojCaj3xxBM0a9aMFi1aMGTIEGrWrMmMGTOwtVU3eE+ePMmxY8fo2bMnoK4UFmzt27fn3LlzHD9+3Pj7vv/+e/r27UtoaCjBwcE0a9aMbdu2cfToUeM5W7ZsoVq1amXWr//48eOkp6fTu3dv9PrC/45OTk48/PDD7Nmzh+vXr5s8prguD9nZ2UW6upRGXFwcjo6OdO3a1WR/wdW0bdu2Gc+7dX+Bbt264ejoaDzv1lgbN25ssi8+Pp6mTZsSGBhosr9Hjx4ljjc6Otrkiq6Hhwe1atUiNTXVuC8vL49Zs2bRvXt3QkJCCA4OJiQkhBMnTpi8x7dzr58nIUTVJLlJkdwkuUncmXRHFFbr448/xs/Pj6tXr/LLL7+wYMECRo0axZw5cwA4f/688byPP/642N9x8eJFAObOnctHH33Ek08+yauvvoqbmxt6vZ7PP/+cY8eOGc+/cOECnp6eJkmpNAqev3bt2kWOeXp6kp+fz+XLl3FwcDDud3V1NTmvoEvFjRs3bvs89erVAwq7xdxNZmYmHh4eRbqH1KpVC1tbW2MXmczMTGxtbXF3dzc5T6fT4eHhYTyvQHHtzMzMxMvLq8h+Dw+PEsUKRV8TUK9Ldna28d8fffQR8+fP54UXXiAyMhIXFxd0Oh3vvfeeyXm3cy+fJyFE1SW5SZHcJLlJ3JkUYcJq+fn5GQc8x8TEkJ+fz//+9z9WrVpF165dcXNzA+DFF1/koYceKvZ3FFz5Wrp0KVFRUYwfP97k+F8H4Lq7u5OQkEB+fn6ZJLuCGM+dO1fkWHp6Onq9npo1a5b6eUJCQnB1dWXdunWMHj36rn3vXV1d2bNnD5qmmZybkZFBXl6eMW5XV1fy8vK4cOGCSbLTNI3z588b358CxT2vq6urMYncqrh9pbF06VL69OnDqFGjTPZfvHixRK/xvXyehBBVl+SmkpPcJLmpKpPuiKLSePPNN3FxcWHatGnk5+fj6+uLj48PBw8eJDQ0tNitoJuATqczGaQLcPDgQXbv3m2yr127dmRnZ7No0aI7xmJvb3/Hq38FGjduTJ06dVi+fDmaphn3X7t2jV9//ZXw8HCTK433y87OjiFDhnDs2DH+/e9/F3tORkYGCQkJALRq1Ypr164VWdRzyZIlxuO3/ly6dKnJeatXr+batWvG43cSHR1NUlISBw8eNNm/fPnyuzfsHuh0Ouzs7Ez2bdy4kbS0NJN9t7t6ey+fJyGEKCC56fYkN0luqsrkTpioNFxcXBg6dChTpkxh2bJl9O7dm/Hjx/PCCy/w/PPP07dvX+rUqcOlS5c4evQo+/fvZ9q0aQB07NiRGTNmMG3aNCIjIzl+/DgzZszAy8sLg8FgfI4ePXqwaNEixo0bx/Hjx4mOjkbTNPbs2YOfnx+PPvooAP7+/mzfvp3169dTu3ZtnJyc8PX1LRKzXq/nzTff5I033uDFF19kwIAB5OTk8OWXX3L58mVGjx5dZq9PQaKLjY1l79699OjRw7gg5o4dO/jxxx8ZOXIkERER9OnTh/nz5/P222+TmpqKv78/CQkJfPHFF3To0IHWrVsD0KZNG9q2bcsnn3xCVlYWLVq04NChQ0ybNo3g4GB69+5917gGDx7MwoULGTp0KK+99ppxBqpbu9qUhY4dOxpnmgoICGD//v18+eWXxtmlCjRs2JDq1auzbNky/Pz8cHR0xNPTkzp16pT48ySEEAUkN92Z5CbJTVWVFGGiUhk4cCDz589nxowZ9OjRg5iYGP73v/8xa9YsJk6cyOXLl3F1dcXPz49u3boZHzds2DCuX7/OTz/9xJw5c2jSpAnjxo1j7dq1bN++3Xiera0t//nPf/jiiy9YsWIF8+bNw8nJicDAQNq1a2c8791332X8+PGMGjWK69evExUVxbfffltszD179sTBwYHZs2fz+uuvY2NjQ1hYGN988w0tWrQos9dGp9MxadIkunTpwo8//mh8PQrif+ONN4yDmKtVq8Y333zDp59+ypw5c7h48SJ16tThueeeM1lMU6fTMWPGDGJjY1m0aBGzZs3C1dWV3r17M2rUqCJXcItTu3ZtvvvuOz788EPGjRuHg4MDXbp04e9//7txGuWy8O6772Jra8vs2bO5du0awcHBxMbG8vnnn5uc5+DgwMSJE5k+fTrPP/88ubm5jBgxgpEjR5b48ySEELeS3HR7kpskN1VVOu3W+8xCCCGEEEIIIcqVjAkTQgghhBBCCDOSIkwIIYQQQgghzEiKMCGEEEIIIYQwIynChBBCCCGEEMKMpAgTQgghhBBCCDOSIkwIIYQQQgghzEiKMCGEEEIIIYQwIynChBBCCCGEEMKMpAgTQgghhBBCCDOSIkwIIYQQQgghzEiKMCGEEEIIIYQwo/8HfGUc9jPH+soAAAAASUVORK5CYII=",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0MAAAHaCAYAAADCNpJNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACrLklEQVR4nOzdd1yUV9r/8c89QxNEQMBCt4ENwd5Nr6b3Zzd1n2TTNNkk+2zKZneT/e0mZrObzUaNG1M3zWRNjKmmudnExF5ArFjoKKIy9Dozvz8GUBSFAYYB5vt+vXgN3G2uMyTeXPc55zqG3W63IyIiIiIi4mFM7g5ARERERETEHZQMiYiIiIiIR1IyJCIiIiIiHknJkIiIiIiIeCQlQyIiIiIi4pGUDImIiIiIiEdSMiQiIiIiIh5JyZCIiIiIiHgkJUMiIiIiIuKRlAyJiIiIiIhH8nJ3ANI1nX322eTl5bXq2CuvvJJ58+a5NJ59+/bx7rvvsm7dOg4cOEB1dTXBwcGMHDmS8847j8suuwxfX9/G4xMSEk57vaeffpqrrrqq2X2LFi3i+eefB2DFihUMHjzY6Xi//PJLNmzYwM6dO9m1axfl5eVceuml/PWvf3X6WsdLS0vj3XffZf369RQWFuLl5UVkZCQzZszg1ltvpX///s2e1/B57N69+5TXbvidr1y5kqioqHbF2RrO/k4btPUzEJHuTfel5wHdl1yhM2PRPazrUTIkzbr55pspLS095f7KykreeOMNrFYrw4YNc2ksCxYsYOHChdhsNpKTk7nyyisJCAjg8OHDbNy4kccff5wlS5awbNmyk86dM2dOs9ccMWJEs9vtdjsffPABhmFgt9tZunQpDz/8sNMxL1q0iF27duHv78+AAQPYv3+/09c4Ma6//vWvvPLKK3h5eTFt2jQuvPBCamtr2bJlC6+99hpLlixh3rx5XHjhhe16r87Qlt9pT/sMRMQ5ui/pvtSd6fPqwuwiTrLZbPa5c+fa4+Pj7XPnzrXbbDaXvdeLL75oj4+Pt59xxhn2lJSUZo/5/vvv7TfddFOTbfHx8fb4+Hin3++HH36wx8fH2x9//HH71KlT7VOmTLFXV1c7fZ01a9bYMzIy7Dabzb527Vp7fHy8/aGHHnL6Og3mz59vj4+Pt5911ln29PT0k/Z/+eWX9sTERPuIESPsq1evPml/az6Ps846yx4fH2/Pyclpc5yt0dbfaXs/AxHpuXRfapnuS6fWGbHoHtZ1ac6QOO0f//gHX331FSNHjuSZZ57BMAwAcnNzSUhI4JFHHiE3N5cHHniAyZMnk5iYyFVXXcXKlSudep/c3FwWLlyIt7c3ixcvJikpqdnjZs2axSuvvNLudgEsXboUgGuvvZZLL72Uo0eP8u233zp9nSlTphAXF9f42bRHTk4OixYtwtvbm0WLFjX7xPOCCy7g0UcfxWq18sQTT2Cz2dr9vq7Q1t9pT/oMRKTj6b7UMt2X3EefV9emZEic8vnnn7No0SLCw8NZtGgRvXr1OumYvLw8rr32WvLy8rj88su5+OKL2bNnD/feey9r1qxp9XstW7aM2tpazj//fOLj4097rI+Pj9NtOdHhw4f5z3/+w5AhQxgzZkzj2O1///vf7b52eyxbtoy6ujrOOeec0445v/baawkPDyczM5P169d3YoSt19bfaU/6DESkY+m+1Pn0b7Jz9Hl1bZozJK22detWHn30UXx9fVm4cCEDBgxo9rj169czd+7cJuOiL7nkEm6//XZeffVVpk6d2qr327hxI0Crj2/O/PnzT9oWGRnZ7CTVhpvcFVdcATgmVI4cOZK1a9eSk5NDdHR0m+Noj02bNgEwffr00x7n5eXF5MmT+eyzz9i8eTNTpkw56ZjmPo8GJSUl7Qu0Fdr6O+3Iz0BEeg7dl3Rf6kiuikX3sK5NyZC0SkFBAffccw/V1dU8++yzpxwaAI5/1O++++4m22bOnElERARpaWmtfs/Dhw8DtKuyyoIFC07aNmnSpJNuOvb6Salms5nLL7+8cftVV13Fn/70J5YuXcqDDz7Y5jjao+FzONVN/ngNxxw6dKjZ/c19Hp2prb/TjvwMRKRn0H1J96WO5qpYdA/r2pQMSYsqKyu5++67KSws5M477+Syyy477fEjRozAbDaftH3AgAGkpKQ02dbcU5grr7ySqKgo7HY7QLvGN5+uTObx1q5dS3Z2NjNnzmxyk7vkkkt45plnWLZsGffddx9eXl4txt0WHfU5NBxzqmNbUza0Ndra/rb+Ttv7Gbz00kt8/fXXZGRk4OPjQ3JyMg8++GCLw1xEpGvSfUn3pRN1RPudjaW195aO/Lyk4ykZktOy2+08/PDDbN++nXPOOYcHHnigxXMCAwOb3e7l5XXShMBTPSGLioqiX79+7N+/n4MHD7YteCe8//77ACc9mQsJCeHss8/mq6++4rvvvuO8885rMe62ON31wsPDW/05NBwTHh7epjhaq63tb+vvtL2fwfr16/nZz35GYmIidrudF154gdtuu43PP/+c4OBgp2IREffSfUn3peZ0dPtbo7X3lq74eckxSobktF544QW++uorEhISePbZZzv8ScXpnsKMHz+etWvXsnbtWq699toOfd/jHV+Z54EHHjjljfX9999vvOm09slea7X0Oaxbt47Vq1ef9nOwWq2sW7cOgHHjxnVofCdqa/vb+jtt72fw6quvNjnuL3/5CxMmTGDz5s2cffbZTrZCRNxJ96VjdF86pqPb3xqtvbd0xc9LjlE1OTmlzz//nBdffJHQ0FAWLVpEQEBAp77/VVddhbe3N1999RV79+497bE1NTVtfp+PPvqI2tpaRo0axTXXXNPsV0hICD/99FOru+s70lVXXYXZbOabb7457efw4YcfcujQIQYNGsSkSZM6McLWa+vvtKM/g/Lycmw2G3369HG+ESLiNrov6b7UlZ3q3qLPq2tTMiTNaqjQ4+3tzfz584mMjOz0GKKiopgzZw61tbX88pe/POUk1x9++IHbb7+9ze/TsIbDE088wZ///Odmv6699lpsNhsffPBBm9+nraKjo7nzzjupra3lrrvuavYf0m+//ZY///nPmM1m/vCHP2Aydc3/tdv6O+3oz+DPf/4zI0aMYOzYse1vlIh0Ct2XdF/q6k51b9Hn1bVpmJycpKysrLFCT2JiIqtXr2b16tWnPP5UJUE7wl133UVdXR0LFy7kmmuuYezYsYwePZqAgAAOHz7Mxo0byczMZPTo0W26/rp168jIyCA+Pp4xY8ac8rhrr72Wl19+mQ8//JA5c+Y0OxH3eN9++23jEIfCwkIAUlJSeOSRRwDHmO+HH3641XHOnTuXyspKXn/9dS6//HJmzJjB0KFDqaurY8uWLaSmpuLn58ff/va3dpV87Qxt/Z121GfwzDPPsGnTJpYsWdLi71FEugbdl06m+1LX0tK9RZ9X16VkSE5isVga/6FMS0trsexocyVBO9KcOXO46KKLePfdd1m3bh3Lli2jpqaG4OBghg8fzu23396k7KgzGhaua2nsd0xMDJMmTWLdunV8//33Lc4z2blzJx999FGTbTk5OeTk5ACOG7UzNx2TycQjjzzCxRdfzDvvvMOGDRtYs2YNZrOZyMhIfvGLX3DLLbe0qmxnV9CW32lHfAZPP/00n3/+Of/617/ctj6HiDhP96WT6b7UdbTm3qLPq+sy7A31/kREerA//elPfPHFF7z11lsMGTLE3eGIiEgPoHtL96eeIRHp8Z544gk++eQTFi5cSJ8+fRqfMPv7+3f6BGwREekZdG/pGdQzJCI9XkJCQrPb58yZw9y5czs5GhER6Ql0b+kZlAyJiIiIiIhHUt0+ERERERHxSEqGRERERETEIykZEhERERERj6RkSEREREREPFKPKa1ts9moq6vDZDJhGIa7wxER8Rh2ux2bzYaXlxcmk56xHU/3JhER92jtvanHJEN1dXUtrkgtIiKuk5iYiI+Pj7vD6FJ0bxIRca+W7k09JhlqyPgSExMxm81On2+1WklLS2vz+d2d2q/2q/1qf3v//VSv0Ml0b2oftV/tV/vVflffm3pMMtQw/MBsNrfrP5j2nt/dqf1qv9qv9reVhoGdTPemjqH2q/1qv9rfVi3dm/QYT0REREREPJKSIRERERER8UhKhkRERERExCMpGRIREREREY+kZEhERERERDySkiEREREREfFISoZERERERMQjKRkSERERERGPpGRIREREREQ8kpIhERERERHxSEqGRERERETEIykZEhERERERj6RkSEREREREPJKSIQC7HeOTexmQ/pa7IxEREQHgQHEl//uvTWw6UO3uUEREeiwlQwDVJZhSlxCx+w2oKXd3NCIiImzJtvDf9EKW7SxzdygiIj2WkiEAvyDsgQMxsENBmrujERERIWFAIAD7i2qptdrcHI2ISM+kZKjBgDEAGAe2ujkQERERGBQaQB8/L2pskF6g3iEREVdQMlTPPjDJ8c2BVPcGIiIiAphMBmOiggBIzbG4NxgRkR6qSyRDO3bs4J577mHGjBkkJSVx4YUXsmDBAiorKzstBvsARzJkHFQyJCIiXUNSVDAAKbnF7g1ERKSH8nJ3AHv37uWGG25g0KBBPPbYY4SEhLBx40ZefPFFtm/fzqJFizonkIaeocLdUFsJ3r06531FREROITna0TO0VcmQiIhLuD0Z+vTTT6murmb+/PnExMQAMHXqVAoLC3n//fcpLi4mKCjI9YEEDqTWJwTvmiI4uA2iJ7r+PUVERE6jYZjc3sIySqtqCfTzdnNEIiI9i9uHyXl7O/5h7927d5PtgYGBmEymxv2u9snWAxT0GuL44UBKp7yniIjI6YT19qWfvxm7Xb1DIiKu4PaeoSuuuIJ//etfPPHEE/zf//0fISEhbNiwgffff5+f//zn+Pv7O3U9q9XqdAylVXU88O+tPOwTzd2mjdjyt2Bvw3W6s4bPrS2fX0+g9qv9x796mva231M/t84yLNSbQxVWUnIsTB8a5u5wRER6FLcnQ1FRUbz33nvMmTOHc889t3H7TTfdxG9/+1unr5eW5vw6QTa7HX9vg5S6OPCBqv3r2JmS4vR1eoK2fH49idqv9nsyT29/VzWsrzc/5VSRoopyIiIdzu3JUG5uLnfffTehoaG88MIL9O3bl9TUVBYtWkRFRQVPPfWUU9dLTEzEbDY7HUfy5vWk7R8EQK+yTJJHDwcvP6ev011ZrVbS0tLa/Pl1d2q/2q/2t739DeeLawzr6xgunpJjwW63YxiGmyMSEek53J4M/e1vf6OsrIzly5c3DombOHEiISEhPPbYY1xxxRVMmjSp1dczm81tupknRQezen8o5eYgAqzFmA/vgsjxTl+nu2vr59dTqP1qv9rvue3vqgaFeONlMigsrSa/uIrIYFU7FRHpKG4voLBz506GDBly0tygxMREAPbs2dMpcTgq9hjsMgY7NmjxVRER6QJ8zQYJAwIBLb4qItLR3J4M9evXj71791JeXt5ke0r9nJ3+/ft3ShxJ9eVL11VFOzbkp3TK+4qIiLSk4R6leUMiIh3L7cnQLbfcQlFREb/4xS/44osvWLNmDf/85z95+umnGTp0KLNmzeqUOPr38aOvn4k0m2PekHqGRESkq0iqX3w1Jdvi3kBERHoYt88ZOuecc3jjjTd4+eWXeeqppygtLWXAgAHccMMN/PKXv8THx6fTYhna15u0A/XJ0KEdUFcDXp33/iIiIs1JjgoGIC2vmDqrDS+z259lioj0CG5PhgCmTJnClClT3B0Gw/p6sz4/nHJTIAHWUkdCFJHs7rBERMTDDQ4LINDXi9LqOtILyhgZ0cfdIYmI9Ah6tHScIX29AYOdaKiciIh0HSaTwZhozRsSEeloSoaOMzTEsZbDxppYx4YDKe4LRkRE5DjJ0cEApOQUuTcQEZEepEsMk+sqAnxMDA4LYNvROMcG9QyJiHRLa9as4ZNPPmHLli0cPHiQwMBARo8ezb333svo0aNPe+6yZct49NFHm933448/Eh4e7oqQW5QcHQJAak6xW95fRKQnUjJ0gjFRQWw5Uj9M7uA2sNaC2du9QYmIiFOWLFmCxWLh5ptvZujQoRw9epTXX3+d66+/nldeeYWpU6e2eI2nn36awYMHN9kWHBzsoohb1lBRLv1QKWXVdfT21S1cRKS99C/pCcZEBfFxSj8qDH/8rRVQuAsGJLo7LBERccIf/vAHQkNDm2ybOXMm559/Pi+99FKrkqFhw4Y1LgDeFfQL9CMyuBd5lkq25lqYNiTM3SGJiHR7mjN0gqSoIOyY2GFXEQURke7qxEQIICAggCFDhnDgwAE3RNQxGuYNaaiciEjHUDJ0ghEDAvEyGWypqy+ikJ/i1nhERKRjlJaWsmPHDoYNG9aq4++66y5GjBjBpEmTmDNnDunp6S6OsGWNi6+qiIKISIfQMLkT+HqbGTGwz7HFV9UzJCLSIzz55JNUVlZy1113nfa4sLAw7rrrLpKTk+nduzfp6eksXryY66+/niVLljB8+HCn39tqtbYp5obzGl7HRDrWF0rJtrT5mt3Jie33NGq/2n/8q6dpb/tbe56SoWYkRQexOr+hiEIaWOvArI9KRKS7ev755/n000/53e9+12I1uVmzZjFr1qzGnydOnMgZZ5zBpZdeyj/+8Q8WLVrk9PunpaU5fU5z51vrbJgMKCitZuWaTYT2Mrfrut1Fez+/7k7tV/s9mavbr7/wmzEmKph31g6g0uhFr7pKOLIH+o1wd1giItIGCxYsYNGiRTzwwAPceOONbbpGVFQU48ePJzW1baMFEhMTMZudT1ysVitpaWlNzk9Y8xM7D5ZS1yeS5FED2hRPd9Fc+z2J2q/2q/1tb3/D+S1RMtSM5Ohg7JjYbotlgrHLMW9IyZCISLezYMEC5s+fz9y5c1scHtcSu92OydS2qbZms7ldf8wcf35yTAg7D5aSmlfCxWMi23zN7qS9n193p/ar/Wq/69qvAgrNGBLeG38fM1utcY4NB1LcGY6IiLTBwoULmT9/PnfffTdz5sxp17VycnLYvHkzSUlJHRRd241trChncWscIiI9gXqGmmE2GSRGBpGWpSIKIiLd0WuvvcYLL7zAzJkzOfPMM0lJSWmyPzk5GYDHHnuM5cuX88033xAZ6ehlufXWW5kwYQLDhw8nICCA9PR0XnnlFQzD4P777+/klpwsqT4ZSsstxmqzYzYZ7g1IRKQbUzJ0CsnRwazMbEiGtoLNCibP7aIUEelOvvvuOwBWrVrFqlWrTtq/e/duAGw2G1arFbvd3rgvPj6eFStW8Nprr1FdXU3fvn2ZMmUK99xzD4MGDeqcBpzG0H69CfAxU15jZc+hUoYP6OPukEREui0lQ6cwJiqYl+0RVOGLX205HNkH4fHuDktERFrhrbfeatVx8+bNY968eU22PfbYY64IqcOYTQZjooJZs/8IKdkWJUMiIu2gOUOnkBQdhK2+iAKgeUMiItJlJMcEA5Caa3FrHCIi3Z2SoVOIDO5FWG8f0mxxjg35Ke4MR0REpFFSVDAAW7Itbo1DRKS7UzJ0CobhGIawza4iCiIi0rWMre8ZSi8opby6zr3BiIh0Y0qGTiMpKpg023HJkM3m3oBERESA/n38GBjkh80O2/KK3R2OiEi3pWToNJKig9hrj6QaH6gphaIMd4ckIiICHBsql6L1hkRE2kzJ0GmMiQrGipkdthjHhvwt7g1IRESkXkMRBSVDIiJtp2ToNPoG+BDT159tDUUUVFFORES6iOT6xVdTlQyJiLSZkqEWJEUHk6YiCiIi0sUkRgZhMiC/uIpDJVXuDkdEpFtSMtSCpKggth9fROG4VcpFRETcJcDXi/j+gQBsUe+QiEibKBlqQVJ0MOn2KGrwgqpiKMp0d0giIiLAsaFymjckItI2SoZaMCqiDzaTNzsbiiho3pCIiHQRSZo3JCLSLkqGWuDv48Wwfr3Z3lhEQfOGRESka2joGdqaW4zVpmHcIiLOUjLUCsnHF1HIT3FrLCIiIg3i+wfi72OmrLqOfYVl7g5HRKTbUTLUCknRwWxrLKKQoiIKIiLSJZhNBomRQYDmDYmItIWSoVYYExXEbns0tZihsgiKc9wdkoiICKAiCiIi7aFkqBXi+wdi8vZlty3asUFD5UREpItoTIayLW6NQ0SkO1Iy1AreZhOjI4LYpiIKIiLSxSTHBAOwu6CUyhqre4MREelmlAy10pioYLbZj5s3JCIi0gUM6ONHv0BfrDY72/KL3R2OiEi3omSolZKig44VUchPUREFERHpEgzD0FA5EZE2UjLUSklRwey0x1BnN0HFYSjJd3dIIiIiwLGhciqiICLiHCVDrRQb6o9frwD22KMcGzRUTkREuojkqGBAyZCIiLOUDLWSYRj16w3FOTaoiIKIiHQRiVFBGAbkWSopLK12dzgiIt2GkiEnJEUFkWY/bt6QiIhIFxDo582wfr0B9Q6JiDhDyZATkqKCjxVR0DA5ERHpQpLqh8qlKhkSEWk1JUNOGBMdxE57DFa7AWUFUHrQ3SGJiIgAKqIgItIWSoac0C/Qj5CgYPbZIxwbNFRORERcxWbF2P4RXtVHW3V4Q3nt1BwLNpuWfxARaQ0lQ05Kig4+Nm9IRRRERMRVdq/AtOx/id62oFWHJ/QPxM/bRGl1HfsPl7s4OBGRnkHJkJMcFeU0b0hERFwscAAAfQo3g93W4uFeZhOJkUGAhsqJiLSWkiEnjYkKOpYMaZiciIi4ysAk7N4BeNWWwKGdrTqlYahcSk6RCwMTEek5lAw5KTEyiJ3EYrMbUJoPZYfcHZKIiPREZm+IngSAkfVTq05Jjg4BIDWn2GVhiYj0JEqGnBTo583A8HAy7I7hC5o3JCIirmKPnQ6Akb26VccnRTuGye08UEJVrdVlcYmI9BRKhtpgTNTxRRRS3BqLiIj0XPaYaY5vsteAveUKcZHBvQjr7Uudzc72fPUOiYi0RMlQGyRHB5GmeUMiIuJqEWOxmXwwygvhcHqLhxuG0ThvaEu2xbWxiYj0AF5tOWnPnj1s3ryZgoICqqqqCAkJYejQoUycOJHevXt3dIxdTlJ0MJ/X9wzZD6RiuDkeERHpobx8KQsZSZ8jKZD5I4QntHhKcnQQ3+4sIDVXPUMiIi1pdTJUXFzM+++/z/vvv09+fj72Zrrrvby8mDVrFjfddBNTp07t0EC7kuED+pBuDAbAKM6BiqPg39fNUYmISE9UFjrGkQxlrYaJ/9vi8Q1FFFRRTkSkZa1Kht58800WLlwIwMUXX8ykSZMYNWoUffv2xdfXl+LiYnJyckhJSWHlypX84he/YNq0afz+978nNjbWpQ1wBx8vE9ERA8go6M8gUwHkb4Gh57g7LBER6YFKQ5Mc32T95Jg3ZJx+PMKY+iIKOUcrOVJWTWhvX1eHKCLSbbUqGXrrrbd49NFHmT17Nt7e3iftDwsLIywsjLFjx3LbbbeRnZ3NokWLWLFiBXfddVeHB90VJEcFse3gIAZR4Kgop2RIRERcoDxkJHazD0bpATi6H0KHnPb4Pn7eDAkPYF9hOam5Fs4e3r+TIhUR6X5alQytWLECL6/WTy+KiYnh6aefxmrtuWU9x0QFk7Z+EJea16qinIiIuIzd7AsR4yBnraN3qIVkCBxD5fYVlpOSrWRIROR0WlVNbs+ePW26uNlsbtN53UFSdDDbjiuiICIi4iqNJbazWrfeUHJMMABbciyuCUhEpIdoVTJ05ZVXctVVV/Huu+9SWlrq6pi6hcFhAWR5DwXAKMqESk1UFRER17DH1idDmT+16vix9eW1U3MszRY8EhERh1YlQ3feeSdHjx7lj3/8IzNmzODXv/41a9eudXVsXZrJZBAbFUm2LdyxQb1DIiJdxpo1a3j00Ue58MILSU5OZubMmdx9991s27atVecfOXKERx55hMmTJ5OUlMT111/PmjVrXBz1aURPAsMMxdlgyW7x8IQBgfh6mSipqiPjcHknBCgi0j21Khl64IEH+O6771i8eDFnnXUWX3/9NbfddhvnnHMOL774IgcOHHB1nF1SUnQwafVD5ZQMiYh0HUuWLCEvL4+bb76ZxYsX89vf/pajR4+2Kqmpqanh1ltvZc2aNfz2t7/lxRdfJDQ0lNtvv53169d3UgtO4NMbIsY6vm/FUDlvs4nRkY6qcikaKicickqtropgGAazZs1i1qxZlJSU8Mknn7Bs2TJeeOEFFi5cyJQpU7j22ms555xzmq041xMlRQWz1TaI2eb1kJ/i7nBERKTeH/7wB0JDQ5tsmzlzJueffz4vvfTSadfCW7p0Kenp6bz33nuMHetIQCZPnszll1/Os88+y9KlS10a+ynFToO8jY7FV5NuaPHw5OhgNmUVkZJj4apxUZ0QoIhI99OqnqET9enThxtvvJFly5axfPlyfvazn7Fjxw4eeOABZs2a1dExdllJ0UGNPUM29QyJiHQZJyZCAAEBAQwZMqTF0QzffvstgwYNakyEwLGo+GWXXcbWrVspKCjo8HhbJW6G4zWrdfOGko6bNyQiIs1rUzJ0vOHDh3PZZZdx9tlnA2CxWNp7yW5jQB8/DvonAGA6ug+qit0ckYiInEppaSk7duxg2LBhpz1uz549JCQknLS9YVtbK6y2W8wUMEyOtYZKWh6e3lBEYceBEqpqe+5SFyIi7dH6xYNOcPToUT755BM+/PBD9u7di9ls5qyzzuKaa67pyPi6NMMwiI2OIXd/GFHGYTiwFQbNdHdYIiLSjCeffJLKysoWFwO3WCwEBQWdtL1hW1se+rV13b2G86xWK3j3xtQ/EeNgKraMVdhHX33acwf28aFvgA9Hy2vYlmthbH257e6kSfs9kNqv9h//6mna2/7WnudUMmSz2fjhhx/48MMP+e9//0ttbS1xcXE8+OCDXHnllYSFhbUp2O4sOTqIbXsHEWU+7CiioGRIRKTLef755/n000/53e9+x+jRo1s83jCMNu07lbS0NKfPae78qF5D6U8qRzZ/QnZdy4uvDupjcLQcvli3HeNoQLticKf2fn7dndqv9nsyV7e/VclQRkYGH374IR9//DGHDx/Gz8+PSy65hKuvvpoJEya4NMCuLik6mHW2OC40b4ADKe4OR0RETrBgwQIWLVrEAw88wI033tji8cHBwc32/hQXO4ZCN9dr1JLExMQ2LURutVpJS0s7dr7fFZDxIWHlu+mbnNzi+TOP7mXTgb0ctvcmOTnJ6fd3t5Pa72HUfrVf7W97+xvOb0mrkqGLLroIgDFjxjB37lxmz55NQED3fcLUkcZEBvNqfREFa14KnvefqohI17VgwQLmz5/P3LlzWxwe1yA+Pp709PSTtjdsa2nOUXPMZnO7/phpPH+Qo4iCcTgdc+VR6B1+2vPGxfYFIDW3uFv/MdXez6+7U/vVfrXfde1vVQGFW265hU8//ZR///vfXHfddUqEjhPk701J8CgATEf3QnWpmyMSERGAhQsXMn/+fO6++27mzJnT6vPOPfdc9u/fT2rqsSqhdXV1fPLJJyQlJdG/f39XhNs6/n2h30jH99ktrzeUFBUMQNaRCorKa1wYmIhI99SqZOjRRx9t9knY/v372bRpExUVFR0eWHcSExPLAXtfDOxw0LPHdYqIdAWvvfYaL7zwAjNnzuTMM88kJSWlyVeDxx57jJEjR5KXl9e47ZprrmHYsGHcf//9fPrpp6xevZpf/epXZGRk8Otf/9oNrTlB7HTHa2bLJbaD/L0ZHOZ4gJmSa3FhUCIi3VObqsktX76c5557jsLCQgA++OADRo0axf3338/06dO57rrrOjTIrm5MVDDbtg9ioPmoo4hC7DR3hyQi4tG+++47AFatWsWqVatO2r97927AURjIarVit9sb9/n4+PDGG2/w7LPP8qc//YnKykpGjBjByy+/zKRJkzqnAacTNx02vNzq9YaSo4PZf7iclGwLZyX0c3FwIiLdi9PJ0IoVK3jkkUc488wzmTVrFn/84x8b940aNYoVK1Z4XDKUFB3MD7Y4zjNvwp6/BefrDImISEd66623WnXcvHnzmDdv3knbw8LCeOaZZzo6rI7R0DNUsB0qjjqGzp1Gckwwy7bkkaqeIRGRkzi96OrixYu56qqr+Oc//8n111/fZN/gwYPZu3dvmwLZuHEjd9xxBxMnTmTMmDGcf/75LFy4sE3X6myjIvqwg8EA1OWluDcYERHp2Xr3g9BhgB2y17Z4eMO8odQcS5MeMBERaUMytG/fPmbPnt3svlOVI23Jp59+yk033URgYCDPPPMMixcv5o477ug2/2j7eZupDE8EwOvIHqgpd3NEIiLSo8XV9w61YqjciIF98PEyUVRRS9YRz57jKyJyIqeHyfXq1YvS0uYrphUUFDi9/kJBQQG///3vuf7663niiScat0+ZMsXZ0NwqJnYwh4qC6WdYHEMXorvAuHIREemZYmfApjcg88cWD/XxMjEqog9bsi2k5FiIC1NFWBGRBk73DI0dO5Z33nmn2V6bZcuWOT25dOnSpVRUVHDHHXc4G0qXkhwVTJrNsd4Q+SlujUVERHq4hkI9B7dCVXGLhzcMlUvJsbguJhGRbsjpZOjee+8lJSWFa665hrfeegvDMPj666+566672LhxY6sXtWuwYcMGgoOD2b9/P5dffjkjR45k6tSp/P73v6esrMzZ8NxmTHQQ2+xxANjyt7g3GBER6dmCIiEkDuw2yFnf4uFjY4IBJUMiIidyephcYmIiL7/8Mk8++WRjBZ6XXnqJ2NhYFi9eTHx8vFPXKygooLKykvvvv58777yT5ORk0tLSmD9/Pnv27OHdd9/FMFpfn81qtTr1/iee19bzB4f6s8c0BICanC14t/E67tLe9nd3ar/af/yrp2lv+z31c3O72BlQlOkYKjfsvNMemhwdDMCO/BKq66z4ennuavYiIsdr0zpDU6ZMYcWKFWRnZ3P48GFCQkIYNGhQmwKw2+1UV1czZ84cfvnLXwIwefJkvL29eeqpp1izZg3TprV+3Z60tPYtetqe80t6D4EK8Dm6m5RN67CbfdsVizu09/Pr7tR+td+TeXr7u5246ZDydquKKMT09SfE35uiilp2HSglqT45EhHxdG1KhhrExMQQExPTrgCCg4MBmDFjRpPts2bN4qmnnmL79u1OJUOJiYmYzc4/8bJaraSlpbX5fIBh+b4c3tiHMKOEpAFeEJncpuu4Q0e0vztT+9V+tb/t7W84XzpZw3pD+VscVUx9Tl0YwTAMkqKD+e/uQlJyLEqGRETqtSoZ+uKLL7j44oudunBBQQG5ubmMHz/+tMclJCSQkpJy0vaGAg0mk3PTmsxmc7v+mGnP+WNj+7Jt/SDONKdiLtgKMd2volx7P7/uTu1X+9V+z21/txMcA32ioCTXMW9oyFmnPTz5uGTolk4KUUSkq2tVpvHHP/6Ryy+/nKVLl7ZY1GDbtm08+eSTXHDBBezatavFa59//vkA/PDDD022N/yclJTUmhC7hKSo4MYiCtY8FVEQEREXMgyn1htq6A1KVREFEZFGreoZ+uabb5g/fz5//vOf+eMf/8jIkSMZOXIkoaGh+Pj4UFxcTE5ODikpKRQWFjJs2DDmz5/PzJkzW7z2jBkzOOuss1i4cCE2m43k5GS2bdvGggULOOuss5gwYUK7G9lZokJ6kekzDGxQnbMFf3cHJCIiPVvsdNj6PmS2nAwl15fX3n+4nOKKWoL8vV0cnIhI19eqZCgwMJDHHnuMe++9l2XLlvH999+zfPlyKisrG4+Jjo5m5syZXHrppU4vmPr888+zYMEC/v3vf7Nw4UL69evHrbfeypw5c5xrjZsZhgEDkyAPfI/uhrpq8Op+RRRERKSbiKufb5u3EWqrwNvvlIeGBPgQF+pP5pEKUnItnBEf3klBioh0XU4VUAgKCuK2227jtttuA6C0tJSqqiqCg4Px9m77EyY/Pz9+/etf8+tf/7rN1+gqouISKMrtTQhlcGgHRIx1d0giItJT9R0MvftDWYEjIYqbcdrDk6ODHclQtpIhERFow6KrxwsMDCQ8PLxdiVBPkxQdQpqtvsx4fopbYxERkR7OMI5VlWvFULnGeUO5FtfFJCLSjbQrGZKTjYkKYnt9EYWa3M3uDUZERHq+xiIKP7Z4aMPiqyk5lsaqrSIinkzJUAcL7e1Lvn8CANXZqignIiIu1tAzlLMB6mpOe+jIiD54mw2OlteQc7TytMeKiHgCJUMuYIpIBsC/aFeLNyYREZF2CR8O/qFQV+lYgPU0fL3MjBzYB4AUDZUTEVEy5ApRg0ZSbPfHbK+FwpbXWhIREWkzw4DYaY7vnRkql21xXUwiIt2EkiEXGBMdzLaGIgoHUtwai4iIeIDY+ipyrVlvKCYYgJScIhcGJCLSPTidDP2///f/2L9/vyti6TFGRx4rolCRtcm9wYiISM/X0DOUsw6sdac9NKl+8dVt+SXUWm0uDkxEpGtzOhlavnw5s2fP5rbbbuPbb79VNZpmBPh6caTPSABqclREQUREXKz/KPALgpoyOJh62kMHhQUQ1Mubmjobuw6UdlKAIiJdk9PJ0KpVq3j88ccpLCxkzpw5nH322SxevJijR4+6Ir5uyxyZDEBA0a4Wn9KJiIi0i8kMMfW9Qy0MlTMMo3G9IQ2VExFP53Qy5O/vz89//nM+++wzXn/9dUaNGsU//vEPzjzzTB555BHS0tJcEWe3EzlkFKX2Xnjbq+HwbneHIyIiPV3jekOtmDcUFQTAlhyLCwMSEen62lVAYerUqSxYsICVK1cyduxYPv74Y6677jquvfZa/vOf/3RUjN1SUnRfdthjAbC3UOpURESk3Roryq0Bm/W0hzYUUUhVMiQiHq5dyVBVVRVLly7lrrvuYt26dQwZMoR7770Xq9XKvffey8KFCzsqzm4nYUAgOxgMQEmGiiiIiIiLDUgCn0CoLoaC7ac9tKGIwr7CcoorazshOBGRrqlNyVB2djZPP/00s2bN4g9/+AMDBgzgtdde47PPPmPOnDksW7aMO+64g7fffruj4+02vM0mioNHAVCXq54hERFxMbMXxEx2fN/CULnQ3r7E9PUHYKsWXxURD+Z0MnT77bdz4YUX8sEHH3D55Zfz5Zdf8s9//pNp06Y1Oe6ss86iqMizJ2Z6R40FINCys8UhCyIiIu0W2/p5Qw1FFDRUTkQ8mZezJ+Tk5PDoo49y1VVXERAQcMrjhg0bxptvvtmu4Lq7yKGJlG/3JcBWBYf3QL/h7g5JRER6ssZkaDXY7WAYpzw0OTqYT1PzSVEyJCIezOlk6KuvvmrVcb1792bSpElOB9STJMWEssMey0Qjnbq8zXgpGRIREVeKGAtevaDiCBTugn4jTnlocmN5bQt2ux3jNImTiEhP1a4CCnJ6caH+pJuGAGDZt9HN0YiISI/n5QPR9Q8iM3887aGjIvrgZTI4XFZDnqWyE4ITEel6nO4ZOvvss0/59MhkMhEYGEhiYiI333wzQ4YMaXeA3ZlhGJT2HQ1HV2DLUxEFERHpBLHTIeN7x1C5SXec8jA/bzMjBvYhLa+YlBwLUSH+nRikiEjX4HTP0KRJk7Db7RQUFBAZGUlSUhIREREUFBRgtVoZOHAg33zzDVdffbUWYAX8oscBEFS8E2w2N0cjIiI93vGLr9rtpz20cahctsW1MYmIdFFOJ0MzZszAx8eHb775hjfffJPnnnuOt956i6+//hofHx/OPfdcvvrqK+Li4pg/f74rYu5WooYlUWn3wddWCUf3uTscERHp6SIngNkXygrgyOnvO40V5VReW0Q8lNPJ0D//+U/mzp3LwIEDm2yPiIjg3nvvZfHixQQGBnLrrbeSkpLSUXF2W2NiQtlpjwGgKluLr4qIiIt5+0HUBMf3WaefN9TQM5SWV0ytVaMXRMTzOJ0MZWVl0bt372b39enTh7y8PAAiIyOprNSEzH59/NjvNQyAor0b3ByNiIh4hNj6tf+yVp/2sMFhAQT6eVFVa2P3wdJOCExEpGtxOhmKiIjgo48+anbfhx9+2NhjZLFYCAoKal90PUR56GgA7Pkp7g1EREQ8Q8N6Q5mnnzdkMhkkRQUDaL0hEfFITidD//u//8uXX37JDTfcwBtvvMFnn33GG2+8wQ033MA333zD7bffDsC6desYPXp0hwfcHfnFOooohJSoiIKIiHSC6Elg8oKSXLBknfbQhqFyqUqGRMQDOV1a+7rrrsNutzN//nzmzZvXuD0sLIwnn3ySa6+9FoC77roLHx+fjou0G4uJH0v1Bm962cqhKANCPbvkuIiIuJhPAESMg9z1jt6hkLhTHnr84qsiIp7GqWTIarWSnZ3NRRddxHXXXcf+/fuxWCwEBwczePDgJusPhYWFdXiw3dWomDB22qNJNvZTmrGRQCVDIiLiarHTHMlQ1moY+/NTHtZQUW5vYRmlVbUE+nl3UoAiIu7n1DA5u93O7Nmz2bJlC4ZhMGTIEMaPH8+QIUNOuRCrQB8/b7J94wE4qiIKIiLSGeJmOF5bqCgXHuhLZHAv7HZIyy3uhMBERLoOp5IhLy8vwsLCsLewiJucrCrMMX/KOJDi3kBERDxAWVkZf/nLX/jFL37BlClTSEhIaPXad8uWLSMhIaHZr8LCQhdH3oGiJ4NhgqJMKM477aHJMcEAbNFQORHxME7PGZo9ezbLly/nzDPPdEE4PVev2AlwAPqW7nJU9lFPmoiIy1gsFv79738zfPhwzj33XJYuXer0NZ5++mkGDx7cZFtwcHAHRdgJ/PrAwCTI3wJZP8GY60556NjoYD7fekDzhkTE4zidDA0fPpwvvviCm2++mfPPP5/w8PCThsidf/75HRZgTxEzfDw1a8z0tpViL8rE6DvI3SGJiPRYkZGRbNiwAcMwOHr0aJuSoWHDhpGYmOiC6DpR7PRWJUNJxxVRsNvtGvouIh7D6WTo4YcfBqCgoID169eftN8wDHbu3Nn+yHqY4VGhpBPDaDI4smcDYZOVDImIuIr+mK8XOx3WLHBUlDuN0RFBmE0GhaXVHCiuIiK4VycFKCLiXk4nQ2+++aYr4ujxfL3M5PnFM7o6g6J9GwibfOondCIi4n533XUXR48eJTAwkEmTJnHfffcRHx/v7rCcEzsVMODIHigtgMD+zR7Wy8fM8AGBbM8vISXHomRIRDyG08nQpEmTXBGHR6gOT4TcrzAdTHV3KCIicgphYWHcddddJCcn07t3b9LT01m8eDHXX389S5YsYfjw4U5f02q1timWhvPaej4+fTD1H4VRsA1r5o8w8opTHjomMojt+SVszjrKBSP7te39Oli729/Nqf1q//Gvnqa97W/teU4nQw1KS0tJSUmhqKiIM844g6CgoLZeymMEDJoAuRCuIgoiIl3WrFmzmDVrVuPPEydO5IwzzuDSSy/lH//4B4sWLXL6mmlpae2KqT3nR/sPox/bOLLpY3Jq4k55XF97BQCrd+WRMrCqze/nCu39/Lo7tV/t92Subn+bkqGFCxfy8ssvU1VVhWEYfPDBBwQFBXHLLbcwffp0fvnLX3Z0nD1C7PAJ1P5gpg/F1BVl49U31t0hiYhIK0RFRTF+/HhSU9vWs5+YmIjZbHb6PKvVSlpaWpvPB8D3csj4iPDydEKTk095WEBEGQs3/khGsY3RiWPwMju1+oZLdEj7uzG1X+1X+9ve/obzW+J0MvTOO++wcOFCfvaznzFz5kzuvPPOxn1nnXUWX3/9tZKhUxg0MIw9RDGcLA7uXkvUVCVDIiLdhd1ux2RqW4JgNpvb9cdMu84fNBMAo3An5ioLBIQ2e9iw/n3o7etFWXUd+w5XMjKiTxuj7Xjt/fy6O7Vf7Vf7Xdd+p/9Vf+edd7j11lt5/PHHmTFjRpN9sbGxZGVldVhwPY3ZZHAgwDHWvHjfRjdHIyIirZWTk8PmzZtJSkpydyjOCwiDsATH99lrTnmY2WQwJsox5D0119IJgYmIuJ/TPUM5OTnMnDmz2X0BAQGUlJS0O6ierCY8EbK+wqtgq7tDERHp0b7//nsqKyspLy8HYO/evXz55ZcAnHHGGfTq1YvHHnuM5cuX88033xAZGQnArbfeyoQJExg+fDgBAQGkp6fzyiuvYBgG999/v9va0y5x0+Hwbsd6QyMuOeVhydHBrN53hJRsC/8zKaYTAxQRcQ+nk6HAwEAOHz7c7L68vDxCQ5vvfheHPoMmQBb0K1MRBRERV3ryySfJy8tr/PnLL79sTIZWrlxJVFQUNpsNq9WK3W5vPC4+Pp4VK1bw2muvUV1dTd++fZkyZQr33HMPgwZ10zXiYqfDxtcg88fTHpZ83OKrIiKewOlkaOrUqbzyyiucc845+Pr6Ao7F7erq6liyZMlJQ+ekqbhRk7B+ZxCChaqjufiFRrs7JBGRHuk///lPi8fMmzePefPmNdn22GOPuSok94md7ng9mAaVFugV3OxhDclQ+qFSyqrr6O3b5qKzIiLdgtNzhu677z7y8/OZPXs28+bNwzAM3n77ba699lqysrK45557XBFnjzEgrC8ZhiMByt1x6rHbIiIiHabPQOg7GLBDzrpTHtavjx8RQX7Y7ZCWW9x58YmIuInTyVBsbCxLlixh8ODBLFmyBLvdzscff0xISAjvvvsuERERroizxzAMg4LejiIKpftVREFERDpJQ+9QS0PlYoIBDZUTEc/Qpv7voUOH8uqrr1JTU0NRURFBQUH4+fl1dGw9Vl2/MVD2Nd6HVERBREQ6SdwM2PKWo4jCaSRFBfNF2kFSlQyJiAdo14pqPj4+9O/fX4mQk/oMmQhA/4rdbo5EREQ8RkPPUH4KVJee8jAVURART9KmnqHc3FxWrFhBfn4+VVVVTfYZhsFTTz3VIcH1VINGTcL2tUE4Ryk+lENQPxVREBERFwuOhqAYKM6GnPUw9JxmD0uMCsJkwMGSKg4WVzEgSA88RaTncjoZ+u9//8ucOXOw2Wz07dsXHx+fJvsNlYpuUXBwXzJNkcTZc8nZvkbJkIiIdI646ZCa7Rgqd4pkyN/Hi/j+gew6WEpKThEXBg3s5CBFRDqP08nQ3//+d8aNG8ff//53rSnUDoWBI4gryaUscxNwnbvDERERTxA7HVKXQObp5w2NjQmuT4aKuXC0kiER6bmcnjOUlZXFHXfcoUSonaz9xwDgW6giCiIi0kni6ucN5W2CmopTHnZs3lBRJwQlIuI+TidDERERVFSc+h9QaZ2QoY4iCgMr0pusfC4iIuIyIYMgcCDYaiHv1Ms7JNUnQ2m5xVhtukeJSM/ldDJ055138tprr1FZWemKeDxGzMgpAAzgMIcO5ro5GhER8QiGcdx6Q6ceKjesXyABPmbKa6zsPVTWScGJiHQ+p+cMpaWlceTIEc477zwmT55MSEjIScc8/vjjHRJcT9YrMIRcUyRRtjxytq+h/0AVURARkU4QNx22fXDa9YbMJoPEqCDW7j9KSk4RCQMCOzFAEZHO43Qy9Pbbbzd+//nnn5+03zAMJUOtdLjPCKIseZRnbkZFFEREpFM09AzlboC6avDybfaw5OiQ+mTIwvUTYzoxQBGRzuN0MrRr1y5XxOGR7AOSwPItvQ6riIKIiHSSsHgICIfyQsjbDLFTmz0sOToIgJSc4s6MTkSkUzk9Z0g6Tt+hkwCIqEzHpgmqIiLSGQwDYqc5vs/68ZSHJUc7hsHvPlhCRU1dZ0QmItLpWpUMbdiwgfLy8haPO3r0KB988EG7g/IUkSMmAxBlFJKZm+PmaERExGPEznC8nqaIwoAgPwb08cNmd1SVExHpiVqVDN18883s27ev8Webzcbo0aPZsWNHk+NycnL43e9+17ER9mBeASEcNDsWs8vbsc7N0YiIiMdo6BnKWQ/W2lMeltQ4VM7SCUGJiHS+ViVDJ66DY7fbqaur0/o4HeBonxEAVGZvcnMkIiLiMfqNhF4hUFsOB1JPeVjDULnUXEsnBSYi0rk0Z8jdIpIB8D+S5t44RETEc5hMEFPfO5R5unlDwQCkZFtcH5OIiBsoGXKz0KGOeUPRVXuorrO6ORoREfEYcfUltk+z3lBiVBCGAfnFVRwqqeqkwEREOo+SITfrFz8RgFijgPTMXDdHIyIiHqNh3lD2WrA1/zCut68X8f0cC65q3pCI9EStXmdo//79mM1mAKxWa+O2E48R5xgBoRSaBxBuPciBXetIHBrr7pBERMQTDBgDvn2gugQOpjUO2z5RcnQwuwtKScmxcP6oAZ0bo4iIi7U6GXr00UdP2vab3/ymyc92ux3DMNoflYexBI8g/MhBqrM3A9e5OxwREfEEJjPETIE9XzuGyp0iGUqKDub9jTnqGRKRHqlVydDTTz/t6jg8mikiGY58R8DRbe4ORUREPEnsdEcylPkTTL232UMaiihszS3GZrNjMumhp4j0HK1Khq688kpXx+HRwuInQxrE1eyltKqWQD9vd4ckIiKeILa+iEL2arDZHFXmThDfvze9vM2UVdexr7CMYf0DOzlIERHXUQGFLiBosKOIwmDTAXZkqIiCiIh0kohk8A6AyiIo3NnsIV5mE4lRjsVXt2ionIj0MEqGuoKAMI569QPgwO4Nbg5GREQ8htkboic5vs88dYntxvWGlAyJSA+jZKiLKA4eCUBt7mY3RyIiIh6lcb2hlhdfTVUyJCI9jJKhLsIraiwAfY5ud3MkIiLiURrmDWWtBru92UMakqFdB0uprNEC4SLScygZ6iLCh00GYHDdPg6VapVvERHpJJHjwcsPygvh8J5mDxkY5Ed4oC9Wm51t+cWdHKCIiOs4lQxVVVVxww03sHr1alfFw9KlS0lISGDs2LEue4+uyC9mHABDjHy27893czQiIuIxvHwhylHI51RD5QzD0FA5EemRnEqG/Pz8SE9Px2w2uySYgoICnnnmGfr16+eS63dpgf0p9grDZNg5uGeju6MRERFPEjvN8Zp16oedDcmQKsqJSE/i9DC5sWPHsnXrVlfEwh/+8AcmTJjA9OnTXXL9rq40xFFEoU5FFEREpDM1zBvK/KnFeUMp2ZbOiUlEpBM4nQw9/PDDvP/++yxfvpzy8vIOC+Tjjz9m/fr1PPHEEx12ze7GO8oxVK6PZQf2U9yMREREOlzURDB5Q2k+FGU0e8iYqCAMA/IslRSWVndygCIiruHl7AnXX389tbW1PProozz66KP4+flhGEbjfsMw2LRpk1PXPHLkCE899RQPPfQQAwYMcDakJqzWtlW5aTivred3hOAh42ELJNj2s7+wlLjQgE57767QfndS+9X+4189TXvb76mfW4/i4+8opJCz1tE71HfwSYcE+nkzNLw3ew6VkZpj4dyR/d0QqIhIx3I6GbrggguaJD8d4cknn2TQoEH87Gc/a/e10tLS3Hp+e3hX+jAGGGbksmjVeqbGhXR6DO5sf1eg9qv9nszT2+/xYqc5kqGs1TDupmYPSYoOZs+hMlKUDIlID+F0MjRv3rwODeCrr77iP//5D8uXL++QJCsxMbFNBR6sVitpaWltPr9D2O2U/rcvgXVH8as5THLyWZ321l2i/W6k9qv9an/b299wvnRzcdPhx+daXHz1g025pOZaOi8uEREXcjoZ6kjl5eX88Y9/5KabbqJfv36UlJQAUFtbC0BJSQleXl74+/u3+ppms7ldf8y09/z2Ku87isBDq7Dnp2I239Dp7+/u9rub2q/2q/2e236PFz0ZDDNYssGSA8HRJx3SWEQhx4LNZsdk6tiRIiIina3NyVB6ejr79u2juvrkSZRXXHFFq65RVFTE4cOHee2113jttddO2j9x4kTOOeccXnzxxbaG2e34xIyDQ6sIKd5BrdWGt1nr4oqISCfwDYSIZMjbBFk/QfDJD+QSBgTi522itKqO/YfLGdqvd+fHKSLSgZxOhiorK7n77rtZu3YthmE0Vj07fohba5Oh8PBw3nzzzZO2L168mA0bNvDyyy8TEtL582bcKXjwBNgII8kgvaCUURFB7g5JREQ8Rey0Y8lQ0snJkLfZxOiIIDZmFZGSY1EyJCLdntPdDi+++CJ5eXm8/fbb2O12FixYwOuvv855551HbGwsH330Uauv5evry+TJk0/6Cg8Px2w2M3nyZOLj450NsVszRYwFHEUU0jIPuTkaERHxKLEzHK+ZP53ykIahcqlafFVEegCnk6GVK1dyxx13MHas44/2gQMHMnXqVF544QVGjRrFu+++2+FBepSgKCq8gvE2rBzep8VXRUSkE8VMAQw4ug9KDzZ7SHJMMOCYNyQi0t05nQzl5eUxePBgzGYzhmFQWVnZuO/SSy9l5cqV7Q5q3rx5bNmypd3X6ZYMg4rQ0QDY8lPcG4uISDdVVlbGX/7yF37xi18wZcoUEhISmD9/fqvPP3LkCI888giTJ08mKSmJ66+/njVr1rgw4i6iVzAMSHR8n9l8VbmkqGAAdh4ooapWa0yJSPfmdDIUGBhIRUUFAKGhoWRlZTXuq6ura9wnbdcrdhwA4WU7qaipc3M0IiLdj8Vi4d///jc1NTWce+65Tp1bU1PDrbfeypo1a/jtb3/Liy++SGhoKLfffjvr1693UcRdSOx0x2vW6mZ3R4X0Iqy3D3U2O9vzSzoxMBGRjud0MpSQkEBmZiYAkydP5qWXXmLjxo1s3bqVhQsXMnz48I6O0eMExI4HYLSRoRuNiEgbREZGsmHDBt5++20efPBBp85dunQp6enpPP/881x22WVMnz6dF154gbi4OJ599lkXRdyFxDUkQ83PGzIMo0mJbRGR7szpZOjqq6+mvLwcgF/96ldUVlZy0003cf3115Ofn88jjzzS4UF6nIhkABKMHNKyVERBRMRZhmG0eSHvb7/9lkGDBjXOjQXw8vLisssuY+vWrRQUFHRUmF1TzDTHa+EuKD/c7CENQ+WUDIlId+d0ae2LL7648fvo6Gi++uqrxjLbY8eOJTg4uCPj80zBsVR59cGvroRD+1LgDPW2iYh0lj179jB+/PiTtickJDTu79+/v1PXtFrbNrem4by2nt8mfsGYwkdgFO7EmrEKRlx20iFjovoAkJpT5NLY3NL+LkTtV/uPf/U07W1/a89r86KrDfz9/Tn77LPbexk5nmFQFTYav4OrMR1MBU5e60FERFzDYrEQFHTyGm8N2ywWi9PXTEtLa1dM7T3fWdEB8fQr3MnhTZ+QWx1z0n6jxgZA9tFKvl+3mSBf1y4Q3tnt72rUfrXfk7m6/e1OhsQ1esWOh4OriajYzdHyGvoG+Lg7JBERj3G6IXZtGX6XmJiI2Wx2+jyr1UpaWlqbz28rw/syyPyYfhXphCUnN3vM4J9Wsf9wObagKJKH93NJHO5qf1eh9qv9an/b299wfktalQwNHz681f/4G4bBjh07WnWsnJpv9FhYB6NNGaTmWjgrwTU3GhERaSo4OLjZ3p/i4mKAZnuNWmI2m9v1x0x7z3faoJkAGAXbMdeUQK+Qkw5Jjglm/+FytuaVcO6ogS4Np9Pb38Wo/Wq/2u+69rcqGbr33nvbPBFV2mhgMgAjjBwWZx1RMiQi0kni4+NJT08/aXvDtmHDhnV2SJ0vsD+EDoUjeyF7LSRcdNIhY6ODWbY5j5TcYjcEKCLSMVqVDM2dO9fVcciJQgZR49Ub37oyDmemAiPcHZGIiEc499xzefLJJ0lNTSUpKQlwrKP3ySefkJSU5HTxhG4rdrojGcr8sdlkKDna0VuUmmPBbrfroamIdEuunfEobWcyUR022vHtgRTsdrubAxIR6V6+//57vvzyS7777jsA9u7dy5dffsmXX35JZWUlAI899hgjR44kLy+v8bxrrrmGYcOGcf/99/Ppp5+yevVqfvWrX5GRkcGvf/1rt7TFLeJmOF5Psd5QwoBAfLxMFFfWknG4vBMDExHpOE4XUFi+fHmLx1xxxRVtCEVO5CiisJa42r3kWSqJCvF3d0giIt3Gk08+2STJaUiEAFauXElUVBQ2mw2r1drkgZOPjw9vvPEGzz77LH/605+orKxkxIgRvPzyy0yaNKnT2+E2sfXrDR1IhaoS8OvTZLePl4nREX3YnG0hNdfC4PDebghSRKR9nE6GTrWo6vHd40qGOoZXpGPBv0RTBqk5xUqGRESc8J///KfFY+bNm8e8efNO2h4WFsYzzzzjirC6j6AoCI4FSxbkrIdh5550SHJ0CJuzLaRkW7hybJQbghQRaR+nk6GVK1eetK2oqIiVK1fyxRdf8Pe//71DAhMgIhmAEUY2X+UcZvYY11brERERaSJuBqRkQdaPzSZDSdGOynopOZZODkxEpGM4nQxFRkY2u2306NHU1dXx5ptvNvuUTdqg7xBqzf70slZwJGMbkOjuiERExJPEToeUdyCz+XlDY+uLKOw4UEJ1nRVfL88t/ysi3VOHFlCYOnVqq4YlSCuZTNT2cyRA3oe2YrWpiIKIiHSiuOmO1/zNUHNykYTovr3oG+BDrdXOjvySTg5ORKT9OjQZysvLw2RSgbqO5BczDoB42z72HipzczQiIuJRgmOhTyTY6iB3w0m7DcMgKUpD5USk+3J6mNyGDSf/Y1hTU8Pu3bt56aWXmDp1aocEJg6m+nlDo00ZpOZaSBgQ6N6ARETEcxiGY6hc2r8dQ+UGn3nSIcnRIXy3u1DJkIh0S04nQzfddNNJC6s1lCSdNm0av/vd7zomMnEYmAzASCOLj7OPcN2EaPfGIyIiniWuPhk6xXpDyTHBgGPxVRGR7sbpZOjNN988aZuvry+RkZGEhYV1SFBynLBh1Jl7EWCt5EjWDiDZ3RGJiIgnia1ffDV3I9RWgbdfk90Nw+Qyj1RQVF5DSIBPZ0coItJmTidDHrXgXFdgMmPtNxqvAxvwP5JGVa0VP29V6xERkU4SOgQC+kH5IcjbdKyoQr1gfx8GhQWQcbiclFwLZyX0c1OgIiLOc7raQUZGBuvXr2923/r168nMzGxvTHICn2jH4qsjyGDHAVXrERGRTmQYxxKgUw2Viw4GNFRORLofp5OhefPmNbvwKsB3332nNYZcwKifN5RoymCrbjQiItLZYuuTocwfm93dkAypiIKIdDdOJ0NpaWlMnDix2X0TJ05k27Zt7Q5KTlBfUW6kkcXWnCL3xiIiIp6nIRnKWQ91NSftTjquZ6ihqJKISHfgdDJUWlqKv79/s/v8/PwoLi5ud1BygrAErGZfAo1KDmfvdHc0IiLiacKHQ6++UFcJB1JO2j1iYCA+ZhNFFbVkH63o/PhERNrI6WSof//+bN26tdl9W7duJTw8vN1ByQnMXtj7jQYg2LKD4spaNwckIiIexWSC2GmO75sZKufrZWZkRB9AQ+VEpHtxOhk699xzWbx4MWvXrm2yfd26dbz88sucd955HRacHOMVmQzAKFMGabnqfRMRkU4WV19iu4UiCluyLZ0Tj4hIB3C6tPa9997Ljz/+yG233UZcXBwDBgzg4MGDZGZmMnToUObOneuKOKV+3lCikcGWXAszhmlNJxER6UQNPUPZ68BaB+amf0I0VpTLtXRuXCIi7eB0z1BgYCDvv/8+c+bMISgoiPz8fIKCgpg7dy7vvfcevXv3dkWcUl9RbrQpk9RsFVEQEZFO1n80+AZBTSkcPHm4fEMytD2/hJo6WycHJyLSNk73DAEEBARw7733cu+993Z0PHIq4cOxmXzoY6vgcO5uoPmKfiIiIi5hMkPsVEj/0jFULnJck92xof4E+3tjqahl54GSxgpzIiJdmdM9Qw1KS0tZtWoVn3zyiSrIdQYvH+z9RwIwsHw3B4ur3ByQiIh4nMb1hk6eN2QYBklRwYCKKIhI99GmZGjhwoXMnDmTO+64g4cffpjc3FwAbrnlFhYvXtyhAcox5vp5Q6NNGRqTLSIina8hGcpeDbaTh8IlH7fekIhId+B0MvTOO++wcOFCrrnmGl566aUmi6udddZZ/Pe//+3I+OR4DfOGjAzdaEREpPMNTAKf3lBVDIe2n7S7IRlSz5CIdBdtSoZuvfVWHn/8cWbMmNFkX2xsLFlZWR0WnJygsWcok9QcFVEQEZFOZvaC6MmO75sZKtcwT2j/4XKKK7Qmnoh0fU4nQzk5OcycObPZfQEBAZSUlLQ7KDmFfiOxmbwJMco4nLcXm83e8jkiIiIdKa5+qFzWyYuv9g3wITbUH1CJbRHpHtpUWvvw4cPN7svLyyM0NLTdQckpePli9BsBQFzNXjKOlLs5IBER8TgN84ayVoP95IdyGionIt2J08nQ1KlTeeWVV6ioqGjcZhgGdXV1LFmy5KShc9KxjIFJACSaNG9IRETcIGIcePWCiiNQuPuk3aooJyLdidPJ0H333Ud+fj6zZ89m3rx5GIbB22+/zbXXXktWVhb33HOPK+KUBvXzhhKNDLbmqqS5iIh0Mi8fiK5f666ZoXLJMcGAo6KcvZmeIxGRrsTpZCg2NpYlS5YwePBglixZgt1u5+OPPyYkJIR3332XiIgIV8QpDQaOBWCUKZOUbBVREBERN4itHwXSTBGFkQP74G02OFJeQ25RZScHJiLiHK+2nDR06FBeffVVampqKCoqIigoCD8/v46OTZrTfyR2w0wYJRw9kEFN3TR8vNq8dq6IiIjzYqc5XhvmDRlG4y4/bzMjBvZha24xW3IsRPf1d1OQIiIta9df0T4+PvTv31+JUGfy7gX9hgOQYN/P7oOlbg5IREQ8TtQEMPtA2UE4uv+k3Y1FFLItnRuXiIiTWtUztHz5cqcuesUVV7QhFGktY2AyFGxntCmDlFwLiVFB7g5JREQ8iXcviJwA2ash80cIHdJkd3J0MG+uyVJ5bRHp8lqVDD3yyCOtvqBhGEqGXG1gMqS8Q6KRwYocC0yJdXdEIiLiaWKnOZKhrJ9g/C1NdjUsvrotr5haqw1vs4Zzi0jX1KpkaOXKla6OQ5xRX157tCmTeXrqJiIi7hA3HVb91TFv6ASDQgPo4+dFSVUduw6UagSDiHRZrUqGIiMjXR2HOGNAInbDRD8sFB/Koay6jt6+baqFISIi0jbRk8HkBcU5UJQFIcdGKZhMBknRwazac1jDuUWkS2tzv3VZWRk//vgjn332GT/99BNlZWUdGZecjo8/RlgCAKOMDLblab0hERHpZD4BEOFY7oGsk0tsq4iCiHQHbepOePXVV1mwYAFVVVXY7XYMw8DPz4/77ruP2267raNjlOYMTILCnSQaGaTmWJgyONTdEYmIiKeJnQa5GxzrDSX/rMmuxmQoR2viiUjX5XQytHz5cp599llmzZrFlVdeSb9+/Th06BDLly/nL3/5CyEhISqg0BkikmHre4w2ZfCR5g2JiIg7xM6An/5x2p6hfYXllFTV0sfPu5ODExFpmdPD5N544w0uueQSFi9ezEUXXcT48eO56KKLeOmll5g9ezb/+te/XBGnnOi4IgqpORomJyIibhAzBQwTFGVASX6TXaG9fYnu2wuArbpPiUgX5XQytH//fi677LJm91122WXs27ev3UFJKwwYgx2DgcZRqi0HKSytdndEIiLiafz6wIAxju8zT+4dSooKBjRUTkS6LqeTIT8/P4qLm3/CU1xcjJ+fX7uDklbw7Y0RNgyA0aYMtmqonIiIuEPsdMfr6YooqGdIRLoop5Oh8ePHs2DBAgoKCppsLywsZOHChUyYMKHDgpMWNAyVMzJIzdWNRkRE3CDu1MnQ2JhgAFJyLNjt9k4MSkSkdZwuoPDggw9yww03cP755zN16lTCw8MpLCxk7dq1eHl5sWDBAlfEKc0ZmAxpS0k0ZfBujsXd0YiIiCeKmQoYcDgdyg5B736Nu0ZFBOFlMjhcVk2epZKoEH/3xSki0gyne4aGDRvGBx98wDnnnENaWhrLli0jLS2Nc845h6VLlzJ06FBXxCnNqe8ZGmXKJDVXT91ERI5XXl7On//8Z2bMmEFiYiKXX345n3/+eYvnLVu2jISEhGa/CgsLOyHybsa/L/Qf5fj+hN4hP28zwwcGAo7eIRGRrqZN6wwNGjSI5557rqNjEWcNdExajTIOY1QcIedoJTGheuomIgIwd+5c0tLSeOihh4iLi+Ozzz7jwQcfxGazcemll7Z4/tNPP83gwYObbAsODnZRtN1c7DQo2AZZq2HUlU12JUcHsy2vhNQcC5eMiXBTgCIizWtTMiRdhF8Q9B0CR/cx2pRJSq5FyZCICPD999/z008/8be//Y1LLrkEgClTppCfn89f/vIXLr74Ysxm82mvMWzYMBITEzsj3O4vdjqsX3zKinJvk62eIRHpktqUDO3YsYNPP/2U/Px8qqublnQ2DINFixZ1SHDSCgOT4Og+Eo0MUnMsXJakp24iIt988w3+/v5ceOGFTbZfddVVPPTQQ6SmpjJu3Dg3RdcDNVSUO7QdKo46hs7VayiikJZXTK3VhrfZ6RH6IiIu43QytHz5ch599FFMJhN9+/bF27vpitKGYXRYcNIKEcmwfRmjTBm8ofLaIiIA7NmzhyFDhuDl1fQ2l5CQ0Li/pWTorrvu4ujRowQGBjJp0iTuu+8+4uPj2xSP1Wpt13ltPb/T9OqLKXQYxpE9WDN+hOGzG3fFhvSit68XZdV17MovZmREn1Zfttu030XUfrX/+FdP0972t/Y8p5OhRYsWccYZZ/DMM88QFBTkdGDSweqLKCQaGaTlFVNnteGlp24i4uEsFgtRUVEnbW+4b1ksllOeGxYWxl133UVycjK9e/cmPT2dxYsXc/3117NkyRKGDx/udDxpaWlOn9OR53eGmN7DCT+yh8ObPia3KrLJvkFBJtIOwWdrtlEzxPnh3N2h/a6k9qv9nszV7Xc6GTp06BB/+MMflAh1FfXJUIypEN+qEtILypx66iYi0lOdbqTC6fbNmjWLWbNmNf48ceJEzjjjDC699FL+8Y9/tGkoeGJiYotzlJpjtVpJS0tr8/mdyfC6DLI+pV/FHsKSk5vsm3EonbRD+zlCIMnJrZ+H1Z3a7wpqv9qv9re9/Q3nt8TpZGjEiBEnLbgqbtQrBIJjwZLFKFMmW3MtSoZExOMFBwc32/tTXOxYoNrZB3pRUVGMHz+e1NTUNsVjNpvb9cdMe8/vFINmAGAUpGGuLXMU+ak3LrYvsJ+tecVtake3aL8Lqf1qv9rvuvY7PZ7qN7/5DYsXL2bXrl2uiEfaIiIZcAyVS9W8IRER4uPj2bdvH3V1dU22p6enA45Kcc6y2+2YTBqGfEp9IiBkENhtkL22ya6kaEditOdQGaVVte6ITkSkWU73DCUnJ3P++edz5ZVXEh4eftLTNcMw+OSTTzosQGmFgcmw42NGmzJYlFPs7mhERNzu3HPP5d///jdff/01F198ceP2jz76iH79+pGUlOTU9XJycti8eTPTpk3r6FB7lrjpUJThWHw1/oLGzf0C/YgM7kWepZK03GKmDQ1zY5AiIsc4nQwtXryYl156ib59+xIREXFSNTlxg/p5Q6ONDHYXlFJZY6WXj+d2p4qInHHGGUyfPp0nnniCsrIyYmJi+Pzzz1m1ahXPPvts45CLxx57jOXLl/PNN98QGemY9H/rrbcyYcIEhg8fTkBAAOnp6bzyyisYhsH999/vzmZ1fbEzYMvbza43lBwdTJ6lki05FiVDItJlOJ0Mvfnmm1x99dX88Y9/9Ojxi13KwGQABpkK8LeVsz2/mAlxfU9/johIDzd//nz+/ve/88ILL2CxWBg8eDDPPfccs2cfK/tss9mwWq3Y7fbGbfHx8axYsYLXXnuN6upq+vbty5QpU7jnnnsYNGiQO5rSfcTVrzeUvwWqy8C3d+Ou5OhgPk87QKoWXxWRLsTpZKi8vJxLLrlEiVBXEhAKQdFQnMMoUyapuUqGREQCAgJ4/PHHefzxx095zLx585g3b16TbY899pirQ+u5gmMa70fkrIOh5zTuSooOBiAlx4Ldbte6hCLSJTg9E3TcuHHs27fPFbFIexw3VE5P3URExG1i63uHslY32ZwYGYTZZHCotJoDxVVuCExE5GROJ0O//e1vee+99/j222+pqalxRUzSFvUV5UabVFFORETcqGGoXFbTeUO9fMwk9A8E0EM7EekynB4md/XVV1NXV8fcuXMxDAM/P78m+w3DYNOmTR0WoLRS/byhRCODrCMVWCpqCPb3cW9MIiLieRp6hvI2QW0lePdq3JUUHcyOAyWk5Fi4KHGgmwIUETnG6WToggsu6NBxvmvWrOGTTz5hy5YtHDx4kMDAQEaPHs29997L6NGjO+x9erz6YXKDTAcJoJLU3GLOiA93c1AiIuJx+g6G3gOg7CDkboRBMxt3jY0OZsn6bLaoZ0hEuginkiGr1cqdd95J3759nV69+1SWLFmCxWLh5ptvZujQoRw9epTXX3+d66+/nldeeYWpU6d2yPv0eL37QWAEptJ8RhpZpOZYlAyJiEjnMwzHULltHzqGyh2XDCXHBAOQlltMndWGl1mL2IqIezmVDNntdmbPns2iRYs444wzOiSAP/zhD4SGhjbZNnPmTM4//3xeeuklJUPOiEiG3fkkmjLYqnlDIiLiLrH1yVDmj002DwnvTYCPmfIaK3sOlTFiYB83BSgi4uDUIxkvLy/CwsKarMfQXicmQuAohzpkyBAOHDjQYe/jEernDY0yZZCSU9yhvycREZFWi5vheM3dAHXVjZvNJoMxUcGAo8S2iIi7OT1naPbs2SxfvpwzzzzTBeE4lJaWsmPHDqZMmeL0uVartU3v2XBeW8/vEvonYgbGGBkcLqsm92g5EcG9WjwNekj720HtV/uPf/U07W2/p35uchph8eAfBhWHHQuwxhy7nyfHBLNm/xFSsi38z6QYNwYpItKGZGj48OF88cUX3HzzzZx//vmEh4efVFDh/PPPb1dQTz75JJWVldx1111On5uWltau927v+e7kVeVFEjDYlE8vqvj4x1SmRvm1eN7xunP7O4Lar/Z7Mk9vv3Qgw4DYabDzE8dQueOTofrFV7UMhIh0BU4nQw8//DAABQUFrF+//qT9hmGwc+fONgf0/PPP8+mnn/K73/2uTdXkEhMTMZvNTp9ntVpJS0tr8/ldhX1Nf8xlBYwwsinxGkFyckKrzusp7W8rtV/tV/vb3v6G80WaiJvhSIayfgJ+3bi5IRlKLyilvLqOAF+n/xQREekwTv8L9Oabb7oiDgAWLFjAokWLeOCBB7jxxhvbdA2z2dyuP2bae77bDUyGPV85iijkFTvdlm7f/nZS+9V+td9z2y8dLHaa4zV7HVhrwewNQP8+fgwM8uNAcRVbc4uZOuTkucMiIp3F6WRo0qRJroiDBQsWMH/+fObOndum4XFSb2AS7PmK0UYGH+aVYLXZMZs6bl0oERGRVuk3CvyCocoCB7ZC1PjGXcnRwRwoPkhqrkXJkIi4VZsL/JeWlrJq1So++eQTiouL2xXEwoULmT9/PnfffTdz5sxp17U8XkQyAGPMmZRV17G/sMy98YiIiGcymY71DmU1LbGdVD9ULiXb0rkxiYicoE0DdRcuXMjLL79MVVUVhmHwwQcfEBQUxC233ML06dP55S9/2eprvfbaa7zwwgvMnDmTM888k5SUlCb7k5OT2xKi56ovrz3UyMWXGlJyLAzrH+jemERExDPFTofdX0DmTzD9/sbNDfOGVF5bRNzN6WTonXfeYeHChfzsZz9j5syZ3HnnnY37zjrrLL7++munkqHvvvsOgFWrVrFq1aqT9u/evdvZED1bnwjwD8NccZgRRjZbc4dx7YRod0clIiKeqHHe0BqwWcHkmJOWGBmEyYCDJVUcLK5iQJBzlU9FRDpKm5KhW2+9ld/85jcnrS0RGxtLVlaWU9d76623nA1BTscwHEPl9n7LaFOGSpeKiIj7DBgDPoFQXQIF2xzzWoEAXy/i+wey62ApKTkWLgwa4OZARcRTOT1nKCcnh5kzZza7LyAggJKSknYHJe1Uf7MZbWSw80AJ1XVaEFFERNzA7HVsjaHMn5rs0lA5EekKnE6GAgMDOXz4cLP78vLyCA1VVRi3q583lOyVSa3Vzs4Dpe6NR0REPFfcdMdrVvPJUKqSIRFxI6eToalTp/LKK69QUVHRuM0wDOrq6liyZAkzZszo0AClDeoryg0lBx9qdaMRERH3iT0uGbLZGjc3VJTbmmvBarO7ITARkTYkQ/fddx/5+fnMnj2befPmYRgGb7/9Ntdeey1ZWVncc889rohTnBEUDb1C8MJKgpGjeUMiIuI+EWPB2x8qi6BwV+Pm+P6B+PuYKa+xsveQloEQEfdwOhmKjY1lyZIlDB48mCVLlmC32/n4448JCQnh3XffJSIiwhVxijMMo3GoXKIpQz1DIiLiPmZviK5fsP24oXJmk0FiZBAAKTlF7ohMRKRt6wwNHTqUV199lZqaGoqKiggKCsLPT2Uxu5SBSbD/O0YbGbxbWE5JVS19/LzdHZWIiHii2Bmw/7+Q+SNMuqNxc3JMMOsyjpKSU8z1E90Xnoh4Lqd7hh599FFycnIA8PHxoX///o2JUF5eHo8++mjHRihtUz9vaJy3o9T5ttxiNwYjIiIerWG9oazVYD82Pyg5KhhQRTkRcR+nk6GPPvqIoqLmu7OLiopYvnx5e2OSjlA/TG4I2XhTR4rmDYmIiLtEjgezL5QfgiN7GzcnxwQDsPtgCRU1dW4KTkQ8mdPJ0OkUFxfj4+PTkZeUtgqJA78gvO21xBu5mjckIiLu4+0HUfXj4DJ/bNw8MKgX/fv4YrPDtjytUygina9Vc4Y2bNjAunXrGn9eunQpP/zwQ5NjqqurWblyJUOGDOnYCKVtDMMxbyjjB0abMvghd7i7IxIREU8WOw2yfnQUUZhwW+PmpKhgvt5RQEpOEZMG9XVjgCLiiVqVDK1bt44FCxYAjjWFli5d2uxxERER/P73v++46KR96pOhRFMG7xdXUVBSRf8+KnQhIiJuEDcdfgAyf3LMGzIMwDFUzpEMWdwanoh4plYlQ7fffjs///nPsdvtTJs2jVdffZWRI0c2OcbHx4eAgACXBCltVD9vaIJPNtQ6Vvk+f9QA98YkIiKeKWoSmLyhNB+KMqHvIACS6xdfTc1RoR8R6XytSob8/PwaK8atXLmS8PBwzQ3qDhqKKNgy8aKOrbnFSoZERMQ9fPwhchzkrHMMlatPhhIjgzAMyLNUcqi0in6BGsEgIp3H6QIKkZGRSoS6i76DwScQb3sNQ418UlVRTkRE3KmhxHbmscVXA/28GdavNwAp2RY3BCUinszpRVdra2t5+eWX+eyzz8jPz6e6urrJfsMw2LFjR4cFKO1gMjnmDWX9yGhTBl/nDMZut2PUj9MWERHpVLEz4Me/O3qGjpMcHUx6QRkpGs4tIp3M6WToueee44033mDWrFmce+656iXq6uqToSRzJh9U1ZF5pIJBYZrbJSIibhAzGQwzWLKgOBeCogBIig7m3xtzNYJBRDqd08nQihUruPfee5kzZ44r4pGOFpEMwESfbKhxFFFQMiQiIm7hG+h4SJe/2TFULul64FgRha05xdhsdkwmjWAQkc7h9Jyh4uJiJkyY4IpYxBUGJgEwxLofEzaVLhUREfdqmDeUdWzx1YT+gfTyNlNaXce+wjI3BSYinsjpZGjixIns2rXLFbGIK4QOBe8AvO3VDDHy2aohCCIi4k5xMxyvWasbN3mZTSRGBgHooZ2IdCqnk6HHH3+cDz74gK+//pqamhpXxCQdyWSGgWMAGG1ksC2/hFqrzc1BiYiIx4qZChhwZC+UHmzcnBStZEhEOp/Tc4Yuv/xy6urquP/++zEMo3H9oQaGYbBp06YOC1A6wMAkyF7DeJ8sPqqysftgKaPrn8CJiIh0ql7BMGA0HExzVJUbfTUAydEhQIaSIRHpVE4nQxdccIFKM3c39YuvTvTJhipIzbUoGRIREfeJne5IhjKPS4ZiggHYdbCUqlorft5mNwYoIp7C6WRo3rx5rohDXKm+iMKgun0Y2EjNsfDzybFuDkpERDxW7HRY988m84YigvwI6+3L4bJqtuUVMyGurxsDFBFP4fScIemGwuLBqxc+tkoGGwdIzSl2d0QiIuLJYqc7Xgt3QvkRwDHMvqHEtobKiUhnaVXP0Pbt25266KhRo9oUjLiI2QsGJELuekYZmXx2KJLy6joCfJ3uGBQR6TbKy8t5/vnnWbFiBcXFxQwePJhf/vKXzJ49u8Vzjxw5wrPPPst3331HVVUVw4cP51e/+hVTp07thMg9QEAohI9wJENZP8HIywAYGxPMtzsLlAyJSKdp1V/DV199davmCdntdgzDYOfOne0OTDrYwCTIXc+UXtl8Uj6dbXnFTB4c6u6oRERcZu7cuaSlpfHQQw8RFxfHZ599xoMPPojNZuPSSy895Xk1NTXceuutlJSU8Nvf/pbQ0FDeeecdbr/9dl5//XUmTZrUia3owWKn1SdDqxuToaSoYEA9QyLSeVqVDD399NOujkNcLSIZgAne2QBszVUyJCI91/fff89PP/3E3/72Ny655BIApkyZQn5+Pn/5y1+4+OKLMZubn6C/dOlS0tPTee+99xg7diwAkydP5vLLL+fZZ59l6dKlndaOHi1uOmx8tcniq2OigzAMyC2q5HBZNSG9NIJBRFyrVf/KXHnlla6OQ1ytvohCbO1eDGykaPFVEenBvvnmG/z9/bnwwgubbL/qqqt46KGHSE1NZdy4cc2e++233zJo0KDGRAjAy8uLyy67jOeee46CggL69+/v0vg9QsO8oYPboLIIeoXQx8+bIeG92XuojJRsC2clhLk3RhHp8fTIxVOEDwezL77WcmKNAlJzAtwdkYiIy+zZs4chQ4bg5dX0NpeQkNC4/1TJ0J49exg/fvxJ248/19lkyGq1OnX8iee19fwuzT8cU98hGEf3Yc1cDfGOxHVMZB/2HipjS3YRs4aGAD20/a3Qo3//raD2q/3Hv7b1/JYoGfIUZm/oPwryNzPalMlnRQM5UlZNaG9fd0cmItLhLBYLUVFRJ20PCgpq3H+6cxuOc/bcU0lLS3P6nI48v6uK6Z1A+NF9FG5cTl7FAABCjQoAftyZw9nh5UDPbX9rqf1qvydzdfuVDHmSiGTI38xM/1w+K3XMGzpreD93RyUi4hKnK/zTUlGg9pzbnMTExFPOUTodq9VKWlpam8/v6gzTZZD9Bf0r9xKenAyAV3gxL29ew/5iG6NGjWb79m09tv0t6em//5ao/Wp/e9rfcH5LlAx5koHJAIz1zgIc1XqUDIlITxQcHNxsD05xsWOdteZ6fjri3FMxm83t+mOmved3WYNnAmAcSMVcVwG+gYyMDMbXy0RpVR05liqgB7e/ldR+tV/td137teiqJ2koolCzB7CzVUUURKSHio+PZ9++fdTV1TXZnp6eDsCwYcNOe27Dcc6eK04KioLgGLBbIXsdAN5mE6MjHQlnSq4WCRcR11Iy5En6jQSTN751pUQbh0jNLcZut7s7KhGRDnfuuedSUVHB119/3WT7Rx99RL9+/UhKSjrtufv37yc1NbVxW11dHZ988glJSUmqJNfRYmc4XrN+atyUHB0MQGqOkiGRnshut1NVa6W4opaCkiqyjpSz+2ApqTkW1u0/wvfphXyzo4CiStcXj9AwOU/i5QP9R8KBVJLNWXxa3p/cokqi+/q7OzIRkQ51xhlnMH36dJ544gnKysqIiYnh888/Z9WqVTz77LONQy4ee+wxli9fzjfffENkZCQA11xzDe+++y73338/Dz30EKGhobz77rtkZGTw+uuvu7NZPVPcdEh9t/lkKNfClTG6R4m4ms1mp6rOSlWtjapaa/2XrX6bleqG7U2OObat+hTnNRxTXWejssZ67Hp1Nk79PN6ON1a8qGNAcG/OmuratisZ8jQDk+FAKmcE5vFpkeNGo2RIRHqi+fPn8/e//50XXngBi8XC4MGDee6555g9e3bjMTabDavV2qSX3MfHhzfeeINnn32WP/3pT1RWVjJixAhefvllJk2a5I6m9GwN6w3lbYaaCvDxb0yGdh0spcbay32xibhRdZ0NS5WV3KIKam00m4Q0TV6a2VdTR21tDdbaaqy11dQ1fF9XjbWuFntdDfa6GrDW4o0Vb6MOL+rwoa4xIfExjn3vTR0+WPGmDi+jjl5Y6UPdsX1G0+Mavvc2HOc0fu994nZr/fvU4cWx3qCd3tOBc136OSsZ8jQRybD5XyR5OYoopOZYuGRMhHtjEhFxgYCAAB5//HEef/zxUx4zb9485s2bd9L2sLAwnnnmGVeGJw1C4iAwAkrzIXc9DD6TqJBehAb4cKS8hgxLLUpBpSertdrIPFzO7oJS9hywUJqzHb/CVAZU7CKIcrZ9eVwCUp9ABDQmICckGQ3fN2w3WjHMzIsumxH07+P6JWC6aNPFZeqLKMRUpQN2jccWERH3MgzHULm0pZC1GgafiWEYJEcHs3LXIfYcqXV3hCIdwmazk1tUye6CUtILStl9oISyA+kEF6Uxkn2MMe3nbCMTf6PacYKLCqjZTD7YTd7Yzd5g9gGzN4bZG8Psg+HleMXsAyZvxzqV9cc0fu/sdrMPmLyOfW/2atV2q2EmY3s6ya75GBopGfI0/UaByQvfWguRHCYtz4s6qw3nV80QERHpILH1yVDmsXlDSfXJ0MqMSq7ML2FMdIgbAxRpPbvdTkFJtaOnp6CU3QdLST9YQsmhLOKte0gy7WeMsZ8bTfsJMipO+mu8xuxPZWgi5qixHK0yERU7CJOXb9NEw3R80uFEsmIyY2rDWmluYXV98QRQMuR5vP0gfAQUpDHBN4ePq8PZW1jGsPAAd0cmIiKeKq6+olzuBqitAm8/Lk4cyKL/7iO7pI7LX1zNlcmR/PqCBCKCNYdIuo6i8ppjPT0Hj716VR1ljGkfScZ+LjTt5zem/YSbi0/q7bGafKjrl4hP9DiMyPEQOQ6f0GH4mExYrVYKU1KITE4GD15nyNWUDHmiiCQoSOPMwDw+rh5Hao5FyZCIiLhP6FAI6AflhyBvE8RNZ2i/3nx5/3R++/56fsypYtmWPD5PO8AvZgzi7jOH0MfP291Riwcpq65jT2PSU+Z4LSilsLSaQCoYbcogydjHbab9jDHtJ8rv8EnXsBtm6DcSI3IcRIyFyHGY+43EbNZ/y+6kZMgTDUyGLW8zxpwJQGpuMdeMi3RrSCIi4sEMA2KnwY7ljnlDcY4Kc1Eh/jwwJZiHLhnE01/uZn3GURb9dx/vb8jh/nOG8bPJMXibtWSidJyqWiv7Cssak5499UlPblElAH5UM9LIIsm0j6tN+xnjs58hpgMnXceOgRE2DCKOJT7GgETwVs9mV6NkyBMNTAYgqrGIgsWd0YiIiDiGyu1YDlk/Av/XZNeYqCDe/+UUvt15iKdX7GR/YTl/+GQ7b6zO5OELh3PBqP4Y3WUehHQJdVYbmUcqmg5vKygl83A5tvpK+97UkWBkM8uUwRivfYz3ymAwOZixnXzB4BhH4lPf62MMTAa/Pp3aJmkbJUOeaMBoMMz4Vh9hAEfZddBEVW3nTFITERFpVuw0x2vOerDWOiZ9H8cwDM4b2Z8zE8J5b0MOz3+TTsbhcu56exMT40J47OIRjI1RkQVpymazk2epbEx20g+WsrugjH2HyqixHktqTNgYYuRzlWkf470zmeCdSVxdBt72mpMv2rv/cYnPOMeyJQFhndco6VBKhjyRdy8IT4BDO5jmn8eyilB2HChBAw1ERMRtwkdArxCoLIL8FIie2Oxh3mYTN02J5YrkCF76fj+v/LifDZlFXPniai4ZM5DfXDCcmFAtJu5p7HY7haWOCm7Henocw9wqak584GsnxjjERJ8MZvrnkGjaT3T1HnysFccOaajo7hfcOMytMQEKHOgY2ik9gpIhTzUwGQ7t4Mw+eSyrGENqbjFjde8QERF3MZkcJbZ3feYYKneKZKhBoJ83v74ggZ9PieFvX6fz4eZcPtt6gK+2H+TmqXHMPXsowf4+nRS8dCZLRQ3pBWXH9fQ4kh9LRfNrUkWZizgvKI+pvbIZbtvDwPJdeNfUr7NYddyB3gGOXp6IsccSoJBBSnx6OCVDnmpgEqS+S6IpE4CtucWMjXdvSCIi4uEakqHMn2DGA606ZWBQL/56bRK/mD6Ip1fsZNWew7z6YwZLN+Yw9+xh3DwtFl8vlSXujipq6th7tJa9m3LZc6i8MekpKKlu9niTAWP6Wjm7Tx7jvTMYWpNOaMkOvCoKoALHVwOzDwxIbFLggLB4MOm/FU+jZMhTRSQ7Xip3A45kiHhN9BMRETdqmDeUvRasdeDEkuAjI/rw1v9O5vv0Qp76fCe7C0r58xc7eXNtJv93wXAuHTNQRRa6AbvdTkqOhbfXZvPp1nxq6mzAkZOOiwzuxZhwgxkBeYwx7SemcheBR9MwFWdD+QkHG2boN6Jpj0+/UeClnkNRMuS5BiQCBr6VhwiniMwjUFbT291RiYiIJxuQCL5BUF0MBWnQf4zTlzgjPpwZQ8P4cFMuf/16NzlHK7lvyRZe/TGD3148gkmD+rogcGmvyhorn6Tm8dbaLLbllTRuD/I1MSoqhFH9fJjkl8tw214GlO3EuyAFcvYA9pMvFjq0SWU3BowBH80FkOYpGfJUPgGO7uDDuzkn6ADvFYewr6iWGe6OS0REPJfJDDFTYM9XjqFybUiGAMwmg+smRnNJ0kBeWZXBP7/fR2qOheteWsP5I/vz8EXDGRKuB4Bdwd5DZbyzLosPNuVSWlUHgI+XictGh3NPWCqB2SsJq87GSN0JtrqTLxAU3bTAQUQy+AV1biOkW1My5MkikuHwbmb1zuO94pHsOdr8xEMREZFOEzfdkQxl/QST727Xpfx9vLjvnGHcMCma57/dw3vrs/l6RwErdx3i55NjuP+cYYT29u2gwKW1aq02vt1RwFtrs1i979gQuOi+vbhxciz/MyCPPv+5H3Zta3piQPgJJa3HQu/wTo5eeholQ55sYBJsfZ9RpgwA9ioZEhERd4ud7njNWg32Zha3bIN+gX48dWUit02LY96KXazcdYg312SxbHMed585hP+dMQg/b02cd7WDxVUsWZ/NkvXZHCp1FEEwGXD28H7cOCWWWQPtmFY+Ad+9C4C9VwgFERcQPvYizNEToE+kKrtJh1My5MkGJjteyh1FFLYX1vDBplwuHxulm4KIiLjHwCRHieMqCxza2aGXHtY/kFdvncjqfYd56oudbMsr4dmvdvP22ix+fX4CV46NxGTSH9sdyW63s3rfEd5em8XXOwqw2hxzfMJ6+3D9xGj+Z1IMUUG+sPE1WPb/HPPFMGDczdjOepy89BzCRySDWX+XiGsoGfJkAx1jsX0qDpDQu4rdZX48vGwb877czfUTY7hxSgxRIZpwKCIincjsDTGTYd9/MLJ+Ap9JHf4W04aE8cm9M/g4NY+/fpVOnqWSh5am8uqPGTx28QhmDAvr8Pf0NMUVtXywOZd31mWxv/BYebdJcX25cWosF44agI+XCXI2wPsPwsGtjgMGJsHs5yBqAlitQI57GiAeQ8mQJ/MNdFRcObKXpZf58ey2QL7LqSO3qJJ/fr+PxT/s49wR/bl1WhxTh4SqJKmIiHSO2OnHkqFhHZ8MAZhMBleOjeKi0QN5/adMXvxuLzsOlHDjq+s4MyGcRy8aQcKAQJe8d0+WllvM22uz+Dg1j6paxzDHAB8zV42L4udTYhg+oH4Zj/LD8PkTsOUtx89+QXDO72H8bVrrRzqVkiFPNzAZjuyl99HtXJFwDr+7Nonv9xzhX6sz+XHvYb7eUcDXOwoY1q83N0+L46qxkQT46j8bERFxoYZ5Q9lrYOivXPpWft5m7j5zCNdPjOaFlXt4e20W/91dyA/phVw3IZoHz4unXx8/l8bQ3VXVWvls6wHeWptFao6lcfvwAYH8fEosV46NpHfD3w42K2x6A1b+0TEUEmDsjXDukxCgHjnpfPqr1tMNTIJtH2AcTIXAczCbDM4b2Z/zRvZn76FS3lyTxYebctlzqIzfLd/GX1bs4poJUdw8NY5BYQHujl5ERHqiyHHg5YdRcRi/smxgrMvfsm+AD09cNopbpsXxly93sWLbQd7bkMPHKfn8ctZgfjlrsB4GniDzcDnvrMti6aZcLBWOIkzeZoOLRg/kpqmxTIgNaTqqJG8TfP4Q5G9x/Nw/EWb/zTEsUsRN9H+1p4tIdrweSIVhTXcN7RfIHy8fza8vSODDTbm8uSaLjMPlvP5TJq//lMkZ8eHcOi2OM+LDNeFUREQ6jpcvRE2EzFX0PpIKXN5pbz0oLIBFN45nY+ZR/vzFTrZkW/jHyj28uz6bB8+L59rxUXiZTZ0WT1dTZ7Xxn12HeGttFqv2HG7cHhnci59NjuG6CdGEB55QrrziqKMnaNMbgB18+8DZj8OE/wWz/hQV99J/gZ5ugKOIglGcg7mmuNlD+vh5c9v0QdwyNY5Vew/z5upM/rP7EN+nF/J9eiGxof7cNCWWaydEE9TLuzOjFxGRnipuBmSuov++f2NsHw2jr+rUuSQT4vqy7O5pfJF2kGe+3EX20QoeXZbGa/VFFs5MCPeoubSHSqt4f30OS9Znk19cBTiqXJ8RH85NU2I5M6Ef5hMfjNpsjjlB3z4BlUcd25L+B877I/Tu17kNEDkFJUOerlcwhAyCogz8i/cAZ5zyUJPJ4Iz4cM6IDyfrSDlvrcni3xtzyDpSwZ8+38nfvk7nynGR3DI1TpNORUSkfcZch33tIvwq8mHZ7fDfp2D6/Y4/pr06Z6FUwzCYPWYg543sz9trs3jhP3vYc6iM297YwLQhoTx28QhGRwZ1SizuYLfbWZdxlLfWZvHVtoPU1ZfFDvH35rqJ0fx8UiwxoaeoOpuf4hgSl7fR8XO/kY4hcbHTOid4kVZSMiSOoXJFGfhb0lt9SmxoAI9fMpIHz49n+ZZ8/rU6k90Fpby7Lpt312UzdXAot0yL5dwR/T16OIGIiLRR38HY7t1Iwaf/j4E5n2Ac3Q+f3g//nQdT74XxtzqqonYCHy8Tv5gxiKvHRbHwv3t546dMVu87wqULfuTK5EgeuiCByOBenRJLZyipquWjzXm8vTaLPYfKGrePiwnmpqmxXDR64KnXI6wsgv/8CTa8CtjBJxDOegwm3eEomy7SxSgZEkcRhe0f1fcMOcffx4ufTY7hfyZFsy7jKP9ancnXOwpYs/8Ia/YfISLIj59PieV/JsXQN8DHBcGLiEiP5d+XAwm30P/K/4c55W1YvQBK8+Hrx+GHv8LkO2HSnRAQ2inhBPl789jFI7hpSizPfrWbT1LzWbYlj8/SDvC/MwZx95lD6OPXff/g35Ffwtvrsli+JY+KGisAvbzNXDE2khunxDAq4jS9YDYbpC6Bb34PFfVziRKvhfP+H/QZ2AnRi7SNkiFxlNcGehdtg4IdEJHo9CUMw2DK4FCmDA4l31LJO+uyWLI+h/ziKp79ajf/WLmHy5IiuGVqHIlRPXdIgYiIuIBPb0dv0MTbYev78OPzcHQffP8MrJ4P426BaXMgKKpTwonu688L/zOW/50xiKe+2Mm6jKMs+u8+3t+Qw/3nDONnk2Pw7iajIqrrrKxIO8hba7PYlFXUuH1ov97cODmGq8ZHtZzgHdgKX/wactY5fg4fDhf/FQbNdGHkIh1DyZBARDJ2sw8+VUdg8QyIngwTfgEjLwdv57v9I4J78X8XDGfu2cP4fOsB/rUmk625xXywKZcPNuUyLiaYW6bFcdHogY7Vp0XEraprrY1zAUS6NC9fGHczJP8cdn4Cq56Dg1th3SLY8AqMuR5m/ArChrV4qY6QFB3Me7+cwrc7D/H0ip3sLyznD59s543VmTx84XAuGNW/yxZZyDlawTvrsvn3xhyOltcA4GUyuGD0AG6cHMuUwX1bjr2qGL57CtYvBrsNvAPgzEdgyt0aEifdhpIhgV4h2G76mJIvnyK4YDVGzjrH050VDztuOONvhfB4py/r523m6vFRXDUukpQcC/9ancnnaQfYnG1hc3YKfwrcyc8mxfCzyTH014J2Ii5TXl1HnqWSvKJKci2V5BZVkFdUSZ6lktyiSgpLq+nja+K/I2rp21srv0s3YDLDqCth5BWw7z/w498hcxWkvA0p78CIS2HmgxDh+vWJDMOxPt+ZCeG8tyGH579JJ+NwOXe9vYmJcSE8dvEIxsaEuDyO1rDa7Hyffoi31mTx3/RC7PXPQAYG+fE/k2K4YWJ06xaYtdsdPXRf/w7KDzm2jboSzv8zBEW6rgEiLqBkSByiJ7N/4pMkD+mPOXUJbP4XFOfA2oWOr7iZjqRoxKVOV/ExDIOxMSGMjQnhsdkjeG99Du+sy6KgpJp/rNzDwu/2clHiQG6ZGsv4ExdoE5HTstvtlFTWkWtxJDi59UmOI/FxbCuqXwzxdHp7G/h0k2E9Io0MA4ae4/jK2QA/Pge7v3D0Gu38BAaf5UiK4mY6jnUhb7OJm6bEckVyBC99v59XftzPhswirnxxNbPHDOThC4afuvKaix0pq+b9jTm8uy6b3KLKxu0zh4Vx45RYzhner/XFjgq2w+e/huzVjp9Dh8HFz8KQs1wQuYjrKRmSpgIHwhn/57h57P0WNr4Oe75yPHHLXAX+oTD2Rkdi1Hew05fvF+jHfecM4+4zh/DV9oP8a3UmGzKL+DQ1n09T8xkV0YdbpsVxWVLEqSvViHgQu93OkfKa4xKdk5Oe0uq6Fq8T6OdFVIg/kcG9iApxfEUG9yIypBcD+viSnb6dXj76f066seiJ8D9LHHNff3oe0j6A/d85viInOO5r8ReBybVJf6CfN7++IIGfT4nhua/T+WBzLp9vPcDX2w9y89Q45p49lGB/1xcUstvtbMoq4u21WXyRdpAaqw2AoF7eXDs+ip9PiWVQWEDrL1hV4qjkt+6fYLeCtz+c8RuYci94qUCSdF9KhqR5JjPEX+D4Ks6FzW86vkoPwE//cHwNPssxtyjhIqfHBnubTVwyJoJLxkSwLa+Yt9ZksTwlj+35Jfzmg608/cVOrp8Yw41TYogKcc+TNJHOYLPZOVRa7Ri6Vj9s7Vii49hWVWtr8TqhAT5E1ic4xxIdf8f3Ib1OOwHaarWSox5Z6Sn6j4SrFjvKOa+eD5vfcqx1897PIHyEY07R6KtdPqdlYFAvnr02idumD+LpFTtZtecwr/6YwdKNOcw9exg3T4vF16vjH0CUV9exPCWPt9ZksetgaeP2pKggbpwSy6XOPmy022Hbh/DVb6HsoGPbiMvggqcgOLqDoxfpfF0iGSovL+f5559nxYoVFBcXM3jwYH75y18ye/Zsd4cm4KjOc9ZjMOs3kP4lbHod9q489sStd38YexOMvwWCY5y+/OjIIJ65ZgyPXDSc9zfm8NaaLPIslfzz+30s/mEf547oz63T4pg6JFRD6KTbqbXaOFhc1ZjgnDhf50BxJbXW0xcvMAzoF+hbn+j4N0l6okJ6ERHcC3+fLvHPuUjXERLnWOTzjIdh7YuOdW8Kd8JHd8J//gzT73OMdGhDoSBnjIzow1v/O5nv0wt56vOd7C4o5c9f7OTNtZn83wXDuXTMwA65t6UXlPL22iyWbc6jrL632NfLxOXJEdw4JZYxUcHOX/TQLkeVuMxVjp/7DoaLnoVh57Y7XpGuokvcPefOnUtaWhoPPfQQcXFxfPbZZzz44IPYbDYuvfRSd4cnDcxeMOISx1dRJmz6F2x5C8oKYNVfYdXfYNh5jt6iYec7epecEBLgw11nDOGOmYNZubOAN9dk8ePew3y9o4CvdxQwrF9vbp4Wx1VjIwnw7RL/6YpQVWsl33LcPJ0Tkp6DJVW0VKjNbDIY0MevsRcn6oSkZ2Cwn0ueIIt4hN794NwnYMYDjopzaxdBcbbjj/zvn3FUPpt4O/i5dtmHM+LDmTE0jA835fK3b3aTc7SS+5Zs4dVV+3ns4hFMHuz8Wkk1dTa+2u4oi70+42jj9kFhAdw4JZZrxkUR5N+GHrDqMsdns/ZFsNWBVy+Y9RBMu8/pecMiXZ3b/6L8/vvv+emnn/jb3/7GJZdcAsCUKVPIz8/nL3/5CxdffDFms/4I6HJC4uDcP8CZj8Luz2Hja5DxA+z52vHVJ9Kx7sO4m6BPhFOXNpsMzh81gPNHDWDvoVL+tTqLDzfnsudQGb9bvo2/rNjFNROiuHlqnHPjnUXaoEkltqIKck9IegpLq1u8ho/Z1JjYNA5ja+jd6etP/0Df1k9eFpG28QuCmQ/BlHtgy9vw0wuOpGjlHx3rFk38X8e+3v1cFoLZZHDdxGguSRrIK6sy+Of3+0jNLeb6xWs5f2R/Hr5oOEPCe7d4nTxLJUvWZfPehhwOl1U3Xvu8Ef25cUos04aEYjK1obfJbocdy+HLxxyL2wIkzIYLn4aQWOevJ9INuD0Z+uabb/D39+fCCy9ssv2qq67ioYceIjU1lXHjxrkpOmmRl4+jnOaoK+HwXscQupR3oSQP/vuU48lSwkUw/jYYcrbTE1eH9gvk/10xmv+7MIEPN+Xy5posMg6X8/pPmbz+UyZnxIdz67Q4zogPb9s//OLRrDY7R8qqybdUsC6vii0VmRwoPjZ/p7WV2Px9zI3FCBzzdfwbv48K7kVYb1/99ynSVXj3gkl3OAoBbfvQUZa7cJfjde0ix9C5afe59I9/fx8v7jtnGDdMiub5b/fw3vpsvt5RwMpdh/j55BjuP2cYob2b9sDYbHZW7T3MW2uy+M+ugsYe536BvtwwKYb/mRTNwKB2DPk7vMfRW7b/v46fQ+Lgor845g6L9GBuT4b27NnDkCFD8PJqGkpCQkLjfiVD3UTYULjgz3D27xwlTTe+7ii9ueszx1dwrGNe0dibnH7y1sfPm9umD+KWqXGs2nuYf63O5Lvdh/g+vZDv0wuJDfXnpimxXDshmqBeWujN09lsdo5W1FBQUsWhkmrHa6njtaCkmkOlVRSUVFFYWn3CEDZLs9fr4+d1rBhBk2psjqQnxN9b89lEuhuzNyTdAInXQfoKxwKueRsdQ+k2vg6J18D0XzkKMrhIv0A/nroykdumxTFvxS5W7jrEm2sc837uPnMIt0yJobTaxis/ZvDu+hyyjlQ0njt1cCg3TY3lvJH98W5Pz3JNOfzwV0exCVstmH0dlfem3+/y+VQiXYHbkyGLxUJUVNRJ24OCghr3O8NqtbYpjobz2np+d9eh7Td5w6irHV+FuzA2v4Gx9X0MSxas/CP2757CnjAb+/jb2rT2w4whfZkxpC9ZRxyrZy/dlEvWkQr+9PlO/vZ1OlckR3DT1BgS+ge2+pr6/XeP9tvtdiyVtY4Ep7Qh0ammsLSagtKGJMfxc11LE3XqmQwI6+1LHy8bQyNCHElP8LGy05HBfgSephIbgM3WcrU3t6urAksOFOdgFGc7vrdkYxRnY7JkM8IUiDXhG+jl/LyJrv7fjchpmUwwfDYkXOwoFLDqOUdxoK3vO77iL3IkB9GTXBbCsP6BvHrrRFbvO8xTX+xkW14Jz361m9d/yqC4ooZam2Nh00BfL64eH8WNU2IY2q/197hm2e2w81P48lEoya0P5Hy46Jk2LZ0h0l25PRkCTvtE1dmnrWlpae2Kpb3nd3cuaX//GzDOuoK+B/5LWNZn9C7agbHzY9j5MVUBURTGXsKRqAuw+jr/R9jFEXB2v778kF3Fij0VZJfUsWRDDks25DA63IeLhvozMcL3/7d353FR1fvjx18zgLKIICJgKinEDuEGuG9Zpmlqpd7vvRfNNCXTvFre0upe7JrLNfMmXrcwU68/f5qiP7fU1PpmNxm3NNzNLcFdWURkmzm/Pw4zMgLKPsK8n4/HeczMZ86c+XzmDPPmfc7nfD7YlLKLkux/y7RfURSy8hTuZBu4c19P6n0Dd7LV29RsPXfuG0xl+aXMOzSAS10tDRy0NLC3wc1Bve9mb6PeOtjgZq+lvr0WG7PfmWx1yUkl+xqcu1YFDa4CGn0OdbKuU/f+NepkXSu4vU6d+9epm3UNu5w7j3x9Hbv7HDuWhN7u8dcrCFEraTTQoou6XPlF7TZ3YpN61ujMt/B0J+g8AXyfq7IJXDv4urPp7U5sOnqF2TtOk5KmTpAa0rg+0e2f5uWWT1XOyJG3z8G3f1XnEwRw8VaToIDeVT45rRBPGosnQ66ursWe/UlPTwcenCEqrbCwsHINuKDX60lKSir362u66ml/O+AD9NeOqWeLktZify+ZZicW0fT0VyhBL6tni5q1K/OPcbu2MElR0F24w8rE3/nu5A2O3czl2M1cGrvY86eoZgxp2ww3p+InhpP9X3Xtz8zJ50ZGtnrmJqPgDE5BtzW165p6Rqc0c+kYuTna4VHfnkbOdfF0rotH/bp4OtsX3NbFo7497vXqlLrrSI3Y/3lZBWd2fkdTcFZHvf87pCejuXfjsZtQ7JzUeUFcvVFcvMG1GYpLMwzOTTl2PZeQVlEV+v0UotZ4qhUMXqFeR/Pff8HRNXDpJ3VpHK6OTBf0cplHTS0NrVbDgFZNeDHUiz0nr5N+7RKDekQUuZygXHKz4KfP1bkC9blgU0ftDtdpItSROf2EdbJ4MuTv78+WLVvIz883+0M/c+YMAH5+fmXano2NTYX+mano62u6aml/k3BoMhde+AccWwcHv0Jz9SiaY+vUx40C1QEXwoeAQ4Mybbqjnwcd/Ty4knafVbpLrN5/mavp2Xy28yzz9pzj5fCnGNa+OWFNi0+yZf+Xvv1Zufmm63GMCU7ha3KMz93LLX0XKhcHOzzr18XTmOjUt8ez4Najvj2e9evSyLlulQ0zbdH9n5MJ6QVJTnFL1q3Hb6NOPfXaPFdvU9LzYHkajUMD04EGs8MNej2G20es/vsvRBHuftD/3+rIqfv+DYe+hqtH4ZvXoeEzaiLx7B/UwYQqmb2dDb1CPDmSd7Vyrkk8tQ22v6/+noB6hqvPbGjoW/FtC1GDWTwZ6tmzJ2vXrmXnzp306dPHVL5hwwY8PDwIDw+3YO1ElapbTx3Np83rkHJYHZ772Hp1VJ/t78OuWAh9RZ23qEmbMp0tesrVgUm9AhnXw48tv15l+c8XSUpJZ92hZNYdSqa1tyvDOjSnd2hj6tjKkMaFZefp1WtwChIbNdlRkxvjNTnXM7K5m51f6m0617VVz9rUt8fjoeRGTXjUszplmhW9psm5a7pOR10uFZzdKSjLuv34bdSt/1CCU7C4FCQ+hZIda1eRybwTEhKYPHlysc/99NNPNGrUqLKrK550Lk3V4aU7vwf7F4NuMdz+DTaNg+9nQIex6nQSdZ/AbqZ3LsD2D9RJ0wHqF7QlqJ/8XgjBE5AMde3alY4dOxIbG0tmZibe3t5s3bqVvXv3Mnv2bDlKaS2atFaXXp/Cr2vVkXxuHIcjq9TFMwzavq6O+mNfv9Sbtbez4bU2TXm1dRN+uZzG8p8vsi3pKod/T+Pw70eY5nySP0Z684e2TcpddUVRMCiQbzCgNyjkGxT0+oJbg2JeblDI1z8oz3/osdl6BgW9wVDo+YfKi7xPofIi9Xio/KHt5xsM3EzNJGPLbtLuP34oaSMHOxu8XAolOKZEpyDJKSiziklyszMeJDqmMzyXHpTdT338NuxdTGdxzJIc4+LgWuXNqC0qYzLvGTNm4ONjfiG5q6trFdRW1BhODaH7FOgwTj1L9PN8dT6eHVPgx9kQFQORo8DRzdI1hbxstYvf3s9Bn6MObtRhHHR5D+rIHH1CGD0R/6HExcUxd+5c5s2bR1paGj4+Pnz++eelOoInahl7F3X+h4iRcHm/Om/R8Q1wPQm2vgs7/6YOd9r2DXiqZak3q9FoaO3dgNbeDfjwpSBW6y6zSneJG3dz+GL3Wf79/W80d7HF4eef0Rt4RHKikK8vWl7b1LXVFiQz6vU3xiTH03Rtjnq/Xl1b6xlSOju95C5sab9Ddtrjt+HQoNDZnIfP8DRTv/+iwiprMm8/Pz/CwsKqurqiJqrrrCYWkaPg6Gr1Gpw75+GHGepkrm2HQ/u3yzzpeKU5sxO+nQSpF9XHPt2g92xo5G+Z+gjxBHsikiEnJyc++ugjPvroI0tXRTwpNBrwjlKXXtPh6P9VE6NbZ+DwcnV5qpWaFIW+WqajXB7O9ozv6ceY7r5sP3aN5T9f5OClVH5LzYPU0p8VKQ07Gw02Wg22Wm3BrebBrU0J5YXXtymh3PjYRlvMNjXYaLXFbFODzcPrF2xTg8K15Iu0bxnMU65O1HewoiQHQFGwyb0LV3+FuynFJzs56Y/fjmPDh87mFLp+x6VZmc5qivKTybxFtbGtq3b1bhUNJzbC3rnqwbt989WudC3/R52rqLquy0m9pA6VfXqr+tj5KXhxOgQPkC5xQpTgiUiGhHgkRzdoPwbavQWX/qt2oTvx/9ShTzeNgx0fwrND1CNxniGl3qydjZZ+4U/RL/wpTlxJ44eDx/H39cHOztaUKKjJTPEJxIPEo/hkRVvK4byfBHq9niN5V/H3dK59XVMVRe2ilnGlYEkudD8FMq6gzbhCy9zMx2/L0b34a3aMXdqexOsFrFBlTeYdExPDnTt3cHZ2JjIyknfeeQd///IdWZc58MqnRrU/aAAE9odzu9D+919oft8Hh1eg/PIfdbTUDn+Bxs+WaZOlbn9+Dpp989H89Dma/PsoWluUqLdQukxSB1apCXOhFaNG7f8qIO2vWPtL+zpJhkTNodFA807qcm+Wei3RwWWQegEOfKkuzaLUkehCBpRp5uwAT2fuN7GnZaBH7UsGajODQR14oCCpeXD70P38+4/cjDFtVZw80BQZic14/U5T6WdfQ1R0Mm93d3diYmJo2bIl9erV48yZMyxZsoQhQ4awevVqAgMDy1wnmQOvYmpW+xtB+Kc4NTuG12//B9friWhObIQTG0lvFMk1v/8h0+3ZMp2peVT76984QLNjcdjfUydOvduwJb+HvUO2c3M48VsF2/JkqFn7v/JJ+6u2/ZIMiZrJyV0d0rT9OLjwv+pIdKe3wWWdumz/AFr+UU2MpI90zWTQw72balKTXkKyc/eqOldGaTg1Uvvv129ScPvgvt7Ji6MXbhLetp0kw08YnU7H0KFDS7Xuxo0bCQoKAio2mXeXLl3o0qWL6XFERARdu3alX79+fPHFFyxcuLBU9SlM5sArn5rd/pbQ48/orx9H8/MXaI4n4HJzPy4396M0jcTQ8S/g1+uRSdEj25+ejHbnh2hObQZAqeeF8vw/cAx5hcBa0iWuZu//ipP2V6z9pZ0DT5IhUbNpteDbXV3uXoNfVsKhFZD+OyQuUJenO6ld6IL6qf27heXp8yHz2qPP5ty9CobSDN+tgXqeRRIc86TnqUfve70e5fLdSmueqDwtWrRg2rRppVq3cePGQOVP5g3QtGlT2rRpw9GjR8v8WpA58CqqRrf/qWfhtaXQ4yP4eR78sgpN8n5s1vwRPILVCVxDXgGbkv8lM2t/fq56TdKPs9XJmDU2EBWDptsHaGrpdYk1ev9XAml/1bZfkiFRezh7QZdJ6kza5/aoZ4vObH8wa7hjQ2j1Z/ViVzefx25OlFN+rjrUbJEEp1Cik3kdlFL0YdfYgHPjYhKdQvedvcDGrurbJSzCw8ODQYMGlek1lT2Zt5GiKGi1Mi+ZKCe3FtB3LnR9Xz1Qd+AruHECEt6EPdOg4zvQ8s9gZ1/yNs7/AFvfg9tn1cfeHeClz8p0vawQwpwkQ6L20dqA3/Pqkp4Mh1fC4RXqP+j//UJdfLqrZ4sC+sg/0mWRd79QklPCWZ17N0q3La0d1G9cfIJTv4m61PNQ96cQZVAVk3lfvnyZw4cP06FDh8qsqrBGzl7w/CfqGaED8ZC4UJ2TbOu78MMsdcCgtiPMR5/MuAK7PlanmgC12+8L09TBg2pJlzghLEWSIVG7uTSF7pPVM0Znd6gDLvy2C85/ry71PNUhUVtGW7qmFqfNv68OXW7qvlZMsnP/Tuk2Zmtf8pkc431Hd7WboxCVrCyTeU+ZMoWNGzfy3Xff0aSJOvny66+/Ttu2bQkMDMTJyYkzZ84QHx+PRqNh/PjxlmqWqG0cGqixqd3bahfvn+PUCZt3xapDdEeOhNbD8Ty3Bu32/0DePdBo1bmNuk2WSZiFqCSSDAnrYGMLgS+pS+qlgrmKVqrdtfZ+hnbvHILreaNNdEAdW0xRh2SGct4vuIWC8sq+X7nb1wKtStNtDcDOsYTrcgruuzRVg7wcrRQWVNrJvA0GA3q9HsX096t2s/v222/56quvyMnJwc3NjXbt2jFmzBhatGhR3U0RtV0dR4garc6bl/QN/PQvuHUa9s7BZu8cTOMiNouCPp+VeXhuIcSjSTIkrE+Dp+G5v0HXD9QR6A5+hebC/+KQeQlKMdVMbWQaWrpufTQldlsrKLN3kURHPPFKO5n3zJkzmTlzplnZlClTqrJqQhTPxk4dBfXZP6iTpu79HK4cJq+OKzYvTkPb8k9yNl2IKiDJkLBetnXU+YhCBqC/dZ5zB3fh+8wz2GhtCv2zrynnfY3p4YP7mtLfL9N78oj3L919vcHAr6fO8WzbDlY9Yo0QQlicVquOfhrYF/2VXzl2OZ1nwztKIiREFZFkSAiABk9zt1EbaNESrDEZ0Osx2F61dC2EEEIYaTTgFYrh2hFL10SIWk0OMwghhBBCCCGskiRDQgghhBBCCKskyZAQQgghhBDCKkkyJIQQQgghhLBKkgwJIYQQQgghrJIkQ0IIIYQQQgirJMmQEEIIIYQQwipJMiSEEEIIIYSwSpIMCSGEEEIIIaySJENCCCGEEEIIqyTJkBBCCCGEEMIqSTIkhBBCCCGEsEqSDAkhhBBCCCGskiRDQgghhBBCCKtka+kKVBZFUQDQ6/Xler3xdeV9fU0n7Zf2F761NtL+irXf+Drj77B4QGJTxUj7pf2Fb62NtL96YpNGqSXRKzc3l6SkJEtXQwghrFZYWBh16tSxdDWeKBKbhBDCsh4Xm2pNMmQwGMjPz0er1aLRaCxdHSGEsBqKomAwGLC1tUWrld7XhUlsEkIIyyhtbKo1yZAQQgghhBBClIUcwhNCCCGEEEJYJUmGhBBCCCGEEFZJkiEhhBBCCCGEVZJkSAghhBBCCGGVJBkSQgghhBBCWCVJhoQQQgghhBBWSZIhIYQQQgghhFWyimQoISGBgIAA0xIcHEynTp2YMGECFy9eNFv34MGDfPjhh7zyyiuEhoYSEBBAcnKyZSpeSUrbfr1ez7JlyxgxYgRdunQhPDyc3r1789lnn5GRkWG5BlSRhz+XhxedTmfpKpbb9u3bCQgIYNu2bUWee/nllwkICGDv3r1FnuvZsycDBw4E4Pvvv+evf/0r/fr1IyQkhICAgCqvd2WpaPszMzNZuHAh0dHRdOzYkVatWtGvXz+WLFlCTk5OdTShQipj/8+dO5cBAwYQGRlJWFgYzz33HB9//DEpKSlVXn9rIbFJYlNxJDZJbHqYxKaqjU225X5lDTRjxgx8fHzIycnh8OHDLFq0CJ1Ox7fffouLiwsAiYmJ7Nu3j6CgIJycnNi/f7+Fa115Htf+7Oxs4uLi6Nu3L4MGDaJBgwacOHGChQsX8v3337N+/Xrs7e0t3YxKZ/xcHvbMM89YoDaVIzIyEo1GQ2JiIn369DGVp6WlcebMGRwdHdHpdHTu3Nn03LVr17h8+TLDhw8H4LvvvuPo0aMEBQVhZ2fH8ePHq70d5VXR9l+5coXly5fTv39/Xn/9dRwdHTl06BDz58/n559/ZtmyZWg0Gks0rVQqY/9nZGTw0ksv4evri5OTE7/99hsLFy5kz549bNmyhQYNGlR7u2oriU0Sm4ojsUklsUliU1XHJqtKhvz8/AgLCwMgKioKvV5PXFwcu3bt4tVXXwVgzJgxjB07FoClS5fWqoDzuPbb29uze/dusy9SVFQUjRs3Zvz48ezYsYP+/ftbqvpVpvDnUlu4ubnh5+dX5Pt74MABbG1tefXVV4scXUxMTATUfQ4wbdo0tFr15PEnn3xSowJORdvftGlT9uzZg6Ojo+n59u3b4+DgwD//+U8OHTpE27Ztq74h5VQZ+//vf/+72fPGz2XUqFHs3r2b1157rQpbYF0kNklsKo7EJpXEJolNULWxySq6yZXE+CNz+/ZtU5nxD8waPNx+GxubYjPqZ599FlCzc1FzREVFceHCBW7cuGEq0+l0hIaG0rVrV44fP05mZqbpuf3792NjY2P6Ia3pfwsVab+jo6NZsDGqSX8LFd3/xXFzcwPA1taqjqNVO4lNEptqM4lNEpuetNhUs79RFWTsb928eXPLVsRCStt+Y1Zek0/NP4rBYCA/P99s0ev1lq5WhbVr1w7A7AiMTqcjMjKS1q1bo9FoOHTokNlzwcHBODs7V3tdq0JVtL8m/S1UVvvz8/PJzs7mxIkTTJ8+nebNm/P8889XTyOslMQmiU0gsanwcxKbJDZVZWyyqmTI+MNy79499u7dy8KFC4mIiKBHjx6Wrlq1KE/7r1+/zpw5cwgNDaV79+7VWNvqM3jwYEJCQsyW2tA1ISIiAq1Wa/rBSU1N5ezZs0RERODk5ERwcLDpB/Tq1askJyebTkPXBpXd/lOnThEfH8/zzz9PYGBgtbShIiqj/Tdv3iQkJITw8HAGDhyIXq9nxYoVODk5VXt7ajOJTRKbiiOxSWKTxKbqiU1W1ddh8ODBZo99fX1ZsGCB1XT5KGv709LSePPNN1EUhX/96181/tR0SWbNmoWvr69Z2ZN8AWJpubi4EBgYaOp/e+DAAWxsbGjdujWg/iAZf3CM69SmgFOZ7U9OTiYmJgYvLy+mTZtWDbWvuMpof4MGDVi3bh25ubmcP3+e+Ph4hg4dysqVK/Hw8KjG1tRuEpskNhVHYpPEJolN1RObaucvSAlmzZrFunXrWL58OUOGDOHcuXNMnDjR0tWqNmVpf3p6Om+88QbXr1/nq6++olmzZtVc2+rj6+tLWFiY2RIaGmrpalWKqKgoLl68yPXr19HpdISEhJiOnERGRnLy5Enu3r2LTqfD1taWNm3aWLjGlasy2p+SksLQoUOxsbFh+fLluLq6VnMryq+i7be1tSUsLIw2bdowaNAgli9fTnJyMkuWLLFEc2otiU0Sm4ojsUlik8Sm6olNVpUMGX9Y2rVrxyeffMKgQYPYu3cv27dvt3TVqkVp25+ens7w4cNJTk5m2bJlNeK0qyie8WjK/v372b9/PxEREabnjD8uBw4cQKfTERYWVuu6P1W0/SkpKURHRwOwYsUKvLy8qqnmlaOy97+XlxceHh5F5sARFSOxSWKTtZHYJLEJnpzYZFXJ0MMmTZqEi4sL8+bNw2AwWLo61a649huDzeXLl1m6dCnBwcEWrqWoiIiICGxsbNixYwdnz54lMjLS9JyzszNBQUFs3LiRlJSUWtUNwagi7b9y5QrR0dEYDAaWL19OkyZNqrv6FVbZ+//SpUtcu3aNp59+uiqrbfUkNklsqu0kNklsepJik3V0SC6Bi4sLo0aNYvbs2WzevJn+/ftz584d00VdZ86cAeDHH3/Ezc0NNzc3sx1W0z3c/l69ejFixAhOnDjBlClT0Ov1HDlyxLS+m5sb3t7elqtwFTl79myxI/R4e3ubhmusqerVq0dwcDC7du1Cq9UWOdUcERHB8uXLgaJ9clNSUkhKSgLg999/BzAdqW3SpEmNuJC3vO2/ffs2Q4cO5ebNm3z66afcvn3bbJhjLy+vGnEkrrztP3XqFDNmzKBXr140a9YMrVbLmTNn+Prrr3F1deWNN96o1nZYG4lNEptAYpPEJolNUD2xyaqTIYDo6GhWrVrFggUL6Nu3L2fPnmX8+PFm60ydOhVQ+zGuXLnSEtWsMoXb36pVK9MPzKefflpk3YEDBzJz5szqrmKVmzx5crHl06ZNY9CgQdVcm8oXFRVFUlISQUFB1KtXz+y5iIgIvv76a+zs7GjVqpXZczqdrshnY/zbqEnfhfK0/7fffuPy5cuAepT6YWPHjmXcuHFVW/FKUp72u7u74+HhwbJly7h58yb5+fl4eXnRrVs3YmJiaNy4cXU3w+pIbJLYJLFJYpPEpuqJTRpFUZQKtUYIIYQQQgghaiCrvmZICCGEEEIIYb0kGRJCCCGEEEJYJUmGhBBCCCGEEFZJkiEhhBBCCCGEVZJkSAghhBBCCGGVJBkSQgghhBBCWCVJhoQQQgghhBBWSZIhIYQQQgghhFWSZEiUW0JCAgEBAaYlODiYTp06MWHCBC5evGjp6gGwaNEidu3aVaRcp9MREBCATqezQK1Ue/bsISYmhg4dOhAaGkpkZCTDhg1j06ZN5OXlWaxeDyvus/rggw/o0aNHlb7v9evXiYuL4+TJk1X6PkKI2kViU8VIbHo0iU21j62lKyBqvhkzZuDj40NOTg6HDx9m0aJF6HQ6vv32W1xcXCxat8WLF9OrVy969uxpVh4SEsKaNWt45plnqr1OiqIwZcoUEhIS6Nq1Kx988AGNGzfm7t276HQ6pk6dSmpqKsOGDav2upXWmDFjGDp0aJW+x40bN5g/fz5NmjQhKCioSt9LCFH7SGwqG4lNpSOxqfaRZEhUmJ+fH2FhYQBERUWh1+uJi4tj165dvPrqqxauXfHq1atHy5YtLfLe8fHxJCQkMG7cOMaOHWv2XI8ePRg5ciSXLl2q1jplZ2djb29f6vW9vb2rsDZCCFFxEpvKRmKTsFbSTU5UOmPwuX37tll5UlISMTExREZGEhYWxoABA9i2bZvZOnfu3CE2NpY+ffrQqlUr2rdvz9ChQzl48GCR98nNzWX+/Pn07t2bsLAwoqKiiI6O5vDhwwAEBASQlZXFhg0bTN0loqOjgZK7IuzevZshQ4YQHh5Oq1atGD58OL/88ovZOnFxcQQEBHD27FkmTpxImzZt6NChA5MnT+bu3buP/Gzy8vKIj4/Hx8eHt99+u9h1GjVqRNu2bU2P09LSiI2NpXPnzoSGhvLcc88xd+5ccnNzzV6Xk5PDnDlz6NGjB6GhoXTu3JmpU6eSkZFhtl6PHj0YPXo0O3fuZMCAAYSFhTF//nwAzp07x4gRIwgPDycqKoq//e1v3Lt3r0gdi+uKEBAQwCeffMLGjRvp3bs34eHhvPzyy3z//fdm6126dInJkyfzwgsvEB4eTufOnYmJieH06dOmdXQ6Ha+99hoAkydPNu2/uLg40zql+T4JIYSRxKaSSWyS2GTN5MyQqHTJyckANG/e3FSWmJjIyJEjCQ8PJzY2FmdnZ7Zt28aECRPIzs7mlVdeAdQfV4CxY8fi7u5OVlYW3333HdHR0Xz99ddERUUBkJ+fz8iRIzl06BBDhw6lXbt26PV6jh49ytWrVwFYs2YNw4YNIyoqijFjxgDqUbeSbN68mffee49OnToxZ84ccnNziY+PN7134SAAMG7cOPr06cNrr73GmTNnmDNnDqB2zSjJsWPHSEtLY9CgQWg0msd+ljk5OQwdOpTLly8zbtw4AgICOHjwIEuWLOHkyZMsWbIEULs3jBkzhsTEREaNGkXbtm05ffo0cXFxHDlyhDVr1lCnTh3Tdo8fP865c+d46623aNq0KQ4ODty6dYvo6GhsbW35+9//TsOGDdm8eTP/+Mc/HltPox9++IGkpCTeeecdHB0diY+PZ+zYsWzfvp1mzZoBahcDV1dX3n33Xdzc3EhPT2fDhg0MHjyYDRs24OPjQ0hICDNmzGDy5Mm89dZbdOvWDQAvLy+g9N8nIYQwktgksUlikyiWIkQ5rV+/XvH391eOHDmi5OXlKZmZmcqPP/6odOzYUfnTn/6k5OXlmdZ98cUXlQEDBpiVKYqijB49WunYsaOi1+uLfY/8/HwlLy9PGTZsmPL222+byjds2KD4+/sra9eufWQdW7Zsqbz//vtFyhMTExV/f38lMTFRURRF0ev1SqdOnZS+ffua1SUzM1Np3769MmTIEFPZvHnzFH9/f+XLL78022ZsbKwSFhamGAyGEuuzdetWxd/fX1m9evUj6220evVqxd/fX9m2bZtZ+ZIlSxR/f3/lp59+UhRFUX788cdi62R8vzVr1pjKunfvrgQFBSnnz583W3f27NlKQECAcvLkSbPy4cOHm31WiqIo77//vtK9e3ez9fz9/ZUOHTood+/eNZXdvHlTCQwMVBYvXlxiG/Pz85Xc3FzlhRdeUKZPn24q//XXXxV/f39l/fr1RV5T3u+TEKL2k9gksakwiU3icaSbnKiwwYMHExISQuvWrRk5ciT169dnwYIF2NqqJx4vXbrE+fPn6devH6AeOTMuXbp04ebNm1y4cMG0vdWrVzNw4EDCwsIIDg4mJCSEffv2ce7cOdM6e/fupW7dupXW7/vChQvcuHGD/v37o9U++LNwcnLihRde4OjRo9y/f9/sNcWdis/JySnSBaMiEhMTcXR05MUXXzQrNx5d2rdvn2m9wuVGvXv3xtHR0bRe4bq2aNHCrEyn0+Hn50dgYKBZed++fUtd36ioKLMjnO7u7jRs2JCUlBRTWX5+PosWLaJPnz6EhoYSHBxMaGgoFy9eNNvHJSnr90kIYZ0kNqkkNklsEo8m3eREhc2aNQtfX1/u3bvHtm3bWLNmDRMnTiQ+Ph6AW7dumdabNWtWsdtITU0FYNmyZcycOZM//OEPjB8/ngYNGqDVavniiy84f/68af07d+7g4eFhFhwqwvj+jRo1KvKch4cHBoOBjIwMHBwcTOWurq5m6xlP9WdnZ5f4Po0bNwYedNd4nLS0NNzd3Yt0W2jYsCG2tramrhtpaWnY2tri5uZmtp5Go8Hd3d20nlFx7UxLS6Np06ZFyt3d3UtVVyj6mYD6ueTk5Jgez5w5k1WrVvHmm28SERGBi4sLGo2Gjz76yGy9kpTl+ySEsF4Sm1QSmyQ2iUeTZEhUmK+vr+nC1Hbt2mEwGPjmm2/Yvn07L774Ig0aNABg9OjRPP/888Vuw3gkaNOmTURGRjJ16lSz5x++UNLNzY1Dhw5hMBgqJegY63jz5s0iz924cQOtVkv9+vUr/D6hoaG4urqye/du3n333cf2zXZ1deXo0aMoimK27u3bt8nPzzfV29XVlfz8fO7cuWMWdBRF4datW6b9Y1Tc+7q6upp+zAsrrqwiNm3axIABA5g4caJZeWpqaqk+47J8n4QQ1ktiU+lJbJLYZM2km5yodJMmTcLFxYV58+ZhMBjw8fGhefPmnDp1irCwsGIX4+lrjUZjdjElwKlTpzhy5IhZWefOncnJySEhIeGRdalTp84jj4YZtWjRAk9PT7Zs2YKiKKbyrKwsdu7cScuWLc2OvJWXnZ0dI0eO5Pz58/z73/8udp3bt29z6NAhANq3b09WVlaRyfk2btxoer7w7aZNm8zW27FjB1lZWabnHyUqKoqzZ89y6tQps/ItW7Y8vmFloNFosLOzMyv74YcfuH79ullZSUczy/J9EkIII4lNJZPYJLHJmsmZIVHpXFxcGDVqFLNnz2bz5s3079+fqVOn8uabbzJixAgGDhyIp6cn6enpnDt3juPHjzNv3jwAunXrxoIFC5g3bx4RERFcuHCBBQsW0LRpU/R6vek9+vbtS0JCArGxsVy4cIGoqCgUReHo0aP4+vry0ksvAeDv78/+/fvZs2cPjRo1wsnJCR8fnyJ11mq1TJo0iffee4/Ro0czZMgQcnNzWbp0KRkZGbz77ruV9vkYA05cXBxJSUn07dvXNLHdgQMHWLt2LePGjaNNmzYMGDCAVatW8f7775OSkoK/vz+HDh1i8eLFdO3alQ4dOgDQsWNHOnXqxGeffUZmZiatW7fm9OnTzJs3j+DgYPr37//Yeg0bNoz169czatQo/vKXv5hG7CncBaQydOvWzTQyT0BAAMePH2fp0qWm0XiMvL29sbe3Z/Pmzfj6+uLo6IiHhweenp6l/j4JIYSRxKZHk9gksclaSTIkqkR0dDSrVq1iwYIF9O3bl3bt2vHNN9+waNEipk+fTkZGBq6urvj6+tK7d2/T62JiYrh//z7r1q0jPj6eZ555htjYWHbt2sX+/ftN69na2vLll1+yePFitm7dyvLly3FyciIwMJDOnTub1vvwww+ZOnUqEydO5P79+0RGRrJy5cpi69yvXz8cHBxYsmQJEyZMwMbGhvDwcFasWEHr1q0r7bPRaDTMmDGDnj17snbtWtPnYaz/e++9Z7rYtG7duqxYsYK5c+cSHx9Pamoqnp6evPHGG2aT4mk0GhYsWEBcXBwJCQksWrQIV1dX+vfvz8SJE4sc0SxOo0aN+M9//sOnn35KbGwsDg4O9OzZk48//tg0/Gtl+PDDD7G1tWXJkiVkZWURHBxMXFwcX3zxhdl6Dg4OTJ8+nfnz5zNixAjy8vIYO3Ys48aNK/X3SQghCpPYVDKJTRKbrJVGKXzeVQghhBBCCCGshFwzJIQQQgghhLBKkgwJIYQQQgghrJIkQ0IIIYQQQgirJMmQEEIIIYQQwipJMiSEEEIIIYSwSpIMCSGEEEIIIaySJENCCCGEEEIIqyTJkBBCCCGEEMIqSTIkhBBCCCGEsEqSDAkhhBBCCCGskiRDQgghhBBCCKv0/wEABkpZ4WhZyAAAAABJRU5ErkJggg==",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA14AAAHaCAYAAAAQZpgVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACjbUlEQVR4nOzdeXhU5d3/8feZmWyE7AuBJCQQ9iwssisiKm64VMXan3VBqhUr6GNt3do+rT5PKy7tY0GkoLgvVURxqaKAigsIyBrWQMKSBUL2hJB1Zn5/TBKICZBJMplJ8nldV66ZOefcZ773wJWT75z7/t6G3W63IyIiIiIiIi5jcncAIiIiIiIiXZ0SLxERERERERdT4iUiIiIiIuJiSrxERERERERcTImXiIiIiIiIiynxEhERERERcTElXiIiIiIiIi6mxEtERERERMTFlHiJiIiIiIi4mBIvERERERERF7O4OwCRn7rwwgvJzs5u0bHXXnstc+fOdUkcgwcPBmDv3r2nPaY+1tWrVxMTE9OitgcPHmTmzJlkZ2dz11138dvf/pb169dz6623MnbsWF5//fVm3ysrK4uLLrqI6Ohovvzyy0b7rFYry5Yt46OPPiItLY3y8nICAwMJDw8nJSWFCy+8kIsuuqhRbC31xBNPcN11153xmBUrVrBx40Z2797Nnj17KC8v56qrruKZZ55x6r3aQ3p6Om+99Rbr16/nyJEjVFVVERwczLBhw5g6dSpXX301Pj4+Tdqlpqby1ltvsWHDBvLy8rBYLERHR3PeeecxY8YMevXq1eF9ERHPoOuSrkut0ZZ/L2fo+tV5KPESj3PrrbdSVlZ22v0VFRW88sorWK1WBg4c2IGRtV1qaiq//vWvKS4u5k9/+hM333xzm89ptVq56667+PbbbwkMDGTy5MlERUVRUlLCoUOH+PDDD8nIyGi4wM2ePbvJOV599VXKysq49dZbCQwMbLRv6NChZ41h4cKF7Nmzhx49ehAVFUVGRkab+9Uazz33HAsWLMBmszFixAiuvfZa/P39yc/P58cff+SPf/wjb7/9Nu+//35DG7vdzjPPPMOLL76IxWJh4sSJXHbZZdTU1LBlyxZeeukl3n77bebOnctll13mln6JiHvpuuQcXZc6hq5fnY8SL/E4M2bMOO0+u93Offfdh9Vq5dJLL2XmzJkdF1gbfffdd8yZM4eamhr+8Y9/cPnll7fLeT/55BO+/fZbhgwZwhtvvEFAQECj/SUlJezcubPh9Zw5c5qc44MPPqCsrIzbbrutVd+4PfLII0RFRREXF8eGDRu49dZbne9IGy1cuJD58+fTu3dv/vnPfzJ8+PAmx3zzzTe8+OKLjbYtWLCAF198kejoaBYtWtTkj6bPP/+c3//+9/z2t78lKCiICRMmuLQfIuJ5dF1yjq5LHUPXr85Hc7ykU/nnP//J559/zrBhw3jyyScxDANwDHcYPHgwDz/8MFlZWdx///2MGzeO5ORkrrvuOlavXu3WuD/++GNmzZqFyWTixRdfbLeLG8DmzZsBx/CWn17cAIKCgpg4cWK7vV9zxo8fT3x8fMO/R0fLyspiwYIFeHl5sXjx4maTLoDzzz+/UeKVmZnJwoUL8fLyYuHChc1+U33ppZfyyCOPYLVa+ctf/oLNZnNZP0Sk89F1qSldl1xP16/OSYmXdBr/+c9/WLhwIRERESxcuBA/P78mx2RnZ3PDDTeQnZ3NNddcwxVXXMG+ffu45557WLdunRuihldeeYXf//73BAcH88YbbzB+/Ph2PX9oaCjgGKPfXb3//vvU1NRwySWXMGjQoDMe6+3t3ahdbW0tF1100RnnGNxwww1ERERw8OBBNmzY0G5xi0jnputS83Rdcj1dvzonDTWUTmH79u088sgj+Pj4sGDBAqKiopo9bsOGDcyZM6fRePErr7ySO+64gyVLlrTqNvv8+fNPu6+0tPSMbZ955hleeOEF4uPjefHFF4mNjXX6/c/m0ksv5YUXXuDf//43x48f56KLLiIpKckl7+WpfvzxRwCn/303bdoEwLnnnnvG4ywWC+PGjeOTTz5h8+bN7f5Hioh0ProunZ6uS4215d/rdHT96pyUeInHy83N5Te/+Q1VVVU8/fTTpx1GBhAdHc3dd9/daNukSZPo06cPqamprXr/5557rlXtAF544QW8vLxcdnEDGDJkCM888wz/+7//y8cff8zHH38MQHBwMGPHjmX69OlMnjzZJe/tKfLz8wGcrtxU3+50fzCdqv6YY8eOORmdiHQ1ui6dma5LjbXl3+t0dP3qnJR4iUerqKjg7rvvJi8vj7vuuourr776jMcPHToUs9ncZHtUVBRbt25ttK25b6CuvfbaJpN4W1IG9nTOO+88vvvuOx544AFefPHFJpWZ2stll13GRRddxPr169m0aRO7d+9m06ZNfPHFF3zxxRdcf/31/PWvf231WPeWflZt1dr3sdvtAE73z5l29cfUPy5atIgvvviCAwcO4O3tzYgRI/jtb3971qGOItK56brUMt39unQqZ/+9WnJ9acv1S9xHiZd4LLvdzkMPPcTOnTu56KKLuP/++8/aprlJvOC41f7TSaXNfQM1duzYdv2lvXDhQu677z6+/PJLbrvtNpYsWdIw9v1UJpNjuuWZJr6e7Zesl5cX5513Hueddx7gKOf7+eef84c//IFly5Zx4YUXcvHFF7eqHx3xWbXlfSIjI8nIyODo0aNOvV9ERESL29UfExERATiGD910000kJydjt9uZN28et99+O//5z38IDg52Kg4R6Rx0XWpM1yXXaMn1pS3XL3EfJV7isebNm8fnn3/O4MGDefrpp9v9m5ozfQPVXry9vZk/fz6/+93v+Oyzz7j11lt5+eWXm/zyq78wFxcXn/ZcRUVFAC3+dtJsNnPFFVeQlpbGwoUL+eGHH1p9geuIz6ot73POOefwww8/8MMPP3DDDTc41W79+vWsXbv2jO2sVivr168HYNSoUQAsWbKk0TFPPfUUo0ePZvPmzVx44YWt6IWIeDpdlxrTdck1WnJ9acv1S9xHVQ3FI/3nP//h+eefJywsjIULF+Lv7+/ukFrNYrHw97//nWuvvZZ9+/Zx8803N/mGql+/fnh7e3Pw4MGGC9lPbdmyBeCM1YuaU//Z1X8z2RVdd911eHl58fnnn7N///4zHltdXd2ondlsZuXKlWdst2zZMo4dO0a/fv0YO3Zss8eUl5djs9lcNmxHRNxL16WmdF3qGM1dX9rz+iUdR4mXeJz6SlFeXl7Mnz+f6Ohod4fUZmazmSeeeIIbb7yRgwcP8stf/pKsrKyG/T4+Plx++eXU1tby1FNPNbkYHT16tOEbsJ/97GeN9n3yySd8//33zQ4HycvLY+nSpQCMHj26nXvlOWJiYpg9ezY1NTX8+te/Pu2E9W+++YY77rij4XVsbCx33XUXNTU1zJo1q9mL16pVq/jrX/+K2Wzmz3/+c8Pwm5/661//ytChQxk5cmT7dEpEPIauS7ouuVNz15f2vH5Jx9FQQ/Eox48fb6gUlZyczNq1a1m7du1pj4+Ojua6667rwAhbzzAMHn/8cXx9fXn11Vf55S9/yauvvkp8fDwADz/8MNu3b+f9999n69atnHvuufj7+5OTk8Pq1aspLy9n5syZTUrBbtu2jddee42IiAhGjRrVMO48KyuLNWvWUFlZyUUXXcRll13msr6tWrWKVatWAY6LKsDWrVt5+OGHAQgJCeGhhx5y2fsDzJo1i9raWhYsWMD06dMZOXIkSUlJ+Pv7k5+fz48//sjBgwdJSkpq1G7OnDlUVFTw8ssvc80113DeeecxYMAAamtr2bJlC9u2bcPX15e///3vpy37/OSTT7Jp0ybefvvtZifRi0jnpeuSrkvudKbrS3tcv6RjKfESj1JcXNzwCzI1NfWspXbHjh3baS5w9R599FH8/Pz417/+xc0338zLL7/MwIEDCQ0N5b333uP1119n5cqVvP/++1RVVREUFMSYMWO48cYbm507NHPmTOLj41m7di179+7lu+++o7q6uqFs75VXXslVV13l0mpGu3fv5oMPPmi0LTMzk8zMTMDxh0hHXOBmz57N5ZdfzltvvcX69et5//33Gz6LIUOGcMcdd3DNNdc0amMymXj44Ye54oorePPNN9m4cSPr1q3DbDYTHR3NzJkzue22205bsveJJ57gP//5D6+++mq3XaNGpCvTdUnXJXc52/Wlrdcv6XiGXQNsRURa5X//93/59NNPef3110lISHB3OCIi0kXo+tI16Y6XiEgr/OUvf+Gjjz5iwYIFBAYGNnwj3qNHj0496V5ERNxL15euS3e8RERa4XRVvGbPns2cOXM6OBoREekqdH3pupR4iYiIiIiIuJjqSoqIiIiIiLiYEi8REREREREXU+IlIiIiIiLiYkq8REREREREXEzl5J1ks9mora3FZDK5dOE/ERFpym63Y7PZsFgsmEz67rCerk0iIu7hzHVJiZeTamtrz7pqvYiIuFZycjLe3t7uDsNj6NokIuJeLbkuKfFyUn0mm5ycjNlsdrq91WolNTW11e07u+7ef9BnoP6r/23pf3173e1qTNemtlH/1X/1X/3viOuSEi8n1Q/hMJvNbfrP2db2nV137z/oM1D/1f+29F/D6RrTtal9qP/qv/qv/rdWS65L+spQRERERETExZR4iYiIiIiIuJgSLxERERERERdT4iUiIiIiIuJiSrxERERERERcTImXiIiIiIiIiynxEhERERERcTElXiIiIiIiIi6mxEtERERERMTFlHiJiIiIiIi4mBIvERERERERF1PiJSIiIiIi4mJKvERERERERFxMiVdHO/Q9A354EAoPuDsSERERAIwfFhC/+W9grXF3KCIiXZYSrw5m7P0PQXk/Ymx5zd2hiIiIAGBseZ2w7FVweJ27QxER6bKUeHW08EEAGEe3uzkQERHpKEuXLmXw4MGMHDmyyb6dO3cyY8YMRo4cyejRo5k9ezaZmZkdG2BY3bUpN7Vj31dEpBtR4tXB7FHDHU+Obge73b3BiIiIy+Xm5vLkk08SGRnZZF96ejq33HILNTU1PPvss/ztb3/j4MGD3HTTTRQWFnZYjPaoJMeTozs67D1FRLobJV4dLXIodsOMcaIASrPdHY2IiLjYn//8Z0aPHs25557bZN+8efPw9vZm0aJFTJ48mUsuuYRFixZRVFTEkiVLOixGe69kQHe8RERcSYlXR7P4UhEQ73h+ZJtbQxEREdf68MMP2bBhA3/5y1+a7KutreXrr7/mkksuoWfPng3bo6OjGTduHKtWreq4QKMciRf5aVBT2XHvKyLSjVjcHUB3dCJoID1K0x2J15Bp7g5HRERcoKCggL/97W888MADREVFNdl/+PBhKisrGTx4cJN9gwYN4vvvv6eqqgofH58Wv6fVam1VrFb/KOxegVhqSrHm7oTeI1p1ns6q/nNr7efX2an/6v+pj91NW/vvTDslXm5wImggZK7QHS8RkS7sscceo1+/ftx0003N7i8uLgYgODi4yb7g4GDsdjslJSXNzg07ndTU1g8VHBiUQGD+FjI3fkpB31afplNry+fXFaj/6n931hH9V+LlBieCBjqeKPESEemSPv/8c7788kuWL1+OYRhnPPZM+8/W9qeSk5Mxm81OtQHHN7ZFOwcQmL+Fvt4lxI4Y4fQ5OjOr1UpqamqrP7/OTv1X/9X/1ve/vn1LKPHqYGvS8vj7pmA+wcAoOwLHj0HPln+bKSIinq28vJzHH3+cW265hcjISEpLSwGoqXEsTlxaWorFYmm401VUVNTkHMXFxRiGQWBgoFPvbTabW/2H04mgAQCYcndAN/zjC9r2+XUF6r/6r/67tv9KvDrYd/vz2VlsoSC4L+GVh+DIdhh4sbvDEhGRdlJUVER+fj4vvfQSL730UpP9Y8aM4aKLLmLevHn4+vqSlpbW5Ji0tDTi4uKcmt/VVicCHYkXR1PBZgOT6m+JiLQnJV4dbHBUAAC76cckDsGRrUq8RES6kIiICF577bUm2xcvXszGjRt54YUXCAkJwWKxMGXKFFauXMnvf//7hsqGOTk5rF+/nhkzZnRo3JU9Y7GbfTCqj0PRAQhL6ND3FxHp6pR4dbDk6CAA1p2IYZIJzfMSEelifHx8GDduXJPtH3zwAWazudG+OXPmMH36dGbNmsWdd95JdXU18+bNIyQkhJkzZ3Zk2GCyQORQxxeCR1OVeImItDONI+hgAyJ64mM22FIb59igxEtEpNtKSEjg9ddfx2KxcN999/Hwww/Tt29f3nzzTUJDQzs8Hnv9el5Hu3d1MxERV9Adrw5mNhn0D7GwMz/esaH4EFQUgV+IW+MSERHXmjt3LnPnzm2yPSkpiVdeeaXjA2pOr/rEa7t74xAR6YJ0x8sNEkK8KMWfQu8+jg1HdIETERH3s0clOZ7ojpeISLtT4uUGA0K9ANhj9Hds0HBDERHxBJGJgAFlR+B4nrujERHpUpR4uUFCiCPxWncixrFBiZeIiHgCnwAIrftSMFd3vURE2pMSLzeI6mkmwNfCdmtdgQ2NpRcREU9RX2BDw+BFRNqVEi83MBkGSX0C2WmLd2zI3wdVx90ak4iICHAy8dI8LxGRduX2qobHjx/n+eefZ8+ePezatYuioiJmz57NnDlzGh03ePDg056jX79+rFix4ozvc8stt7Bhw4Ym28877zyWLFnSuuDbIDk6iHUZQZR4RRBUkwe5O6Dv+A6PQ0REpJGoFMejEi8RkXbl9sSruLiYd999lyFDhnDxxRezdOnSZo975513mmzbtm0bf/vb35g6dWqL3is2NpZnnnmm0baAgADng24HKTGOhZT30I9x5DnmeSnxEhERd+tdl3gV7IPqE+Ddw73xiIh0EW5PvKKjo9m4cSOGYVBYWHjaxGvEiBFNtr3zzjsYhsH06dNb9F6+vr7NnscdkqMDAVhfGcs48wYV2BAREc/Qsxf4R0B5HhzbBTGj3R2RiEiX4PY5XoZhYBiG0+2OHz/OihUrGDNmDHFxcS6IzLWig/0I6eHFdmu8Y4MSLxER8QSGcco8LxXYEBFpL26/49Van376KSdOnOCGG25ocZvDhw8zduxYjh8/Tp8+fZg2bRp33303vr6+Tr+/1Wp1us2p7Ww2G8nRQezYFw+A/dhubFXlYHE+ls6kvv+t/fy6gu7+Gaj/6v+pj61tLy4WlQzpX2qel4hIO+q0idd7771HYGAgl156aYuOHzVqFJdffjn9+/enqqqKb775hhdffJFNmzbx2muvYTI5d/MvNbVtF6PU1FQiLRV8QyilpkACbaWkfbecE8FD2nTezqKtn19X0N0/A/Vf/RcPpgIbIiLtrlMmXvv27WPbtm388pe/xMfHp0Vt7r///kavJ0+eTHR0NE8++SSrV69ucYGOesnJyZjNZqfagOPb2tTUVJKTk8n3KeC93ZvZa0pgjG0LgwMqsXvIHDRXObX/rfn8uoLu/hmo/+p/W/pf315crD7xyt0JNiuYut//VRGR9tYpE6/33nsPwKlhhs25+uqrefLJJ9m6davTiZfZbG7TH01ms5kRfUMA+LEyljGWLZhyt0M3+UOsrZ9fV9DdPwP1X/3vzv33eGEJYPGDmhNQkA4Rg9wdkYhIp+f24hrOqq6u5sMPPyQxMZGhQ4e2yzmdHWbYXnoF+hIZ4ENq/ULKRzSJWUREPIDJDL0SHc9VYENEpF10usTryy+/pKioqMUl5M/kgw8+AGD48OFtPldrpcQEs8Pez/EidydYa9wWi4iISIPemuclItKePGKo4Zo1a6ioqKC8vByA/fv3s2LFCsAxF8vPz6/h2Pfeew9fX1+uuuqq055v2LBhjBkzhldffRWAH3/8kYULFzJ16lRiY2Mbimu8++67jB8/ngsvvNCFvTuzlJggVu2OpMLkj5+1HPL2QlSS2+IREREBVFJeRKSdeUTi9dhjj5Gdnd3wesWKFQ2J1+rVq4mJiQHgyJEjfP/991x99dUEBASc9nxWqxWbzdbwOiIiArPZzPPPP09RURGGYRAXF8e9997LzJkz3TbUECA5Jggw2GP0YyQ7HOt5KfESERF3qy+wcWQ72O2O9b1ERKTVPCLx+vLLL1t0XO/evdm9e/dZj9u7d2+j13FxcSxevLhVsblaSnQQAD9W9WWkpS7xGvlLN0clIiLdXuQwMExwIh+O50JAlLsjEhHp1DrdHK+uJqynD9HBfuxoKLCxza3xiIiIAODdA8IGOp5rnpeISJsp8fIAKTFBJwtsHE11rJkiIiLibvXzvPSloIhImynx8gApMcEcsPemyvCFmnLHmikiIiLu1lBgQ3e8RETaSomXB0iJCcKGiTQjzrFB3yyKiIgnUOIlItJulHh5gKS6Ahubq/s6NhxV4iUiIh6gvrJhYQZUlbk3FhGRTk6JlwcI8vOiX7j/yXleuuMlIiKeoGcEBPQG7JC7093RiIh0akq8PERydBA7T61saLe7NR4RERFAww1FRNqJEi8PkRITxD57DDV4QWUJFB9yd0giIiKnJF7b3RuHiEgnp8TLQ6TEBFODhf1G3TwvDTcUERFPUD/PS3e8RETaRImXh0jsE4jJgC01SrxERMSD1N/xyt0F1hr3xiIi0okp8fIQ/j4WBkT2ZKcKbIiIiCcJ6QfePcFaBfn73B2NiEinpcTLgyRHB7OjvsBGzlYV2BAREfczmaBXkuO5hhuKiLSaEi8PkhITxB57X6yY4EQ+lB1xd0giIiLQu36elwpsiIi0lhIvD5ISE0QV3hwgxrHhiC5wIiLiAVTZUESkzZR4eZChvQOxmAy2WeMcGzTPS0REPMGpa3lpGLyISKso8fIgvl5mBkcFnJznpcRLREQ8QcRQMFmgoghKs90djYhIp6TEy8OkxASxw6bKhiIi4kG8fCF8sOO5hsGLiLSKEi8PkxwdzC573VDD0iwoz3dvQCIiItB4uKGIiDhNiZeHSYkJohw/DtLbsUF3vURExBOowIaISJso8fIwg3oF4G0xsd0a79igxEtERDxBQ0l53fESEWkNJV4exttiYmjvQBXYEBERz1K/iHLxIagodmsoIiKdkRIvDzQ8JogddhXYEBERD9IjFIJiHc9zd7g3FhGRTkiJlwdKjg5iZ/0dr6IDUFni1nhEREQAFdgQEWkDJV4eKCUmmBJ6km2PcGzQBU5ERDxBlOZ5iYi0lhIvDzQgsid+XmZSNc9LREQ8Sf0dL63lJSLiNCVeHshsMkiKVoENERHxMPWJV94eqK12bywiIp2MEi8PlRITzA57vOOFEi8REfEEwX3BNwhsNY7kS0REWkyJl4dKiQlip62usmF+GlSXuzcgERERw9A8LxGRVlLi5aGSo4PII5hj9hCw2yB3p7tDEhEROaWyoeZ5iYg4Q4mXh4oP8yfA16ICGyIi4llUUl5EpFWUeHkok8kgOTrolHleW90ZjoiIiMOpiZfd7t5YREQ6ESVeHiw5JohduuMlIiKeJHwwmL2hqhSKD7k7GhGRTsPtidfx48d56qmnmDlzJuPHj2fw4MHMnz+/yXEPP/wwgwcPbvJz2WWXtfi91q5dy4033sjw4cMZN24cDz/8MAUFBe3ZnXY1PCb4ZEn5Y3ugtsqt8YiIiGDxhoghjudaz0tEpMUsrWm0b98+Nm/eTG5uLpWVlYSEhDBgwADGjBlDz549nTpXcXEx7777LkOGDOHiiy9m6dKlpz3W19eXV199tcm2ltiwYQN33nknkydP5vnnn6egoIBnnnmGGTNmsGzZMry9vZ2KuyMkRweRTThF9p6E2I7Dsd3QZ4S7wxIRke4uKsVRXONoKgy72t3RiIh0Ci1OvEpKSnjnnXd45513yMnJwd7MuG6LxcL555/PLbfcwoQJE1p03ujoaDZu3IhhGBQWFp4x8TKZTIwYMaKlITfy1FNPER8fz7x587BYHN2OiYnh//2//8d7773HTTfd1KrzulJMiB8hPbzZURPPJPMOx3BDJV4iIuJuKrAhIuK0FiVer732GgsWLADgiiuuYOzYsSQmJhIaGoqPjw8lJSVkZmaydetWVq9ezcyZM5k4cSL//d//TVxc3BnPbRhG23txFrm5uaSmpvLAAw80JF0Ao0aNIj4+nlWrVnlk4mUYBikxwezM6Mckdmiel4iIeIbeWstLRMRZLUq8Xn/9dR555BGmTZuGl5dXk/3h4eGEh4czcuRIbr/9dg4fPszChQv57LPPmDVrVrsFW1lZybnnnkthYSERERFcfPHF3HvvvQQHB5+xXVpaGgCDBw9usm/w4MFs3ry53WJsbykxQezYH+94ocRLREQ8Qa9Ex2NpFpwohB6h7o1HRKQTaFHi9dlnnzW6U3Q2ffv25YknnsBqtbY6sJ8aMmQIQ4YMYeDAgYBjztarr77KunXreO+99/D39z9t2+LiYgCCgoKa7AsODm7Y74zW9q2+XUvbJ/UJ5OO6kvL23B3YaqrA1KqpeR7B2f53Rd39M1D/1f9TH1vbXtzMNwhC4qHooGOuV/8L3ByQiIjna9Ff8Pv27WPo0KFOn9xsNjvd5nRmzJjR6PW5557LsGHDuPfee1m6dGmT/c053bDG1gx3TE1t2/CKlrY3VVg5ZO9Fmd2PgNoK9nz3MZWB/dr03p6grZ9fV9DdPwP1X/2XTi4quS7xSlXiJSLSAi1KvK699lqGDRvG9OnTueqqqwgICHB1XC0ydepUevTowdatW894XP1QxObubBUXFzd7J+xskpOTW5VYWq1WUlNTnWofseYrdlXFMc7Yw9CgKuzDRzj9vp6iNf3varr7Z6D+q/9t6X99e/EAUcNh98ea5yUi0kItSrzuuusuPvzwQx5//HGefPJJpk6dyvTp0xk/fryr4zsru92OyXTm5cgGDRoEwN69e5k8eXKjfWlpaQ37nWE2m9v0R5Mz7VNigtm5L55xpj2YclPB/MtWv6+naOvn1xV0989A/Vf/u3P/u4T6yoZay0tEpEVatIDy/fffz1dffcXixYuZMmUKX3zxBbfffjsXXXQRzz//PEeOHHF1nM1asWIFFRUVDB8+/IzH9erVi5SUFD7++ONG8wO2bt3KgQMHmDp1qqtDbZOUmKCTCykf1QVOREQ8QH3ilZ8GNRXujUVEpBNocZUGwzA4//zzOf/88yktLeWjjz7i/fffZ968eSxYsIDx48dzww03cNFFFzVb+fBM1qxZQ0VFBeXl5QDs37+fFStWADB58mQKCwt54IEHmDZtGn379sUwDDZu3Mirr77KwIEDueGGGxqdb9iwYYwZM6bRYsu/+93vmDlzJvfddx833XQTBQUF/P3vf2fQoEFcf/31TsXb0ZJjgvjEXjev68h2sNngLHf5REREXCqwD/iFQkUhHNsN0aPcHZGIiEdrVXm8wMBAbr75Zm6++Wb27NnDsmXL+OSTT7j//vsJDg5m3bp1Tp3vscceIzs7u+H1ihUrGhKv1atXExAQQHh4OC+//DIFBQVYrVaio6O55ZZbmDVrFj169Gh0PqvVis1ma7Rt3LhxLF68mHnz5jFr1iz8/Py44IILePDBB/H29m7Nx9BhUqKDSLf3odLuhW91GRQdgLAEd4clIiLdmWE41vPK+Noxz0uJl4jIGbW5LvmQIUO4+uqrOXHiBO+//36rSrN/+eWXZz3mueeea/H59u7d2+z2c889l3PPPbfF5/EUYT19iAruye4TcYw09sORrUq8RETE/aKS6xIvDYMXETmbVidehYWFfPTRRyxbtoz9+/djNpuZMmUK06dPb8/4pM7w2CB27I5npGm/YyHlJM8eHikiIt1AVIrjUZUNRUTOyqnEy2az8c0337Bs2TK+/vprampqiI+P57e//S3XXnst4eHhroqz20uODmbHrvp5XtvcG4yIiAicLLBxdIfmH4uInEWLEq8DBw6wbNkyPvzwQ/Lz8/H19eXKK6/k+uuvZ/To0a6OUXBUNvykvrLhkW1gtzvG14uIiLhL2ECw+EJNueYfi4icRYsSr8svvxyAlJQU5syZw7Rp0/D393dpYNJYUnQQ++wxVNvNeFcUQUkmBPd1d1giItKdmS0QOQxyNju+FFTiJSJyWi1KvG677TamT5/OwIEDXR2PnEaQnxfR4cHsK40h0TjkuMAp8RIREXeLSnYkXkdTIek6d0cjIuKxWjQY+5FHHmk26crIyGDTpk2cOHGi3QOTppKjg9hhO2U9LxEREXdrmOelAhsiImfSqlmwy5cv5/zzz2fatGncfPPNHDhwAID77ruPd999t10DlJNSYoLYYY93vFCBDRER8QS9hzselXiJiJyR04nXZ599xsMPP8ywYcP405/+hN1ub9iXmJjIZ5991q4BykkpMcHsPLXAhoiIiLtFDgMMOH4Ujh9zdzQiIh7L6cRr8eLFXHfddfzrX//ixhtvbLSvf//+7N+/v92Ck8YS+wSyl75Y7XUXuLKj7g5JRER+Yvfu3fz617/mggsuICUlhbFjx3LjjTfy4YcfNjl2586dzJgxg5EjRzJ69Ghmz55NZmamG6JuA5+eJ4tqaCFlEZHTcjrxSk9PZ9q0ac3uCw4Opri4uK0xyWn4+1iIjgwn3d7HsUHzvEREPE5paSlRUVHcf//9LF68mCeffJLo6GgefPBBnn/++Ybj0tPTueWWW6ipqeHZZ5/lb3/7GwcPHuSmm26isLDQjT1oBc3zEhE5K6cWUAbw8/OjrKys2X25ubkEBQW1OSg5veToYHYU9mMQ2Y7hhoMucXdIIiJyinHjxjFu3LhG26ZMmUJWVhbvvvsuv/nNbwCYN28e3t7eLFq0iJ49ewKOIfuXXnopS5Ys4fe//32HxfzH5TtZm5bPh0NqCfY3O3+CqBTY+YESLxGRM3D6jtfIkSN58803G83tqvf+++8zduzYdglMmjc8NuiUeV5b3RmKiIg4ISQkBLPZkdTU1tby9ddfc8kllzQkXQDR0dGMGzeOVatWdWhs27NLOFRSyzf78lp3gqgUx6NGYoiInJbTd7zuuecebrrpJqZPn85VV12FYRh88cUXzJ8/nx9//JGlS5e6Ik6pkxwdxH/qSsrbj2zDcHM8IiLSPJvNhs1mo7S0lM8++4zvvvuOP/3pTwAcPnyYyspKBg8e3KTdoEGD+P7776mqqsLHx8ep97Rara2KdXTfYHbmlLIuvYBpyb2dP0HkMMyAvWA/topS8PZvVRzuUv+5tfbz6+zUf/X/1Mfupq39d6ad04lXcnIyL7zwAo899hhz584FYNGiRcTFxbF48WIGDRrk7CnFCUN7B7LXiAfAKMmEE4XQI9S9QYmISBN/+ctfeOeddwDw8vLiD3/4A7/4xS8AGuZDBwcHN2kXHByM3W6npKSEyMhIp94zNbV1Q/2iTJUArNl9hK3xta06R4pPCF5VRez7/kPKQ4a16hzu1trPr6tQ/9X/7qwj+u904gUwfvx4PvvsMw4fPkx+fj4hISH069evvWOTZvh6mYmO6sXB/F7Em3Id87wSprg7LBER+YlZs2Zxww03UFhYyJdffsn//M//UFFRwa9+9auGYwzj9OMWzrTvdJKTkxuGMzojbkAlT6/9mpzjVqL6DSEqyNfpc5h2jYL01QwKrMI+YoTT7d3JarWSmpra6s+vs1P/1X/1v/X9r2/fEq1KvOr17duXvn37tuUU0gopMUHsyIsnnlxH6V4lXiIiHqdPnz706eOoQjt58mQA/vGPf3Dttdc23OkqKipq0q64uBjDMAgMDHT6Pc1mc6v+cAjp6Uu/EAvpRbVsOFTEtSNjnD4HvVMgfTWm3FTopH+8tfbz6yrUf/Vf/Xdt/1tUXOPTTz91+sS5ubls2rTJ6XZydsnRweysm+elhZRFRDqHlJQUamtryczMpG/fvvj6+pKWltbkuLS0NOLi4pye39VWSZGO91u7v6B1J1BJeRGRM2pR4vX4449zzTXXsHTpUo4fP37GY3fs2MFjjz3GpZdeyp49e9olSGksJSaIHfZ4wFFgQ0REPN/69esxmUzExsZisViYMmUKK1eubHRdzcnJYf369UydOrXD40uO9AZgXUZrE6/hjsfcnWBt3TwxEZGurEVDDVeuXMn8+fP561//yuOPP86wYcMYNmwYYWFheHt7U1JSQmZmJlu3biUvL4+BAwcyf/58Jk2a5Or4u6VBvQJIM/UHwCjYD5Wl4Ov8kBQREWl/f/rTn+jZsyfJycmEh4dTVFTEihUr+PTTT/nVr35FaKijINKcOXOYPn06s2bN4s4776S6upp58+YREhLCzJkzOzzuIeFeWEwGWUUVZBaeIDa0h3MnCO0HXv5QUw6F6RDRtGKjiEh31qLEKyAggEcffZR77rmH999/nzVr1rB8+XIqKioajomNjWXSpElcddVVjB8/3mUBC3hbTET1jiH7WBjRRgHk7oC4ie4OS0REgBEjRvD+++/zwQcfUFZWRo8ePRgyZAhPPfUU11xzTcNxCQkJvP766zzzzDPcd999mM1mxo8fz4IFCxqSs47kZzGREhPE5sPFrE3P58ZQJ+dwm8zQKxGyNjjW81LiJSLSiFPFNYKCgrj99tu5/fbbASgrK6OyspLg4GC8vLxcEqA0b3hMEDuPxhNtLnDM81LiJSLiEa6//nquv/76Fh2blJTEK6+84tqAnDChfxibDxezLr2AG8e0onhWVLIj8Tq6HVJuaP8ARUQ6sRbN8TqdgIAAIiIilHS5QXJ0EDtUYENERNrRhATHnba16QXY7XbnT9A7xfGoAhsiIk20KfES9xkeG8xOexygAhsiItI+RsUG420xcaysivS8cudPcGplw9YkbiIiXZgSr04qIaIn+80DHC/y9kJNxZkbiIiInIWPl5lz+oYAraxuGDkMDBOcyIeyI+0cnYhI56bEq5Mymwwi+8SRZw/EsFshd5e7QxIRkS5gYkIYAOvS851v7OUH4YMczzXcUESkESVenVhKbMgpCylvdWssIiLSNUxoSLwKsNlaMVwwqn6e1/Z2jEpEpPNT4tWJnbqQsgpsiIhIe0iJCaaHt5miEzXszS1z/gSnzvMSEZEGTide//M//0NGRoYrYhEnnVrZ0KbES0RE2oG3xcTo+JPVDZ1Wn3gd0R0vEZFTOZ14LV++nGnTpnH77bezatWq1pWblXYRH+bPQe+6Ahu5u6C22r0BiYhIl9CmeV71Qw2LDkBlaTtGJSLSuTmdeH377bf88Y9/JC8vj9mzZ3PhhReyePFiCgsLXRGfnIHJZBDaZwAl9h6YbNWQt8fdIYmISBdQn3itzyik1mpzrrF/GARGO57n7mznyEREOi+nE68ePXrwy1/+kk8++YSXX36ZxMRE/vnPf3LBBRfw8MMPk5qqMd0dKTk2WAspi4hIu0rsE0SAr4Wyqlp25rTirpXmeYmINNGm4hoTJkzgueeeY/Xq1YwcOZIPP/yQn//859xwww18+eWX7RWjnMHwmGB2qsCGiIi0I7PJYFy/uuGGrVnPqyHx0nVJRKRemxKvyspKli5dyqxZs1i/fj0JCQncc889WK1W7rnnHhYsWNBeccppOApsxANgy9nq1lhERKTrqB9u2KYCG7rjJSLSwNKaRocPH+bNN9/kgw8+4Pjx45x//vk8+OCDTJw4EYDZs2fzj3/8gzfeeIN77rnnjOc6fvw4zz//PHv27GHXrl0UFRUxe/Zs5syZ03CM1Wrltdde47vvvmPfvn2UlJTQp08fLrroIn79618TGBh41phvueUWNmzY0GT7eeedx5IlS5z8BDxHTIgfWb6DwAb23B1gs4LJ7O6wRESkk6tfz2vjgUKqa214W5z4rra+wMax3WCtAbOXCyIUEelcnE687rjjDtauXYufnx/XXXcdt9xyC3379m1y3JQpU1i8ePFZz1dcXMy7777LkCFDuPjii1m6dGmTYyorK5k/fz5XXnklN9xwAyEhIezatYuFCxfy1VdfsWzZMnx9fc/6XrGxsTzzzDONtgUEBJy1nSczDIPA6MGUH/bBv7YCCvZDxGB3hyUiIp3c4F4BhPp7U1hezfas4oYS8y0SHAc+gVBVCvlp0CvRdYGKiHQSTidemZmZPPLII1x33XX4+/uf9riBAwfy2muvnfV80dHRbNy4EcMwKCwsbDbx8vX1ZfXq1YSEhDRsGzduHL179+a+++7j888/55prrjnre/n6+jJixIizHtfZJMeGsutQHGOMNMc8LyVeIiLSRiaTwYT+Yfwn9Qhr0wucS7xMJuiVBIfXOtbzUuIlIuL8HK/PP/+cW2655YxJF0DPnj0ZO3bsWc9nGAaGYZzxGLPZ3CjpqpeS4hjKcPTo0bO+T1eWEqPKhiIi0v7GN8zzas16XprnJSJyqlbN8fIUP/zwAwADBgxo0fGHDx9m7NixHD9+nD59+jBt2jTuvvvuFg1T/Cmr1ep0m1PbtbZ9cxJ79+TzusqGtdlbMNrx3O3NFf3vbLr7Z6D+q/+nPra2vXSM+gIbmw8XU1ljxdfLiTnEvevmeR3d7oLIREQ6H6cTrwsvvPC0d6hMJhMBAQEkJydz6623kpCQ0OYATyc3N5e///3vJCUlMWXKlLMeP2rUKC6//HL69+9PVVUV33zzDS+++CKbNm3itddew2Ry7uZfW9cra+/1zg579QfAlr2F1C2bwWhTwUqX03pv+gzUf/VfPF//cH96BfqQW1rF5kNFTBwQ3vLGp97xstvhLKNbRES6OqcTr7Fjx7JhwwaOHTvGqFGjCA8PJy8vjy1bthAZGUnv3r1ZuXIlH374Ia+//jrJycntHnRxcTF33nkndrudZ599tkVJ0/3339/o9eTJk4mOjubJJ59k9erVTJ061akYkpOTMZudrx5otVpJTU1tdfvTCdleTdVBL3ysJxgRFwKh/drt3O3JVf3vTLr7Z6D+q/9t6X99e+kYhuGY57V8aw5r0wucS7wihoDJApXFUJIJwU0LcYmIdCdOJ17nnXceW7duZeXKlfTu3bthe05ODjNnzuTiiy9m7ty53HLLLcyfP79FlQ2dUVJSwsyZM8nNzeXVV18lNja21ee6+uqrefLJJ9m6davTiZfZbG7TH01tbf9TiX3D2XMgluFGBuZjqRDRsuGX7tLe/e+MuvtnoP6r/925/53JxIRwlm/NcX4hZYuPI/nK3eG466XES0S6OafHo/3rX/9izpw5jZIugD59+nDPPfewePFiAgICmDFjBlu3bm2vOAFH0nX77beTlZXFyy+/zJAhQ9rlvM4OM/REyTFB7KxbSFkFNkREpL3Ur+e1LbOY8qpa5xrXr+elAhsiIs4nXocOHaJnz57N7gsMDCQ7OxtwlImvqKhoW3SnqE+6MjMzWbJkCcOGDWvzOT/44AMAhg8f3uZzuVtKdBA77I7hhbXZW90bjIiIdBmxoT2ICfGj1mZn48FC5xqrsqGISAOnhxr26dOHDz74gMmTJzfZt2zZsoY7YcXFxQQFBbXonGvWrKGiooLy8nIA9u/fz4oVKwDHXCzDMPjVr37Frl27ePTRR7FarY3upoWGhjZaxHnYsGGMGTOGV199FYAff/yRhQsXMnXqVGJjYxuKa7z77ruMHz+eCy+80NmPweOE9fQh138wVIM9Z5smMouISLuZmBDGuz9msS69gAsGR7a8YX3idUSVDUVEnE68fvWrX/Hf//3f/OIXv+Cyyy4jPDyc/Px8VqxYwbZt23j88ccBWL9+PUlJSS0652OPPdZwpwxgxYoVDYnX6tWrgZMVsP761782aX/ttdcyd+7chtdWqxWbzdbwOiIiArPZzPPPP09RURGGYRAXF8e9997LzJkzu8RQQwD/2BRq95vwqiqE0hwIinZ3SCIi0gVMqEu81qY7Oc8rqu7vgJLDUFEEfk3X5BQR6S6cTrx+/vOfY7fbmT9/fqNkJzw8nMcee4wbbrgBgFmzZuHt7d2ic3755ZdnPWbv3r0tjvGnx8bFxbV7kQ9PNDQ2kn37YhhqHHbM81LiJSIi7WBCf0c1w505JZScqCGoh1fLGvqFOIpqFB+Gozug3yQXRiki4tmcSrysViuHDx/m8ssv5+c//zkZGRkUFxcTHBxM//79G63vFR7uRMlZaRcpMUHssMUz1FSXeA25wt0hiYhIFxAV5Ev/CH8y8spZf6CASxKjnGicUpd4pSrxEpFuzakxdna7nWnTprFlyxYMwyAhIYFzzjmHhISE0y6qLB0n6ZQCG9VZW9wcjYiIdCUT+juqGzo/3LC+wIbmeYlI9+ZU4mWxWAgPD8dut7sqHmmDID8vCgOHAmDP2ereYEREpEuZmOAYyfKDs+t5qbKhiAjQinLy06ZNY/ny5S4IRdqDT0wKNruBT0UuHD/m7nBERKSLGN8/FIA9R8vIP17V8ob1a3nl7YFaJ9qJiHQxThfXGDJkCJ9++im33norl1xyCREREU2GGV5yySXtFqA4Z0jf3hzYG0WCccRRvnfgxe4OSUREuoCwnj4MiQpgz9Eyfsgo4MqUPi1rGBQDvsFQWexIvnp3/rUzRURaw+nE66GHHgIgNzeXDRs2NNlvGAa7d+9ue2TSKikxweyw9yOBI3BkqxIvERFpNxMSwthztIx16U4kXobhGG548FvHF4JKvESkm3I68XrttddcEYe0k8Q+gayyx3MNa6nM3IqvuwMSEZEuY2JCOC9/f5B1ThfYSHEkXprnJSLdmNOJ19ixY10Rh7QTfx8LxUFDoRxsKrAhIiLtaGy/UEwGZOSXc7SkkqigFn6917tunpcSLxHpxpwurlGvrKyMb7/9lo8++oiSkpL2jEnayDtmFAA9yjOhosjN0YiISFcR5OdFUnQQAOsy8lve8NTKhjabCyITEfF8rUq8FixYwKRJk7jzzjt56KGHyMrKAuC2225j8eLF7RqgOG9QfAyHbRGOF/p2UURE2tGEhLr1vPY7MdwwfBCYvaG6DIoPuiYwEREP53Ti9eabb7JgwQKmT5/OokWLGq3pNWXKFL7++uv2jE9aIfmUhZS1npeIiLSn+oWU1zmznpfZCyId60zqC0ER6a5alXjNmDGDP/7xj5x33nmN9sXFxXHo0KF2C05aZ2jvQHbXJV4Vh7e4ORoREelKxsSHYjEZZBVVkFl4ouUNozTPS0S6N6cTr8zMTCZNmtTsPn9/f0pLS9sclLSNr5eZkmDHN4sqsCEiIu3J38fCiNhgANamOzPPS4mXiHRvTideAQEB5Oc3/4s2OzubsLCwNgclbecTOxIA/7IDUHXczdGIiEhXUj/Py6my8vUFNo5sd0FEIiKez+nEa8KECbz44oucOHFyeIFhGNTW1vL22283GX4o7tEvvj9H7SEY2CF3h7vDERGRLqShwEZ6QaO53mfUK9HxWJYD5U7cKRMR6SKcTrzuvfdecnJymDZtGnPnzsUwDN544w1uuOEGDh06xG9+8xtXxClOSokJYoctHgD7kW3uDUZERLqUUX1D8LaYOFZWRXpeecsa+QZCaH/Hcw03FJFuyOnEKy4ujrfffpv+/fvz9ttvY7fb+fDDDwkJCeGtt96iT58+rohTnDSoVwB7DMcF7vjBTW6ORkREuhJfLzPn9A0BnKxueOp6XiIi3YylNY0GDBjAkiVLqK6upqioiKCgIHx9W7h6vXQIb4uJkuBhULoMW/ZWd4cjIiJdzMSEMNZlFLAuPZ9bxse1rFFUMuz6EI5qnpeIdD+tWkC5nre3N7169VLS5aHqC2z0LNsPNZVujkZERLqSUwts2GwtnOcVNdzxqDteItINteqOV1ZWFp999hk5OTlUVjb+g94wDP72t7+1S3DSNnHxAynYEUAYZXBsF0SPcndIIiLSRaTEBNPD20zRiRr25pYxtHfg2RvVDzXMT4OaCvDyc22QIiIexOnE6+uvv2b27NnYbDZCQ0Px9vZutN8wjHYLTtpmeN8QdtriOd+cii1nGyYlXiIi0k68LSbGxIeyJi2PtekFLUu8AqKgRzicyK/7QvAc1wcqIuIhnE68/u///o9Ro0bxf//3f1qzy8MlRPRkjdGf80ml7MCPBI253d0hiYhIFzIhIYw1aXmsS8/nV+f1O3sDw3Dc9cr4yrGelxIvEelGnJ7jdejQIe68804lXZ2A2WRQFjIMAGvOVvcGIyIiXc7Eunle6zMKqbXaWtaod4rjUfO8RKSbcTrx6tOnT6PFk8WzedcV2AgoSQNrjZujERGRriSxTxABvhbKqmrZmVPaskZRSrxEpHtyOvG66667eOmll6ioqHBFPNLOYhOGUWr3w8te7ZjMLCIi0k7MJoNx/eqqG7Z0Pa/6Ahu5O8FmdVFkIiKex+k5XqmpqRQUFDB16lTGjRtHSEhIk2P++Mc/tktw0nbJMSHssscz3thNbfZWLL0S3R2SiIh0IRMTwli1O5e16QXMmpxw9gZhA8DiBzXlUJgB4QNdH6SIiAdwOvF64403Gp7/5z//abLfMAwlXh4kPsyf70z9Gc9uSjI2Ejbql+4OSUREupCJAxx3vDYeKKS61oa35SyDaUxm6JUI2T86FlJW4iUi3YTTideePXtcEYe4iMlkUBaSCEX/wZa9zd3hiIhIFzMoMoBQf28Ky6vZnlXM6PjQszeKSq5LvFIh6XrXByki4gGcnuMlnY93jKPARmDJbrC1sOqUiIhIC5hMBhP6O+56rU13cp6XCmyISDfSosRr48aNlJeXn/W4wsJC3nvvvTYHJe0remAKFXZvfGwVUJju7nBERKSLmZBQn3jlt6xBfWXDI9tdFJGIiOdpUeJ16623kp5+8g92m81GUlISu3btanRcZmYmf/rTn9o3Qmmz5JhQdtv7AlCdtcXN0YiISFdTn3htPlxMZU0LKhX2SgTDBOXHoCzXxdGJiHiGFiVedru9yeva2tom28UzxYT4sd/sqDRVnL7RzdGIiEhX0z/cn16BPlTX2th8qOjsDbx7OKobgoYbiki34fY5XsePH+epp55i5syZjB8/nsGDBzN//vxmj925cyczZsxg5MiRjB49mtmzZ5OZmdni91q7di033ngjw4cPZ9y4cTz88MMUFLRwPHonZhh1BTYAa/ZW9wYjIiJdjmG0ZZ6XhhuKSPfg9sSruLiYd999l+rqai6++OLTHpeens4tt9xCTU0Nzz77LH/72984ePAgN910E4WFhWd9nw0bNnDnnXcSFhbG888/zx/+8AfWrl3LjBkzqK6ubs8ueaT6AhtBxbtAdypFRKSdTUwIB1qxkLISLxHpJpwuJ9/eoqOj2bhxI4ZhUFhYyNKlS5s9bt68eXh7e7No0SJ69uwJQGJiIpdeeilLlizh97///Rnf56mnniI+Pp558+ZhsTi6HRMTw//7f/+P9957j5tuuql9O+Zheg8cSfU2Mz1sx6H4MITEuTskERHpQurneW3LLOZ4VS09fc7yJ0Z9gQ0NNRSRbqLFd7wyMjLYuXNnw09z2zIyMpwOwDAMDMM44zG1tbV8/fXXXHLJJQ1JFziStnHjxrFq1aozts/NzSU1NZVrrrmmIekCGDVqFPHx8Wdt3xUkx0Ww1x4LQFXmZjdHIyIiXU1saA9iQvyotdnZePDsI1Ea7ngVpEPVcdcGJyLiAVp8x+uRRx5psu3BBx9s9Nput581iWqNw4cPU1lZyeDBg5vsGzRoEN9//z1VVVX4+Pg02z4tLQ2g2faDBw9m82bnExGrtQVVm87QrrXtWyvc34t15gEk2w+Sn7aBqMSrO/T967mr/56ku38G6r/6f+pja9uLZ5qYEMa7P2bxQ3oBUwZHnvngnpHQMwqOH4VjuyB2bMcEKSLiJi1KvJ544glXx3FGxcXFAAQHBzfZFxwcjN1up6SkhMjI5n/J17cPCgpqtn39fmekprZtaERb27dGnl8/OAEnDqxn69atHf7+p3JH/z1Nd/8M1H/1X7qeiQnhvPtjlnMFNvYfhSPblHiJSJfXosTr2muvdXUcLXKmu2ktudN2umNac5cuOTkZs9nsdDur1Upqamqr27fFvkMHYfsLRFVm0H/4cHDB3cmzcWf/PUV3/wzUf/W/Lf2vby+eqX6e186cEkpO1BDUw+vMDXqnwP6VmuclIt2C24trtET9na6ioqZrgxQXF2MYBoGBgWdt39ydreLi4mbvhJ2N2Wxu0x9NbW3fGn0Gj8a6zSDAWgQn8iCwd4e+/6nc0X9P090/A/Vf/e/O/e+qegX60j/Cn4y8ctYfKOCSxKgzN2iobKjES0S6PreXk2+Jvn374uvr2zBX61RpaWnExcWddn4XOOaBAezdu7fZ9vX7u7rEuCj226MBOHF4k5ujERGRrmhighPredVXNjy2C6y1LoxKRMT9OkXiZbFYmDJlCitXruT48ZOVj3Jycli/fj1Tp049Y/tevXqRkpLCxx9/3Ghi9tatWzlw4MBZ23cVYT19yLAMACB/30Y3RyMiIl3RhP6O9bx+aMl6XiH9wLsn1FZCwT4XRyYi4l4ekXitWbOGFStW8NVXXwGwf/9+VqxYwYoVK6ioqABgzpw5VFRUMGvWLNasWcPKlSu56667CAkJYebMmY3ON2zYMG677bZG2373u9+RkZHBfffdx9q1a/n444/5r//6LwYNGsT111/fMR31AMdDhwFgzd7q3kBERKRLGt8/FIA9R8vIP1515oNNJuiV5Hiu4YYi0sV5xByvxx57jOzs7IbX9UkXwOrVq4mJiSEhIYHXX3+dZ555hvvuuw+z2cz48eNZsGABoaGhjc5ntVqx2WyNto0bN47Fixczb948Zs2ahZ+fHxdccAEPPvgg3t7eru+kh/CKGQn5EFS8292hiIhIFxTW04chUQHsOVrGDxkFXJnS58wNopIh8wc4uh1Sft4xQYqIuIFTiVdlZSUzZszg3nvvZeLEie0WxJdfftmi45KSknjllVfOelxzc7kAzj33XM4991xnQutyogaNga0QWpsL5QXgH+bukEREpIuZkBDGnqNlrEtvYeIFuuMlIl2eU0MN6wtcqBJV5zW0XwwZNkeVqdKDKrAhIiLtb2KCY57XuhYV2KhLvI5sB7vdhVGJiLiX03O8Ro4cyfbt210Ri3SAID8vDnrXF9jY4OZoRES6nnXr1vHII49w2WWXMWLECCZNmsTdd9/Njh07mhy7c+dOZsyYwciRIxk9ejSzZ88mMzPTDVG3r7H9QjEZkJFfztGSyjMfHDkMDDNUFEJpTscEKCLiBk4nXg899BDvvPMOy5cvp7y83BUxiYuVBScCYM3a6t5ARES6oLfffpvs7GxuvfVWFi9ezB/+8AcKCwu58cYbWbduXcNx6enp3HLLLdTU1PDss8/yt7/9jYMHD3LTTTdRWFjoxh60XZCfF0nRjjUy12Xkn/lgL1+IGOx4ruGGItKFOV1c48Ybb6SmpoZHHnmERx55BF9fXwzDaNhvGAabNmkImyfzjhkB+RBYvMvdoYiIdDl//vOfCQtrPH920qRJXHLJJSxatIgJEyYAMG/ePLy9vVm0aBE9e/YEIDExkUsvvZQlS5bw+9//vsNjb08TEsLYnlXC2v0FXDsy5swHRyU71vI6mgqDL+uYAEVEOpjTidell17aKNGSzqfX4LGwFXrVZkNlCfgGuTskEZEu46dJF4C/vz8JCQkcOXIEgNraWr7++muuueaahqQLIDo6mnHjxrFq1arOn3j1D2PRmowWLqScDNvfgaPbXB+YiIibOJ14zZ071xVxSAca3D+ebHs40UY+RembCEm80N0hiYh0aWVlZezatYvx48cDcPjwYSorKxk8eHCTYwcNGsT3339PVVUVPj4+Tr2P1WptVXz17VrbvjmjYoOwmAyyiys4mFdGbGiP0x8cmYQZsB9NxdaOMbSUK/rfmaj/6v+pj91NW/vvTDuPWMdLOpa/j4WtXgOIrs0nL22DEi8RERd77LHHqKioYNasWQAUFxcDEBwc3OTY4OBg7HY7JSUlREZGOvU+qaltmyPV1vY/NSDEwp6CGt5Zs5WL+50+8TJX2xkBGEUH2b7xO2xePU97rCu1d/87G/Vf/e/OOqL/rU680tLSSE9Pp6qq6ar0P/vZz9oSk3SA0pBEyPuB2hwN6xARcaVnn32Wjz/+mD/96U8kJSU12nemofutGdafnJzcqiVfrFYrqamprW5/Ohfl7WPP1+nk1PgzYsTwMx5rXxeNUZpNSi8z9B3RbjG0hKv631mo/+q/+t/6/te3bwmnE6+KigruvvtufvjhBwzDwF635sapFwglXp7PO3YE5KnAhoiIKz333HMsXLiQ+++/n5tvvrlhe/2drqKioiZtiouLMQyDwMBAp9/PbDa36Q+ntrb/qXMHhrPg63TWZRRiMpnOnExGpUBpNubcHdDvvHaLwRnt3f/ORv1X/9V/1/bf6XLyzz//PNnZ2bzxxhvY7Xaee+45Xn75ZaZOnUpcXBwffPCBK+KUdhY5aBwAvWsOY6/WsgAiIu3tueeeY/78+cyZM6dhiGG9vn374uvrS1paWpN2aWlpxMXFOT2/yxON6huCt8XEsbIq0vPOcq3pneJ4VEl5EeminE68Vq9ezZ133snIkSMB6N27NxMmTGDevHkkJiby1ltvtXuQ0v4GJgzgmD0YMzby0re4OxwRkS5lwYIFzJ8/n7vvvpvZs2c32W+xWJgyZQorV67k+PHjDdtzcnJYv349U6dO7chwXcbXy8w5fUMAWJdxluqGUcmOx6PbXRyViIh7OJ14ZWdn079/f8xmM4ZhUFFR0bDvqquuYvXq1e0aoLiGr5eZQ94DAMjbu97N0YiIdB0vvfQS8+bNY9KkSVxwwQVs3bq10U+9OXPmNBTcWLNmDStXruSuu+4iJCSEmTNnuq8D7WxigqO8/rr0syykXJ945e2B2moXRyUi0vGcnuMVEBDAiRMnAMdaJYcOHWL06NGAY12S+n3i+cpCEuHYj9Rmb3V3KCIiXcZXX30FwLfffsu3337bZP/evXsBSEhI4PXXX+eZZ57hvvvuw2w2M378eBYsWEBoaGiHxuxKEweE8feVsC69AJvNjsl0mnlewXHgEwRVJZC/92QiJiLSRTideA0ePJiDBw9y/vnnM27cOBYtWkRcXBze3t4sWLCAIUOGuCJOcQFL9Ag49qoKbIiItKPXX3+9xccmJSXxyiuvuC4YD5ASE0wPbzNFJ2rYm1vG0N6nKRpiGI5k69B3jnleSrxEpItxeqjh9ddfT3m5Y4Lsf/3Xf1FRUcEtt9zCjTfeSE5ODg8//HC7Bymu0WvwWABiag5gr6l0czQiItIVeZlNjIl33MFbm97SeV4qsCEiXY/Td7yuuOKKhuexsbF8/vnnDaXlR44c2exikOKZ+g8YSrHdn2CjnJx9W+gzbIK7QxIRkS5oYkIYa9LyWJeez6/O63f6A5V4iUgX1uoFlOv16NGDCy+8sD1ikQ7mZTFzyHsgwTVbyU3boMRLRERcYkJdgY31GYXUWm1YzKcZcHNqZUO73TH8UESki3B6qKF0LWUhwwCwqsCGiIi4SGKfIAJ8LZRV1bIzp/T0B0YMAZMXVJZA8eGOC1BEpAO06I7XkCFDzrza/CkMw2DXLhVr6CwcBTbeUoENERFxGbPJYFy/MFbtzmVdRgHDY4ObP9DiDZFDHEMNj6ZCSFyHxiki4kotSrzuueeeFide0rn0GjIetkBsdQbW2hrMFi93hyQiIl3QxARH4rU2vYBZkxNOf2BUysnEa+iVHRegiIiLtSjxmjNnjqvjEDfpOyCJcrsv/kYlh/ZtI27oaHeHJCIiXdDEAY55XhsPFFJda8Pbcrp5XinAm455XiIiXYjmeHVzZrOZQ94DADi2d4OboxERka5qUGQAof7eVNRY2Z5VfPoDVdlQRLoop6saLl++/KzH/OxnP2tFKOIuZSHD4NgOarO3uDsUERHpokwmgwn9w/hP6hHWphcwum5tryaikhyPJZlwohB6nOY4EZFOxunE63QLJJ86B0yJV+fiFTMCjr2rAhsiIuJSExLqE6987r1oYPMH+QZBcBwUH4LcHdDv/I4NUkTERZxOvFavXt1kW1FREatXr+bTTz/l//7v/9olMOk4EYPGwmaIq06nprYWL0ubl3cTERFpon49r82Hi6msseLrZW7+wN4pjsTryHYlXiLSZTj9F3Z0dHSz25KSkqitreW1115j7ty57RKcdIzoASOoxIueRgX79u1g4NAR7g5JRES6oP7h/vQK9CG3tIrNh4qYOCC8+QOjUmD3x5rnJSJdSrsW15gwYQJffvlle55SOoDJ4kWWV38AjqWpwIaIiLiGYRhMTHAkW2vTC05/oApsiEgX1K6JV3Z2NiaTCiV2RqUhiQDUZG11byAiItKlTejvGG64LqMFiVf+Xqip7ICoRERcz+mhhhs3bmyyrbq6mr1797Jo0SImTJjQLoFJx3IU2HhfBTZERMSl6ud5bcss5nhVLT19mvlTJDAa/EKhohDydkOfkR0cpYhI+3M68brlllsaVTAEsNvtAEycOJE//elP7ROZdKj6Ahvx1fuorK7F11sFNkREpP3FhvYgNtSPzMIKNh4sZMrgyKYHGYbjrteBNY7hhkq8RKQLcPqv69dee63JNh8fH6KjowkPP80kWfF4vRJGUoOZUOM4O9P3kjg00d0hiYhIFzWhfxiZhVn8kF7QfOIFjRMvEZEuwOnEa+zYsa6IQ9zM8PIlxyuOuJoM8vauByVeIiLiIhMTwnn3x6yzFNhIcTwq8RKRLsLpxOvAgQPk5eU1m4Bt2LCByMhI4uPj2yO2Jh5++GE++OCD0+5/5513GDFiRLP73n//fR555JFm93333XdERES0R4idWllIIhzLoCZ7q7tDERGRLqx+ntfOnBJKTtQQ1MOr6UG9T0m8bDZQ8S4R6eScTrzmzp1LfHx8s4nXV199xYEDB/jXv/7VLsH91G9+8xt+8YtfNNk+a9YsvL29SU5OPus5nnjiCfr3799oW3BwcHuF2KlZokfAsY8JLNrp7lBERKQL6xXoS/8IfzLyyll/oIBLEqOaHhQ2EMw+UH0cig5AWELHByoi0o6cTrxSU1O54YYbmt03ZswYPv744zYHdTp9+/alb9++jbZt2LCBoqIi7r77bsxm81nPMXDgwBYlaN1R5OBxsAXia/ZzorqWHiqwISIiLjIxIYyMvHLWpp8m8TJboNcwyNniuOulxEtEOjmn79uXlZXRo0ePZvf5+vpSUlLS5qCc8d5772EYBtdff32Hvm9XFNp/FDYMehnF7N2f7u5wRESkC5vQ31GQ64eWrOeleV4i0gU4nXj16tWL7du3N7tv+/btHTpXqqysjM8//5wJEyYQGxvbojazZs1i6NChjB07ltmzZ5OWlubiKDsRb3+Oejk+x2NpG9wcjIiIdGXj+4cCsOdoGfnHq5o/qKHARvN/d4iIdCZOjyW7+OKLWbx4MSNGjGD8+PEN29evX88LL7zA9OnT2zXAM/nkk0+orKxs0XuGh4cza9YsRowYQc+ePUlLS2Px4sXceOONvP322wwZMsSp97Zara2Kub5da9u7WknwMPrkHaYmawtW603tfn5P739H6O6fgfqv/p/62Nr20vmF9fRhSFQAe46W8UNGAVem9Gl6kCobikgX4nTidc899/Ddd99x++23Ex8fT1RUFEePHuXgwYMMGDCAOXPmuCLOZr333nsEBwczderUsx57/vnnc/755ze8HjNmDJMnT+aqq67in//8JwsXLnTqvVNT23YRaGt7V6nxddzx8i9IZevWrS57H0/tf0fq7p+B+q/+i0xICGPP0TLWpZ8m8eo1DDCg7Agcz4OeqkAsIp2X04lXQEAA77zzDq+88grffvstOTk5hISEMGfOHG677Tb8/f1dEWcTe/bsYceOHdx66614e3u36hwxMTGcc845bNu2zem2ycnJLSrm8VNWq5XU1NRWt3e1Ut8iyHyBAdYDBAxJJMC3mRK/beDp/e8I3f0zUP/V/7b0v769dA0TE8J5+fuDrDvdel4+ARDaHwrTITcVel7YsQGKiLSjVpWt8/f355577uGee+5p73ha7L333gM4bYXFlrLb7ZhasTaI2Wxu0x9NbW3vKiH9RwMQa8pjw6Esxg4b4JL38dT+d6Tu/hmo/+p/d+6/OIztF4rJgIz8co6WVBIV5Nv0oN4pjsTryHZIUOIlIp1Xq1cjLCsr49tvv+Wjjz7q8EqG1dXVfPzxx6SkpDBo0KBWnyczM5PNmzczfPjwdoyuk/MLJs+rNwC5e1VgQ0REXCfIz4uk6CAA1mXkN3+QKhuKSBfRqsRrwYIFTJo0iTvvvJOHHnqIrKwsAG677TYWL17crgE2Z9WqVRQXF5/2btejjz7KsGHDyM7Obtg2Y8YMnnvuOVatWsW6det49dVXuemmmzAMg/vuu8/lMXcmpcGJANRmb3VvICIi0uVNSAgDYO3+0ww3VIENEekinE683nzzTRYsWMD06dNZtGgRdru9Yd+UKVP4+uuv2zO+Zr333nv06NGDK664otn9NpsNq9XaKLZBgwbx2Wef8eCDD3LHHXfw4osvMn78eJYtW9amu2ZdkTl6BAABRTvdG4iIiHR5ExMc63mtPd08r/o7XgX7oPpEB0UlItL+nJ7j9eabbzJjxgwefPDBJmV94+LiOHToULsFdzovvfTSGffPnTuXuXPnNtr26KOPujKkLiVi4FjYCv1q0iksrybUv3XFS0RERM5mdFwIFpNBdnEFmYUniA3t0fiAgCjwj4TyY3BsF8SMdk+gIiJt5PQdr8zMTCZNmtTsPn9/f0pLS9sclLiXf9woAPoZR9l1MPssR4uIiLSev4+FEbHBAKxNP9s8Ly2kLCKdl9OJV0BAAPn5zf9izM7OJiwsrM1BiZv1jKDIEoHJsHN074/ujkZERLq4iXXzvE5bVl4FNkSkC3A68ZowYQIvvvgiJ06cHGdtGAa1tbW8/fbbnHfeee0aoLhHafAwAGqyt7g5EhER6erG1xfYSC9oND+7gRIvEekCnE687r33XnJycpg2bRpz587FMAzeeOMNbrjhBg4dOsRvfvMbV8QpHcwcPRKAwKJdbo5ERES6ulF9Q/C2mDhWVkV6XnnTA3rXLfuSuxNs1qb7RUQ6AacTr7i4ON5++2369+/P22+/jd1u58MPPyQkJIS33nqLPn36uCJO6WDhAx2Tl/vX7udYaaWboxERka7M18vM6LgQANZlNDPcMLQ/ePWAmhNQkN7B0YmItA+nqxoCDBgwgCVLllBdXU1RURFBQUH4+jaz2rx0Wr6xjgIbA41svjmYy4UpcW6OSEREurIJ/cNYm17AuvR8bhn/k2uOyQy9EiFro6PARoSWgRGRzqdVCyjX8/b2plevXkq6uqLAPpSZg7EYNo7u3+zuaEREpIubOOBkgQ2bTfO8RKTradEdr+XLlzt10p/97GetCEU8imFQGjyMgIK11GRtBq51d0QiItKFpcQE08PbTNGJGvbmljG0d2DjA6JSHI8qKS8inVSLEq+HH364xSc0DEOJVxdhjh4BBWsJKNqF3W7HMAx3hyQiIl2Ul9nEmPhQ1qTlsTa94PSJ15HtYLeDrkki0sm0KPFavXq1q+MQDxQ6YAxshwRrBjkllUQH+7k7JBER6cImJoSxJi2Pden5/Oq8fo13Rg4FwwQn8uF4LgREuSdIEZFWalHiFR0d7eo4xAN5xzhKyg8xDvPVoTyig/u6OSIREenKJtSt57U+o5Baqw2L+ZSp6N49IGwg5O91zPNS4iUinUyri2scP36c7777jk8++YTvv/+e48ePt2dc4glC4qkw9cTHqCVn/1Z3RyMiIl1cYp8gAnwtlFXVsjOntOkBveuHG27r2MBERNpBq8rJL1myhOeee47KysqGuT++vr7ce++93H777e0do7iLYVAaMgy/gg3UZG0BrnZ3RCIi0oWZTQbj+4exclcua9MLGB4b3PiAqGRIXarKhiLSKTmdeC1fvpynn36a888/n2uvvZbIyEiOHTvG8uXLeeqppwgJCVFxjS7E3Gc4FGxQgQ0REekQE+oSr3UZBdx9QULjnSopLyKdmNOJ1yuvvMKVV17JM88802j75Zdfzu9+9zteffVVJV5dSHDCaEh9gUG2DA4VnCA+3N/dIYmISBdWv57XxgOFVNfa8LacMiuivrJhYTpUlYFPgBsiFBFpHafneGVkZHD11c0PObv66qtJT09vc1DiOSzRjgIbw4xDbMsscHM0IiLS1Q2KDCDM35uKGivbs4ob7/QPh4A+jue5Ozs8NhGRtnA68fL19aWkpKTZfSUlJfj6+rY5KPEgYQOoNvnSw6giZ/8Od0cjIiJdnKlunhfA2vRmvvDTcEMR6aScTrzOOeccnnvuOXJzcxttz8vLY8GCBYwePbrdghMPYDJTGjQEgJrsLW4ORkREuoP6svJr0/Ob7mxIvLZ3YEQiIm3n9Byv3/72t/ziF7/gkksuYcKECURERJCXl8cPP/yAxWLhueeec0Wc4kbm6BFQtJWAol1YbXbMJhXYEBER15lYl3htPlxMZY0VXy/zyZ31idcRJV4i0rk4fcdr4MCBvPfee1x00UWkpqby/vvvk5qaykUXXcTSpUsZMGCAK+IUNwrq77iLOdiWQUae1msTERHX6hfuT69AH6prbWw+VNR4Z/1aXsd2g7Wm44MTEWmlVq3j1a9fP/7xj3+0dyzioUx9RgCQZDrIysxiBvZSFSkREXEdwzCYmBDOB1uyWZtewMQB4Sd3BseDdwBUl0H+Pug1zG1xiog4w+k7XtINRQyh1vAi0DhBZsYud0cjIiLdQP08r3UZPymwYTJBVJLjuQpsiEgn0qo7Xrt27eLjjz8mJyeHqqqqRvsMw2DhwoXtEpx4CLMXx4MGEVy8k+qsrcCl7o5IRES6uAl1lQ23ZRZzvKqWnj6n/MkSlQKH1zkKbAy/0U0Riog4x+nEa/ny5TzyyCOYTCZCQ0Px8vJqtN8wVHihKzL1GQHFOwks3kmN1YaXWTdLRUTEdWJDexAb6kdmYQUbDxYyZXDkyZ2qbCginZDTidfChQuZPHkyTz75JEFBQa6ISTxQz/hzYNebDLUfIC23jMQ++rcXERHXmtA/jMzCLH5ILzhN4pUKdjvoS18R6QScvm1x7Ngxbr31ViVd3Ux9gY1E00FSM4vdGouIiHQPExMcRTWaLKQcORRMFqgogtJsN0QmIuI8pxOvoUOHNlk8WbqBXsOwYSbcKOXAgf3ujkZERLqB+gIbO3JKKDlxSul4iw9EDHE813peItJJOJ14PfjggyxevJg9e/a4Ih7xVF5+HA9MAKAme4ubgxERke6gV6Av/SP8sdth/YGf3PU6dbihiEgn4PQcrxEjRnDJJZdw7bXXEhER0WTIoWEYfPTRR+0WoHgOc/QIKE0jqHgXlTVWfL3M7g5JRES6uIkJYWTklbM2vYBLEqNO7ohKhm1vq8CGiHQaTt/xWrx4MYsWLSIkJIQ+ffoQHBzc6Edzv7quHnGjABjGQfYcLXNzNCIi0h3Uz/P64afreemOl4h0Mk7f8Xrttde4/vrrefzxxzGbdcejOzF6jwAg0XSA1VnFjIgNdms8IiLS9Y2vW89rz9Ey8o9XEd7Tx7GjPvEqPgQVxeAX7Jb4RERayuk7XuXl5Vx55ZVKurqjqCTsGPQxCkk/eNDd0YiISDcQ6u/NkKgA4Cd3vfxCIKiv43nuDjdEJiLiHKcTr1GjRpGenu6KWM5o/fr1DB48uNmfrVu3nrV9QUEBDz/8MOPGjWP48OHceOONrFu3zvWBdyU+AZwIiAegOnOrW0MREZHuo3644bqflpXXcEMR6UScHmr4hz/8gXvvvZeoqCjOP/98vL29XRHXaf32t79l3LhxjbYNHDjwjG2qq6uZMWMGpaWl/OEPfyAsLIw333yTO+64g5dffpmxY8e6MuQuxdxnOOw9QEjpLk5U19LD2+n/QiIiIk6ZkBDGS98faD7x2vsfJV4i0ik4/Vfz9ddfT21tLXPmzMEwDHx9fRvtNwyDTZs2tVuAPxUXF8eIESOcarN06VLS0tL497//zciRIwEYN24c11xzDU8//TRLly51QaRdk2/fUbB3OcOMA+zMKWVMfKi7QxIRkS5ubL9QTAZk5JdztKSSqKC6vz16pzgetZaXiHQCTidel156KYZhuCIWl1m1ahX9+vVrSLoALBYLV199Nf/4xz/Izc2lV69eboywE+k9HIAk4yCrskqUeImIiMsF+XmRHB3EtqwS1mXkc+3IGMeO+qGGeXugthosHTsKR0TEGU4lXlarlbvuuovQ0FC3lY1//PHH+e1vf4uvry8jR47k7rvvZvTo0Wdss2/fPs4555wm2wcPHtywX4lXC0U5vl2MMx1j/6FMOK+fmwMSEZHuYHxCGNuySli7v+Bk4hUUC75BUFniSL7q74CJiHggpxIvu93OtGnTWLhwIZMnT3ZVTM0KCAjg1ltvZdy4cQQHB3Po0CGWLFnCrbfeyqJFi5g0adJp2xYXFzebKNZvKy4udjoeq9XqdJtT27W2vdv5BFHtH41feTYVmVuxWs91qnmn73876O6fgfqv/p/62Nr20v1MTAhn0ZoM1p46z8swHF8IHvzWMc9LiZeIeDCnEi+LxUJ4eDh2u91V8ZzWsGHDGDZsWMPr0aNHM3XqVK666iqefvrpMyZewBmHR7Zm6GRqatsm8ra1vTvF+vfDrzybsLI9fL9xM/5eThfH7NT9by/d/TNQ/9V/EWeMiQ/BYjLILq4gs/AEsaE9HDsaEq/twC/dGqOIyJk4Pcdr2rRpLF++nAsuuMAF4TgnMDCQCy64gH//+99UVlY2KfRRLzg4uNm7WiUlJQCtGjaZnJzcqrXMrFYrqamprW7vCYyyyXDsO5JMBzGFxTGibnHLlugK/W+r7v4ZqP/qf1v6X99eup8e3hZGxAbz46Ei1qbnc2No3RpeKikvIp2E04nXkCFD+PTTT7n11lu55JJLiIiIaHLH6JJLLmm3AM+m/u7bme5aDRo0iLS0tCbb67edrRx9c8xmc5v+aGpre7fqMwJwFNhYnVPGeQMjnT5Fp+5/O+nun4H6r/535f4fP36c559/nj179rBr1y6KioqYPXs2c+bMaXLszp07efrpp9m2bRtms5nx48fz0EMPERsb64bIPdvEhDB+PFTEuvQCbhzTTOJltzuGH4qIeCCnE6+HHnoIgNzcXDZs2NBkv2EY7N69u+2RtUBJSQlff/01Q4cOxcfH57THXXzxxTz22GNs27aN4cMdVflqa2v56KOPGD58uAprOKuusmGCkcPzh48CCe6NR0TEwxQXF/Puu+8yZMgQLr744tMuW5Kens4tt9zC0KFDefbZZ6mqqmLevHncdNNNfPjhh4SGqnLsqcYnhDHvy/2sTS/Abrc7vnSNGAxmb6gqheJDEBLv7jBFRJrldOL12muvuSKOs3rggQfo3bs3SUlJhISEcOjQIV566SUKCgqYO3duw3GPPvooy5cvZ+XKlURHRwMwffp03nrrLe677z4eeOABwsLCeOuttzhw4AAvv/yyW/rTqQX0otovEu+KY1RmbQOcK7AhItLVRUdHs3HjRgzDoLCw8LSJ17x58/D29mbRokX07NkTgMTERC699FKWLFnC73//+44M2+ON6huCt8XEsbIq0vPKGRDZE8xeEDkUjmxzrOelxEtEPJTTidfYsWNdEcdZDR48mE8//ZR///vfnDhxgqCgIM455xyeeuopUlJOVjGy2WxYrdZGBUC8vb155ZVXePrpp/nf//1fKioqGDp0KC+88ILb+tPZGX2GQ/pKIo7vobC8mlB/rZ0iIlKvJUWbamtr+frrr7nmmmsaki5wJG3jxo1j1apVSrx+wtfLzOi4ENamF7Auo8CReIFjuOGRbY7hhsOudm+QIiKn4XTiVa+srIytW7dSVFTE5MmTXb6u169//Wt+/etfn/W4uXPnNroDVi88PJwnn3zSFaF1S17RIyF9JUnGQVKzS5g8KMLdIYmIdCqHDx+msrKyYU3JUw0aNIjvv/+eqqqqMw6l/6nusNTJuH6hrE0vYO3+PG4a41jPy4hMwgTYj2zH1oo+dKb+u4L6r/6f+tjddOQyJ61KvBYsWMALL7xAZWUlhmHw3nvvERQUxG233ca5557bogRJOrm6eV5JpoOszixW4iUi4qT6arvBwcFN9gUHB2O32ykpKSEysuUFjLrDUifh1moAvks7xuYtWzAZBj3LfBkM1GRuJnXr1lafuzP035XUf/W/O+uI/judeL355pssWLCAm266iUmTJnHXXXc17JsyZQpffPGFEq/uoC7xGmhkMT8rD3C+MqSIiLTvOpPdYamTRKuNv36/mrJqKz16D2BIVABU9Ye1/4V35TFGDOoLPZwrStKZ+u8K6r/6r/53zDInrUq8ZsyYwYMPPtjk1lpcXByHDh1y9pTSGQXFUOMTgldVEScydwAT3R2RiEinUn+nq6ioqMm+4uJiDMMgMDDQqXN2h6VOzGYzY+JDWZOWxw8HikiMDoYeIRDSD4oOYM7bCf0vaPW5Pb3/rqT+q//qv2v7b3K2QWZmJpMmTWp2n7+/P6WlpW0OSjoBw8BUd9erd8VejpVWujkgEZHOpW/fvvj6+p52ncm4uDin5nd1JxMTwgBYl55/cqMWUhYRD+d04hUQEEB+fn6z+7KzswkLC2tzUNI5mKPr5nkZB9ieVeLmaEREOheLxcKUKVNYuXIlx48fb9iek5PD+vXrmTp1qhuj82wTE8IBWJ9RSK3V5tgYVVfhWImXiHgopxOvCRMm8OKLL3LixImGbYZhUFtby9tvv815553XrgGKBzulwMb2bCVeIiKnWrNmDStWrOCrr74CYP/+/axYsYIVK1ZQUVEBwJw5c6ioqGDWrFmsWbOGlStXctdddxESEsLMmTPdGb5HG9YnkEBfC2VVtezMqRtp07su8Tqy3X2BiYicgdNzvO69916mT5/OtGnTuPjiizEMgzfeeIPdu3eTk5PDs88+64IwxSP1HgHAUOMw8zPzgUFuDUdExJM89thjZGdnN7yuT7oAVq9eTUxMDAkJCbz++us888wz3HfffZjNZsaPH8+CBQsIDXWuQER3YjYZjOsfxspduaxNL2B4bPDJoYb5aVBTAV5+bo1RROSnnE684uLiePvtt3niiSd4++23sdvtfPjhh4wbN45nnnmGPn36uCJO8UQh/bB69cSn5jjHs3Zht09wugKXiEhX9eWXX7bouKSkJF555RXXBtMFTUxwJF7rMgq4+4IECOgNPcLgRAEc2w3Ro9wdoohII61ax2vAgAEsWbKE6upqioqKCAoKwtfXt71jE09nMmH0ToHDa4mp3EdOSSXRwfqGUUREXG9CXYGNjQcKqa614W0xOe56ZXztmOelxEtEPIzTc7weeeQRMjMzAfD29qZXr14NSVd2djaPPPJI+0YoHs3UZwQASaYDbM8sdmssIiLSfQyKDCDM35uKGivbs4odGxsKbGiel4h4HqcTrw8++KDZNUfAsRbJ8uXL2xqTdCZ1BTaGmQ6pwIaIiHQYk8lgfN1dr7XpBY6NqmwoIh7M6cTrTEpKSvD29m7PU4qnq0u8Eo2DpGYWujkYERHpTib0r0+86pa5aVjLawfYbG6KSkSkeS2a47Vx40bWr1/f8Hrp0qV88803jY6pqqpi9erVJCQktG+E4tnCBmIz+9LTWklx9l4V2BARkQ5Tv5Dy5sPFVNZY8Q0bABZfqCmHogMQpr9JRMRztCjxWr9+Pc899xzgWLNr6dKlzR7Xp08f/vu//7v9ohPPZ7ZAVBJk/0i/6v0cKjhBfLi/u6MSEZFuoF+4P70CfcgtrWLzoSImDgiHXomQvQmObFPiJSIepUWJ1x133MEvf/lL7HY7EydOZMmSJQwbNqzRMd7e3vj76w/u7sjUezhk/0ii6SDbsoqVeImISIcwDIOJCeF8sCWbtekFjsQrKtmReB1NhaTr3B2iiEiDFiVevr6+DZULV69eTUREhOZyyUl187ySjAN8nVXCNSOi3RyQiIh0FxMSwvhgSzbrMuoLbNTP81KBDRHxLE4X14iOjlbSJY3VJ16mgydL+oqIiHSA+gIb2zKLOV5Vq8qGIuKxnF5AuaamhhdeeIFPPvmEnJwcqqqqGu03DINdu3a1W4DSCUQOxW7yIthWTmHOfqy2CZhNKrAhIiKuFxvag9hQPzILK9h4sJAp/RIBA44fhePHoGeku0MUEQFakXj94x//4JVXXuH888/n4osv1t0vAYsPRA6Fo9tJqE0nI+84A3sFuDsqERHpJib2D+edwkx+SC9gyuBICBsABfscCykPuNjd4YmIAK1IvD777DPuueceZs+e7Yp4pJMyeg+Ho9tJNB1ke1aJEi8REekwExLCeOfHzFMWUk6uS7xSlXiJiMdweo5XSUkJo0ePdkUs0pk1FNjQPC8REelYE+rW89qRU0LJiRoV2BARj+R04jVmzBj27NnjilikM+s9AqgrsJFd4t5YRESkW+kV6EtChD92O6w/UAC96wpsHNnu3sBERE7hdOL1xz/+kffee48vvviC6upqV8QknVGvROyGiUijmLycQ9RYbe6OSEREupH6u15r0wtOVjYs2A/V5W6MSkTkJKfneF1zzTXU1tZy3333YRhGw/pe9QzDYNOmTe0WoHQS3j0gfBDk7WGgLYO03DIS+wS5OyoREekmJiaE88YPh/khowCuToSeveB4LuTugtgx7g5PRMT5xOvSSy/FMFQqXJoyeg+HvD0kGQdIzSpR4iUiIh1mfN16XnuOlpF/vIrwqBTYv9JR2VCJl4h4AKcTr7lz57oiDukKeg+H7e+QZDrI11kl/GKsuwMSEZHuItTfmyFRAew5WsYPGQVcGZV8MvESEfEATs/xEjmtusqGiaaDpGYXuzcWERHpdiYmhAOwLr1AlQ1FxOO06I7Xzp07nTppYmJiq4KRTq7uIhdj5HPsaDaVNVZ8vcxuDkpERLqLCQlhvPT9AUfiNamuwEbuTrDWgtnpQT4iIu2qRb+Frr/++hbN67Lb7RiGwe7du9scmHRCvkHYQ/tjFGYwyH6QPUfLGBEb7O6oRESkmxjbLxSTARn55Ry19CHKyx9qyqEwHSIGuzs8EenmWpR4PfHEE66OQ7oIo/dwKMwg0ThIalaxEi8REekwQX5eJEcHsS2rhHUHCrk2Kgky1zvW81LiJSJu1qLE69prr3V1HNJV9B4OOz8gyXSAb7K0kLKIiHSs8QlhbMsqYe3+Aq6NSnYkXke3Q8oN7g5NRLo5FdeQ9lW3aGWicZDtSrxERKSD1RfYWKsCGyLiYZR4Sfuqq2zY33SUI8dyOVFd6+aARESkOxkTH4LFZJBdXMHRHoMcG4+mgt3u3sBEpNvrNCV+1q1bx0cffcSWLVs4evQoAQEBJCUlcc8995CUlHTGtu+//z6PPPJIs/u+++47IiIiXBFy9+QfDoExUJrFEA6xM6eUMfGh7o5KRES6iR7eFkbEBvPjoSK+KwlnumGGE/lQdgQC+7g7PBHpxjpN4vX2229TXFzMrbfeyoABAygsLOTll1/mxhtv5MUXX2TChAlnPccTTzxB//79G20LDg52UcTdWO/hUJpFkskx3FCJl4iIdKSJCWH8eKiIbw+WMz18EOTtdtz1UuIlIm7UaRKvP//5z4SFhTXaNmnSJC655BIWLVrUosRr4MCBJCcnuypEqdd7OOz9D4mmA3ybVezuaEREpJuZkBDOvC/3sy69APuQZIy83Y4CG4MudXdoItKNdZo5Xj9NugD8/f1JSEjgyJEjbohITqtunleSCmyIiIgbjOwbjLfFxLGyKgoC6srIq8CGiLhZp7nj1ZyysjJ27drF+PHjW3T8rFmzKCwsJCAggLFjx3LvvfcyaNCgVr231WptU7vWtu8UeiVhBgYY2eTkF1JcXkmArxfQTfp/Ft39M1D/1f9TH1vbXuRMfL3MjI4LYW16AVtqYpkKjrW8RETcqFMnXo899hgVFRXMmjXrjMeFh4cza9YsRowYQc+ePUlLS2Px4sXceOONvP322wwZMsTp905Nbds3Z21t79HsdlJ8QvCqKmKIkcnybzaTHOnT6JAu3f8W6u6fgfqv/ou40sSEMNamF/BFQYQj8So6AJWl4Bvo7tBEpJvqtInXs88+y8cff8yf/vSns1Y1PP/88zn//PMbXo8ZM4bJkydz1VVX8c9//pOFCxc6/f7JycmYzWan21mtVlJTU1vdvrMw7TkH9q8iyXSAE75XMGKEo6hJd+n/mXT3z0D9V//b0v/69iJnMyHBMUVh1cFa7IHRGKXZkLsT4s4+J1xExBU6ZeL13HPPsXDhQu6//35uvvnmVp0jJiaGc845h23btrWqvdlsbtMfTW1t7/F6D4f9q0g0DvJdTlmTvnb5/rdAd/8M1H/1vzv3X1wvJSaYHt5mik7UcDx2KAGl2Y55Xkq8RMRNOk1xjXrPPfcc8+fPZ86cOWcdYng2drsdk6nTfQSdQ32BDdMBtmcXuzcWERHpdrzMJsb2cyxnst9Ut5TM0dZ92Soi0h46VdaxYMEC5s+fz913383s2bPbdK7MzEw2b97M8OHD2yk6aaQu8RpsZHK0sIzC8mo3ByQiIt3NhP6O4Ybryns7NqiyoYi4UacZavjSSy8xb948Jk2axAUXXMDWrVsb7R8xYgQAjz76KMuXL2flypVER0cDMGPGDEaPHs2QIUPw9/cnLS2NF198EcMwuO+++zq4J91EcBz4BuFdWcIgI4vU7BImD4pwd1QiItKNTEwIB+Dj3HB+YwDHdoO1Bsxe7g1MRLqlTpN4ffXVVwB8++23fPvtt0327927FwCbzYbVasVutzfsGzRoEJ999hkvvfQSVVVVhIaGMn78eH7zm9/Qr1+/julAd2MYjrteB74h0XSA7ZnFSrxERKRDDesTSKCvhd2VoVgDAjDXlEF+GvRKdHdoItINdZrE6/XXX2/RcXPnzmXu3LmNtj366KOuCEnOpi7xSjIO8m22FlIWEZGOZTYZjOsfxspdueT2GEifks2O9byUeImIG3SqOV7SyfQeATgKbKRmKfESEZGON7GurHyqta9jg+Z5iYibKPES16krsDHUOMyx0hMcK610c0AiItLd1K/ntaY0yrHh6HY3RiMi3ZkSL3Gd0ATw7omfUU1/I4ftuuslIiIdbFBkAGH+3mytOeWO1ynzwEVEOooSL3EdkwmikgFIMg6yXfO8RESkg5lMBuMTwthnj8FqWKCyGEoy3R2WiHRDSrzEtaJSgLqFlLOK3RuLiIh0SxP6h1GDhUyz5nmJiPso8RLXqpvnlWQ6SGpWSaMy/yIiIh2hvsDG5uoYxwYlXiLiBkq8xLXqEq9E4yCF5ZUcKVGBDRER6Vj9wv2JCvQl1Rrn2KDES0TcQImXuFbEYDD7EGBU0Nc4pgIbIiLS4QzDYEJCGLts8Y4NR1TZUEQ6nhIvcS2zV8NClUnGQVJVYENERNxgQkIYu+11c7xKDkNFkXsDEpFuR4mXuF7DPK8DbM8udXMwIiLSHU1MCKMUfzLtEY4NR3e4NyAR6XaUeInrnTLPKzVbBTZERKTjxYT0IDbUj531ww01z0tEOpgSL3G9UyobllXWcLTc6uaARESkO5rYP5xdtvoCG5rnJSIdS4mXuF7kMDBZCDXK6E0h+wtr3B2RiIh0QxMHhLHLrsqGIuIeSrzE9bx8IWII4JjnlV6kxEtERDrehP5hDXe87Hl7oLbKzRGJSHeixEs6xinDDdN1x0tERNwgMtAXv/C+FNl7YthqIW+Pu0MSkW5EiZd0jIYCGwfIKKrFalOBDRER6XgTBpwyz0vreYlIB1LiJR2jLvFKNh2k0monI7/czQGJiEh3NDEhXPO8RMQtlHhJx+iVBBj0MoqIoJjX1x3iWFmlu6MSEZFuZvwp87xqcra5ORoR6U4s7g5AugmfnhA+EPLTSDQd5M0Nwfz7xyzOHxjO9efEcPHQXvh6md0dpYiIdHGh/t6cCEuEMhx3vGw2d4ckIt2EEi/pOL2HQ34aM6KPUMJktmSW8NXePL7am0egr4Urh/dh+jkxjIwNxjAMd0crIiJdVOzA4VRt8sKnthyKD0JQnLtDEpFuQEMNpePUzfMabjnEe7MmsPqBydwzJYHeQb6UVtby1vrDXPf8Wi76+xoWfLWfnOIKNwcsIiJd0fgBvdhrj3G80DwvEekgSryk49QlXj1K9gGQENGT3186hO8eupA3fjWOa0dG4+tlIiO/nKc/38u5T37JL1/8gQ+2ZHGiutadkYuISBcytn8ou+sKbBw/tMXN0YhId6GhhtJxopIB8DlxBGtFMfQMA8BsMjhvYDjnDQznf36WxKepR1i2KYv1Bwr5fn8B3+8vwN97B1ck9+b6c2IYGx+KyaShiCIi0jqBvl4UBw6F8q8pO7gZP3cHJCLdghIv6Th+IdiD4zCKD8HR7TBgSpNDevpY+PnoWH4+OpbMwhMs25zF+5uzOVx4gqWbsli6KYuYED+uHxXD9aNi6BvWww0dERGRzq5H3EjYBX4Fu9wdioh0ExpqKB0rKgUA04d3w4pHIXPDaStKxYb24L8uHsSa31/Au3dN4MbRsfT0sZBVVME/V+/j/Ke/4uf/Wsc7Gw9TVlnTkb0QEZFOrl/iWGx2g+DaPCjPd3c4ItIN6I6XdCjbyJth/2rMZUfghwWOn8AYGHYNJP4MokeDqfH3AYZhMLZfKGP7hfKXqxP5fOdRlm3O4rv9+Ww4WMiGg4X8+aOdXJoYxfRzYpiYEI5ZQxFFROQMRg2M5RC96MdR8vZvAnq5OyQR6eKUeEnHGjCVbZcsY7h/PuY9H8Hez6A0q8VJmJ+3mZ+NjOZnI6M5UlLBB1uyWbYpi/S8cj7cmsOHW3OICvTl2lHRXD8qhgGRPd3TTxER8Wg9vC0c8RtIv8qjHNm7EQZd6e6QRKSLU+IlHc5u9oEh0yDxaqipgP2rYddyp5Ow3kF+/OaCAdw9OYFtWSUs25TFR9tyOFpaycKv01n4dTrDY4OZfk4MV6X0JriHt1v6KyIinskWmQSHv8Wasw1DiZeIuJgSL3EvLz8YeqXjp5VJmGEYjIgNZkRsMH+8ciirdx9j2aYsvk7LY1tmMdsyi/mfj3dx8bBIrh8Vw/mDIvAya3qjiEh3FzZgNByG0LK9FNrt7g5HRLo4JV7iOdohCfOxmLkiuTdXJPcmr6yKD7dms2xzNruPlPJp6lE+TT1KeE9vrhkRzfRzYhjaO9Bt3RUREffqlzQBvoQ4ezY7i08w0t0BiUiXpsRLPJPTSdi1EDMajJNFNSICfLhjUn/umNSfnTklLNuUzYdbs8k/Xs2S7w6w5LsDDOsdyPXnxHDNiD6E9/RxX39FRKTD+Yb0ocQUTJCtmLzsfcC57g5JRLowJV7i+dohCUvsE0RinyAeuWIIa/bmsWxzFqt3H2PXkVJ2fbKLJz7dzQWDI5h+TgxThkTiYzG7r78iItIxDIOSoCEEFf2ANW+vu6MRkS6uUyVe5eXlPPvss3z22WeUlJTQv39/fv3rXzNt2rSzti0oKODpp5/mq6++orKykiFDhvBf//VfTJgwoQMil3bTxiTMy2zi4mG9uHhYL4rKq/l4ew7LNmWxLauEVbuPsWr3MYJ7eHH18D5cPyqGlJggDEOl6UVEuirv6OFQ9AMBZelU1VjpYdYXbyLiGp0q8ZozZw6pqak88MADxMfH88knn/Db3/4Wm83GVVddddp21dXVzJgxg9LSUv7whz8QFhbGm2++yR133MHLL7/M2LFjO7AX0m7amISF+Htz64R4bp0Qz/5jZby3KZsPtmSRW1rFa+sO8dq6QwyI7Mn0c2K4dmQ0vQJ93dtfEemS2vKlorRd+MAxsGMRA+2HSHpsJfFh/gzs1ZNBvQIYEOl47B/hr5EQItJmnSbxWrNmDd9//z1///vfufJKR8nX8ePHk5OTw1NPPcUVV1yB+TTfUi1dupS0tDT+/e9/M3KkY+rsuHHjuOaaa3j66adZunRph/VDXKSNSdiAyAAevnwIv790MN/tz2fZpiw+33mU/ceOM/ezPTy1Yg/nDYzg+lHRXJoYha+XLsAi0j5a+6WitA9Ln+EADDUOg91GRn45GfnlfL4zt+EYs8kgLqwHA+sSsYG9AhjUqyf9wpWQiUjLdZrEa+XKlfTo0YPLLrus0fbrrruOBx54gG3btjFq1Khm265atYp+/fo1JF0AFouFq6++mn/84x/k5ubSq5dWrO8ymkvCdn4AaSuaJmGJP4NhP2tIwswmg8mDIpg8KILSyho+3X6EZZuz2HiwiG/S8vgmLY8AHwvTUnoz/ZwYzokL0VBEEWm1tnypKO0kLAG7xY8etRXs7fMYJf4JZFli2VPbm03lEXxTGERupYWMvHIy8ppPyAZFOhKxAUrIROQMOk3itW/fPhISErBYGoc8ePDghv2nS7z27dvHOeec02T7qW2dTbysVqtTx/+0XWvbd3Yd3n+TNwy63PFTUwHpX2LsWo6x73OM0ixY9xysew57YDT2YddgH3qNo0S9YeDvZeKGc6K54ZxoDhWc4IMt2XywNYesogr+vTGTf2/MJC6sB9eO6MN1I6OJDvFrUUj6P6D+n/roana7HZsdbHY7dvvJ13bqHuu22xq21x1js2OH0xxz8vWpj3bAZrM7XkOzx5iwY7fb2/w7tKtoy5eK0k5MZuxDr8ZIfQevwn2EF+4jHBgB/KLuEGtkLCX+/cjx6kuatTebT0SypiiEzMoeDQnZip0nT2k2GcSH9WBgXULmuEMWQL9wf7wtWkdSpLvqNIlXcXExMTExTbYHBQU17D9T2/rjnG17OqmpqU63ac/2nZ37+h8N/e/BiLuDwGMbCT3yNUFH12Euzcb44Xn44XmqfSMp6jOZoj6TKQ8e2jAc8YJwOP+iQHbl+fL1oUrWZVZyqOAEz67ez7Or95MY4c2UeD/Gx/jg14ILq/4PtL3/drsdqx2sNrDa7VhtUGu3Y6t7dGwHq81Orc3xx3/tKcda7fXbodZmP815HO3PfJ6Tx/z0PKceU1t3jN0O9hVfYgOwgw0aEhf7KUmMvW7fyWNOJjSNj7E3cx7Ho+exc+VAf8xG9/7/X68tXypK+7Ff8zypkdcwLNKCuXA/5O2F/H2QvxdOFGAuzSS0NJNQIAm4rq6dLSSMsp79OeIdy35bH7ZU9OLb4lD2VQaRnldO+mkSsvrhivVDF5WQSWfQ8MVdky/0bI4v5mw27FYbdmzYbHU/divYwG6zYbM7frDZsNvsjtc2G3a7DerOYbfZsNnsYLc6rnm2uu12G/a6Y+22k6+p22ezO57b6s7liAPsdqvj/eri/Gk77HastlryS6tISkp2+QiDTpN4AWcc0nW24V5taduc5OTW/eNYrVZSU1Nb3b6z86z+jwNmQ00F1lPuhHlXHqNXxlJ6ZSxt9k7YKOBm4ER1LZ/vzOX9LTmsyyhgZ141O/OqeWmbmUsTe3HdyGjG9wvFZGr8/8uzPoPWqa61UVlj5US1lYr6x1Of11g5UV1bt81GRXUtJ2ocx5yorqWgsBj/gMC6JMVOjdVOrc128rm17rntlOdWe93xtlOee2Zq4SwDGxZsWKjFgg0zVrywYsaKxXBsN2PDgrXhx4zNcYxhbbzdOGW7cfLYU4+x4NjXcI5G53W8p1fDcXXPf3q8YcPrJ3E5znMyXvMp2+uf2zCx1v5rkpMfb9Pv0K6iLV8qNkejMVrHarNR3SMKa79kGHBx450nCiA/DSPfkYwZ+WmO1yWZmCoKCKooIIiNDAGurGti6+lHeUA/cr3j2G/vw7bKXnxfEs7uqvCGhOyzHUcb3sJSl5ANiOzJwMieDOzleIwP65iErNv/+7uh/1abnepaGzVWG9VWG9W1pzzWOq5z1bVWaqqrsNVUYK06gbW6AltNBbaaSuw1ldirKxyjeWorMWorMKyVUFuNqbYSk9XxY7ZWYbZVYrFVYbZV42WrcvzYq/C2V+Ntr8KbavrZayj9CEyOr/swYcPAcX0yTnkNdkx1PxbsmIyucR0G2PClmXMuucnpds78v+k0iVdwcHCzF6CSkhKAZu9otUfb0zGbzW36o7mt7Ts7j+q/uSckXu34qamA/atg53JIW4Fxyp2wn84JC/DzYfrovkwf3Zfs4go+2JzFss3ZHMgv54MtOXywJYfoYD+uGxXNdaNi6Bfu3/htXfgZWG32nyQ/J5OjE3XJT33idOr2ihqrI0lqNqGqbXhd2y4JT147nKN5XmYDi8mExWxgMRlYzCa8TAZms4FX3XZvw04Pcw1+Rg2+Jit+Rg1+Ri1+Rg3edY++Rg3e1OBDLT5GNT72GrzqtjkuWNV4UYOXvQYvezUWezUWew0WWxUWWzVmew3muoud2VaN2VqFyVqF3VqNGTuG3Yphq8Hw0HtTrmDCSv8Aq2f9DnCz9vxiUKMx2ub0/fcD0wiIHAGRji2m2gp8yrPwLTuM3/FD+B4/jG/ZIXzKszHVVhBQtIsAdjEAuAzAAJufiVKf3hy1xJBuj2ZXTW9+PBHFztre7M+zsz+vnBWnziEzoHdPM7FBFmIDLcQEOh57B1jwMrX//OLu8u9vs9upqLFTXmPnRI2NEzV2KmvtrM/eSK3NTo0Naq11X/7ZqPsSEKzWGkzWKgxrNYa1CsNahclajanh9/zJ3/detirM9hos9iq8bNV4nZLkeNur8aYGX6rxpQZfoxpfqvGhmqCG54795o5KbNw8Xd1qN7BT92M40j17a3+M+vTQ8Qhgq3u0G6ZGx1J3zAlLIDVewWzdutWl/ew0idegQYP45JNPqK2tbTQkIy0tDYCBAweesW39cadqSVvpZrz8YOhVjp+fJGGcMieMoFhHdcS6JCw62I/ZFw7knikD2Hy4mGWbs/h4Ww7ZxRXM/3I/87/czzlxIVw/KobLEyOx2+1UVFuptp1MjuqToJMJUe0Zk5/GyVTdOeruKlXV2jrk4zKbDHp4mfHzNtPD24yft8XxeMo2x2sLft4menhb8DFB3pFM+sdE4mvU4m3U4G2vwYdqRwJDXRJTd6GyUIPFVu34ts5eg8V68uJmslVjslZhstVd/OouhNTW/1SefLRWOx6r6vbZPf2bXQPMXmCyNP0xn/raC0zmuu31x5vrtrfH8ae+rxPnP03sVpMXuXsO0NvdH6+HaO8vBjUao3Xas/92Wy3WooN1d8nS6u6S7YX8NEzVxwmuzCaYbIYA08Dxl5gFKv16ke8bzyEjmh3VvfihLJwdVb3JKgsiq8zKOqoa3sNiMugX7s/AyJ4MiPRnYGQAA3v1JD6sB15m5++QdaZ/f6vNTnlVLWWVtZRV1VJWWeN4Xv9TdfJ1ad2+qopyjIoizFVF+FQX4VtTSohRRghlhBplBBvHiabckQgZjmTIp+65T0OCVI3FaMO11aDNyU2V4UON4e34MflQW/djNfliNftgM/lgM/tgs/hiM/tit/iCxRe7ly+GxRfDyw+8fDF5+Tl+vP0weffAsHiTmX2Ufv37YzFbMEwmx5c+JjMmw8BkMoNhYJgMTIYJw2TCZDIBJkynbMNwbDeZTJgMo26bAYbJ0XnjNK+b+Yg68n9h/f//MW38/dkSnSbxuvjii3n33Xf54osvuOKKKxq2f/DBB0RGRjJ8+PAztn3sscfYtm1bw3G1tbV89NFHDB8+XBUNpXlnSsJKMptNwoyY0ZwTF8I5cSH895XDWLkrl2Wbs/gmLY9Nh4rYdKiIPy6vm3/z3kqXd8EwwM+rPiky08PLgq+3mR6nbmtIlCwnE6W6badNpkx2/OzleNeUQkUxVBZDZWHd8xLH6/rnx4sbbbdXlmLYrbDH5d1vOZMXWHzB4l336ON4NJ/62ufkdosPmH3Osu+n+x3PrYaF3Xv3MzQxGbOXzxmSly4636ObDmU6nbZ8qdgcjcZom3bpv9kMkYMdP6ey26HsSOP5Y3mOhIzjufhW5BJTkUsMcC5wlwH4Qo3X/2/vzqOauvI4gH+zsKOEgCxVqQVNZMngBnGjLnUXC7Yuc84ccKxrrY7jNq1dpui4jnWcgoOKOIqO9dhW9Ghrbau2p84ZiYqjQ3FDXCrUIqIIiGzJmz9CXokERSBE4Ps5Jyfhvhve776E/Pzdd19sj3tOL+InaWdkVvrgdEkH/Fjhjew7Xsi6U2K2C1NBZryGrPqr771c0cXTpV4FmbVff71BQEmNgkgsmiwUS2bba9zryx/CHSXGwklSAiWKoZBUF1AogV/1vamgUqIYzpJfi1ZIANg3fiy/Fj3VxY7MEQa5AwwyJ7HggdzB+G+J6mJHYucEib0TZPbOkNk5QuZQ/djeqboocqp+niNg5wjInX69lzvAQSKBQ+NDr0Wv16PQcA6d1D34989rvIwGDRqEAQMGIC4uDiUlJfDz88OXX36JEydOYN26deKBevfdd3HgwAF8++236NixIwBgwoQJ+OSTTzB//nwsWrQIHh4e+OSTT3D9+nVs377dlsOilqIBRZhjpz4YF/oCxoW+gDtFZThwLhf70nNxOa/Y7Fc7yKWPFTbyxwoi05kjudnPxsLIWBQ52snMiiZTX0c7qeWlSoJgHMfjRZLp8aMHwH0L7abHFSW1f2c91YpG9qzFjuWCxnzb47/zKduas8jR61GeWwa4v2j8Bxq1aY2ZVKQWRiIB2r9gvAUMMd/2qLB2MXb3CnD/Buwqi+BdmQFvZCAMwO8lABwAg9Qe951exC1ZJ1yq8sWZEk9kVvri2h1fY0FWYwLeTlZ9hqzGF3qovF3xokf9CjKgnkXTo0oUWSyYjI8fVtSceBHggrLqM0/VhVL1GShvSQkCYSys3E331WeoHB0rG3T4BYkMVY5KCI7ugIsHZNU3OCthcHTHT/lF8PNXQ2rvbLHoEYsiOydA5mBczt6gSKgta1HvmYSEBGzYsAHx8fEoLCyEv78//va3v2Hs2LFiH4PBAL3e+E0oJvb29tixYwfWrVuHFStW4NGjRwgMDMTWrVsRHh5ui6FQS1ZXEXb5qzqLMK9OfTDz5QDMiPDH7cJSXLiQibCeoXB1tIesoev0DQagvKj6bNMDY+IurvG4rK7H1cWTvqLxx8K+HeCkABwV1fduT32st3NBxqVsaHr2gczOqfWe2SGqh/pOKlIr56QAOocZbzVVlgH3sh87S3YFKMiCtKoMHg+z4IEs41ffSwE4AAIkKHbsiBx5Z1zW++Lsww7IrPTF1bwXcCXPfNLMVJB19XKFvLwIn934ESXl+noUTY8T0B6l4hkmhaQYHihGV7Fgqr63M94rq9vtUNWgwyXI7CFxUgLOxsIJzkrA7GePGj+7A84ekDi0h10d10wKej0Kzp1D55AenBAjq2pRhZeLiwvef/99vP/++3X2WbNmDdasWVOr3dPTE2vXrrVmeNQWPWMRJgmKhrdvT9x2lMHVQQ6ZoRIofWChSCp8SvFUCJQVodFfGC6RGYsiU/FU78fugEN74/K4Z6XXQ2+XZ5w5ZNFFVK9JRWqj7BwB72DjrSaDHij8qfZZsvzLkJQVon1ZDoKQgyAA46sLMgAotVPitp0frhhewH9LvXChyhfZeS/gcJ4SxvUIpZDAgPYohbL6DJNf9ZI+d5nx3lNaAk/ZQ3hWL+VzE4rgaiiGDA1cRix3/LVgqlk8PaGwkti7ml0bRNRStKjCi+i5Vs8iTOriBY3eAOmRUqCytPH7lTvW44yTwnIhxeRFZHP1mVQkMiOVAcqXjDfViF/bBQF4eLf2ksX8K0BRDpwr7yGg8h4CcA6jpRCvdaqQOaNQooArSuFYVSR+pXidBFie97NzMTvLVPsslHvts1L2zk10UIiefyy8iKzhCUWY5OGd2tf1OrSvLpLcLBRJirqLKkc344woERGRRAK4djDeugw031ZeUl2IPXaW7N412OtL4YXHJgId2lsulOoqrJyUzEdET8HCi8jaHivC9DlnceXaTah+Ew6Zi9JYPEm5ppyIiKzIwRXo2Mt4q0lfCf3dq7h6/iS6asIgc/UyFlzyJvjqPyIyw8KLqDnZOQF+fVF6z9G4RIQX8RIRkS3J7ABPFUo8SgGvIOYlIivile1ERERERERWxsKLiIiIiIjIylh4ERERERERWRkLLyIiIiIiIitj4UVERERERGRlLLyIiIiIiIisjIUXERERERGRlbHwIiIiIiIisjIWXkRERERERFbGwouIiIiIiMjKWHgRERERERFZGQsvIiIiIiIiK2PhRUREREREZGUsvIiIiIiIiKxMbusAWhpBEAAAer2+Qc83Pa+hz2/p2vr4AR4Djp/jr3nf0OebPovJiLmpcTh+jr/mfVvD8TdfXpIIzF7PpKKiAhkZGbYOg4ioTdNoNLC3t7d1GM8N5iYiItuqT15i4fWMDAYDqqqqIJVKIZFIbB0OEVGbIggCDAYD5HI5pFKuljdhbiIiso1nyUssvIiIiIiIiKyM04VERERERERWxsKLiIiIiIjIylh4ERERERERWRkLLyIiIiIiIitj4UVERERERGRlLLyIiIiIiIisjIUXERERERGRlbHwamKpqalQq9XiLSgoCAMHDsSCBQtw48YNs75nzpzBe++9h9deew0hISFQq9XIycmxTeBNpL7j1+v12L59O6ZNm4aXX34ZoaGhGD16ND766CMUFRXZbgBW8vhxefym0+lsHWKDHTlyBGq1GocPH6617dVXX4VarcaJEydqbRs2bBjGjx8PAPjuu+/wpz/9CePGjUNwcDDUarXV424qjR1/SUkJNm3ahJiYGAwYMAA9e/bEuHHjkJSUhPLy8uYYQqM0xeu/YcMGREdHIzw8HBqNBq+88go++OAD5ObmWj3+toK5ibnJktaam5iXmJee17wkb9SzqU6rV6+Gv78/ysvLcfbsWWzevBk6nQ5fffUV3NzcAABpaWk4efIkAgMD4eLiglOnTtk46qbztPGXlZUhISEBkZGRmDhxItzd3XHhwgVs2rQJ3333Hfbt2wdHR0dbD6PJmY7L47p27WqDaJpGeHg4JBIJ0tLSMGbMGLG9sLAQV65cgbOzM3Q6HSIiIsRtv/zyC27duoWpU6cCAL799lucP38egYGBsLOzQ2ZmZrOPo6EaO/6ff/4ZKSkpiIqKwu9//3s4OzsjPT0dGzduxH/+8x9s374dEonEFkOrl6Z4/YuKijB27FgEBATAxcUFV69exaZNm3D8+HF88cUXcHd3b/ZxtVbMTcxNlrS23MS8xLz0vOYlFl5W0q1bN2g0GgCAVquFXq9HQkICjh49itdffx0AMGfOHMydOxcAsG3btlaV3J42fkdHRxw7dszsjavVauHr64v58+fj66+/RlRUlK3Ct5qax6W1UCqV6NatW6337+nTpyGXy/H666/XmjVNS0sDYHzNAWDFihWQSo0n4JcvX96iElxjx9+pUyccP34czs7O4vZ+/frByckJf/3rX5Geno4+ffpYfyAN1BSv/4cffmi23XRcZs6ciWPHjmHChAlWHEHbwtzE3GRJa8tNzEvMS89rXuJSw2Zi+kArKCgQ20x/0G3B4+OXyWQWZwt+85vfADDOPFDLodVqcf36ddy5c0ds0+l0CAkJwaBBg5CZmYmSkhJx26lTpyCTycQP7pb+t9CY8Ts7O5slN5OW9LfQ2NffEqVSCQCQyzk/aE3MTcxNrRXzEvPS85iXWva7qgUxrY/v0qWLbQOxkfqO3zTj0FKXNzyNwWBAVVWV2U2v19s6rEbr27cvAJjNLul0OoSHh6NXr16QSCRIT0832xYUFIR27do1e6zWYI3xt6S/haYaf1VVFcrKynDhwgWsWrUKXbp0wfDhw5tnEG0UcxNzE9A6cxPzEvMS8PzlJRZeVmL6EHv48CFOnDiBTZs2ISwsDEOHDrV1aM2iIePPy8vD+vXrERISgiFDhjRjtM1n0qRJCA4ONru1huUdYWFhkEql4gfc/fv3kZWVhbCwMLi4uCAoKEj8wL59+zZycnLE0/mtQVOP/9KlS0hOTsbw4cPRvXv3ZhlDYzTF+PPz8xEcHIzQ0FCMHz8eer0eO3fuhIuLS7OPpzVjbmJusqQ15ibmJeal5zEvcQ2HlUyaNMns54CAACQmJraZZTPPOv7CwkLMmDEDgiDg73//e4s/xV+XtWvXIiAgwKzteb5Atb7c3NzQvXt3cc306dOnIZPJ0KtXLwDGD0DTB5ypT2tKcE05/pycHMyePRs+Pj5YsWJFM0TfeE0xfnd3d3z++eeoqKjAtWvXkJycjNjYWOzatQteXl7NOJrWjbmJucmS1pibmJeYl57HvNQ6P0GeA2vXrsXnn3+OlJQUTJ48GdnZ2Vi4cKGtw2o2zzL+Bw8e4I033kBeXh7++c9/onPnzs0cbfMJCAiARqMxu4WEhNg6rCah1Wpx48YN5OXlQafTITg4WJwVCg8Px8WLF1FcXAydTge5XI7evXvbOOKm1RTjz83NRWxsLGQyGVJSUqBQKJp5FA3X2PHL5XJoNBr07t0bEydOREpKCnJycpCUlGSL4bRazE3MTZa01tzEvMS89LzlJRZeVmL6EOvbty+WL1+OiRMn4sSJEzhy5IitQ2sW9R3/gwcPMHXqVOTk5GD79u0t4vQ1WWaaKTp16hROnTqFsLAwcZvpw+z06dPQ6XTQaDStbglZY8efm5uLmJgYAMDOnTvh4+PTTJE3jaZ+/X18fODl5VXr/5iixmFuYm5qS5iXmJeA5ysvsfBqJkuWLIGbmxvi4+NhMBhsHU6zszR+U2K7desWtm3bhqCgIBtHSY0RFhYGmUyGr7/+GllZWQgPDxe3tWvXDoGBgThw4AByc3Nb1XIOk8aM/+eff0ZMTAwMBgNSUlLQsWPH5g6/0Zr69b958yZ++eUXvPjii9YMu81jbmJuas2Yl5iXnre81DYWdT8H3NzcMHPmTKxbtw6HDh1CVFQU7t27J170d+XKFQDADz/8AKVSCaVSafYGaekeH//IkSMxbdo0XLhwAe+++y70ej3OnTsn9lcqlfDz87NdwFaSlZVl8Zui/Pz8xK8pbalcXV0RFBSEo0ePQiqV1jplHxYWhpSUFAC111Hn5uYiIyMDAPDTTz8BgDgD3bFjxxZxkXdDx19QUIDY2Fjk5+dj5cqVKCgoMPtqbx8fnxYxy9jQ8V+6dAmrV6/GyJEj0blzZ0ilUly5cgU7duyAQqHAG2+80azjaGuYm5ibgNabm5iXmJeet7zEwqsZxcTEYPfu3UhMTERkZCSysrIwf/58sz7Lli0DYFx7umvXLluEaTU1x9+zZ0/xA23lypW1+o4fPx5r1qxp7hCtbunSpRbbV6xYgYkTJzZzNE1Pq9UiIyMDgYGBcHV1NdsWFhaGHTt2wM7ODj179jTbptPpah0b099GS3ovNGT8V69exa1btwAYZ98fN3fuXMybN8+6gTeRhozf09MTXl5e2L59O/Lz81FVVQUfHx8MHjwYs2fPhq+vb3MPo81hbmJuas25iXmJeel5yksSQRCEBj+biIiIiIiInorXeBEREREREVkZCy8iIiIiIiIrY+FFRERERERkZSy8iIiIiIiIrIyFFxERERERkZWx8CIiIiIiIrIyFl5ERERERERWxsKLiIiIiIjIylh4UYuQmpoKtVot3oKCgjBw4EAsWLAAN27csHV4AIDNmzfj6NGjtdp1Oh3UajV0Op0NojI6fvw4Zs+ejf79+yMkJATh4eGYMmUKDh48iMrKSpvF9ThLx+qdd97B0KFDrbrfvLw8JCQk4OLFi1bdDxG1LsxNjcPc9GTMTa2P3NYBED2L1atXw9/fH+Xl5Th79iw2b94MnU6Hr776Cm5ubjaNbcuWLRg5ciSGDRtm1h4cHIy9e/eia9euzR6TIAh49913kZqaikGDBuGdd96Br68viouLodPpsGzZMty/fx9Tpkxp9tjqa86cOYiNjbXqPu7cuYONGzeiY8eOCAwMtOq+iKj1YW56NsxN9cPc1Pqw8KIWpVu3btBoNAAArVYLvV6PhIQEHD16FK+//rqNo7PM1dUVPXr0sMm+k5OTkZqainnz5mHu3Llm24YOHYrp06fj5s2bzRpTWVkZHB0d693fz8/PitEQETUec9OzYW6itopLDalFMyW6goICs/aMjAzMnj0b4eHh0Gg0iI6OxuHDh8363Lt3D3FxcRgzZgx69uyJfv36ITY2FmfOnKm1n4qKCmzcuBGjR4+GRqOBVqtFTEwMzp49CwBQq9UoLS3F/v37xSUnMTExAOpeznHs2DFMnjwZoaGh6NmzJ6ZOnYr//ve/Zn0SEhKgVquRlZWFhQsXonfv3ujfvz+WLl2K4uLiJx6byspKJCcnw9/fH2+99ZbFPh06dECfPn3EnwsLCxEXF4eIiAiEhITglVdewYYNG1BRUWH2vPLycqxfvx5Dhw5FSEgIIiIisGzZMhQVFZn1Gzp0KGbNmoVvvvkG0dHR0Gg02LhxIwAgOzsb06ZNQ2hoKLRaLf785z/j4cOHtWK0tJxDrVZj+fLlOHDgAEaPHo3Q0FC8+uqr+O6778z63bx5E0uXLsWIESMQGhqKiIgIzJ49G5cvXxb76HQ6TJgwAQCwdOlS8fVLSEgQ+9Tn/UREZMLcVDfmJuamtoxnvKhFy8nJAQB06dJFbEtLS8P06dMRGhqKuLg4tGvXDocPH8aCBQtQVlaG1157DYDxgxwA5s6dC09PT5SWluLbb79FTEwMduzYAa1WCwCoqqrC9OnTkZ6ejtjYWPTt2xd6vR7nz5/H7du3AQB79+7FlClToNVqMWfOHADG2cS6HDp0CIsXL8bAgQOxfv16VFRUIDk5Wdx3zYQDAPPmzcOYMWMwYcIEXLlyBevXrwdgXN5Slx9//BGFhYWYOHEiJBLJU49leXk5YmNjcevWLcybNw9qtRpnzpxBUlISLl68iKSkJADGJSJz5sxBWloaZs6ciT59+uDy5ctISEjAuXPnsHfvXtjb24u/NzMzE9nZ2XjzzTfRqVMnODk54e7du4iJiYFcLseHH34IDw8PHDp0CH/5y1+eGqfJ999/j4yMDPzhD3+As7MzkpOTMXfuXBw5cgSdO3cGYFymoVAosGjRIiiVSjx48AD79+/HpEmTsH//fvj7+yM4OBirV6/G0qVL8eabb2Lw4MEAAB8fHwD1fz8REZkwNzE3MTeRRQJRC7Bv3z5BpVIJ586dEyorK4WSkhLhhx9+EAYMGCD87ne/EyorK8W+o0aNEqKjo83aBEEQZs2aJQwYMEDQ6/UW91FVVSVUVlYKU6ZMEd566y2xff/+/YJKpRI+/fTTJ8bYo0cP4e23367VnpaWJqhUKiEtLU0QBEHQ6/XCwIEDhcjISLNYSkpKhH79+gmTJ08W2+Lj4wWVSiVs3brV7HfGxcUJGo1GMBgMdcbz5ZdfCiqVStizZ88T4zbZs2ePoFKphMOHD5u1JyUlCSqVSvj3v/8tCIIg/PDDDxZjMu1v7969YtuQIUOEwMBA4dq1a2Z9161bJ6jVauHixYtm7VOnTjU7VoIgCG+//bYwZMgQs34qlUro37+/UFxcLLbl5+cL3bt3F7Zs2VLnGKuqqoSKigphxIgRwqpVq8T2//3vf4JKpRL27dtX6zkNfT8RUevH3MTcVBNzEz0NlxpSizJp0iQEBwejV69emD59Otq3b4/ExETI5caTtzdv3sS1a9cwbtw4AMYZQdPt5ZdfRn5+Pq5fvy7+vj179mD8+PHQaDQICgpCcHAwTp48iezsbLHPiRMn4ODg0GTr9K9fv447d+4gKioKUumvf4IuLi4YMWIEzp8/j0ePHpk9x9JyhvLy8lrLWBojLS0Nzs7OGDVqlFm7adbs5MmTYr+a7SajR4+Gs7Oz2K9mrC+99JJZm06nQ7du3dC9e3ez9sjIyHrHq9VqzWZuPT094eHhgdzcXLGtqqoKmzdvxpgxYxASEoKgoCCEhITgxo0bZq9xXZ71/UREbRNzkxFzE3MTPRmXGlKLsnbtWgQEBODhw4c4fPgw9u7di4ULFyI5ORkAcPfuXbHf2rVrLf6O+/fvAwC2b9+ONWvW4Le//S3mz58Pd3d3SKVSfPzxx7h27ZrY/969e/Dy8jJLRI1h2n+HDh1qbfPy8oLBYEBRURGcnJzEdoVCYdbPtFyirKyszv34+voC+HXJy9MUFhbC09Oz1tIPDw8PyOVycflLYWEh5HI5lEqlWT+JRAJPT0+xn4mlcRYWFqJTp0612j09PesVK1D7mADG41JeXi7+vGbNGuzevRszZsxAWFgY3NzcIJFI8P7775v1q8uzvJ+IqO1ibjJibmJuoidj4UUtSkBAgHjRct++fWEwGPDZZ5/hyJEjGDVqFNzd3QEAs2bNwvDhwy3+DtMM18GDBxEeHo5ly5aZbX/8IlqlUon09HQYDIYmSXCmGPPz82ttu3PnDqRSKdq3b9/o/YSEhEChUODYsWNYtGjRU9fSKxQKnD9/HoIgmPUtKChAVVWVGLdCoUBVVRXu3btnluAEQcDdu3fF18fE0n4VCoWYOGqy1NYYBw8eRHR0NBYuXGjWfv/+/Xod42d5PxFR28XcVH/MTcxNbRmXGlKLtmTJEri5uSE+Ph4GgwH+/v7o0qULLl26BI1GY/FmWgIgkUjMLrQFgEuXLuHcuXNmbRERESgvL0dqauoTY7G3t3/iLJ/JSy+9BG9vb3zxxRcQBEFsLy0txTfffIMePXqYzSg2lJ2dHaZPn45r167hH//4h8U+BQUFSE9PBwD069cPpaWltf6jzQMHDojba94fPHjQrN/XX3+N0tJScfuTaLVaZGVl4dKlS2btX3zxxdMH9gwkEgns7OzM2r7//nvk5eWZtdU1S/ss7yciIhPmproxNzE3tWU840UtmpubG2bOnIl169bh0KFDiIqKwrJlyzBjxgxMmzYN48ePh7e3Nx48eIDs7GxkZmYiPj4eADB48GAkJiYiPj4eYWFhuH79OhITE9GpUyfo9XpxH5GRkUhNTUVcXByuX78OrVYLQRBw/vx5BAQEYOzYsQAAlUqFU6dO4fjx4+jQoQNcXFzg7+9fK2apVIolS5Zg8eLFmDVrFiZPnoyKigps27YNRUVFWLRoUZMdH1NyS0hIQEZGBiIjI8X/pPL06dP49NNPMW/ePPTu3RvR0dHYvXs33n77beTm5kKlUiE9PR1btmzBoEGD0L9/fwDAgAEDMHDgQHz00UcoKSlBr169cPnyZcTHxyMoKAhRUVFPjWvKlCnYt28fZs6ciT/+8Y/iN0fVXEbTFAYPHix+Q5RarUZmZia2bdsmfiuUiZ+fHxwdHXHo0CEEBATA2dkZXl5e8Pb2rvf7iYjIhLnpyZibmJvaKhZe1OLFxMRg9+7dSExMRGRkJPr27YvPPvsMmzdvxqpVq1BUVASFQoGAgACMHj1afN7s2bPx6NEjfP7550hOTkbXrl0RFxeHo0eP4tSpU2I/uVyOrVu3YsuWLfjyyy+RkpICFxcXdO/eHREREWK/9957D8uWLcPChQvx6NEjhIeHY9euXRZjHjduHJycnJCUlIQFCxZAJpMhNDQUO3fuRK9evZrs2EgkEqxevRrDhg3Dp59+Kh4PU/yLFy8WL0R2cHDAzp07sWHDBiQnJ+P+/fvw9vbGG2+8YfYfXEokEiQmJiIhIQGpqanYvHkzFAoFoqKisHDhwloztZZ06NAB//rXv7By5UrExcXByckJw4YNwwcffCB+5XFTeO+99yCXy5GUlITS0lIEBQUhISEBH3/8sVk/JycnrFq1Chs3bsS0adNQWVmJuXPnYt68efV+PxER1cTcVDfmJuamtkoi1DyfTERERERERE2O13gRERERERFZGQsvIiIiIiIiK2PhRUREREREZGUsvIiIiIiIiKyMhRcREREREZGVsfAiIiIiIiKyMhZeREREREREVsbCi4iIiIiIyMpYeBEREREREVkZCy8iIiIiIiIrY+FFRERERERkZf8H8BLtKosFC0QAAAAASUVORK5CYII=",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0MAAAHbCAYAAAAJakHoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACffUlEQVR4nOzdZ3hc1bn//e+eUe+y1at7V3HvgCmmmIQAduDJAUKHgEkh+VMOcEJykkDISUIwDsEBktAcSozp1TQDxg1LlntXtWTJsnqd8rzYI9nCkq1RG0nz+1zXXCPtNvcag/bcs9a6l+F0Op2IiIiIiIh4GYunAxAREREREfEEJUMiIiIiIuKVlAyJiIiIiIhXUjIkIiIiIiJeScmQiIiIiIh4JSVDIiIiIiLilZQMiYiIiIiIV1IyJCIiIiIiXknJkIiIiIiIeCUlQyIiIiIi4pWUDIl4WEFBAWPHjuWee+7xdCgiIiK6L4lX8fF0AOJ5Z599NoWFhZ069tJLL+Xhhx/ulTjGjh0LgMVi4aOPPiIxMbHd4y666CL2798PwD/+8Q/mzJlz0jU68tBDD3HZZZcBsH79eq655hpmzJjBc8891+7xBQUFnHPOOSQmJvLxxx+73aYWq1ev5u677wbgN7/5DUuWLOnytb4tJyeHF198kQ0bNlBaWoqPjw+JiYnMmzePa6+9ltjY2HbPa3mvdu/e3eG1W/7bWLNmDUlJST0Wc0f279/Piy++yPr16zl8+DCNjY1EREQwYcIEzjvvPL773e/i7+9/0nldfQ9EpH/SfUn3pY701X2pr2LR/cvzlAwJ11xzDdXV1R3ur6+v55///Cd2u53Ro0f3aiw+Pj7YbDZWrVrFHXfccdL+zZs3s3///tbjOrJ06dJ2t48fP77HYu2sw4cP85vf/IagoCDq6up67LpOp5P/+7//46mnnsLHx4c5c+ZwwQUX0NzczJYtW3jmmWdYuXIlDz/8MBdccEGPvW5vefzxx1m+fDkOh4PMzEwuvfRSgoODKSsrY9OmTdx///2sXLmSVatWtZ4z2N4DETHpvtS7dF/yPL1X/YeSIeHaa6/tcJ/T6eQnP/kJdrud888/n+uvv75XYxk6dChRUVGsWrWK22+/HYul7UjOV199FV9fX2bPns3nn3/e4XXau2F5gtPp5N577yUiIoLzzjuPZ555pseuvXz5cp566ikSExN58sknT/pA8P777/P//t//48477yQ8PJzZs2f32Gv3tCeeeIJly5YRHx/PX/7yFzIyMk465vPPP+epp55qs20wvQcicpzuS71H96X+Qe9V/6E5Q3JKf/nLX3j//feZMGECv//97zEMA2g7nrigoICf/exnzJw5k7S0NC677DLWrFnT5ddcvHgxRUVFfPnll22219TU8N5773H22WczdOjQbrWrrzz77LN8/fXXPPTQQwQFBfXYdfPz83niiSfw9fXliSeeaPeb0fPPP597770Xu93Ogw8+iMPh6LHX70kFBQUsX74cX19fVqxY0W4iBHDGGWe0SYYG03sgIp2n+1L36L7keXqv+hclQ9Kht99+myeeeILo6GieeOIJAgMDTzqmsLCQJUuWUFhYyCWXXMJFF13E3r17uf3221m3bl2XXvc73/kOgYGBvPLKK222v/nmm9TV1bF48eIuXbev7d+/nz/+8Y9cc801TJ8+vUevvWrVKmw2G+ecc84px6MvWbKE6OhoDh06xIYNG3o0hp6yatUqmpubWbhwIWPGjDnlsX5+fm3OGyzvgYh0ju5L3aP7Uv+g96p/0TA5adfWrVu599578ff3Z/ny5cTFxbV73IYNG7jjjjvajIW++OKLufHGG3n66ae71K0bGhrK+eefz9tvv015eTlDhgwB4JVXXiEhIYF58+bxzjvvnPIay5YtO2lbYmJi6yTV3maz2fh//+//ER8fz5133tnj19+8eTMAc+fOPeVxPj4+zJw5k7feeotvvvmGWbNmnXRMe+9Vi6qqqu4F2gmbNm0CcPu/lZ58D0Sk/9N9qXt0X+qa3ohF96/+RcmQnKSkpITbbruNxsZG/vCHP3Q4bAnMP+Q/+tGP2mybP38+CQkJ5OTkdDmGJUuWsHr1al5//XWuu+46du7cyfbt21m6dOlJ47Xb8/jjj5+0bcaMGX1201m+fDk7d+7kxRdfJCAgoMevX1ZWBtDhh4ETtRxz5MiRdve39171pZa2uFsxpyffAxHp33Rf6j7dl7qmN2LR/at/UTIkbdTX1/OjH/2I0tJSbrnlFr773e+e8vjx48djtVpP2h4XF0dWVlabbe19u3LppZe2W45y2rRpDB8+nFdffZXrrruOl19+GYvFwuWXX96pdpyqFGZ3na4dW7du5cknn+S6665j8uTJvfI6TqcToHWs/Km0HNPRsZ0pG9oZ7vz7nsidtnT1vPbegyeffJIPPviAgwcP4ufnR2ZmJnfeeedph+qJSN/Sfen0dF9qX1fvS92JpTP3lp58r6T7lAxJK6fTyd1338327ds555xz+NnPfnbac0JDQ9vd7uPjc9Jkv46+Fevoj9LixYv5wx/+wLp163jrrbeYM2cOCQkJnWhJ57R8k3eqSYnt/cE6VTtahiEMGzaMn/70p92K71SvEx0dzYEDByguLj7tdVqOiY6O7lY8p+Puv2+LmJiYTrflRN19DzZs2MAPfvAD0tLScDqdPPbYY1x33XW8/fbbREREuBWLiPQO3ZdOpvtS53X1vtQdnbm39Mf3ypspGZJWjz32GO+//z5jx47lD3/4Q49/C+Hut2KXXnopjz76KPfccw9VVVU9PkG15YZZUVHR4THHjh0DICwsrHXbqdpRV1fHoUOHAEhLS2v3mPvvv5/777+fa665hvvuu6/Da53qdaZOncr69ev56quvTrlQnt1uZ/369QBMmTKlw+N6Qle/9Zw6dSpff/01X3/9tVuL/nX3PXj66afbHPfII48wbdo0vvnmG84++2w3WyEivUH3pZPpvtR5vdkb15HO3Fv643vlzVRNTgCzQs9f//pXhg4dyhNPPEFwcLCnQ2Lo0KGcddZZFBcXExkZyTnnnNOj1x8+fDh+fn4cOnSo9ebybVu2bAFOv4J4Cz8/PxYvXtzuY8KECYD5R3Dx4sXdGqpw2WWXYbVa+fDDD9m3b1+Hx/3nP//hyJEjDB8+nBkzZnT59XrTZZddhq+vL++///4p2wLQ1NTU5ryefA9qa2txOBxtPmCIiOfovqT70mDQ3r1F71X/omRIWiv0+Pr6smzZMhITEz0dUqu7776b5cuXs2LFijZllXuCv78/F154ITabjUceeaR16EGL4uLi1m94vve973XqmgEBAfz2t79t99HyjdCll17Kb3/7Wy666KIux56cnMwtt9xCc3Mzt956a7t/TD/66CN++9vfYrVa+eUvf9mpCb6ekJSUxNKlS2lububmm2/ucILz559/zo033tj6e0+/B7/97W8ZP358tz4MiEjP0H1J96XBor17i96r/kXD5LxcTU1Na4WetLQ0vvrqK7766qsOj+/LMqBg/sFITk7utevfc889bN26lVWrVpGVlcXcuXMJDg6mqKiINWvWUFtby/XXX98vy1necccd1NfX849//INLLrmEefPmMWrUKGw2G1u2bCE7O5uAgAD++Mc/9vuVq2+99VZsNhvLly9v/XZy0qRJBAcHU1ZWxqZNmzh06BCTJk1qc15PvQe///3v2bx5MytXrmx34rWI9B3dl3RfGixOdW/Re9V/KBnychUVFZSWlgKQk5Nz2rKjfVkGtC8MGTKEV199leeee44PP/yQVatW0djYSHh4ONOnT+eKK67ot/NHLBYL99xzDxdddBEvvPACGzduZN26dVitVhITE7n++uv54Q9/2KnSnf3B0qVLufDCC3nxxRdZv349q1atoqmpiYiICMaNG8eNN97IJZdc0uacnngPHnroId5++23+9a9/9eoHHBHpHN2XdF8aDE53b9F71X8Yzm/3wYqIeInf/OY3vPPOOzz33HOMHDnS0+GIiMggoHvLwKKeIRHxSg8++CBvvPEGy5cvJywsrPWb6KCgoH4xUVtERAYe3VsGHvUMiYhX6qgS09KlS7njjjv6OBoRERkMdG8ZeJQMiYiIiIiIV1KdPhERERER8UpKhkRERERExCspGRIREREREa+kZEhERERERLzSoCmt7XA4sNlsWCwWDMPwdDgiIl7D6XTicDjw8fHBYtF3bCfSvUlExDM6e28aNMmQzWY77SrVIiLSe9LS0vDz8/N0GP2K7k0iIp51unvToEmGWjK+tLQ0rFar2+fb7XZycnK6fP5Ap/ar/Wq/2t/dv5/qFTqZ7k3do/ar/Wq/2t/b96ZBkwy1DD+wWq3d+g+mu+cPdGq/2q/2q/1dpWFgJ9O9qWeo/Wq/2q/2d9Xp7k36Gk9ERERERLySkiEREREREfFKSoZERERERMQrKRkSERERERGvpGRIRERERES8kpIhERERERHxSkqGRERERETEKykZEhERERERr6RkSEREREREvJKSIRERERER8UpKhkRERERExCspGRIREREREa+kZEhERERERLySkiEApxPjjduJ2/OcpyMREREBoKiinhv+tZnNhxs9HYqIyKDVb5KhTZs2cdNNNzF9+nTS09NZuHAhy5cv75sXb6jEkr2ShN3/gqbavnlNERGRU8jKr+DTPaWs2lnj6VBERAYtH08HAPDmm29y1113ceGFF/L73/+eoKAg8vPzKSkp6ZsAAiNwBsdg1B6BI9shdXbfvK6IiEgHxsaFAnCgohmb3YHVavVwRCIig4/Hk6GSkhL+53/+hyuuuIIHH3ywdfusWbP6NpD4dNj3EUZxjpIhERHxuOFDgwkN8KG6wcaekhrSkiM9HZKIyKDj8WFyr7zyCnV1ddx0000ejcMZm27+ULzVo3GIiIgAWCwG6YnhAGQXVHo4GhGRwcnjPUMbN24kIiKCAwcOcNttt7F3717Cw8M577zzuOuuuwgJCXHrena7vUtxOGImmpnh4a1dvsZA1tJmb2w7qP1qv9p/4nNXz5eel54Uzpf7j7JVyZCISK/weDJUUlJCfX09P/nJT7jlllvIzMwkJyeHZcuWsXfvXl588UUMw+j09XJycroUh1+tP2kAR3aQ9c0msHj8rfGIrr5/g4Xar/Z7M29vf3+UmRwBQHZBhUfjEBEZrDz+id/pdNLY2MjSpUu5+eabAZg5cya+vr787ne/Y926dcyZM6fT10tLS+vSJFO7bRK2z4PxsdWSmRAAcZPcvsZAZrfbycnJ6fL7N9Cp/Wq/2t/19recLz0vPTEMgL1HaqhttBHs7/HbtojIoOLxv6oREREAzJs3r832M844g9/97nds377drWTIarV2+cNMXfgoQo9mYz2yDRIzunSNga47799goPar/Wq/97a/P4oJCyAq0EJZvYNthZXMHDHU0yGJiAwqHi+gMHbs2Ha3O51OACyWvguxLmyU+cPh7D57TRERkVMZNcQXMNcdEhGRnuXxZGjhwoUAfP755222t/yekdF3PTR14aPNH1RRTkRE+onRrmRI84ZERHqex4fJzZs3jwULFrB8+XIcDgeZmZls27aNxx9/nAULFjBt2rQ+ieNf63IJakxhOEBxDjgc0Ie9UiIiIu1p6RnKzldFORGRnubxZAjg0Ucf5fHHH+fll19m+fLlxMTEcO2117J06dI+ef2qhmZ+/dZOAi2hXBEUgNFUA8cOwtCRffL6IiIiHRk5xBeLAYUV9RypbiAmNMDTIYmIDBr9IhkKCAjgF7/4Bb/4xS888vqh/j5EBPpSUQ91EWMJLsuGw1lKhkRExOMCfSyMiglhT0kNW/MrOXeCkiERkZ6icWCAYRikJZmrfBf4u+YNHda8IRER6R8yXPcozRsSEelZSoZcWm40Wx2p5gYVURARkX4i3XWPUkU5EZGepWTIJT3RvNF8VhVvbjicDa7y3iIiIp6UkRQBQHZ+BQ6H7k0iIj1FyZBLy7duH5VH4TSsUHcUqoo8HJWIiAiMiQ3B38dCVYONQ0drPR2OiMigoWTIJTrUn6hACw1OP+rDXYUTNFRORET6AV+rhbREzRsSEelpSoZOMNK1loOKKIiISH+TkRwBaL0hEZGepGToBC2rfG+1u4ooHM72YDQiIiLHtSRDKqIgItJzlAydoGWV709aiihomJyIiPQTma4iCjuKqmi02T0bjIjIIKFk6AQjIn0xDPi8JRmqzIe6cs8GJSIiAiQPCSQyyJcmu4Ndh6s9HY6IyKCgZOgEwb4WRkQFU00Q9cHJ5kb1DomISD9gGMbxeUMqoiAi0iOUDH1LS4nt/IAx5gbNGxIRkX4iU/OGRER6lJKhb2lZfHWrPcXcoIpyIiLSTxyvKFfh0ThERAYLJUPfkuHqGfpURRRERKSfyXAVUdhfWktVQ7NngxERGQSUDH3LuPgwfK0G6+uSzA1le6GxxrNBiYiIAEOC/UgZEgTAVq03JCLSbUqGvsXfx8K4uDBKiaAhIBpwQsl2T4clIiICoCIKIiI9SMlQOzKSzaFyBf6jzQ0aKiciIv1Ey3BuFVEQEek+JUPtSHeNyc5uLaKginIiItI/TE6JAMxkyOl0ejYYEZEBTslQO1pKl35WlWBuUDIkIiL9xMSEcKwWg9LqRoqrGjwdjojIgKZkqB0jo0MI8rPyTbOrZ+jITrA1eTYoERERIMDXyri4UEAltkVEukvJUDusFoO0xHAKnNE0+YaBoxlKd3k6LBEREeB4EYUtSoZERLpFyVAHzBuNQYH/SHODhsqJiEg/kdkyt1XJkIhItygZ6kDLwnbZtmHmBlWUExGRfqKlZyinoBK7Q0UURES6SslQB9JdpUu/qIk3NxxWMiQiIv3DqJgQgv2s1DbZ2V+qhcFFRLpKyVAHkiIDGRLsx1b7MHNDcQ44HB6NSUREBFxzW7XekIhItykZ6oBhGGQkhXPAGY/NEgDNtVC+39NhiYiIAMeHymnekIhI1ykZOoX0pAjsWCn0G2FuUBEFERHpJ1qKKKhnSESk65QMnULL4qvZdtd6QyqiICIi/URLz9Cu4moamu2eDUZEZIBSMnQKLUUUvq5LNDeoiIKIiPQT8eEBRIf6Y3c42V5U6elwREQGJCVDpzA0xJ+kyEByHMPNDYezwakSpiIi4nnm3NYIALLylQyJiHSFkqHTyEiKYI8zCQdWqC+HqkJPhyQiIgLA5JQIQEUURES6SsnQaWQkh9OIH0V+qeYGDZUTEZF+onWB8IIKj8YhIjJQKRk6jXTXjWarzVVEQRXlRESkn2hZayj3aB3ltU0ejkZEZOBRMnQakxLDMQzY2JhsblBFORER6SfCA30ZER0MqHdIRKQrlAydRoi/D6NjQtjuGGZu0DA5ERHpR1rWG9K8IRER9ykZ6oT0pAh2OF1zhqoKoPaoZwMSERFxaVlvSMmQiIj7lAx1QkZyBDUEUeyTYG4o1rwhERHpH1oXCC+oxKnlH0RE3KJkqBMyXBNUt9pUUU5ExBvs3LmTm2++mbPOOov09HRmzJjBFVdcweuvv+7p0E4yLj4UP6uF8tomCo7VezocEZEBxcfTAQwE4+LC8LNayGpOYaHvOhVREBEZ5KqqqoiLi2PRokXExsZSX1/Pm2++yV133UVhYSG33Xabp0Ns5e9jZXxCGNn5FWzJryB5SJCnQxIRGTCUDHWCn4+F8QlhbC8cZm5QeW0RkUFt5syZzJw5s822BQsWUFBQwMsvv9yvkiGAzKRwsvMryM6v4LsZCZ4OR0RkwNAwuU7KTAo/XlHu6H5orPFoPCIi0vciIyOxWq2eDuMkKqIgItI16hnqpPSkCP5FOOWWoQxxHIWSbZAyy9NhiYhIL3I4HDgcDqqqqnj33Xf54osveOCBB9y+jt1ud//F7c04t76Eb0Psac9PSwgFYFtRJQ1NzfhaB8d3nS3t7tL7Nwio/Wr/ic/eprvt7+x5SoY6KSPZVUTBnsJZxlGziIKSIRGRQe3BBx/kpZdeAsDX15f77ruPK6+80u3r5OTkuH1OxOG1jNz0S5Lj5pETGH3KYx1OJ8G+BrXNDt5au5nhEb5uv15/1pX3bzBR+9V+b9bb7fd4MrR+/Xquueaadve99NJLZGZm9m1AHRgRFUKIvw/Z9mGc5bNF84ZERLzArbfeypIlSygvL+fjjz/mf//3f6mvr+eGG25w6zppaWnuD6+LccImCC3bQtrECVh9/U55+OSsjXyx7ygNQXFkZia791r9lN1uJycnp2vv3yCg9qv9an/X299y/ul4PBlqceedd540WXX06NEeiuZkFotBWmI4Ow4NMzdorSERkUEvISGBhASzIMGZZ54JwJ/+9CcuvfRShgwZ0unrWK1W92/mCZk4/ULwaarBfnQP1sSMUx6emRzJF/uOsrWwkqusw9x7rX6uS+/fIKL2q/1qf++1v98MKk5NTSUzM7PNIzg42NNhtZGRHMF25zDzlyO7wNbk0XhERKRvpaenY7PZyM/P7/0Xs/pA0nQAjPx1pz38eBGFyt6MSkRkUOk3ydBAkJEUToEzimojBBzNULrT0yGJiEgfWr9+PRaLheTkvhmG5kyZbf6Q+9Vpj21ZIHzPkWpqGm29GZaIyKDRb4bJ/frXv+bOO+8kICCAyZMn86Mf/Yhp06a5fZ3uVpw41fmTEkIBgxx7KnMs23EUbsEZM6lLr9ffqGKJ2n/is7dR+/umYs9A8sADDxASEkJaWhpRUVEcO3aM9957j3feeYcbbrjBrSFy3eFMmQOAkf81OJ1gGB0eGxMWQEJ4AEWVDWwrrGTWiKF9EqOIyEDm8WQoNDSUa665hpkzZxIREUFubi5PP/0011xzDU8++STz589363rdrThxqvOdTicR/ha22Ycxx7Kdsm0fk2+kdev1+htVLFH7vZna793tP1FmZiarVq3itddeo7q6mqCgIMaNG8cjjzzCJZdc0neBJE7BYfHFUlMC5Qdg6MhTHp6ZEkFRTjHZ+RVKhkREOsHjydCECROYMGFC6+/Tpk3jvPPO4zvf+Q5/+MMf3E6Gultx4nTnT922me17UgGIth1maD+pdtddqlii9qv9an9vV+wZSC6//HIuv/xyT4cBPgHURowjtDzHHCp3mmQoIymCd3KKyS6o6Jv4REQGOI8nQ+0JCwvjrLPO4t///jcNDQ0EBAR0+tzuVpw43fkZyZG8vns4AEbJNqwGYBk8H55UsUTtV/vVfulfaoakHU+Gplx9ymNbiihk5VX0fmAiIoNAvy2g4HQ6ATBOMT7aE9KTwjnojKcef2iug6P7PR2SiIgMYjVD080f8k5fRCEtMRyLAUWVDRypaujlyEREBr5+mQxVVlby6aefMn78ePz9/T0dThsZSRE4sLDT4aokVLzVswGJiMigVhM5EadhgWOHoLLwlMcG+/swOiYUgOwCldgWETmdLg2T27t3L9988w0lJSU0NDQQGRnJqFGjmD59OiEhIW5d6+c//znx8fFMmjSJyMhIcnNzeeaZZzh69CgPP/xwV8LrVZHBfqQMCWJ71TCmWPbB4WxIW+zpsEREZJBy+AZDbJq52HfeutPeczKSw9ldUk12fgXnTYjtoyhFRAamTidDlZWVvPTSS7z00ksUFRW1DmNrczEfH8444wyuvvpqZs+e3anrjh07lnfeeYd///vf1NXVER4eztSpU3nkkUdIT0/vfEv6UEZyBNu2mfOGOJzt2WBERGTQc6bOxijONucNnSYZykyO5OVNBSqiICLSCZ1Khp599lmWL18OwEUXXcSMGTOYOHEiQ4YMwd/fn8rKSvLz88nKymLNmjVcf/31zJkzh//5n/8hNTX1lNe++eabufnmm7vfkj6UkRTO6q2udhVvPe3aDyIiIt3hTJ4N6//WucVXk83FV7PzK3A4nFgsuj+JiHSkU8nQc889x7333suiRYvw9fU9aX9UVBRRUVFMnjyZ6667jry8PJ544gneffddbr311h4P2tMykiN4xJmMDSs+9cegsgAi+mY1chER8UIprtEWpTuhrhyCOl70dUxsKAG+FqoabBw8WsvIaPeGr4uIeJNOJUPvvvsuPj6dn16UkpLCQw89NChXJQeYmBCGzfBlryOR8ZY8c6ickiEREektwVEQNQbK9pjzhsYt6vBQX6uFSQnhbMo9RnZ+hZIhEZFT6FQ1ub1793bp4oN1vYogPx/GxIayzTHM3KCKciIi0ttS55jPnRoqFwGYQ+VERKRjnUqGLr30Ui677DJefPFFqqurezumASEjKYLtzmHmL4eVDImISC9LcT8ZylJ5bRGRU+pUMnTLLbdQXl7Or3/9a+bNm8cvfvELvv76696OrV9LTw5nu3qGRESkr7T0DB3OhsaaUx462ZUM7SyqotE2OIesi4j0hE4lQz/72c/45JNPWLFiBQsWLOCDDz7guuuu45xzzuGvf/0rhw8f7u04+52MpAh2OF0V5aoKobbMswGJiMjgFpEM4SngtEPBhlMemhQZyJBgP5rsDnYd1ogOEZGOdCoZAjAMgzPOOINHH32UL774gvvuu4/w8HAee+wxzj33XG644Qbee+89mpubezPefmNsXCg2n2AOOOLMDVpvSEREeluqq6rcaYbKGYZBRpJZYjtL84ZERDrU6WToRGFhYVx11VWsWrWK1atX84Mf/IAdO3bws5/9jDPOOKOnY+yXfK0WJiaEsaNl3pCGyomISG9rLaKw7rSHqoiCiMjpdSkZOtG4ceP47ne/y9lnnw1ARUVFdy85YKQnRRyfN6QiCiIi0ttaiigUbARb4ykPPV5EoaJ3YxIRGcA6v3jQt5SXl/PGG2/wn//8h3379mG1WlmwYAGLFy/uyfj6tczkCP7z9TDzFw2TExGR3hY1GoKioK4MirZAyqwOD81IigDgQGktlfXNhAeevGi6iIi3cysZcjgcfP755/znP//h008/pbm5mWHDhnHnnXdy6aWXEhUV1Vtx9kvpSeH8uqVnqHw/NFaDf6hHYxIRkUHMMMx5QzvfhNwvT5kMDQn2I3VoELlH68gpqGTeaO+6R4uIdEankqGDBw/yn//8h9dff52ysjICAgK4+OKLufzyy5k2bVpvx9hvDRsajC1gCIedQ4g3yqF42/HJrSIiIr0hda4rGVoH8099aEZSBLlH68guqFAyJCLSjk4lQxdeeCEA6enp3HHHHSxatIjg4OBeDWwgsFgM0pMi2JY7jHhruTlUTsmQiIj0phTXfSZ/PTjsYLF2eGhGcgRvZBexJa+ib2ITERlgOpUM/fCHP2Tx4sWMHj26t+MZcNKTwtlxaBjn8Y0qyomISO+LSwO/UGisgpJtEJ/R4aGZycfLazudTgzD6KsoRUQGhE5Vk7v33nvbTYQOHDjA5s2bqaur6/HABoqM5Ai2O1yLr6qinIiI9DaL9fhcodOsNzQxIRyrxaCsppHDlQ19EJyIyMDSpdLaq1ev5owzzmDRokVcddVVHDx4EICf/OQnvPzyyz0aYH+XcUJ5bWfpztOWOhUREem21sVXvzzlYQG+VsbFmYV9tN6QiMjJ3E6G3n33Xe655x4mTJjAAw88gNPpbN03ceJE3n333R4NsL+LCw/AFprIMWcIhsMGR3Z4OiQRERnsUueaz7nr4IT7cHsytd6QiEiH3E6GVqxYwWWXXcbf/vY3rrjiijb7RowYwb59+3osuIEiPTlSQ+VERKTvJEwGq7+53lDZ3lMe2rr4qoooiIicxO1kaP/+/SxatKjdfREREVRUVHQ3pgEnMzmC7c5h5i8qoiAiIr3Nxx+Spps/55163lBLz1BOYSV2x6l7kUREvI3byVBgYCDV1dXt7ispKSE8PLzbQQ006UnhbHcMN385nO3ZYERExDu0zhs6dTI0MjqEYD8rdU129h2p6YPAREQGDreTocmTJ/PCCy+0mSvUYtWqVcyYMaNHAhtI0hMj2O40h8k5S7ab6z6IiIj0ptQ55nPuulMeZrUYpCWZX1SqiIKISFtuJ0O33347WVlZLF68mOeeew7DMPjggw+49dZb2bRpE7feemtvxNmvhQf5wpCR1Dn9MZrr4Kj3zZsSEZE+ljQDDCtU5kFF/ikPzVARBRGRdrmdDKWlpfH3v/+duro6Hn74YZxOJ08++SQHDx5kxYoVjBkzpjfi7PcmJQ9hpzPF/EVFFEREpLf5hxxfcDXv1L1DmUkRgHqGRES+zacrJ82aNYt3332XvLw8ysrKiIyMZPjw4T0d24CSkRTBtm3DmGrZC4ezIH2Jp0MSEZHBLnUOFH1jrjeU/v0OD8tMiQBgV3E19U12Av2sfRSgiEj/1qVFV1ukpKQwZcoUr0+EADKSw1sryjlVUU5ERPpC67yhUxdRiAsLICbUH7vDyfaiyj4ITERkYOhUMvTOO++4feGSkhI2b97s9nkD1cSEcHZhJoXOoq2nXQRPRESk21JcFeXK9kBNaYeHGYZxfN6QhsqJiLTqVDL061//mksuuYRXXnmFmppTl+Xctm0bv/rVrzj//PPZtWtXjwQ5EAT4WiF6PM1OK5bGCqjI83RIIiIy2AUNgejx5s+nmzfkSoayC9QzJCLSolNzhj788EOWLVvGb3/7W379618zYcIEJkyYwNChQ/Hz86OyspL8/HyysrIoLS1l9OjRLFu2jPnz5/d2/P3KxJRo9pQnMdHINRdfjUz1dEgiIjLYpc6B0p1mMjThux0elqEiCiIiJ+lUMhQaGsp///d/c/vtt7Nq1So+++wzVq9eTX19fesxycnJzJ8/n+985zvMmjWr1wLuzzKSwtn+zTAmWnLNinLjv+PpkEREZLBLnQObnjaLKJxCy1pDeeV1lNc2MSTYry+iExHp19yqJhceHs51113HddddB0B1dTUNDQ1ERETg6+vbKwEOJOlJEbzkHAZ8hvNwNoanAxIRkcGvZd5QcQ40VEFAWLuHhQf6MjI6mP2ltWTnV7BgXEwfBiki0j91q5pcaGgo0dHRSoRcxsSGsMcyAgB7UbaHoxEREa8QnggRqeB0QP6GUx6qIgoiIm11KxmStnysFqxxaTicBj61xaes7CMiItJjUueaz3mnLrF9vIhCRe/GIyIyQCgZ6mFjU+M56IwzfylW75CIiPSBTq43dGIRBaeWgBARUTLU09KTwtnhdFWRO6zFV0VEpA+0JEOFm6G5ocPDxsWH4me1cKyumfzy+g6PExHxFkqGelhmcgTbHObiq5o3JCIifWLICAiJBXuTmRB1wN/HyvgEs8BClobKiYgoGeppKUOCyPUbCYCtMMuzwYiIiHcwjONV5U4zVG5ySxGFvIrejUlEZABwOxn63//9Xw4cONAbsQwKhmFgScgEwL/qkFnmVEREpLd1sohCRrK53pCKKIiIdCEZWr16NYsWLeK6667jo48+0gTMdoxMTaHQOdT8pTjHs8GIiIh3SHX1DOVvALutw8NaiihsK6yk2e7og8BERPovt5OhtWvXcv/991NaWsrSpUs5++yzWbFiBeXl5b0R34CUnhTBDscw85diFVEQEZE+EDMBAsKhqeaU955hQ4MJC/Ch0eZgd3F1HwYoItL/uJ0MBQUF8V//9V+89dZb/OMf/2DixIn85S9/4ayzzuKee+4hJ0c9IRlJ4Wx3VZRr1rwhERHpCxYrJM8yfz7FvCGLxWhdfFVD5UTE23WrgMLs2bN5/PHHWbNmDZMnT+b111/n+9//PkuWLOHjjz/uqRgHnJiwAIoCxgDQVJDl2WBERMR7tJTYzlt3ysNOXG9IRMSbdSsZamho4JVXXuHWW29l/fr1jBw5kttvvx273c7tt9/O8uXLeyrOAceamAlAYMXeU675ICIi0mNaiijkfgWOjucDZbZUlFMyJCJerkvJUF5eHg899BBnnHEGv/zlL4mLi+OZZ57hrbfeYunSpaxatYqbbrqJ559/3u1rv/LKK4wdO5bJkyd3JbR+I3nYKMqdIVicdjiyw9PhiIiIN4jPAJ9AqC+Hsj0dHpbuqii390gNNY0dF1sQERns3E6GbrzxRi644AJeffVVLrnkEt577z3+9re/MWfOnDbHLViwgGPHjrl17ZKSEn7/+98TExPjblj9TmZyJNtVREFERPqSjx8kTzd/zv2yw8NiQgNIjAjE6YScgso+Ck5EpP9xOxnKz8/n3nvv5fPPP+e+++4jJSWl3eNGjx7Ns88+69a1f/nLXzJt2jTmzp3rblj9zqSkcLY7hwHQkPeNZ4MRERHvkeL6cvI0i69qvSERkS4kQ++//z5XX301wcHBpzwuJCSEGTNmdPq6r7/+Ohs2bODBBx90N6R+KSzAl7KQsQA0qoiCiIj0ldQTkqFTrAWoIgoiIuDj6QAAjh49yu9+9zt+/vOfExcX161r2e32bp3X1fPbY4nPgIMQdGwX9uYms+xpP9Ub7R9I1H61/8Rnb9Pd9nvr+9ZvJU0Hiw9UF0FFLkQOa/ew1vLaSoZExIu5nQydffbZGIbR7j6LxUJoaChpaWlcc801jBw5slPX/NWvfsXw4cP5wQ9+4G44J+nuOkc9uU6S3S+cWqc/wY5Gtn/5Jg2hw3rs2r3F29eJUvvVfm/m7e0fNPyCIGEyFGyE3HUdJkNpieFYDCiqbOBIVQMxYQF9G6eISD/gdjI0Y8YMNmzYwJEjR5gyZQpRUVGUlpayZcsWYmJiiI+P58MPP+T111/nueeeIy0t7ZTXe//99/n4449ZvXp1h0mWO9LS0rBa3e+Bsdvt5OTkdPn8dg2tYMfOVKYbexgX3gjpmT1z3V7QK+0fQNR+tV/t73r7W86XfiRltisZ+hIy/792Dwn292FMbCi7iqvJyq9g4cTujcwQERmI3E6G5s2bR1ZWFh9++CHx8fGt24uKirj++us599xzefjhh7n66qtZtmwZK1as6PBatbW1/PrXv+bqq68mJiaGqqoqAJqbmwGoqqrCx8eHoKCgTsdntVq79WGmu+efaGJiBC87hzGdPdTlZRE6ufs9X72tJ9s/EKn9ar/a773tH1RS58JXj3Vq8dVdxdVkFygZEhHv5HYBhb/97W/ccccdbRIhgISEBG6//XZWrFhBaGgo1157LVlZWae81rFjxygrK+OZZ55h+vTprY+33nqLuro6pk+fzi9+8Qt3Q+w3AnytHAsbD6iIgoiI9KGUmYABR/dBdUmHhx2fN6Ty2iLindzuGcrNzSUkJKTdfWFhYRQWFgKQmJhIfX39Ka8VHR3dbvntFStWsHHjRv7+978TGRnpboj9ijUhA/ZCcPkOs6pPDwwFFBEROaXASIidCCXbzN6hid9r97ATy2s7HE4sFt2jRMS7uJ0MJSQk8Nprr3HmmWeetO8///lPa49RRUUF4eHhp7yWv78/M2fOPGn7a6+9htVqbXffQBM3ejJNe6wE2qtPWdVHRESkR6XOMZOh3K86TIbGxoYS4GuhusHGwaO1jIxu/8tOEZHByu1hcjfccAPvvfceV155Jf/85z956623+Oc//8mVV17Jhx9+yI033gjA+vXrmTRpUo8HPNCkpUSzx5kMgL0o28PRiIiI10iZbT6fYvFVH6uFtETzi8usvIo+CEpEpH9xu2fo+9//Pk6nk2XLlvHwww+3bo+KiuJXv/oVS5YsAeDWW2/Fz8+vS0E9/PDDba49kI2KCWG1MZxJHKLiwGaGTrzE0yGJiIg3aFl8tWQb1FdAYES7h2UkRbDx0DGyCyq4fGpSn4UnItIfuJUM2e128vLyuPDCC/n+97/PgQMHqKioICIighEjRrQpjR0VFdXjwQ5EVotBRfh4qPqEpvxvPB2OiIh4i9A4GDICyg9A/noYc367h2nxVRHxZm4Nk3M6nSxatIgtW7ZgGAYjR45k6tSpjBw5skfWCBqsrAkZgKuIgoiISF9p6R06xVC5TFcytONwFY02ex8EJSLSf7iVDPn4+BAVFYXT6eyteAal2DFTcTgNwmxHoeaIp8MRERFvkXL6ZCgpMpAhwX40253sPFzdR4GJiPQPbhdQWLRoEatXr+6FUAavScMSOeg0F7NrKtzi4WhERMRrtPQMFW2Bprp2DzEMg4wkV4ltDZUTES/jdgGFcePG8c4773DNNdewcOFCoqOjTxoit3Dhwh4LcDBIigzkPetIRjoPU7ZnIwlj2x+3LSIi0qMih0FoAlQXQeEmGH5Gu4dlJkfyye5SsvIr+GHfRigi4lFuJ0N33303ACUlJWzYsOGk/YZhsHPnzu5HNogYhkFV+Hio+IKmgixPhyMiIt7CMCB1Nmz7D+Su6zAZal18VT1DIuJl3E6Gnn322d6IY9DzScyACghREQUREelLqXNcydCXHR6SkRQBwIGyWirrmgkP8u2j4EREPMvtZGjGjBm9EcegFz1mOmyHqOZCaKiEgHBPhyQiIt6gpYhCwUawN4P15EQnMtiP1KFB5B6tY2thBfNHR/dxkCIinuF2AYUW1dXVrF27ljfeeIPKysqejGlQmjByOAVOc+2lujwVURARkT4SPQ4CI6G5Dg5nd3hYS++QhsqJiDfpUjK0fPly5s+fz0033cTdd99NQUEBAD/84Q9ZsWJFjwY4WESF+HPAOgKAkj0bPRyNiIicyrp167j33nu54IILyMzMZP78+fzoRz9i27Ztng7NfRYLpMw2fz7VUDnXekNZ+fqCU0S8h9vJ0AsvvMDy5ctZvHgxTz75ZJs1hxYsWMCnn37ak/ENKlUR4wFoys/ybCAiInJKK1eupLCwkGuuuYYVK1Zw3333UV5ezhVXXMG6des8HZ77Whdf7Tj2zNZkqELrCYqI13B7ztALL7zAtddey1133YXd3nal6tTUVHJzc3ssuMHGJzETyv9FyLHtng5FRERO4Ze//CVDhw5ts23+/PksXLiQJ598ktmzZ3sosi5qmTeUtw4cDrO36FsmJoThYzEoq2mkqLKBxIjAPg5SRKTvud0zlJ+fz/z589vdFxwcTFVVVbeDGqyiR5vFJ2KbcqG53sPRiIhIR76dCIF5jxs5ciSHDx/2QETdFJ8OvsHQUAGl7S9/EeBrZVx8KKB5QyLiPdxOhkJDQykrK2t3X2FhYbs3EDGNHTOWo85QfHBw7FDHk1hFRKT/qa6uZseOHYwePdrTobjP6gvJrmqwuV91eJiKKIiIt3F7mNzs2bN56qmnOOecc/D39wfMRUVtNhsrV65k3rx5PR7kYBES4Mtun5EMtWdRvHs9kaNneTokERHppF/96lfU19dz6623un3ut4eVu3teV88/kZE8C8uBT3Ac+hLn1OvbPSY9MYwXgKz8Yz3ymt3Vk+0fiNR+tf/EZ2/T3fZ39jy3k6Ef//jHLF68mEWLFnHuuediGAbPP/88O3fupKioiEcffdTdS3qVysgJUJZFU77Ka4uIDBSPPvoob775Jg888ACTJk1y+/ycnJxuvX53zwcIaYphLGDb/zk5W7aAYZx0jF9NMwDZeRVs3rIFazvHeEJPtH8gU/vVfm/W2+13OxlKTU1l5cqVPPTQQ6xcuRKn08nrr7/OzJkz+b//+z8SEhJ6I85BwychA8peJORY+2O2RUSkf3n88cd54okn+NnPfsZVV13VpWukpaVhtVrdPs9ut5OTk9Pl89toHotz/V34NR4lMzUchow4OU6Hk/s//YjaJjsh8aMYGxfavdfsph5t/wCk9qv9an/X299y/um4nQwBjBo1iqeffpqmpiaOHTtGeHg4AQEBXbmU14kZOwO2QmLTfpz2Zox2VgIXEZH+4fHHH2fZsmXccccdXRoe18JqtXbrw0x3zzcvEgKJUyH/a6wF6yH65LlPViukJ0Ww7sBRcoqqmJAY0b3X7CE90v4BTO1X+9X+3mt/lxZdbeHn50dsbKwSITeMGJNOjTOAAJop3u/d3Z4iIv3Z8uXLWbZsGT/60Y9YunSpp8PpGakti6+eooiCFl8VES/SpZ6hgoIC3n33XYqKimhoaGizzzAMfve73/VIcIORn68Pe31HMtG2ncO71xM/ZoqnQxIRkW955plneOyxx5g/fz5nnXUWWVlZbfZnZmZ6JK5uS50LX/z5lMlQZnI4oIpyIuId3E6GPv30U5YuXYrD4WDIkCH4+fm12W/0k8mW/Vl15Hgo3U5TQZanQxERkXZ88sknAKxdu5a1a9eetH/37t19HVLPSJ4BGHDsIFQdhrD4kw5p6RnaXVJNfZOdQD/vHZ4jIoOf28nQn//8Z6ZMmcKf//xnrSnURdaETCh9lZBjOzwdioiItOO5557zdAi9IyAc4tKgeCvkfQWTLj/pkLiwAGJC/TlS3cj2okqmDRvigUBFRPqG23OGcnNzuemmm5QIdUPsWHPhu5TGfdhs3lk7XkREPCR1rvncwVA5wzBOmDdU0TcxiYh4iNvJUEJCAnV1db0Ri9dIGj2ZJqcPYUYduQfUOyQiIn2otYjCug4PyVQyJCJewu1k6JZbbuGZZ56hvr6+N+LxChZfPwr8hgFQvGuDZ4MRERHvkjLHfD6yHerK2z2kJRnKLqjom5hERDzE7TlDOTk5HD16lPPOO4+ZM2cSGRl50jH3339/jwQ3mFVFTIDSfTQVbPF0KCIi4k1ComHoaDi6F/K+hnEXnXRIWpJZUS6/vJ6jNY0MDfHv6yhFRPqE28nQ888/3/rz22+/fdJ+wzCUDHWCb2ImlL6hIgoiItL3Uue4kqGv2k2GwgJ8GRkdzP7SWrYWVLJgXIwHghQR6X1uJ0O7du3qjTi8TsyYGZAFqU37aWi2E+Cr0qUiItJHUufAN/867eKr+0trycqvUDIkIoOW23OGpGdEjZyMA4MYo4Ld+/Z5OhwREfEmqa55Q4ezobGm3UNUREFEvEGnkqGNGzdSW1t72uPKy8t59dVXux2UNzD8Qyj2TQbgyO71Ho5GRES8SkQKhCWBwwYFG9s95MQiCk6nsw+DExHpO51Khq655hr279/f+rvD4WDSpEns2NF2vkt+fj4PPPBAz0Y4iFVFTACgqSDLs4GIiIj3aekdymu/xPa4uDD8rBYq6prJK9eSGiIyOHUqGfr2N0JOpxObzaZvirrJNzEDQEUURESk77UkQx3MG/LzsTAhIQzQUDkRGbw0Z8iDosfMBGBY834q65s9HI2IiHiVlmSoYCPYmto9pHWoXH5lHwUlItK3lAx5UNiwyQCkWo6w40C+h6MRERGvEjUGgoaCrQGK2l/zLiPZXG9Ii6+KyGClZMiTgoZw1CcWgOI9GzwcjIiIeBXDgJTZ5s+5X7Z7SEZSBADbCitptjv6KDARkb7T6XWGDhw4gNVqroVjt9tbt337GHFPdeQEhpaW0JyfBVzp6XBERMSbpM6FXW91WERheFQwYQE+VDXY2F1czaTE8D4OUESkd3U6Gbr33ntP2nbXXXe1+d3pdGIYRvej8iI+iZlQ+gmhFSqiICIifSzV1TOU9zU47GBpuwC4YRhkJEewdm8ZWfkVSoZEZNDpVDL00EMP9XYcXitq9HTIghG2/ZRUNRAbFuDpkERExFvEpoFfKDRWQcl2iE8/6ZBMVzKUnV/BVbNSPRCkiEjv6VQydOmll/Z2HF4rINksojDSKOLTQ8XEpg/zbEAiIuI9rD6QMhP2fWSW2G4nGWqZN6QiCiIyGKmAgqeFxlNjjcDHcHB4z2ZPRyMiIt6mpYhCXvvrDaW7KsrtPVJDTaOtr6ISEekTSoY8zTCoipwAgK0wy7OxiIiI90mdaz7nfgXtLKYeExpAYkQgTidsVe+QiAwySob6Ad/ETABCju3A2c6NSEREpNckTgGrP9SWwtH97R6ixVdFZLDyeDK0c+dObr75Zs466yzS09OZMWMGV1xxBa+//rqnQ+szkSOnATDacYBDR+s8HI2IiHgVH39IMu9DHa431LL4an5FHwUlItI3Ol1au7dUVVURFxfHokWLiI2Npb6+njfffJO77rqLwsJCbrvtNk+H2Ot8XD1D44183s8rZXhUsGcDEhER75Iy20yE8tbB1B+etFtFFERksHIrGWpoaODaa6/lxz/+MXPmzOmRAGbOnMnMmTPbbFuwYAEFBQW8/PLLXpEMETmcRksQ/o46CvdthSnDPB2RiIh4k9Q5sJYOe4YmJYZjMeBwZYOWgRCRQcWtYXIBAQHs2bMHq9V6+oO7KTIysk9ep1+wWKiOHA9Ac0GWZ2MRERHvkzwDDAtU5EFlwUm7g/19GBMbCmionIgMLm4Pk5s8eTJbt249qTenuxwOBw6Hg6qqKt59912++OILHnjgAbevY7fbu/T6Led19fzussanw9HNhFXsoKGpGV9r307n8nT7PU3tV/tPfPY23W2/t75vg4p/KMRnQNEWyF0H6UtOOiQjKYJdxdVk5VewcGKcB4IUEel5bidDd999N7fddhvR0dGcd955BAf3zPyWBx98kJdeegkAX19f7rvvPq688kq3r5OTk9OtOLp7fldFWqOJBMZzkLfWbmZ4hK9H4vBU+/sLtV/t92be3n6vlzrXlQx92W4ylJkSwUub8jVvSEQGFbeToSuuuILm5mbuvfde7r33XgICAjAMo3W/YRhs3uz+4qG33norS5Ysoby8nI8//pj//d//pb6+nhtuuMGt66SlpXVpeJ3dbicnJ6fL53dbvC9kP8J4I5e9gTFkZqb26ct7vP0epvar/Wp/19vfcr4McCmzYd3jZhGFdrQUUdiaX4nD4cRiMdo9TkRkIHE7GTr//PPbJD89JSEhgYSEBADOPPNMAP70pz9x6aWXMmTIkE5fx2q1duvDTHfP77LY8dgMP8Kop+jQbqxzRvR9DHiw/f2E2q/2q/3e236vlzLbfC7dBbVHIXhom91jYkMI8LVQ3WjjQFkto2JCPBCkiEjPcjsZevjhh3sjjpOkp6fz73//m/z8fLeSoQHL6kttxBjCj22juTALuNDTEYmIiDcJHgrR48xkKG8djL+4zW4fq4W0xHA2HjpGdn6FkiERGRQ8vuhqR9avX4/FYiE5OdnTofQZX9d6Q5FVO6lv0oRkERHpY6muZTNyv2p3t9YbEpHBpsuLru7Zs4f9+/fT2Nh40r7vfe97nb7OAw88QEhICGlpaURFRXHs2DHee+893nnnHW644Qbv6BVyCUqdDNueZwKH2F5UybRh3tN2ERHpB1LmwKZnIK+DZCg5AoAsldcWkUHC7WSovr6eH/3oR3z99dcYhoHT6QRoM4/InWQoMzOTVatW8dprr1FdXU1QUBDjxo3jkUce4ZJLLnE3vIEtLgOAiZaDvJ53TMmQiIj0rVTXvKHD2dBYbZbcPkGmKxnaebiKhmY7Ab6aYyYiA5vbydBf//pXCgsLef7557nqqqt4/PHHCQ4OZuXKlezZs4dHH33UretdfvnlXH755e6GMTjFTsSBhWijikO5B4CRno5IRES8SXgSRKSYi6/mr4dR57bZnRQZyNBgP47WNrHzcBWTUyI9FKiISM9we87QmjVruOmmm5g8eTIA8fHxzJ49m8cee4yJEyfy4osv9niQXsMviPpws4pcc0GWZ2MRERHvlDrXfM49ucS2YRitQ+WyNVRORAYBt5OhwsJCRowYgdVqxTAM6uvrW/d95zvfYc2aNT0aoLdpKaIQXbObiromzwYjIiLep9NFFCr7KCARkd7jdjIUGhpKXV0dAEOHDiU3N7d1n81ma90nXeOXZPa4TbQc0o1GRET6XoorGSrcDM0NJ+3OSA4H1DMkIoOD28nQ2LFjOXToEAAzZ87kySefZNOmTWzdupXly5czbty4no7Ru8SnAzDJOMRW3WhERKSvDR0JwTFgb4Sib07a3dIzdKCslsq65j4OTkSkZ7mdDF1++eXU1tYC8NOf/pT6+nquvvpqrrjiCoqKirjnnnt6PEivEpcGQLKllL25BR4ORkREvI5hHK8q185QuchgP4YNDQK03pCIDHxuV5O76KKLWn9OTk7m/fffby2zPXnyZCIiInoyPu8TGEljSBL+NQU0FWbhdJ7Vpmy5iIhIr0udCzte73jeUHIEh47WkZ1fwRljovs4OBGRnuN2z9C3BQUFcfbZZ7NgwQIlQj3Ex1VEIalhL8VVJ4/XFhER6VUprp6h/A1gt520+3gRhYq+i0lEpBd0OxmSnmdNyARcRRQ0b0hERPpa7ETwD4emaijJOWl3S3ntrPzK1sXXRUQGok4Nkxs3blynh2oZhsGOHTu6FZTXcxVRmGgc4rWCSi6YFO/hgERExKtYrJAyE/Z+YA6VS5jcZvfEhDB8LAZlNY0UVTaQGBHooUBFRLqnU8nQ7bffrnkrfSnOTIZGGkXszC0GVKFPRET6WOqc48nQ7Nvb7ArwtTIuPpRthVVk5VUoGRKRAatTydAdd9zR23HIiULjsAVG41NfSnNRDg7HmVgsSkZFRKQPpc41n/PWgdNpVpk7QUZSBNsKq8guqGBRukYwiMjApDlD/ZFhYEkwe4eG2/ZzoKzWwwGJiIjXic8En0CoOwple07andk6b6iiT8MSEelJbpfWXr169WmP+d73vteFUORElvgM2L+GCcYhthZUMComxNMhiYiIN/Hxg6RpcGgt5H4J0WPb7G5JhnIKKrHZHfhY9f2qiAw8bidDHS2qeuKcIiVDPSA+A4CJllxeK6jksilJHg5IRES8TuocVzK0DqZd32bXiOgQQvx9qGm0sa+0hnFxYR4KUkSk69xOhtasWXPStmPHjrFmzRreeecd/vznP/dIYF7PVVFunJFHTl6Zh4MRERGvlDrHfG5n8VWrxSAtMZx1B46SnV+hZEhEBiS3k6HExMR2t02aNAmbzcazzz7Lww8/3CPBebWIYTj8QvFvqqapeCdNtvn4+WgIgoiI9KGk6WDxgaoCqMiDiJQ2uzOSI1h34ChZ+RVcMT2lg4uIiPRfPfrpevbs2Xz88cc9eUnvZbFgxKcBMMZxkN3F1R4OSEREvI5fsFlIAdrtHcpMDgfMxVdFRAaiHk2GCgsLsVjUe9FTDNcNaJLlINkFFR6NRUREvFTqbPM598uTdmUmRwKwp6SauiZbX0YlItIj3B4mt3HjxpO2NTU1sXv3bp588klmz57dI4EJrYuvTrDk8mp+BVfNSvVwQCIi4nVS58JXy8wiCt8SFx5AbJg/JVWNbC+qYvqwIR4IUESk69xOhq6++uo2leMAnE4nAHPmzOGBBx7omciktYjCBCOXnPxjHg5GRES8UsoswICje6HmCITEtNmdkRTBBztKyM6vUDIkIgOO28nQs88+e9I2f39/EhMTiYqK6pGgxCVqLE5rAKH2ehpL91PbOI9gf7f/yURERLouMBJiJsCR7ZC3DiZc0mZ3RrKZDGnxVREZiNz+ZD1jxozeiEPaY/XBiJ0ARd8wwTjEtsJKZo4Y6umoRETE26TOMZOh3K9OSoZaFl9VMiQiA5Hb1Q4OHjzIhg0b2t23YcMGDh061N2Y5ESuoXITLYfYWqBqPSIi4gGtRRROriiXlhSOYUDBsXrKahr7ODARke5xOxl6+OGH2114FeCTTz7RGkM9zVVEYaJxiCxVlBMREU9IcS2+WpwDDW2/mAsL8GVkdAgAW3WfEpEBxu1kKCcnh+nTp7e7b/r06Wzbtq3bQckJXOW1J1oOsVVFFERExBPC4iFyOOCE/JNHh2QkRQBab0hEBh63k6Hq6mqCgoLa3RcQEEBlpf4Q9qjYCTgNK1FGFU3HijiqIQgiIuIJqXPN53bXGzIXX83WvCERGWDcToZiY2PZunVru/u2bt1KdHR0t4OSE/gGYkSNAVy9Q4VKNkVExANOMW8ow1VEIbugonW5DRGRgcDtZOjcc89lxYoVfP311222r1+/nr///e+cd955PRacuMQfnzekb91ERMQjUl3zhgq/geb6NrvGxYXhZ7VQUddM7tE6DwQnItI1bpfWvv322/niiy+47rrrGDZsGHFxcRQXF3Po0CFGjRrFHXfc0Rtxerf4DNj6EpMsh3hJFeVERMQTIodDaDxUH4aCTTB8fusuPx8LExLCyMqvILuggmFRwR4MVESk89zuGQoNDeWll15i6dKlhIeHU1RURHh4OHfccQf//ve/CQkJ6Y04vVvc8fLa2fkagiAiIh5gGJDiGiqXt+6k3VpvSEQGIrd7hgCCg4O5/fbbuf3223s6HmlPXBoASUYZttpyCivqSYpsv4iFiIhIr0mdA9tXdVBEIQJQEQURGVjc7hlqUV1dzdq1a3njjTdUQa63BUZA5DBAi6+KiIgHtcwbyt8I9uY2u1qKKGwrqqLZ7ujjwEREuqZLydDy5cuZP38+N910E3fffTcFBQUA/PCHP2TFihU9GqC4xKmIgoiIeFj0eAiIgOZaONy2suywoUGEBfjQZHOwu7jaM/GJiLjJ7WTohRdeYPny5SxevJgnn3yyzfyVBQsW8Omnn/ZkfNIi/oR5Q1rhW0REPMFiOWHeUNsS24ZhtPYObdGXdiIyQHQpGbr22mu5//77mTdvXpt9qamp5Obm9lhwcoK4DAAmGrnkFFRid6iIgoiIeEDLULl21hvSvCERGWjcToby8/OZP39+u/uCg4OpqqrqdlDSjngzGRppFOFoquVAaY2HAxIREa90YjLkaDs3SMmQiAw0XSqtXVZW1u6+wsJChg4d2u2gpB2hsRASi8VwMt7IU+lSERHxjPgM8A2Chgoo3dVmV3pSBAD7Smuobmg++VwRkX7G7WRo9uzZPPXUU9TVHV9h2jAMbDYbK1euPGnonPQgVxGFCZZcVZQTERHPsPpC8gzz52+V2I4O9ScxIhCnE3IKdZ8Skf7P7WToxz/+MUVFRSxatIiHH34YwzB4/vnnWbJkCbm5udx22229EadA61C5iYaKKIiI9KaamhoeeeQRrr/+embNmsXYsWNZtmyZp8PqP1JcQ+VOsfhqdr6SIRHp/9xOhlJTU1m5ciUjRoxg5cqVOJ1OXn/9dSIjI3nxxRdJSEjojTgFWivKTbIcZOfhKhptdg8HJCIyOFVUVPDyyy/T1NTEueee6+lw+p8T5w052xb0yUgOByAr/1hfRyUi4jafrpw0atQonn76aZqamjh27Bjh4eEEBAT0dGzyba5hcmMtBTibmtl1uLq1jKmIiPScxMRENm7ciGEYlJeX88orr3g6pP4laRpYfKH6MBw7BEOGt+7KcM0bUs+QiAwEXUqGWvj5+REbG9utANatW8cbb7zBli1bKC4uJjQ0lEmTJnH77bczadKkbl170IkcBv7h+DVWMtooJLugQsmQiEgvMAzD0yH0b76BkDgF8tebvUMnJENpSeFYDCiuaqC4soG4cH1ZKiL9V6eSodWrV7t10e9973udPnblypVUVFRwzTXXMGrUKMrLy/nHP/7BFVdcwVNPPcXs2bPdeu1BzTDMoXKH1jLJctD81k1vj4hIv2e3d21Yc8t5XT2/NxnJs7Dkr8eR+yXO9Ctbt/tbDcbEhrKruJoteeUsnND1L037c/v7gtqv9p/47G262/7OntepZOiee+7p9AsbhuFWMvTLX/7ypHLc8+fPZ+HChTz55JNKhr4tzkyGJhi5vKAiCiIiA0JOTo5Hz+8NYbZYRgNNez9le1ZWm31JgTZ2AR9u3kNM0+Fuv1Z/bH9fUvvVfm/W2+3vVDK0Zs2aXgugvXWJgoODGTlyJIcPd/8P6KDjKqIw0XKI/a51HEIDfD0clIiInEpaWhpWq9Xt8+x2Ozk5OV0+v1c1DMe54T4CagvJHBkHoXGtuxY05/PRwe0UNweQmZnZ5Zfo1+3vA2q/2q/2d739LeefTqeSocTERLcD6I7q6mp27NjBrFmz+vR1BwRXee1JllxwOsgprGTOyCgPByUiIqditVq79WGmu+f3iuAhEDcJinOwFqyHSZe17pqcMgSAnIJKDMOCxdK9OVj9sv19SO1X+9X+3mt/lwso1NTUkJWVRUVFBZGRkWRkZBASEtIjQf3qV7+ivr6eW2+91e1zB+O47DYiR2DxCSDI1sAwo4SsvGPMHBbZ7csOmPb3ErVf7T/x2dv01bhsGYRS50JxjllE4YRkaExsCIG+VqobbRwoq2FUTKgHgxQR6ViXkqGnn36axx9/nIaGBpxOJ4ZhEBAQwI9//GOuu+66bgX06KOP8uabb/LAAw90qZrcYByX/W3jQoYRXLGLicYhPt82jJlhVT127YHQ/t6k9qv93szb2y9dkDIb1v/tpMVXfawW0hLD2XConKz8SiVDItJvuZ0MrV69mj/84Q+cccYZXHrppcTExHDkyBFWr17NI488QmRkpFsFFE70+OOP88QTT/Czn/2Mq666qkvXGJTjsr/FKJwF3+xiouUQz9Ua3RqP3WIgtb83qP1qv9rf++OyB5rPPvuM+vp6amtrAdi3bx/vvfceAGeeeSaBgYGeDK9/aFl8tWQ71B+DwOMjFTKSzWQoO7+CxVOTPBSgiMipuZ0M/fOf/+Tiiy/m//7v/9psv/DCC/nFL37Bv/71ry4lQ48//jjLli3jjjvu6NLwuBaDclz2tyVkwjcwyXKIoooGyutsRIf698ilB0T7e5Har/ar/d7b/m/71a9+RWFhYevv7733XmsytGbNGpKS9AGfkBgYOgqO7oO89TD2gtZdLevgZavyqYj0Y24nQwcOHODOO+9sd993v/tdli5d6nYQy5cvZ9myZfzoRz/q0vlex1VRLs2aCzjZWlDBOeO7t/itiIi09fHHH3s6hIEhdY6ZDOV+2TYZSooAYOfhKhqa7QT4KtEWkf7H4u4JAQEBVFZWtruvsrKSgAD3Vpp+5plneOyxx5g/fz5nnXUWWVlZbR7SjpiJYFiJcFYRRznZBe3/e4iIiPS6FNdQuW/NG0qKDGRosB/Ndic7Dvfc3FYRkZ7kds/Q1KlTefzxx5kxYwaxscd7I0pLS1m+fDnTpk1z63qffPIJAGvXrmXt2rUn7d+9e7e7IQ5+vgEQPRaO7GCi5RDZ+eM8HZGIiHirlnlDRVugqRb8ggFzEfaM5Ag+3nWE7PwKpqR0v/KpiEhPczsZuvPOO7nyyitZuHAhs2fPJjo6mtLSUr7++mt8fHx4/PHH3brec889524IAuZ6Q0d2MMk4xLMFFa1V/URERPpURAqEJUJVIRRsghFntu7KSDqeDImI9EduD5MbPXo0r776Kueccw45OTmsWrWKnJwczjnnHF555RVGjRrVG3HKt8WZ84YmWXM5VtdMfnm9hwMSERGvZBjHe4dyv2qzKzMlAkDDuUWk3+rSOkPDhw/nT3/6U0/HIu5wFVHI8MmFJrNaT8rQIA8HJSIiXil1DuS8YhZROEFGUjgAB8tqqahrIiLIzxPRiYh0yO2eIekn4tIAiHGUEkE1W1W6VEREPKWliELBJrA1tW6OCPJjmOuLOvUOiUh/1KWeoR07dvDmm29SVFREY2Njm32GYfDEE0/0SHByCgHhEDkcjh10FVFI9XREIiLiraLHQtBQqDsKh7MgeUbrrozkCA4drSM7v4Izx0R7LkYRkXa4nQytXr2ae++9F4vFwpAhQ/D19W2zX5P4+1B8upkMGYd4rjATm92Bj1WdfSIi0scMA1Jmw663zHlDJyZDSRG8nlWkIgoi0i+5nQw98cQTnHnmmfz+978nPDy8N2KSzopLhx2vk+GTx4pGO/tKaxgXF+bpqERExBulzjmeDM37aevmjOQIwJzbqsqnItLfuN2NcOTIEa655holQv1BfCYAmb65AGzN13hsERHxkJTZ5nPe1+Cwt26emBCGj8WgrKaJwgpVPhWR/sXtZGj8+PGUlJT0RiziLldFuQRbIUE0kKUiCiIi4ilx6eAXAo2VcGRH6+YAXyvj481RC9n60k5E+hm3k6G77rqLFStWsGvXrt6IR9wREgMhcRg4GWfkqaKciIh4jtXn+Fyh3HVtdmUkm6NJsvKP9XVUIiKn5PacoczMTBYuXMill15KdHT0ScPlDMPgjTfe6LEA5TTiM2BvMRMth1h5eCwNzXYCfK2ejkpERLxR6hzY/7G53tDMm1s3ZyRF8Dx56hkSkX7H7Z6hFStW8OSTTxIZGUlCQgIRERFtHppL1MdcQ+Wm+eVhczjZcbjKwwGJiIjXSp1rPud+BU5n6+ZMVxGFnMJKbHaHBwITEWmf2z1Dzz77LJdffjm//vWvsVrVA+FxcWYylOmbB/WwNb+CKSmRHg5KRES8UsIUsPpB7REoPwBDRwIwIjqEEH8fahpt7D1S0zqHSETE09zuGaqtreXiiy9WItRfuHqGkpoP4YtNK3yLiIjn+AZA4jTz59wvWzdbLQbpSebIEa03JCL9idvJ0JQpU9i/f39vxCJdEZEKAeFYnTbGGAVkq4iCiIh4UqqrxPZJRRQiAHSfEpF+xe1k6L777uPf//43H330EU1NTb0Rk7jDMFqHyk2wHOJAaS2V9c0eDkpERLxW6hzz+YSeITCLKABsyavo23hERE7B7TlDl19+OTabjTvuuAPDMAgICGiz3zAMNm/e3GMBSifEZ8ChtcwKLOCVGthWWMncUVGejkpERLxR0gwwLFCRC5WFEJ4IHC+isKekmromG0F+bn8EERHpcW7/JTr//PMxDKM3YpGuis8AINMnD4Cs/AolQyIi4hkBYeaIhcNZkLcO0hYDEBceQGyYPyVVjWwrrGLG8CGejVNEBDeTIbvdzi233MKQIUNUQrs/cQ2TS2nejwWHFl8VERHPSp1jJkO5X7UmQ2AOlftgRwnZ+RVKhkSkX3BrzpDT6WTRokVkZWX1UjjSJVGjwScQX3s9w4xiLWonIiKe1Tpv6Ks2mzNTIgDI0pd2ItJPuJUM+fj4EBUVhfOEhdSkH7BYIXYiAJMshyiuauBIVYOHgxIREa+V4qooV7oT6spbN2e6iiiovLaI9BduV5NbtGgRq1ev7oVQpFtc84bmBR8G0HpDIiLiOcFREDXW/DnveIntSUnhGAYUHKunrKbRQ8GJiBzndgGFcePG8c4773DNNdewcOFCoqOjTyqosHDhwh4LUDrJtfhqpm8uYH7rdt6EWE9GJCIi3ix1DpTtNofKjVsEQFiALyOjQ9h3pIbs/ArOGa/7lIh4ltvJ0N133w1ASUkJGzZsOGm/YRjs3Lmz+5GJe1qKKDTtA5xa1E5ERDwrdQ5s/sdJ84YykiKUDIlIv+F2MvTss8/2RhzSXTETwLAS0FxBPOVsLfDD6XSqDLqIiHhGSxGFw9nQWAP+IQBkJofzn28KyNJwbhHpB9xOhmbMmNEbcUh3+QZAzHgo2Uamby7v1g8l92gdw6KCPR2ZiIh4o/AkCE+Byjwo2AAjzwYgMzkSMIdz60s7EfE0twsotKiurmbt2rW88cYbVFbq251+wTVU7szQIgANlRMREc9qp8T22LhQ/HwsVNY3k3u0zkOBiYiYupQMLV++nPnz53PTTTdx9913U1BQAMAPf/hDVqxY0aMBihtaiyjkAWi9IRER8axUV4nt3OMV5fx8LExMCAMgSyW2RcTD3E6GXnjhBZYvX87ixYt58skn26w5tGDBAj799NOejE/c4SqvbRZRUM+QiIh4WOpc87lgI9iOl9LOcK03pGRIRDzN7TlDL7zwAtdeey133XUXdru9zb7U1FRyc3N7LDhxU+wkAILqi4mkiu1FFmx2Bz7WLo+GFBER6bqhoyA4GmpLofCb1p6izOQIQF/aiYjnuf0pOT8/n/nz57e7Lzg4mKqqqm4HJV0UEAZDRgAw3b+AhmYHe0pqPByUiIh4LcOAFNdQubzj84YyXMnQ9qIqmmwODwQmImJyOxkKDQ2lrKys3X2FhYUMHTq020FJN7iKKCyIOAzoWzcREfGwlqFyJxRRGDY0iPBAX5psDnYXV3soMBGRLiRDs2fP5qmnnqKu7ngFGMMwsNlsrFy5knnz5vVogOIm17yhTB9zuOJWJUMiIuJJLUUU8taDwxxebxhGa+9Qlu5TIuJBbidDP/7xjykqKmLRokU8/PDDGIbB888/z5IlS8jNzeW2227rjTils1wV5VIazSIKWaooJyIinhQ7CfzDoKkainNaN2cmhQOQlVfhocBERLqQDKWmprJy5UpGjBjBypUrcTqdvP7660RGRvLiiy+SkJDQG3FKZ8WZPUNBNbkE0cCekmrqm+ynOUlERKSXWKyQPNP8Oe94ie0MFVEQkX7A7WpyAKNGjeLpp5+mqamJY8eOER4eTkBAQE/HJl0REg2hCRjVRcwOPsya2uFsL6pk2rAhno5MRES8Veoc2Pch5H4Js34EQLqrvPb+0hqqGpoJC/D1YIAi4q3c7hm69957yc/PB8DPz4/Y2NjWRKiwsJB77723ZyMU97mGyp0T3lJEQUPlRETEg1LnmM+568C1PmF0qD+JEYE4nbBN9ykR8RC3k6HXXnuNY8eOtbvv2LFjrF69ursxSXe5Kspl+ppFFLK1qJ2IiHhSwmTwCYC6Mijb27o5MyUCUBEFEfGcHl2Ns7KyEj8/v568pHRFSxGFJrOIgirKiYiIR/n4Q9J08+cT1hvKdA2V05d2IuIpnZoztHHjRtavX9/6+yuvvMLnn3/e5pjGxkbWrFnDyJEjezZCcZ+rvHZw5T78aObQ0Toq6pqICFKiKiIiHpIyGw6tNdcbmnotcLyIQpaSIRHxkE4lQ+vXr+fxxx8HzLUBXnnllXaPS0hI4H/+5396LjrpmvBkCIjAaKjgzIgyPqyIZ2tBJWeMifZ0ZCIi4q1a5w0d7xmalBiGxYCSqkaKKxuIC1cxJhHpW51Khm688Ub+67/+C6fTyZw5c3j66aeZMGFCm2P8/PwIDg7ulSDFTYZhDpU7+DkLwotdyVCFkiEREfGcpOlgWKEyHyryICKFID8fxsSGsqu4mqz8Ci4Ij/N0lCLiZTo1ZyggIIDIyEiGDBnCmjVrmD59OpGRkW0eSoT6mdYiCnmAFl8VEREP8w+BhEzz59zj6w1lar0hEfEgtwsoJCYm9miRhJqaGh555BGuv/56Zs2axdixY1m2bFmPXd9rxWcCkNJoVu3JLqjA6SpnKiIi4hEps83nE4sotCRDmjckIh7gdjLU3NzMX//6Vy666CIyMzMZP358m8e3h8+dTkVFBS+//DJNTU2ce+657oYjHXFVlAuu2IWvxUlpdSPFVQ0eDkpERLxa6lzz+YR5Qy1FFLYWVOJw6Es7EelbnZozdKI//elP/POf/+SMM87g3HPP7XYvUWJiIhs3bsQwDMrLyzssziBuGjoKfIMwmus4K6qKD4+Ek51fSXx4oKcjExERb5Uyy3wu2wM1pRASzeiYEAJ9rdQ02thfWsPo2FDPxigiXsXtZOjdd9/l9ttvZ+nSpT0SgGEYPXId+RaLFWInQcEGzg4vNpOhggoumKTJqSIi4iFBQyBmAhzZAXnrYMJ38bFaSEsMZ8OhcrLyK5QMiUifcnuYXGVlJdOmTeuNWKSnuYbKZfrkAlp8VURE+oGWEtt5x4soZCSHAyqiICJ9z+2eoenTp7Nr1y5mzZrVG/F0m91u79Z5XT2/PzJiJ2EBkhv3AgvZWlBJc7MNi+Xk3rjB2H53qP1q/4nP3qa77ffW9026KGU2bHwKcr9s3ZTRWkRBlU9FpG+5nQzdf//93HbbbSQkJHDWWWf1aGW5npCTk+PR8/uToMoAxgP+pVvxszqpbrDx7pebSQzt+J99MLW/K9R+td+beXv7pY+09AwV50BDFQSEkZEUAcDOw1U0NNsJ8LV6Lj4R8SpuJ0OXXHIJNpuNn/zkJxiGQUBA29WiDcNg8+bNPRagu9LS0rBa3f8jarfbycnJ6fL5/ZJtPM4vl+LbXM2CuCbeL/SnOTSBzMyEkw4dlO13g9qv9qv9XW9/y/kinRKWAJHD4NghyN8Ao88lKTKQqBA/ymqa2HG4iikpkZ6OUkS8hNvJ0Pnnn9+vix5YrdZufZjp7vn9ijUIosdDSQ5nR5TwfmEKOYVVXD41ueNTBlP7u0DtV/vVfu9tv/Sh1LlmMpT7JYw+F8MwyEiKYM2uI2TlVSgZEpE+43Yy9PDDD/dGHNJb4tOhJIcMn1wgRZNTRUTE81JmQ9YL3yqiYCZDuk+JSF9yOxnqDZ999hn19fXU1tYCsG/fPt577z0AzjzzTAIDtTZOl8VnQNYLJDfuA+azvaiKJpsDPx+3CwmKiIj0jJZ5Q4WbobkBfANOKKJQ4bGwRMT7dCoZ2r59u1sXnThxolvH/+pXv6KwsLD19/fee681GVqzZg1JSUluXU9OEGeW1w46up2wAB+qGmzsKalmUmK4hwMTERGvNWQEhMRCTYmZEA2bS0aSeV86dLSOiromIoL6V4EmERmcOpUMXX755Z2aJ+R0OjEMg507d7oVxMcff+zW8eKGuEmAgVFdxLwEeOcAZOVXKBkSERHPMQyzd2j7a5D7FQybS0SQH8OGBnHoaB3ZBZWcOSba01GKiBfoVDL00EMP9XYc0lv8Q81v4Mr3syC8mHeIci2+murpyERExJulzjWTobyvWjdlJkeYyVB+hZIhEekTnUqGLr300t6OQ3pTfAaU73cVUYhia4EWtRMREQ9LmW0+560Huw2sPmQkR7A6q4gszRsSkT6iWfTeIN6cN5TSuBeAPSXV1DXZPBmRiIh4u5gJEBAOzbVQnA3QpoiC0+n0YHAi4i2UDHkDVxGFgLLtxIUF4HDCtsIqDwclIiJezWI53juUa5bYnhAfho/F4GhtEwXH6j0YnIh4CyVD3iA+w3wu38/MRHNkpEqXioiIx7WU2M415w0F+FoZHx8GoPWGRKRPKBnyBsFREJYIwJlhRwDdZEREpB9IcSVDeevA4QAgI9msdqov7USkLygZ8hauoXJmEQUlQyIi0g/EZ4BvENSXQ9luADKTIwHIzlexHxHpfUqGvIWriEJy4z4A8svrKa9t8mREIiLi7Xz8IGma+bNrqFymq2cop7ASm93hqchExEsoGfIWrnlDfqXbGBEVDKh3SERE+oHUueazKxkaERVCiL8P9c129h6p8WBgIuINlAx5C9cwOUp3MiUxCICtGoIgIiKedmIRBacTi8UgPck1b0jr4olIL1My5C3CkyAwEhw2zogoBWCreoZERMTTEqeBxReqi6DCnNfaut6QkiER6WVKhryFYZxQRCEPMIfJaVE7ERHxKL8gSJhs/uwaKpeRFAHAViVDItLLlAx5E9e8ocT6PfhYDMpqmiiqbPBwUCIi/U9tbS2//e1vmTdvHmlpaVxyySW8/fbbng5r8EptWXzVTIYmp0QAsKekmgabiiiISO9RMuRNXMmQz5EcxsWHAlrHQUSkPXfccQerV69m6dKl/P3vfyctLY0777yTN99809OhDU7fKqIQGxZAXFgADifsP2bzYGAiMtgpGfImLUUUSraTkehKhjRvSESkjc8++4wvv/ySX/7yl1x55ZXMmjWL3/zmN8ydO5dHHnkEu93u6RAHn+SZgAHl+6G6BDi++Oq+8mYPBiYig52SIW8ydCT4BkNzHXMjKgD1DImIfNuHH35IUFAQF1xwQZvtl112GUeOHCE7O9tDkQ1igREQO8n8Oc81b8hVROGDA3V8uf+oZ+ISkUHPx9MBSB+yWCFuEuSvJ9MnF4hiW2EVdoeKKIiItNi7dy8jR47Ex6ftLXLs2LGt+6dMmeLWNbvam9Rynjf0Rhkps7CU5OA49BXOcd/loomxPPnZfoprbFzzzEbOGB3FPReMZWxcqKdD7TPe9O/fHrVf7T/xuavnn46SIW8Tlw7564mr20Ogbyw1jTYOlNYwIirI05GJiPQLFRUVJCUlnbQ9PDy8db+7cnJyuhVTd88fCCIc8YwEGnavYWdcFgB/Pm8Ir+6o4f39dXy+t4y1e8tYMCyQKyeGMDTI6tF4+5I3/Pufito/wNvvdGCxN2KxN+C01eNobMDWXI+jqR5HcwOO5gaczfVga8BoedgbsNgbaUqaQ2+3XsmQt4k35w1ZSraSlngxGw6Vk11QqWRIROQEhmF0aV9H0tLSsFrd//But9vJycnp8vkDyqh42PxrAqsOkDluOASEY7fbCffP4WeLJvPnNft5Z1sxHx+q56vCRq6bM4xbzhhOaICvpyPvNV71798Otb+P2u90QHM9NNfhaKyjsb6axvoamutraGqowVZfS3NjLQ7Xw9lUh7O5DqP1UY/VXo/VVo+PowFfez1+jgb8nA34OxsIoKnLoR2oyiHpklu69ffzdJQMeRtXRTkObyV9YhgbDpWztaCCSzPjPRuXiEg/ERER0W7vT2WlueZNSw+RO6xWa7c+zHT3/AEhPAGGjMQo34+1cCOMOb9114iYUP561VS+yTvGQ+/sZOOhYzzx2QFe2lTAj88exQ9mpuLnM3inQXvFv/8peH37LQZWewM01+NorKGxvobGuhqa6mtobqihqaEWe0MN9sYaV8JSB8110FQHtjoszfVYbHVY7Q342OvxddTj62jA33FysmIFfIGQXmpLvdOPOvxpaHkYATRZ/Gm2BNJsCcRmDcDuE4jDJwiHNZCa6Mmk9vK/v5IhbxM93lzpu6GCWUPreAoVURAROdGYMWN46623sNlsbeYN7dmzB4DRo0d7KrTBL3WOWVEu98s2yVCLKSmRvHzLbD7cUcLD7+3iQGktD765g39+dYi7LhjHhZPiutRzJ+JpDY1NFB3YRtWhLdgPbyOwfCfRdfuZ4KjE+mZj63EWIND16A0tyUq9K1lpNAJoMvxptgbSbAnAZg3EbnUlK76BOH2CwC8Iwy8Qwy8Yq7/58AkIwScgBL+AYPyCQvAPDCUgKJggfz+CfK0M8bWc9v9Vu91OVlZWL7X0OCVD3sbHD2LGQXEOGT65QCA7D1fTqEXtREQAOPfcc3n55Zf54IMPuOiii1q3v/baa8TExJCRkeHB6Aa51Dmw5TnIXdfhIYZhsHBiHGePi+HfG/N59KM9HDpax20vfMPklAjuu2g804YN6cOgRTrHZndQcKye/KLDVOVuwVm8jZBju4it38dwRy4jjNOXka93+lGPH3UE0IA/TYYrYbEGYnMlKzZrIE6fABw+wTh8AzH8gsA3CIt/MBb/YKx+ZrLiGxiMr38I/kEh+AWFEhAYTJC/L0F+PkT6WLBYvOOLBSVD3ig+A4pziKrZRWTQDI7VNbO7uNrTUYmI9Atnnnkmc+fO5cEHH6SmpoaUlBTefvtt1q5dyx/+8AevHq7T61LnmM9F35hDfKz+HR7qY7Vw1axUvjc5kb9/foAVnx9gS14Fi/+2jvMnxnLXBeMYGd1bg31E2udwOCmpbuBgaS0HS6uoLNyDUbKN0IpdxDfuZ6yRx3yj7OQTDajHnzyfYZSHjKZx6ASs8ZMoqbYzZtxEAkPDCQgMIdDflyA/KxE+Vq9JVnqbkiFvFJcBPI9xeCvpSQv5bE8pWwsqmRTg6cBERPqHZcuW8ec//5nHHnuMiooKRowYwZ/+9CcWLVrk6dAGt4hUCE2A6iIo3AQpc097Soi/Dz87bwz/NTOFP3+0l5c25vH+9hI+2nmE/29GMj85ZwzRoR0nVSLucjqdHKtr5mBZDQfL6jhYVsPhkhKMIzuIqNrNSMchJljyuNQoIMg4PsTtxNU9j/rEcix0DE1RE/BPSmfoiKmEJ4xmrPX4R/OWYWITx4zSlzC9SMmQN3JVlKN4Kxlp4Xy2p5TsggomjfJsWCIi/UVwcDD3338/999/v6dD8S6GYfYObXsVcr/qVDLUIiYsgIcuS+P6ucP4/Xu7+GjnEZ7/Oo/XvinkljNHcuP84QT56WOPdF5to42DZbVtHodKq7GVHSCx6QDjLblMMPK40sgj2VJqnmShTdLTbPGnMnQ09ugJBCRnEJqSiSVuEkMDIxjqkVbJt+mvgjeKnQQYUH2YadHmglQ5hVUwSsMJRETEw1JnH0+G5rt/+ujYUJ764XS+PnCUh97ZSXZBJX/6cA/Pf53LneeNYfHUJHysg7fynLin0WYnv7yOA6WuZOdobevPddXHGGvkM96Sx3gjj3mWXMYa+QQbjeB38rUaguJxxEzEPzEda3waxKXhO2QEURb16vRnSoa8kX8IDB0FR/eS7pMLwL7SGuqbtdaQiIh4WKqrN6hgI9hPP6G8I7NGDGX17XN5a+thHnl/F/nl9dyzKoenvzjIPReO4+xxMao85yXsDidFFfUcKKvlkKuH50BZLQfLaig8Vo/T6SDZKGW8kct4Sx5nGXmMN3JJCSht93oOqz/ETMASNxFi0yBuEsRMICBIhTsGIiVD3io+HY7uJaJiB4kRkymsqGf/sWZmezouERHxblFjIXAI1JdDcTbd+ahiGAbfyUhg4cRYXvg6j8c+3sveIzXc8K9NzBoxhP++aDzpSRE9Frp4jtPppLSm0Sxc8K2hbblH62iym1Vzg6lv7e1ZaOQy3jePcUY+wUZD+xcOTTCTndhJrc+WISPBqo/Qg4X+Jb1VXDps+4+5+GrSWRRW1LPvmM3TUYmIiLezWCBlNux+GyP3Kwg6o9uX9Pexcv284Vw+NYknPt3PM18e5OsD5Xz38S/5TkYCd50/luQhGh0xEFTWN7uSnJbiBa6fS2upbbKfcKSTJKOUCUYuFxl5TPDLZ5I1j0RncfsXtvqbS4/EpkHsxOMJkHp7Bj0lQ94q3rVORvFWMjIieHdbMfvKm059joiISF9InWMmQ3nrYFz3k6EW4YG+3HPhOK6encofP9jNa1sKeTO7iPe2Heaa2cNYumAUkcHtTAaRPlffZOeLvUf4dGcNL+7P4dDROg6V1XK09uTPKoE0MM7IZ7w1j+mBRUy05pHafBB/R13bA52u59B4M+GJnQRxaebz0FHq7fFS+lf3Vi3JUPkBJseYE0m3H2niwx0lnDMhDl9NLhUREU9JdQ3azv8axvb8ouCJEYH86fuZXD93OA+/u4sv9pXx9BcHeXlTPksXjOKHc4YR4KtJ732tsq6ZNbtKeH97MZ/tKaWhueXfvsb17CTJKGNm0GFmBBYywZpHctNBwuvzMVoyHZvrAWD1g+ixx+f1xLrm+ASrjpscp2TIWwUNgbAkqCogzSefEH8rVY12bn1hC1EhfnwvM5El05IZGxfq6UhFRMTbxGWAbzBGQyWB1QeBKb3yMpMSw3n+xpl8vqeU372zk13F1Tz07i6eXZfLzxeO4XuZiVrYspcdqWrggx1mArRu/1FsDmfrvvlhJSzw38OUkDKSmw4QUb0Xa1MV2DmeH7UIiW0zr4fYSRA1Gqy+fdoeGXiUDHmz+HSoKiDo6HZev/2/+Mtbm/mqyEZZTRNPfXGQp744SHpSOEumJvHdjETCg/QHRURE+oDVB5JnwIFPCDmaA1zeqy93xpho5o6K4rUthfzxg90UVtRz58vZPLX2IP990XjmjY7q1df3NrlHa3l/ezHvbStmS34FzuP5D2NigrklKZfzj60k5PA6aAKqTzjZ4gvR49rO64mdBCHRfd0MGSSUDHmz+AzY/Q4c3sqw6Tfzw4wwHrkqnS/2lfPypnw+3nWErQWVbC2o5H/f3sn5E+NYMjWJuaOisOqbMhER6U2pc+HAJ8Tu/zfGN8Mh8wfgG9BrL2e1GCyemsTF6fE88+VBnvhkPzsOV3HV0+s5Y0w09144jvHxYb32+oOZ0+lk5+Fq3t9ezPvbi9lVXN1mf2ZyBOdPiOHSwC3EZT8CO7LM8yy+VA9JJ2T0bCxx6WYCFDUGfDSvS3qOkiFvFpduPh/Obt3ka7Vw7oRYzp0QS1lNI6u3FPLq5gJ2FVfzZnYRb2YXER8ewOVTklg8NYlhUcEeCl5ERAa1jCtwbngS/9oj8PbP4NOHYObNMO2GXq3wFeBr5bazRnHl9BSWfbyX57/O5fM9pazdW8rlU5L4+cIxxIcH9trrDxYOh5Mt+cd4b1sx728vIa/8eDEDq8Vg1oghnD8xjoVjhxKX9yZ88VMo22Me4BMIU6/FMfNH7D1YRmZmJlg1h0t6h5IhbxbvSoZKd4Ht5Pr6USH+3Dh/BDfMG862wipe2ZzP61lFHK5s4PFP9vH4J/uYMXwIS6YmcVFaPMH++s9JRER6SEQKjts3UfTWwyQVvIFRVQgf/wbW/hmmXAOzb4OIlF57+SHBfvzyOxO5ds4wHnl/N29vPcyrmwt4M7uIG+YN59azRhIWoOHjJ2qyOfj6wFHe217MhztKKK1ubN3n72PhjDHRnD8xjnPGxRDpZ4dvnoN/PQaV+eZBAeEw42aYeSsER4HdDpR5pjHiNfTp1ZuFJR5f2O7ITqD9oW+GYZCWFE5aUjj/fdF4PtpZwsubCli7t5QNB8vZcLCcX76xnUVp8SyZlsz0YZFa1VtERLrPP5QjI5eQ8L0Hse58Hb56DEq2wfonYMMKmHgpzP3x8QqpvSB1aDDLfzCFG+cd46F3drHhUDl//XQ//96Yz4/PHsUPZqbi5+O9FVjrmmx8vqeU97YVs2bXEaobjq9ZGOrvw9njY7hgYhxnjo0myM8HGiph4zL4+gmoLTUPDI6B2bfDtOshQEMRpW8pGfJmhmHeQA58glG8FSynv5kE+Fq5OD2Bi9MTOFxZz6pvCnllUz6HjtbxyuYCXtlcwLChQSyemsTlU5M0lEBERLrP6gsZV0D692H/x2ZSdOBT2Paq+Rh+ppkUjTzHvLf1gskpkbx0yyw+2nmEh9/dyf7SWh58cwf/+OoQd50/jovS4rzmi8CKuibW7DzC+9uL+XzviSWwzVEl502I5YJJccweMfR4olhTCp//FTY+BY1V5raIFJj7E8j8L/DV5wXxDCVD3i4+HQ58AsVbIcG9b9biwwO5fcEobjtrJJtyj/HKpnze3nqYQ0fr+L8P9vDHD/cwf3Q0S6Ymcd6EWK3ZICIi3WMYMOoc83E4G75aBttWwcHPzEfsJJhzB0y6vFdKKhuGwXkTYlkwNpqXNuXz5w/3knu0jttf/IbM5AjuWzSe6cN6bz6TJ5VUNfDBdnP+z7oDR7GfUAI7eUgg50+I4/xJcUxJiWxbZKki3/x3+uZfx4fkR4+DeXfCpMtU+lo8TsmQt3MVUTCKt0JC1y5hGAbThw1h+rAh/PI7E3kn5zCvbC5gw8FyPt9Tyud7SgkP9OW7GQksmZZEWmK413x7JiIivSQ+Ay5/Cs75H3PI1eZ/mUPoXrsF1vwaZt0GU38I/j2/Xp6P1cJ/zUzle5mJ/H3tAVZ8foCs/AqW/G0d502I5e4LxjEqJqTHX7evHSqr5T1XBbgteRVt9o2NDeX8SXGcPzGWCfFhJ9/XS/fAl4/C1pfA4Ro6lzAF5v8cxl4EFu8dWij9i5IhbxefaT6X7ACHvduXC/b3Ycm0ZJZMSyb3aC2vbi7gP5sLKKps4Lmvc3nu61zGxoayZFoSl05OZGiIf7dfU0REvFhEClzwEJx5F2x8GtY/CVWF8MF98NkjMO06c0J+WHyPv3Swvw8/PXcMP5iRwqNr9vLSxnw+3FHCx7uOcOX0ZH5y7mhiQnuvHHhPczqd7DhcxfvbS3h/WzG7S9qWwJ6cEsEFE+M4f2Jcx9Vki7bA2j/BzjcBV+/R8DPMJGj4mb02jFGkq5QMebshI8AvBKOphoDaPGBqj106dWgwP184lp+eO4av9pfxyqYC3ttu/nH9zds7efjdXZw9LoYl05I5a2w0vlZ9SyQiIl0UGAln/AJmLzV7I75aBkf3mr0T65ZD+hXmELqYcT3+0jFhAfzu0jSunzuMh9/dzUc7S3hhfR6vbSnkljNGcuP84f224qrd4eSbvGO8v62Y93cUk19e37rPx2Iwa8RQzp8Yy3kT4ogL7yCxczoh90tY+0dzTleLsYtg/p2QNK2XWyHSdf3i/8za2loeffRR3n33XSorKxkxYgQ333wzixYt8nRog5/FYo6xzv+aoMp9vfISVovB/NHRzB8dTWVdM29sLeLVTflkF1TywY4SPthRQlSIP5dOTmDJtGTGxPb8kAYREfESvgHm8LjJV8Oe98xiC3nrIOt58zH6fLPYQurcHu+lGBUTylM/nMb6A0f53bu7yM6v4M8f7eH59bn87NwxfH9aEj794Iu/JpuDdQeO8t42swR2Wc3xEtgBvhbOGO0qgT0+hoigUyxw6nTCnvfhiz9B/npzm2GFtMUw96cQO6F3GyLSA/pFMnTHHXeQk5PDz3/+c4YNG8Zbb73FnXfeicPh4Dvf+Y6nwxv84tN7NRk6UXiQL1fPSuXqWansLq7m1c35vLalkLKaRv6+9iB/X3uQjOQIlkxN4jsZCYQHamKliIh0gcUC4y4yH/kb4au/wM63YO/75iNhipkUjf8uWHq2wM/MEUNZfdsc3s45zCPv7SavvI7/fi2HZ748yD0XjOOc8TF9Pne2rsnGZ7tLeW97MR9/uwR2gA/njo/l/ImxnDHGVQL7VOw22LEavvizOU8LwOoPk68y39PIYb3WDpGe5vFk6LPPPuPLL7/kj3/8IxdffDEAs2bNoqioiEceeYSLLroIq1Yd7l2u9RkCK/f26cuOjQvlvkUTuOuCcXyy6wivbC7gk11HyM6vIDu/gv99awfnT4xjybQk5o6MwmLROGMREemC5OlwxfNwdD+sexyyXoSib+CVa80P7rOXmuWd/YJ67CUNw+Di9AQWTojjhfW5PLZmL/uO1HDjs5uYOXwI/33ReDKSI3rs9dpTUdfERzuP8N62YtbuLaXRdrwEdnSoPwsnxHL+xDhmnVgC+1RsjZC9Er54FI4dNLf5hcD0G8yCFaFxvdMQkV7k8WToww8/JCgoiAsuuKDN9ssuu4yf//znZGdnM2XKFA9F5yVcFeVCy3PgxSUw8mwYuQBiJvTJREdfq4WFE+NYODGOsppGVm8p5JVNBewuqeaN7CLeyC4iITyAy6cmsXhqEqlDO5i0KSIicipDR8LFf4az/hs2/h02/B2OHYJ3fgGf/A5m3AQzbobgqB57ST8fC9fNHc5lU5L422f7eeaLg6w/WM4ly7/k4vR47jp/HClDey4JK65s4IMdZgW4rw+UtymBnTIkiPMnmmsATU6O7PyXjI01sPmfZiJZfdjcFjgEZv3IfM8CI3ssfpG+5vFkaO/evYwcORIfn7ahjB07tnW/kqFeFjMBZ3wmxuEs2L/GfACExMKIs2DEAjM56oNvfKJC/Llx/ghumDecnMJKXtlUwOtZhRRVNrDs430s+3gfM4cPYcm0ZC5Kizt9V76IiMi3hUTDgv82F/zMetH8kH/sEHz2e/jyL2Yv0ezbzeSph4QH+nL3BeO4elYqf/xgD6u2FPDW1sO8v72Yq2cN446zRxEZfIr5OadwoLTGrAC3vZis/Io2+8bFhXK+qwLc+PhQ94bn1ZXDhhWw/m9Qf8zcFppgFqKY+kPw05eTMvB5/JNkRUUFSUlJJ20PDw9v3e8Ou71r5aFbzuvq+QObgf3aD9j31euM8SnCeugzyF2HUVNiVuTZ+hIAzuhxOEechXP4Akid0+t/BCfGhzLxO+O594IxfLDzCP/ZXMAX+4+y/mA56w+W88vXt3FRWhyLpyQxNTWiW+OvvfvfX+0fKO23O5zY7A6a7E5sDgc2u5Nmu4PmDn5vfbad+LuTZpuDZtfxNoeTxmYbltoG0tK69/dTZMDxCzZ7NqZeBzvfMIstFG2BTU/Dpmdg/HfMhKkHq6ElRATyx+9ncMO84Tz83i4+31PKM18e5JXN+dy+YBTXzhl22kXKnU4n24uqeN+1BtCekpo2+6ekRHDBJDMB6tJoiupiM0Hc9A9ocl17yAiY9zOzKp+PlsWQwcPjyRBwyg+x7n7AzcnJ6VYs3T1/QAsbSTYjYcJ8jLFNhBzbRmjpZsJKNxNUuRejdBdG6S5Y/zcchg+1QyZSFTWVquip1EWMMSvI9JJk4KeTfblqbDSf5tbzycF6imvtvLK5kFc2FxIfYuXsYYGcOSyQoYFdj8Or//3xrvbbnU4abeajwe6k2e7kwOffYHM4sTsxnx20+7vNaSYm3/7d5qDDc20O1zmn+d12wvnf/t15+mZ9i5MAmgikkUCaCDQaO/w53xnD6CG+DOnG/z8iA5bVByZdBhMvhUNfmEnR3g/MBGnnG5AyxywMMPr8HlssdEJCGM9eP4O1e0v53Tu72Hm4ioff3cWzXx3iF+eP5XuZiW2OtzucbM491poAFRxrWwJ79sihnD8xjoUTYokJ6+LaRuUHzZ6xrBfA3mRui00zy2NPuKTHC02I9AceT4YiIiLa7f2prKwEjvcQdVZaWlqXCi7Y7XZycnK6fP5A1377ZwDXA+CoK8c4+Bkc/BTjwKdYKvMJPZpN6NFsEnc/gzMgAobNxzliAc4RZ/VqJZlz55jfim3KPcarmwt5Z1sxh2vsvLCthpXba5g3KorFUxM5d3ws/p2ZEIr+/ftr+5tsDuqb7dQ12alvspnPrb/bqWt2PZ/0u63tce2c13TCRGLPcOJPM4E0EkQjgUZja+ISZJhJSkDLz0YTAVbzOQgziQkwzGODjUaCjKbWfQGY1wlwHeeOxnH/Hz6RJ/fUn07Lfz8iA55hwPD55uPITnOtoq0vQ95X5iNqrDlELP37PdY7Mn90NG/fEcXqrEL+7/3dFFU2cOfL2Ty19iC/WDia/YcbefngNtbsOkJZTVPreQG+Fs4c4yqBPS6W8KBuVF8t2W5Whtv2H3C6/jYmzzLXbRp1rhZKlUHN48nQmDFjeOutt7DZbG3mDe3ZsweA0aNHu3U9q9XarQ9z3T1/oOuw/aHRkL7YfDidUH7AXFjtwKdw8HOMhgrY9SbGrjfN4yOHmYUYRiwwV54OjOjxWGeNjGbWyGh+dYmNt3MO8+qmAjYcKufzvWV8vreM8EBfLslMYMnUZCYlhnWql1H//u613+l00mhzUNeSgLgSDzP5sB3/ualtQnNi0nJywnJ8m83hfl+IuwwDgnytWA0ngX6++Fgt+FkNAi02QixNhFiaCLY0E2Q0EmyYvShBrYlHkyv5aCSQBvydjfg7G/FzNuLvbMDP0Yivo6H14eNowMfegI+9Hqu9AaMLfT1dZvU3K2X5BoFvoOsRDL6BOH0CKXYOISYi0av/+xdpI2Y8fO+vcPb95pyZTf+Ast3wxlL4+Dcw8xaYdn2P3N8sFoPLpiRxUVo8//zqEMs/2ceOw1Vc/6/NriPM+TphrhLYCyfGceaYaAL9uvn/a/5Gc6HUPe8e3zbqXJj/c3M4vIgX8HgydO655/Lyyy/zwQcfcNFFF7Vuf+2114iJiSEjI8OD0Um7DMOcVDp0pDnW2m4zS5Tu/wQOfAIFG82JqJueMR+GxVzPYeQCMzlKmg4+XZsk2p5gfx++Py2Z709L5lBZLa9uLuA/3xRwuLKBZ9fl8uy6XMbFhbJkWjLfy0xgaIh3jXV2Op002R3UNZpJSF2jmWzUupKX2iY7NfVN7D1Uy1cV+2lwJTftJTZttrl6X/ogX8HHYhDoZyXIz0qQnw+BvubPbbb5WQlq3e5jPvsahFNDuKOCEHsVIfYKApsrCGgux7/xGL6N5Vjqj0LtUZqqSvEzbBjN9dBQR1cGpXWZ1d+VnAS5EpbAE5KW4BOSl6AOE5rTnnuK4S0Ou52irCxi9O2vyMnCEuC8X8P8X8A3/4J1f4XqIljzKzORmPJDs6paRHK3XyrA18qtZ47kimnJLPt4H89/fYggX4NF6YlckBbPrBFD8e3uoq1Op3mvXvsnOLTWtdEwh8HNv7N1uQ0Rb+HxZOjMM89k7ty5PPjgg9TU1JCSksLbb7/N2rVr+cMf/qBvKQcCqw8kzzAfZ90NjdXmmOuW5KhsDxRuMh+f/8H8gDZs3vHkKHpsj3XBD4sK5hfnj+Vn543hy31lvLwpnw92lLCruJr/fWsHD7+7k7PHxbBkajJnjY3uFyuBt/h2L0tL0nFi8tJmmyuxqXUlKcf328zE54SEp/M9LNVdjt/fx9I2MfGztiYtbbb5WQny9flWMnNiAtP2nEBf6/H1L2xNUHfU9SiD2jLz59qy47+Xlh//ub78+JCP08Xf0Q6rnyu5CDpF0nG6/adKWII0Dl9kIAgIM4fIzbjFHE721TI4sh2+Xm72HE263JxXFJfW7ZeKDPbjf74zgXsuGEN2dhZTJk/s/uchhwN2vWUmcIezzG0WH8i4Eub+FKLcG4kjMlh4PBkCWLZsGX/+85957LHHqKioYMSIEfzpT39i0aJFng5NusI/FMZeaD4AKgvM4XT7PzGf68qOrwAOEBp/vHz3iLMgJKbbIVgtBmeMieaMMdFU1jXzRnYhr2wuYGtBpav8aAlRIf5cPiWRJdOSGO7GGg8nJi21jbaTk5cmG7WN7W+rb3Y9t5e8NNvbrAfRG05MWIL8rAT5+xDsZyXQ10JDbTWJMVEE+fuclKAcT1J8vpXAHO+psXZlUdymWlcyc8R8rjghqakrM8u6tiY6R6GxsmsNDwiHoChz7ZCgKAgeCkFDW7fZAyLZk1/KmIkZWP1DjictPoFmsi8i0sLHDzL/PzOJ2LcGvvoLHPwccl42HyMWmEnRiAXd/qLPajGwdPfLQnsz5LxiLpRattvVhkCYei3MWQrh7s8TFBlM+sVdPjg4mPvvv5/777/f06FIbwhPgslXmQ+HA0q2mT1G+z+BvHXmAm7ZL5oPgNhJZlI0coFZwaebK4KHB/ly9exhXD17GLuKq3h1UwGvbSmkrKaRJz8/wJOfHyAzOZyUwGZey9vROp+l1jUUrL3EpreHhvn7WAj2N5OMYH8zKQk+IYkJ9j8hoTkhYQn2N5OV4Ha2BflaO+wJs9vtZGVlkZk5qevfPjqd0FB5ck9NSyLTXm+Orf701/02w9ImkTF/HvqtROdb+6ynmVhst1NXk2UuNKzeaBHpDMOA0eeaj6IsswLd9tXm/e3AJ2YP0ZwfmxXqTvc3qDc018OW583qcJX55jb/cJh5M8y8tUcXlhUZyPpFMiRexGKB+HTzMfcn0NxgJkQtyVHxVjNZKtlmrnFg9YOUWcd7juIyulXWdFxcGPdfPIG7LxzHx7uO8MqmAj7ZfYSs/EqyAMhz63otSUuQ3/GhXcH+VgJ9fVwJi2ubq5fF3Gc94Ryf1oTlxB6YfjF8z2E3e2baJDVl7WxzJTl1R8Fhc/91rP6dSGqiju8LiOix0rYiIj0iIRMWPwPn/BK+/it88ywU58Cqm2DNr805RVOuMUdO9LaGStj4tBlHbam5LTjGXER22vXmcD8RaaVkSDzLN8BMckYugPMwP2Af+NSVHH0KVQXm8IODn5uTVQOHwIgzjydHESlde1mrpXVF7tLqRl7fUkDW3jyGJcUTEuDbfo+LK4kJPmF4WJeGhnlSYw3UlJg3yJoj5vC0miMY1SWMKNqHJct2fE5O/TG6VETAL/SkYWhtkpzWn13PfiEq2yoig0NkKlz4ezjzbnPh1vVPmr0y7/83fPZ7mHaD2SsTGtvzr11TCuufgA1PHR9SHJFi9k5NvsqcoygiJ1EyJP1LcBSkLTYfTicc3Xe8EMPBteaE+O2vmQ+AISOPF2IYPt+cG+Km6FB/rps7jKzgCjIzRw+soh1Op7k6eM2R4wlOm2Sn1Py95efmunYvYwEiO3qNwMj2k5r2enOChpoJroiINwsaAmf8P5h9B2z9t1ls4eg++OJP5qiH9CvMJCV6TPdfqyLfvP43zx4fehw9Dub9zCzq4IkheiIDiJIh6b8Mw6xuEzXaHONsb4bCzSeU8N4E5fvNx8anwLBC4tQTSnhPG5g3gZMSnJJvJTvHe3ROleB0yDcYQqLNYRMh5sMRFEXBsUYSx2RgDYk5ntwERqqAgIhIV/kGmIUKJl8Du98x5xXlr4ctz5mPMReaxRZSZrvfQ1621yyKsPXfx4coJ0wx1wgae5GGE4t0kj7lyMBh9TXnD6XMggX3muOiTyzhfXQfFGwwH5/93hyudWIJ76jRnhuOdWKC8+1kpqbEHN7Qsq3miPuFBVoSnJBYCI42k5wTkh3zZ1cC5B9ycnh2O6VZWSROyFQBARGRnmaxwPiLzUfeejMp2vW2udjpnnchcZqZFI27+PSl9ouyzB6mHW/QOpR5+BlmEjT8TA07FnGTkiEZuALCYdwi8wHmUIGWQgwHPjWH1LXcaADCko5XqRtxVvcr6XSU4LT+3JLguJKdLiU4LcmMK8HpKNnxC+5eW0REpG+kzISUF8yenXWPQ9ZKcx2+l6+BISNg9lLI/EHbOT5OJxz60lwjaP+a49vHLjIXSk2a1vftEBkklAzJ4BGRbFbrmXKNWcK7eOsJJby/NosxZD1vPsAse9pSiCFxhrnN+f+3d+9BTZ15H8C/CfECqFxExNfLWtBELimiQrxRlXovFqyiO9MBV0WlFtYVda213YLrda3jCi4ixVW0jqNV9FVrtfW2um8lKFbLqigVtUIrIoqIyC2c949MzhIBRQlJ4Xw/Mxn1nCfk9yQh3/md8+QoAGXFtS4wYNTglOT/9++NbnA619/ssMEhImq5nHoDEzYAI5YC6UlA+hfAwxzg62jg1ErAbzbQfzo65KdBvu0j/aoHQL8k3GuS/jtBnT0sOweiFoDNELVMcrn+Uqf/01cfGBWlNS7hfRrIz9Rf9vReJvB9HOSKtvBqZQ/5N49fvcFp3a7G2Ro2OERE9AraOQMBn+iz6ocv9WeLin4GTq+E/F+r0Vuo1o+zagP4vK+/8ILjG5atmagFYTNE0tDaBuj1tv4G6M/05PxLPHMke/IL2lTdqzG+XY3GplMd379xZoNDRESm09oW0MzRX3772v8C/7cBsl8vQ2dlDZlfOOSDI4H2LpaukqjFYTNE0tTOGXgzRH8TBOjuZyH7x/Po7TMEVh1c2OAQEZFlWCn0y+A834Ou4AYyc+5B7TuUF7chaiJshohkMsBJiaeOpYBDTwYOERFZnkwGdOwF3d0SS1dC1KLxIvRERERERCRJbIaIiIiIiEiS2AwREREREZEksRkiIiIiIiJJYjNERERERESSxGaIiIiIiIgkic0QERERERFJEpshIiIiIiKSJDZDREREREQkSWyGiIiIiIhIktgMERERERGRJLEZIiIiIiIiSWIzREREREREksRmiIiIiIiIJElh6QJMRRAEAIBOp3ut+xvu97r3b+44f86/5p9Sw/k3bv6G+xk+h+m/mE2Nw/lz/jX/lBrO3zzZJBNaSHpVVFQgMzPT0mUQEUmWWq1G69atLV3GbwqziYjIsl6WTS2mGaqurkZVVRXkcjlkMpmlyyEikgxBEFBdXQ2FQgG5nKuva2I2ERFZRkOzqcU0Q0RERERERK+Ch/CIiIiIiEiS2AwREREREZEksRkiIiIiIiJJYjNERERERESSxGaIiIiIiIgkic0QERERERFJEpshIiIiIiKSJEk0Q6mpqVCpVOLNw8MDQ4cOxfz583H79m2jsRcuXMDSpUvx3nvvwcvLCyqVCrm5uZYp3EQaOn+dToetW7di5syZeOutt+Dt7Y1x48bh888/R3FxseUm0ESef16ev2m1WkuX+NqOHj0KlUqFI0eO1Nr37rvvQqVS4ezZs7X2jRw5EhMnTgQAnDp1Cn/+858xYcIEeHp6QqVSNXndptLY+ZeUlGDTpk0IDQ3FkCFD4OPjgwkTJiApKQnl5eXmmEKjmOL1X79+PYKDg+Hn5we1Wo23334bn376KfLy8pq8fqlgNjGb6sJsYjY9j9nUtNmkeO17NkOrVq2Cq6srysvLcfHiRSQmJkKr1eKbb76BnZ0dACAtLQ3nzp2Du7s7bG1tkZ6ebuGqTedl8y8rK0N8fDwCAwMREhICBwcHXL16FZs2bcKpU6ewb98+tG3b1tLTMDnD8/K8Xr16WaAa0/Dz84NMJkNaWhrGjx8vbi8qKsKNGzdgY2MDrVYLf39/cd+9e/dw9+5dTJ8+HQDw3Xff4fLly3B3d0erVq1w5coVs8/jdTV2/r/88gtSUlIQFBSEP/zhD7CxsUFGRgY2btyI77//Hlu3boVMJrPE1BrEFK9/cXEx3nnnHbi5ucHW1hY//fQTNm3ahJMnT+Lw4cNwcHAw+7xaKmYTs6kuzCY9ZhOzqamzSVLNUO/evaFWqwEAGo0GOp0O8fHxOH78OCZNmgQAmDt3LiIjIwEAW7ZsaVGB87L5t23bFidOnDB6I2k0GnTp0gXz5s3DsWPHEBQUZKnym0zN56WlcHR0RO/evWu9f8+fPw+FQoFJkybVOrqYlpYGQP+aA8Dy5cshl+tPHi9btqxZBU5j59+tWzecPHkSNjY24v5BgwbB2toaf/vb35CRkYEBAwY0/URekyle/88++8xov+F5mT17Nk6cOIHJkyc34QykhdnEbKoLs0mP2cRsApo2mySxTK4+hg+ZwsJCcZvhF0wKnp+/lZVVnR31m2++CUDfnVPzodFocOvWLdy/f1/cptVq4eXlhWHDhuHKlSsoKSkR96Wnp8PKykr8IG3uvwuNmb+NjY1R2Bg0p9+Fxr7+dXF0dAQAKBSSOo5mdswmZlNLxmxiNv3Wsql5v6MaybDeumfPnpYtxEIaOn9DV96cT82/SHV1NaqqqoxuOp3O0mU12sCBAwHA6AiMVquFn58f+vXrB5lMhoyMDKN9Hh4eaN++vdlrbQpNMf/m9LtgqvlXVVWhrKwMV69excqVK9GzZ0+MGjXKPJOQKGYTswlgNtXcx2xiNjVlNkmqGTJ8sDx9+hRnz57Fpk2b4Ovri4CAAEuXZhavM//8/HysW7cOXl5eGDFihBmrNZ8pU6bA09PT6NYSlib4+vpCLpeLHziPHj1CdnY2fH19YWtrCw8PD/ED9Ndff0Vubq54GrolMPX8s7KykJycjFGjRqFPnz5mmUNjmGL+BQUF8PT0hLe3NyZOnAidToft27fD1tbW7PNpyZhNzKa6MJuYTcwm82STpNY6TJkyxejfbm5uSEhIkMySj1edf1FREWbNmgVBEPD3v/+92Z+ars+aNWvg5uZmtO23/AXEhrKzs0OfPn3E9bfnz5+HlZUV+vXrB0D/gWT4wDGMaUmBY8r55+bmIiIiAi4uLli+fLkZqm88U8zfwcEBe/fuRUVFBXJycpCcnIywsDDs2LEDzs7OZpxNy8ZsYjbVhdnEbGI2mSebWuYnSD3WrFmDvXv3IiUlBVOnTsXNmzcRHR1t6bLM5lXm//jxY8yYMQP5+fn45z//ie7du5u5WvNxc3ODWq02unl5eVm6LJPQaDS4ffs28vPzodVq4enpKR458fPzw7Vr1/DkyRNotVooFAr079/fwhWblinmn5eXh7CwMFhZWSElJQX29vZmnsXra+z8FQoF1Go1+vfvj5CQEKSkpCA3NxdJSUmWmE6LxWxiNtWF2cRsYjaZJ5sk1QwZPlgGDhyIZcuWISQkBGfPnsXRo0ctXZpZNHT+jx8/xvTp05Gbm4utW7c2i9OuVDfD0ZT09HSkp6fD19dX3Gf4cDl//jy0Wi3UanWLW/7U2Pnn5eUhNDQUALB9+3a4uLiYqXLTMPXr7+LiAmdn51r/Bw41DrOJ2SQ1zCZmE/DbySZJNUPPW7RoEezs7BAXF4fq6mpLl2N2dc3fEDZ3797Fli1b4OHhYeEqqTF8fX1hZWWFY8eOITs7G35+fuK+9u3bw93dHQcOHEBeXl6LWoZg0Jj5//LLLwgNDUV1dTVSUlLQtWtXc5ffaKZ+/e/cuYN79+7hd7/7XVOWLXnMJmZTS8dsYjb9lrJJGguS62FnZ4fZs2dj7dq1OHToEIKCgvDw4UPxS103btwAAJw5cwaOjo5wdHQ0esGau+fnP2bMGMycORNXr17Fxx9/DJ1Oh0uXLonjHR0d0aNHD8sV3ESys7PrvEJPjx49xMs1Nlft2rWDh4cHjh8/DrlcXutUs6+vL1JSUgDUXpObl5eHzMxMAMDPP/8MAOKR2q5duzaLL/K+7vwLCwsRFhaGgoICrFixAoWFhUaXOXZxcWkWR+Jed/5ZWVlYtWoVxowZg+7du0Mul+PGjRvYtm0b7O3tMWPGDLPOQ2qYTcwmgNnEbGI2AebJJkk3QwAQGhqKnTt3IiEhAYGBgcjOzsa8efOMxsTGxgLQr2PcsWOHJcpsMjXn7+PjI37ArFixotbYiRMnYvXq1eYuscktWbKkzu3Lly9HSEiImasxPY1Gg8zMTLi7u6Ndu3ZG+3x9fbFt2za0atUKPj4+Rvu0Wm2t58bwu9Gc3guvM/+ffvoJd+/eBaA/Sv28yMhIREVFNW3hJvI683dycoKzszO2bt2KgoICVFVVwcXFBcOHD0dERAS6dOli7mlIDrOJ2cRsYjYxm8yTTTJBEIRGzYaIiIiIiKgZkvR3hoiIiIiISLrYDBERERERkSSxGSIiIiIiIkliM0RERERERJLEZoiIiIiIiCSJzRAREREREUkSmyEiIiIiIpIkNkNERERERCRJbIbotaWmpkKlUok3Dw8PDB06FPPnz8ft27ctXR4AIDExEcePH6+1XavVQqVSQavVWqAqvZMnTyIiIgKDBw+Gl5cX/Pz8MG3aNBw8eBCVlZUWq+t5dT1XH330EQICApr0cfPz8xEfH49r16416eMQUcvCbGocZtOLMZtaHoWlC6Dmb9WqVXB1dUV5eTkuXryIxMREaLVafPPNN7Czs7NobZs3b8aYMWMwcuRIo+2enp7YvXs3evXqZfaaBEHAxx9/jNTUVAwbNgwfffQRunTpgidPnkCr1SI2NhaPHj3CtGnTzF5bQ82dOxdhYWFN+hj379/Hxo0b0bVrV7i7uzfpYxFRy8NsejXMpoZhNrU8bIao0Xr37g21Wg0A0Gg00Ol0iI+Px/HjxzFp0iQLV1e3du3aoW/fvhZ57OTkZKSmpiIqKgqRkZFG+wICAhAeHo47d+6YtaaysjK0bdu2weN79OjRhNUQETUes+nVMJtIqrhMjkzOED6FhYVG2zMzMxEREQE/Pz+o1WoEBwfjyJEjRmMePnyImJgYjB8/Hj4+Phg0aBDCwsJw4cKFWo9TUVGBjRs3Yty4cVCr1dBoNAgNDcXFixcBACqVCqWlpdi/f7+4XCI0NBRA/UsRTpw4galTp8Lb2xs+Pj6YPn06fvjhB6Mx8fHxUKlUyM7ORnR0NPr374/BgwdjyZIlePLkyQufm8rKSiQnJ8PV1RUffvhhnWM6deqEAQMGiP8uKipCTEwM/P394eXlhbfffhvr169HRUWF0f3Ky8uxbt06BAQEwMvLC/7+/oiNjUVxcbHRuICAAMyZMwfffvstgoODoVarsXHjRgDAzZs3MXPmTHh7e0Oj0eAvf/kLnj59WqvGupYiqFQqLFu2DAcOHMC4cePg7e2Nd999F6dOnTIad+fOHSxZsgSjR4+Gt7c3/P39ERERgevXr4tjtFotJk+eDABYsmSJ+PrFx8eLYxryfiIiMmA21Y/ZxGySMp4ZIpPLzc0FAPTs2VPclpaWhvDwcHh7eyMmJgbt27fHkSNHMH/+fJSVleG9994DoP9wBYDIyEg4OTmhtLQU3333HUJDQ7Ft2zZoNBoAQFVVFcLDw5GRkYGwsDAMHDgQOp0Oly9fxq+//goA2L17N6ZNmwaNRoO5c+cC0B91q8+hQ4ewcOFCDB06FOvWrUNFRQWSk5PFx64ZAgAQFRWF8ePHY/Lkybhx4wbWrVsHQL80oz7/+c9/UFRUhJCQEMhkspc+l+Xl5QgLC8Pdu3cRFRUFlUqFCxcuICkpCdeuXUNSUhIA/fKGuXPnIi0tDbNnz8aAAQNw/fp1xMfH49KlS9i9ezdat24t/twrV67g5s2b+OCDD9CtWzdYW1vjwYMHCA0NhUKhwGeffYaOHTvi0KFD+Otf//rSOg1Onz6NzMxM/PGPf4SNjQ2Sk5MRGRmJo0ePonv37gD0Swzs7e2xYMECODo64vHjx9i/fz+mTJmC/fv3w9XVFZ6enli1ahWWLFmCDz74AMOHDwcAuLi4AGj4+4mIyIDZxGxiNlGdBKLXtG/fPkGpVAqXLl0SKisrhZKSEuHMmTPCkCFDhPfff1+orKwUx44dO1YIDg422iYIgjBnzhxhyJAhgk6nq/MxqqqqhMrKSmHatGnChx9+KG7fv3+/oFQqhT179rywxr59+wqLFy+utT0tLU1QKpVCWlqaIAiCoNPphKFDhwqBgYFGtZSUlAiDBg0Spk6dKm6Li4sTlEql8MUXXxj9zJiYGEGtVgvV1dX11vP1118LSqVS2LVr1wvrNti1a5egVCqFI0eOGG1PSkoSlEql8O9//1sQBEE4c+ZMnTUZHm/37t3ithEjRgju7u5CTk6O0di1a9cKKpVKuHbtmtH26dOnGz1XgiAIixcvFkaMGGE0TqlUCoMHDxaePHkibisoKBD69OkjbN68ud45VlVVCRUVFcLo0aOFlStXitt//PFHQalUCvv27at1n9d9PxFRy8dsYjbVxGyil+EyOWq0KVOmwNPTE/369UN4eDg6dOiAhIQEKBT6E4937txBTk4OJkyYAEB/5Mxwe+utt1BQUIBbt26JP2/Xrl2YOHEi1Go1PDw84OnpiXPnzuHmzZvimLNnz6JNmzYmW/d969Yt3L9/H0FBQZDL//trYWtri9GjR+Py5ct49uyZ0X3qOhVfXl5eawlGY6SlpcHGxgZjx4412m44unTu3DlxXM3tBuPGjYONjY04rmatb7zxhtE2rVaL3r17o0+fPkbbAwMDG1yvRqMxOsLp5OSEjh07Ii8vT9xWVVWFxMREjB8/Hl5eXvDw8ICXlxdu375t9BrX51XfT0QkTcwmPWYTs4lejMvkqNHWrFkDNzc3PH36FEeOHMHu3bsRHR2N5ORkAMCDBw/EcWvWrKnzZzx69AgAsHXrVqxevRq///3vMW/ePDg4OEAul2PDhg3IyckRxz98+BDOzs5G4dAYhsfv1KlTrX3Ozs6orq5GcXExrK2txe329vZG4wyn+svKyup9nC5dugD473KNlykqKoKTk1OtZQsdO3aEQqEQl24UFRVBoVDA0dHRaJxMJoOTk5M4zqCueRYVFaFbt261tjs5OTWoVqD2cwLon5fy8nLx36tXr8bOnTsxa9Ys+Pr6ws7ODjKZDJ988onRuPq8yvuJiKSL2aTHbGI20YuxGaJGc3NzE7+YOnDgQFRXV+Orr77C0aNHMXbsWDg4OAAA5syZg1GjRtX5MwxHgg4ePAg/Pz/ExsYa7X/+i5KOjo7IyMhAdXW1SULHUGNBQUGtfffv34dcLkeHDh0a/TheXl6wt7fHiRMnsGDBgpeuzba3t8fly5chCILR2MLCQlRVVYl129vbo6qqCg8fPjQKHUEQ8ODBA/H1Majrce3t7cUP85rq2tYYBw8eRHBwMKKjo422P3r0qEHP8au8n4hIuphNDcdsYjZJGZfJkcktWrQIdnZ2iIuLQ3V1NVxdXdGzZ09kZWVBrVbXeTOcvpbJZEZfpgSArKwsXLp0yWibv78/ysvLkZqa+sJaWrdu/cKjYQZvvPEGOnfujMOHD0MQBHF7aWkpvv32W/Tt29foyNvratWqFcLDw5GTk4N//OMfdY4pLCxERkYGAGDQoEEoLS2t9Z/zHThwQNxf88+DBw8ajTt27BhKS0vF/S+i0WiQnZ2NrKwso+2HDx9++cRegUwmQ6tWrYy2nT59Gvn5+Ubb6jua+SrvJyIiA2ZT/ZhNzCYp45khMjk7OzvMnj0ba9euxaFDhxAUFITY2FjMmjULM2fOxMSJE9G5c2c8fvwYN2/exJUrVxAXFwcAGD58OBISEhAXFwdfX1/cunULCQkJ6NatG3Q6nfgYgYGBSE1NRUxMDG7dugWNRgNBEHD58mW4ubnhnXfeAQAolUqkp6fj5MmT6NSpE2xtbeHq6lqrZrlcjkWLFmHhwoWYM2cOpk6dioqKCmzZsgXFxcVYsGCByZ4fQ+DEx8cjMzMTgYGB4n9sd/78eezZswdRUVHo378/goODsXPnTixevBh5eXlQKpXIyMjA5s2bMWzYMAwePBgAMGTIEAwdOhSff/45SkpK0K9fP1y/fh1xcXHw8PBAUFDQS+uaNm0a9u3bh9mzZ+NPf/qTeMWemktATGH48OHilXlUKhWuXLmCLVu2iFfjMejRowfatm2LQ4cOwc3NDTY2NnB2dkbnzp0b/H4iIjJgNr0Ys4nZJFVshqhJhIaGYufOnUhISEBgYCAGDhyIr776ComJiVi5ciWKi4thb28PNzc3jBs3TrxfREQEnj17hr179yI5ORm9evVCTEwMjh8/jvT0dHGcQqHAF198gc2bN+Prr79GSkoKbG1t0adPH/j7+4vjli5ditjYWERHR+PZs2fw8/PDjh076qx5woQJsLa2RlJSEubPnw8rKyt4e3tj+/bt6Nevn8meG5lMhlWrVmHkyJHYs2eP+HwY6l+4cKH4ZdM2bdpg+/btWL9+PZKTk/Ho0SN07twZM2bMMPpP8WQyGRISEhAfH4/U1FQkJibC3t4eQUFBiI6OrnVEsy6dOnXCl19+iRUrViAmJgbW1tYYOXIkPv30U/Hyr6awdOlSKBQKJCUlobS0FB4eHoiPj8eGDRuMxllbW2PlypXYuHEjZs6cicrKSkRGRiIqKqrB7yciopqYTfVjNjGbpEom1DzvSkREREREJBH8zhAREREREUkSmyEiIiIiIpIkNkNERERERCRJbIaIiIiIiEiS2AwREREREZEksRkiIiIiIiJJYjNERERERESSxGaIiIiIiIgkic0QERERERFJEpshIiIiIiKSJDZDREREREQkSf8PvYkq9gIBlD4AAAAASUVORK5CYII=",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0MAAAHaCAYAAADCNpJNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACVeklEQVR4nOzdeXzU5bn//9dnJhvZd7KwhX1JIIgQUEFxrfuu/bUHXKotrdAe7WmV1p5Wv63a9vTUIyCFumu1LkW0rlW0SquERQJhk33JQkjIvieT+f3xmZmsQCaZySSZ9/PxmMdMPsvkuoPmzjX3fV+3Ybfb7YiIiIiIiPgZi68DEBERERER8QUlQyIiIiIi4peUDImIiIiIiF9SMiQiIiIiIn5JyZCIiIiIiPglJUMiIiIiIuKXlAyJiIiIiIhfUjIkIiIiIiJ+ScmQiIiIiIj4JSVDIiIiIiLilwJ8HYAMLhdeeCH5+fnduvb666/nscce80ocEyZMAMBisfDxxx+Tmpra5XVXXHEFBw4cAODZZ5/lnHPO6XRNbm4uL7/8Mhs3bqS4uJiAgABSU1M577zzuP322xk6dOhpYziVRx99lBtuuAGANWvWsHTp0tNeb7FY2L179ynPr127lvvvvx+AX//619x8882nfT9POnDgAC+//DLZ2dkUFhbS0NBAdHQ0kydP5pJLLuGaa64hODi40309/dmKiHSH+qTOMZzKYOiTnG38+uuvT3mN87+JdevWMWzYsB5/L/Vfg4eSIfGohQsXUlVVdcrzdXV1PPfcc9hsNsaNG+fVWAICAmhubmbNmjUsWbKk0/ktW7Zw4MAB13Ud2e12/ud//oennnqKgIAAzjnnHL7xjW/Q1NTE1q1beeaZZ3jllVd47LHH+MY3vnHKOBYvXtzl8UmTJrV7farrNm/ezIYNG5g3b94pv0dhYSG//vWvCQ0Npba29pTXecPy5ctZsWIFLS0tZGZmcv311xMWFkZJSQmbN2/mwQcf5JVXXmHNmjWuezz1sxUROR31SZ0N9j7J29R/DT5KhsSjbr/99lOes9vt/OhHP8Jms3HZZZdx5513ejWWuLg44uPjWbNmDffccw8WS/tZoW+88QaBgYHMmTOHzz//vNP9K1as4KmnniI1NZVVq1Z16ig//PBDfvKTn3DfffcRFRXFnDlzuoyjq06vo0mTJrXriNq69dZbAbjlllu6PG+321m6dCnR0dFccsklPPPMM2f8fp6ycuVKli1bRnJyMv/3f//HtGnTOl3z+eef89RTT7U75qmfrYjI6ahP6mww90l9Qf3X4KM1Q9Jn/u///o8PP/yQyZMn89vf/hbDMADIy8tjwoQJPPDAA+Tl5XHvvfeSlZVFRkYGN9xwA+vWrevx97zpppsoKCjg3//+d7vj1dXVfPDBB1x44YXExcV1uu/YsWOsXLmSwMBAVq5c2eUnhpdddhlLly7FZrPxq1/9ipaWlh7HeSp79+4lJyeHoUOHcsEFF3R5zQsvvMCGDRt49NFHCQ0N9XgMp5KXl8eKFSsIDAxk9erVXSZCAPPmzWuXDPWXn62I+Df1Se7rz31SX+gv/w7iWUqGpE+8++67rFy5koSEBFauXMmQIUM6XZOfn8/NN99Mfn4+1157LVdccQX79u3jnnvu4csvv+zR97366qsZMmQIr7/+ervjf//736mtreWmm27q8r41a9bQ3NzMRRdddNp51jfffDMJCQkcPnyYjRs39ijG03n11VcBswO1Wq2dzh84cIA//OEPLFy4kJkzZ3r8+5/OmjVraGpq4tJLL2X8+PGnvTYoKKjdff3hZysi/kt9Us/05z6pL/SXfwfxLE2TE6/bvn07S5cuJTg4mBUrVpCUlNTldRs3bmTJkiXt5ilfddVV3HXXXTz99NM9GmqOiIjgsssu491336W0tJTY2FgAXn/9dVJSUjjvvPN47733Ot23ZcsWAM4999zTvn9AQABZWVm88847fPXVV8yePbvTNcuWLet0LDU11bVQ9VTq6+t5++23sVgsXS48bW5u5ic/+QnJycncd999p30vb9i8eTOA2/8unvzZioi4S33S4OyT2uqqjU6VlZU9fl/1X4OTkiHxqqKiIn7wgx/Q0NDA73//+1NOpQLzl/H3v//9dsfmzp1LSkoKubm5PY7h5ptvZu3atbz11lvccccd7N69m507d7J48eJOc7adSkpKAE7ZSbblvObEiRNdnl++fHmnY7NmzTpjx/P+++9TWVnJBRdcQHJycqfzK1asYPfu3bz88suEhIScMU5Pc/6M3K2Y48mfrYiIO9QnDd4+qa2u2ugJ6r8GJyVD4jV1dXV8//vfp7i4mO9973tcc801p71+0qRJXQ67JyUlkZOT0+5YV5/6XH/99V2WyTz77LNJS0vjjTfe4I477uC1117DYrFw4403njIWu90O4JpDfjrOa0517elKfJ6OczqCc7FqW9u3b2fVqlXccccdTJ8+vUfv7+TOz7Itd35GPb2vq5/tqlWr+Mc//sGhQ4cICgoiMzOT++6774xT9UTEv6lPMg3WPqmt7pTWbqu7/Yon/x2k/1AyJF5ht9u5//772blzJxdddBH33nvvGe+JiIjo8nhAQECnBYin+mTrVL8sb7rpJn7/+9/z5Zdf8s4773DOOeeQkpJyylgSEhI4ePAgx48fP2PczmsSEhLOeG137d+/n61bt5KUlMT555/f7pxzKsKoUaP4z//8z15/L3d/lk6JiYnd/hm11duf7caNG/nWt75FRkYGdrudJ554gjvuuIN3332X6Ohot2IREf+gPql3BkKf1Bvd7Vd8/e8g3qFkSLziiSee4MMPP2TChAn8/ve/9/gnI+5+snX99dfz+OOP88ADD1BZWXnKRapOM2bMIDs7my+++OK0G8XZbDays7MBOOuss9yK6XT++te/Al0vUq2treXw4cMAZGRkdHn/gw8+yIMPPsjChQv5+c9/ftrv1dNPCWfMmMGGDRvYsGGDW5vp9fZn+/TTT7e77ne/+x1nn302X331FRdeeKGbrRARf6A+qXcGQp/UG93tV3z97yDeoWRIPO7dd9/lySefJC4ujpUrVxIWFubrkIiLi+OCCy7go48+IiYmhosuuui0199www2sWrWKjz76iP379zN27Ngur/vb3/7GiRMnSEtLY9asWR6JtaGhwbVItasOMigo6JQd565du9i1axczZswgLS2t19MVTueGG25g9erVfPjhh3z/+98/5c8IoLGx0VVRztM/25qaGlpaWoiMjOxdg0RkUFKf1DsDpU/ypFP1K778dxDvUTIkHuWs0hMYGMiyZctITU31dUgu999/P9dddx2JiYntSj13Zfjw4Xzve9/jySefZNGiRfzpT3/q9Evv448/5je/+Q1Wq5Vf/vKXp1z46q7333+fiooK5s+f3+Ui1ZCQEH7zm990ee+yZcvYtWsX119/vVujNT0xbNgwFi9ezB//+Ee++93v8n//939dfiro3HT1hRdeADz/s/3Nb37DpEmTBkwnKyJ9R31S7w2UPsmTTtWv+PLfQbxHyZB4THV1tatKT0ZGBl988QVffPHFKa/vTilPTxo+fDjDhw/v9vVLliyhrq6OZ599lmuvvZbzzjuPsWPH0tzczNatW9m2bRshISH84Q9/8OgO06+99hpw6t29+5NFixbR3NzMihUruOmmm5g+fTrp6emEhYVRUlLC5s2bOXz4MOnp6e3u89TP9re//S1btmzhlVde6XKhs4j4L/VJnjGQ+iRPOFO/4qt/B/EeJUPiMeXl5RQXFwOQm5t7xtKj3Snl6UsWi4UHHniAK664gr/85S9s2rSJL7/8EqvVSmpqKnfeeSe33XZbt0psdteBAwfYsmVLl4tU+6vFixdz+eWX8/LLL5Odnc2aNWtobGwkOjqaiRMnctddd3Httde2u8cTP9tHH32Ud999l+eff96tPyhExD+oT+q9gdgn9UZ3+hVf/DuIdxl2Z51AEZEB4te//jXvvfceL774ImPGjPF1OCIiMsCpX/FfGhkSkQHlV7/6FW+//TYrVqwgMjLS9clvaGhov1gYLSIiA4v6Ff+mkSERGVAmTJjQ5fHFixezZMmSPo5GREQGOvUr/k3JkIiIiIiI+CXV+xMREREREb+kZEhERERERPySkiEREREREfFLSoZERERERMQvDZrS2i0tLTQ3N2OxWDAMw9fhiIj4DbvdTktLCwEBAVgs+oytLfVNIiK+0d2+adAkQ83NzWfcXVpERLwnIyODoKAgX4fRr6hvEhHxrTP1TYMmGXJmfBkZGVitVrfvt9ls5Obm9vj+gU7tV/vVfrW/t78/NSrUmfqm3lH71X61X+33dt80aJIh5/QDq9Xaq/9genv/QKf2q/1qv9rfU5oG1pn6Js9Q+9V+tV/t76kz9U36GE9ERERERPySkiEREREREfFLSoZERERERMQvKRkSERERERG/pGRIRERERET8kpIhERERERHxS0qGRERERETELykZEhERERERv6RkSERERERE/FKArwMQERHpC19++SVvv/02W7du5fjx40RERJCens4999xDenp6u2t37tzJ73//e7Zt24bVamX27Nncf//9DB8+3EfRi4iIN2hkSERE/MIrr7xCfn4+CxcuZPXq1fz85z+ntLSUW2+9lS+//NJ13YEDB1iwYAFNTU08/vjjPPLIIxw+fJhvfetblJaW+rAFIiLiaRoZEhERv/DLX/6SuLi4dsfmzp3LpZdeyqpVq5gzZw4ATzzxBEFBQaxatYrw8HAApkyZwmWXXcbTTz/NT37ykz6PXUREvEMjQyIi4hc6JkIAYWFhjBkzhsLCQgCam5v55z//yaWXXupKhABSU1PJysri448/7rN4RUTE+5QMAXa7nZ/+LZc3dlX7OhQREelDVVVV7Nq1i3HjxgFw9OhR6uvrmTBhQqdrx48fz5EjR2hoaOib4CrysLxyK5FF2X3z/URE/JCmyQFVDc387at8DGBpQzORoVZfhyQiIn3goYceoq6ujkWLFgFQXl4OQHR0dKdro6OjsdvtVFRUkJiY6Nb3sdlsbsdmHNmAZf9HJMUWYbv4LrfvHwycP7ee/PwGA7Vf7W/77G962/7u3qdkCIgMCWRoRDBFVQ3sLqwia0ywr0MSEREve/zxx/n73//OL37xi07V5AzDOOV9pzt3Krm5uW7fM6SyhclAaOUBcrZvA8N/J3P05Oc3mKj9ar8/83b7lQw5ZKRGUbTnBLkFFWSNifd1OCIi4kXLly9n5cqV3HvvvfzHf/yH67hzRKisrKzTPeXl5RiGQWRkpNvfLyMjA6vVzVkHtinY/3UP1uYaMoZHYY0f4/b3HehsNhu5ubk9+/kNAmq/2q/297z9zvvPRMmQQ3pqJB/vOcGO/EpfhyIiIl60fPlyli1bxpIlS1zT45xGjBhBSEgIe/fu7XTf3r17GTlyJMHB7s8esFqt7nfmViv2hElwfBvW4p1Yh453+/sOFj36+Q0iar/ar/Z7r/3+O+beQXqK+UnfjvwKH0ciIiLesmLFCpYtW8b3v/99Fi9e3Ol8QEAA8+fP56OPPqK6urWoTkFBAdnZ2VxyySV9GS72pAwAjOP+PU1GRMRbNDLkkJ4aBcCBkhpqGpoJC9aPRkRkMHnmmWd44oknmDt3LhdccAE5OTntzmdmZgKwZMkSbrrpJhYtWsTdd99NY2MjTzzxBDExMdx55519G3TSVACMIiVDIiLeoL/4HRIigokdYqG0roWdBZXMSov1dUgiIuJBn376KQDr169n/fr1nc5//fXXAIwZM4YXX3yR//mf/+FHP/oRVquV2bNns2LFCmJj+7ZvsCc5CjtoZEhExCuUDLUxJiaQ0roGcvMrlAyJiAwyL774YrevTU9P57nnnvNeMN01NB07BkZVIVQXQ3iCryMSERlUtGaojTExgYDWDYmISD8RFE5DWKr5+vh238YiIjIIKRlqY7QjGdqeV+7bQERERBxqo8aaL5QMiYh4nJKhNsbEmLMGD5bUUN3Q7ONoREREoDbSkQwVKhkSEfE0JUNtRIdYSYoMxm6HXQXab0hERHyvLmqc+UJFFEREPE7JUAfOEtu5WjckIiL9QG3UGPPFyf3QUH36i0VExC1Khjpwbr6aq3VDIiLSDzQHx2IPTwLsULTT1+GIiAwqSoY60MiQiIj0O0kZ5rOKKIiIeJSSoQ4yUs2RIRVREBGR/sI+VMmQiIg3KBnqID48mOSoEOx22KnRIRER6QfszpEhVZQTEfEoJUNd0FQ5ERHpV5Kmms8ndoOtybexiIgMIkqGujDVkQztUDIkIiL9QcxICIoAWwOU7PV1NCIig4aSIafSgwTUnwQgfZiZDG1XMiQiIv2BYWktoqCpciIiHqNkCKCpDsufzmHiv38IdjsZjpGhQyqiICIi/UWyY6qciiiIiHiMkiEAwwpAcG0hlB8hPjyYFBVREBGR/sRVXjvXt3GIiAwiSoYAAoIgcbL5ujAHUBEFERHpZ5LajAzZ7b6NRURkkFAy5GBPzgTAKNwG4Joqp2RIRET6hYSJYAmE+gooP+LraEREBgUlQ07J0wAwHCNDGcOUDImISD8SEASJk8zXmionIuIRSoYcnCNDFG5rV0ThYHENVfXa00FERPoB51Q5VZQTEfEIJUNOiZNosQRi1JdD2WHiHEUUAHYWVPo2NhEREVBFORERD1My5GQNoi5itPm6YCvQOlVOm6+KiEi/4CqioGlyIiKeoGSojdro8eYL57ohx1S57XlKhkREpB8YOsV8rsyHmpO+jUVEZBBQMtRGbdQ480VBDtBaXlsjQyIi0i+EREKsYxbD8W2+jUVEZBBQMtRGTfQE80VhTvsiCiUqoiAiIv2EpsqJiHiMkqE26iNGYbcGmXs4lB0iLjyY1OghgIooiIhIP5GUYT6ropyISK8pGWrDbgmERMd8bNdUuUgAcrVuSERE+gPHvniqKCci0ntKhjqwp2SaLzoUUdDmqyIi0i84p8mV7IPGGt/GIiIywCkZ6sj5iZurvHY0oCIKIiLST0QMhbBEwA5Fu3wdjYjIgKZkqAN7Uqb5onBbpyIKlSqiICIi/YFr81VVlBMR6Q0lQx0lTgRrsKuIQmxYUGsRhXwVURARkX5AFeVERDxCyVBH1qDWTe2cU+W035CIiPQnqignIuIRSoa64iyi4KgolzHMTIa2KxkSEZH+wLm+9cQusDX7NhYRkQEswNcBAOzatYvly5ezfft2qqqqSE5O5qqrruI73/kOQ4YM6fuAUqabz46KcukaGRIRkf4kJg2CwqGxGk7ug8RJvo5IRGRA8nkytH//fr75zW+SlpbGz372M2JiYti8eTNPPvkkO3fuZOXKlX0fVHKm+VzQvojCIUcRhciQwL6PSURExMligaHpcGyDOVVOyZCISI/4PBn6+9//TkNDA8uWLWPEiBEAzJkzh+LiYl599VUqKiqIiorq26ASJ5lFFBoqoPQgsXFjSI0eQn55HTvyKzhnTHzfxiMiItJR8lQzGTq+Habd6utoREQGJJ+vGQoMNEdZwsPD2x2PiIjAYrG4zvcpa2BrEYUOm69qqpyIiPQLzopyhSqvLSLSUz5Phq677joiIyP51a9+xbFjx6iurubTTz/l1Vdf5dvf/jahoaG+Ccy5bqhDEYVcldcWEZH+wFlR7ngu2O2+jUVEZIDy+TS5YcOG8de//pXFixdz8cUXu44vWLCAn//8526/n81m61Eczvucz0bSVCyAvWArLTYbU5IjANieV97j79GfdWy/v1H71f62z/6mt+3315+bzyVOAksA1JdDxTGIHuHriEREBhyfJ0N5eXl8//vfJy4ujieeeILY2Fi2bdvGypUrqa2t5ZFHHnHr/XJze7cBnfP+IZVDmAzY8r5i29at0Gh+6nbkZC3/3vQVYYE+H1Tzit7+/AY6tV/t92f+3v4BJyAYEiZBUa5ZREHJkIiI23yeDP3hD3+gurqatWvXuqbEzZw5k5iYGH72s59x3XXXMWvWrG6/X0ZGBlar1e04bDYbubm5rffbpmD/9xICmmvIHBkFsaMZtv4z8srqsMSNJHN0nNvfoz/r1H4/o/ar/Wp/z9vvvF98IHmqmQwdz4VJV/k6GhGRAcfnydDu3bsZM2ZMp7VBGRnmXOh9+/a5lQxZrdZe/THjut9qhaR0yN+C9fg2SBhHRmoUeWV17Cyo4rxxiT3+Hv1Zb39+A53ar/ar/f7b/gHJtW5ou2/jEBEZoHw+1ysxMZH9+/dTU1PT7nhOTg4AQ4cO9UFUDs79hjpsvpqrinIiItIfuCrKKRkSEekJnydDt912G2VlZdx555289957fPnll/zpT3/i0UcfZezYscybN893wXWoKDd1mMpri4hIP5KUbj5X5kFtqW9jEREZgHyeDF100UU899xzhIeH88gjj7Bo0SLefPNNvvnNb/LSSy8RFBTku+BSMs3nwm3Q0kJ6ipkMHT5ZS0Vdk+/iEhERAQiJgphR5mtNlRMRcZvP1wwBzJ49m9mzZ/s6jM4SJoI1GBoqoewQMXFjGBYzxFw3lF/BOWPjfR2hiIj4u6SpUHbYnCo3+gJfRyMiMqD4fGSoX7MGtk5BKNgKQIbWDYmISH+S7Fg3dFwV/URE3KVk6Eyc64YcRRQyhikZEhGRfsRZREHT5ERE3KZk6EycFeUcRRQ0MiQiIv2KMxkq2QuNtb6NRURkgFEydCanKKJwREUURESkP4hIgrAEsLfAid2+jkZEZEBRMnQmCRMhIKS1iEJYEMNjhwCwU6NDIiLia4bRZvPVbb6NRURkgFEydCbWQBjadRGF7UqGRESkP9DmqyIiPaJkqDucU+UcyVC61g2JiEh/oopyIiI9omSoO1wV5czpB1NTowHYoWRIRET6A+fIUNFOaLH5NhYRkQFEyVB3tK0o19JCemok4CiiUKsiCiIi4nllNY388u1d7CttPPPFsWMgMAya66Bkn/eDExEZJJQMdYeziEJjFZQeJDq0tYjCjgKNDomIiOdtOHiSl7KP8uL2qjNfbLG0bhKuqXIiIt2mZKg7rAGtlXocm686p8pp3ZCIiHjDuKERAOw92URDc8uZb1BFORERtykZ6i7XVLkORRTylAyJiIjnjUkIIzYsiKaWbn7wpopyIiJuUzLUXa6KcjlAa3ltjQyJiIg3GIbBrFExAGw6XHrmG1wV5baD3e7FyEREBo+Anty0b98+vvrqK4qKiqivrycmJoaxY8cyc+ZMwsPDPR1j/+AcGSrcBi0trmToaKlZRCEqNNB3sYmIyKB09qgYPthZxMZDZWe+OGESGFaoK4PKfIga5v0ARUQGuG4nQxUVFbz66qu8+uqrFBQUYO/iU6eAgADmzZvHggULmDNnjkcD9bkORRSi4scyIjaUo6W15OZXcN64eF9HKCIig8ysUbEAfHW0DFuLHavFOPXFgSFmX3VipzlVTsmQiMgZdSsZeuGFF1ixYgUAV1xxBbNmzWLKlCnExsYSHBxMRUUFx44dIycnh3Xr1nHnnXdyzjnn8N///d+MHDnSqw3oM84iCnmbzHVD8WPJSI1SMiQiIl4zMSmC0ACD6gYbuwsrXetVTyl5qpkMHd8OE6/omyBFRAawbq0ZevHFF1m6dCn/+te/+OUvf8nll1/OiBEjCA8PJzAwkPj4eKZPn84dd9zBSy+9xIcffkhiYiLvv/++t+PvW66pcjkAZAwzOyVtvioiIt5gtRhMjA8CIPtQN9YNOYsoqLy2iEi3dGtk6P333ycgoPvLi0aMGMGjjz6KzTbIdsFOmW4+q4iCiIj0kUkJgXx1vIGNh07ynfPSTn+xaxsIVZQTEemObo0M7dvXs92srVZrj+7rt5wV5RxFFNJTWosolNd2Y4dwERERN012jAxtOlzW5XrddpzJUMVRqO3GSJKIiJ/rVjJ0/fXXc8MNN/Dyyy9TVdWNnbAHq/gJEDDEUUThAFGhgYyMCwVgR36lj4MTEZHBaExsIMEBFkprGjlQXH36i4dEQ7RjrW7RDq/HJiIy0HUrGfre975HaWkpDz/8MOeddx7/9V//xYYNG7wdW//jLKIArqly6ZoqJyIiXhRoMcgcHg10d92QpsqJiHRXt5Khe++9l08//ZTVq1czf/58/vGPf3DHHXdw0UUX8eSTT1JYWOjtOPsP1+arW4G264bKfROPiIgMes7NVzd2JxlKnmY+H1cyJCJyJt1KhsDcCXvevHk8/vjj/Otf/+LnP/85UVFRPPHEE1x88cV85zvf4YMPPqCpqcmb8fpex4pyGhkSEREvm5lm7je08VBpN9YNqaKciEh3dTsZaisyMpL/+I//YM2aNaxdu5Zvfetb7Nq1i3vvvZd58+Z5Osb+xVVEYXu7IgrHSutUREFERLxi+vAoAiwGhRX15JXVnf5i5zS54q+h6QzXioj4uR4lQ21NnDiRa665hgsvvBCA8vLy3r5l/3aaIgoaHRIREW8IDQpwrVE941S5yBQIjQO7DU7s6oPoREQGrh4nQ6WlpTz33HNcffXV3HLLLbz11lvMnz+fFStWeDK+/qddEQVz3ZCKKIiIiLdlOabKbTp8hmTIMDRVTkSkm7q/kyrQ0tLC559/zt/+9jf++c9/0tTUxKhRo7jvvvu4/vrriY+P91ac/UtKJuRtNCvKTb2FqalRvLu9kB1KhkRExEtmpcWy6vOD3SuikJQBBz9VRTkRkTPoVjJ06NAh/va3v/HWW29RUlJCSEgIV111FTfeeCNnn322t2Psf1Kmm88diihsz1MyJCIi3nH2yFgMAw6W1HCiqp7EiJBTX6yKciIi3dKtZOjyyy8HYOrUqSxZsoQrr7ySsLAwrwbWr7kqym2DlhamOJKhvLI6ymoaiQkL8l1sIiJyStXV1Tz55JPs2bOHXbt2UVZWxuLFi1myZEm76x544AHefPPNTvenpaXxwQcf9FW47USFBjJhaAR7jlex6VAZV05NPvXFzmlyRTuhxQYWa98EKSIywHQrGbrtttu46aabGDdunLfjGRjixzuKKFTDyf1EJYxnVFwoh0/WsqOggrnjEnwdoYiIdKG8vJzXXnuNiRMncvHFF/P666+f8tqQkBCef/75Tsd8KSst1kyGDpeePhmKGwOBodBUCycPQML4vgtSRGQA6VYytHTp0i6PHzx4kLKyMiZNmkRoaKhHA+vXrAGQPBWOZZtT5RLGk54axeGTtWzPUzIkItJfpaamsmnTJgzDoLS09LTJkMViITMzs++C64ZZaXE8/+URss+0bshihaFTIG+TOVVOyZCISJd6VE1u7dq1zJs3jyuvvJL/+I//4NChQwD86Ec/4rXXXvNogP2Wc6qco6Kcc92QiiiIiPRfhmFgGIavw+ixmWkxAOw5XklF3Rk2OXdOlSvc5uWoREQGLreqyQG8//77PPDAA1xwwQXMmzePhx9+2HVuypQpvP/++9xyyy0eDbJfcm6+WpADQMYwldcWERlM6uvrOffccyktLSUhIYGLL76YH/7wh0RHR7v9XjabrUcxOO9zPseFBrqmZW86WML8iYmnvNcYOgULYD++nZYefn9f69h+f6P2q/1tn/1Nb9vf3fvcToZWr17NDTfcwCOPPILNZmuXDI0ePZoXX3zR3bccmJwV5Y5vhxaba68hFVEQERn4Jk6cyMSJE11rZTdu3Mjzzz/Pl19+yRtvvOF2EaHc3N7t99P2/jGRdg6fhHc2fk1MfcEp7wmtDGES0Jy3le1bt5r7Dw1Qvf35DXRqv9rvz7zdfreToQMHDvBf//VfXZ6Ljo6mvLy8tzENDPHjzcWpjiIKkQkTXJ/W5eZXMG+81g2JiAxUt99+e7uvzz33XCZPnswPf/hDXn/99U7nzyQjIwOr1f2Kbjabjdzc3Hb3X9aSz7pDuRypDTj9mqamCdj/tYTAxgoyxyRCZKrb39/Xumq/P1H71X61v+ftd95/Jm4nQ0OGDKGqqqrLc0VFRURFRbn7lgOTxWpuancs25wqlzCBjGHRSoZERAapSy65hNDQUHJycty+12q19uqPmbb3zxljbnCem19Jow2GBJ3ifa3h5gd3xbuxntgFMSN6/P19rbc/v4FO7Vf71X7vtd/tAgrTp0/nL3/5C3a7vdO5NWvWMGvWLI8ENiC49hvKASAjNRJQEQURkcHKbrdjsfSo9pDHDIsZQnJUCM0tdrYeLTv9xcmOIgrafFVEpEtu/0a/5557yMnJ4aabbuLFF1/EMAz+8Y9/sGjRIjZv3syiRYu8EWf/5Fw35Cii4Fw3tD1PyZCIyGDzwQcfUFdXx7Rp03wah2EYzEqLBThziW1VlBMROS23p8llZGTw5z//mYceeojHHnsMgFWrVjFy5EhWr17N+PF+tJeBs6Jc4bZ2RRTyy1VEQUSkv/rss8+oq6ujpqYGgP379/PBBx8AcP7551NaWsqPf/xjrrzySkaMGIFhGGzatInnn3+ecePGcfPNN/syfABmjorlrZwCNp4pGXKNDPn3AmwRkVNxOxkCmD17Nu+//z5Hjx6lpKSEmJgY0tLSPB1b/+csotBU4yqikBYfxqGSGq0bEhHppx566CHy8/NdX3/wwQeuZGjdunVEREQQHx/Ps88+y8mTJ7HZbKSmprJgwQIWLVrULzYZz3KMDG09VkZjcwtBAaeY6DE03XwuPwJ15TAkuk/iExEZKHqUDDmNGDGCESMG7oLMXrNYzSkIxza4iiikp0YpGRIR6cc++eSTM16zfPnyPoik58YmhhMbFkRpTSO5+RXMGBnT9YWhsRA1AiqOmqNDaXP7NlARkX6uW2uG3nvvPbffuKioiC1btrh934Dj2nx1KwBTHVPlcrVuSEREvMQwDM52JECaKici0nPdSoYefvhhrr32Wl5//XWqq6tPe+2OHTt46KGHuOyyy9izZ49HguzXOlSUc64bylVFORER8SJnEYVNh89URCHDfFZFORGRTro1Te6jjz5i2bJl/OY3v+Hhhx9m8uTJTJ48mbi4OIKCgqioqODYsWPk5ORQXFzMuHHjWLZsGXPn+sFwvLOiXOF2aLExxVFeO7+8jtKaRmJVREFERLwgKy0OMJMhW4sdq8Xo+kJXRTklQyIiHXUrGYqIiOBnP/sZ99xzD2vWrOGzzz5j7dq11NXVua4ZPnw4c+fO5eqrr2b27NleC7jfiR8HgWFmEYWSfUQmTmxXROF8rRsSEREvmJQcQXhwAFX1zew5XsmUlFNseu6cJlfyNTTVQ2BI3wUpItLPuVVAISoqijvuuIM77rgDgKqqKurr64mOjiYwMNArAfZ7Fqs5BeHYBnOqXOJEMhxFFHYoGRIRES8JsFo4a2QMn+8tZuOh0lMnQ5GpMCQG6sqgeHfrjAYREXF/09W2IiIiSEhI8N9EyKnD5qsZrs1Xy30Tj4iI+IWs7qwbMgxNlRMROYVeJUPi4Np8NQdoLaKwI7/SN/GIiIhfcBZR2HioFLvdfuoLVVFORKRLSoY8wVVRbhu02EhvU0ThZHWD7+ISEZFBbeqwKIICLJRUN3KwpObUFzpHhlRRTkSkHSVDnuAqolALJfuICAlkdHwYoBLbIiLiPcEBVjKHRwOw6XT7DbmSoR3QYvN+YCIiA4SSIU+wWFunIHSaKqdkSEREvCerzVS5U4ofBwFDzMqnpYf6KDIRkf5PyZCnOKfKFWwFzKkLoJEhERHxLue6oezTJUMWKwydbL4+vq0PohIRGRjcTob+3//7fxw8eNAbsQxsziIKjopyKqIgIiJ94awRMVgtBvnldeSX1536QlWUExHpxO1kaO3atVx55ZXccccdfPzxx6evXuNPnOW1j2+HFhtTUlREQUREvC8sOIB0R59z2nVDySqiICLSkdvJ0Pr163nwwQcpLi5m8eLFXHjhhaxevZrS0tP8AvYHcWPbFFHYaxZRSFARBRER8b5uTZVrOzKkDzJFRIAeJEOhoaF8+9vf5p133uHZZ59lypQp/N///R8XXHABDzzwALm5frqHQdsiCh02X1URBRER8aaZo5xFFE6e+qLEyWBYoLYEqo73UWQiIv1brwoozJkzh+XLl7Nu3TqmT5/OW2+9xS233MLNN9/MJ5984qkYBw7nVDlHRTlnMrQ9T8mQiIh4jzMZOlBcQ8mppmYHhUL8ePO1psqJiAC9TIbq6+t5/fXXWbRoEdnZ2YwZM4Z77rkHm83GPffcw4oVKzwV58DQoaKcRoZERKQvxIQFMWFoBACbD59uqlyG+axkSEQE6GEydPToUR599FHmzZvHL3/5S5KSknjmmWd45513WLx4MWvWrOHuu+/mpZde8nS8/ZuzotzxXLOIQmoUhgEFFfWn/qRORETEA9xeNyQiIu4nQ3fddRff+MY3eOONN7j22mv54IMP+NOf/sQ555zT7rr58+dTVlbmsUAHhA5FFMKDA0iLVxEFERHxvpnd2XxVFeVERNpxOxk6duwYS5cu5fPPP+fnP/85I0aM6PK6cePG8cILL3T7fTdv3szdd9/NzJkzmTp1KpdeeunAm2ZnsULyNPO1o4jCVOdUOa0bEhERL5rlWDe0u7CSyvqmri9yjgyVHYZ69UsiIm4nQx9++CELFiwgLCzstNeFh4cza9asbr3n3//+dxYsWEBERAS//e1vWb16NXfffffA3MPItfmquW7IufmqRoZERMSbkqJCGBkXSosdthw5xcyM0FiIHGa+Pr6j74ITEemnAnwdQFFREf/93//Nrbfeyq9+9SvX8dmzZ/suqN5wFlHoUFFOyZCIiHjbzFGxHDlZy8ZDpcyfkNj1RclToTLPnCo36ty+DVBEpJ9xOxm68MILMQyjy3MWi4WIiAgyMjJYuHAhY8aMOeP7vf7669TW1nL33Xe7G0r/5CyvfTwXbM2uIgqFjiIK8eHBvo1PREQGrVlpsbyxJY9NZyqi8PV7Zj8lIuLn3E6GZs2axcaNGzlx4gRnnXUW8fHxFBcXs3XrVhITE0lOTuajjz7irbfe4sUXXyQjI+O077dp0yaio6M5ePAgP/jBD9i3bx9RUVFccskl/PSnPyU8PNyt+Gw2m7tNandfT+93iUnDEhSO0ViN7cRuhiROZnR8GAeKa9h2tIwLJiT07v29xGPtH6DUfrW/7bO/6W37/fXn1h9lOYoobMsrp77JRkigtfNFzvLaqignIuJ+MnTeeeeRk5PDRx99RHJysut4QUEBd955JxdffDGPPfYYCxYsYNmyZaxevfq071dUVERdXR0/+tGP+N73vkdmZia5ubksW7aMffv28fLLL59yJKorubm9+6Srt/cDjA9PI6I0l6PZf6d0eCOpQ2wcAD7a8jXRdfm9fn9v8kT7BzK1X+33Z/7e/sFgRGwoQyODKapsYOvRcuaMiet8kbOiXPFuaG6AAM1YEBH/5XYy9Kc//YklS5a0S4QAUlJSuOeee3jyySe5/vrruf3223nkkUfO+H52u52GhgYWL17Md7/7XQCysrIIDAzkkUce4csvv+xUtvt0MjIysFq7+CTsDGw2G7m5uT2+vy3jxHmQncvIwDJGZGYyt+Ywnx/dQ0lLKJmZmb16b2/xZPsHIrVf7Vf7e95+5/3ie4ZhMHNULO9sL2TjodKuk6Go4RASDfXlULyntQqqiIgfcjsZOnLkyCmnrkVGRpKfb458pKamUldXd8b3i46OBswRp7bmzZvHI488ws6dO91KhqxWa6/+mOnt/QCkngWApTAHrFamDY8BYGdBZb//Q8sj7R/A1H61X+333/YPFllpZjK06fAp1g0ZhjlV7vB6c6qckiER8WNul9ZOSUnhzTff7PLc3/72N9eIUXl5OVFRUWd8vwkTJnR53FlW22JxO0Tfc1aUcxZRSIl0FVEormrwaWgiIjK4zUozR4O2HCmjydbS9UXOBEibr4qIn3M70/jOd77DBx98wDe/+U2ee+453nnnHZ577jm++c1v8tFHH3HXXXcBkJ2dTXp6+hnf79JLLwXg888/b3fc+fW0aQPwE6u4sRAUDs11ULKXsOAARseb+zLtUIltERHxonGJ4UQNCaSuyXbqPse5+aoqyomIn3N7mtwtt9yC3W5n2bJlPPbYY67j8fHxPPTQQ9x8880ALFq0iKCgoDO+33nnncf8+fNZsWIFLS0tZGZmsmPHDpYvX878+fM5++yz3Q3R9ywW81O3I/829xsaOpmpw6I5UFxDbn4F8yeeYu8HERGRXrJYzHVDH+8uYtPhUqaPiOl8kbOi3PFcaGkx+y0RET/kVjJks9k4evQol19+ObfccgsHDx6kvLyc6OhoRo8e3a7qW3x8fLff9/HHH2f58uW89tprrFixgsTERG6//XYWL17sTnj9S3KmmQwVbIXMb5GeGsWbW/O1+aqIiHhdVpqZDG08VMp353Wx51/8eAgIgcZqKDsEcWfeF1BEZDByKxmy2+1ceeWVrFy5kvPPP79bm6p2R0hICP/1X//Ff/3Xf3nk/fqFlEzzuSAHgIxUc/1Ubp6SIRER8a5Zjv2GNh4qpaXFjsXSYYsKawAkToaCr8x1Q0qGRMRPuTUuHhAQQHx8vKu4gZxGynTzuUMRheOVKqIgIiLeNSUlktAgK5X1zXxdVNX1Rdp8VUTE/QIKV155JWvXrvVCKINM7BgIinAUUfiasOAAxiSYJclVREFERLwpwGphxkhzrdApS2w7N19VRTkR8WNuF1CYOHEi7733HgsXLuTSSy8lISGh3VohaK0Q59csFrOjOfJvc6rc0ClkpEax/0Q12/NUREFERLxr1qhY1u8rIftQKQvnjOp8QZKjWqtGhkTEj7mdDN1///0AFBUVsXHjxk7nDcNg9+7dvY9sMEiZ3lpRbvq3yVARBRER6SMz26wbstvtnT64ZOhkwICaE1BVBBFD+z5IEREfczsZeuGFF7wRx+Dk3Hy1YCsAGcPMIgqaJiciIt6WOTyaIKuF4qoGjpysZZRjvzuXoDCIHwcle82pchGX+CZQEREfcjsZmjVrljfiGJycFeWO7wBbM5OTW4sonKiqJzEixKfhiYjI4BUSaGXa8Cg2HS5j46HSzskQmJuvluyFwm0wTsmQiPifHu+yVlVVxfr163n77bepqNBIR5e6KKIwVkUURESkjzhLbGcfOkURhbabr4qI+KEeJUMrVqxg7ty53H333dx///3k5eUBcNttt7F69WqPBjigWSyQ7Fig6pwq59pvqNJXUYmIiJ+YOcpMhlRRTkSka24nQ3/5y19YsWIFN910E6tWrWq359D8+fP55z//6cn4Br4Om6+mO5Oh/HKfhCMiIv5jxsgYLAYcLa2lsKKu8wXOinKlB6FeH9KJiP/pUTJ0++238+CDD3Leeee1Ozdy5EiOHDniseAGBWcRhcIcAKYOcyZDmiYnIiLeFRESyJQUs9/Z2NVUubA4iEw1Xxft7MPIRET6B7eToWPHjjF37twuz4WFhVFZqU+W2kmZbj4fzzWLKKREYjGgqLKBE5X1vo1NREQGPedUuS6TIWizbkhT5UTE/7idDEVERFBSUtLlufz8fOLi4nod1KASO9pRRKEeivcQGhTAGEcRBY0OiYiItzmLKJxy3VCSY92QNl8VET/kdjI0Z84cnnrqKWpra13HDMOgubmZV155pdPUOb/XtoiCY6qcq4iCkiEREfGymaNiANhbVE1pTWPnC1REQUT8mNvJ0A9/+EMKCgq48soreeyxxzAMg5deeombb76ZI0eO8IMf/MAbcQ5sHYooaPNVERHpK3HhwYxLNGckdDk65Jwmd2I3NHeRLImIDGJuJ0MjR47klVdeYfTo0bzyyivY7XbeeustYmJiePnll0lJSfFGnAObc91Qh/La2/OUDImIiPfNdE6V62rdUPRICImCliYo3tPHkYmI+FZAT24aO3YsTz/9NI2NjZSVlREVFUVISIinYxs8nBXlina0K6JwososopAYqZ+diIh4T1ZaLC9nH2VjVyNDhmGuGzq83iz245w2JyLiB3q06apTUFAQQ4cOVSJ0JrGjITiyXRGFsYkqoiAiIn3DWVFuR34F1Q3NnS9QRTkR8VM9GhnKy8vj/fffp6CggPr69uWhDcPgkUce8Uhwg4aziMLh9eZUuaR00lOj2FtUTW5+BRdNGurrCEVEZBBLiR7CsJgh5JXVseVIGeePT2h/gSrKiYifcjsZ+uc//8nixYtpaWkhNjaWoKCgducNw/BYcIOKMxkqzAEWkJEaxZqv8snVuiEREekDs9JiySvLZ9Oh0s7JkKuiXC60tJgf4omI+AG3k6E//vGPnHXWWfzxj3/UnkLucBVRyAFg6jCV1xYRkb6TlRbLmq/yu958NX48WIOhsQrKD5vTu0VE/IDbH/0cOXKEu+++W4mQu5zJUNEOsDUxOTnKVUShqLL+9PeKiIj00qw0s9/OOVZOfZOt/UlrICROMl9rqpyI+BG3k6GUlJR2G65KN8WktSuiMCTI2lpEQVPlRETEy0bFhRIfHkyjraXrrR20+aqI+CG3k6Hvfe97PPPMM9TV1XkjnsHLWUQBWjdfTY0GNFVORES8zzAMshz7DW08dLLzBUlt1g2JiPgJt9cM5ebmcvLkSS655BKysrKIiYnpdM2DDz7okeAGnZTMDkUUIvnbV2apUxEREW+blRbLu7mFZB8qZXHHk6ooJyJ+yO1k6KWXXnK9fvfddzudNwxDydCpODdfLdgKQIajiMJ2JUMiItIHnPsNfXWkjGZbCwHWNhNEhk4BDKg+DtUnIDzRN0GKiPQht5OhPXv2eCMO/+AsonC8fRGFYkcRhaGR2rxWRES8Z0JSBJEhAVTWN7OrsJKpw6JbTwaHQ9wYOLnfXDc09mKfxSki0le0kUBfikmD4CiwNbiKKIxLjABUREFERLzPajFco0NdltjWVDkR8TPdSoY2bdpETU3NGa8rLS3ljTfe6HVQg5bF0lqtxzFVLj1VU+VERKTvzHIUUcjuKhlSRTkR8TPdSoYWLlzIgQMHXF+3tLSQnp7Orl272l137NgxfvGLX3g2wsEmJdN87rD5qoooiIhIX5jpSIY2Hy6lpcXe/mRShvmsinIi4ie6lQzZ7fZOXzc3N3c6Lt3gXDdUmAO0jgzl5lfo5ykiIl6XnhLFkEArZbVN7C+ubn8yybEFxMkD0FDd+WYRkUFGa4b6mrOinKuIQmSbIgoNPg1NREQGv6AAC2eNjAa6mCoXngARyYAdinb0eWwiIn1NyVBfix3dWkThxG6GBFkZP9RRREFT5UREpA90q4iCpsqJiB9QMtTXDANSHNMQupgqJyIi4m3OIgqbDpV2nqLtXDdUuK2PoxIR6Xvd3mfo4MGDWK1WAGw2m+tYx2ukG5Iz4dDnZhGFsxaSkRrFG1vyyM0r93FgIiLiD6YPjyHQanC8sp5jpXWMiAttPamKciLiR7qdDC1durTTsZ/+9Kftvrbb7RiG0fuoBjtXRbn25bVz8yv1MxQREa8bEmQlIzWKr46Wk33oZPtkyDlN7sRusDWBNdA3QYqI9IFuJUOPPvqot+PwL84iCkU7XUUUrBaDkmqziEJSVIhPwxMRkcFvVlocXx0tZ9PhUm4+e3jrieiREBwJDZVQ/DUkpfsuSBERL+tWMnT99dd7Ow7/4iyi0FBhFlFInsq4xHD2HK8iN79CyZCIiHhdVlosf/rsQOciChaLuW7oyL/NqXJKhkRkEFMBBV9oW0Sh41Q5rRsSEZE+MGNUDIYBh0/WUlRZ3/6kKsqJiJ9QMuQrzqlyjopyU4epopyIiPSdyJBAJiVFAl2U2HZVlFMRBREZ3JQM+UrKdPO5IAfoXERBREQ8r7q6mt/97nfceeedzJ49mwkTJrBs2bIur925cye3334706dP5+yzz2bx4sUcO3asjyP2LleJ7cMdkqHkNiND6pNEZBBTMuQrzopyRTugubFdEYXjHacriIiIR5SXl/Paa6/R2NjIxRdffMrrDhw4wIIFC2hqauLxxx/nkUce4fDhw3zrW9+itLSLjUoHqKy0U2y+Gj8BrEHm2tbyIz6ITESkbygZ8pWYNAiJAlsjFO8mJNDKuMRwAHLzNFVORMQbUlNT2bRpEy+99BL33XffKa974oknCAoKYtWqVZx//vlceumlrFq1irKyMp5++uk+jNi7zh5lJkN7jldRXtvYeiIgCBImmq81VU5EBjG3kqH6+nq++c1v8sUXX3grHv9hGK3rhhxT5TIcU+V2aN2QiIhXGIZxxr3cmpub+ec//8mll15KeHi463hqaipZWVl8/PHH3g6zzyREBDM6IQyAzYfL2p/U5qsi4ge6vekqQEhICHv37sVqtXorHv+SkgmHPnMUUbiNjGFRvL4lj+1KhkREfObo0aPU19czYcKETufGjx/Pv//9bxoaGggODu72e9psth7F4ryvp/d3x8yRMRwsrmHDwRLmT4h3HTeGZmAB7IXbaPHi9z+dvmh/f6b2q/1tn/1Nb9vf3fvcSoYApk+fzvbt28nKynI7KOnANTJkltduOzJkt9vP+OmliIh4Xnl5OQDR0dGdzkVHR2O326moqCAxMbHb75mb27sS1b29/3SGWuoA+GxXPpcnt65ZDasMYSLQdOwrcnNyvPb9u8Ob7R8I1H613595u/1uJ0P3338/P/jBD0hISOCSSy4hLCzMG3H5B1cRhZ3Q3MgkVxGFRo5X1pMcNcSn4YmI+LPTfSDl7odVGRkZPZpVYbPZyM3N7fH93ZEwso4nNn7GwfJmxk1KJyzY8adBwxjsX/wnQfUlZI4bBmHxp38jL+iL9vdnar/ar/b3vP3O+8/E7WTo1ltvpampiaVLl7J06VJCQkLadQqGYbBlyxZ339Y/OYso1FeYRRSSpzEuMZw9x6vYnlehZEhExAecI0JlZWWdzpWXl2MYBpGRkW69p9Vq7dUfM729/3RGxIeTGj2E/PI6tudXcd44R9ITGg2xo6H0ANYTO2DsRV75/t3hzfYPBGq/2q/2e6/9bidDl112maZveYqziMKhz8ypcsnTmDosij3Hq9iRX8FlU5J8HaGIiN8ZMWKEa41sR3v37mXkyJFurRcaCGalxfLm1nw2HjrZmgyBuflq6QFzvyEfJkMiIt7idjL02GOPeSMO/+UsolCQAzPMdUOvbc4jV0UURER8IiAggPnz5/PRRx/xk5/8xFVRrqCggOzsbG6//XbfBugFM0eZyVB2x/2GkqfCrrWqKCcig5bbyZB4WMp087kwB4B0RxGF3DwVURAR8YbPPvuMuro6ampqANi/fz8ffPABAOeffz5DhgxhyZIl3HTTTSxatIi7776bxsZGnnjiCWJiYrjzzjt9Gb5XzHJsvppzrJyGZhvBAY4pKUnTzGftNSQig1SPk6G9e/dy4MABGhoaOp277rrrehOTf3FWlGtTRCHAYnCyppHCinpSorVuSETEkx566CHy8/NdX3/wwQeuZGjdunUMGzaMMWPG8OKLL/I///M//OhHP8JqtTJ79mxWrFhBbGysr0L3mjEJYcSFBXGyppHcvArXZqwkZZjPJ/dDYw0EqWiSiAwubidDdXV1fP/732fDhg0YhoHdbgfaV9ZRMuSGmFEQEg315XBiFyEpmYwbGsHuwkpy8yuUDImIeNgnn3zSrevS09N57rnnvBtMP2EYBrPSYnl/x3GyD5W2JkMRQyF8KFQXmR/aDZ/l20BFRDzM4u4NTz75JPn5+bz00kvY7XaWL1/Os88+yyWXXMLIkSN58803vRHn4GUYrSW2HVPlMlLNKkW5eVo3JCIifWOmIwHadLjDuqGkqeZz4bY+jkhExPvcTobWrVvH3XffzfTp5lqX5ORk5syZwxNPPMGUKVN4+eWXPR7koOfafDUHgIxh0QAqoiAiIn3GuW5o8+EybC321hPJjmTouH9v/Cgig5PbyVB+fj6jR4/GarViGAZ1dXWuc1dffTXr1q3zaIB+wTkyVLAVMCvKAezIr3BNQxQREfGmScmRRAQHUN3QzO7CytYTznVDqignIoOQ28lQREQEtbW1AMTFxXHkyBHXuebmZtc5cYOzotyJXdDcyMSkiHZFFERERLzNajGYMSoGoH2Jbec0uaJdYGvyQWQiIt7jdjI0YcIEDh8+DEBWVharVq1i8+bNbN++nRUrVjBx4kRPxzj4RY80iyjYGs0iCoFWxg2NAGC71g2JiEgfcU6V29Q2GYpJg6AIsDVAyT4fRSYi4h1uJ0M33nija2+G//zP/6Suro4FCxZw6623UlBQwAMPPODxIAe9tkUUHFPlpraZKiciItIXshzJ0MbDpa3TtC0WSEo3X2uqnIgMMm6X1r7iiitcr4cPH86HH37oKrM9ffp0oqOjPRmf/0jOhIP/bN18dVgUr24+piIKIiLSZzJSowkOsFBa08iB4mrGJpqzFEiaCke/NDdfnfZN3wYpIuJBbo8MdRQaGsqFF17I/PnzPZIIvf7660yYMMFVrc5vONcNOSvKOUaGclVEQURE+khQgIXpI6IB2HiorPWEq6KcRoZEZHDpdTLkSUVFRfz2t78lMTHR16H0Pec0uaKd0NzgKqJQWtNIgYooiIhIH5mVFgfAxkMnWw+2rSinD+hEZBDp1jS5iRMnYhhGt97QMAx27drVo2B++ctfcvbZZxMdHc2HH37Yo/cYsJxFFOrLzSIKKdMZPzSCXYWV5OZVkBo9xNcRioiIH3CuG8o+ZK4bMgwDEiaBJRDqK6D8KMSM9HGUIiKe0a1k6J577ul2MtRTb731Fhs3buS9997j8ccf9+r36pcMw5wqd/BTc6pcynQyUqPMZCi/nG+kJ/k6QhER8QPTR0QTYDEorKgnr6yO4bGhEBAEiRPNjVeP5yoZEpFBo1vJ0JIlS7waxMmTJ3nkkUf48Y9/TFKSH//Rn5LpSIa2AneQ4SqiUHmmO0VERDwiNCiA9NQoco6Vs+lwqZkMgVlE4XiuOVVu0lW+DVJExEPcribnDQ899BBpaWl861vf6vV72Wy2Xt3X0/s9YuhUrIC9IIcWm40pyWYVnx155TQ3N3t1dK5ftN+H1H61v+2zv+lt+/315zaYZaXFknOsnI2HSrnhrGHmwaSpwF/MinIiIoOE28nQ2rVrz3jNdddd1+33+/DDD/nkk09Yu3atR/7Yz83N9en9vRFUG0wGYC/aybYtG2kgEKsBpbVNfPTFVySGWb0egy/b3x+o/Wq/P/P39kurWWmxrPr8IBvbbr6qinIiMgi5nQydalPVtolMd5OhmpoaHn74YRYsWEBiYiKVleZ0sKamJgAqKysJCAggNDS02/FlZGRgtbqfNNhsNnJzc3t8v0fY7di/iMFSV8a0lCBIzmTil1+ws7ASe3QqmVO8N4WwX7Tfh9R+tV/t73n7nffL4HH2yFgMAw6W1FBc1UBCRDAMdWy8WpkPNSchLM63QYqIeIDbydC6des6HSsrK2PdunW89957/PGPf+z2e5WVlVFSUsIzzzzDM8880+n8zJkzueiii3jyySe7/Z5Wq7VXf8z09v5eS86Eg59iPb4Nhs0gY1gUOwsr2VlYxRVTU73+7X3efh9T+9V+td9/2y+tokIDmTA0gj3Hq9h0uJQrMpIhJBJi0qDskDk6NGa+r8MUEek1t5Oh1NTOf5CnpqaSnp5Oc3MzL7zwAo899li33ishIYEXXnih0/HVq1ezadMm/vznPxMTE+NuiAObq4hCDgDpqVGw6Rjb8yp8GpaIiPiXrLRY9hyvYuMhRzIE5lQ5JUMiMoh4tIDCnDlz+M///M9uXx8cHExWVlan42+++SZWq7XLc4NeynTzuTAHgKnDogDYkV/Rut+DiIiIl81Mi+X5L4+Q3XbdUFIG7HrLrConIjIIWDz5Zvn5+VgsHn1L/5OcaT4X7YLmBiYkRRBoNSirbSK/vM6noYmIiP+YNcrcfHXP8Uoq6sy1vCRNM59VUU5EBgm3R4Y2bdrU6VhjYyNff/01q1atYs6cOb0O6rHHHuv2VLtBJ3oEDImBujIo2klw6lmMHxrBzoJKcvMqGBbT/WISIiIiPZUYGUJafBiHSmrYcqSUCycOba0od3IfNNZCkPokERnY3E6GFixY0Gmqlt1uB+Ccc87hF7/4hWci81eGYU6VO/CJOVUu9SymDosyk6H8Ci53ztsWERHxslmjYjlUUkP2IUcyFD4UwhKgphhO7IJhZ/s6RBGRXnE7Geqq4EFwcDCpqanEx8d7JCi/l5xpJkMFWwFHEQWOkZuvIgoiItJ3ZqbF8urmY2xyrhsyDHPz1QProHCbkiERGfDcToZmzZrljTikrZRM89lRUS4jVUUURESk72WlmeuGtudVUNdoY0iQ1Zwqd2CdNl8VkUHB7WoHhw4dYuPGjV2e27hxI4cPH+5tTOKsKHdid6ciCnllKqIgIiJ9Y1jMEJKjQmhusbP1aJl5MMmxbkgV5URkEHA7GXrssce63HgV4NNPP/XfwgeeFDUchsRCS5NZRCHAyoSkCMAcHRIREekLhmEw01FVzlVi25kMFe0EW7OPIhMR8Qy3k6Hc3FxmzpzZ5bmZM2eyY8eOXgfl9wyjzVQ5c92Qc6qc1g2JiEhfmuWYKrfpsCMZih0NQeHQXG9WlRMRGcDcToaqqqoIDe26lGZISAgVFfpj3SM6bL6armRIRER8wLlu6KujZTQ2t4DFAkPTzZOaKiciA5zbydDQoUPZvr3rRZPbt28nISGh10EJrZuvOoooTE2NBsxkyFnKXERExNvGJoYTGxZEfVNL6wdySRnmc+E23wUmIuIBbidDF198MatXr2bDhg3tjmdnZ/PnP/+ZSy65xGPB+TXnNLkTu6CpnvFJ4QRaDcpVREFERPqQYRicPTIGaDNVzrn5qirKicgA53YydM8995CSksIdd9zB5Zdf7nq+/fbbSUlJYcmSJd6I0/+4iig0w4n2RRQ0VU5ERPqSc93Qxo5FFI7ngmYriMgA5nYyFBERwauvvsrixYuJioqioKCAqKgolixZwl//+lfCw8O9Eaf/MYzWdUOu/YaiASVDIiLSt7LS4gBzZMjWYofESWAJgLoyqMjzcXQiIj3n9qarAGFhYdxzzz3cc889no5H2krJNDe2a1NR7hVUXltERPrWpOQIwoKsVNU3s+d4JVNSoiBhIhTtMKfKRQ/3dYgiIj3i9siQU1VVFevXr+ftt99WBTlvcRZRcFSUc5bX3p6nIgoiItJ3AqwWZjj2G9rUcapcodYNicjA1aNkaMWKFcydO5e7776b+++/n7w8c4j8tttuY/Xq1R4N0K85p8md2O0qohBktVBRpyIKIiLSt5wltjc6iyg4K8qpvLaIDGBuJ0N/+ctfWLFiBTfddBOrVq1qN0Ixf/58/vnPf3oyPv8WNQxC48wiCkUqoiAiIr7TtoiC3W5XRTkRGRR6lAzdfvvtPPjgg5x33nntzo0cOZIjR454LDi/ZxhtpsqZ64bS20yVExER6StTh0URFGChpLqRQyU1rSNDFcegttS3wYmI9JDbydCxY8eYO3dul+fCwsKorKzsdVDSRoeKclOHmcmQiiiIiEhfCg6wkjk8GnCU2A6JguiR5klNlRORAapHpbVLSkq6PJefn09cXFyvg5I2nJuvdiiikJuvIgoiItK3sjruN6SpciIywLmdDM2ZM4ennnqK2tpa1zHDMGhubuaVV17pNHVOesk5Tc5ZRGFohKuIwrFSFVEQEZG+M9NRUS7bVVFumvmsinIiMkC5nQz98Ic/pKCggCuvvJLHHnsMwzB46aWXuPnmmzly5Ag/+MEPvBGn/4oaBqHxriIKQQEWJiariIKIiPS9s0bGYLUY5JfXkV9ep4pyIjLguZ0MjRw5kldeeYXRo0fzyiuvYLfbeeutt4iJieHll18mJSXFG3H6L8NoM1WufREFJUMiItKXwoMDSE+JBBz7DTmnyZXshSbNVhCRgSegJzeNHTuWp59+msbGRsrKyoiKiiIkJMTTsYlTcibs/xgKzGTIuW5IRRRERKSvzUqLZVteBdmHSrkuM92cvVBbAkW7YNgMX4cnIuKWHm266hQUFMTQoUOVCHmbc2SoYBugIgoiIuI7znVDmw6XmrMXXFPltG5IRAaebo0MrV271q03ve6663oQipySs7x28W5oqutURGFEXKhv4xMREb/hTIb2n6impLqB+OSpcPBTJUMiMiB1Kxl64IEHuv2GhmEoGfK0yNQ20xB2EjTsbCYmR7A9r4Lc/AolQyIi0mdiwoKYMDSCr4uq2Hy4lG8kOdYNqaKciAxA3UqG1q1b5+045HScRRSc64aGnU16ahTb8yrYnl/OlVOTfR2hiIj4kZlpMXxdVMXGQ2V8Y7YjGSraCS02sFh9G5yIiBu6lQylpqZ6Ow45k5TpZjLk2Hx1amoUL6MiCiIi0vdmpcXx0oajbDx8Eq48BwJDoakWTu6HhAm+Dk9EpNt6VE0OoLq6mpycHMrLy4mJiWHatGmEh4d7MjZpy7n5qqOIgqu8dp5ZRMEwDB8FJiIi/maWY93QroJKKhtbiByaDnkbzalySoZEZADpUTL09NNPs3z5curr611/iIeEhPDDH/6QO+64w9MxCrRWlDuxq10Rhcr6Zo6W1jIyLsyn4YmIiP9IigphZFwoR07WsuVIGfOTp5rJ0PHtMPVmX4cnItJtbidDa9eu5fe//z3z5s3j+uuvJzExkRMnTrB27Vp+97vfERMTowIK3hCZCmEJUFPsKqIwKTmCbY4iCkqGRESkL80cFcuRk7VsOlTKfJXXFpEByu19hp577jmuuuoqVq9ezeWXX86MGTO4/PLLWbVqFVdeeSXPP/+8N+IUw2gzVc7cfDW9zX5DIiIifWlWmjlVbuOhUmhbUU7734nIAOJ2MnTw4EGuueaaLs9dc801HDhwoNdBySm4Nl/NAdpsvpqnZEhERPpWliMZ2pZXTn3sBDCsUFcKlQU+jkxEpPvcToZCQkKoqOj6j++KigpCQkJ6HZScgnNkyFFRLmOYmQztyDeLKIiIiPSVEbGhJEYE02Szk1NY31o4QVPlRGQAcTsZmjFjBsuXL6eoqKjd8eLiYlasWMHZZ5/tseCkg5Tp5vOJ3a1FFAJaiyiIiIj0FcMwTj1VTkRkgHC7gMJ9993HN7/5TS699FLmzJlDQkICxcXFbNiwgYCAAJYvX+6NOAUgMqW1iMLxHQQOn8mkJLOIwvY8FVEQEZG+lZUWyzvbC81kaMpU2P5XjQyJyIDi9sjQuHHjeOONN7jooovIzc1lzZo15ObmctFFF/H6668zduxYb8Qp0L6IQhdT5URERPrSrLQ4ALYcKaM5Md08qGRIRAaQHu0zlJaWxv/+7/96OhbpjpTpsP+jzkUUlAyJiEgfG5cYTtSQQCrqmthtH0UGQPlRqCuDITG+Dk9E5IzcHhkSH3NVlOtcXltFFEREpC9ZLAYzR5nrhr4saIboEeaJ47k+jEpEpPt6NDK0a9cu/v73v1NQUEBDQ0O7c4ZhsHLlSo8EJ11wTpMr3tOuiEJVfTNHTtYyKl7rhkREpO9kpcXy8e4iNh4q5btJU82RoeO5kDbP16GJiJyR28nQ2rVrWbp0KRaLhdjYWAIDA9udNwzDY8FJFyJTICwRak60FlFIjmTbsXJy8yuUDImISJ+a6agot+lwGS3zMrDseUcV5URkwHA7GVq5ciXnn38+v/3tb4mKivJGTHI6hmFOldv3D7OIwvCZZKSaydCO/Aqunpbi6whFRMSPTEmJJDTISkVdEwVDxjEMVERBRAYMt9cMnThxgoULFyoR8iXnVDnHuqGpqdEAbM9TEQUREelbgVYLM0aaxRI21KaaB4u/hqZ6H0YlItI9bidDkyZN6rThqvQx5+arjopyziIKOwpUREFERPreLEcRhU8LA2FILNhtcGKXj6MSETkzt5Ohn/70p6xevZo9e/Z4Ix7pDmdFueI90FjLuKHh7YooiIiI9KW264bsyVPNg5oqJyIDgNtrhjIzM7n00ku5/vrrSUhI6DRdzjAM3n77bY8FKF2ISG4tolC0g8Dhs5icHEnOsXK2q4iCiIj0sczh0QRZLZyoaqAyaiJR/FPltUVkQHB7ZGj16tWsWrWKmJgYUlJSiI6ObvfQWqI+4CyiAJ02X92hzVdFRKSPhQRamTbc7Id229PMg6ooJyIDgNsjQy+88AI33ngjDz/8MFar1RsxSXekTG+tKEdrMpSrIgoiIuIDM0fFsulwGZ9XJzMboGgHtNjAor8VRKT/cntkqKamhquuukqJkK91qCiX3mZkqKVFRRRERKRvzXKsG3ovPwwChkBTLZQe9HFUIiKn53YydNZZZ3HgwAFvxCLu6KKIQnCAhaqGZo6UqoiCiIj0rRkjY7AYcLisgcb4SebBwm2+DUpE5AzcToZ+/vOf89e//pWPP/6YxsZGb8Qk3RGRDOFDwd5iFlGwWpiUHAlArtYNiYhIH4sICWRKijlLIT9knHlQFeVEpJ9ze83QjTfeSHNzM0uWLMEwDEJCQtqdNwyDLVu2eCxAOQXDMKfK7fvQLKIwfBYZqVHkHCsnN6+ca6al+DpCERHxMzNHxZKbX8G25hGkgSrKiUi/53YydNlll2EYhjdiEXelZDqSIXPdUMYwRxEFjQyJiPRKdnY2Cxcu7PLcq6++SmZmZt8GNEDMSovlmX8fYl3ZUK4Ds6Kc3W5+gCci0g+5lQzZbDa+973vERsbqxLa/UHKdPO5Q0W5nfmVtLTYsVjU+YiI9MZ9991HVlZWu2Pjxo3zUTT938xRMQD842Q89iFWjNoSqCqESM1WEJH+ya01Q3a7nSuvvJKcnBwvhSNucVaUcxZRSGwtonD4ZI1PQxMRGQxGjhxJZmZmu0dYmDa2PpW48GDGJobTQBA1EaPNg5oqJyL9mFvJUEBAAPHx8djtKt3cL0S2KaJwPJcAq4XJKSqiICIivuMssX0owJEMafNVEenH3K4md+WVV7J27VovhCI94hwd6jBVboeSIRGRXnv44YeZPHkyZ511Ft/5znfYvHmzr0Pq97IcydCm+mHmgeMqry0i/ZfbBRQmTpzIe++9x8KFC7n00ktJSEjoVFDh0ksv9ViAcgYp01srytG6+apGhkREei4iIoKFCxeSlZVFdHQ0R44c4emnn2bhwoWsWrWKuXPnuvV+NputR3E47+vp/b5w1nCzH1pXnsSdQWAv3E6LH7Xfk9R+tb/ts7/pbfu7e5/bydD9998PQFFRERs3bux03jAMdu/e7e7bSk85N191VJSbOsw5MqQiCiIiPTV58mQmT57s+vrss8/mkksu4eqrr+b3v/+928lQbm7v1s309v6+lhhqZUftSACM8iPkbvoXtsDwHr/fQGu/p6n9ar8/83b73U6GXnjhBW/EIT3lnCZX8jU01jA2IZyQQAvVjiIKoxN63vmIiEiryMhILrjgAv76179SX1/faZ+908nIyMBqtbr9PW02G7m5uT2+31fO3b+dN7faqAhKIqrxOBmJBozMdPt9Bmr7PUXtV/vV/p6333n/mbidDM2aNcvtYMSLIpMhPAmqj8PxHQSMyGJSciRbj5aTm1+hZEhExIOcBYTc3W/ParX26o+Z3t7f12aPjuPNrQXsNdKYyXGsRTtg9Lwev99Aa7+nqf1qv9rvvfa7XUDBqaqqivXr1/P2229TUdHz9SlffvklS5cu5Rvf+AaZmZnMnTuX73//++zYsaPH7+l3Ok6Vc64bytO6IRERT6moqOCf//wnkyZNIjg42Nfh9GszR5lFFDbUOfYXUnltEemn3B4ZAlixYgV//vOfqa+vxzAM3njjDaKiorjttts499xz+e53v9vt93rllVcoLy9n4cKFjB07ltLSUp599lluvfVWnnrqKebMmdOTEP1Lcibs/cBVUU5FFEREeufHP/4xycnJpKenExMTw5EjR3jmmWc4efIkjz32mK/D6/fS4sOIDw9me+1ICAKOq7y2iPRPbidDf/nLX1ixYgXf+ta3mDt3Lt/73vdc5+bPn88//vEPt5KhX/7yl8TFxbU7NnfuXC699FJWrVqlZKg7Uqabz46KchmOIgo7C1REQUSkJyZMmMB7773HX//6V2pra4mKimLGjBn87ne/Y+rUqb4Or98zDIOstFi25o4yDxTvgeYGCNCImoj0Lz1Khm6//XZ++tOfdipZN3LkSI4cOeLW+3VMhADCwsIYM2YMhYWF7obnn5zT5LooonDoZA1jtG5IRMQt3/3ud936YE86m5UWy7u5cVRbIghvqYITu1v7KxGRfsLtZOjYsWOnLCkaFhZGZWVlr4Oqqqpi165dzJ492+17/WkvB5fQBCzhSRjVx7EV5GAMn+0qorD9WBmjYoec8S0GdPs9QO1X+9s++5u+2stB/Iu5bshgh20ks40d5lQ5JUMi0s+4nQxFRERQUlLS5bn8/PwuR3rc9dBDD1FXV8eiRYvcvtff9nJwGhOWRnT1cfI3vUfxyRCSghoB+CRnPyPsJ7r9PgO1/Z6i9qv9/szf2y+eNSEpgsiQALY3j2R2wA4o1LohEel/3E6G5syZw1NPPcVFF13kqqZjGAbNzc288sornHfeeb0K6PHHH+fvf/87v/jFL0hPT3f7fn/by8HJqJgHRV8yzFpCamYm81vyeX9/LkWNwWRmZp7x/oHe/t5S+9V+td/7ezmIf7FaDGaOimXXXnPzVVWUE5H+yO1k6Ic//CE33XQTV155JRdffDGGYfDSSy+xe/duCgoKePzxx3sczPLly1m5ciX33nsv//Ef/9Gj9/C3vRxcUs8CwFKYA1Yr04bHALCrsArDsHS7iMKAbb+HqP1qv9rvv+0Xz5uZFsvfvh5lflG0A1pawNLjXT1ERDzO7d9II0eO5JVXXmH06NG88sor2O123nrrLWJiYnj55ZdJSUnpUSDLly9n2bJlLFmypEfT4/yeq4jCXmisYUxCWLsiCiIiIn1tVlosB+3J1BMIjdVQetDXIYmItNOjfYbGjh3L008/TWNjI2VlZURFRRESEtLjIFasWMGyZcv4/ve/z+LFi3v8Pn4tIgkikqGqEI7nEjBiNpOTI/nqaDm5eRWqKCciIn0uPSWKoMAg9rQMJ9Ny0CyiED/W12GJiLi4PTK0dOlSjh07BkBQUBBDhw51JUL5+fksXbrUrfd75plneOKJJ5g7dy4XXHABOTk57R7ihuRM87lgKwBTh0UD2nxVRER8IyjAwlkjo9nVMso8oM1XRaSfcXtk6M033+T/+//+P4YPH97pXFlZGWvXruXRRx/t9vt9+umnAKxfv57169d3Ov/111+7G6L/SsmEve+7Nl9NTzU3X1UyJCIivjJzVCw7D40yv1BFORHpZ3o0Te5UKioqCAoKcuueF1980ZMh+LeU6eZzYQ4AGY5kaGd+BS0t9m4XURAREfGUWWmx/G7dKADsx3NRTyQi/Um3kqFNmzaRnZ3t+vr111/n888/b3dNQ0MD69atY8yYMZ6NULrPOU2uZC80VDMmIYwhgVZqGm0cLKlhbKLWDYmISN+aPjyGA5YR2OwG1poTUHXcXOcqItIPdCsZys7OZvny5YC5p9Drr7/e5XUpKSn893//t+eiE/dEDG1fRGHkHCanRLLlSBk78iuUDImISJ8bEmRlXGoiB4+nMM7IN6fKKRkSkX6iW8nQXXfdxbe//W3sdjvnnHMOTz/9NJMnT253TVBQEGFhYV4JUtyQMh2+LjSnyo2cQ0ZqFFuOlJGbX8F101N9HZ2IiPihWWlx7CwcyTjy4fg2GH+pr0MSEQG6mQyFhIS4KsatW7eOhIQEt9cGSR9JzoSv33MVUXCuG8rNUxEFERHxjay0WL7810ius34Bx3N9HY6IiIvbpbVTU1OVCPVnzs1XHeW1M4Y5iigUmEUURERE+tqMUTHsso8CoDl/m2+DERFpw+1qck1NTfz5z3/mnXfeoaCggIaGhnbnDcNg165dHgtQ3NSpiEK4iiiIiIhPRYYE0pyQDhUQUHEY6isgJMrXYYmIuJ8M/e///i/PPfcc8+bN4+KLL9YoUX8TMRQiUqCqAI7nYh05hykpkWw+UkZufrmSIRER8YmJY9Io2BJLilEKRTth5Dm+DklExP1k6P333+eee+5h8eLF3ohHPCElE74uMKfKjZxDemqUmQzlVXL9dF8HJyIi/igrLZadm0aRYi01K8opGRKRfsDtNUMVFRWcffbZ3ohFPMU5Va7D5qs78lVEQUREfOPsUbGudUMNeVt9G4yIiIPbydDMmTPZs2ePN2IRT0lxDP84KspNdRRR2FFQgU1FFERExAcSIoI5GT4egMY8FVEQkf7B7WTowQcf5I033uAf//gHjY2N3ohJestZUa5kLzRUMTohnNAgK7WNNg6VVPs0NBER8V9ho84CILRiHzTrbwgR8T231wxde+21NDc386Mf/QjDMFz7DzkZhsGWLVs8FqD0QHhihyIK5zA52VlEoYKxiRG+jlBERPzQ+PGTqdgdShS1ULwbkqf5OiQR8XNuJ0OXXXYZhmF4IxbxpJTpjiIKOTDyHDKGmUUUtudVcP30Yb6OTkRE/NDMtDh2tYxijnUXDXk5BCsZEhEfczsZeuyxx7wRh3haSiZ8/a6KKIiISL8xLCaUfwWNYY5tFyf3byZl5m2+DklE/Jzba4ZkgHBWlCswK/Y4k6GdBZUqoiAiIj5jG5oBQEuBiiiIiO91a2Ro586dbr3plClTehSMeJCriMK+TkUUDhZXM26o1g2JiEjfix49AwogtnoftLSARZ/LiojvdCsZuvHGG7u1Tshut2MYBrt37+51YNJL4YkQmQqV+a4iClNSItl02CyioGRIRER8YcKUGTSsDySUWhpKDhCcOM7XIYmIH+tWMvToo496Ow7xhuRMMxkq2AojzyE9NcqVDN1wloooiIhI3xuTFM0uYwRTOEDerg2MUTIkIj7UrWTo+uuv93Yc4g3OIgqOzVed64Zy81REQUREfMMwDMoiJ0DlAcoPfgUXLPB1SCLixzRRdzBLmW4+OyrKTR2mIgoiIuJ7FkdJ7YATuT6ORET8nZKhwcxZUc5RRCEt3iyiUNdkFlEQERHxhaETZgGQUrdPH86JiE8pGRrMwhPMIgrYoXA7VovBlJRIAHK135CIiPjIqMmzaLEbJBjl7Duw39fhiIgfUzI02HWYKpeRGg3Adq0bEhERH7GGhFMUaBbyObIz28fRiIg/UzI02Lk2X80BIGOYOTK0QyNDIiLiQ9WxkwGoPbrVx5GIiD9TMjTYOTdfLTA7G2dFORVREBERXxoyIhOA8LKd2O3qj0TEN5QMDXbOkaGT+11FFMIcRRQOqIiCiIj4yNBxZhGFMbZDHCiu8XE0IuKvlAwNduEJEDmM9kUUtN+QiIj4VuCwTABGW47z1b5jvg1GRPyWkiF/0GGqXLpz81WtGxIREV8Ji6cqKBGAwq83+jgYEfFXSob8gTMZ6rD5qpIhERHxpaaEKQA0F2z3cSQi4q+UDPmDZEd5bUdFOefI0C4VURARER+KGHUWAMPq95NXVuvjaETEHykZ8gfOkaGT+6C+ktHxYSqiICIiPheYmgnAFMthNh4q9W0wIuKXlAz5g7B4RxEF4Ph2LBaDKY7RIW2+KiIiPpOUAcA4I48tB4p8HIyI+CMlQ/7CVUQhB2jdb0ibr4qIiM/EjKIpMIJgo5miQ1o3JCJ9T8mQvzjF5qsqoiAiIj5jGBiO0aHoit0UVzX4OCAR8TdKhvyFs4iCo6JchqOi3M6CCpptLT4KSkRE/F1AyjQAJhtH2HRY64ZEpG8pGfIXriIK+6G+krS4MMKDA6hvatHO3yIi4jvJUwEVURAR31Ay5C/C4iFquPnaUURhckokoKlyIiLiQ0lmMjTJOMKmgyU+DkZE/I2SIX+SbE5F6LRuKK/cRwGJiIjfS5iA3RpEpFFHVdEBKuqafB2RiPgRJUP+JKX95qtTh6mIgoiI+Jg1ECNxEmCuG9pyRFPlRKTvKBnyJ851Q44iCumOkaFdhZUqoiAiIr6T1HbdUJmPgxERf6JkyJ84K8qd3A/1Fe2LKJSoiIKIiPiIIxmabBxh46GTPg5GRPyJkiF/EhYHUSPM14VmEYUpKqIgIiK+1qai3Pa8CuoabT4OSET8hZIhf+PYz8G135BjqtyO/EofBSQiIn5vaDp2DJKMMqJaytl6TFPlRKRvKBnyN8mZ5rOzopyjiMKOAiVDIiLiI8HhGHFjAJhsOaL9hkSkzygZ8jfOIgqOinLOkaHdhZXYWuy+iUlERCQpA4AphjZfFZG+o2TI3ziLKJQegPoKRrUpopBX1ezb2ERExH+1qSj31dEyGptV5VREvE/JkL85TRGFA2Xa6E5ERHzEUUQhw3qU+qYWdhSosI+IeJ+SIX/kLKLgWDfk3Hz1QKlGhkRExEccI0MjKCSUek2VE5E+oWTIH6U4psp12Hx1f2kTLVo3JCIivhCeCOFJWLAz0TiqZEhE+oSSIX/kqiiXA8DUYdEA7C9rIuuxT/nPv27lb1vyOFFV75PwRETET7XZb2jT4VIV9hERrwvwdQDiAykdiyhE8u1Zw/nbV3mU1jSyNqeAtTkFAExKjmTe+HjOH5fAjFExBAdYfRi4iIgMakkZsO8fTAs4yov1zewtqvJ1RCIyyCkZ8kehsRA9AsqPQuE2jLR5PHztFK4e3khLzEj+tf8k6/eVkJtfwe7CSnYXVrLqs4MMCbQyZ0wc88bFM298AmnxYRiG4evWiIjIYOFYNzQj+Bg0wMbDZUwb4uOYRGRQUzLkr5IzzWSoIAfS5gEQaDHITIvlnLEJ/PQbcLK6gX/tL+GzvcWs31dCcVUDn+w5wSd7TgAwLGYIc8clcP74eM4ZG09kSKDv2iMiIgOfY5rciKbDBNDMpsOlTJukD91ExHuUDPmrlEzY/barolxX4sKDuTYzlWszU7Hb7ewurOLzfcV8vreYzYfLyCur45WNR3ll41GsFoPpw6OZNz6BeeMTyEiNwmpRByYiIm6IHgVBEVgbqxhjFLDpcCjfmRjj66hEZBBTMuSvnEUUHBXlzsQwDCanRDI5JZJF54+htrGZ7IOlfLa3mM/3FXOwuIbNR8rYfKSM//1oL9GhgZw3Np5548zkKCkqxGtNERGRQcJiMdcNHf2CaQFHea16BIXVNqb7Oi4RGbSUDPkrVxGFg1BXDkERbt0eGhTA/ImJzJ+YCMCx0lrW7yvh873F/PtACeW1TbyzvZB3thcCMH5ouCsxmpUWS0igCjGIiEgXkqfC0S84P7KQ107CruJGrvB1TCIyaCkZ8lcdiigw8rxevd3w2FC+lTWCb2WNoNnWQs6xcj7fW8xn+0rYnlfO3qJq9hZV89S/DhEcYCFrtFmI4fzxCYxNDFchBhERMSVlAJBhPQrAa7uqqQvezbljE8gaHav1qSLiUUqG/JmziEJhTq+TobYCrBbOHhXL2aNiue/SCZTXNvKv/eao0ed7SzheWe94Xcyv391NclQIcx0V6s4bG090aJDHYhERkQHGUVEutX4fQQEGJ+taeO6LIzz3xREsBmQMi+acMXGcMyaOs0fGMiRIMw1EpOeUDPmzlOmOIgo5Xv020aFBXDU1haumpmC329l3otocNdpbzMZDpRRW1PPa5jxe25yHxTA3gZ033qxSN21YNAFW7Q0sIuI3EiaCJRBrYyVffm80L285SWFLBBsOlnKwpIZtx8rZdqyclf88QJDVwvQR0ZwzJp5zx8YxdVg0QQHqM0Sk+/pFMlRTU8Pjjz/O+++/T0VFBaNHj+a73/0uV155pa9DG9xSMs3nbhZR8ATDMBg/NILxQyO4a+5o6ptsZB8q5fO9xazfV8zeompyjpWTc6ycJ9btIyIkgPPGxjN3XALzxsczLCa0z2IVEREfCAiCxIlwPJfoyq85Z/gwMjOnYLVaKSiv48sDJ/niwEm+OFBCYUU92YdKyT5Uyh8/htAgKzNHxXLu2DjOGRPPpORIVTYVkdPqF8nQkiVLyM3N5cc//jGjRo3inXfe4b777qOlpYWrr77a1+ENXs6KcqUHob7CJyGEBFo5f3wC549PAKCwoo71e0v4bF8x/9pXQkVdE+/vOM77O44DMDohjHnjzOuzRscSGtQv/hMWERFPSpoGx3Mxjm+H6GGuwynRQ7hxxjBunDEMu93O4ZO1fHGghC8OnOTLAycprWnkM8fMA4CoIYHMGR3HOWPNaXVjErRGVUTa8/lfkp999hn//ve/+cMf/sBVV10FwOzZsykoKOB3v/sdV1xxBVar5gN7RWgsRI+E8iNmEQUifR0RyVFDuGXmcG6ZORxbi53teeV8vreEz/cVk3OsnIPFNRwsruG5Lw4TZLUwMy3GVaVuYlKEOjkRkcEgeSrkgHE8F6K7riVnGAZp8WGkxYfx7ayRtLTY+bqoyhw12l9C9qFSKuqa+GDncT7YaX6glhgR7FhvFM+cMXEMj9VsAxF/5/Nk6KOPPiI0NJRvfOMb7Y7fcMMN/PjHP2bbtm2cddZZPorOD6RkQvkRjMIcCJ3n62jasVoMpo+IYfqIGH508Tgq6pr4Yn8JnztKeOeX1/Hv/Sf59/6TPPr+HhIigpnrqFB33th44sKDfd0EERHpCUdFOYpyYWL3brFYDCYlRzIpOZLvnJdGs62F3PwK15S6zYfLOFHVwNqcAtbmFAAwIjaUc8bEMceRICVEqN8Q8Tc+T4b27dvHmDFjCAhoH8qECRNc55UMeVFyJux6y1w3NKZ/JUMdRQ0J5PKMZC7PSMZut3OwpMZVlW7DwVKKqxpY81U+a77KxzAgPSWKeePNjV/PGhlDoAoxiEg3aS2rjw1NB8CoLMDa0LNp3AFWi+sDtXvmj6W+ycZXR8tca45yjpVztLSWo6W1/HXTMcDcE++cMfGcMyaOrNFxRA1RGW+Rwc7nyVB5eTnDhg3rdDwqKsp13h02m61HcTjv6+n9A1bSNKxgjgyNGVjtHxU7hFGzR7Bw9ggamlvYfKSM9ftKWL+vhD3Hq8jNryA3v4IVnx4gPNjKbMfeRnPHxTOiw9QIv/33d1D7e9d+u91Oix1sLXZa7ObD1kKb13ZaWsxrXF+3e+34usWOzd56betrOzbH+RbHMZvjftc9be+322lpMeOx281j5mvaX+t4v2ZbCwF1dWRk9O7352Citaw+FhIJsaOh9CChlfuA83v/loFWR6ITz4+B6oZmNh0qda052lVY6doT77kvDmMxID01ijlj4jh3TDxnj4rROlWRQahf/F99unUe7q4Byc3N7VUsvb1/oLE2WsgEjLLDWBurBnT7w4BvJME3ksIoqwthW1EjOUUNbDveQGWDjY93n+Dj3ScASAqzkpkUTGZSEOkJQQwJNEeNBnL7PcGd9tvtdlrA/KPb8ce/zfUHvPnc3ILrj3qb43Vzmz/kXfec5ljr+7U/1vb9ev89HInGe5+YbXIkDHY7jmdn8kLX5731D9LHpiTkEDtEazS1lrWfSJpqJkMV+73y9uHBAcyfmMj8iYkAlNU0suGgOWr07wMlHCyuYXteBdvzKlj12UECrQbTh8c4ijHEkzlcZbxFBgOfJ0PR0dFdjv5UVJjD4s4Rou7KyMjoUSdls9nIzc3t8f0DmT17JEb5EUIr9jHqwtsGTfvnO55bWuzsLKx0jRp9dbSc4zU2PjhQywcHah0dXDRxAQ3ExcVhYGDH/APYfDbfx475ybrd/KLd185raXt9m/vb3dvl/W3eo4vv1+k9Ony/zvG2/36nut9ubz1XW1tLQFCII5lowdZip7nFTrPNfLa12LG1tLQ7Jt1nMcx1cIZhYDUMLIa5xqHja8NiYO1wrfka81qL4Xovi2E+rBZcrzu+Z8fzVsf9ba81sDOkqYJ5M6d1mrLcHc7fn4OF1rL2E0kZsGstQw+8hrGmBFJnQOpZkDwNgsI8/u1iwoJcU7EBjlfU8+XBEv693yzIUFBRz8bDpWw8XMrjH+9jSKCVmWmxrg1gp6REqYy3yADk82Ro/PjxvPPOOzQ3N7frhPfu3QvAuHHj3Ho/q9Xaqz/me3v/gOQoohBasXdQtt9qhcwRsWSOiGXJReOpqm/iywMn+XxfMZ/vLeFoaS0bD5eZF++v9W2wPlftkXcJtBoEWCwEWAysVsN8tjiOWZ2vDawWC4HtvjYItFrafd3VPQEWgwDr6b8236v91wGOuFzvZTUItFgwaOHggQNMGD+OgABr+wTEmTA4jpmvHcfbJCmu5KXjNY7X/bnSoc1mIycnh4CAgEH3/39PeGMtq6Zw98Doi7B89jsCG8th5xrzAdgNC8SPx54yHVLOwp6caa4xCvBs8YOE8ECumZrMNVPNdapHS+v40jFy9OXBUkprGl3rVgEiQwLISotlzpg45oyOZVxi78t4+/W/P2q/L9pvt7eZUt3FNGzXlOsWe5fTvm321vNtp463ziJpO327zfRv16wNx/kWcwp3ZENzr39/nonPk6GLL76Y1157jX/84x9ccUVr+cw333yTxMREpk2b5sPo/ETKdNj1FqEVe30dSZ+ICAnk0ilJXDolCYAjJ2v47OsT5Ow9QlLSUKwWCwaAYWCYTxiYf9ACrcccB9qed54zr2tzT7v36nhv19/L2YU6j9Hm3tYYzvS9OsdNu1jNa+32Fg4dOsj4sWMJCrS2Txi6SFDafe1IQpzJj2UAfjJqs9kIqTxG5siY/p8M2O1ga4KmWmiqa/Nc18Wx2lMca3+9pbGW0UY0ZLxhfnrg5zy9lhU0hbunrBe/Rlj5HkLLvyas/GtCK/YQVH8SivdgFO+Bba8A0GIEUBc5mtroCdRET6A2egJ14aPA4tn/nicGwsSJcMeEGI5VNrP9RCM7TjSy80QjlfXNfLT7BB85pmNHB1tITwwiIzGIjKFBDA3r+Z9c/vrv79Tf2m+322m2Q7PNTlOLOTW7qcVOk8183dyC4+vW882O803O1y3O+9te3+baFmiymVO57es/b11b6pjN4Zq6bafduU5Tu+3Qgh1aWjCwYbHbCLA3YbGbr612G1Z7E1bHOSs2AmnGSgsBhvk6ABuB2AjARgDNBBrO162PQMc58x7nseb21xkd3qfdcee1Leb7OM59GjiP3LB7vPrv6fNk6Pzzz+fcc8/lV7/6FdXV1YwYMYJ3332X9evX8/vf/77//2EyGDg2X40o2Yrx+e8gYQLEj4O4sRA4xLex9YGRcWF8O2sEU4JLycwc75f/zdlsNnLqC8gcF++X7fcYu/0MiUlX57p7neNYYw3YPfspoQFEG1Za6sshKMmj7z1QeXItK2gKd0+Z7Y9g5EV3utpvqyqEghyMgq/M4j8FW7HUlRJWsZewir0kHPk7APaAIZCUYY4gJU83n+PGgOGZdT7TgWscr5ttLewsqOTLg6V8efAkm4+UUd7Qwr+O1fOvY/UADIsZwpzR5rS62WmxJEaGdLP9/vvv39zczNbtuYyfOJkWDBqbW8yHrYUmm931dYOthSbHcdf5Tl/b233d9tn1Xq6vO57veF/Pp4kbtBBOPeHUEWHUEkEtEUYtkdQRa9S5vo6glnCjjmCaOicXRpvko00C0TZJaZuIBGLDYtidAbR+2joAXBK0k/he/v48E58nQwDLli3jj3/8I0888QTl5eWMHj2a//3f/1UJ076SMh17QAiBjRXw2WNtThgQNdxMjOLHQ/xY8zluHEQktQ5LiAw0tiaorzAfdeVQe5Logh0Yxh6w1XdIRmrPnKC0PdaXDAsEhpkfWgQOgcDQDs9DzLUVHY91uM5mDWZXUROTwxL6Nv5+ytNrWUFTuHurXfujh5mPyWZxC+x2c/Pwgq2Q/5X5XJCD0VgFeRsx8ja2vlFwpLnmKPUsSDnLnBkRPaLX/ZnVauWsUXGcNSqOey4cR0Ozja1Hy10bwOYcKyevrI7Xt+Tz+pZ8AMYmhrs2gJ09Opbo0KDutb8fabK1UNdko67RfNQ22qhrslHf1OZ1o43axmbqmlqoa2w2r3ecr29qva/dPW1em+tgi3zdVAACaCaCWoYadUS2SWYiLfVEW2qJttQTZdQRaakjwnE+nFrC7bWE2msJtdcQYq/D0k/K7tgtAdgtAWAJBEsgdmsAGAFgDQSL49kaiGEJBGsARtuvLQFgddxrDXQ8t/26zfuc8lxX17aesxkWjh+3MdTL//33i2QoLCyMBx98kAcffNDXofinIdG03P4ehf9+hZSgaiwnD0DJXqgvh4qj5uPAuvb3BEW0T46cCVPsaAg886ddIr1it5sjJPXlrQlNfUWHr09zrqmm3dtZgTEAWzwYozX41AlKx2NBod27LrDDddZAz3woYbPRWJXT+/cZJDy9llW8zDAgZpT5mHK9eaylBU7uh4KvWpOk49uhoRIOrzcfTqFxrYmRM0mKGNqrkIIDzO0cZo+O475LxlPT0Mymw6V86ahUt7Ogkv0nqtl/opoXvjyCYcCUlEjOHRPPnDFxzBwVS1hw7/5Es7XYzWTDmaw4E4wOiYd5vpm6xhZqm5qpb+yQrLS5r+171TXa+ryQjtViEGQ115oGBVgJDrAQFOD82uI4Zx5rPWchyGIQZm0i3Kgjwm4mKGH2GkLtdQxpqWGIvYYhtmqCbTUEt9QQ1FxNUHM1gU1VBDRXY22swtpUhaW5/sxB2oHuDN5bAs0S8sGRrc9tX4dE0hIYRl7RSYaNSMMSENQ5kehlQuKcKt9v2WzYi3O8/m36RTIk/UByJkVjITkz01wzYLdD7UkzKSrZ1/p8ch+UHYbGKsenb1s7vJEBMSMdCVKH0aTwRI0mSStbc5skpfwUCc0pEpz6Cmhp7n0MQREwJBp7cCTVzRbCYxIwOiYczuegrhKTUyQtAUPMTkcGJK1lHQQsFkgYbz6mfdM8ZmuG4t2O0SNHklS00+zr9n9kPpwiUhyJ0fTWR2hsj8MJCw7gggmJXDDBLONdXtvIhoOtexztP1HNjvxKduRXsurzgwRYDDKHRzN7dCw1pTX8u+wADbaWTqMpHUdR2iYqDc0tvfkJusViQGhQACGBVkKDrAwJtBISZCU00MqQIMcj0HyEBlkJcRx3vg5tc955fWhgAIEWO/t27+CsyWMZYq/F2lhlJrQNVWZ/0FAJ9ZVtjlW2HqurbH/eE32GU2BohyQmok0SE2V+3SGxMY9FtR7rxgfHdpuN4pwcUp1/m4lXqLeWrhkGhMWbj5HntD/X3AClh8wE6eQ+R7LkeDRUmMlS2eH2HQuYvwScyVH8uNaEKTbN41WApA/Y7ea0MHdHZZxfN3qgcp0lAEKiYUi02QGFOJ5P9/WQaPM5ONKVsLTYbOzNySEzM7NfTkWRvqW1rIOUNcAs152UATNuM4811UPRjvZT7Ir3QFUB7CmAPe+03h+T1n70KHkaBIf3KJTo0CC+kZ7EN9LNNXonKuvNKXUHzFLe+eV1bD5SxuYjjkqnVPWi4RASaCE0KMBMUtq8diUpbRIWV7LiTFI6JixtnkMDAwgJMkdk3FpLZ7dDXRlUn4Dq41BVBKVFUO14VB2H6hPYq4tIqq/A+IenRqCM0yQxkW2SmKgujrW5xxrooXikP1AyJO4LCIbEieajLbsdaorbjCY5RpJK9kLZETNRyt9iPtoyLOb0Btd0u3Gto0lh8RpN8qYWm5mc1JQSWv41HCwzR/26leBUQEtT72MICnc/oXF+HRiq/z7EK7SW1U8EhsCws82HU0M1FG5zzH74ykySyg61PhwlvsEwCw6lnNU6ijQ0vUdTxRMjQ7hueirXTU8F4FhpLf/eX0L2oZMUl5SSkhhPaHDAKROWdqMwgW0TmwCCAyx9V+WzuRFqTjgSmjbJTVdf2xrP+Hbtom47rSw44vQJS1fTzoIjzP7Goo1ypT0lQ+I5hmFOhQtPhFHntT/XVA+lB7seTWqsMs+VHoR9H7a/LyS6dSSp42iSPpkx2e3mKEtduflJW73j2ZnAdPXaeV19JWDHCkzq6fe3BHSRtER3I6FxvNZ0MumHtJbVjwWHw6hzzYdTbSkU5rQp0LAVKvPNUaTiPbDtZfM6SwAMneKYWudIkhImut1fDY8N5ZuzRnDzjFRycnLIzEz33Yik3W5OM+uU3BxvHdmpPmF+XVfq3nuHRJsFmcITIdzxHJEE4UMhfCi2IXHsOFhI+ow5WIPD9OGXeIX+CpG+ERgCQyebj7bsdvOXalejSeXHzD/Y8zaaj7YMq5kQdRxNih/fq3ndPtVU33XC0p0kp5dzoe2BYTRZQwmMTMDoOEpzphGaIHVQIjLIhcbCmAvNh1NVUfvRo4KvzPVHhdvMx5bnzOsCQiBpaps1SGeZW1f4eoTC1mzO5ugyuWk7knMCmuu6/76WAFcyQ/hQsxhFu6+dyc/QM0+Rt9loLmgw12KqnxEvUTIkvmUY5i/GiCRIm9f+XFMdnDzQYSTJkTQ11ZiVgk7uh73vt79vSGzn4g3x483CDt4eTbI1tykGUO5eYtOdKjWnYw2CITGOBCamdYSmq9eu68zjLYaVXK2ZERHpvoihMOEb5gPMD/cqjrUZPfoKCnLMUZWOH+oFRUBKZps1SNMheqRn/uBvqD796I3z65oScKfEc3BUm5GbjiM5zq+Hmv2LrxM9ETcoGZL+K3AIJKWbj7bsdqgq7GI0aZ/ZEdWVwrEN5qMtS4BZ+jt+vPmpXNvpd0GRrde1tDgq0JSfeVTGda7CfN3Yu0WuGJbWJKVtwnK6JMd5rjefnNk8u4mniIjfMQxzz6LoETDlOvNYS4s5Bdw1erTVHDVqrDpFie/p7ct8hzr2/mqxQd3J04zetFmX02HrgNPHbG2d3t7FNDXXyE5YollRU2QQUjIkA49hQGSK+Rh9QftzjTVdjyad3G9WPivZaz46sITGM4UgLB/XmYUB7L0sSRoc2SaRiT5FYhPdOckJitAnaiIig4XF4pilMBam3mIeszWb64zaTrFzlfj+2Hw4bw9PIqOpCcs75WB340OroPDWBKfTNDXn6yRz+p9FswHEvykZksElKAySp5qPtlpazFKpJXuhZH/7Qg6V+Ri1JXSq/xMwpPujMm1fqyiAiIicijWgddbDWQvMY80NZonvfMfUuoKvoHgPRvVxglw3GhCWcIp1OB2+7mHJbxF/pL/YxD9YLBA1zHy0XQAL0FCNrXgv+3ZtZ9zUmVjD4hzTztwvjyoiIuK2gGBInWE+nBqqsR3fwdf7DzFhxjysEUP1QZuIF+j/KpHgcEieRk2R3VECVVMGRETEx4LDYdhM6koCzXU86ptEvEKLE0RERERExC8pGRIREREREb+kZEhERERERPySkiEREREREfFLSoZERERERMQvKRkSERERERG/pGRIRERERET8kpIhERERERHxS0qGRERERETELykZEhERERERv6RkSERERERE/JKSIRERERER8UtKhkRERERExC8pGRIREREREb8U4OsAPMVutwNgs9l6dL/zvp7eP9Cp/Wp/22d/o/b3rv3O+5y/h6WV+qbeUfvV/rbP/kbt75u+ybAPkt6rsbGR3NxcX4chIuK3MjIyCAoK8nUY/Yr6JhER3zpT3zRokqGWlhaam5uxWCwYhuHrcERE/IbdbqelpYWAgAAsFs2+bkt9k4iIb3S3bxo0yZCIiIiIiIg79BGeiIiIiIj4JSVDIiIiIiLil5QMiYiIiIiIX1IyJCIiIiIifknJkIiIiIiI+CUlQyIiIiIi4peUDImIiIiIiF/yi2RozZo1TJgwwfWYPHky5513Hvfeey+HDx9ud+3mzZv5+c9/zg033EB6ejoTJkwgLy/PN4F7SHfbb7PZePbZZ/nOd77DvHnzmDZtGpdffjn/8z//Q2Vlpe8a4CUdfy4dH9nZ2b4Oscc++OADJkyYwHvvvdfp3DXXXMOECRNYv359p3MXX3wx119/PQCffvopP/3pT7n66quZMmUKEyZM8HrcntLb9ldXV7Ny5UoWLFjAueeey/Tp07n66qtZvXo1DQ0NfdGEXvHEv/8f//hHrrvuOmbNmkVGRgYXXXQRv/jFL8jPz/d6/P5CfZP6pq6ob1Lf1JH6Ju/2TQE9vnMAevTRRxk9ejQNDQ189dVX/OlPfyI7O5v333+fqKgoADZs2MCXX37JpEmTCAsLY+PGjT6O2nPO1P76+nqWLVvGVVddxc0330xMTAy7du1i5cqVfPrpp/ztb38jJCTE183wOOfPpaOxY8f6IBrPmDVrFoZhsGHDBq644grX8fLycvbu3UtoaCjZ2dnMnTvXde748eMcO3aMO+64A4CPPvqIbdu2MWnSJAIDA9m5c2eft6Onetv+goICnn/+ea699lpuv/12QkND2bJlC8uXL+eLL77g2WefxTAMXzStWzzx719ZWcmVV17JmDFjCAsLY//+/axcuZJPPvmEd955h5iYmD5v12Clvkl9U1fUN5nUN6lv8nbf5FfJ0Lhx48jIyAAgKysLm83GsmXL+Pjjj7nxxhsB+MEPfsDixYsBePrppwdVh3Om9oeEhLBu3bp2/yFlZWWRnJzMj370Iz788EOuvfZaX4XvNW1/LoNFbGws48aN6/Tf76ZNmwgICODGG2/s9Onihg0bAPPfHODXv/41Fos5ePzwww8PqA6nt+0fNmwYn3zyCaGhoa7zc+bMYciQIfzud79jy5YtnH322d5vSA954t//l7/8Zbvzzp/Ld7/7XdatW8dNN93kxRb4F/VN6pu6or7JpL5JfRN4t2/yi2lyp+L8JXPy5EnXMef/YP6gY/utVmuXGfXUqVMBMzuXgSMrK4tDhw5x4sQJ17Hs7GzS09M5//zz2blzJ9XV1a5zGzduxGq1un6RDvT/F3rT/tDQ0HadjdNA+n+ht//+XYmNjQUgIMCvPkfrc+qb1DcNZuqb1Df1t75pYP8X1UvO+dajRo3ybSA+0t32O7PygTw0fzotLS00Nze3e9hsNl+H1WuzZ88GaPcJTHZ2NrNmzeKss87CMAy2bNnS7tzkyZOJiIjo81i9wRvtH0j/L3iq/c3NzdTX17Nr1y4eeeQRRo0axSWXXNI3jfBT6pvUN4H6prbn1Depb/Jm3+RXyZDzF0tNTQ3r169n5cqVzJw5kwsvvNDXofWJnrS/qKiIP/zhD6SnpzN//vw+jLbv3HLLLUyZMqXdYzBMTZg5cyYWi8X1C6esrIx9+/Yxc+ZMwsLCmDx5susXaGFhIXl5ea5h6MHA0+3fs2cPTz31FJdccgkTJ07skzb0hifaX1xczJQpU5g2bRrXX389NpuNF154gbCwsD5vz2Cmvkl9U1fUN6lvUt/UN32TX811uOWWW9p9PWbMGJ588km/mfLhbvvLy8u5++67sdvtPP744wN+aPpUfvvb3zJmzJh2x/rzAsTuioqKYuLEia75t5s2bcJqtXLWWWcB5i8k5y8c5zWDqcPxZPvz8vJYtGgRSUlJ/PrXv+6D6HvPE+2PiYnhjTfeoLGxkYMHD/LUU0+xcOFCXnzxRRITE/uwNYOb+ib1TV1R36S+SX1T3/RNg/M3yCn89re/5Y033uD555/n1ltv5cCBA9x3332+DqvPuNP+iooK7rzzToqKinjmmWcYPnx4H0fbd8aMGUNGRka7R3p6uq/D8oisrCwOHz5MUVER2dnZTJkyxfXJyaxZs9i9ezdVVVVkZ2cTEBDAjBkzfByxZ3mi/fn5+SxcuBCr1crzzz9PdHR0H7ei53rb/oCAADIyMpgxYwY333wzzz//PHl5eaxevdoXzRm01Depb+qK+ib1Teqb+qZv8qtkyPmLZfbs2Tz88MPcfPPNrF+/ng8++MDXofWJ7ra/oqKCO+64g7y8PJ599tkBMewqXXN+mrJx40Y2btzIzJkzXeecv1w2bdpEdnY2GRkZg276U2/bn5+fz4IFCwB44YUXSEpK6qPIPcPT//5JSUkkJiZ22gNHekd9k/omf6O+SX0T9J++ya+SoY5+8pOfEBUVxRNPPEFLS4uvw+lzXbXf2dkcO3aMp59+msmTJ/s4SumNmTNnYrVa+fDDD9m3bx+zZs1ynYuIiGDSpEmsXbuW/Pz8QTUNwak37S8oKGDBggW0tLTw/PPPk5qa2tfh95qn//2PHDnC8ePHGTlypDfD9nvqm9Q3DXbqm9Q39ae+yT8mJJ9CVFQU3/3ud/n973/P3//+d6699lpKS0tdi7r27t0LwOeff05sbCyxsbHt/sEGuo7tv+yyy/jOd77Drl27+NnPfobNZiMnJ8d1fWxsLCNGjPBdwF6yb9++Liv0jBgxwlWucaAKDw9n8uTJfPzxx1gslk5DzTNnzuT5558HOs/Jzc/PJzc3F4CjR48CuD6pTU1NHRALeXva/pMnT7Jw4UKKi4v5zW9+w8mTJ9uVOU5KShoQn8T1tP179uzh0Ucf5bLLLmP48OFYLBb27t3Lc889R3R0NHfeeWeftsPfqG9S3wTqm9Q3qW+Cvumb/DoZAliwYAF/+ctfePLJJ7nqqqvYt28fP/rRj9pd89BDDwHmPMYXX3zRF2F6Tdv2T58+3fUL5je/+U2na6+//noee+yxvg7R65YuXdrl8V//+tfcfPPNfRyN52VlZZGbm8ukSZMIDw9vd27mzJk899xzBAYGMn369HbnsrOzO/1snP9vDKT/FnrS/v3793Ps2DHA/JS6o8WLF7NkyRLvBu4hPWl/fHw8iYmJPPvssxQXF9Pc3ExSUhIXXHABixYtIjk5ua+b4XfUN6lvUt+kvkl9U9/0TYbdbrf3qjUiIiIiIiIDkF+vGRIREREREf+lZEhERERERPySkiEREREREfFLSoZERERERMQvKRkSERERERG/pGRIRERERET8kpIhERERERHxS0qGRERERETELykZkh5bs2YNEyZMcD0mT57Meeedx7333svhw4d9HR4Af/rTn/j44487Hc/OzmbChAlkZ2f7ICrTJ598wqJFizjnnHNIT09n1qxZ3Hbbbbz99ts0NTX5LK6OuvpZPfDAA1x44YVe/b5FRUUsW7aM3bt3e/X7iMjgor6pd9Q3nZ76psEnwNcByMD36KOPMnr0aBoaGvjqq6/405/+RHZ2Nu+//z5RUVE+jW3VqlVcdtllXHzxxe2OT5kyhVdffZWxY8f2eUx2u52f/exnrFmzhvPPP58HHniA5ORkqqqqyM7O5qGHHqKsrIzbbrutz2Prrh/84AcsXLjQq9/jxIkTLF++nNTUVCZNmuTV7yUig4/6Jveob+oe9U2Dj5Ih6bVx48aRkZEBQFZWFjabjWXLlvHxxx9z4403+ji6roWHh5OZmemT7/3UU0+xZs0alixZwuLFi9udu/DCC7nrrrs4cuRIn8ZUX19PSEhIt68fMWKEF6MREek99U3uUd8k/krT5MTjnJ3PyZMn2x3Pzc1l0aJFzJo1i4yMDK677jree++9dteUlpbyq1/9iiuuuILp06czZ84cFi5cyObNmzt9n8bGRpYvX87ll19ORkYGWVlZLFiwgK+++gqACRMmUFtby5tvvumaLrFgwQLg1FMR1q1bx6233sq0adOYPn06d9xxB1u3bm13zbJly5gwYQL79u3jvvvuY8aMGZxzzjksXbqUqqqq0/5smpqaeOqppxg9ejT33HNPl9ckJCRw9tlnu74uLy/nV7/6FXPnziU9PZ2LLrqIP/7xjzQ2Nra7r6GhgT/84Q9ceOGFpKenM3fuXB566CEqKyvbXXfhhRfyve99j3/84x9cd911ZGRksHz5cgAOHDjAd77zHaZNm0ZWVhb//d//TU1NTacYu5qKMGHCBB5++GHWrl3L5ZdfzrRp07jmmmv49NNP21135MgRli5dyqWXXsq0adOYO3cuixYt4uuvv3Zdk52dzU033QTA0qVLXf9+y5Ytc13Tnf+eRESc1Dedmvom9U3+TCND4nF5eXkAjBo1ynVsw4YN3HXXXUybNo1f/epXRERE8N5773HvvfdSX1/PDTfcAJi/XAEWL15MfHw8tbW1fPTRRyxYsIDnnnuOrKwsAJqbm7nrrrvYsmULCxcuZPbs2dhsNrZt20ZhYSEAr776KrfddhtZWVn/f3t3HhLV18YB/Ds2LaOQk2uBRTl1NRcKW6y0MqiwmtCgDaKiTdtsUUOiIiWyoiIa+w06TUSLiJYaWlFRERVki6CVZIVaRH+UlmamqeOc9w+Z+/O+jkvp+8873w8M4nOfuefMnasP59xzZ7B161YA7bNuXSksLERiYiLCw8Nx8uRJtLS0wGw2y213LAIAEBcXh4ULF2Lp0qV49+4dTp48CaB9aUZXXr9+jbq6OixbtgwqlarHY9nc3Iw1a9bg06dPiIuLg5+fH168eAGTyYQ3b97AZDIBaF/esHXrVhQVFSEmJgaTJ0/G27dvkZaWhpKSEmRnZ2PQoEHyfsvKylBRUYEtW7bAx8cHGo0GNTU1WL16NdRqNQ4ePAh3d3cUFhbi0KFDPfbT5sGDB3j16hV27NgBZ2dnmM1mbN++Hbdu3cLIkSMBtC8x0Gq1SEhIgJubG378+IH8/HwsX74c+fn58PX1RWBgII4cOYK9e/diy5YtiIiIAAAMHz4cQO/PJyIiG9Ym1ibWJrJLEP2l3NxcIUmSKCkpEa2traKhoUE8fPhQhIWFiVWrVonW1lY5NzIyUkRHRytiQggRGxsrwsLCRFtbm902LBaLaG1tFWvXrhXbtm2T4/n5+UKSJJGTk9NtHydOnCiSkpI6xYuKioQkSaKoqEgIIURbW5sIDw8Xer1e0ZeGhgYxffp0sWLFCjlmMBiEJEni7Nmzin0mJyeL4OBgYbVau+zPjRs3hCRJIisrq9t+22RlZQlJksTNmzcVcZPJJCRJEo8fPxZCCPHw4UO7fbK1l52dLcfmzJkjxo8fLyorKxW5x48fF35+fuLNmzeK+Lp16xTHSgghkpKSxJw5cxR5kiSJGTNmiJ8/f8qx6upq4e/vLzIyMrp8jRaLRbS0tIj58+eL1NRUOf7y5UshSZLIzc3t9Jy/PZ+I6P8faxNrU0esTdQTLpOjPlu+fDkCAwMREhKCjRs3YujQoTAajVCr2y88fvz4EZWVlVi8eDGA9pkz22PWrFmorq5GVVWVvL+srCwsWbIEwcHBCAgIQGBgIJ48eYKKigo559GjRxg8eHC/rfuuqqrC169fERUVBSenf/8sXFxcMH/+fJSWlqKpqUnxHHuX4pubmzstweiLoqIiODs7IzIyUhG3zS49efJEzusYt1mwYAGcnZ3lvI59HTNmjCL29OlTjBs3Dv7+/oq4Xq/vdX9DQ0MVM5weHh5wd3fH58+f5ZjFYkF6ejoWLlyIoKAgBAQEICgoCB8+fFC8x1350/OJiBwTa1M71ibWJuoel8lRnx07dgw6nQ6/fv3CzZs3kZ2djfj4eJjNZgBATU2NnHfs2DG7+6itrQUAnD9/HkePHsXKlSuxc+dODBs2DE5OTjh9+jQqKyvl/O/fv8PLy0tRHPrC1r6np2enbV5eXrBaraivr4dGo5HjWq1WkWe71P/79+8u2xkxYgSAf5dr9KSurg4eHh6dli24u7tDrVbLSzfq6uqgVqvh5uamyFOpVPDw8JDzbOy9zrq6Ovj4+HSKe3h49KqvQOdjArQfl+bmZvn3o0ePIjMzE5s2bcKUKVPg6uoKlUqF/fv3K/K68ifnExE5LtamdqxNrE3UPQ6GqM90Op18Y+q0adNgtVpx5coV3Lp1C5GRkRg2bBgAIDY2FvPmzbO7D9tMUEFBAaZOnYqUlBTF9v++UdLNzQ3FxcWwWq39UnRsfayuru607evXr3BycsLQoUP73E5QUBC0Wi3u3buHhISEHtdma7ValJaWQgihyP327RssFovcb61WC4vFgu/fvyuKjhACNTU18vtjY69drVYr/zPvyF6sLwoKChAdHY34+HhFvLa2tlfH+E/OJyJyXKxNvcfaxNrkyLhMjvrdnj174OrqCoPBAKvVCl9fX4wePRrl5eUIDg62+7BdvlapVIqbKQGgvLwcJSUlitjMmTPR3NyMvLy8bvsyaNCgbmfDbMaMGQNvb29cv34dQgg53tjYiDt37mDixImKmbe/NXDgQGzcuBGVlZX4559/7OZ8+/YNxcXFAIDp06ejsbGx05fzXbt2Td7e8WdBQYEi7/bt22hsbJS3dyc0NBTv379HeXm5In79+vWeX9gfUKlUGDhwoCL24MEDfPnyRRHrajbzT84nIiIb1qausTaxNjkyXhmifufq6oqYmBgcP34chYWFiIqKQkpKCjZt2oQNGzZgyZIl8Pb2xo8fP1BRUYGysjIYDAYAQEREBIxGIwwGA6ZMmYKqqioYjUb4+Pigra1NbkOv1yMvLw/JycmoqqpCaGgohBAoLS2FTqfDokWLAACSJOHZs2e4f/8+PD094eLiAl9f3059dnJywp49e5CYmIjY2FisWLECLS0tOHfuHOrr65GQkNBvx8dWcNLS0vDq1Svo9Xr5i+2eP3+OnJwcxMXFYdKkSYiOjkZmZiaSkpLw+fNnSJKE4uJiZGRkYPbs2ZgxYwYAICwsDOHh4Thx4gQaGhoQEhKCt2/fwmAwICAgAFFRUT32a+3atcjNzUVMTAx27dolf2JPxyUg/SEiIkL+ZB4/Pz+UlZXh3Llz8qfx2IwaNQpDhgxBYWEhdDodnJ2d4eXlBW9v716fT0RENqxN3WNtYm1yVBwM0f/E6tWrkZmZCaPRCL1ej2nTpuHKlStIT09Hamoq6uvrodVqodPpsGDBAvl5mzdvRlNTE65evQqz2YyxY8ciOTkZd+/exbNnz+Q8tVqNs2fPIiMjAzdu3MCFCxfg4uICf39/zJw5U87bt28fUlJSEB8fj6amJkydOhWXLl2y2+fFixdDo9HAZDJh9+7dGDBgACZMmICLFy8iJCSk346NSqXCkSNHMHfuXOTk5MjHw9b/xMRE+WbTwYMH4+LFizh16hTMZjNqa2vh7e2N9evXK74UT6VSwWg0Ii0tDXl5eUhPT4dWq0VUVBTi4+M7zWja4+npicuXL+Pw4cNITk6GRqPB3LlzceDAAfnjX/vDvn37oFarYTKZ0NjYiICAAKSlpeH06dOKPI1Gg9TUVJw5cwYbNmxAa2srtm/fjri4uF6fT0REHbE2dY21ibXJUalEx+uuREREREREDoL3DBERERERkUPiYIiIiIiIiBwSB0NEREREROSQOBgiIiIiIiKHxMEQERERERE5JA6GiIiIiIjIIXEwREREREREDomDISIiIiIickgcDBERERERkUPiYIiIiIiIiBwSB0NEREREROSQ/gOwwCI7163+GQAAAABJRU5ErkJggg==",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0MAAAHaCAYAAADCNpJNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACsrElEQVR4nOzdd3xUVf7/8dfMpJEOCQHS6BAgIaE3AQs2QF0VxZ/rurrr7lpAV91iXcvqiuuu66roV6xrARVFVBAUsaFSFEwINXRSIJSQRvrM/P6YTCCmzSQzmUnm/Xw88phw7z03n5PwyM1nzjmfY7BarVZERERERER8jNHTAYiIiIiIiHiCkiEREREREfFJSoZERERERMQnKRkSERERERGfpGRIRERERER8kpIhERERERHxSUqGRERERETEJykZEhERERERn6RkSEREREREfJKSIRERERER8UlKhkRERERExCf5eToAEbvBgwcDYDQa+fzzz4mLi2v0uunTp7Nnzx4AXn31VSZOnNghYsrMzGThwoVs2LCBo0eP4ufnR1xcHGeccQbXXXcdPXr0aDaGpjz22GNcdtllLFmyhLvvvrvZa41GI9u3b2/2mqVLl/LXv/4VgEceeYQrrrii2etdac+ePSxcuJD169dz6NAhKisriYyMZOjQoZx77rlcfPHFBAYGNmjX2u+tiEhz9Fzy3eeSvY87d+5s8pqzzz6b3NxcVq9eTXx8fKu+jp5fnqdkSLyKn58fNTU1LFmyhLlz5zY4v3HjRvbs2VN3XUeIyWq18q9//YuXXnoJPz8/Jk6cyAUXXEB1dTU//fQTr7zyCosWLWLevHlccMEFTcYxZ86cRo8PGTKk7rWpa3788UfWrVvHlClTmu3roUOHeOSRRwgODqasrKzZa13t2WefZf78+VgsFtLS0rj00ksJCQnh2LFj/Pjjj9x3330sWrSIJUuW1LVx1fdWRKQpei757nPJnfT88h5KhsSrREVFER0dzZIlS7jlllswGuvP5Hzvvffw9/dnwoQJfPPNNx0ipvnz5/PSSy8RFxfHCy+8wMCBA+ud//TTT/nzn//MHXfcQUREBBMmTGg0jsYeeKcbMmRI3QPo52bPng3AlVde2WR7q9XK3XffTWRkJOeeey6vvPJKs1/PlZ5//nmeeeYZevXqxX//+19SU1MbXPPNN9/w0ksv1Tvmqu+tiEhT9FzyzeeSu+n55T20ZkjqycjI4NZbb2XSpEkkJyczdepU/va3v5Gfn1/vupycHAYPHsxdd91FTk4Ot99+O+PGjSMlJYXLLruM1atXtzqGWbNmkZeXx3fffVfveGlpKStXruTss88mKiqq0bZWq5X//e9/TJ8+nZSUFCZPnszDDz9MSUkJZ599NmeffXa7xpSdnc3zzz+Pv78/zz//fINfdgDnn38+d999N2azmQcffBCLxdKqGJuSlZVFeno6PXr04Mwzz2zyutdff51169bx2GOPERwc7NIYmpOTk8P8+fPx9/dnwYIFjSZCAFOmTKmXDHnD91ZE3E/PJdfG5A2/O739ueRu3vAzkFOUDEmd999/n//3//4fa9asYfz48Vx77bUkJyezePFiLr/8cvLy8hq0yc3N5YorriA3N5dLLrmE6dOns2vXLm655RbWrl3bqjguuugiunTpwuLFi+sd//jjjykrK2PWrFlNtn3ooYf4xz/+QUlJCbNnz2bmzJl89913XH/99VRXV7cqnrbEtGTJEmpqajjnnHOanWN9xRVX0L17d/bv38+GDRtaHWdj3nnnHcD24DSZTI1es2fPHv79739z7bXXMmbMGJd+/ZYsWbKE6upqzjvvPAYNGtTstQEBAfXaefp7KyLupeeS62Pyht+d3v5ccjdv+BnIKZomJwDs27ePBx54gISEBN544w1iYmLqzq1du5bf/OY3PPLIIzz33HP12m3YsIG5c+fWmxM8c+ZMbrjhBl5++eVWDeuGhYVx/vnns3z5cgoKCujWrRsAixcvJjY2ljPOOINPPvmkQbsff/yRRYsW0adPHxYvXkx4eDgAt99+O9dffz1HjhxpcqGpu2LauHEjAJMmTWr2/n5+fowbN45ly5axadMmxo8f3+CaZ555psGxuLg4LrvssibvW1FRwUcffYTRaGxywWlNTQ1//vOf6dWrF3fccUezcbrDjz/+COD0/xVXfm9FxPvoueSemPRcck5jfbQrLi5u1T31/PIuSoYEgEWLFlFdXc0999xT74EDtj9Szz77bL744gtKS0sJDQ2tOxcXF8dNN91U7/rJkycTGxtLZmZmq+O54oorWLp0KR9++CHXX38927dvZ+vWrcyZM6fB3Gi7Dz74AICbbrqp7oEDttGEO+64g6uvvrrV8bQ2pmPHjgHQs2fPFu9vv+bIkSONnn/22WcbHBs7dmyzD50VK1ZQXFzMmWeeSa9evRq9Zv78+Wzfvp2FCxcSFBTUYpyuZv8eOVsxx5XfWxHxPnouuScmPZec01gf20rPL++iZEgASE9PB2D9+vVs3ry5wfnjx49jsVjYv38/ycnJdceHDBnS6BB3z5496+4Jjb+zcumllzZZinL06NH07duX9957j+uvv553330Xo9HI5Zdf3mQf7KU5R40a1eBcWloafn4N/7s7E1drYrJarQAYDIYmr7GzX9PUtc2V92yKfSqCfaHqz23evJkXXniB66+/nhEjRjh9/9M5+zO2c+Z71Np2jX1vX3jhBT777DP27dtHQEAAaWlp3HHHHS1O1ROR9qHnUstx6bnUvNY+l07nSGnt0znybHHlz0DaTsmQAFBYWAjAyy+/3Ox1Py9rGRYW1uh1fn5+9Rb7NfXuUXO/kGbNmsUTTzzB2rVrWbZsGRMnTiQ2NrbJ60tKSgAaXTBqMpmIjIxscNzZuJyNqXv37uzdu5fDhw83eY2d/Zru3bu3eK0jdu/ezU8//UTPnj2ZOnVqg/P2aQh9+vThj3/8Y5u/Xmt+xgAxMTEOf49O19bv7YYNG7j66qtJSUnBarXy9NNPc/3117N8+fJG/6+ISPvSc8mxuPRcalprn0tt4cizxZM/A2lIyZAA1E0x2LhxY73pBq7SmnePLr30Up566inuuusuiouLm12gCqf6cPz48QZVZ8xmM4WFhQ2mYjkbl7MxjRo1ivXr1/P99983u0mc2Wxm/fr1AIwcOdKpmJry9ttvA00vUC0rK2P//v0ApKSkNHqP++67j/vuu49rr72We++9t9mv15qfMdi+R+vWrWPdunVObaTX1u/tz//A+uc//8no0aPZtGlTq6s7iYjr6Lnknpj0XHIvR54tnvwZSEOqJieAbbgeTi1m9wZRUVGceeaZHD58mK5du3LOOec0e719LwP7wsTTpaenu2QzPGdjuuyyyzCZTKxatYrdu3c3ed3777/PkSNH6Nu3L2PHjm1znJWVlXULVJt6MAYEBDBr1qxGP4YOHQrYfmHPmjWrzVMVmnPZZZfh7+/Pp59+2uz3CKCqqqpeO1d+b0+ePInFYqk3r19EPEfPJffEpOdS+2rs2eKpn4E0TsmQAPDLX/4Sf39/HnvsMfbt29fgfFVVlUceSH/961+ZP38+CxYsqFdWuTG/+MUvANsGnvapCWCL/T//+Y9HYkpISOAPf/gD1dXV3HjjjY3+0vv888959NFHMZlMPPDAA00uenXGihUrKCoqYurUqU0uUA0KCuLRRx9t9MP+7tWll17Ko48+yvTp09scU1Pi4+OZM2cO1dXV/P73v29ygfM333zDDTfcUPdvV39vH330UYYMGdJhHrAinZ2eS+6JSc+l9tXYs8VTPwNpnKbJCQD9+/fn0Ucf5d5772XmzJlMnjyZPn36UFNTQ15eHhs3bqRr166sXLmyXeNKSEggISHBoWvHjh3L7Nmzeeedd5gxYwbnnXce/v7+fPHFF4SFhRETE+OSBYjOxAS2HbrLy8t59dVXueSSSzjjjDMYMGAANTU1/PTTT2RkZBAUFMS///1vl+0w/e677wLN7+ztTW688UZqamqYP39+3Tt+ycnJhISEcOzYMX788ccGi6TBdd/bxx9/nI0bN7Jo0aIm97wQkfal55J7YgI9l9pLc88WT/wMpHFKhqTOJZdcQlJSEq+++irr16/n22+/JTg4mJiYGM4//3wuvPBCT4fYogcffJB+/frx9ttv8/bbbxMZGcm5557LHXfcwZQpU+jdu3e7x2Q0GrnrrruYPn06b731Fj/88ANr167FZDIRFxfHb37zG3796187VGLTEXv27GHjxo1NLlD1VnPmzOHCCy9k4cKFrF+/niVLllBVVUVkZCRJSUnccMMNXHLJJfXauOJ7+9hjj7F8+XL+97//OfXHhIi4n55L7qHnkvu19Gxp75+BNM1gtdf3E+nE9u/fz/nnn8+MGTN48sknPR2OeIlHHnmETz75hDfeeIP+/ft7OhwR8SF6LnVeerZ0LBoZkk7l6NGjREVF1ZtbW15ezj/+8Q8AzjvvPE+FJl7mwQcf5KOPPmL+/PmEh4dz9OhRAIKDgwkJCfFwdCLSWei55Fv0bOl4NDIkncq//vUvli9fztixY+nevTvHjh1j7dq1HD58mDPPPJP/+7//08ZlAsDgwYMbPT5nzhzmzp3bztGISGel55Jv0bOl41EyJJ3K2rVree2119i+fTsnTpzAZDLRt29fZs6cybXXXou/v7+nQxQRER+i55KId1MyJCIiIiIiPklFy0VERERExCepgIKIiHQ627dv5z//+Q9ZWVkUFBQQFBRE3759ufrqqxuUaG/M8ePHeeKJJ/jyyy+pqKggKSmJP/7xj9rvQ0Skk+k0yZDFYqGmpgaj0aiFiCIi7chqtWKxWPDz8/OaXdKLi4vp2bMnM2bMoEePHpSXl/Pxxx/zl7/8hdzcXG6++eYm21ZVVXHddddRXFzMvffeS1RUFG+99RY33HADr776KmPHjnU4Dj2bREQ8w9FnU6dZM1RVVUVmZqanwxAR8VkpKSkEBAR4OoxmXXnllRw5coSvvvqqyWveeustHn74Yd5++21GjBgBQE1NDZdccgnBwcEsXrzY4a+nZ5OIiGe19GzqNCND9owvJSUFk8nkdHuz2UxmZmar23d06r/6r/6r/239/ekto0LN6dq1K8ePH2/2ms8//5y+ffvWJUIAfn5+XHzxxTz55JPk5+fTo0cPh76enk1to/6r/+q/+u/uZ1OnSYbs0w9MJlOb/sO0tX1Hp/6r/+q/+t9a3jgNzGKxYLFYKC4uZsWKFXz77bfcf//9zbbZtWsXo0aNanDcvn/Irl27HE6G9GxyDfVf/Vf/1f/WaunZ1GmSIRERkZ978MEHeeeddwDw9/fn3nvv5aqrrmq2TWFhIREREQ2O248VFhY6HYfZbHa6zentWtu+o1P/1f/TX32N+t+2/jvaTsmQiIh0WjfeeCNXXHEFBQUFfPHFF/z973+nvLyc3/72t822a+6dxNaMgLV13ZCvrztS/9V/X6b+u7f/SoZERKTTio2NJTY2FoCpU6cC8OSTT3LppZfSrVu3RttERkY2OvpTVFQE0OioUUu0Zqh11H/1X/1X/9v6+7MlSoZERMRnDB8+nLfffpvs7Owmk6FBgwaRlZXV4Lj92MCBA53+uloz1Dbqv/qv/qv/7uL9pX9ERERcZP369RiNRhISEpq8Ztq0aezdu5eMjIy6YzU1NXz00UekpqY6XDxBRES8n0aGRESk07n//vsJDQ0lJSWF6OhoTpw4wcqVK/nkk0/47W9/WzcqdM8997B06VJWrVpFXFwcALNmzWLhwoXcdttt3HnnnURFRbFw4UL27dvHq6++6sluiYiIiykZEhGRTictLY0lS5bwwQcfUFJSQnBwMElJSfzzn//kkksuqbvOYrFgNps5ff/xgIAAXnvtNZ544gkeeeQRysvLGTJkCC+++CJjx471RHdERMRNlAyJiEinc/nll3P55Ze3eN28efOYN29eg+PR0dE8/vjj7ghNRES8iNYMiYiIiIiIT1IyJCIiIiIiPknJkIiIiIiI+CQlQyIiIiIi4pOUDImIiIiIiE9SMgRYrVb++n4m720r9XQoIiIiAOQVlvPb/21k06FKT4ciItJpKRkCSipreG9TLm9vLaWsqsbT4YiIiJCeXchXWUd5f7veqBMRcRclQ0B4kD89wgKxAtsOlXg6HBEREQb3DANgb2E1NWaLh6MREemclAzVGhYbDsDWvGIPRyIiIgJ9o0IIC/Kjygy7jmh0SETEHZQM1UqOsyVDW3KLPByJiIgIGI0GhsdFAJCRo2eTiIg7KBmqlRxre+Bs0ciQiIh4ieHxSoZERNxJyVAt+zS53UdKKa8yezgaERGRU8nQZiVDIiJuoWSoVo/wQCIDjVissP2wRodERMTzUmuToaz8ElU7FRFxAyVDtQwGA327+gFaNyQiIt6hR3gQ3brY3qhTgR8REddTMnSa/l39ASVDIiLiPQZ2sz2bMrILPRuIiEgnpGToNP1qk6HMXL37JiIi3mFAbTKUrmRIRMTllAydxp4M7covoaJaRRRERMTz6kaGcgo9G4iISCekZOg00V2MdAv2p8ZiZefhEk+HIyIiQr+u/hgMkF1QzvHSSk+HIyLSqSgZOo3BYGBY7QZ3mVo3JCIiXiDE30j/6BBAJbZFRFxNydDPJNfuN6QiCiIi4i3s+w1p3ZCIiGspGfqZumQoT8mQiIh4B3sypHVDIiKupWToZ5LjbMnQzsMlVNaoiIKIiHheanwkYCuvbbVaPRuMiEgnomToZ+IiuxDRxZ9qs5Wsw6WeDkdERITBPcMIMBk5UVZNdkG5p8MREek0lAz9jMFgIKW2iIKmyomIiDcI9DMypHYat6bKiYi4jpKhRiSropyIiHiZNPu6IRVREBFxGSVDjbCvG1JFORER8RapCZGARoZERFxJyVAj7NPkdhwqodps8XA0IiIip5KhzNwiavRsEhFxCSVDjUjsFkxYkB9VZgtZ+SWeDkdERIS+USGEBflRUW0hK18FfkREXEHJUCMMBgPJsbbRoa25xR6ORkREBIxGw6kS25oqJyLiEkqGmpASryIKIiLiXVITVERBRMSVlAw1YVhtCVMlQyIi4i3sI0PpSoZERFxCyVAT7EUUth8q1kJVERHxCvYiCln5JZRV1Xg2GBGRTkDJUBP6RIUQGuhHZY2F3Ue1UFVERDyvR3gQPcODsFhhi9a0ioi0mZKhJhiNBobap8rlaKqciIh4B60bEhFxHSVDzbBPlduap3ffRETEO2jzVRER11Ey1Ax7MqQiCiIi4i3SVF5bRMRllAw1IznONk1uW14xZovVw9GIiIhAcnwEBgNkF5RzvLTS0+GIiHRoXpcMLV68mMGDBzNixAhPh0Lf6FCCA0yUV5vZqyIKIiLiBcKD/OnfPRSAzVrTKiLSJl6VDOXn5/P4448TExPj6VAAMBkN2m9IRES8jvYbEhFxDa9Khh544AFGjx7NpEmTPB1KnWGxWjckIiLeJc1eUU7rhkRE2sRrkqEPP/yQDRs28OCDD3o6lHrqKsppPwcREfESdRXlsguxWrWmVUSktfw8HQDA8ePH+cc//sGdd95Jz54923Qvs9ncpnY/bz+0l21e9ta8IqqrazAaDW2Kz1s11X9fof6r/6e/+pq29t9Xv2+elNQznACTkRNl1WQXlJMYFezpkEREOiSvSIYeeugh+vbty9VXX93me2VmZrq0vdliJcAEJ6vMfPLtRuLDveJb5jZt/f51dOq/+u/LOlP/165dy0cffcRPP/3E4cOHCQsLIzk5mVtuuYXk5ORm2y5ZsoS777670XPffvst3bt3d0fITgnwMzIkNpyM7ELScwqVDImItJLH/7L/9NNP+eKLL1i6dCkGQ9tHXVJSUjCZTE63M5vNZGZmNtp+2A/r+OlgIZaIWNJSY9scozdqrv++QP1X/9X/1vff3t6bLFq0iMLCQq699loGDBhAQUEBr776KrNnz+all15iwoQJLd7jscceo1+/fvWORUZGuili56XFR5CRXUhGdiEXd9Jnk4iIu3k0GTp58iQPP/wwv/rVr4iJiaG42LYup7q6GoDi4mL8/PwIDnb8HS+TydSmP2Yaaz88LoKfDhayNa+ES0d27j+U2vr96+jUf/Vf/e8c/X/ggQeIioqqd2zy5Mmcd955vPDCCw4lQwMHDiQlJcVdIbZZakIkrD1AhirKiYi0mkeToRMnTnDs2DFeeeUVXnnllQbnx4wZwznnnMNzzz3ngehOGRaninIiIh3JzxMhgJCQEPr378+hQ4c8EJHr2YsobMkrosZswc/kNTWRREQ6DI8mQ927d+f1119vcHzBggX88MMPvPjii3Tt2tUDkdVnryi3La8Yi8XaaYsoiIh0ZiUlJWzbto3x48c7dP2NN95IQUEBYWFhjB07lltvvZVBgwa16mu7urgPQGJkEGFBfpRU1LDjUBFDeoW36mt4MxU3Uf9Pf/U16n/7FPfxaDIUGBjIuHHjGhz/4IMPMJlMjZ7zhAExoQT4GSmprOFAQRl9o0M8HZKIiDjpoYceory8nBtvvLHZ66Kjo7nxxhtJS0sjNDSUrKwsFixYwOzZs1m0aBFJSUlOf21XF/ex6xtuZHMFLFu7hcp+nbeIgretSWtv6r/678vc3X+PF1DoCPxNRob0slXt2ZJbpGRIRKSDeeqpp/j444+5//77W6wmN2XKFKZMmVL37zFjxjB16lQuuugi/vvf//L88887/fXdUdwHYNKRLDYf2UuBIZy0tOb71RGpuIn6r/6r/+4u7uOVydC8efOYN2+ep8OoJyXuVDJ0kar2iIh0GM8++yzPP/88t99+O9dcc02r7hEfH8+oUaPIyMhoVXt3FPcBGJFom0q+OaeoU/+x1JmKe7SG+q/+q//u679WWzooOVZFFEREOppnn32WZ555hrlz57Y4Pa4lVqsVo9G7HptptUUUsvJLKKuq8WwwIiIdkHf9VvdiybVFFLbkFmG1Wj0cjYiItGT+/Pk888wz3HTTTcyZM6dN98rOzmbTpk2kpqa6KDrXiAkPoldEEBYrbMkt9nQ4IiIdjldOk/NGg3qEEWAyUlxRQ3ZBuXb7FhHxYq+88gpPP/00kydP5swzzyQ9Pb3e+bS0NADuueceli5dyqpVq4iLiwPguuuuY/To0SQlJRESEkJWVhYvvfQSBoOB2267rZ170rLh8REcKqogI7uQsX27eTocEZEORcmQgwL8jAzuGUZmbhGZuUVKhkREvNiXX34JwJo1a1izZk2D8zt37gTAYrFgNpvrjfgPGjSIFStW8Morr1BZWUm3bt0YP348N998M3379m2fDjghNSGST7fmk55T6OlQREQ6HCVDTkiOiyAzt4gteUXMGN7L0+GIiEgT3njjDYeua6xgzz333OOOkNwmLT4SgIzsQo/GISLSEWnNkBNSTls3JCIi4g2S4yMwGCDnRDnHSys9HY6ISIeiZMgJyXG23b0zVURBRES8RHiQP/27hwK2EtsiIuI4JUNOGNwzDH+TgcKyanILyz0djoiICACptVPl0jVVTkTEKUqGnBDoZ2JQjzBAU+VERMR7pCXYpnFnqIiCiIhTlAw5SZuvioiIt0mt3Xw1I7tQ07hFRJygZMhJyfH2Igra3E5ERLxDUs9wAkxGTpRVk12gadwiIo5SMuSk0yvK6d03ERHxBgF+RobG2or8aL8hERHHKRlyUlLPMExGA8dPVnGoqMLT4YiIiACQWjtzQfsNiYg4TsmQk4L8TQyMsZUwVREFERHxFqevGxIREccoGWoFbb4qIiLexp4Mbckrotps8WwwIiIdhJKhVkiOU0U5ERHxLn2jQggL8qOi2kJWfomnwxER6RCUDLWCPRnakqeKciIi4h2MRkPd5qubc/RmnYiII5QMtcLQXuEYDXC0pJL8YhVREBER75CaoCIKIiLOUDLUCl0CTAxQEQUREfEy9pGhdCVDIiIOUTLUSlo3JCIi3iattohCVn4JZVU1ng1GRKQDUDLUSsmxqignIiLeJSY8iF4RQVissCVX61pFRFri15pGu3btYtOmTeTn51NRUUHXrl0ZMGAAY8aMITQ01NUxeqWUeHsypIeNiIh4j9T4SA4VHSYju5Cxfbt5OhwREa/mcDJUVFTEO++8wzvvvENeXh5Wq7Xhzfz8mDJlCr/61a+YMGGCSwP1NkN7hWMwwOHiCo6WVNI9LNDTIYmIiJCaEMnKrYdJzyn0dCgiIl7PoWTo9ddfZ/78+QBMnz6dsWPHMmzYMLp160ZgYCBFRUVkZ2eTnp7O6tWr+c1vfsPEiRP529/+Ru/evd3aAU8JCfSjX3QIe46eZEtuEWclxXg6JBEREVLjVVFORMRRDiVDb7zxBnfffTczZszA39+/wfno6Giio6MZMWIE119/PQcPHuT5559nxYoV3HjjjS4P2lukxEUoGRIREa+SHB+BwQA5J8o5VlpJdKhmLoiINMWhZGjFihX4+Tm+vCgxMZHHHnsMs9nc6sA6guS4CJam56minIiIeI3wIH/6dw9l95FSNucUcnZSD0+HJCLitRyqJrdr165W3dxkMrWqXUdhL6+tinIiIuJNTu03pOeTiEhzHEqGLr30Ui677DIWLlxISUmJu2PqMIbFhgOQV1TB8dJKD0cjIiJik5Zge7Nus4ooiIg0y6Fk6A9/+AMFBQU8/PDDnHHGGfzpT39i3bp17o7N64UF+dMvOgSALXkqsS0iIt4htXbz1Yzswkarv4qIiI1DydDtt9/Ol19+yYIFCzjrrLP47LPPuP766znnnHN47rnnOHTokLvjdL8T+/GrKHC62TBNlRMRES+T1DOcAJORE2XVZBeUezocERGv5VAyBGAwGJgyZQpPPfUU3377Lffeey8RERE8/fTTTJs2jd/+9resXLmS6upqd8brHtXlGJ+fQNJ3c8FqcappSpxtqpySIRER8RYBfkaG1k7l1n5DIiJNczgZOl14eDjXXHMNS5YsYenSpVx99dVs27aN22+/nSlTprg6RvczmMBgJLDsEBzLcqqpvYiCKsqJiIg3STttqpyIiDSuVcnQ6ZKSkrj44os5++yzASgsLGzrLdufXwDEjwbAkO3cWqhhsbZkKOdEOSdOVrk8NBERkdZITdDmqyIiLXF886CfKSgo4KOPPuL9999n9+7dmEwmzjrrLGbNmuXK+NqNNWEchv1r4OB6GPNbh9tFdPGnd1QwB46XsTWvmDMGRrsxShEREccMry2vvSWviGqzBX9Tm9//FBHpdJxKhiwWC9988w3vv/8+X331FdXV1fTp04c77riDSy+9lOjojpsIWBPGA2DIXut02+TYCA4cLyMzt0jJkIiIeIW+USGEBflRUlFDVn5J3UwGERE5xaFkaN++fbz//vt8+OGHHDt2jKCgIGbOnMnll1/O6NGj3R1j+4gfgxUjhsKDUJQLEXEON02Oi2B55iG25GndkIiIeAej0UBqfCTf7j5GRnaRkiERkUY4lAxdeOGFAAwfPpy5c+cyY8YMQkJC3BpYuwsMoyyiPyFFuyB7HURc7nDTFJXXFhERL5SaEFGbDBVy9bhET4cjIuJ1HEqGfv3rXzNr1iwGDhzo7ng8qrRbii0ZOrAWkh1PhobVli89cLyMovJqIrr4uytEERERh6XWrhvKUHltEZFGObSa8u677240Edq7dy8bN26krKzM5YF5Qmm3FNsnB52rKNc1JID4rl0A2KqpciIi4iXs5bWz8ksoq6rxbDAiIl6oVaVlli5dypQpU5gxYwbXXHMN+/btA+C2227j3XffdWmA7akuGcrfAuWFTrXVVDkREfE2MeFB9IoIwmKFLbnFng5HRMTrOJ0MrVixgrvuuouhQ4dy//33Y7Va684NGzaMFStWuDTA9lQT1A1rt36AFXJ+cKrtqc1X9bARERHvUTdVTvsNiYg04HQytGDBAi677DL+7//+j9mzZ9c7169fP3bv3u2y4DzBmjDO9slB50ps25OhrRoZEhERL5JaO1UuXeuGREQacDoZ2rNnDzNmzGj0XGRkJIWFhW2NybNq9xvigJPJUG0Rhb3HTlJSUe3qqERERFolNcH2Zp1GhkREGnI6GerSpQslJSWNnsvPzyciomPvY2BNnGD7JHcj1FQ63C4qNJDYiCAAtuZpqpyIiHiHlLgIDAbIOVHOsVLHn2siIr7A6WRoxIgRvPXWW/XWCtktWbKEsWPHuiQwj+nWH4KjwVwJeelONU1WEQUREfEyYUH+9O8eCsBmTZUTEanH6WTolltuIT09nVmzZvHGG29gMBj47LPPuPHGG/nxxx+58cYb3RFn+zEYILF2qtzB751qqopyIiLijexFFNKz9XwSETmd08lQSkoKL774ImVlZcybNw+r1coLL7zAvn37WLBgAYMGDXJHnO2r90Tbq5P7DZ2qKKeHjYiIJ61du5a7776bCy64gLS0NCZPnsxNN93Eli1bHGp//Phx7rrrLsaNG0dqaiqzZ89m7Vrn1pJ6kzStGxIRaZRfaxqNHz+eFStWcPDgQY4dO0bXrl3p27evq2PznLqRoXVgsYDRsZzRngztPXaSk5U1hAS26tsrIiJttGjRIgoLC7n22msZMGAABQUFvPrqq8yePZuXXnqJCRMmNNm2qqqK6667juLiYu69916ioqJ46623uOGGG3j11Vc75HRwe0W5jJxCrFYrBoPBswGJiHiJNv21npiYSGJioqti8R49h4N/MFQUwtEd0GOoQ826hwXSMzyIw8UVbDtUzJg+3dwbp4iINOqBBx4gKiqq3rHJkydz3nnn8cILLzSbDC1evJisrCzefvttRowYAcC4ceO45JJLeOKJJ1i8eLFbY3eHpJ7hBJiMFJZVk11QTmJUsKdDEhHxCg4NeXzyySdO3zg/P5+NGzc63c4rmPwhfoztc6f3G7KV2M7M0VQ5ERFP+XkiBBASEkL//v05dOhQs20///xz+vbtW5cIAfj5+XHxxRezefNm8vPzXR6vuwX4GRlauwWE9hsSETnFoZGhhx9+mBdeeIFrrrmGCy+8kNDQ0Cav3bJlC++//z4ffPABf/7znxk1apTLgm1XiRNg39e2qXJjfutws+S4CD7ffoQteUqGRES8SUlJCdu2bWP8+PHNXrdr165Gn12DBw+uO9+jRw+nvrbZbHbq+p+3a2370w2PDyc9u5D0gwXMSHYufk9xZf87IvVf/T/91de0tf+OtnMoGVq1ahXPPPMMjz76KA8//DBDhw5l6NChREVFERAQQFFREdnZ2aSnp3P06FEGDhzIM888w+TJk1sVvFeoWzfk7OarqignIuKNHnroIcrLy1uselpYWNjonnn2Y63ZXDwzM9PpNq5sDxBpLgfg+x15pMd2rP2GXNH/jkz9V/99mbv771AyFBYWxj333MMtt9zCkiVL+Prrr1m6dCnl5eV11yQkJDB58mQuuuiiFt916xDix4DBBEXZUJgNkQkONUuJtz0sdx8ppayqhuAAFVEQEfG0p556io8//pj777+f5OTkFq9vrsBAa4oPpKSkYDKZnG5nNpvJzMxsdfvTRcSf5OkNa9hfbGZYynD8TU4XlG13rux/R6T+q//qf+v7b2/fEqf+Uo+IiOD666/n+uuvB2xTDioqKoiMjMTf39/pIL1aYCj0Gg55P0H2eoeToR7hQXQPC+RoSSXbD5UwqndXNwcqIiLNefbZZ3n++ee5/fbbueaaa1q8PjIystHRn6Ii24h/Y6NGLTGZTG36Y6at7QH6dQ8jPMiP4ooa9hwrY1is8/3wFFf0vyNT/9V/9d99/W/T20JhYWF079698yVCdom11YYOOLf5anLtIlVNlRMR8axnn32WZ555hrlz5zq8KfigQYPIyspqcNx+bODAgS6Nsb0YjQaG126+mqHNV0VEgDYmQ52ePRlycvPVlDitGxIR8bT58+fzzDPPcNNNNzFnzhyH202bNo29e/eSkZFRd6ympoaPPvqI1NRUp4sneJNUbb4qIlKPkqHm2IsoHNkG5SccbmbffDVTyZCIiEe88sorPP3000yePJkzzzyT9PT0eh9299xzD0OHDiU3N7fu2KxZsxg4cCC33XYbH3/8Md9//z1//OMf2bdvH3/605880BvXSbWPDKm8togI0MZNVzu90Bjo1h8K9kD2Bhh0vkPN7MnQriOlVFSbCfL33XmeIiKe8OWXXwKwZs0a1qxZ0+D8zp07AbBYLJjNZqxWa925gIAAXnvtNZ544gkeeeQRysvLGTJkCC+++CJjx45tnw64SVpCJABZ+SWcrKwhJFB/BoiIb9NvwZb0nmBLhg6udTgZ6hURRFRIAMdPVrHjcEndw0dERNrHG2+84dB18+bNY968eQ2OR0dH8/jjj7s6LI+LCQ+iV0QQh4oq2JJbxLh+DTenFRHxJZom15JWrBsyGAyaKiciIl7JPlVuc46eTyIiTidDf//739m7d687YvFO9mQodyNUVzjcLDmutqKcHjYiIuJFUmtnK6Rr3ZCIiPPJ0NKlS5kxYwbXX389n3/+eb151p1St34QEgPmKtueQw6qqyiXp2RIRES8hyrKiYic4nQytGbNGu677z6OHj3KnDlzOPvss1mwYAEFBQXuiM/zDIZTVeUOrnW4mX2aXFZ+CZU1ZndEJiIi4rSUuAgMBsg5Uc6x0kpPhyMi4lFOJ0PBwcH88pe/ZNmyZbz66qsMGzaM//73v5x55pncddddZGZmOnW/7du38/vf/54zzzyT4cOHM3bsWGbPns2HH37obGjuU7duyPFkKC6yC5HB/lSbrew8XOKmwERERJwTFuTPgO6hAGzWVDkR8XFtKqAwYcIEnn32WVavXs2IESP48MMPufLKK7niiiv44osvHLpHcXExPXv25Pbbb2fBggU8/vjjxMXF8Ze//IXnnnuuLeG5Tm97MrQeLBaHmhgMhtM2Xy12V2QiIiJOG15bRCE9W1O5RcS3tam0dkVFBR9//DFvvfUWO3bsYMCAAVxwwQV88cUX3HLLLcyZM4dbbrml2XuMGzeOcePG1Tt21llnkZOTw7vvvsvNN9/clhBdo0cK+IdAZREc3Q49hjnULDkugjW7jqminIiIeJW0hAje35SjdUMi4vNaNTJ08OBBHnvsMaZMmcIDDzxAz549eeWVV1i2bBlz5sxhyZIl/O53v+PNN99sdWBdu3bFZPKSzUpNfpAwxvb5ge8dbpYcax8ZUjIkIiJOyt+K8d+DiNn7nstvba8ol5FT2PkLIYmINMPpkaEbbriB77//ni5dunDZZZfxq1/9isTExAbXnXXWWSxYsMDh+1osFiwWC8XFxaxYsYJvv/2W+++/39nwMJtbV6zA3q6p9oaE8Rj3foXlwFqso37j0D2H9rLNyd55uJjyymoC/Lx3W6eW+t/Zqf/q/+mvvqat/ffV75vbFR/CUHaMHnveA+vfXXrrpJ7hBJiMFJZVc7CgjN5RIS69v4hIR+F0MpSdnc3dd9/NZZddRkhI0788Bw4cyOuvv+7wfR988EHeeecdAPz9/bn33nu56qqrnA3P6QIOjrYPq4pmEFCzZw2Z6ekO3ctqtRLib+BktZVlazbSr6t/m2JrD239/nV06r/678t8vf9ep88krP7BBFQcwXx4M8SPdNmtA/yMDI0NJz27kPTsQiVDIuKznE6GPv30U4euCw0NZezYsQ7f98Ybb+SKK66goKCAL774gr///e+Ul5fz29/+1qn4UlJSWjW9zmw2k5mZ2XT7qoFY199FQMUR0vpEQWSCQ/cdvmkDa/cWUB3ak7Q0x9p4Qov97+TUf/Vf/W99/+3txcX8u0D/s2HHMgw7l7s0GQJIS4gkPbuQjOwiLkmLc+m9RUQ6ijYVUHCl2NhYYmNjAZg6dSoATz75JJdeeindunVz+D4mk6lNf8w02b5LOPRKhdyNmHI3QFQfh+43PD6StXsL2Ha4pEP8kdXW719Hp/6r/+q/7/bfG1kHz8SwYxmGHcvhHOenjjfHvvmqymuLiC9zOhk6++yzMRgMjZ4zGo2EhYWRkpLCtddeS//+/Vsd2PDhw3n77bfJzs52Khlyq8QJkLvRVkRh+JUONRlWW147U+W1RUTESdaB52E1GDEc3Q7H90BU65+rP5daW157S14R1WYL/ibvXdcqIuIuTv/mGzt2LFarlfz8fOLi4khNTSU2Npb8/HzMZjO9evVi1apVXH755W2aNrF+/XqMRiMJCV40tSxxvO314DqHm9j3Gtp+qJhqs2N7FImIiADQJZKSqDTb5zs/cemt+0SFEB7kR0W1hax8bQ4uIr7J6ZGhM844g/T0dFatWkWvXr3qjufl5fGb3/yGadOmMW/ePH71q1/xzDPPtFhR7v777yc0NJSUlBSio6M5ceIEK1eu5JNPPuG3v/2t94wKgW1kCGx7DZUVQHDLsfXuFkxYoB8llTXsPlLKkF7hbg5SREQ6k8Kekwg/tgl2LIeJc112X6PRQGpCJGt2HSMju4hhtdtBiIj4EqdHhv7v//6PuXPn1kuEwLbm55ZbbmHBggWEhYVx3XXXke5A1bW0tDQ2b97Mww8/zPXXX899993HsWPH+Oc//8lf/vIXZ8Nzr5BoiBpo+zx7vUNNjEYDQ2NtCZA2XxUREWcV9pxk++TgOig96tJ726fKafNVEfFVTo8MHThwgNDQ0EbPhYeHk5ubC0BcXBzl5eUt3u/yyy/n8ssvdzYMz0kcD8d3wcG1MPhCh5qkxEWwfl8BW3OLYLQXTfsTERGvV90lBmuvNAyH0iFrBYy81mX3Hh5vGw3KUBEFEfFRTo8MxcbG8sEHHzR67v33368bMSosLCQiohMOufeeaHt1Zt1QvL2IgkaGRETEedbB022f7Fju0vumJUQCkJVfwsnKGpfeW0SkI3A6Gfrtb3/LypUrueqqq3jttddYtmwZr732GldddRWrVq3ihhtuAGwFEJKTk10esMfZiyjkboLqlke+gLp52NsOFVOjIgoiIuIk6+AZtk/2fAmVpS67b0x4EL0igrBYYYvesBMRH+T0NLkrr7wSq9XKM888w7x58+qOR0dH89BDD3HFFVcAtk1UAwICXBept+jaF0J7QulhW0LUZ1KLTfpFhxASYOJklZm9x04yqEdYOwQqIiKdRvck6NYPCvbC7s9h2C9cduvU+EgOFR0mI6eQcf2iXHZfEZGOwKlkyGw2c/DgQS688EKuvPJK9u7dS2FhIZGRkfTr16/e/kPR0dEuD9YrGAy20aFtS23rhhxIhoxGA8NiI9iwv4DMnCIlQyIi4hyDAZJmwPfP2KbKuTIZSohk5dbDZGRrZEhEfI9T0+SsViszZszgp59+wmAw0L9/f0aNGkX//v2b3Ii1U7KX2D641uEmw+JUUU5ERNogaabtNetTMFe77LapCbap3OmqKCciPsipZMjPz4/o6GisVqu74ukYetcmQ9kbwGJ2qIl989WteUqGRESkFeLHQEh3qCyC/d+67LYpcREYDJBbWM6x0kqX3VdEpCNwuoDCjBkzWLp0qRtC6UBihkFAGFQWw5FtDjU5lQwVY7b4eDIpIiLOM5pObengwqpyYUH+DOhu2zJjs0psi4iPcToZSkpK4qeffuLaa6/lzTff5NNPP+Wzzz6r99HpmfwgYYzt8wOOTZXr1z2ULv4myqrM7DvmukpAIiLiQ+xT5XYsBxfO0kitLbGdrnVDIuJjnK4m99e//hWA/Px8NmzY0OC8wWBg+/btbY/M2yVOhD1f2NYNjft9i5ebjAaGxoaz8cAJtuQWMyBGRRRERMRJfadCQCiU5EHeTxA30iW3TU2I5L2NOWRo3ZCI+Bink6HXX3/dHXF0PPb9hg6utb0750ABieTaZCgzt4hfjIhzc4AiItLp+AfBgGm2iqY7lrsuGardHDwjpxCr1epbRZFExKc5nQyNHTvWHXF0PHGjwOgPJYeg8AB07dNik+TadUOqKCciIq2WNLM2GVoG59zvmlv2DCfAZKSwrJqDBWX0jgpxyX1FRLyd02uG7EpKSlizZg0fffQRRUU++Md9QDDEptk+P7jOoSYpte+8bcsrxqIiCiIi0hoDzwWjHxzdAcd2u+SWAX5GhsbatoBQiW0R8SWtSobmz5/P5MmT+d3vfsdf//pXcnJyAPj1r3/NggULXBqgVzt9qpwDBnQPJdDPSGllDfuPn3RjYCIi0ml1iYQ+k22f73RdVbm02iIK2nxVRHyJ08nQW2+9xfz585k1axYvvPBCvT2HzjrrLL766itXxufd7JuvOlhRzs9kZEgvbb4qIiJtlDTD9urCEtv2zVczVF5bRHxIq5Kh6667jvvuu48zzjij3rnevXtz4MABlwXn9RJqR4aO7YSTxx1qcvp+QyIiIq0yeLrtNXsDlOS75Jap8ZEAbMktotpscck9RUS8ndPJUHZ2NpMnT270XEhICMXFPvRHfkgURA+2fZ693qEmyXG1I0M5GhkSEZFWioiD2JGAFbJWuOSWfaJCCA/yo7LGQlZ+iUvuKSLi7ZxOhsLCwjh27Fij53Jzc4mKimpzUB1K3bqh7x263F5RbkteUb0phiIiIk4ZctoGrC5gNBrqNl/VuiER8RVOJ0MTJkzgpZdeoqysrO6YwWCgpqaGRYsWNZg61+n1nmh7dbCi3KAeYQSYjJRU1HCwoKzlBiIiIo1Jqk2G9n4FFa6ZlWGfKqfNV0XEVzidDN16663k5eUxY8YM5s2bh8Fg4M033+SKK67gwIED3Hzzze6I03vZR4by0qGq5eTG32QkqVcYoCIKIiLSBtGDIGoAmKtg9+cuuWXdyJCKKIiIj3A6GerduzeLFi2iX79+LFq0CKvVyocffkjXrl1ZuHAhsbGx7ojTe0X2hrBeYKmG3I0ONambKpfrQ+urRETEtQwGl1eVS63dDy8rv4STlTUuuaeIiDfza02jAQMG8PLLL1NVVcWJEyeIiIggKCjI1bF1DAaDrcT21iW2qXJ9Gy8ucbqUumRII0MiItIGSTPhu//Crs+gpgr8Atp0u5jwIHpFBHGoqIItuUWM6+dj64BFxOe0atNVu4CAAHr06OG7iZCdfb8hBzdfTY61JUOZuSqiICIibRA3GkJioLIY9q9xyS3r1g1pqpyI+IBWjQzl5OSwYsUK8vLyqKioqHfOYDDwj3/8wyXBdRj2dUPZG8BiBqOp2csH9QzF32SgqLyanBPlJHQLbocgRUSk0zEaIWk6bHzNNlVuwDltvmVqQiQrtx5WRTkR8QlOJ0NfffUVc+bMwWKx0K1bNwIC6g/JGwwGlwXXYfQYBoHhtnfm8rdAr9RmLw/0MzG4ZxhbcovZklukZEhERFov6SJbMrTzE5j+L1uC1AapCbbZC+mqKCciPsDpZOg///kPI0eO5D//+Y/v7SnUFKMJEsbaqvkcXNdiMgS2qXJbcovJzC3iwpRe7RCkiIjvKC0t5bnnnmPHjh1s27aNEydOMGfOHObOndti2yVLlnD33Xc3eu7bb7+le/furg63bfpOhoAwKDkEeT9B/Kg23S4lLgKDAXILyzlaUkn3sEAXBSoi4n2cfvvowIED/O53v1Mi9HP2qXIHnN18VRXlRERcrbCwkHfffZeqqiqmTZvWqns89thjvPPOO/U+IiMjXRuoK/gFwsBzbZ/v+LjNtwsL8mdA91AANmvdkIh0ck6PDMXGxtbbcFVqJZ62+arVaqsy14zk0yrKWa1W35xeKCLiJnFxcfzwww8YDAYKCgpYvHix0/cYOHAgKSkpbojODZJm2Kqa7lgO0x5s8+1SEyLZdaSUjJwizhnSo+3xiYh4KadHhv7whz/wyiuvUF5e7o54Oq64kWD0h9LDcGJ/i5cn9QzDz2ig4GQVeUUVLV4vIiKOMxgMvvUm08Bzbc+gY1lwNKvNt6vbfFXrhkSkk3N6ZCgzM5Pjx49z7rnnMm7cOLp27drgmvvuu88lwXUo/l0gdgTkbLCV2O7Wt9nLg/xNDOwRxvZDtiIKcZFd2ilQERFxxI033khBQQFhYWGMHTuWW2+9lUGDBrXqXmazuU3tWmzvH4qx72QMe77Asn0Z1m63terr2aXEhgG2ZKimpsZjiaXD/e+k1H/1//RXX9PW/jvazulk6M0336z7fPnyhjteGwwG30yGAHpPOJUMpV3d4uXJseF1ydD5w3q2Q4AiItKS6OhobrzxRtLS0ggNDSUrK4sFCxYwe/ZsFi1aRFJSktP3zMzMbFNMjrSPDh5Ob76g7KfF7AyZ2qavV22x4m+EwvJqPv1uIz1DW7UTh8u09fvX0an/6r8vc3f/nf7ttmPHDnfE0TkkTrDtBH7Asc1XU+IjWLwxh8xc7eUgIuItpkyZwpQpU+r+PWbMGKZOncpFF13Ef//7X55//nmn75mSkoLJ1PwedI0xm81kZmY61r5/D8h8itAT20jr3xPC2vYm27ANa0nPLqIqLJa01Ng23au1nOp/J6T+q//qf+v7b2/fEs++1dPZJIyzvR7fBSePQUh0s5eriIKISMcQHx/PqFGjyMjIaFV7k8nUpj9mHGofGQ/xYyDnB0y7P4XRv2n11wNIS+hKenYRmbklXDrSs3+ItfX719Gp/+q/+u++/jtUQOGHH37g5MmTLV5XUFDAe++91+agOqzgbtB9iO3zg+tavHxIz3CMBjhWWkV+caWbgxMRkbawWq0Y27ihqdslzbC97mg4jd1Z9s1XM1ReW0Q6MYd+q1977bXs2bOn7t8Wi4Xk5GS2bdtW77rs7Gzuv/9+10bY0dj3GzrY8lS5LgEmBsbYFqlqqpyIiPfKzs5m06ZNpKa2vKm2RyXNtL3u/Roq2vZcSY2PBGyzF6rNljYGJiLinRxKhqxWa4N/19TUNDgu2NYNgUPJENSfKiciIq7z9ddfs3LlSr788ksAdu/ezcqVK1m5cmXd9hD33HMPQ4cOJTc3t67dddddx7PPPsvnn3/O2rVr+d///sfVV1+NwWDgttvaVqXN7aIHQvQgsFTDrlVtulWfqBDCg/yorLGw83CJiwIUEfEuWjPkar1rk6FDGVB1EgJCmr08OS6c9zcpGRIRcbWHHnqoXpJjT4QAVq9eTXx8PBaLBbPZXO/NvUGDBrFixQpeeeUVKisr6datG+PHj+fmm2+mb9/mt03wCkkz4Nss21S5lFmtvo3RaCA1IZI1u46RkVNY9+adiEhnomTI1SISIDwOinMh50fo13x505Tah4umyYmIuNYXX3zR4jXz5s1j3rx59Y7dc8897gqpfSTNhG//YxsZqqkEv8BW3yo1vjYZyi7kl+N6uzBIERHv4OUrQTsgg+G0dUMtF1EYGhuOwQBHSio5Ulzh5uBERKTTix0JoT2hqgT2rWnTrVITIgHYnKM37ESkc3J4ZGjv3r11Ze3sO7ru3bu3wTWCbd3QlvcdWjcUHOBH/+6h7D5Sypa8Is4OD2qHAEVEpNMyGm1T5X58GXYsg4HTWn2r1Hjb7IWs/BJOVtYQEqgJJSLSuTj8W+3uu+9ucOwvf/lLvX9rr5xa9iIKOT+AuQZMzX+bU+IibMlQbjFnJ/VohwBFRKRTsydDOz+BGU/aEqRWiAkPIjYiiLyiCrbkFjGuX5SLAxUR8SyHkqHHHnvM3XF0LjFDIDACKosgPxNiRzR7eXJcBB/8lKt1QyIi4hp9JkNgOJTmQ+6PkDC21bdKTYgkr+gwGTmFSoZEpNNxKBm69NJL3R1H52I0QeI42PWZbd1QS8lQbDiginIiIuIifgEw8DzY8p5tqlwbkqHh8ZGs2HKYjGw9o0Sk81EBBXexF1E48H2Llw6Li8BggENFFRwrrXRzYCIi4hOSZthety+DNuwLmJpgWzeUnl3ogqBERLyLkiF3SZxoez24rsWHUGigH32jbfsRaXRIRERcYsA0MAVAwR44ltXq26TUvmGXW1jO0RK9YScinYuSIXeJHWF7CJ08AgUtV9lLjrW986ZkSEREXCIoHPrW7nW3Y1mrbxMW5M+A7qEAbM4pdEFgIiLeQ8mQu/gH2fZ6AIdKbNs3X92SW+zOqERExJfYp8rtWN6m29j3G8rQVDkR6WSUDLlT79oS2w4kQ8PibEUUVFFORERcZvB0wAC5G6E4r9W3sSdD6dp8VUQ6GaeSoYqKCq666iq+/77logDCqf2GDq5r8dLk2pGh3MJyTpyscmdUIiLiK8J6nKokt/OTVt8mLT4SsE2Ts7ahGIOIiLdxKhkKCgoiKysLk8nkrng6l4SxgAGO74bSI81eGh7kT5+oYAC25OmdNxERcZHTq8q10uCeYQT4GSksq+ZgQZmLAhMR8Tynp8mNGDGCzZs3uyOWzqdLV4gZavvcgdGhYbWjQ5oqJyIiLpM00/a6fw2UF7bqFgF+RobV7omnEtsi0pk4nQz99a9/5Z133mHp0qWcPHnSHTF1Lvb9hhxIhk4VUVAyJCIiLhLVH7ongaUGdq1q9W1Sa6fKafNVEelM/JxtMHv2bKqrq7n77ru5++67CQoKwmAw1J03GAxs3LjRpUF2aIkT4MeX4WDL66xUUU5ERNwiaQYc3WErsT38ilbdwr75aobKa4tIJ+J0MnT++efXS36kBfaKcoc2Q2UpBIY2eal9CsLBgjKKyqqJCPZvjwhFRKSzS5oBa/4Nuz+H6grb9g9Oso8Mbcktotpswd+kgrQi0vE5nQzNmzfPHXF0XhHxEJEARdmQ+yP0O7PJSyODA0jo1oXsgnK25BUxaUB0+8UpIiKdV+xICIuFkjzY9w0MOs/pW/SJCiE8yI/iihp2Hi6pq4IqItKR6W2d9mBfN3TAmc1XNSdbRERcxGA4bQPW1lWVMxoNpzZf1VQ5EekknB4ZssvKymLPnj1UVlY2OPeLX/yiLTF1PokTIHOxY5uvxkbwSeZhVZQTERHXSpoBP7xo22/I8h8wOr9NRmp8JGt2HSMju5BfjuvthiBFRNqX08lQeXk5N910E+vWrcNgMNRtvnb6OiIlQz9j33w150cwV4Op6bVAGhkSERG36HMGBEbAyaOQ88OpWQtOqBsZUkU5EekknJ4m99xzz5Gbm8ubb76J1Wrl2Wef5dVXX+Xcc8+ld+/efPDBB+6Is2PrngRBkVB9Eg43v0eTfQ72/uNlFFdUt0NwIiLiE0z+MOh82+etnCqXGm97Ru06UsLJyhpXRSYi4jFOJ0OrV6/md7/7HSNGjACgV69eTJgwgaeffpphw4axcOFClwfZ4RmNDu831C0kgLjILgBsVYltERFxJfu6oe3LoHZmhzNiwoOIjQjCYtUMBhHpHJxOhnJzc+nXrx8mkwmDwUB5eXnduYsuuojVq1e7NMBOoy4ZanndUHKcrcT21jw9aERExIUGTANTIJzYZ9t3qBVUREFEOhOnk6GwsDDKysoAiIqK4sCBA3Xnampq6s7Jz9jXDR1Y2+K7cfZ1QyqiICIiLhUYCv3Psn3e2qlyWjckIp2I08nQ4MGD2b9/PwDjxo3jhRde4Mcff2Tz5s3Mnz+fpKQkV8fYOcSOsL0bV3YMju9p9tJhSoZERMRd6kpsL29Vc/vmq+nZha6JR0TEg5xOhi6//HJOnjwJwB//+EfKy8v51a9+xezZs8nLy+Ouu+5yeZCdgl8gxI2yfX7w+2YvTY61JUP7jp2kVAtURUTElQZdCBgg7ycoynG6eUp8BAYD5BaWc7Sk4fYaIiIdidOltadPn173eUJCAp9++mldme0RI0YQGRnp1P3Wrl3LRx99xE8//cThw4cJCwsjOTmZW265heTkZGfD826J422J0MF1MPLaJi/rHhZIz/AgDhdXsC2vmLF9u7VjkCIi0qmFdq99Hq2FHZ/AuN871zzQjwHdQ9l1pJTNOYWcM6SHmwIVEXE/p0eGfi44OJizzz6bs846y+lECGDRokXk5uZy7bXXsmDBAu69914KCgqYPXs2a9e2XGygQ+k90fbqUBEFTZUTERE3qZsq19Z1Q4WuiUdExEOcHhlytQceeICoqKh6xyZPnsx5553HCy+8wIQJEzwUmRvEjwEMULAXSvIhrOl301LiIvh8ez5blQyJiIirDZ4On90H+7+F8hPQpatTzVMTInlvYw7pOXpGiUjH5lAylJSUhMFgcOiGBoOBbdu2ORzAzxMhgJCQEPr378+hQ4ccvk+H0CUSegyD/C220aFhv2jyUnt5bY0MiYiIy0X1h5ihcGQbZH0GqbOdap5WW0QhI7sQq9Xq8N8IIiLexqFk6JZbbmnXX3QlJSVs27aN8ePHt9vXbDeJE2qToXXNJkP28tp7jpZSVlVDcIDHB/FERKQzSZphS4Z2LHM6GRrcM4wAPyNF5dUcOF5Gn+gQNwUpIuJeDv2FPXfuXHfHUc9DDz1EeXk5N954o9NtzWZzq76mvV1r2zvKED8W4w8vYj3wPZZmvlZUiD8xYYEcKalkS04ho3o7N4XBWe3Vf2+l/qv/p7/6mrb231e/bx1e0kz45gnYvRqqy8G/i8NNA/yMDIsN56eDhWTkFCoZEpEOy+uGG5566ik+/vhj7r///lZVk8vMzGzT129r+5b4l4czHOBwJpt//B6LX3CT1yaEwpES+HTDNkwn2udB4+7+ezv1X/33Zb7ef5/TKxXC46E4B/Z+DYMvcKp5anykLRnKLuKStDg3BSki4l5OJ0NLly5t8Zpf/OIXrQgFnn32WZ5//nluv/12rrnmmlbdIyUlBZPJ5HQ7s9lMZmZmq9s7w/pjIobCgwzvVgn9JjZ53cRju9h4aA8nDGGkpQ13a0zt2X9vpP6r/+p/6/tvby8djMFgmyq34QXbVDknk6E0e0W5nELXxyYi0k6cToaa2lT19DVFrUmGnn32WZ555hnmzp3bqulxdiaTqU1/zLS1vUMSJ0DhQUzZ62HgtCYvG55gmxq37VBJu/2B1i7992Lqv/qv/vtu/32SPRnauQIsZjA6/vO3l9fekltEtdmCv6nNu3WIiLQ7p5Oh1atXNzh24sQJVq9ezSeffMJ//vMfp4OYP38+zzzzDDfddBNz5sxxun2HkzgeNr/T4n5D9opyu46UUlFtJshff6SIiIgL9Z4IQZFQdgyy15/aD88BfaKCCQ/yo7iihp2HS+r2xxMR6UicTobi4hrOC46LiyM5OZmamhpef/115s2b5/D9XnnlFZ5++mkmT57MmWeeSXp6er3zaWlpzobo/RJrHzY5P4K5Gkz+jV7WMzyI6NAAjpVWse1QMSMT3VtEQUREfIzJHwZdAJvfhh3LnUqGDAYDqQmRrNl1jIycQiVDItIhuXRMe8KECXzxxRdOtfnyyy8BWLNmDbNnz27w0SlFD7JtcFdTDocymrzMYDDUPVy0+aqIiLhF0gzb645lYLU61TT1tP2GREQ6IpdWk8vNzcVodC6/euONN1wZQsdgNELCeMhaYZsqFz+6yUuTYyP4audRbb4qIiLuMeAc8AuCE/tt+w71GOZwU/u6oYxsPaNEpGNyOhn64YcfGhyrqqpi586dvPDCC0yYMMElgXV6vSfUJkPrYGLT+zjZR4Yyc4vbKzIREfElASHQ/2zY+YltqpwzyVC87RmVdaSE0soaQgO9bscOEZFmOf1b61e/+lW9ynEA1tph9YkTJ3L//fe7JrLOLrE2aTy41jYt4WffU7uU2gfNrvwSFVEQERH3SJpRmwwtg6l/cbhZTHgQsRFB5BVVsCW3iPH9otwYpIiI6zmdDL3++usNjgUGBhIXF0d0dLRLgvIJvdJs0xLKjsOxXdB9UKOXxUYE0TXYnxNl1ew8XFI3JUFERJpWWlrKc889x44dO9i2bRsnTpxgzpw5zJ3b9Ej86Y4fP84TTzzBl19+SUVFBUlJSfzxj3/svLMfBl0ABqNtHWvhQYhMdLhpakIkeUWHycguVDIkIh2O0wUUxo4d2+AjNTVViZCz/AIgrnatUDMltk8vorAlT3OyRUQcUVhYyLvvvktVVRXTpjW9n1tjqqqquO6661i7di333nsvzz33HFFRUdxwww1s2LDBTRF7WEj0qRkLOz5xqmmqNl8VkQ7M6WRo3759TT4MNmzYwP79+9sak+9IHG97bXG/odpkSEUUREQcEhcXxw8//MCbb77JHXfc4VTbxYsXk5WVxVNPPcXFF1/MpEmTePrpp+nTpw9PPPGEmyL2AqdXlXPCqYpyekaJSMfjdDI0b968RjdeBVuZbGf2GPJ5vU9bN9SMlLoiCnrQiIg4wmAwNFjf6qjPP/+cvn37MmLEiLpjfn5+XHzxxWzevJn8/HxXheldBk+3vR74HsoKHG6WEh+BwQC5heUcLal0U3AiIu7hdDKUmZnJmDFjGj03ZswYtmzZ0uagfEb8WNsc7RP7ofhQk5fZk6Gdh0uoqrG0U3AiIr5p165dDB48uMFx+7Fdu3a1d0jto1tf6JEMVjNkfepws9BAPwbGhAKwWVPlRKSDcbqAQklJCcHBwY2eCwoKoqhIoxcOCwq3lTA9nGkbHUq+rNHL4rt2IaKLP0Xl1WTll2iXbxERNyosLCQiouHvWfuxwsJCp+9pNptbFYu9XWvbO8sweDrG/C1Yty/DknKlw+1S4iLIyi/lp4MnOHOQ69YQt3f/vY36r/6f/upr2tp/R9s5nQz16NGDzZs3M3HixAbnNm/eTPfu3Z29pW9LnFibDK1rMhmyFVEI57vdx8nMLVIyJCLiZs1NsWvN9LvMzMy2hNPm9o7qwgCGAtZdq8j4cR1WvyCH2nWjDIBvt2VzVvRJl8fVXv33Vuq/+u/L3N1/p5OhadOmsWDBAtLS0hg/fnzd8fXr1/Piiy8ya9YslwbY6SWOhw0vOFRE4bvdx1VEQUTEzSIjIxsd/bHPfGhs1KglKSkpmEzO7xNnNpvJzMxsdXunWVOxZvwdY1E2qWEnYPCFDjUzdS/ixU1r2VdsJTU1tdXrtX6u3fvvZdR/9V/9b33/7e1b4nQydMstt/Dtt99y/fXX06dPH3r27Mnhw4fZv38/AwYMcHgPB6llL2WavwUqim1T5xqRHKuKciIi7WHQoEFkZWU1OG4/NnDgQKfvaTKZ2vTHTFvbOyVpJqx/HlPWJzB0pkNNhsZGEuBnpKi8mpzCSvpEh7g0pHbtvxdS/9V/9d99/Xe6gEJYWBjvvPMOc+bMISIigry8PCIiIpg7dy5vv/02oaGh7oiz8wrvBV37gNUCOU3vX2EvorD9cAnVZhVREBFxl2nTprF3714yMjLqjtXU1PDRRx+RmppKjx49PBhdO7CX2N65Asw1DjUJ8DMyLNb2Zp72GxKRjsTpkSGAkJAQbrnlFm655RZXx+ObEifYKsodXAcDGt8csHdUMGFBfpRU1LArv5ShsY2PIImIiM3XX39NeXk5J0/a1rDs3r2blStXAjB16lS6dOnCPffcw9KlS1m1ahVxcXEAzJo1i4ULF3Lbbbdx5513EhUVxcKFC9m3bx+vvvqqx/rTbhInQJeuUF4A2eugzxkONUuNj+Sng4WkZxdySVqcm4MUEXGNViVDYKsql56ezokTJ5g6dWqr5lBLrcTxkLEIDjS9bshgMDAsNpx1ewvYklukZEhEpAUPPfQQubm5df9euXJlXTK0evVq4uPjsVgsmM1mrFZr3XUBAQG89tprPPHEEzzyyCOUl5czZMgQXnzxRcaOHdvu/Wh3Jj8YdCFkLIQdyx1OhtISIgHIyC50X2wiIi7WqmRo/vz5vPjii1RUVGAwGHjvvfeIiIjg17/+NZMmTeL3v/+9q+Ps3BJrK/Pl/gg1VeAX0OhlKXERrNtbQGZuEVeOSWjHAEVEOp4vvviixWvmzZvX6Gbh0dHRPP744+4Iq2MYMrM2GVoG5/8DHCiIkFqbDG3NK6babMHf5PRMfBGRduf0b6q33nqL+fPnM2vWLF544YV676adddZZfPXVV66MzzdED4Qu3aCmAg5lNHmZvaT2ljwVURARETfqdxb4dYHCg7YCPw7oExVMeJAflTUWdh4ucXOAIiKu0apk6LrrruO+++7jjDPqD5337t2bAwcOuCw4n2EwnKoqd/D7Ji+zJ0PbDxVToyIKIiLiLgHBMOAc2+c7ljvUxGAw1I0OqYiCiHQUTidD2dnZTJ48udFzISEhFBcXtzkon9Tbngyta/KSvlEhhAb6UVFtYffR0nYKTEREfJK9qtyOZQ43SY2PBLRuSEQ6jlaV1j527Fij53Jzc4mKimpzUD4p8bRkyNL4qI/RaKgrnLAlV0mniIi40aALwGCEw5m2iqcOqBsZytZ0bhHpGJxOhiZMmMBLL71EWVlZ3TGDwUBNTQ2LFi1qMHVOHNRzuG1+dnkBHGu42Z+dNl8VEZF2EdwNek+yfb7jE4eapMbbnlFZR0oorXRsjyIREU9yOhm69dZbycvLY8aMGcybNw+DwcCbb77JFVdcwYEDB7j55pvdEWfn5xcA8aNtnx9susR2SrxtZChTyZCIiLhb3VQ5x9YNxYQHERsRhNWqN+1EpGNwOhnq3bs3ixYtol+/fixatAir1cqHH35I165dWbhwIbGxse6I0zfUTZVrOhmyjwxtyyvGbLE2eZ2IiEib2ZOhg9/DyeMONUnVfkMi0oG0ap+hAQMG8PLLL1NVVcWJEyeIiIggKCjI1bH5nsTxttdmkqF+3UMJDjBRVmVm79FSBvYIa6fgRETE50Qm2qZxH94MWSthxC9bbJKaEMmKLYdVUU5EOoQ27YgWEBBAjx49lAi5SsJY22LVwoNQlNvoJSajgaG9aosoaL8hERFxt6SZtlcHp8qdqiinZ5SIeD+HRoaWLl3q1E1/8YtftCIUITAMeqbYNl49uBZSZjV6WXJcBD8eOEFmTjGXjmjnGEVExLckzYCv/gF7voCqMtseRM1IiY/AYIDcwnKOllTSPSywnQIVEXGeQ8nQXXfd5fANDQaDkqG2SJxQmwytazYZAi1OFRGRdtBjGET2hsIDsGc1DLmo2ctDA/0YGBNKVn4pm3MKOWdIj3YKVETEeQ4lQ6tXr3Z3HGKXOAHW/1+zm6+m1CZDW/OKsFisGI2G9opORER8jcFgmyq3br5tqlwLyRDYpspl5ZeSka1kSES8m0PJUFxcnLvjEDt7EYX8LVBeCF0iG1zSv3sIQf5GTlaZ2Xf8JP27h7ZriCIi4mOSZtiSoZ0rwFwDpub/fEhNiGTxxhzSczSDQUS8W6sLKJSWlvLtt9+ybNkyvvvuO0pLS10Zl+8K6wld+wJWyPmh0Uv8TEaG2IsoaKqciIi4W+J4CI6CikJbme0WnCqiUIjVqm0gRMR7tSoZevnll5k8eTK/+93v+NOf/sQNN9zA5MmTefXVV10dn2/qPdH22tzmq1o3JCIi7cVogsEX2j53oKrc4J5hBPgZKSqv5sDxMjcHJyLSek4nQ0uXLuWJJ55gzJgxPPnkk7z11ls8+eSTjB07ln/+859OV56TRtinyh1oefPVTCVDIiLSHk4vsd3CaE+An5FhsbYZDNpvSES8mdPJ0GuvvcbMmTNZsGABF154IaNGjeLCCy/khRdeYMaMGfzvf/9zR5y+JXGC7TV3I9RUNnqJvaLc1txiLBZNQRARETfrdyb4B0NRtm0T1hbYp8qlZxe6NSwRkbZwOhnau3cvF198caPnLr74Yvbs2dPmoHxe1AAIjgZzJeSlN3rJwB6hBPgZKams4WCBpiCIiIib+XeBAefYPndgqlxaQiRgWzckIuKtnE6GgoKCKCpqfGpWUVERQUFBbQ7K5xkMp6bKNbFQ1d9kZEjPMEBT5UREpJ3Yp8ptX9bipam1ydCWvGKqzRY3BiUi0npOJ0OjRo3i2WefJT8/v97xo0ePMn/+fEaPHu2y4HyafapcM/sNafNVERFpVwPPA4MJjmyFgr3NXtonKpjwID+qaizsPFzSTgGKiDjHoX2GTnfHHXdw1VVXcd555zFhwgS6d+/O0aNHWbduHX5+fjz77LPuiNP39D4tGbJYwNgwb62rKJenZEhERNpBcDfoMwn2fQM7PoGJc5q81GAwkJoQyZpdx0jPLqx7A09ExJs4PTI0cOBA3nvvPc455xwyMzNZsmQJmZmZnHPOOSxevJgBAwa4I07f03O4baFqRSEc3dHoJadGhoq1j4OIiLSPpItsr06sG9qsinIi4qWcHhkC6Nu3L08++aSrY5HTmfwhfrTt3beDa6HH0AaXDOoRhr/JQFF5NdkF5SRGBXsgUBER8SlJ02HFnyF7HZQehdDuTV56avNVzWAQEe/Uqk1XpZ0k2jdfbXzdUICfkcG1RRQ0VU5ERNpFRDz0SgOrBbJWNnvp8ATbDIasIyWUVta0Q3AiIs5p1cjQtm3b+Pjjj8nLy6Oysv4+OAaDgeeff94lwfm8uopyTW++mhIXwZbcYjJzi5ie0qudAhMREZ+WNBMOpdumyo38VZOXxYQFERsRRF5RBVtyixjfL6r9YhQRcYDTydDSpUu5++67MRqNdOvWDX9//3rnDQaDy4LzefFjbFV7irKhMBsiExpcYls3lK2KciIi0n6SZsCXj8CeL6CyFAJDm7w0NSGSvKLDZGQXKhkSEa/jdDL0/PPPM3XqVB5//HEiIlQZxq0CQ6HXcMj7CbLXN54MxZ4qr221WpWMioiI+8UMga594cQ+2LMahl7S5KWpCZGs2HKYDBVREBEv5PSaoSNHjnDttdcqEWov9v2GDjS++ergnmH4GQ2cKKsmt7C8HQMTERGfZTDYRoegxapyKqIgIt7M6WRoyJAhDTZcFTeqWzfUeBGFIH8Tg3rUFlHILW6vqERExNclzbS9Zq0Ec3WTl6XER2AwQG5hOUdKKtopOBERxzidDP3lL39hwYIF7NjR+N434mL2kaEj26D8RKOXJMeFA2jdkIiItJ+EsRDSHSqK4MB3TV4WGujHwBjbmqLNGh0SES/j9JqhtLQ0zjvvPC699FK6d+/eYLqcwWDgo48+clmAPi80Brr1h4I9kL0BBp3f4JKUuAje/TGHTCVDIiLSXowmGHwhbHrdNlWu35lNXpoaH0lWfikZOYVMG9qj/WIUEWmB0yNDCxYs4IUXXqBr167ExsYSGRlZ70Nridygd+3oUBMltm0V5U4VURAREWkX9qlyO5ZDM8+f1IRIADJy9KadiHgXp0eGXn/9dS6//HIefvhhTCaTO2KSn0ucAD+92eS6oSG9wjEZDRw/WcXh4gp6RXRp5wBFRMQn9Z0K/iFQnGvbdyh2RKOXpdmToexCVT4VEa/i9MjQyZMnmTlzphKh9mRfN5S7EaobLj4N8jfVzcfO1LtuIiLSXvyDYOA02+fblzV52eCeYQT4GSkqr+bA8bJ2Ck5EpGVOJ0MjR45kz5497ohFmtKtH4TEgLnKtudQI+qmyuWpopyIiLSj06fKNcHfZGRYrK3Yj/YbEhFv4nQydO+99/L222/z+eefU1VV5Y6Y5OcMhtNKbDexbihWFeVERMQDBp4LRj84uh2ON/1mqX2/ofTswvaJS0TEAU6vGbr88supqalh7ty5GAwGgoKC6p03GAxs3LjRZQFKrcQJsP2jJpOhlHjbyJAqyomISLvq0hX6TIa9X9pGhybd2uhlp68bEhHxFk4nQ+eff74WPnpCXUW59WCxgLH+oN6QXuEYDXC0pJIjxRXEhAc1chMRERE3SJrRYjJkryi3Ja+YarMFf5PTk1NERFzOqWTIbDbzhz/8gW7duqmEdnvrkWKr2FNZZJuK0GNYvdPBAX707x7KriOlZOYWcY6SIRERaS+Dp8Mnf4Ls9VB6xLZH3s/0iQomPMiP4ooadh4uqVvrKiLiSU69LWO1WpkxYwbp6eluCkeaZPKDhDG2zw983+glKXGaKiciIh4QEQexIwEr7FzR6CUGg6FudEjrhkTEWziVDPn5+REdHa2NPT0lcaLttYn9hk5tvqqKciIi0s6SZthem6kqp3VDIuJtnJ6wO2PGDJYuXeqGUKRFp1eUayQhPZUMaWRIROTkyZM8+uijnHHGGaSkpHDJJZewfHnTf6jbLVmyhMGDBzf6cfTo0XaIvIOyl9je+yVUljR6ib2inMpri4i3cLqAQlJSEp988gnXXnst5513Ht27d29QUOG8885zWYBymvjRtvKlxblQlA2RifVOD40Nx2CAw8UVHC2ppHtYoIcCFRHxvLlz55KZmcmdd95Jnz59WLZsGXfccQcWi4WLLrqoxfaPPfYY/fr1q3csMjLSTdF2At0HQ7f+ULAHdn8Owy5tcMnwBNubdruOlFJaWUNooNN/hoiIuJTTv4X++te/ApCfn8+GDRsanDcYDGzfvr3tkUlDASHQKxVyN9qmyv0sGQoN9KNvdAh7j55kS14RZw1uuIBVRMQXfP3113z33Xf8+9//ZuZM24jF+PHjycvL45///CfTp0/HZDI1e4+BAweSkpLSHuF2DgYDDJkJ3/3XNlWukWQoJiyIuMgu5BaWsyW3iPH9ojwQqIjIKU4nQ6+//ro74hBHJU6wJUMHvofhVzY4nRIXYUuGcpQMiYjvWrVqFcHBwVxwwQX1jl922WXceeedZGRkMHLkSA9F14kl1SZDWZ9BTRX4BTS4ZHh8BLmF5WRkFyoZEhGPczoZGjt2rDviEEcljoe1zzZZRCElLoIP0/NUUU5EfNquXbvo378/fn71H3ODBw+uO99SMnTjjTdSUFBAWFgYY8eO5dZbb2XQoEFui7lTiBsNITFw8ggc+Bb6n93gktSESFZsOax1QyLiFVo9WbekpIT09HROnDjB1KlTte9Qe0ms3Xz16HYoK4DgbvVOD4u1/Ry25qminIj4rsLCQuLj4xsctz+rCgsLm2wbHR3NjTfeSFpaGqGhoWRlZbFgwQJmz57NokWLSEpKcjoes9nsdJvT27W2vScYBl+IcdP/sGxfhrXP1AbnU2LDAFt57Zb61RH770rqv/p/+quvaWv/HW3XqmRo/vz5vPjii1RUVGAwGHjvvfeIiIjg17/+NZMmTeL3v/99a24rjgiJhqiBcHyXbXO7wRfWOz0sLhyA3MJyCk5W0S2k4RQFERFf8PPiPo6emzJlClOmTKn795gxY5g6dSoXXXQR//3vf3n++eedjiUzM9PpNq5s357C/ZIYCNRs+ZDMnv8PDPUL11qrLRiAvMIKvly3ka5Bza/dgo7Vf3dQ/9V/X+bu/judDL311lvMnz+fq6++msmTJ/OHP/yh7txZZ53FZ5995lQyVFpaynPPPceOHTvYtm0bJ06cYM6cOcydO9fZ0HxH4nhbMnRwbYNkKDzIn77RIew7dpItuUVMGdTdQ0GKiHhOZGRko6M/RUW2KcTOzmaIj49n1KhRZGRktCqelJSUFgs2NMZsNpOZmdnq9h5RMwRr+qMEVBwjLcYKcWkNLhnw/bfsOlKKJSKBtCFNr2/tkP13IfVf/Vf/W99/e/uWtCoZuu666/jLX/7SYPipd+/eHDhwwKn7FRYW8u6775KUlMS0adNYvHixsyH5nt4T4ac3mlw3NCw2nH3HTpKpZEhEfNSgQYNYtmwZNTU19dYNZWVlAbZKcc6yWq0YjU5vzweAyWRq0x8zbW3frkzBMPBc2PoBpqwVkNhwrXFaQiS7jpSSmVfMecm9Wr5lR+q/G6j/6r/6777+O/1bPTs7m8mTJzd6LiQkhOJi59aqxMXF8cMPP/Dmm29yxx13OBuOb7Jvvpq7CarLG5xO0earIuLjpk2bRllZGZ999lm94x988AExMTGkpqY6db/s7Gw2bdrkdDufZd+AdUfjm9ymJkQCtnVDIiKe5PTIUFhYGMeOHWv0XG5uLlFRzpXJbG7etjSha18I7QGl+baEqM+keqfrkqE8JUMi4pumTp3KpEmTePDBByktLSUxMZHly5ezZs0annjiibp3Ge+55x6WLl3KqlWriIuLA+C6665j9OjRJCUlERISQlZWFi+99BIGg4HbbrvNk93qOAaeC0Z/OLYTju2C6PojcWm1yVBGdiFWq1V/C4iIxzg9MjRhwgReeuklysrK6o4ZDAZqampYtGgRZ5xxhksDlEYYDKeqyh1c2+C0vaJcdkE5hWVV7RmZiIjXeOaZZ7j44ot5+umnueGGG8jIyODJJ5/k4osvrrvGYrFgNpuxWq11xwYNGsSKFSv4y1/+wg033MBLL73E+PHjef/991Va21FBEdC3tghFI6NDg3uGEeBnpLiihv3HyxqcFxFpL06PDN16663MmjWLGTNmMG3aNAwGA2+++Sbbt28nLy+Pp556yg1hOs5XypcaEsZh3LYU64Hvsfws5tBAI4ndunCwoJzN2SeYNCC6xft1tP67mvqv/p/+6mvaq3xpewsJCeG+++7jvvvua/KaefPmMW/evHrH7rnnHneH5huSZsCe1bZk6Iw/1jvlbzKSHBvOpoOFbM4ppG90iGdiFBGf53Qy1Lt3bxYtWsRjjz3GokWLsFqtfPjhh4wbN45//etfxMbGuiNOh/lK+dIuZV0ZClgOrCP9p41gqL+wLC7YysECWPXjDkJKQx2+b0fpv7uo/+q/L/P1/ouLDZ4Oy++AnB+g5DCE9ax3enh8JJsOFpKeXcglaXEeClJEfF2r9hkaMGAAL7/8MlVVVZw4cYKIiAiCgoJcHVur+Ez5Uksy1vV/wlRVSlqvQOiZXO/0GUV7WZuTxXFCSUtLa/F2Ha7/Lqb+q//qv/vLl4qPCe8FcaMh90fYuQJGX1/v9OnrhkREPMXpZOjuu+/m5ptvJiEhgYCAAHr06FF3Ljc3l2effZbHHnvMpUE6w2fKl5pMkDAW9nyBKWc9xNWvcDS89iGzNa/Yqf50mP67ifqv/qv/vtt/cYOkGbZkaMeyBsmQvaLclrxiqs0W/E2tK1suItIWTv/m+eCDDzhx4kSj506cOMHSpUvbGpM4qpkiCsm1RRQOHC+jqLy6PaMSERGxsZfY3vs1VNTfeqNPVDDhQX5U1VjYebjEA8GJiLQiGWpOUVERAQEBTrf7+uuvWblyJV9++SUAu3fvZuXKlaxcuZLy8ob76Eit05Oh0yohAXQNCSAusgsAW1ViW0REPKH7IIgeBJZq2L2q3imDwaD9hkTE4xyaJvfDDz+wfv36un8vXryYb775pt41lZWVrF69mv79+zsdxEMPPURubm7dv+2JEMDq1auJj493+p4+IW4UGP2g5BAUHoCufeqdTomLILewnC25RUzs33JFOREREZdLmgHfZtmqyiVfXu9UWkIka3YdIyO7kGvG9/ZQgCLiyxxKhtavX8+zzz4L2N7JWbx4caPXxcbG8re//c3pIL744gun2wgQEAy90mzzsQ+ua5AMJceFs3LrYbbkFjfaXERExO2SZsK3/4Gsz6CmEvwC606lxkcCkJFT6JnYRMTnOZQM3XDDDfzyl7/EarUyceJEXn75ZYYOHVrvmoCAAEJCtE9Au+s9oTYZWgupV9U7lRxnWze0JVfT5ERExENiR0JoTyg9DPvXwIBpdaeGJ9ieU7uOlFJaWUNoYKuK3IqItJpDa4aCgoLo2rUr3bp1Y/Xq1YwZM4auXbvW+1Ai5CH2dUMHGimiUJsM7T12kpIKFVEQEREPMBohabrt8x3L652KCQsiLrILVitk5uiNOxFpf04XUIiLi2tVkQRxk4TxttdjO+Hk8XqnokMD6RVh2/9pW56myomIiIckzbC97vgELJZ6p1JrR4c0VU5EPMHpZKi6uprnnnuO6dOnk5aWxpAhQ+p9/Hz6nLhZSBRED7Z9nr2+wWn76FCmpsqJiIin9JkCgeG2qXK5G+udsq8b2qxkSEQ8wOnJuU8++SSvvfYaU6ZMYdq0aRol8gaJ420jQwe/PzUVoVZKXASrtuVr3ZCIiHiOXwAMPBe2vG/bgDVhTN2p4fYiCtl6TolI+3M6GVqxYgW33HILc+bMcUc80hqJE2DT/2wV5X4mOS4csO3wLSIi4jFJM2uToeVw7kN1h1PiIzAYILewnCMlFcSEBXkwSBHxNU5PkysqKmL06NHuiEVaq3dtEYW8dKgqq3fKPk1uz9FSTlbWtHNgIiIitQZMA1MAHN8FR7PqDocG+jEwJhSAzRodEpF25nQyNGbMGHbs2OGOWKS1IntDWC/bDt8/m4sdExZEj/BArFbYfkijQyIi4iFB4dB3qu3zHcvqndJ+QyLiKU4nQ/fddx/vvfcen332GVVVVe6ISZxlMJwqsd3YVLlYFVEQEREvUFdVrn6J7dSESADSswvbNx4R8XlOrxm65JJLqKmp4bbbbsNgMBAUVH9ur8FgYOPGjU20FrdJnABbl9g2X/2Z5LgIVu84omRIREQ8a/B0WHa7bbPw4kMQ3guAtNpkKCO7EKvVisFg8GCQIuJLnE6Gzj//fP2S8kaJtfsNZW8AixmMprpTKbXrhrbmapqciIh4UFgPiB8DORtg53IYcwMAg3uGEeBnpLiihv3Hy+gbrY3cRaR9OJ0MzZs3zx1xSFv1GGbbw6GyGPK3QK/UulP2Igq7jpRQXmWmS4CpqbuIiIi4V9IMWzK041Qy5G8ykhwbzqaDhWRkFyoZEpF24/SaIfFSRhMkjLV9fqD+VLke4YFEhwZiscI2FVEQERFPGnKR7XXfN1BeWHdY64ZExBMcGhnaunWrUzcdNmxYq4KRNkocD7s/t60bGn9j3WGDwUBKXDhf7jzK1rwiRvXu6sEgRUTEp0X1h+5JcHSH7ZmVMgs4tW5osyrKiUg7cigZuvzyyx1aJ2Rf9Lh9+/Y2ByatkDjR9npwHVittipztZLjIvhy51Eyc1REQUREPCxphi0Z2rGsLhkaXltee0teMdVmC/4mTV4REfdzKBl67LHH3B2HuELcSDD6Q+lhOLEPuvWrO2VfN6SKciIi4nFJM2DNv2HXKqipBL9A+kQFEx7kR3FFDTsPl9Q9t0RE3MmhZOjSSy91dxziCv5dIHaEbWHqwXWNJkO7jpRSUW0myF9FFERExEN6jYCwWCjJs60dGnguBoOB1IRI1uw6Rnp2oZIhEWkXGoPubHrbN1+tX0QhNiKIbiEBmC1Wdhwu8UBgIiIitYxGSJpu+3zHsrrDp+83JCLSHpQMdTaJtcnQzyrKGQwGTZUTERHvkTTD9rrjE9v+eEBq7bqhDBVREJF2omSos0kYZ3s9vgtOHqt3Kjk2HICtSoZERMTT+kyGwAg4eQRyfgRgeMKpKd2llTWejE5EfISSoc4muBt0H2L7/OC6eqdSNDIkIiLewuQPg863fV47VS4mLIi4yC5Yraj6qYi0CyVDnVHieNvrz9YN2afJZeWXUFljbu+oRERE6qubKrfMtiUEkFo7OqSpciLSHpQMdUaJjRdRiO/ahYgu/lSbrWQdLvVAYCIiIqcZcA6YAqFgLxzdCZy2bkhFFESkHSgZ6ozsFeUOZUDVybrDBoNBU+VERMR7BIZBvzNtn9dOlUtVRTkRaUdKhjqjiAQIjwNLTd2iVDtVlBMREa9SN1VuOWBb32o0QF5RBUdLKj0YmIj4AiVDnZHBcNq6ofpFFJLjaivK5SkZEhERLzD4QsAAeZugKJeQQD8GxIQCsFlFFETEzZQMdVZNrBuyT5PbcaiEqhpLe0clIiJSX2jMqW0hdn4CnL7fkJIhEXEvJUOdlT0ZyvkBzKf2akjsFkxYkB9VZgu7jpR4KDgREZHTDJlpe/3ZuqHNqignIm6mZKizihli28yuqhTyM+sOGwwGkmNto0NbtG5IRES8weDpttf930L5CdLsRRRyirDWltwWEXEHJUOdldEEibXTDn6++Wq8iiiIiIgXieoPMUNthX92rWJwzzAC/IwUV9RwqFT74omI+ygZ6szsRRQOfF/vsL2i3Jbc4vaOSEREpHGnbcDqbzKSHGsr+LO7oNqDQYlIZ6dkqDOrK6Kwrm5nb6DuAbP9UDE1ZhVREBERL2BPhnZ9DtUVdeuGth6t8lxMItLpKRnqzGJHgikATh6x7e5dq09UCKGBflTWWNh1pNSDAYqIiNTqlWbbI6/6JOz7mnF9owD4fF85f30/k9LKmubbi4i0gpKhzsw/yJYQQb0S20ajgaG1o0MqoiAiIl7BYDg1OrT9Y84f1oObpvbDALy3KZcL//sNP+4v8GiIItL5KBnq7Oo2X218vyElQyIi4jWSakts71yBwWrhT+cN4uEzuxEXGUR2QTlXvrCWf326k2pN8RYRF1Ey1Nn1nmh7/XlFuThVlBORzu3kyZM8+uijnHHGGaSkpHDJJZewfPlyh9oeP36cu+66i3HjxpGamsrs2bNZu3Ztyw2lbXpPhKBIKDsG2RsAGNo9gOVzz+DykfFYrPDsl7u57Lnv2a1p3iLiAkqGOruEsbbX47uh9Ejd4eQ42zS5bYeKMVu0h4OIdD5z585l6dKlzJkzhxdffJGUlBTuuOMOPv7442bbVVVVcd1117F27VruvfdennvuOaKiorjhhhvYsGFDO0Xvo0z+MOgC2+e1G7AChAX58e8rU3n+lyOJDPYnM7eImc+s4fW1+7UPkYi0iZKhzq5LV9veDVBvdKhvdCjBASYqqi3sOap310Skc/n666/57rvveOCBB7jqqqsYP348jzzyCJMmTeKf//wnZnPTe9csXryYrKwsnnrqKS6++GImTZrE008/TZ8+fXjiiSfasRc+qq7E9vJ6lVABLkzpxad/nMKUQd2pqLbwtw+3ct2rP3CkuMIDgYpIZ6BkyBecXmK7lsloYFhtEYXMHE2VE5HOZdWqVQQHB3PBBRfUO37ZZZdx5MgRMjIymmz7+eef07dvX0aMGFF3zM/Pj4svvpjNmzeTn5/vtrgFGHAO+AXBiX1wdHuD0z3Cg/jf9WN46OJhBPoZ+TrrKOc/9Q0rtxzyQLAi0tH5eToAaQeJE+DHl+Fg/c1Xh8VG8MP+E2zJK+IXab08FJyIiOvt2rWL/v374+dX/zE3ePDguvMjR45ssu2oUaMaHD+9bY8ePZyKp7mRKEfatbZ9h2QKwtj3TAy7VmLdvgwizmu0/9eMS2B8367c8e5mth4q5sY3N3H5yDjunzGEsKDO8eeNT/78T6P+q/+nv7a2fUs6x28LaZ69otyhzVBZCoGhgCrKiUjnVVhYSHx8fIPjERERdeeba2u/ztm2TcnMzHS6jSvbdzRRwSn0YSWVGUtgynnN9v/+iV14d6uZpTtO8v6mXNbsOMyt4yIYEh3QjhG7l6/9/H9O/Vf/3UnJkC+ITICIBCjKhtwfod+ZAKTE2x7sW/NUREFEOh+DwdCqc21t25iUlBRMJpPT7cxmM5mZma1u32ENjMe6+d+EFGXhX5ZP0rhpzfZ/zEiYvf8Ed763mZwT5fztqwL+MKUft549gAC/jrsiwGd//rXU/87bf4vFSkFZFcdKqzhSUsHRkiqOllRytLSSIyWVHCup5FhpFSO7wz/+38Q2/f5siZIhX5E4HjKz4cDaumSoX3QIQf5GyqrM7D9+0rPxiYi4UGRkZKMjOEVFtpHwxkZ+XNG2KSaTqU1/zLS1fYcT3sM2xfvAd3Q9/C0m0/kt9n9c/2hW3DaZhz7exnsbc3j+672s2X2Mp2anMSAmrJ0Cdw+f+/n/jPrfcfpfUW3maIktoTlaUsnRkop6/z5SUsmRkgqOlVY59Ea8v9Xf7f1XMuQrEsdD5uJ6m6/6mYwM7RXOpoOFbMktprcHwxMRcaVBgwaxbNkyampq6q0bysrKAmDgwIHNtrVfdzpH2ooLJc2AA98Rt+0FCK6GqX+B0O7NNgkL8udfV6QybUgMdy3JZEtuMTOe/pa7L0zi1xP7tGpUT8TXWa1WCsuqbaM2xZUcLa2wvdZLcmxJT3FFjVP3jgoJoHtYYN1HTFhQ7WsgUSH+UHDATb06RcmQr0is3Xw150cwV9v2csC2bmjTwUK25BXRO9aD8YmIuNC0adN49913+eyzz5g+fXrd8Q8++ICYmBhSU1ObbfvQQw+RkZFRd11NTQ0fffQRqampThdPkFYadR3WvV9h3PUZ/LAAMhbCxFthwi11a1+bckFyL0YkduXP723mm6yjPPjxNlbvOMK/rkilR3hQO3VAxLtV1Vg4WlqbzBRXnJbsnHo9Wnu82uz4cooAPyMxdcnNqSQnJtSPnkFmegRWER1QTVdTBX7VpVBZAJUlto+qUigrhhMlWCpK2B84FBjR4tdsCyVDvqJ7km1X74pCOLwZ4myVkobFnVo3NCM20HPxiYi40NSpU5k0aRIPPvggpaWlJCYmsnz5ctasWcMTTzxRN+XinnvuYenSpaxatYq4uDgAZs2axcKFC7ntttu48847iYqKYuHChezbt49XX33Vk93yLQEhWK56mz2fv8LA/W9iOJQOX/0DfngJzvwrjPx13Rt7jbGX4H597QH+8cl21uw6xvlPfcM/Lk1heooqqErnZLVaKa6o4WhJxWlT1RqO4BwpqaSwrNqROxJINVGU06tLDfHBNcQF19AzoJqYwCqi/Crp6l9FuKGcMEM5wdZy/GtKMdiTm6JSOHJaouMEI9ArbBNwe2u+FQ5TMuQrjEbbVLmslbb9hmqToZTTkiGLNdqTEYqIuNQzzzzDf/7zH55++mkKCwvp168fTz75JDNmzKi7xmKxYDabsZ62uWdAQACvvfYaTzzxBI888gjl5eUMGTKEF198kbFjx3qiKz6tJHoklnOuw7TjY1j9sG3/oeV3wtr5cM7fYOgvoInpbwaDgV9P7MOkAVH88Z10tuQWc/Nbm7h8ZDwPXjyUsKCmkykRb1JjtnCstKpBQmP/9+mJT2WNBSMWQqgglHJCDOWEUU6ooZxwyomt/XeIqZwIYwXR/pV086sk0lRJmMF2fRdLGYHmk/jVnMRoqU2arMDJ2o+2MPpDUDgEhkFAmO21kQ+Lfwh7qmMZ0sYv1xIlQ77Engwd+N42zQAYGBNKoJ+R0kozh0t9s469iHROISEh3Hfffdx3331NXjNv3jzmzZvX4Hh0dDSPP/64O8MTZxiMkHwZDLkINr4GXz8OBXth8XUQOxLOfRj6Tm6y+YCYMJbcNIn/rs7i+a/28P6mHNbvO86TV6Yxtm+3duuGSHMsFivZJ8rYlldMVk4+xw7upOhYHm8s/wwqi22JDRWEGsoJrU1qBlFOKGWEGmyJT6ip9sNQ4cQXBqocuK4ucQn9WeJiT2xCGx6rd33tMT/HZiJZzWYq09Md70crKRnyJYkTbK8H14HVCgYDfiYjSb3CycguZO8JR4ZLRUREPMTkD2N/B6n/D9Y+C98/A3mb4H8zYcC5MO1B6JncaNMAPyN/Pj+JswbHcPu76WQXlDN7wVpunNqf26cN6tAluKXjqaiqYd/+/eTu20ZRXhY1x/fRpeQgsdbDjDIc4UJDYf0GrR3EtI/CBIT+LEE5PVFp7Hh4/eQmINQ2y6gTUjLkS2JHgCkQyo7B8T0QPQCAlDhbMrRHyZCIiHQEgaFw5l0w+jfwzRPw4yuwexXs/hyGz4az74XIxEabju7TjU9unczDH29j8cYcnv9qD99kHeWp2WkM7NGxS3CLl6mpgqJsSg7t4uiBHZzM3wUF+wkpy6GH+RBDDJX1p4AZaj9qVfqFU+4XQUBYN/yCI/DvEoEh6GdJSr1RmEZGZhwchfFlSoZ8iV+gba3Qwe9tH7XJUHKsbd3QvkLnyiGKiIh4VGgMTH8Cxt0IXzwCW5fA5rdtr2N/D5PvhOCG0+DCgvx54opUzhkSw91LMtmaV8zMZ77lrguT+PWEPhiNKsEtDqoogoJ9cGIf1oL9nDy8i8oje/ArPkBYZT5GLIQBDdJsA1gwUGDqTmlwAnTrS0jPAXSLG4Qpuh907YNfQDh70tNJS0vrMPsMdURKhnxN4vjaZGgdjLwWgOTaIgrbj1Xxj092cM2EPvSNDvFklCIiIo6L6g9XvAoT58LnD8C+b2zT6Da9Dmf8EcbdBAHBDZpdkNyLkbUluL/OOspDH2/jix1HeGJWKj0jVIJbAIsFSvJqE579tgIeJ/ZjKdiH5fhe/CoL6y41AKG1H3Zl1kAOWmM46t+LytBE/KL7ERk3kNh+Q+keP5Bov0CaLF9l1lru9qBkyNf0ngjfPllv89WknmEM7RXGtkMlvPzdfl7+bj+TB0bzy3G9mTYkBj9T55wjKiIinUzcSLj2I9jzhS0pOpxpq0C34UU4825I+yWY6v/pExMexGvXj+HNdQd49GcluGcMVwlun1BdDicO2BKd05Oegn1QeADMDasLGGs/AI5aIzhojeGAtQe59KA6IpHA7gOIThhM3z79SIoNJ0mVC72WkiFfEz8GMNiq8JTkQ1gP/ExGlt48kVdXrmftUX++3nWUNbuOsWbXMXqGB3HV2ASuGpOod8lERMT7GQww4BzodxZseQ+++DsUHoSPb7WNFp3zACTNqFeO22Aw8KsJfZjQP5rb30knM7eIWxZuYvX2OB68ZBjh+kO2Y7Naoex4w0TH/nnJoWabV1tN5FijOWjtUZf0HLTGUBAQR2jPAQyI78HQ2HCGxoZzUfdQ/PUmcoeiZMjXdImEHsMgf4ttdGjYLwAwGQ2Mjg3ihulp5BVVsnDDQd79IZvDxRU89fkunvliN9OGxHDN+N5M6h+t+dQiIuLdjEYYfiUMvcRWYOHrf8KxLHjnl5AwDqY9BL0n1GsyICaUJTdP5OnVu5j/5W6W/JTL+n0FPHllKuP6RXmoI+IQczUUZdsSnHpJz37b51UlzTY/aQjhgDWGfebuP0t6enDI2o3YbqEM7RXO0F4RjIsN5/rYcGIjgjA0sceVdBxKhnxR4oTaZGhdXTJ0uoRuwfz1giT+OG0gK7cc5q11B9mwv4BPt+bz6dZ8+kaHcPXYRGaNiqdrSED7xy8iIuIov0AYfxOkXQ3fPW3brDV7Pbx6AQyebhspikmqu9zfZOTO8wZz5uDu3P5OBgcLyrjqxXX8fko/7jh3EIF+WsjuMZUldcUKTiU9tZ8XZoO16TU2VgycDIwh39SL3TXd2VrelX3mU6M8hYQCBvxNBgbGhDE0NpxpvWyjPUN6hRPRRaODnZWSIV+UOB5+eNFWSKEZgX4mLkmL45K0OHYeLuGt9QdYsimXfcdO8ugn23nis53MHN6La8b3ZkRCpN4dERER7xUUAefcD2NusG3auul12PmJbTPytKvhzHsgIq7u8lG9u/HJbZN5+OOtvPtjDi98vZdvso7x36vSGKQS3O5ltUL+Vgw7PqHPrnUYNxXaEp6y48038wuiJjyRwsA4cgw92VkVxcbiCDaVRJJj7U5lRf03cMOD/BgaG85lvSJs09x6hTMgJlR7TvkYJUO+yL756uFM27ssgS3/Uh/cM4yHL0nmrxck8WF6Hm+uO8C2Q8Us2ZTLkk25DIsN55rxvbkkLZbgAP23EhERLxXeCy56CsbfDF88DNs/hp/ehMz3bCW6z/gjdOkKQGigH/+clco5Q3pw95JMth+qLcF9QRLXTVQJbpeyWm0b6G77CLZ/BAV7MQINJicGR0HXvli69qEgIJb9lhi2lEexoTCc7/P9KMxrfHQoLrJLXcJjf43v2kVv5IqSIZ8UEWfbjK7wIOT8AP3PdrhpSKAfV49L5P+NTeCn7ELeXHeAZZsPsTWvmLuXZPKP5du5bGQcvxzfW++ciYiI9+o+CGa/Cdk/wKq/2WZLfPcUbHzNtj/R2N+Dv61w0PnDejIiMZK/vLeZr3Ye5eFlthLc/7pCJbjbxGK2TVnc9pEtKS3OOXXOFIi1/9nkmhLoOnAc+6w9ySiNIOOohW2Hisn6qZQqs+VnNzTjZzQwICa0LuEZFhvB0F7hRARrmps0TsmQr0qcYEuGDqx1KhmyMxgMjEzsysjErtw/YyjvbczhrfUH2H+8jP+tPcD/1h5gbN9uXDO+NxcM66khZxER8U4JY+D6TyDrU/j8QTi6HVbdD+tfgLPvheGzwWgiJiyIV68bw5vrD/Lo8m18u9tWgvvRS5OZOTzW073oOMzVsH+NLfnZvgxOHjl1zj8E68BzOZpwPl+Y0/hmfzkb9xwl/yczUFT7cUpYoB9DfjbaM7BHqNZ1iVOUDPmqxPGw+Z16+w21VteQAH43pR+/PaMv3+05xpvrDvD59iNs2FfAhn0FRIcGcOXoBP7f2EQSujXc9E5ERMSjDAYYfAEMPBcy3oYvH7WNUiy9Cb5/BqY9CAPPs5XgHt+bif2juP2ddDbnFDFn4U+s3n6Eh1SCu2k1lbDnS9v0t52fQPmJU+cCIyjvfx4ZoVP4sCSJr/eUkLepAthX7xaxEUE/m+YWQUI3TXOTtlMy5KsSJ9pec360vUtD20dujEYDkwd2Z/LA7hwuqmDRhoO8/cNB8osree6rPTz/9R7OGhzDNeMTmTooBpPmWouIiDcxmmDELyH5MtiwANb8G45sg4VXQu8z4NyHIH40/buH8v5NE3lm9S6e/XI3H/yUy4Z9Bfz7ylTGqwS3TdVJ2LXKNgKU9Wm90taW4Gjyep7NV4bxLDzam22bKmvPHAXA32SbfTKhXzciqo9z0eQRRId18UAnxBcoGfJV0YNsC0TLT8ChDOg1wqW37xkRxO3nDmLO2QNYvT2fN9cd5Nvdx/hixxG+2HGEuMguXD0ukStHJ9A9LNClX1tERKRN/LvApNtg5LXw7X9g3f/BgW/hpXNgyMVwzt/wjx7IHecNZurgGO54N50Dx8v4fy+u4/eT+3HHeT5agruiyJb4bPsQdq+GmvK6U1VderA1YgrvV4zi3SPxVBXY34StxGCAob3COWNANBMHRDOmT1eCA/wwm82kp5fSNVjbeIj7KBnyVUYjJIyHrBW2qXIuTobs/E1GLkjuxQXJvdh7tJSF6w+yeGMOuYXlPPHpTp76PIvzh/XkmvG9Gde3m4a7RUTEe3TpCuc+bCum8OVjkLHQNtVrx3JbonTmXYzq3ZNPbp3M35dt4+0fsnnhm718s+sYT81OY3BPHygkdPI47FxuK4Kw9yuwVNedKg6KY43/BN4oHM76E/2wnjg1C6VPVDATB0QzqX80E/pH0U37FoqHeEUydPLkSZ566ilWrFhBUVER/fr14/e//z0zZszwdGidW+8JtcnQOhh3s9u/XL/uodw3cyh/On8wyzYf4s11B0jPLmTZ5kMs23yIgTGhXDO+N5eOjNO8axER8R4R8fCL+TDhFlj9sO3ZufFV29rbCbcQMvFW5l0+nLOTYrirtgT3Rc9+y1/OH8xvJvXtfCW4iw/BjmW2xHD/d/U2Oz3sn8jH1aNZWjmarRW9AVvfo0MDmFSb/EwcEEV8V60hFu/gFcnQ3LlzyczM5M4776RPnz4sW7aMO+64A4vFwkUXXeTp8Dov+35DB9fa6vu3kyB/E7NGxTNrVDxbcot4a/0Blv6Ux64jpTzw0VbmrdjBL0bE8stxvUmOi2i3uERERJrVYyhc/bYtAfj8Adv2FN88AT++AlP+zHmjf8OIP07hr+9v5osdR3hk+Xa+3Gkrwd0rooOveTlxoLYC3EeQvQE49XdDlqEvH1WNZoVlLHsqbBvXhgb6cU7fbkwcEM0ZA6IZ1CNUsz/EK3k8Gfr666/57rvv+Pe//83MmTMBGD9+PHl5efzzn/9k+vTpmEw+OO+2PfRKA78g247Ox3d5JITkuAgeu2w4d08fwgebcnlz3QF2HSll0YZsFm3IJi0hkmvG92bm8F4E+ev/gYiIeIE+k+C3q2yjI58/ZHuGrrwL1j1P97Pv5+VrL2PhDzk8smw73+0+zvn/+YZHLk3h4tQOVoL72C5b8rPtIziUXu/UT5YBrDCPYaVlLAetPfA3GRjRpyuXDIhm0oAohsdH4m/Sthri/TyeDK1atYrg4GAuuOCCescvu+wy7rzzTjIyMhg5cqSHouvk/AIgbjQc+BZD9jowDPdYKOFB/vx6Yh+undCbDfsKeHP9QVZuOUR6diHp2YX8fdk2rhgVzy/H96ZvdIjH4hQREQFs5biHXASDLoSf3oCv5kHhAVhyA4bv/8svpz3EhFvP4PZ30snIKeLWRT+xens+D1+STEQXL50KbrVC/lbY/hGWbR9iPLqj7pTZauAHaxIrzGP51DyafEMUQ3uFc8GAaCadVvRApKPx+P/aXbt20b9/f/z86ocyePDguvPOJENms7nli5pp19r2HZUhYRzGA99iPfA99BnuFf0f3TuS0b0jOTZ9MIs35rBoQza5hRW89O0+Xvp2H5P6R/HLcQmckxSDn4vedfLVn7+d+q/+n/7a2vYiPsnkB6Ovh+FXwrrn4bv/wuFMePMy+vU7k/d+8QDPbI9h/pe7+TA9jx/2FfCvK1OZ2D/a05HbWK2Quwnrtg+p2vIhgcX7AduGG9VWE99bhrHSMobPzKMJjerFpAHR3K+iB9KJeDwZKiwsJD4+vsHxiIiIuvPOyMzMbFM8bW3f0YRXd2cgULNnDfS50ev6PyECxk6LIP1wECt3l/PT4Uq+23Oc7/Ycp1uQkWn9ujCtXzBRXVwzhc7b+t/e1H/1X0RaKSAEpvwJRl0Pa/4FG16EvV/hv/cr7ki+nPOuvpVbVpzgwPEyfvnSen43uR93eqoEt8WM9eA6Sn5agmnnMkIqDmMAAoFKqz/fWIazwjyGn7qMJ2VAH84YEM0tKnognZTHkyGg2QV1zi62S0lJadUaI7PZTGZmZqvbd1iV/bBuuIfAskP4VxwjacxZXtn/UcBvgeyCMt7+IZt3N+ZScLKKd7ed5P0dZZyTFMMvxyUwsV9Uq6r2+OzPv5b677v9t1qtVFbXsG3rFlKHD2/T708RAUKi4ILHYNwf4Mt/wOZ3Ycv7JG/7iM9HXMfj5Rfx0qZSFnyzl2+yjvLUVWkk9Qx3f1zmak5s+4LCje8RnfM5YTUF2L/qSWsgX1pG8KVhHBV9zmHkoER+PyCKwT3CVPRAOj2PJ0ORkZGNjv4UFRUBp0aIHGUymdr0x0xb23c4wV2hxzA4nElowRZMpmle3f8+3cO4a/pQbj9vMCu3HOatdQfZsL+Az7bl89m2fPpEBfPLcb2ZNSqerq0Yvu/0P3+LGapKbTuDV52EyhLba0UJkYd2YgrKwWQ02ebCYzjt1Xja5zRzrrl2jbQ3GJto19Q5WtnOfq7xOK1mMxZzNTVWAzVmK9VmK2aLlRqLxfZa9++fHa89d/q/zebGr7Pdx3LaOetp927kuMVSe+/Tj1uajKXa/LPr6t2//vGa0/pnqS0IFRNiYtVQKxEBnfj/v0h76toHLlsAE+bA6odg9+f4b3yR+wIW8f9G/YZfb///7d15eFNl2vjxb5ZuCdhSSinDIrSSli6WrS07iChbsaACM7+ZFhVERBgG1FFcxuKgiIhoywDWIoLy4wWl8LKJbCo4YwPCgMjWyiYUZS9t6ZrkvH+kCQ0tUOgS2tyf68qV5Dnn5Dz3SXru3uc8J4ni8O+5PJL8b/4+oGa+gjs3L4+j6etQDv0vQZd20EjJpVHptBxFx1alE5mN+6ILeYiuIc15R770QLggpxdDBoOBdevWYTKZHK4bysjIAKBt27bO6prraNW1tBiqO0d2PbQa4to3J659c478nstS40nS9mRx4mI+b204xKxNR4i9vxl/6XIvHVr61M0jWxbztaKlOM+xiCnOg6K8G0wvW+xct1yZXwMvSwMEAfxYmwHePbRAFFC43o08vMhTvLiKp+NjxcvheS5eXLW3Wee9ihe5pdNNzt+93haTpfa+Xl8Il9LsfvjLSjj2HWz+B/y2l6ADSWzX+fH/ff5E4pkopq8/xLbD1q/g/oPPnX8Fd5HJzL6jZ/h991oandxI+8KdtFdd2+9fUO5hl0dXslsP5A/tH6L/fQEMky89EC7O6X8B/fr1Y8WKFWzatIlBgwbZ21etWoW/vz+RkZFO7J2LaNUVdqbg89v3qDa/Bhp30LhZ79Va62O1W2lbJR6rtddew7a8xr10uvbaY/sZiKoJDmjIm3HhvDQghP/de4bP009y8Lcc0vZkkbYni9Bm9/CXLvcS1/4P6D1q6CNvsUDJ1TIFStlCJbeSRUyZ5Yrybli4VAuVBjwagHsDcNejuOm5WliMXq+znrhRFEBxvFcspY+54TRFUVAUCxZFQbFYHyuKgmKx2KdZ763LKdcte/16VfZ1Wv9RV6GU3kCNpfSn/K612aZrVHf2j72nqgRPSvBT5dz5ti1VjDsFai8K1XoKS++L1TqKNDqKNXqKNHpMGh3F2gaYtNZ7s1aPyc16b3bTY3ZrgMWtAWqtO1qNCq1ahUatLr1XodWU3lfQrlWry0xTVby8WoVWo0alWMg89DMNaurvQwgBgb3h6W/g4GrY+ibqy8f5S34ycb6teD33UVYfjWLAB9v559Bw4to3r9RLWiwKB3/LYdfh4xQd3EDghW30ZB/RqmLrDCo4r/Il0/cBVKGPEBz9MAMbynU/QpTl9MzXu3dvunfvTmJiInl5ebRq1Yr169ezY8cOZs2aVb+HLN0t7u2GolLjXnge0ufV7rrVpYWSRluJIuv6Nq1DkaVXu/H/NO78KUTL2ZZm9p3J58DZAorOqTm6RsOcDe5EtPIj5r6mBPg0dHwtlYZ7zmagOnDcWoSUK2LKDCmrqJApya+5baTS2IsWawGjv/a83L3eoci5Ns363OKmp1DtSYFZS6FZoaDYTGGJmauFJfx8OINmLVtTZLaQX2ymoNhMfumtoNhkfVxiazc5Ti+xthWWWGpuO5ThoVWjc9egc9fi5a5B567By01TQZsanZsGvbva+thdjc5NbZ3uVtrmpsZDDccO/8T9hntxtxSiKclFU3IVdXFuaQGbay1Qi3IcnxeXthWVthXngakQAHeKcbcU4225UvWAtZ7W99CjofX99bjnuucNwb1hxc9t89nuNeW/0tdsNqOp5uE5QogKqNUQ/iiExMKexfDdTBpe/ZUPNB8w3sPAG/nDmfQ/JrYeOsc/48Jp4OE4ZE1RFE5ezOf7Xy6wL+MoDY5/TS/TD/xZ/TPuKnPpMGS44NaMCy3706jT4zRt150mahn6JsSNOL0YAkhOTmbOnDkkJSWRnZ1NYGAg77//PoMHD3Z211xDwwAsIz7n3J71NPVrjFoxg7kYLCVgNpXeF4O5BCwm6725+NpjS0lpW8m1ZSpaXqngH2VL6TIl1ReOCggovfXXYB0DZnOq9HYdDdAWYGdVV662/hN6w8JE7zi9tFgxuekpVntRqPakCB0FKk/yVdbhVvlmDUUmCwUlZgqKrfeFpbeCYjOFJjMFORbrc1t76bQik4WC4lwKSrIpKDFTbLpVsXK5ihvgGp2tIHHXoHO7VqBY27To3DTl2xwKm+uXKW1z01T7P+5ms5nfshqhbxpY9QMw5pLSYulGhZStcMotMy33poUVpkLrLf9C1YPVejoWRx4NUbs34A80gcgPq/76Qohb07pD9NMQ+Uf44V/w7yQMJRksc3+L7yyRvPPTHxlw4hLvPhZBUaGZNfvO8MOxSxzJzOT+vB0MVO/kT+pD1rPgpbusbF0bTCGxNO78OH7NIvGri8PDhXCCu6IY0uv1vPbaa7z22mvO7orrMgzgTH4A/u3bQ02djbNY7qCwuu6xxXSD5a8v3BwfK+YSLuTkkXXhCpfz8tEoZtww46Ux46/X4OeloqSkGJ2PPyqPhvahY2Y3nXUoU+mtSOVFocqLwtJiJR9P8hQP6zUlZk/yzBoKTdcKFuuZFwsFhWYKcs0U2QqV0sLG9tx6vUZx6a3qQ7Qqw12rxsvNWnh4uKnBVIyvdwP01xchbtoyxYhjMVO2SNG5Xzsz4+mmrpvXaVUHjRvofK23qrIVVg5FVUWFVEWF1XUF2fWF1dXz9tWogGaAOe8V8Knc8BwhRDXwaAh9XobOT8F378LuRfRmHz09fmJVfnemLhoOQH/1p4zQ7KKjKhO127VhwPm+oXjcPwxNWBw+TYKdFYUQddpdUQwJF6FWg9oDtB61vmoV0KT09vuVQpbt/JX/2fUrZ3OKoNB66VKAXoOqyM1avJSecVFueumJGbhaequmfqqwFyiebho8S4d0eWqtRYenfZq1kPEsM61sYePldv38pc+11tfz0DqeXTGbzezdu5f27dvL0NS7SS0VVpaCK/xyoZighgFVX48Q4vY18IfB70GXZ2HbdNQH0nhM8z1x6v+gVTme0Tc374wmNA7aDUHn28ZJHRai/pBiSLicAG9PJj9kYELf+9h66Cyfp//K979c4Lc8M9YCpzw3jQpPrbX48CpTkFwrMq4VH7ZCxVaQeLg5LmMrYuxFSpkixkPrwmdURM26SWGlmM3k7t1b+30SQjhqHATDF0G3ibDlDbTHt6Oghnu7ogqNg5BYNN5y9laI6iTFkHBZbho1A8KbMSC8GSfO57J9989EtAtG7+nmcGbG000jv7sghBCi9jTvCAlrMJ87ws9HTxMec3f+ILoQ9YEUQ0IALX11hDVx5/4W3pJwhBBCOJ9KBX5tMZ2uvqHYQojy5HC3EEIIIYQQwiVJMSSEEEIIIYRwSVIMCSGEEEIIIVySFENCCCGEEEIIlyTFkBBCCCGEEMIlSTEkhBBCCCGEcElSDAkhhBBCCCFckhRDQgghhBBCCJckP7oqhBCi3rl69SoffPABX331FVeuXCEwMJCxY8cyePDgWy6blpbG1KlTK5z2/fff06RJk+rurhBCCCeRYkgIIUS9M3HiRPbv38/zzz9P69atWbduHVOmTMFisTBkyJBKvcaMGTMIDAx0aPPx8amB3gohhHAWKYaEEELUK9999x3//ve/mT17NrGxsQB06dKFM2fO8O677zJo0CA0Gs0tX6dt27ZERETUdHeFEEI4kVwzJIQQol7ZvHkzOp2OAQMGOLQ/+uijnDt3jn379jmpZ0IIIe42cmZICCFEvZKZmUlQUBBarWOKCw4Otk/v2LHjLV9n3LhxXLp0iYYNGxIdHc1f//pXDAbDHfXJbDZXabk7Xb6uk/gl/rL3rkbir1r8lV1OiiEhhBD1SnZ2Ni1atCjX7u3tbZ9+M35+fowbN4727dvToEEDMjIySElJYeTIkSxbtoyQkJDb7tP+/ftve5nqXL6uk/glflcm8dds/PWmGFIUBZCjb3dK4pf4y967Gom/eo6+2fbD1cloNJKQkFCpeVevXk27du0AUKlUN5zvZtMAevXqRa9evezPo6Ki6N27N0OGDOHDDz9k/vz5leoPXNsmoaGhlbpO6Xpms5mDBw/e8fJ1ncQv8Uv8En9V95+3yk31phiyWCyAHH2rKolf4ndlEn/V4rfth6tTmzZtmD59eqXmbdasGWD9xreKzv5cuXIFuHaG6Ha0aNGCTp063fb1RrZtcvDgwdteZ1lVXb6uk/glflcm8Vct/lvlpnpTDGm1WiIiIlCr1bc86ieEEKL6KIqCxWIpd41OdfD392f48OG3tYzBYGDdunWYTCaHPmVkZADWb4m7E4qioFbf3vcOSW4SQgjnqGxuqjfFkFqtxt3d3dndEEII4WT9+vVjxYoVbNq0iUGDBtnbV61ahb+/P5GRkbf9mqdOnWLPnj1069bttpaT3CSEEHe3elMMCSGEEAC9e/eme/fuJCYmkpeXR6tWrVi/fj07duxg1qxZDmPPX3nlFVavXs3mzZtp3rw5AE888QSdO3cmJCQEvV5PRkYGqampqFQqJk2a5KywhBBC1AAphoQQQtQ7ycnJzJkzh6SkJLKzswkMDOT9999n8ODBDvNZLBbMZrPDBbYGg4GvvvqKTz75hKKiInx9fenSpQvjx4+nTZs2tR2KEEKIGqRSauLrf4QQQgghhBDiLnd7V4IKIYQQQgghRD0hxZAQQgghhBDCJUkxJIQQQgghhHBJUgwJIYQQQgghXJJLFENpaWkEBwfbb6GhofTo0YPJkydz4sQJh3l//PFHXn31VR599FHCw8MJDg7m9OnTzul4Nals/GazmUWLFjF69Gh69epFZGQkAwcO5L333iMnJ8d5AdSQ67fL9Tej0ejsLt6xjRs3EhwczIYNG8pNe+SRRwgODmbHjh3lpvXr149hw4YB8M033/D3v/+dIUOGEBYWRnBwcI33u7pUNf68vDzmz59PfHw83bt3p0OHDgwZMoSUlBSKiopqI4QqqY73f86cOQwdOpTo6GgiIiJ48MEHef3118nKyqrx/rsKyU2SmyoiuUly0/UkN9VsbnKpr9aeMWMGgYGBFBUVsWfPHhYsWIDRaOSrr77C29sbgPT0dH744QfatWuHXq9n586dTu519blV/IWFhSQnJxMbG8vw4cNp1KgRBw8eZP78+XzzzTesXLkST09PZ4dR7Wzb5Xr33XefE3pTPaKjo1GpVKSnpzv86GR2djYZGRnodDqMRiM9e/a0T/v99985deoUTz75JACbN29m3759tGvXDjc3Nw4cOFDrcdypqsZ/5swZFi9eTFxcHE888QQ6nY7du3czd+5c/vOf/7Bo0SJUKpUzQquU6nj/c3JyGDx4MEFBQej1en755Rfmz5/Ptm3bWLduHY0aNar1uOoryU2SmyoiuclKcpPkpprOTS5VDLVt25aIiAgAYmJiMJvNJCcns2XLFh577DEAxo8fz4QJEwBYuHBhvUo4t4rf09OTrVu3OnyQYmJiaNasGZMmTeLrr78mLi7OWd2vMWW3S33h6+tL27Zty31+d+3ahVar5bHHHit3dDE9PR2wvucA06dPR622njx+880361TCqWr8LVq0YNu2beh0Ovv0rl274uXlxbvvvsvu3bvp3LlzzQdyh6rj/X/jjTccptu2y9ixY9m6dSuPP/54DUbgWiQ3SW6qiOQmK8lNkpugZnOTSwyTuxHbTubixYv2NtsfmCu4Pn6NRlNhRX3//fcD1upc1B0xMTEcP36cc+fO2duMRiPh4eH07t2bAwcOkJeXZ5+2c+dONBqNfUda1/8WqhK/TqdzSDY2delvoarvf0V8fX0B0Gpd6jharZPcJLmpPpPcJLnpbstNdfsTVUW28datW7d2bkecpLLx26ryunxq/mYsFgsmk8nhZjabnd2tKuvSpQuAwxEYo9FIdHQ0HTt2RKVSsXv3bodpoaGhNGzYsNb7WhNqIv669LdQXfGbTCYKCws5ePAgb7/9Nq1bt+ahhx6qnSBclOQmyU0guansNMlNkptqMje5VDFk27FcvXqVHTt2MH/+fKKioujbt6+zu1Yr7iT+s2fPMnv2bMLDw3nggQdqsbe1Z8SIEYSFhTnc6sPQhKioKNRqtX2Hc/nyZTIzM4mKikKv1xMaGmrfgf7222+cPn3afhq6Pqju+A8fPkxqaioPPfQQISEhtRJDVVRH/OfPnycsLIzIyEiGDRuG2WxmyZIl6PX6Wo+nPpPcJLmpIpKbJDdJbqqd3ORSYx1GjBjh8DwoKIh58+a5zJCP240/Ozubp59+GkVR+OCDD+r8qekbmTlzJkFBQQ5td/MFiJXl7e1NSEiIffztrl270Gg0dOzYEbDukGw7HNs89SnhVGf8p0+fZty4cQQEBDB9+vRa6H3VVUf8jRo14ssvv6S4uJhjx46RmppKQkICn332Gf7+/rUYTf0muUlyU0UkN0luktxUO7mpfu5BbmDmzJl8+eWXLF68mJEjR3L06FGmTJni7G7VmtuJ/8qVKzz11FOcPXuWTz75hJYtW9Zyb2tPUFAQERERDrfw8HBnd6taxMTEcOLECc6ePYvRaCQsLMx+5CQ6OppDhw6Rm5uL0WhEq9XSqVMnJ/e4elVH/FlZWSQkJKDRaFi8eDE+Pj61HMWdq2r8Wq2WiIgIOnXqxPDhw1m8eDGnT58mJSXFGeHUW5KbJDdVRHKT5CbJTbWTm1yqGLLtWLp06cKbb77J8OHD2bFjBxs3bnR212pFZeO/cuUKTz75JKdPn2bRokV14rSrqJjtaMrOnTvZuXMnUVFR9mm2ncuuXbswGo1ERETUu+FPVY0/KyuL+Ph4AJYsWUJAQEAt9bx6VPf7HxAQgL+/f7nfwBFVI7lJcpOrkdwkuQnuntzkUsXQ9V588UW8vb1JSkrCYrE4uzu1rqL4bcnm1KlTLFy4kNDQUCf3UlRFVFQUGo2Gr7/+mszMTKKjo+3TGjZsSLt27Vi9ejVZWVn1ahiCTVXiP3PmDPHx8VgsFhYvXkzz5s1ru/tVVt3v/8mTJ/n999+59957a7LbLk9yk+Sm+k5yk+Smuyk3ucaA5Bvw9vZm7NixzJo1i7Vr1xIXF8elS5fsF3VlZGQAsH37dnx9ffH19XV4w+q66+Pv378/o0eP5uDBg7zyyiuYzWb27t1rn9/X15dWrVo5r8M1JDMzs8Jv6GnVqpX96xrrqgYNGhAaGsqWLVtQq9XlTjVHRUWxePFioPyY3KysLPbv3w/Ar7/+CmA/Utu8efM6cSHvncZ/8eJFEhISOH/+PG+99RYXL150+JrjgICAOnEk7k7jP3z4MDNmzKB///60bNkStVpNRkYGn376KT4+Pjz11FO1GoerkdwkuQkkN0luktwEtZObXLoYAoiPj2fp0qXMmzeP2NhYMjMzmTRpksM806ZNA6zjGD/77DNndLPGlI2/Q4cO9h3MW2+9VW7eYcOG8c4779R2F2vc1KlTK2yfPn06w4cPr+XeVL+YmBj2799Pu3btaNCggcO0qKgoPv30U9zc3OjQoYPDNKPRWG7b2P426tJn4U7i/+WXXzh16hRgPUp9vQkTJjBx4sSa7Xg1uZP4/fz88Pf3Z9GiRZw/fx6TyURAQAB9+vRh3LhxNGvWrLbDcDmSmyQ3SW6S3CS5qXZyk0pRFKVK0QghhBBCCCFEHeTS1wwJIYQQQgghXJcUQ0IIIYQQQgiXJMWQEEIIIYQQwiVJMSSEEEIIIYRwSVIMCSGEEEIIIVySFENCCCGEEEIIlyTFkBBCCCGEEMIlSTEkhBBCCCGEcElSDIk7lpaWRnBwsP0WGhpKjx49mDx5MidOnHB29wBYsGABW7ZsKdduNBoJDg7GaDQ6oVdW27ZtY9y4cXTr1o3w8HCio6MZNWoUa9asoaSkxGn9ul5F2+rll1+mb9++Nbres2fPkpyczKFDh2p0PUKI+kVyU9VIbro5yU31j9bZHRB134wZMwgMDKSoqIg9e/awYMECjEYjX331Fd7e3k7t20cffUT//v3p16+fQ3tYWBjLly/nvvvuq/U+KYrCK6+8QlpaGr179+bll1+mWbNm5ObmYjQamTZtGpcvX2bUqFG13rfKGj9+PAkJCTW6jnPnzjF37lyaN29Ou3btanRdQoj6R3LT7ZHcVDmSm+ofKYZElbVt25aIiAgAYmJiMJvNJCcns2XLFh577DEn965iDRo0oH379k5Zd2pqKmlpaUycOJEJEyY4TOvbty9jxozh5MmTtdqnwsJCPD09Kz1/q1atarA3QghRdZKbbo/kJuGqZJicqHa25HPx4kWH9v379zNu3Diio6OJiIhg6NChbNiwwWGeS5cukZiYyKBBg+jQoQNdu3YlISGBH3/8sdx6iouLmTt3LgMHDiQiIoKYmBji4+PZs2cPAMHBweTn57Nq1Sr7cIn4+HjgxkMRtm7dysiRI4mMjKRDhw48+eST/Pe//3WYJzk5meDgYDIzM5kyZQqdOnWiW7duTJ06ldzc3Jtum5KSElJTUwkMDOS5556rcJ4mTZrQuXNn+/Ps7GwSExPp2bMn4eHhPPjgg8yZM4fi4mKH5YqKipg9ezZ9+/YlPDycnj17Mm3aNHJychzm69u3L8888wybNm1i6NChREREMHfuXACOHj3K6NGjiYyMJCYmhn/84x9cvXq1XB8rGooQHBzMm2++yerVqxk4cCCRkZE88sgjfPPNNw7znTx5kqlTp/Lwww8TGRlJz549GTduHEeOHLHPYzQaefzxxwGYOnWq/f1LTk62z1OZz5MQQthIbroxyU2Sm1yZnBkS1e706dMAtG7d2t6Wnp7OmDFjiIyMJDExkYYNG7JhwwYmT55MYWEhjz76KGDduQJMmDABPz8/8vPz2bx5M/Hx8Xz66afExMQAYDKZGDNmDLt37yYhIYEuXbpgNpvZt28fv/32GwDLly9n1KhRxMTEMH78eMB61O1G1q5dywsvvECPHj2YPXs2xcXFpKam2tddNgkATJw4kUGDBvH444+TkZHB7NmzAevQjBv5+eefyc7OZvjw4ahUqltuy6KiIhISEjh16hQTJ04kODiYH3/8kZSUFA4dOkRKSgpgHd4wfvx40tPTGTt2LJ07d+bIkSMkJyezd+9eli9fjru7u/11Dxw4wNGjR3n22Wdp0aIFXl5eXLhwgfj4eLRaLW+88QaNGzdm7dq1/POf/7xlP22+/fZb9u/fz1//+ld0Oh2pqalMmDCBjRs30rJlS8A6xMDHx4fnn38eX19frly5wqpVqxgxYgSrVq0iMDCQsLAwZsyYwdSpU3n22Wfp06cPAAEBAUDlP09CCGEjuUlyk+QmUSFFiDu0cuVKxWAwKHv37lVKSkqUvLw8Zfv27Ur37t2VP//5z0pJSYl93gEDBihDhw51aFMURXnmmWeU7t27K2azucJ1mEwmpaSkRBk1apTy3HPP2dtXrVqlGAwGZcWKFTftY/v27ZWXXnqpXHt6erpiMBiU9PR0RVEUxWw2Kz169FBiY2Md+pKXl6d07dpVGTlypL0tKSlJMRgMyscff+zwmomJiUpERIRisVhu2J/169crBoNBWbZs2U37bbNs2TLFYDAoGzZscGhPSUlRDAaD8v333yuKoijbt2+vsE+29S1fvtze9sADDyjt2rVTjh075jDvrFmzlODgYOXQoUMO7U8++aTDtlIURXnppZeUBx54wGE+g8GgdOvWTcnNzbW3nT9/XgkJCVE++uijG8ZoMpmU4uJi5eGHH1befvtte/tPP/2kGAwGZeXKleWWudPPkxCi/pPcJLmpLMlN4lZkmJyoshEjRhAWFkbHjh0ZM2YM99xzD/PmzUOrtZ54PHnyJMeOHWPIkCGA9ciZ7darVy/Onz/P8ePH7a+3bNkyhg0bRkREBKGhoYSFhfHDDz9w9OhR+zw7duzAw8Oj2sZ9Hz9+nHPnzhEXF4dafe3PQq/X8/DDD7Nv3z4KCgoclqnoVHxRUVG5IRhVkZ6ejk6nY8CAAQ7ttqNLP/zwg32+su02AwcORKfT2ecr29c2bdo4tBmNRtq2bUtISIhDe2xsbKX7GxMT43CE08/Pj8aNG5OVlWVvM5lMLFiwgEGDBhEeHk5oaCjh4eGcOHHC4T2+kdv9PAkhXJPkJivJTZKbxM3JMDlRZTNnziQoKIirV6+yYcMGli9fzpQpU0hNTQXgwoUL9vlmzpxZ4WtcvnwZgEWLFvHOO+/wxz/+kUmTJtGoUSPUajUffvghx44ds89/6dIl/P39HZJDVdjW36RJk3LT/P39sVgs5OTk4OXlZW/38fFxmM92qr+wsPCG62nWrBlwbbjGrWRnZ+Pn51du2ELjxo3RarX2oRvZ2dlotVp8fX0d5lOpVPj5+dnns6kozuzsbFq0aFGu3c/Pr1J9hfLbBKzbpaioyP78nXfeYenSpTz99NNERUXh7e2NSqXitddec5jvRm7n8ySEcF2Sm6wkN0luEjcnxZCosqCgIPuFqV26dMFisfDFF1+wceNGBgwYQKNGjQB45plneOihhyp8DduRoDVr1hAdHc20adMcpl9/oaSvry+7d+/GYrFUS9Kx9fH8+fPlpp07dw61Ws0999xT5fWEh4fj4+PD1q1bef755285NtvHx4d9+/ahKIrDvBcvXsRkMtn77ePjg8lk4tKlSw5JR1EULly4YH9/bCpar4+Pj31nXlZFbVWxZs0ahg4dypQpUxzaL1++XKltfDufJyGE65LcVHmSmyQ3uTIZJieq3Ysvvoi3tzdJSUlYLBYCAwNp3bo1hw8fJiIiosKb7fS1SqVyuJgS4PDhw+zdu9ehrWfPnhQVFZGWlnbTvri7u9/0aJhNmzZtaNq0KevWrUNRFHt7fn4+mzZton379g5H3u6Um5sbY8aM4dixY/zrX/+qcJ6LFy+ye/duALp27Up+fn65H+dbvXq1fXrZ+zVr1jjM9/XXX5Ofn2+ffjMxMTFkZmZy+PBhh/Z169bdOrDboFKpcHNzc2j79ttvOXv2rEPbjY5m3s7nSQghbCQ33ZjkJslNrkzODIlq5+3tzdixY5k1axZr164lLi6OadOm8fTTTzN69GiGDRtG06ZNuXLlCkePHuXAgQMkJSUB0KdPH+bNm0dSUhJRUVEcP36cefPm0aJFC8xms30dsbGxpKWlkZiYyPHjx4mJiUFRFPbt20dQUBCDBw8GwGAwsHPnTrZt20aTJk3Q6/UEBgaW67NarebFF1/khRde4JlnnmHkyJEUFxezcOFCcnJyeP7556tt+9gSTnJyMvv37yc2Ntb+w3a7du1ixYoVTJw4kU6dOjF06FCWLl3KSy+9RFZWFgaDgd27d/PRRx/Ru3dvunXrBkD37t3p0aMH7733Hnl5eXTs2JEjR46QlJREaGgocXFxt+zXqFGjWLlyJWPHjuVvf/ub/Rt7yg4BqQ59+vSxfzNPcHAwBw4cYOHChfZv47Fp1aoVnp6erF27lqCgIHQ6Hf7+/jRt2rTSnychhLCR3HRzkpskN7kqKYZEjYiPj2fp0qXMmzeP2NhYunTpwhdffMGCBQt4++23ycnJwcfHh6CgIAYOHGhfbty4cRQUFPDll1+SmprKfffdR2JiIlu2bGHnzp32+bRaLR9//DEfffQR69evZ/Hixej1ekJCQujZs6d9vldffZVp06YxZcoUCgoKiI6O5rPPPquwz0OGDMHLy4uUlBQmT56MRqMhMjKSJUuW0LFjx2rbNiqVihkzZtCvXz9WrFhh3x62/r/wwgv2i009PDxYsmQJc+bMITU1lcuXL9O0aVOeeuophx/FU6lUzJs3j+TkZNLS0liwYAE+Pj7ExcUxZcqUckc0K9KkSRM+//xz3nrrLRITE/Hy8qJfv368/vrr9q9/rQ6vvvoqWq2WlJQU8vPzCQ0NJTk5mQ8//NBhPi8vL95++23mzp3L6NGjKSkpYcKECUycOLHSnychhChLctONSW6S3OSqVErZ865CCCGEEEII4SLkmiEhhBBCCCGES5JiSAghhBBCCOGSpBgSQgghhBBCuCQphoQQQgghhBAuSYohIYQQQgghhEuSYkgIIYQQQgjhkqQYEkIIIYQQQrgkKYaEEEIIIYQQLkmKISGEEEIIIYRLkmJICCGEEEII4ZKkGBJCCCGEEEK4pP8DSpcUfjt7xmEAAAAASUVORK5CYII=",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0MAAAHbCAYAAAAJakHoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACo5UlEQVR4nOzdeXyU1dn/8c/MZN9DFiALWyCsCWEXFRRQXNBaRdTautXaqqh9ahf1UevSp3Xpr7ZVqZVW6447uOMCLmiRTULCDgFDFhISsu/JzPz+uDMhIRPIJJNMkvm+X695zWTOfe5cJ2juXHOfcx2T3W63IyIiIiIi4mXMng5ARERERETEE5QMiYiIiIiIV1IyJCIiIiIiXknJkIiIiIiIeCUlQyIiIiIi4pWUDImIiIiIiFdSMiQiIiIiIl5JyZCIiIiIiHglJUMiIiIiIuKVlAyJiIiIiIhXUjIkIiIiIiJeScmQiJvMnz+f+fPnd7l/bm4uY8eO5c4773RjVK7r7jhERKRv0HVJ5OR8PB2AeIexY8cCYDab+eyzz4iPj3d63Pnnn09WVhYA//nPfzj11FO7/D1LS0v57LPP+OKLL9i7dy+FhYX4+vqSnJzMJZdcwuLFizGb9XlAf5GVlcUrr7zChg0bOHz4MPX19URERDBhwgTOPvtsfvCDH+Dv79+uX2ZmJq+88gobN26kqKgIHx8f4uPjOf3007n22msZPHiwB0YjIp6m65J0leO/nT179nR4zPz588nLy2PNmjUkJCR0+XvpGtbz9H+c9BofHx9sNhtvv/220/YtW7aQlZWFj497cvTVq1dzzz33sG3bNlJTU7nmmmtYuHAh+/bt45577uGXv/wldrvdLd9LetaTTz7JBRdcwEsvvURwcDAXX3wx119/PWeccQbZ2dncc889/OhHP2rTx2638+c//5lLL72Ud999l1GjRnHVVVdx6aWXEhAQwLPPPss555zD6tWrPTQqEfE0XZekr9I1rPfozpD0mqioKKKjo3n77bdZunRpu0+/3nzzTXx9fZk9ezZfffVVt7/fiBEjWLZsGfPmzcNisbS8f/vtt7NkyRI++eQTPv74Y84999xufy/pOU899RRPPPEEQ4cO5e9//zuTJ09ud8xXX33Fv//97zbvLVu2jH//+9/Ex8fz9NNPM2bMmDbtH3/8Mb/97W+5/fbbCQ8PZ/bs2T06DhHpe3Rdkr5K17DeoztDXmTbtm3cdtttnHbaaUyaNIkzzjiD3//+9xQWFrY5rvUc4dzcXH71q18xa9YsUlJSuOSSS1izZk2XY7j00kvJz8/nm2++afN+VVUVq1evZv78+URFRTnta7fbef755zn//PNJSUlhzpw5PPjgg1RWVjqdTzx79mzOOuusNhccgJiYGK644goANm7c6FL8drudl156iUWLFrXE8MADD1BZWdlhnw8//JArr7ySadOmkZqaygUXXMA///lP6uvrO+yTlZXFzTffzMyZM0lLS+NHP/oRX3/9dbvjWv9bdbZPV8cBkJGRwf/8z/8wZ84cJk2axOmnn85Pf/pTPvzwwxP266rc3FyWLVuGr68vy5cvd5oIAcydO7dNMpSTk8NTTz2Fr68vTz31VLuLCMA555zDXXfdhdVq5f7778dms/XIGESkY7ouGXRd6j/Xpd6ga1jvUjLkJd566y1+9KMfsW7dOk455RSuvvpqJk2axBtvvMHixYvJz89v1ycvL48lS5aQl5fHRRddxPnnn8++fftYunQp69ev71IcF154IYGBgbzxxhtt3n/vvfeoqanh0ksv7bDvAw88wJ/+9CcqKyu5/PLLueCCC/jmm2+47rrraGxsdCkOX19fAJenPvzxj3/kD3/4A+Xl5Vx++eUsWrSIr7/+mmuvvZaGhoZ2x//5z3/mV7/6FQcPHuTCCy/kxz/+MXa7nb/+9a/89Kc/ddonNzeXK664grKyMi6//HLOPfdcduzYwQ033NDhL3dX+7g6DoDXX3+dK664gs8++4wpU6bw05/+lDPOOIPi4mJWrFjh0s+xs95++20aGxtZuHAhycnJJzzWz8+vTb+mpiYWLFjQMrfbmSVLlhATE8P333/v8h8gItI9ui61petS/7gu9QZdw3qZXQa8AwcO2CdOnGhfuHChvbCwsE3bf//7X/u4cePsN910U8t7OTk59uTkZHtycrL9iSeeaHP8V199ZU9OTrZff/31LsWQnJxsnzNnjt1ut9t/97vf2SdOnGg/evRoS/vFF19sP/PMM+1Wq9V+xx132JOTk+3ffPNNS/umTZvsycnJ9oULF9rLy8tb3q+vr7dfeeWV9uTkZPu8efM6FUtjY6P9ggsusCcnJ9u/+uqrTo9hy5Yt9uTkZPtZZ51lLy0tbXm/rq7Oftlll7WLYfPmzS3vFRcXt/n+N9xwgz05Odn+j3/8o+X91j/3hx9+uM33zsjIsE+YMME+ffp0e2VlZbf6uDoOu91u37dvn33ChAn2GTNm2Pfu3dvuZ5Ofn3+Sn17XXHXVVfbk5GT766+/3qV+r7322kmPvf322+3Jycn2ZcuWdTVMEXGRrktt6brUf65Ldru9ZXyPP/54h49p06bZk5OT7Tk5OS6fX9ew3qU7Q15gxYoVNDY28r//+7/Exsa2aZs9ezbz58/n888/p6qqqk1bfHw8N910U5v35syZQ1xcHJmZmV2OZ8mSJTQ2NvLOO+8AsGvXLnbs2MEll1zSYRWdlStXAnDTTTcRFhbW8r6fnx+33367S9//L3/5C3v37mXu3LnMmTOn0/0cC2xvvPFGIiIiWt739/d3GoPj+JtuuqnNFAsfHx/uvPNOzGYzb775Zrt+oaGhLF26tM17KSkpXHjhhVRUVPDpp592q4+r4wDjv6GmpiZuvvlmp7frhw4d6rRfdxUXFwO4XC3H0W/IkCEnPdZxzJEjR1yMTkS6SteltnRd6j/XpdaefPLJDh8nm953IrqG9S4VUPAC6enpAGzYsIGMjIx27UePHsVms/H9998zadKklvfHjx/fbl4zGP/jOc4J8MQTT7Q75uKLL+6wlOT06dMZOXIkb775Jtdddx2vv/46ZrOZxYsXdziGXbt2ATBt2rR2bWlpaZ2eVvDcc8/x7LPPMnLkSB555JE2bScbx86dOwGYOXOm0zEdH4Mj5lmzZrU7ftSoUQwZMoTc3FwqKiraXEgnTJhASEhIuz4zZ85k5cqV7Ny5k4svvrhNmyt9XB0HHPtvyJWL9PFc/e8EaKmqZDKZXPpervRzHNP62KeffppPPvmEgwcP4ufnR1paGrfffvtJp+qJSOfounSMrkv967rUWmdKax+vM9eX7l7DxDVKhrxAWVkZAM8888wJj6upqWnzdWhoqNPjHKVIHZ588sl2x8ycOfOEv0wuvfRS/vznP7N+/Xref/99Tj31VOLi4jo83vEJi7NFrBaLpc0nSR15/vnneeihh0hKSuL5559n0KBBbdpPNg5XY3AcHx0d7TSemJgY8vPzqaysbHPR6eh4x/vHf1Lqap+u/Cwdfbqzn0FX/juJjY3lwIEDFBQUuPS9YmJiOt3PcUxMTEzLexs3buTKK68kJSUFu93O448/znXXXccHH3zQqf/WROTEdF0y6LrUNq7+cF3qrs5cX7p7DRPXKBnyAo5PZrZs2eL0U5ruOtEnIx25+OKL+dvf/sadd95JRUXFCReowrExHD16lKCgoDZtVquVsrKyE/5CfOaZZ3j00UdJTk7mueeec/oL92TjcFyEOxuD4/ji4mKGDRvW7nxFRUVtjnNw3B4/nuN9Z/+GrvRxdRyt+xQWFnb5v6Gu/Hcybdo0vv32W7799luWLFniUr8NGzbw3//+94T9rFYrGzZsAGDq1Kkt7x//B9qjjz7K9OnT+e6777QLuogb6Lqk61J/vS51V2euL929holrtGbIC6SlpQGwefNmzwbSSlRUFGeeeSYFBQVERkayYMGCEx4/fvx4wLhwHi89PZ2mpqYO+z799NM8+uijjB8/nueff77DEqknM2HCBMB52dPNmze3i8ERs+MXVWvZ2dkUFBSQkJDQ5tM3MKYLOPuUzfF9HXF0tY+r44Bj/w11VBK1p1xyySX4+vry8ccfs3///hMe27ra0CWXXILFYuHTTz89Yb+33nqLI0eOMHLkSKfTMxyqq6ux2Wzt/q1EpGt0XdJ1qb9el9zN2fXF3dcwOTElQ17gxz/+Mb6+vjz00EMcPHiwXXtDQ4NHLkh33HEHy5YtY/ny5W3KIjvzwx/+EDA24Gy9KLGhoYG//vWvHfZbtmwZjz32GBMnTuS5555rNwXBFY65zf/85z9bpngA1NfX89hjj7U73jHX/KmnnqKkpKTlfavVyiOPPILNZnP6yWNlZSXLli1r815mZibvvfceoaGhnH322d3q4+o4AH70ox/h4+PDP/7xD7Kystq1uzqNrbMSEhK45ZZbaGxs5Oc//3mHC6S/+uorfvazn7V8nZiYyC9+8QsaGxu58cYbnV5MPvvsM/74xz9isVi47777OlwkDUbJ1/HjxzNlypTuD0pEdF3SdanfXpfczdn1xd3XMDkxTZPzAklJSfzxj3/k7rvv5oILLmDOnDmMGDGCpqYm8vPz2bJlC5GRkaxevbpX40pMTCQxMbFTx86cOZPLL7+c1157jUWLFrFw4UJ8fX1Zu3YtoaGhxMbGtls8uHLlSh5//HEsFgvTp0/nxRdfbHfe+Ph4Lrnkkk7FMG3aNK666ipefPFFLrjgAs4991x8fHxYs2YNYWFh7ebrTp06lZ/97Gf8+9//5oILLuCcc84hMDCQdevWsXfvXqZNm8b111/f7vvMmDGDN998k4yMDKZOnUpRUREffvghNpuNBx980Ol0AFf6uDoOgNGjR3Pfffdx33338cMf/pD58+czYsQISktLyczMJCQkxOnP1x1uvPFGmpqaWLZsGZdeeilTpkxh0qRJBAcHU1xczObNm9stsga49dZbqa2t5T//+Q8XXXQRp59+OqNHj6apqYmtW7eybds2AgIC+Mtf/nLCnbsfeeQRtmzZwooVK5wu3BYR1+m6pOtSf74uucuJri/uuobJySkZ8hIXXXQR48aN4z//+Q8bNmzg66+/JigoiNjYWM455xzOO+88T4d4Uvfffz+jRo3i1Vdf5dVXXyUiIoKzzz6b22+/nblz5zJ8+PA2x+fm5gLGJ17PP/+803POnDmz0xcdgLvvvpsRI0bw8ssvt4vhoosuanf8b3/7WyZMmMBLL73EqlWraGpqYtiwYfzP//wPP/3pT51+8piQkMADDzzA//t//49XX32VhoYGJkyYwNKlSzusmuNqH1fHAXDZZZcxZswYnn32WTZu3MiaNWuIiIhg7NixLq3n6YpbbrmF8847j1deeYUNGzbw9ttv09DQQEREBOPGjeNnP/tZu7jNZjN33nkn559/Pi+//DKbNm1i/fr1WCwW4uPj+elPf8o111xzwtKlDz30EB988AHPP/98p/9AEpHO0XVJ16XujAM8e13qrpNdX9xxDZPOMdkd9ftE+qnvv/+ec845h0WLFnV4O32gys3NZcGCBVx88cU8/PDDng5nQPm///s/PvzwQ1588UWSkpI8HY6I9CO6Lum6dCK6vvQtujMk/UZRURFRUVFt5sXW1tbypz/9CYCFCxd6KjQZYO6//37effddli1bRlhYWEuFpaCgIIKDgz0cnYj0Fbouiat0fel7lAxJv/H888/zwQcfMHPmTGJiYiguLmb9+vUUFBRw5plncs4553g6RBkgVqxYAcC1117b5v1bbrmFW2+91QMRiUhfpOuSuErXl75HyZD0G6eddhr79u1j/fr1lJaWYrFYGDlyJFdffTVXX321dl8Wt/HE3hMi0v/ouiSu0vWl79GaIRERERER8UoqSi4iIiIiIl5JyZCIiIiIiHilAbNmyGaz0dTUhNls1hxdEZFeZLfbsdls+Pj4aBf04+jaJCLiGZ29Ng2YZKipqYnMzExPhyEi4rVSUlKcbtjozXRtEhHxrJNdmwZMMuTI+FJSUrBYLC73t1qtZGZmdrl/f6fxa/wav8bf3d+fuivUnq5N3aPxa/wav8bf09cmjydDGzZs4Oqrr3ba9tprr5GWltap8zimH1gslm79B9Pd/v2dxq/xa/waf1dpGlh7uja5h8av8Wv8Gn9Xneza5PFkyOH2229n1qxZbd4bM2aMh6IREREREZGBrs8kQ8OHD+/0XSAREREREZHu0gRvERERERHxSn3mztCDDz7I7bffTkBAAFOmTOGmm25i+vTpLp/HarV26fs7+nW1f3+n8Wv8rZ+9jcbfvfF7689NRET6P48nQ6GhoVx99dXMmjWLiIgIsrOzeeaZZ7j66qt5+umnmTNnjkvn624JU28vgarxa/zeTOP37vGLiIj38XgyNGHCBCZMmNDy9fTp0zn77LO58MIL+fOf/+xyMqTypV2j8Wv8Gr/G393fnyIiIv2Nx5MhZ8LCwjjzzDN59dVXqaurIyAgoNN9Vb60ezR+jV/j1/hFRES8RZ8toGC32wHtWyEiIiIiIj2jTyZD5eXlfPHFF4wfPx5/f39PhyMiIiIiIgOQx6fJ/frXv2bo0KFMmjSJyMhIsrOzefbZZzl69CgPP/ywp8MTEREREZEByuPJ0NixY/nwww959dVXqampITw8nGnTpvHoo4+Smprq6fBERERERGSA8ngy9POf/5yf//znng5DRERERES8TJ9cMyQiIiIiItLTlAxhVK67461M3txZ5elQREREAMgvq+X657ew5XC9p0MRERmwlAwBlfVNvPldHq/uqKKqvsnT4YiIiLD1UBlf7C3i7V36oE5EpKcoGQLCAnwZGh6AHcjMK/d0OCIiIiQPDgHgYFkTVpvdw9GIiAxMSoaapSWGA5CRq2RIREQ8b1RMCEF+FuqtdrKKdHdIRKQnKBlqlpoQAUB6jpIhERHxPIvZxMS4MAC251d4OBoRkYFJyVCztATjztC2nDLPBiIiItIsJd5IhjSFW0SkZygZajYpPgwzUFhZT0F5nafDERERISXe+KAuM093hkREeoKSoWZBfj4khht70KbnlHo4GhERkWPJ0M78CpqsNg9HIyIy8CgZamXMIF8AtmqqnIiI9AHDBwUR5GOivsnGviMqoiAi4m5KhloZE2UkQ1o3JCIifYHZbGJkpHFtylS1UxERt1My1IrjzlBmbrn2dBARkT4hKdKYwp2RV+bZQEREBiAlQ60khPkQ7GehusHKfk1HEBGRPmD0IN0ZEhHpKUqGWrGYTExqXqyqIgoiItIXJDVPk9t1uJKGJhVREBFxJyVDx5mc4EiGyjwbiIiICDA42EJYgA8NVht7Cys9HY6IyICiZOg4aYmOZEjTEURExPNMJlNLie0MTZUTEXErJUPHmZwQAcCeggpqGpo8G4yIiAiQEh8GQKaKKIiIuJWSoeMMCQ9gcJg/NrsWq4qISN/guDOUmafrkoiIOykZciItMQKAbbllHo1DREQEjiVDewoqqWu0ejgaEZGBQ8mQE2mJkYCKKIiISN8QFxHAoGA/Gq129hSoiIKIiLsoGXJisqOIwqEyzwYiIiLCcUUUNFVORMRtlAw5kZoQgckE+eV1HKmo83Q4IiLiYW+88QZjx45lypQpHoshtXnrh0xN4RYRcRslQ06E+PswJjYE0FQ5ERFvV1hYyCOPPEJsbKxH41B5bRER91My1AFHEQUlQyIi3u2+++5j+vTpnHbaaR6NI6X5ztC+I1XUNqiIgoiIOygZ6oCjiIIqyomIeK933nmHjRs3cv/993s6FIaEBRAd4o/VZmfn4QpPhyMiMiD4eDqAvspRRCEjpxybzY7ZbPJwRCIi0puOHj3Kn/70J379618zZMiQbp3Lau3anRxHP8dzSnwYn+8pYltOKWkJYd2KqT84fvzeRuPX+Fs/e5vujr+z/ZQMdWDs4FACfS1U1jeRVVTFmMGhng5JRER60QMPPMDIkSO58soru32uzMxMt/SPsdQA8FXmQSYHlnY7rv6iuz+//k7j1/i9WU+PX8lQB3wsZlLiw9n4fQnpOWVKhkREvMjHH3/M2rVrWbVqFSZT92cGpKSkYLFYXO5ntVrJzMxs6V8ScITXd35HXq0PaWlp3Y6rrzt+/N5G49f4Nf6uj9/R/2SUDJ3A5MRjydCS6YmeDkdERHpBdXU1Dz74IFdddRWxsbFUVBjrcxobGwGoqKjAx8eHoKCgTp/TYrF0648ZR//JzetZ9xdVUddkJ9jfOy7j3f359Xcav8av8ffc+L3jt2gXGUUUDqqinIiIFyktLaW4uJhnn32WZ599tl37jBkzWLBgAf/4xz96PbbYsACGhAVQUFHHzsMVzBgxqNdjEBEZSJQMnUDasAgAdhdUUtdoJcDXe7NyERFvERMTwwsvvNDu/eXLl7Np0yb+9a9/ERkZ6YHIDCkJ4RTsrCMjt1zJkIhINykZOoG4cKOMaXFVPdvzypmui46IyIDn7+/PrFmz2r2/cuVKLBaL07belBofzqc7C8nU1g8iIt2mfYZOwGQyafNVERHpUxybr2bklXs4EhGR/k/J0ElMaZ4qp2RIRMS7Pfzww2zdutXTYZASbyRDB4qqqaxr9HA0IiL9m5Khk5icEAEoGRIRkb4hKsSf+IhAALbnVXg4GhGR/k3J0EmkJoZjMkFuaS3FVfWeDkdERKTl7lBmXplnAxER6eeUDJ1EWIAvSTEhAGzT3SEREekDWtYN5WrdkIhIdygZ6gRNlRMRkb4kNcFxZ0jJkIhIdygZ6oQ0FVEQEZE+xDFNLvtoDeU1KqIgItJVSoY6YUpzee1tOWXYbHbPBiMiIl4vIsiPYYOCAN0dEhHpDiVDnTB2SCj+PmYq6po4eLTa0+GIiIi02m+ozLOBiIj0Y0qGOsHXYmZS85SE9ENlng1GREQESG2+Lm3XnSERkS5TMuTQVA/2jqfApTmmyuWW9U48IiIiJ6CKciIi3efj6QD6BGsj5ienMtYnCqZ85fSQyc3JkIooiIhIX+CYsZBbWktJdQODgv08HJGISP+jO0MA1kaoKiSkdDtU5Dk9xFFEYdfhCuoarb0YnIiISHthAb6Mig4GVERBRKSrlAwB+AVB7ETjde5mp4ckRAYSFexHo9XOzsMVvRiciIiIc46pcpmawi0i0iVKhprZE2YAYMrb5LTdZDIdmyqnIgoiItIHOPYb0rohEZGuUTLk4EiGcp0nQ6AiCiIi0rekJkQAmiYnItJVSoaa2eOnGy8OZxiV5ZxIUxEFERHpQybGhWEyweHyOo5U1nk6HBGRfkfJkMOgUTT5hmGy1kNBptNDJjd/Apd9tIaS6oZeDE5ERKS9YH8fkmJCAO03JCLSFUqGHEwmqiInGK87mCoXHnSsco+myomISF+QqnVDIiJdpmSolWpHMpSzscNjVERBRET6kmMV5ZQMiYi4SslQKy3JUAfltUHrhkREpG9JbU6GMjRNTkTEZUqGWqmOHIfdZIbyQ1BZ4PSY1hXl7HZ7L0YnIiLS3oSh4ZhNUFRZT2GFiiiIiLhCyVArNp8giBlvfNHBVLlxQ0Pxs5gpq2kk+2hNL0YnIiLSXqCfheTBoYDWDYmIuErJ0HHsCc0ltjsoouDvY2FCXBigqXIiItI3ODZfzVRxHxERl/S5ZOiNN95g7NixTJkyxTMBNG++2lEyBFo3JCIifYvWDYmIdE2fSoYKCwt55JFHiI2N9VgMLZuv5m8Fa6PTY5QMiYhIX5LSvA9eZm651rOKiLigTyVD9913H9OnT+e0007zXBBRoyEgAprqOtx81ZEM7cyvoL7J2nuxiYiIODFuSCg+ZhNHqxvIL1cRBRGRzuozydA777zDxo0buf/++z0biMncaqqc8xLbw6OCiAjypcFqY/fhyl4MTkREpL0AXwtjhxhFFLRuSESk83w8HQDA0aNH+dOf/sSvf/1rhgwZ0q1zWa1du1Pj6Ge1WjHFT8O8/1NsORuwT7/e6fGp8eF8ta+Y77JLmBQX2uV4+4rW4/dGGr/G3/rZ23R3/N76c+trUuLD2ZFfQUZuOedOGurpcERE+oU+kQw98MADjBw5kiuvvLLb58rMdD61zZX+ofWDSAYaD3zD9vR0p8cN8a0F4POMg6QGlnbre/Yl3f359Xcav8bvzbx9/P1dSkI4r27KIVNFFEREOs3jydDHH3/M2rVrWbVqFSaTqdvnS0lJwWKxuNzParWSmZlp9G8chf3bO/CvOUza6DgIaV/QoSywiNd3biGnxkxaWlq34/a0NuPvws+vv9P4NX6Nv+vjd/QXz0qNjwCMvYbsdrtbrqkiIgOdR5Oh6upqHnzwQa666ipiY2OpqKgAoLHRqOJWUVGBj48PQUFBnT6nxWLp1h8zFosFi18kxIyDol1YDn8H4xa1O27K8EEAHCyuoareRniQb5e/Z1/S3Z9ff6fxa/wav/eOv79LHhKCn8VMeW0jOSW1DIvq/LVTRMRbebSAQmlpKcXFxTz77LPMmDGj5fH+++9TU1PDjBkz+M1vfuOZ4E6y+eqgYD+GN19o0rVYVUREPMzfx8K4ocYa1oy8Ms8GIyLST3j0zlBMTAwvvPBCu/eXL1/Opk2b+Ne//kVkZKQHIgMSZ8LWFyHnxJuvZh+tYVtOGWckx/RicCIiIu2lxIeTkVtOZl45F6TGeTocEZE+z6PJkL+/P7NmzWr3/sqVK7FYLE7bek3CTOM5/zuwNoGl/Y9qckIE76Tna/NVERHpE1ITwnl5g7H5qoiInFyXkqF9+/bx3XffUVhYSF1dHZGRkYwePZoZM2YQEhLi7hg9IzoZ/MOhvhyO7IChk9sdkjYsAoD0nDItVhUREY9LaS6ikJlXjs1mx2zWdUlE5EQ6nQyVl5fz2muv8dprr5Gfn4/dbm9/Mh8f5s6dy1VXXcXs2bO7HNTDDz/Mww8/3OX+bmE2Q8I0yFoLORudJkMThobhazFRUt1AbmktiYO0WFVERDxnzOAQ/H3MVNY1kV1Sw8joYE+HJCLSp3UqGXrhhRdYtmwZAOeffz4zZ85k4sSJDBo0CH9/f8rLy8nJySE9PZ01a9bw05/+lFNPPZXf//73DB8+vEcH0KMSZhjJUO5mmHlDu+YAXwvjh4aRkVvO1pwyJUMiIuJRvhYzE+LC2HqojIzcMiVDIiIn0alqci+++CJ33XUXX3/9Nffddx/nnXcew4YNIyQkBF9fX6Kjo5kyZQrXXXcdL730Eh9//DGxsbF89NFHPR1/z3KsG8rd2OEhaYkRAKQfKuv5eERERE4iNT4c0LohEZHO6NSdoY8++ggfn84vLxo2bBgPPfQQVqu1y4H1CQnTjOeSA1B9FIKj2h2SlhjBC+uz2aby2iIi0gekJEQA2WTkKRkSETmZTt0Z2rdvX5dO3u837wuMNAopQIf7DU1uvjO0Pa+cRqutlwITERFxLjXBuDO0I68cq639+l4RETmmU8nQxRdfzCWXXMIrr7xCZWVlT8fUt5xkqtzIqGDCAnyob7Kxp8DLfjYiItLnJMWEEOhrobrBysHiKk+HIyLSp3UqGfrFL35BSUkJDz74IKeffjq/+c1v+Pbbb3s6tr4hYbrx3MGdIbPZ1HJ3aKv2GxIREQ+zmE1MjAsDIEPrhkRETqhTydCvfvUrPv/8c5YvX868efP45JNPuO6661iwYAH/+Mc/OHz4cE/H6TmJzXeG8r4Dm/M1UCqiICIifUlK81Q5JUMiIifWqWQIwGQyMXfuXP72t7/x9ddfc/fddxMeHs7jjz/OWWedxfXXX8/q1atpbGzsyXh7X8w48AuFhio4ssvpIY5kSEUURESkL3CsG8pUEQURkRPqdDLUWlhYGD/5yU94++23WbVqFVdeeSU7d+7kV7/6FXPnznV3jJ5ltkD8VON1B+uGHNPksoqqqKgbYMmgiIj0OynxEQDszK+gScV9REQ61KVkqLVx48bxgx/8gPnz5wNQVlbW3VP2PY6pcrmbnTZHh/iTEBmI3Q4ZOfoUTkREPGtUdDDBfhZqG61kFVV7OhwRkT6r85sHHaekpIR3332Xt956i/3792OxWJg3bx6XXnqpO+PrGxJmGM85J958Nbe0lm25ZZw+JrqXAhMREWnPbDYxKT6cDQdLyMgtY+yQUE+HJCLSJ7mUDNlsNr766iveeustvvjiCxobGxkxYgS33347F198MdHRAzQJcCRDR/dBTQkEDWp3SFpiBO9nHGariiiIiEgfkJpgJEOZeeUsmZ7o6XBERPqkTiVDBw8e5K233uKdd96huLiYgIAALrjgAhYvXsz06dN7OkbPCxoEg5KgJAvytsCYs9sd0lJRLqcMu92OyWTq5SBFRESOSUmIAFRRTkTkRDqVDJ133nkApKamcuutt7Jo0SKCg4N7NLA+J3GmkQzlbHSaDE2KD8diNlFcVU9+eR3xEYEeCFJERMSQGm9UlNt5uIJGqw1fS7eXCYuIDDidSoauueYaLr30UsaMGdPT8fRdCdNh24oON18N8LUwbkgoO/IrSD9UpmRIREQ8anhUEKEBPlTWNbG3sJKJceGeDklEpM/p1MdEd911l9NE6MCBA2zZsoWamhq3B9bnJDg2X90CNudlSo9NlSvtpaBEREScM5lMx/Yb0lQ5ERGnunTPfNWqVcydO5dFixbxk5/8hIMHDwLwy1/+ktdff92tAfYZsRPANxjqK6B4j9NDWjZfVXltERHpAyY1T5XL0OarIiJOuZwMffTRR9x5551MmDCBe++9F7vd3tI2ceJEPvroI7cG2GdYfI5tvtpBiW1HMpSZV65N7kRExONSmzdf1Z0hERHnXE6Gli9fziWXXMI///lPLr/88jZto0aNYv/+/W4Lrs9xlNjOdZ4MJcWEEOrvQ22jlT2Flb0YmIiISHuOaXK7Cyqob7J6OBoRkb7H5WQoKyuLRYsWOW2LiIigrKysuzH1XS3J0GanzWazidRE48KjqXIiIuJpCZGBRAT50mi1s6dAH9KJiBzP5WQoMDCQykrnv1ALCwsJDx/A1WocyVDRbqgtc3rI5OZ9HVREQUREPM1kMpHiWDekqXIiIu24nAxNmTKFl19+uc1aIYe3336bmTNnuiWwPikkBiJHGK/ztjg9pPXmqyIiIp7mmCq3XUUURETacTkZWrp0Kenp6Vx66aW8+OKLmEwmPvnkE2688UY2b97MjTfe2BNx9h2OEtsd7DfkSIb2Hamiqr6pl4ISERFxLqW5iILuDImItOdyMpSSksK//vUvampqePjhh7Hb7Tz99NMcPHiQ5cuXk5yc3BNx9h2JJ06GYsMCiAsPwG6HjNyy3otLRETECcedob2FldQ1qoiCiEhrPl3pdMopp/DRRx9x6NAhiouLiYyMZOTIke6OrW9KmG48524yNl81t88n04ZFkJ9ZQHpOGacmRfdygCIi0l27du3ir3/9K3v37qWkpISAgABGjhzJlVdeyUUXXeTp8FwyNDyA6BA/iqsa2HW4ginDIj0dkohIn9GlZMhh2LBhDBs2zF2x9A+DJ4FPINSVw9F9EDO23SFpiRF8mFnANq0bEhHplyoqKhgyZAiLFi1i8ODB1NbW8t577/G73/2OvLw8br75Zk+H2GmOIgqf7ykiM69cyZCISCudSoY+/PBDzj//fJdOXFhYSG5uLtOmTetSYH2WxRfipsCh/xp3h5wkQ8cqypX1bmwiIuIWs2bNYtasWW3emzdvHrm5ubz++uu9lww1VIGTgkWuSkmI4PM9RVo3JCJynE6tGXrwwQe56KKLeOONN6iqqjrhsdu3b+eBBx7gnHPOYffu3W4Jss9JbC6xneN889WUhHAsZhOFFfUcLq/txcBERKQnRUZGYrFYeueb5W7G/OdRxO15ttunSm0ur52pZEhEpI1O3Rn69NNPeeKJJ/jjH//Igw8+yIQJE5gwYQJRUVH4+flRXl5OTk4O6enpFBUVMWbMGJ544gnmzJnT0/F7xkk2Xw3y8yF5cCi7DlewLaeMoeGBvRiciIi4i81mw2azUVFRwUcffcTXX3/Nvffe6/J5rNYuFC6oKcViayIq5xOsTd2rTjphaAgA+45UUllbT5Bft2bJ9xrHz61LP78BQOPX+Fs/e5vujr+z/Tr12zA0NJT//d//ZenSpbz99tt8+eWXrFq1itraY3c9EhMTmTNnDhdeeCGnnHJKl4LuNxzltY/shLoKCAhrd0haYji7DlewNaeMcycN7eUARUTEHe6//35ee+01AHx9fbn77ru54oorXD5PZmamy31MTUGkmX3xqytix/r3qQsd4fI5WosMMFNaZ+Pdr75jXLRft87V27ry8xtINH6N35v19Phd+mgoPDyc6667juuuuw6AyspK6urqiIiIwNfXt0cC7JNCB0PEMCg7BPnfwagz2x2SlhjBio05pB8q6/XwRETEPW688UaWLFlCSUkJa9eu5Q9/+AO1tbVcf/31Lp0nJSWla9Prdp8GB79grE8eprQfut6/lamZW1izu4jaoFjS0kZ061y9xWq1kpmZ2fWfXz+n8Wv8Gn/Xx+/ofzLduk8eGhpKaGhod07RfyXMMJKhnE0dJENGtZ7MvHKsNjsWs6mXAxQRke6Ki4sjLi4OgDPOOAOAxx57jIsvvphBgwZ1+jwWi6VLF3Nb0jw4+AWWg19gOv02l/u3lpoQyZrdRezIr+x3f1h19ec3UGj8Gr/G33Pjd3nTVWnmmCqX67yIwujYEIL9LNQ0WNl3pLIXAxMRkZ6SmppKU1MTOTk5vfL97KMWGC+y/wuNdd06l2PzVW0ILiJyjJKhrmoporDJadlTi9lESvOFR1PlREQGhg0bNmA2m0lMTOydbxg7ngb/KExNtXBofbdONam5otyB4mqq6rtXkEFEZKDoH+Vk+qIhKeATALWlcDQLoke3OyQtMZJvD5SwLbeMK2Z62ea0IiL92L333ktISAgpKSlER0dTWlrK6tWr+fDDD7n++utdmiLXLSYTFTHTic79GLLWQtK8Lp8qJtSfuPAA8svr2JFXzqxRUW4MVESkf1Iy1FU+fjA0DXK+Ne4OOU2GjE/hturOkIhIv5KWlsbbb7/NypUrqaysJCgoiHHjxvHoo49y0UUX9WosbZIh/tCtc6UkhJNfXkemkiEREUDJUPckTG9OhjZC2o/aNTuKKOwtrKSmoanf7OsgIuLtFi9ezOLFiz0dBgCVMdOMF4XbobIAQod0+VypCRF8vKOQDG2+KiICdGHN0B/+8AcOHDjQE7H0P4mOIgqbnDYPCQ9gSFgANrt2/RYRka5p8o/APmSy8UXW5906V0rzuqHMPF2TRESgC8nQqlWrWLRoEddddx2fffYZdifFA7yGo4hC4Q6or3J6yOTmqXLpOWW9FJSIiAw09qT5xoustd06jyMZOlhcTXltY3fDEhHp91xOhtatW8c999xDUVERt9xyC/Pnz2f58uWUlJT0RHx9W1gchCWA3WZsvuqEY6rcNpUyFRGRLrKPai6ckLUWbLYunycy2I/EQYEA7NDdIRER15OhoKAgfvzjH/P+++/zn//8h4kTJ/L3v/+dM888kzvvvLNTO70OKAnTjecOpsq13BlSEQUREemqxJngGww1xVDYvetsanwEABlKhkREurfP0OzZs3nyySdZs2YNU6ZM4Z133uGyyy5jyZIlrF3bvVv5/YZj3VCO82QoNSECkwnyy+s4UtG9DfNERMRLWfxg5Bzj9f413TqVY78hrWUVEelmMlRXV8cbb7zBjTfeyIYNG0hKSmLp0qVYrVaWLl3KsmXL3BVn35XQqoiCk/VTIf4+JMeGAlo3JCIi3ZC0wHju5rqh1OYNwTPyyroZkIhI/9elZOjQoUM89NBDzJ07l/vuu48hQ4bw7LPP8v7773PLLbfw9ttvc8MNN/DSSy+5O96+Z2iq8YldTTGUHnR6iIooiIhItzmKKBz6tsOiPZ0xKc64JuWU1FJa3eCOyERE+i2Xk6Gf/exnnHvuubz55ptcdNFFrF69mn/+85+ceuqpbY6bN28epaWlbgu0z/Lxh6HNJU9zNzs9xFFEQcmQiIh0WVQSRAwDWyNkf9Pl04QH+TIiKghQiW0REZeToZycHO666y6++uor7r77boYNG+b0uDFjxvDCCy90O8B+wVFiO2ej0+a0xAgAMnLLsdm8uBS5iIh0ncl07O5QN9cNpSREAEqGRERcToY+/vhjrrrqKoKDg094XEhICDNnzuxyYP2KIxnKdZ4MJQ8OIdDXQlV9E1lFXZ/aICIiXs5d64ZUREFEBOhmAQVp5kiGCrZDQ027Zh+LuWWju62aKiciIl01ci6YLHB0H5Qd6vJpUpqLKOjOkIh4Ox9XO8yfPx+TyeS0zWw2ExoaSkpKCldffTVJSUndDrBfCE+A0KFQeRjyt8KI09odkjYsgo3fl7Atp4zLpid6IEgREen3AiOM/e1yNhh3h6Zd26XTTIwLw2SCvLJaiqvqiQ7xd2uYIiL9hct3hmbOnIndbqewsJD4+HgmT55MXFwchYWFWK1Whg4dyqeffsrixYu9ZwNWk6nVVLkONl9tnp+tIgoiItItblg3FBrgy6hoY7q77g6JiDdzORk6/fTT8fPz49NPP+WFF17gscce48UXX+STTz7Bz8+Ps846i48//pgRI0bwxBNP9ETMfdNJkqG0YREA7C6opLbB2ktBiYjIgONYN3TwS7A2dfk0qY4iClo3JCJezOVk6J///Ce33norQ4cObfN+XFwcS5cuZfny5YSGhnLttdeSnp7urjj7vsQTb74aFx5ATKg/VpudHfm68IiISBfFTYGAcKgrh/zvunwax1rWDCVDIuLFXE6GsrOzCQkJcdoWFhZGXl4eAPHx8dTW1nYvuv5k6GQw+0BVodNFrSaTSVPlRESk+yw+MOpM43U3qsqlthRRKOt+TCIi/ZTLyVBcXBwrV6502vbWW2+13DEqKysjPDy8e9H1J76BMCTVeN3BVLkpzVPlVFFORES6xQ3rhibEhWE2QWFFPYUVdW4KTESkf3E5Gbr++utZvXo1V1xxBc899xzvv/8+zz33HFdccQWffvopP/vZzwDYsGEDkyZNcnvAfdrJ1g01b766TcmQiIh0hyMZytsMtWVdOkWQnw+jY42ZHlo3JCLeyuXS2pdddhl2u50nnniChx9+uOX96OhoHnjgAZYsWQLAjTfeiJ+fn/si7Q8SZ8LGpyHH+earKQnhmEyQW6pSpiIi0g0RwyBqjLHf0MEvYcJFXTpNSnwEewuryMgr56wJg90cpIhI3+dSMmS1Wjl06BDnnXcel112GQcOHKCsrIyIiAhGjRrVZv+h6Ohotwfb57VsvpoBjbXG1LlWwgJ8SYoJYf+RKtIPlenCIyIiXTd6gZEMZa3tcjKUmhDOW9/lkplb5t7YRET6CZemydntdhYtWsTWrVsxmUwkJSUxbdo0kpKSOtyI9WR27drFz3/+c84880xSU1OZOXMml19+Oe+8806XzudREcMgOBZsTXB4m9NDWqbK6cIjIiLd0bJuaK3TKqadkdJSRKECexfPISLSn7mUDPn4+BAdHe3WX5gVFRUMGTKEX/3qVyxfvpxHHnmE+Ph4fve73/GPf/zDbd+nV5hMbUtsOzG5ORlSRTkREemWEaeD2RfKD8HRrC6dYsLQMCxmE8VV9RSoiIKIeCGX1wwtWrSIVatWceaZZ7olgFmzZjFr1qw2782bN4/c3Fxef/11br75Zrd8n16TMB12v9/huqEprZIhm82O2dy1O2oiIuLl/IJh2Cnw/TrIWgPRo10+RYCvheTBoew6XEFGbjlDwwNP3klEZABxORkaN24cH374IVdffTULFy4kJiam3RS5hQsXdjuwyMhIjh492u3z9LqE4zZfPe5nM3ZIKP4+Zirrmjh4tJqkGOd7NomIiJzU6AXNydBamPWLLp0iNT6cXYcryMwt55yJQ9wcoIhI3+ZyMnTHHXcAUFhYyMaN7e9+mEwmdu3a5XIgNpsNm81GRUUFH330EV9//TX33nuvy+exWq0u92ndr6v9WwxJxWyyYKo8jLX0EIQntGk2AxPjwvjuUBnfZZcwYlDf+BTObePvpzR+jb/1s7fp7vi99efWJyTNh8/uh4ProKkBfFyv4pqSEM5rm3PIyFN5bRHxPi4nQy+88EJPxMH999/Pa6+9BoCvry933303V1xxhcvnyczM7FYc3e0PMC5sFMHl+8j+5k1K485s1x7n38B3wJqtWYwyFXX7+7mTO8bfn2n8Gr838/bx90uDUyA4BqqLIGcDjJzj8ilSHUUUcsuw2+1dLogkItIfuZwMzZw5syfi4MYbb2TJkiWUlJSwdu1a/vCHP1BbW8v111/v0nlSUlKwWCwuf3+r1UpmZmaX+7dmOnwGbN7HCJ8ihqeltWs/23yY9/dtI6/OhzQn7Z7gzvH3Rxq/xq/xd338jv7iAWYzjJoHma8b64a6kAyNHRKKr8VEaU0juaW1JA4K6oFARUT6JpeTIYfKykrS09MpLS3ljDPOIDw8vFuBxMXFERcXB8AZZ5wBwGOPPcbFF1/MoEGDOn0ei8XSrT9mutsfMCrKbf435rzN4ORcU4cb49ldUEmjzVjA2le4Zfz9mMav8Wv83jv+fmv0guZkaC2cdb/L3f19LIwbEkZmXjmZeeVKhkTEq7hUWtth2bJlzJkzhxtuuIE77riD3NxcAK655hqWL1/ulsBSU1NpamoiJyfHLefrVYnNm68e3gZN9e2aEyIDiQr2o9FqZ+fhil4OTkREBpRR84znw9ugqmtTrx37DWXkat2QiHgXl5Ohl19+mWXLlnHppZfy9NNPt9lzaN68eXzxxRduCWzDhg2YzWYSExPdcr5eFTkSgqLA2gCHM9o1m0ymls1X0w+V9W5sIiIysIQONtYOARz4okunSIl3bL5a5p6YRET6CZenyb388stce+21/O53v2tXQWj48OFkZ2e7dL57772XkJAQUlJSiI6OprS0lNWrV/Phhx9y/fXXuzRFrs8wmYwS23s/gtyNx+4UtTI5MYI1u49o81UREem+pHlQmGmsG0pd4nJ3RzKUkVuuIgoi4lVcToZycnKYM8f5As3g4GAqKlyb9pWWlsbbb7/NypUrqaysJCgoiHHjxvHoo49y0UUXuRpe35E4ozkZ2uS02XFnaFtuWe/FJCIiA9PoBfDfx411Q072uDuZ5MGh+DXvgZd9tIYR0cE9FKiISN/icjIUGhpKcXGx07a8vDyioqJcOt/ixYtZvHixq2H0fQnNd4NynCdDkxMiAMg+WkNJdQODgl3fG0JERASAxFPAJxCqCqFwBwyZ5FJ3Px8z44eGsS2njMy8ciVDIuI1XF4zNHv2bP79739TU1PT8p7JZKKpqYkVK1Zw+umnuzXAfituKpjMUJELFfntmsODfBnVfLHZpqlyIiLSHb4BMKL5+pu1tkunSG1ZN6QiCiLiPVxOhm677Tby8/NZtGgRDz/8MCaTiZdeeoklS5aQnZ3NzTff3BNx9j/+IRA70Xh9kqlyWjckIiLdljTfeM5a06XuxyrKlbkpIBGRvs/lZGj48OGsWLGCUaNGsWLFCux2O++88w6RkZG88sorLXsFCccKJ+RsdNo8WcmQiIi4y+gFxnP2emioOfGxTqQ2J0Pb8yqw2ewnOVpEZGDo0qaro0eP5plnnqGhoYHS0lLCw8MJCAhwd2z9X8IM2Pws5G522ty6iIKq94iISLdEJ0NYPFTkQfZ/YcxZLnUfHRNCgK+ZqvomDh6tJikmpIcCFRHpO7q06aqDn58fgwcPViLUkYSZxnP+VmhqaNc8fmgYfhYzZTWNZB91/VM8ERGRFiZTq6lyrq8b8rGYmRjXvG5Im6+KiJfo0p2h3NxcPvroI/Lz86mrq2vTZjKZ+NOf/uSW4Pq9qCQIjITaUmP/h/hpbZr9fMxMiAsjPaeM9JwyVe8REZHuSZoPW1/s+rqh+HC2ZJeSkVvOD6fEuzk4EZG+x+Vk6IsvvuCWW27BZrMxaNAg/PzaloTWVK9WTCZjqty+T4wS28clQ2BMlXMkQ7rwiIhIt4w6EzBB0W4oz4Nw164rjnVDmXllbg9NRKQvcjkZ+utf/8rUqVP561//6vKeQl4pYaaRDOVuAm5s1zxlWATP/VdFFERExA2CBkH8VMjbYkyVm3qVS91bF1Gw2uxYzPqAU0QGNpfXDGVnZ3PDDTcoEeqshOnGc24HFeWaN1/dmV9BfZO1l4ISEZEBK6m5qlwX1g2NjA4h2M9CbaOVrKIqNwcmItL3uJwMxcXFtdlwVU4ifhpggrJDUFnYrnl4VBCRQb40WG3sOlzZ+/GJiMjA4iiicOBzsLn2IZvFbGopopChIgoi4gVcToZ+8Ytf8Oyzz1JbW9sT8Qw8AWEQO9547WTzVZPJ1LLf0DZNlRMRke5KmA7+YUbxnsPpLnd3bL6aqc1XRcQLuLxmKDMzk6NHj3L22Wcza9YsIiMj2x1zzz33uCW4ASNhBhzZaUyVG39Bu+bJCRF8saeI9JwyrvFAeCIiMoBYfGHkXNj9Puxf67R4z4kcK6KgO0MiMvC5nAy99NJLLa8/+OCDdu0mk0nJ0PESZ8J3z3e8+eqwCEBFFERExE2S5hvJUNZaOOO3LnVNiTeSoR35FTRZbfhYurUloYhIn+ZyMrR79+6eiGNgS5hhPOd9B9ZG41O7VtKaiygcLK6mrKaBiCA/REREusyxbih3I9RVGFO2O2lEVDCh/j5U1jex70gV44d2vq+ISH+jj3t6Q9QYCAiHploo3NGuOTLYj+FRQQBs04JVERHprkEjYdAosDXB9+tc6mo2m5gU71g3pGuSiAxsnUqGNm3aRHV19UmPKykp4c033+x2UAOO2QzxjhLb7YsogLH5KkD6obLeiUlERAY2x92h/Wtc7upYN5ShzVdFZIDrVDJ09dVXk5WV1fK1zWZj0qRJ7Ny5s81xOTk53Hvvve6NcKBInGk85zjfb8iRDG1T9R4REXGHbuw3dKyinO4MicjA1qlkyG63t/u6qamp3ftyAo51Qx3cGXKU107PKdPPVUREum/E6WD2gdKDUHLApa6p8REA7DpcSUOTrQeCExHpG7RmqLc4SpuWHoSqonbNE4aG4WsxUVLdQE6J9nASEZFuCgiDxFnGaxfvDiUOCiQ80NgQfG+hNgQXkYFLyVBvCYyAmHHG67z2JbYDfC1MaK7Yk66pciIi4g5J84zn/a4lQyaT6di6IU2VE5EBTMlQb0poLqLQwbqhySqiICIi7uRYN3TwK2NrBxc49hvKVBEFERnAOr3P0IEDB7BYLABYrdaW944/Rk4gYSZsfemEFeVeWJ9Nek5pLwcmIiID0tDJEDgIakuMa8/wUzvd1ZEM6c6QiAxknU6G7rrrrnbv/e53v2vztd1ux2QydT+qgarN5qtNYGn743dUlNueX0Gj1Yavdv0WEZHuMFuMqXLb3zLWDbmSDDVPk9tTUEldo5UAX0tPRSki4jGdSoYeeuihno7DO8SMA/8wqK+AIzthaGqb5hFRwYQF+FBR18Tuw5UtFyIREZEuS5pvJEP718D8ezrdLT4ikEHBfpRUN7CnoLJlKreIyEDSqWTo4osv7uk4vIPZbFSVO/C5MV3huGTIbDYxOTGCdfuKSc8pVTIkIiLd59h8NX8r1JRA0KBOdTOZTKTEh/Pl3iIy8sqVDInIgKR5WL3tJPsNTWnZb0hztEVExA3C4iBmPGA3PoxzQWrL5qtl7o9LRKQP6PSaIXGTxJnG80k3X1URBRERT1m/fj3vvvsuW7dupaCggNDQUCZNmsTSpUuZNGmSp8Nz3egFULTLWDc0aXGnu6mIgogMdLoz1Nscm68e3W9MVziOIxnKKqqmos61MqgiIuIeK1asIC8vj6uvvprly5dz9913U1JSwuWXX8769es9HZ7rWu83ZLd3ultqQgQA+45UUdtg7YHAREQ8S3eGelvQIIgaA0f3Qe5mSF7Ypjk6xJ+EyEByS2vJyCnn9DHRHgpURMR73XfffURFRbV5b86cOSxcuJCnn36a2bNneyiyLhp+Glj8oTIfivZA7LhOdRsc5k9MqD9FlfXsPFzBtOGRPRyoiEjv0p0hT2hZN+R889U0TZUTEfGo4xMhgODgYJKSkjh8+LAHIuom38BjZbWz1nS6m8lkIjVe64ZEZOBy6c5QXV0d1157Lbfddhunntr5vQrkOIkzYNsrkNNxMvR+xmEVURAR6UMqKyvZuXMnp5xyist9HZuVd7VfV/u3Zho1D/OBz7HvX4Nt5o2d7jcpLow1u4+wLbfMLXG4wp3j7480fo2/9bO36e74O9vPpWQoICCAvXv3YrFo47VuSWguopD3HdisxqZ4rRy7M1SmjWxFRPqIBx54gNraWm68sfOJhENmZma3vnd3+wMENMYxEbAf/JptWzZit/h1ql9wQx0Am7KOkJ6e3u04usId4+/PNH6N35v19PhdXjM0ZcoUMjIymDVrVk/E4x1ix4NfCDRUQtFuGDyxTfOk+HB8zCaKq+rJK6slITLIQ4GKiAjA3/72N9577z3uvffeLlWTS0lJ6dIHiVarlczMzC73b8M+GfuWezBXFTA5sgZGzexUt/ikev709efkVTYxZvwkgv17b7mxW8ffD2n8Gr/G3/XxO/qfjMu/0e644w5uvvlmYmJiOPvsswkODnY5OK9ntkD8VDj4lVFi+7hkKMDXwrihoWzPq2BbTrmSIRERD3ryySd56qmn+NWvfsVPfvKTLp3DYrF064+Z7vZvkTQftr2C5eDnMGZBp7oMiQhiaHgAh8vr2F1YzcyRndu01Z3cNv5+SuPX+DX+nhu/ywUULr/8cgoKCrjrrruYPn06U6ZMYerUqS2PadOm9UScA4+jiEJOB/sNNZczVREFERHPefLJJ3niiSe49dZbuzQ9rs8Z3ZwAZbm2+eqklv2GytwckIiIZ7l8Z+icc87RGhZ3SDjx5qtpiRG8vOEQ6TllvReTiIi0WLZsGU888QQ33XQTt9xyi6fDcY9RZwImKNwOlQUQOqRT3VLjw/l0ZyHb81TYR0QGFpeToYcffrgn4vA+CdON5+I9UFsKgW33bpgyLAKAzLxymqw2fCyqgi4i0lueffZZHn/8cebMmcOZZ57ZrnBAWlqaR+LqtuBoGDoZDqcbd4fSftSpbikJzXeGlAyJyACjTVc9JTgaBo2CkgOQuwXGnNWmeVR0CKH+PlTWN7GnsJKJceEeClRExPt8/rkxjWzdunWsW7euXfuePXt6OyT3SZrfnAyt6Xwy1DxN7kBRNZV1jYQG+PZggCIivafLydDevXvJysqivr6+XdsPf/jD7sTkPRJmNidDm9olQ2azidTEcL7Zf5T0nDIlQyIivejFF1/0dAg9Z/QC+Pox486QzQbmk888iArxJz4ikLyyWrbnVTA7qf2mtCIi/ZHLyVBtbS033XQT3377LSaTCbvdDtBmHZGSoU5KmA4Zr0Jux5uvfrP/KNtyyvjxrOG9HJyIiAxICTON7R1qiqEgA+LSOtUtNSGcvLJaMvPKlAyJyIDh8kKUf/zjH+Tl5fHSSy9ht9t58skn+c9//sPZZ5/N8OHDWblyZU/EOTAlOooobDE+nTvOsYpyZb0Xk4iIDGw+fjBijvE6a22nu7WsG8rVuiERGThcTobWrFnDDTfcwJQpUwAYOnQos2fP5vHHH2fixIm88sorbg9ywIqdCL5BUF8OxXvbNac1F1HYd6SKyrrGXg5OREQGrKT5xrMLyVBqfARgFPYRERkoXE6G8vLyGDVqFBaLBZPJRG1tbUvbhRdeyJo1a9wa4IBm8YG4qcZrJyW2Y0MDiI8IxG7XxUdERNzIsd/QoW+hvqpTXRxFFLKP1lBeow/oRGRgcDkZCg0NpaamBoCoqCiys7Nb2pqamlrapJMSmzdf7WDd0ORE4+KjqXIiIuI2g0ZBxDCwNcL3X3eqS3iQL8OjggB9QCciA4fLydDYsWP5/vvvAZg1axZPP/00mzdvJiMjg2XLljFu3Dh3xziwJTQnQzkdb74KkH6orHfiERGRgc9kgqTmu0OurBuKd+w3VNYDQYmI9D6Xk6HFixdTXV0NwP/8z/9QW1vLVVddxeWXX05+fj533nmn24Mc0BzJUNFuqGv/SVtaorEZ67bcsl4MSkREBryWdUOdn96e2lxEIVNFFERkgHC5tPb555/f8joxMZGPP/64pcz2lClTiIiIcGd8A19ILEQMh7JsyNty7OLUbFJ8GBazicKKeg6X1zI0PNBDgYqIyIAyci6YLHB0P5RmQ+TJt3CYFK+KciIysLh8Z+h4QUFBzJ8/n3nz5ikR6qqWEtub2zUF+fmQPDgU0FQ5ERFxo8AIY7876PRUOUcylFdWS0l1Qw8FJiLSe7qdDIkbtKwb6njzVYB0TZUTERF3cnHdUFiAL6OigwEVURCRgaFT0+TGjRuHyWTq1AlNJhM7d+7sVlBex5EM5W4yNl81t81R0xLDWbFRd4ZERMTNkubDF3+CA1+CtcnY8uEkUhLCOVBcTWZuGWckx/RCkCIiPadTydDSpUs7nQxJFwxJAZ8AqCuDkiyIHtOm2VFEITOvHKvNjsWsfwsREXGD+KkQEG4U8Mn/7ti07RNIiQ/nnfR8rRsSkQGhU8nQrbfe2tNxeDeLL8RNgUPrjalyxyVDo2NDCPazUN1gZd+RSsYNCfNQoCIiMqCYLTDqTNj5Duxf06lkKDUhAtA0OREZGLRmqK9oPVXuOBaziZTmcqaaKiciIm7l4rqhiXFhmExwuLyOI5V1PRiYiEjPc7m09qpVq056zA9/+MMuhOLlTpAMgTFV7tsDJaTnlHHFzGG9GJiIiAxoji0d8jZDbSkERp7w8GB/H0bHhLDvSBXb88qZPy6gF4IUEekZLidDHW2q2npNkZKhLnAkQ0d2Qn0l+Ie2aW6pKJdT1rtxiYjIwBaRCNHJULwXDn4FEy46aZeUhHD2HakiI7ec+eMG90KQIiI9w+VkaM2a9jtVl5aWsmbNGj788EP++te/uiUwrxM2FMIToTwH8r6DUWe0aXYkQ3sLK6mubyLY3+V/OhEREeeS5hvJ0P41nUqGUuPDefu7PDJVREFE+jmX/6KOj493+t6kSZNoamrihRde4OGHH+70+davX8+7777L1q1bKSgoIDQ0lEmTJrF06VImTZrkanj9W8IMIxnK3dguGRoSHsCQsAAKKurYnlfOrFFRHgpSREQGnKQFsOGfkPU52O1wkgqyKc1FFDLyyrHb7ao4KyL9llsLKMyePZu1azu3ANNhxYoV5OXlcfXVV7N8+XLuvvtuSkpKuPzyy1m/fr07w+v7HFV8cjc7bZ6c2FxEQVPlRETEnUacBhY/KD8ER/ef9PAJQ8OwmE0UVdZTWFHfCwGKiPQMt861ysvLw2x2Lb+67777iIpqe5djzpw5LFy4kKeffprZs2e7M8S+rXURBSefzKUlRvLxjkIlQyIi4l5+wTDsFGPNUNbadls8HC/Qz8KY2BB2F1SSkVvGkPAhvRSoiIh7uZwMbdrUvtpZQ0MDe/bs6VLycnwiBBAcHExSUhKHDx92Nbz+bUgqWPyh5iiUHICopDbNjnVD25QMiYiIuyXNN5Kh/Wtg1i9OenhKfDi7CyrJzCtn4UQlQyLSP7mcDF111VXt5gbb7XYATj31VO69995uB1VZWcnOnTs55ZRTun2ufsXHD4ZONtYM5W5qlwylJIRjMkF+eR1HKuqIDVM5UxERcZOkBfDZ/fD9OmiqBx//Ex6emhDOG1tytfmqiPRrLidDL7zwQrv3/P39iY+PJzo62i1BPfDAA9TW1nLjjTe63NdqtXbpezr6dbW/u5gSpmPO3YgtZyP2SUvatAX6mBgTG8Lewiq2ZJewcIL7ypn2lfF7isav8bd+9jbdHb+3/twGnMGTIDgGqosgZwOMnHvCwx1FFDJzVURBRPovl5OhmTNn9kQcLf72t7/x3nvvce+993apmlxmZma3vn93+3dXRGMMSUDd3i/ZNTS9XXtikJW9wKdb9hLb4P5phJ4ev6dp/Bq/N/P28Xs9s9mYKpfxmrFu6CTJ0LghofiYTRytbiC/vI74iMBeClRExH1cToYOHjxIUVGR06Ro48aNxMbGMmLEiC4F8+STT/LUU0/xq1/9ip/85CddOkdKSgoWi8XlflarlczMzC73d5tRMbDlAQIrD5I2YYyxqLWVeQ05rDm4g8MN/qSlpbnt2/aZ8XuIxq/xa/xdH7+jvwwAjmRo/xo46/4THhrga2HskFB25FeQmVumZEhE+iWXk6GHH36YESNGOE2GPv/8cw4ePMg///lPlwN58skneeKJJ7j11lu7ND3OwWKxdOuPme7277bIYRAWj6kiD0thBow4vU3z1OGDAMjMqwCTGYvZvdMSPD5+D9P4NX6N33vHL8CoecZzQQZUFUFIzAkPT00IZ0d+BRm55Zw7aWgvBCgi4l4u7zOUmZnJjBkznLbNmDGD7du3uxzEsmXLeOKJJ7jpppu45ZZbXO4/4CRMN55zNrZrSh4cQqCvhar6Jg4UVfVyYCIiMqCFDobBKcbrA5+f9PCU+AgAFVEQkX7L5WSosrKSoKAgp20BAQGUl7v2C/HZZ5/l8ccfZ86cOZx55pmkp6e3eXilhI43X/WxmEmJNzZf3aoS2yIi4m6j5xvPWSffRD01wbgeZTQXURAR6W9cniY3ePBgMjIyOPXUU9u1ZWRkEBNz4lvqx/v8c+OTp3Xr1rFu3bp27Xv27HE1xP6vZfPVjc43Xx0WwcbvS0jPKeOy6YkeCFBERAaspPnwzd+NZMjJNai15MGh+FnMlNc2klNSy7Ao5x+Wioj0VS4nQ2eddRbLly8nLS2tzT5AGzZs4F//+heXXnqpS+d78cUXXQ1h4Bs6Gcy+RnnTsmyIHNGmWZuviohIjxk2G3wCoaoQCnfAkI4ru/r5mBk/NJRtueVk5JUpGRKRfsflaXJLly4lLi6O6667jvPOO6/l+dprryUuLo5bb721J+L0Lr4BRkIEkLOpXfPk5mRod0EltQ3a30NERNzIx/9Y8Z6sNSc9PKV5qlxmrtYNiUj/43IyFBoaymuvvcYtt9xCeHg4+fn5hIeHc+utt/Lqq68SEhLSE3F6n9ZT5Y4TFx5ATKg/Vpud7fm6+IiIiJuNXmA8d2bdUHMRhQwlQyLSD7k8TQ4gODiYpUuXsnTpUnfHIw6JM2DDU5Db/s6QyWQiLTGCT3cWsi2njBkjBnkgQBERGbCSmosoZK+Hhhrw63j626Tmoj7b88qx2eyY3bzlg4hIT3L5zpBDZWUl69at491333W5gpx0guPOUEEmNNa2a3asG1JFORERcbvoZAhLAGs9ZP/3hIeOGRyCv4+ZyvomsktqeilAERH36FIytGzZMubMmcMNN9zAHXfcQW5uLgDXXHMNy5cvd2uAXis8EUKGgK0J8tPbNTuSofRDZb0aloiIeAGTCZKaN2A9ybohX4uZCXFhAGTklvVwYCIi7uVyMvTyyy+zbNkyLr30Up5++uk2+wrMmzePL774wp3xeS+T6djmq07WDaUkhGMyQV5ZLUWV9b0cnIiIDHgurRtSEQUR6Z+6lAxde+213HPPPZx++ult2oYPH052drbbgvN6iY7NV9uvGwoL8CUpxihWoRLbIiLidiPPAJMZinZDee4JD01JiAAgI0/JkIj0Ly4nQzk5OcyZM8dpW3BwMBUVFd0OSpolNCdDOZuMje+O0zJVTsmQiIi4W9AgiJtqvM76/ISHpjaX196RV47V1v56JSLSV3WptHZxcbHTtry8PKKiorodlDSLSwOzD1QVQHlOu+aWzVc1R1tERHqCo6rcSabKJcWEEOhrobrBysHiql4ITETEPVxOhmbPns2///1vamqOVYwxmUw0NTWxYsWKdlPnpBt8A2FIivHayVS51neGbPokTkRE3M2xbujA52DreJNvi9nEpHhHEQVNlROR/sPlZOi2224jPz+fRYsW8fDDD2MymXjppZdYsmQJ2dnZ3HzzzT0Rp/dylNjOaZ8MjR0SapQzrWviQHF1LwcmIiIDXvw08A+D2lI4nH7CQ1O0+aqI9EMuJ0PDhw9nxYoVjBo1ihUrVmC323nnnXeIjIzklVdeIS4urifi9F4JHRdR8LWYSWmu4KMiCiIi4nYWXxg513i9/8RT5RzrhjJVREFE+hGfrnQaPXo0zzzzDA0NDZSWlhIeHk5AQIC7YxM4Vl778DZorAPftj/nyYkRbM4uJT2njMXTEjwQoIiIDGhJ82H3+8a6oTN+2+FhKY4iCvnlNFlt+Fi6vK+7iEiv6dZvKj8/PwYPHqxEqCdFjoDgGLA1QkFGu2ZVlBMRkR7lWDeUuxHqOq4YOzIqmBB/H+oabewvUhEFEekfOnVnaNWqVS6d9Ic//GEXQhGnTCZjqtyeDyBn47G9h5o5kqFdhyuoa7QS4GvxQJAiIjJgRY6AQaOg5AB8vw7GLXJ6mLm5iMK3B0rIyC1n3JCw3o1TRKQLOpUM3XnnnZ0+oclkUjLkbgnTjWQod2P7pshAooL9OFrdwI78CqYNj/RAgCIiMqAlLTCSof1rOkyGAFLiw/n2QAnb88q5bHpiLwYoItI1nUqG1qxZ09NxyIk47gblbm7XZDKZSEuMYM3uI6TnlCkZEhER90uaD5v+ddL9hlISIgBVlBOR/qNTyVB8fHxPxyEnEjcFTBaoyIPyPAhv++8xuTkZUkU5ERHpESPnGJuAlx407hANGuX0sNTmCqc7D1fQaLXhqyIKItLHdfm3VFVVFV9//TXvv/8+33zzDVVVWizZY/yCYfBE4/VJNl8VERFxO/9QSJxlvD7B3aHhUUGEBvjQ0GRjb2FlLwUnItJ1XUqGnnnmGebMmcMNN9zAb37zG372s58xZ84c/vOf/7g7PnFI7Hi/ocnN0xIOldRQUt3Qi0GJiIjXSJpvPJ9gvyGTyXRsvyFNlRORfsDlZGjVqlX8+c9/ZsaMGTz22GO8/PLLPPbYY8ycOZNHH33U5cpz0kkJM4xnJ8lQeJAvo6KDAW2+KiIiPcSRDB38CqyNHR6WEh8BQIY2XxWRfsDlZOi5557jggsuYPny5Zx33nlMmzaN8847j6effppFixbx/PPP90Sc4kiG8tOhqf3dH8dUua1KhkREpCcMTYPAQdBQ6fSDOQfdGRKR/sTlZOjAgQP84Ac/cNr2gx/8gKysrG4HJU4MGgVBUWCtd7756rAIQHeGRESkh5jNkDTPeH2CdUMpzUUUdhdUUN9k7Y3IRES6zOVkKCAggPJy55/2lJeXExAQ0O2gxAmT6YRT5RzrhrbllmG323sxMBER8RpJC4zn/R1vuZEQGUhkkC+NVjt7ClREQUT6NpeToWnTpvHkk09SWFjY5v2ioiKWLVvG9OnT3RacHCeh+Web037z1fFDw/DzMVNW08j3R2t6OTAREfEKjjtD+VuhpsTpISaTSfsNiUi/0al9hlq7/fbbueKKK1i4cCGzZ88mJiaGoqIivv32W3x8fHjyySd7Ik4BSOh481U/HzMT48LYeqiMbTlljGwuqCAiIuI2YXEQOwGO7IQDn8OkxU4PS40P56u9RVo3JCJ9nst3hsaMGcObb77JggULyMzM5O233yYzM5MFCxbwxhtvMHr06J6IUwDip4LJDOWHoLKgXbNjqpz2GxIRkR7jqCp3onVDzUUUVFFORPo6l+8MAYwcOZLHHnvM3bHIyfiHGp/IFW431g2Nv7BN85RhETz3X1WUExGRHpQ0H9Y/aew3ZLcba1qP4yiisK+wkrpGKwG+lt6OUkSkU7q06ap4kKOIgpN1Q47y2rvyVcFHRER6yPBTwScAKvOhaI/TQ4aGBxAd4keTzc6uwxW9HKCISOd16c7Qzp07ee+998jPz6e+vr5Nm8lk4qmnnnJLcOJEwgzY8h+nFeWGDQoiMsiX0ppGdh2ubEmORETENVVVVfzjH/9g9+7d7Ny5k9LSUm655RZuvfVWT4fmeb6BRkKUtRay1kDsuHaHmEwmUuLD+XxPEZl55UwZFumBQEVETs7lO0OrVq1i8eLFvPDCC3z33Xfs3bu33UN6UGJzEYX8re12ADeZTExuToDSD5X2cmAiIgNHWVkZr7/+Og0NDZx11lmeDqfv6dS6oQhAFeVEpG9z+c7QU089xRlnnMEjjzxCeHh4T8QkJzIoCQIioK4MCjKNogqtpCVG8MWeIrbp4iMi0mXx8fFs2rQJk8lESUkJb7zxhqdD6luSFgD3wPffQGMd+LbfYzC1ed2QKsqJSF/m8p2hI0eOcPXVVysR8hSzudXmq+1LbLfcGVIRBRGRLjOZTJicFAaQZrHjIXQoNNXCofVOD3FUlNt3pJKahqbejE5EpNNcvjM0fvz4dhuuSi9LnAn7P4XcjTDr522a0pqnJRwsrqaspoGIID8PBCgiIq1ZrV0rauPo19X+Pck06kzM21Zg2/8Z9hFz27VHB/syONSfwsp6MnPLmD7c9XVDfXn8vUHj1/hbP3ub7o6/s/1cToZ+97vfcddddzF+/HjGjWu/aFJ6QcJ049lJEYXIYD9GRAXx/dEatuWWc0ZyTC8HJyIix8vMzPRo/54QaRnFKKBux4fsir7E6THDQqGwElZv3IlPadc3A++L4+9NGr/G7816evwuJ0NpaWksXLiQiy++mJiYmHbT5UwmE++++67bAhQn4qcBJij9HqqKIKRtwjM5MYLvj9aQfqhMyZCISB+QkpKCxeL6XjtWq5XMzMwu9+9RyYnYv/sTQRUHSEsaAqFD2h1yWsl+NuXvp5RQ0tJSXf4WfXr8vUDj1/g1/q6P39H/ZFxOhpYvX87TTz/NoEGDiIuLw9fX1+XgpJsCwiFmHBTtMqbKjVvUpjktMYJ30vNJz1FFORGRvsBisXTrj5nu9u8RobEwdDIcTsfy/VeQ9qN2h0xuLqmdmVc+8MbfizR+jV/j77nxu5wMvfDCCyxevJgHH3zQq/9hPC5xRnMytMlpMgSwLbccu92uRcAiItIzRi+Aw+nGfkNOkqGU5opyB4qrqaxrJDRAH6CKSN/icjW56upqLrjgAiVCnuaoKJfTft3Q+KFh+FpMlFQ3kFNS28uBiYiI12jZb+hzsNnaNUeH+BMfEYjdDjvyK3o5OBGRk3M5GZo6dSpZWVk9EYu4IsGx+ep3YG1bsjTA18KEoWEAbNVUORGRLvnyyy9ZvXo1n3/+OQD79+9n9erVrF69mtpafdAEGNcivxCoKYaCDKeHOO4Obc/TfkMi0ve4PE3u7rvv5rbbbmPIkCHMnTsXPz+VbvaI6GTwD4f6cjiyw5i33UpaYgTbcsvZllPORWnxHgpSRKT/euCBB8jLy2v52pEIAaxZs4aEhARPhdZ3+PjBiDmw9yPIWgtxae0OSUkIZ/WOAjK0+aqI9EEuJ0OLFy+mqamJW2+9FZPJREBA212nTSYTW7ZscVuA0gGzGRKmGRefnI3tkqHJiRGwPltFFEREumjt2rWeDqF/GL3gWDI05/Z2zY47Q5m6MyQifZDLydA555yjBfl9RcJM4+KTuxlm3tCmyVFEYXt+BQ1NNvx8XJ4RKSIicnKOdUOHvoX6KvAPadPsSIYOFldTXttIeKCKKIhI3+FSMmS1WvnFL37BoEGD2u0vJB7gKKKQu7Fd08joYMICfKioa2JPQSUpCfr3EhGRHjBoFEQMh7Js+P5rGHtum+bIYD8SBwWSU1LLjrxyTh0d7aFARUTac+l2gd1uZ9GiRaSnp/dQOOKShGnGc8kBqD7apslkMhlT5UBT5UREpOeYTK2qyjmfWpgaHwFAhqbKiUgf41Iy5OPjQ3R0NHa7vafiEVcERkL0WON1bvsS21Oak6GtOWW9F5OIiHif0QuM56w1TpsdsxMyVURBRPoYlxeSLFq0iFWrVvVAKNIlLVPl2idDjjtD25QMiYhITxo5F0wWOLofSrPbNac2rxvKyCvr5cBERE7M5QIK48aN48MPP+Tqq69m4cKFxMTEtCuosHDhQrcFKCeROAPSX3K6bshRRCGrSItWRUSkBwWEGx/O5XxrTJWbfl2b5onNyVBOSS2l1Q1EBmtbDhHpG1xOhu644w4ACgsL2bix/R/gJpOJXbt2dT8y6RzHnaG878BmBbOlpSkqxL9l0Wpmbjmnj9GiVRER6SFJ8ztMhsIDfRkZHczB4moy88qZmxzjoSBFRNpyORl64YUXeiIO6aqYceAXCg2VcGQXDJnUpnlyQgQ5JbWk55QqGRIRkZ4zegF88Sc48CVYm8DS9k+MlPhwJUMi0ue4nAzNnDmzJ+KQrjJbIH4qHPzSmCp3XDKUlhjB+xmHSde6IRER6UlxUyAgAurKIP87SGz790JqQjjvbssnI7fME9GJiDjV5Z04KysrWbduHe+++y7l5aoO41GOC07u5nZNU4ZFAJCeU64qgCIi0nPMFhh1pvF6f/uqco7NV7fnVfRiUCIiJ9alZGjZsmXMmTOHG264gTvuuIPc3FwArrnmGpYvX+7WAKUTEpqToZz2a7gmxoXjYzZRXFVPXlltLwcmIiJepaXEdvv9hibGh2MyQV5ZLcVV9b0cmIiIcy4nQy+//DLLli3j0ksv5emnn25zt2HevHl88cUX7oxPOiNhuvF8dB/UlLRpCvC1MG5oKICmyomISM9ybL6atxlq2274HeLvw6joYAAytfmqiPQRXUqGrr32Wu655x5OP/30Nm3Dhw8nO7v9/gLSw4IGQdRo43XelnbNadpvSEREekN4grEZuN0GB79q15yaEAFo81UR6TtcToZycnKYM2eO07bg4GAqKjQX2CMcJbadTJWb3Hzx0Z0hERHpcY67QydYN5ShZEhE+giXk6HQ0FCKi4udtuXl5REVFdXtoKQLHMlQ7qZ2TY4iCpl55TRabb0YlIiIeJ2WdUOfw3GFe1ITjGQoM6+sl4MSEXHO5WRo9uzZ/Pvf/6ampqblPZPJRFNTEytWrGg3de5kqqqqePTRR/npT3/KKaecwtixY3niiSdcDUtaNl/dAra2Cc+o6BBC/X2oa7Sxt7DSA8GJiIjXGH4qWPyg/BAc3d+maUJcGGYTFFbUU1hR56EARUSOcTkZuu2228jPz2fRokU8/PDDmEwmXnrpJZYsWUJ2djY333yzS+crKyvj9ddfp6GhgbPOOsvVcMQhdgL4BkN9BRTvadNkNptITTQ+jdNUORER6VF+wTBstvH6uKpyQX4+jIk1ivpo3ZCI9AUuJ0PDhw9nxYoVjBo1ihUrVmC323nnnXeIjIzklVdeIS4uzqXzxcfHs2nTJl566SVuv/12V8MRB4uPsfkqOF035CiikH6orPdiEhER73SidUPNU+UyVFFORPoAn650Gj16NM888wwNDQ2UlpYSHh5OQEBAlwIwmUxd6idOJMyA79cZ64amXdOmKS0xEoBt2vlbRER62ugF8Nl9xjWpqR58/FuaUhPCeXNLLpm6HolIH+ByMnTXXXdx8803k5iYiJ+fH4MHD25py8vL48knn+Shhx5ya5CusFqt3erX1f59Qvx0LIA9ZyO248aREmdMS9h3pIqy6npCA9r+0w+I8XeDxq/xt372Nt0dv7f+3OQEYidCcCxUH4GcDTBybkuTo6JcZl45drtdH4qKiEe5nAytXLmSH/3oRyQmJrZrKy0tZdWqVR5NhjIzMz3a35N86v2ZDJiK95C56WusviFt2qODzBTX2Fj11RZSYv2dnqM/j98dNH6N35t5+/jFjcxmY6pcxqvGuqFWydD4oWH4mE0UVzVwuLyOuIhADwYqIt6uS9PkOlJeXo6fn587T+mylJQULBaLy/2sViuZmZld7t9X2DeNxFR6kJRBDZCU1qZt5q50PtxeQLV/DGlpo9q0DZTxd5XGr/Fr/F0fv6O/SBuOZGj/Gjjr/pa3A3wtJA8OZefhCjLzypUMiYhHdSoZ2rRpExs2bGj5+o033uCrr9ruLF1fX8+aNWtISkpyb4Quslgs3fpjprv9PS5hBpQexJK/BZLPbtOUNiyCD7cXsC23vMMx9vvxd5PGr/Fr/N47fnGzpHnGc0EGVBVBSExLU2pCuJEM5ZZzzsQhHgpQRKSTydCGDRt48sknAaPgwRtvvOH0uLi4OH7/+9+7LzpxXeJMyHzd6earjiIK6TllmqctIiI9KyQWhqRAQSYc+BxSL2tpmhQfDptyVFFORDyuU8nQz372M3784x9jt9s59dRTeeaZZ5gwYUKbY/z8/AgODu6RIMUFjs1XczcZm6+aj1VPnxQfhsVs4khlPQUVdQwN19QEERHpQUkLjGQoa22bZCi1ubx2Zq4+nBMRz+pUMhQQENBSOnvNmjXExMS4dW3Ql19+SW1tLdXV1QDs37+f1atXA3DGGWcQGKg/2jtt8ETwCYS6cmPn75jklqYgPx+SB4ey63AF6YfKGJqin6uIiPSgpPnwzd+MZMhuh+akZ+yQUHwtJkprGsktrSVxUJBn4xQRr+VyAYX4+Hi3B/HAAw+Ql5fX8vXq1atbkqE1a9aQkJDg9u85YFl8jc1Xs7+B3I1tkiEwNl/ddbiC9JwyzksZ6qEgRUTEKww7BXyDoKoQCnfAkEkA+PtYGDckjMy8cjLzypUMiYjHuJwMNTY28q9//Yv333+f/Px86uvr27SbTCZ27tzp0jnXrl3rahhyIgnTjWQoZyNM+UmbpimJEazYeIj0nDLPxCYiIt7Dxx9GnA77PoGsNS3JEEBKQjiZeeVk5JZzvj6cExEPcTkZeuyxx3juueeYO3cuZ511lsdLaYsTCTON59zN7ZomJ0YAxmZ3Vpsdi1nztEVEpAclLWhOhtbCab9seTs1PpxXgMy8Mo+FJiLicjL00UcfsXTpUm655ZaeiEfcwVFE4chOqKuAgLCWptGxIQT7WahusLK3sJLxQ8M6OImIiIgbJM03nrPXQ0MN+BlT4lKaiyhk5JariIKIeIz55Ie0VV5ezvTp03siFnGX0MEQMQywQ/53bZosZhOpCREAbNNUORER6WnRYyA8Eaz1kP3flreTB4fi52Omsq6J7KM1HgxQRLyZy8nQjBkz2L17d0/EIu7kmCqX036/IcdUOa0bEhGRHmcyHduANWtNy9u+FjMTmmcnaL8hEfEUl5Ohe+65hzfffJNPPvmEhoaGnohJ3KH1fkPHSVMyJCIivSlpgfGc1bZgUuv9hkREPMHlNUMXXXQRTU1N/PKXv8RkMrXsP+RgMpnYsmWL2wKULkpslQy12tsBjiVDewsrqa5vItjf5f8MREREOm/UGWAyQ9FuKM+FcGPLjJT4Y+uGREQ8weW/gs855xwtcuwPBqeATwDUlsDRLIge3dI0JDyAIWEBFFTUkZlXzimjojwYqIiIDHiBkRA/zfiALutzmHoVQMsa1h35FdhsdsyqcCoivczlZOjhhx/uiTjE3Xz8YGga5HxrXHxaJUNg3B1avaOA9JwyJUMiItLzkuY3J0NrWpKhpJhgAnzNVNU3cfBoNUkxIR4OUkS8jctrhqQfaZkqt7Fdk6OIgirKiYhIr3CsGzrwBdisAPhYzEyMc6wb0lQ5Eel9nboztGPHDpdOOnHixC4FI26mIgoiItJXxE8D/3CoLYX8dEiYBhjrhrZkl5KRW84Pp8R7NkYR8TqdSoYWL17cqXVCjk3Tdu3a1e3AxA0c5bULd0B9Ffgfm36QmhCO2QSHy+sorKgjOtjXQ0GKiIhXsPjAqLmw6z2jqlxzMtRSUS6vzIPBiYi36lQy9NBDD/V0HNITwoZCWAJU5EL+Vhg5p6Up2N+HMbGh7CmsJD2njLPGxXgwUBER8QpJ85uToTVwxm+BY8nQ9rwKrDY7FhVREJFe1Klk6OKLL+7pOKSnJM6AHbnGuqFWyRAYU+WUDImISK9Jmm8852yEugoICGNkdAjBfhaqG6xkFVWRPDjUszGKiFdRAYWBzrFuKMfJuqFhEYCKKIiISC+JHAGDksBuhYNfAWAxm5io/YZExEOUDA10jnVDjs1XW5ncvL9DRm45VpsdERGRHje6uapc1tqWt1LjHRXlyjwQkIh4MyVDA93QVLD4QU0xlB5s05Q8OIRAXwtV9U1kFVV5KEAREfEqjqlyWWta3kppXjeUkac7QyLSu5QMDXQ+/jB0svE6d3PbJov52AVIUxNERKQ3jJgDZl8o/R5KDgCQ2jxTYWd+BY1Wm+diExGvo2TIGzimyuW033z12H5DSoZERKQX+IdA4izj9X7j7tDwQUGEBvhQ32RjX6FmKohI71Ey5A0SphvPJ9h8dZvmaYuISG8Z7Zgq9zkAZrOJlHhHiW19OCcivUfJkDdIdGy+uh0aato0OZKhPYVV1DepiIKIiPQCx7qhg1+BtRFovW6ozENBiYg3UjLkDcLiIXQo2JqMzVdbGRoeQEyoP1abnQNljR4KUEREvMqQyRAUBQ2VLbMWUloqyunOkIj0HiVD3sBkOrbf0HFT5UwmU8vdoX1HlQyJiEgvMJth1DzjdfO6odT4CAB2Ha6koUlFFESkdygZ8haJrfYbOk5LMlSiZEhERHrJcfsNJQ4KJDzQlwarjb2FlR4MTES8iZIhb9H6ztBxm686kqHdxQ1U1CohEhGRXuC4M5S/FaqPYjKZSNV2DyLSy5QMeYuhk419HaoKoexQm6bJiRGEB/pSUmfjgie/YUt2qYeCFBERrxE2FGInAnY4+AXQat2QiiiISC9RMuQtfANhSIrx+ripciH+Pjx37XQGB1vIK6vjsqfXs+zz/dhsqi4nIiI9KMmxbsiYKqc7QyLS25QMeZMTrBtKTQjn/50dxQWpQ7Da7Pz54z1c/exGjlTW9XKQIiLiNVqvG7LbSUmIAGBPQSV1jVbPxSUiXkPJkDdxrBvK2ei0OcjXzN8um8yji1MJ8DXz9f5izv/7Or7cW9SLQYqIiNcYNht8AqAyH4p2ExceQFSwH002O7sLVERBRHqekiFv4kiGCjKgsdbpISaTictmJPL+raczbkgoxVUNXPPsRh76cJdKnYqIiHv5BsLw04zXWWsxmUwtm69m5pZ5Li4R8RpKhrxJxDAIGWxsvnp42wkPHR0byqqlp3HVKcMBePqrAyx5ej2Hjtb0RqQiIuItkuYbzy37DWndkIj0HiVD3uQEm686E+Br4Q8/nMQ/fzKVsAAftuWUsejxdby3Lb+HAxUR8azq6mr++Mc/cvrpp5OSksJFF13EBx984OmwBibHuqHsb6CxrmXdUGaekiER6XlKhrzNSdYNOXPupKF8+Ms5TBseSWV9E7eu2Mqdb2VQ26DFrSIyMN16662sWrWKW265hX/961+kpKRw++23895773k6tIEnZhyExkFTHRz6b0tFuX1HqnSdEZEep2TI25xg89UTdosM4rWfn8It80ZjMsGrm3L4wZNfs7ugoocCFRHxjC+//JJvvvmG++67jyuuuIJTTjmF//u//+O0007j0UcfxWrVH+huZTIdmyqXtZbBYQHEhPpjtdnZpWuMiPQwJUPeJm4KmH2g8jBU5LnU1cdi5jfnjOXl62cRE+rPviNVXPTkN7y8IRu7C4mViEhf9umnnxIUFMS5557b5v1LLrmEI0eOsG3biddcShccv99Qy+arSoZEpGcpGfI2fkEweJLx2oWpcq2dOjqaj345hzPHxlDfZOPuldu5+eXvKK9tdGOgIiKesW/fPpKSkvDx8Wnz/tixY1vaxc1GzQNMcGQHVBYcqyindUMiA57dbsdms9NktVHfZKWu0UpNQxPV9U298mG7z8kPkQEnYQYcTofczTDpki6dIjrEn2evmcEzXx/kkdW7+Wh7ARm55Tz+oylMGx7p3nhFRHpRWVkZCQkJ7d4PDw9vaXdVV6fWOfoN+Kl5ARGYh6ZhOrwV277PmDTUKKqQmVsOo0MH/vg74DX//h3wxvE3NNnILqlh/5Eq9hVW8n1eJR/k7QIT2Oxgs9ux24xnmx2sdruRTDja7I42472WNtuxNuvxbcedo6XNduyc1uZzdnh+x9e21l+f5PytYu7I7IQAnk/t3u/Pk1Ey5I0SZ8Kmf0Fu1+4MOZjNJm6YO4qZIwdx64qtHCqp4bKn1/PrhcncODcJs9nkpoBFRHqXydTx768TtXUkMzOzO+F0u39/EBcygaFspXTL2zAhGYCsompqm4K9YvwnovEPvPE3Wu3kVzWRW9FETkUTOeXG68NVVqztkoNqT4TYzI4PVvxowp8G/GnE39SIP4340djm65b3Wr5uffxx/U0n6M+x9g3VZ5KZGdGjI1Qy5I0SphvPh7dBUz34+HfrdJMTI/jgttP535XbeW9bPo+u3sN/9x/lscsnExsa4IaARUR6T0REhNO7P+XlxpQtxx0iV6SkpGCxWFzuZ7VayczM7HL/fiXyR7DvZQaVpjNv1hSGfPUVBeV1HCxt4vL50wb++J3wqn9/JwbC+OsarRwoqmZ/URX7jlSxr7CK/UVVHCqpxWpzfksk2M/C6NgQRkUHYasuIT46Aj8a8aURX3sjvvZ6/OyN+Ngb8LU34kO98WxrwNfegI+9ER9bPT72BnxsxsNia8DHbjxb7PX4WB2vGzBbG7DY6o2HtQGzrQFzy+t6THZbL//UjpkdfJiAbv7+PBklQ94ociQERUNNMRzOgMQZ3T5laIAvj1+RxpzR0fz+3e18vb+Y8/++jr9clsYZyTFuCFpEpHckJyfz/vvv09TU1Gbd0N69ewEYM2aMy+e0WCzd+mOuu/37heGngF8IppqjWI7sIDU+nILyOrJKG71j/Ceg8ff98dc0NJF1pJp9Ryqbkx7j+VBJTYfTwEIDfBgTG8KEaF+mhhxlnG8hCdZcQqsOYjq6D/uBLEwNVZDTu2M5IYsfWPyND9J9Alo9+x33tX8Hxzl5z3J8X+N8VpMv+3IqSOvhf38lQ97Isfnq3o+MqXJuSIaM05q4bEYiU4dHcMsrW9ldUMk1z27kF2eM4jcLx+JrUb0OEen7zjrrLF5//XU++eQTzj///Jb3V65cSWxsLJMnT/ZgdAOYxRdGzoU9H0LWGlITfsAnOwv5JKuGtIzDnJ8Sh5+PriPiWVX1TS3refYfMe727C2sJLe0tsM+4YG+jI0NYmpkLVOCihhtPszQxlwCKw9gKt4PO3Od9ms3Idfsc5Ikwr+DZMOV5OUE57P4g7kX/x+0WiE3vce/jZIhb5XoSIY2uf3Uo2NDWbX0NP74wS5e/Dabp788wLcHSnjiiikMiwpy+/cTEXGnM844g9NOO43777+fqqoqhg0bxgcffMC6dev485//3Oc/oe7XkuY3J0Ofc+bZP+PxtfvJr7LyP69t448f7uZHMxK5ctZwhoRrCrb0rPLaRvYfqWL/kUr2FVa13O3JL6/rsE9UsB+Tos2cEl7CJP8jjCCfmPoc/MuzMB3NgsKOEyYCB0H0GOMRZTxbI0eReaCAlCnTsfgFgVm/e3qCkiFvlTDTeM5xfzIEEOBr4Q8/nMRpo6P43ZsZbMspY9Hj6/jTJSlcODmuR76niIi7PPHEE/z1r3/l8ccfp6ysjFGjRvHYY4+xaNEiT4c2sDk2Xz30LZOiLXx++1z+9v4mvjjURFFlPY+v3c+yL7JYOGEwV80ezuxRUV0qaCHiUFbT0LKWZ98R427P3sJKCivqO+wzOMSH2VE1TA85yjjfAhJteQyqPYRvWRYUHobCDjqafWHQSIhOhqjRbRIfgga1P95qxZpbA75KhHqSkiFvFTcFTGaoyIWKfAge3CPf5txJQ5kUH84vX01nS3Ypt67Yyjf7i7nvwokE+ul/bBHpm4KDg7nnnnu45557PB2Kd4lKgsgRUPo9fP81Q0afzRUTQ/nDFal8truIF9Zns/FgCR9tL+Cj7QWMiQ3hqtnDuXhKPKEBvp6OXvqwo1X1RtJzpIr9hZXsbb7bU1zVcdIzOtTK6ZElpAUVM8ZSwNCmHMKrs7GUHoDC+o6TnuAY5wlPxHCw6E/vvkb/It7KPwQGT4SCTGOq3NgLeuxbJUQG8drPT+Fvn+1j2Rf7eXVTDluyS3niyimMGxLWY99XRET6oaT5sPlZyFoDo88GwNdi5oLUOC5IjWN3QQUvrs9m5dY89h2p4vfv7OCRj3Zz8dR4rp49guTBoR4egHiK3W6nqKqe/Y5pbUeMpGf/kSpKqhuc9rFgZXpYBbPCS0gNOMJIDhPbcIjgyoOYa4rgSAffzOJnJDvHJzxRoyEwosfGKO6nZMibJczolWQIwMdi5jfnjGV2UhT/81o6+45UcdGT3/D7Cydw5cxhmuYgIiKGpAXNydBap83jhoTxx4tTuOO8cby9JZcXv80mq6ial749xEvfHmLWyEFcPXsECycOVuGeAcput1NYUW9UbmtOfPY3Jz7ltY1O+0RQyezwEmaEHGW8XwHDbPlE1WXjX3kIU0MjFHXwzUKHOk94IoZp6toAoWTImyXMNC44PbRuyJnTRkfz0S/n8Js3tvHFniLuXrmdr/cV8/DiVMIDNcVBRMTrjZwDJgsc3Q9lhzo8LCzAl2tPG8k1p47gv1lHeWH993y6s5ANB0vYcLCEwWH+/GjmMK6cOYzYMBVc6I/sdjtFNVa+3FvEgeKalnU9+45UUVnX1O54X5oYYy5kVuhR0oKKSfYpIN6aS3h1Nj71pVCP8TieT2BzwjO6bcITNRoCNINloFMy5M0Smktq528Fq/Pbxz0hOsSfZ6+ZwTNfH+SR1bv5aHsBGbnlPP6jKUwbHtlrcYiISB8UEA6JM+HQekwH1oI57YSHm0wmThsdzWmjo8kvq+WVDYd4ddMhCivq+dtn+3hy7X7OmTSEq08ZzsyRgzQToY+rqm/iyz1FfLarkM93H6GstpG2t23sRFPBRMthZoQcJTXgCKPMhxnckENwTS4mu7XjpCcsoX3CEz3GeL83S0ZLn6JkyJtFJRmlHGtLoHA70Hu/CMxmEzfMHcXMkYO4dcVWDpXUcNnT6/n1wmRunJuE2ayLlYiI10qabyRDWWthTFqnu8VFBPKbc8Zy24IxfLT9MC+uz2ZzdikfZBzmg4zDjB0cyk9mD+eSKfEE++tPoL6isKKOT3cW8unOQtZnHaXBagNgmKmQUy3ZTA8pZoLfEYbb84mqP4RfY4XR0VnS4xvsPOGJGg1+wb06Lukf9JvAmzk2X933MabcTeA3q9dDmJwYwQe3nc7/rtzOe9vyeXT1Hv67/yiPXT6Z2FBNaxAR8UpJC+DzP8LBryDply539/Mxc1FaPBelxbMjv5yXvs1m1dZ89hRWcu+q7Tzy0W4WT43nqtnDGR2rggu9zW63s6ewkk93FPLZrkK25Za3tAVQzy/CtvITv89JrMo03myX9JggIvG4hCfZeB061Pj7RqSTlAx5u+ZkiNzNMKr3kyGA0ABfHr8ijTmjo/n9u9v5en8x5/99HX+5LI0zkmM8EpOIiHhQXBoERmKqLSW4bBcwrcunmhgXzkOXpHLneeN5c0suL32bzcHiap5fn83z67M5NSmKq2cP56zxg/FRwYUe02S1sen7UuMO0K4CckqObUBqMsEPh5Tw08AvmVD8MZaGCmgAu8lCTfhoAhMnY3YkO9FjYNAo8A304GhkIFEy5O0SjXVDprxNMMpzYZhMJi6bkcjU4RHc8spWdhdUcs2zG/nFGaP4zcKxqggkIuJNzBYYdSbsWElUzifQeAlYuncHJzzQl+tPH8l1p47g6/3FvLA+m7W7C/lv1lH+m3WUoeEBXDlzGFfMHEZMqL97xuHlquqb+GpvEZ/uLGTt7iNtKr35+Zg5a1Qw14RvYWrRKnwL0qG0uTFiOEy7BlvKFezOKiAtLQ0sqtwmPUPJkLeLmwqYMJUdwqeuxNPRMDo2lFVLT+OPH+zixW+zefrLA2w4UMITP5pC4qAgT4cnIiK9ZfRZsGMlMYfex/7YOBh/IaRcCiPP7NbGlWazibnJMcxNjiG3tKa54EIOh8vr+Mune3l87T7OmzSUq2cPZ9rwSBVccFFhRR2f7TLW//x3/7H1PwCRQb7MHxvL4qFFzCx5F5+db8OhKqPR7AvjFsG0a2HkGUZBA6sVKPDIOMR7KBnydgFhEDsBjuwguHQnMN/TERHga+EPP5zEaaOj+N2bGaTnlHH+39fx0OIULkiN83R4IiLSG1KWYCvNpnHTC/jXFsC2FcYjOBYmXQIpl0H81G6tD0mIDOJ3547jl2eN4cPMw7ywPputh8p4d1s+727LZ/zQMK46ZTg/nBJHkJ/+ZHLGbrezt7CKT3cW8OmuI2zLKWvTPiIqiLMnDOacpECmlH+GZeuDsCvz2AGDkmDaNTD5SgjR1Hjpffo/W4ypckd2EFK609ORtHHupKFMig/nl6+msyW7lFte2co3+4v5/QUTCfTT7XIRkQHNxx/7GXeyPewc0qIbsOx4C7a/DdVHYMM/jcegJEhZAqmXGRVSu8jfx8LFUxK4eEoC2/PKeWH997yTns+uwxX878pMHvpoF5dOS+CqU4YzKibEjYPsn5qsNjZnl7ZUgDtUUtOmPS0xgrMnDGbh+FhGN+zC9N0yeOttaGw+zuIPE34AU6+BEaer4IF4lJIhMYoobHmOkJLtYLd7Opo2EiKDeO3np/C3z/ax7Iv9rNiYw+bvS3nyyqmMHaIKQCIiA57JBImzYMSpcO7DkLUWMl6HPR9CSRZ8+bDxiJtqJEUTL4HQwV3+dpPiw3n00sn87/njeWNzLi9tyCb7aA3/+eZ7/vPN98wZE81VpwxnwfjBWLxoG4jq1ut/9hyhrKbt+p/TR0dz9oTBLBgfS6ylxvg3eus5KNp17CQx44wEaPIVEDSo9wch4oSSIYGEmQCElG7H/vdJMOZsGH22sXi1D+y87GMx85tzxjI7KYr/eS2dfUeq+MGTX/P7Cydw5cxhms8tIuItLL6QfI7xqK+C3R9A5htGgpT/nfH4+H+NNSepl8G4C7p8HYsI8uOGuaO4/vSRfLmviBfXZ/P5niOs21fMun3FxEcEcuWsYVwxI5GokIFZcOFIRR2f7TrCpzsL+CbrKA1Nx9b/RAT5Mn9cLAsnDGbOmBiC/SyQ/V/49P9gxyqwNtfC9gkwEtRp1xhJra7Z0sf0iWSourqav/3tb3z00UeUl5czatQofv7zn7No0SJPh+Ydosdgm3ot9m2vYqk8DN+9YDzMPjBsNoxZaDxixnr0l9hpo6P56Jdz+PXr2/hybxF3r9zO1/uKeXhxKuGBvh6LS0REPMA/BCZfbjyqimDHSsh8HXI3wYHPjYfPr2Dsecb6otFngY+fy9/GbDYxb2ws88bGcuhoDS9vyOa1zTnkldXy54/38PfP9rEodShXzR7OlMSIfv0Bnd1uZ9+RKj7dWcgnOwvbrf8ZHhXE2eMHc/aEwUwbHmmUIq8+Cluegi3Pw9F9xw4ePMkohpCyBAIjenMYIi7pE8nQrbfeSmZmJr/+9a8ZMWIE77//Prfffjs2m40LL7zQ0+ENfCYT9kWPsW3IFUyOrMaStQb2fQJH98P364zHp/dC+DAYc5aRGI2c65GdnKND/PnPtTP499cHeHT1Hj7aXkBGbjmP/2gK04ZH9no8IiLSB4TEwKyfG4+SA5D5pjFN6+g+I0nasRICImDiD43EaNhso1qZi4ZFBXHX+eP51dnJvLctnxe/zSYjt5yVW/NYuTWPiXFhXD17OD+YHN9v1rY61v98trOQT3cVkn3U+fqfsycMZkxsiJHs2Wzw/VdGArT7fbA2GAf7BkPKYph6bbeLW4j0Fo8nQ19++SXffPMNf/nLX7jgggsAOOWUU8jPz+fRRx/l/PPPx6La8r3CbvGDUTONhOfch+BoFuz/zEiMvv8ayg/B5meNh8XPWPTouGvUjYWrrjKbTfx8bhIzR0Zx24qtHCqp4bKn1/PrhcncODcJsxfN4RYRkeMMGgVn/A7m/hYOp0PGG7D9LagqgC3PGY/wRJi02JhKN3iiy98iwNfCkumJLJmeyLacMl5Yn817GfnsyK/gjrcy+dOHu1kyLYGfnDKcEdG9/8HhyVTXN7FuXxGf7Czk891HKD1u/c9pSVGcPWEIZ42PJTYs4FjHykJIf9mYPVJ68Nj7cVOMtUApl4K/1vNK/+LxZOjTTz8lKCiIc889t837l1xyCb/+9a/Ztm0bU6dO9VB0Xi4qyXjM+gU01BgJ0b5PYN/HUHbImKOdtRZW32lcfMYsNNYajTitV3aGTkuM4IPbTud/V27nvW35PLp6D//df5THLp9MbGjAyU8gIiIDl8lk/JEeNwUW/sGY5ZDxBux6F8pz4Ju/GY/YiZC6BCZdChGJLn+byYkR/CUxgrsXjef1zTm89G02uaW1/Pvrg/z764OckRzD1bOHc+bYWI8WXDhSWceaXUf4dGchX+8vPvH6H/9Wfx7abHBgrZFE7vkIbE3G+36hRjI57RoYOrl3ByPiRh5Phvbt20dSUhI+Pm1DGTt2bEu7kqE+wC8IkhcaD/ufoXhfc2L0ibFgsuTAsVKnPoHGNLoxZxuPyBE9FlZogC+PX5HGnNHR/P7d7Xy9v5jz/76Ov1yWxhnJ2q9ATsxms1Pd0ERFTQMFVU0cKqnB57g70Y5ZHo51AKbj329+59jXxw5y2taJc2FyvU/r2SgnjM3Juex2O/Y+VklSxK3MFqMo0KgzYdH/g70fG4UX9n0CR3bAZzvgs/th+GnGGpcJF7lc7WxQsB83npHEDXNG8cWeI7ywPpsv9xa1PBIiA/nJKcO5bHoig4JdX7vkKrvdzv4jVXzSXP46/bj1P8MGBbVMf5vuWP/TWkU+bG2+C1R+6Nj7CTOMtUATL/bIdHkRd/N4MlRWVkZCQkK798PDw1vaXWG1WrsUh6NfV/v3dy6Pf1ASzLrJeNRXwvfrMO3/1HhU5Bt3j/Z9DIA9Ohn76LOwjz7bmKdtcf9FYPHUOCYnhHHbq+nsKazimmc38vM5I7n97DH4Hv8L3gn9+/eP8dvtduqbbFTVN1FV30R1vZXq+iaq65uoajj2urreSlXDsdfV9U1UNzRR1XK8leqGJmoajhvvR195ZmB9QFyIhQ/HNRAa6Pr/n339vxuRNnwDjbVDE38ItaWw8x3jjlH215D9jfH48LfGh3kpS4wCDC7MdrCYTSwYP5gF4wfzfXE1L32bzeubc8gtreXhj3bz2Kd7uTA1jqtmDyctMcKtQ7Pa7Gz+voTPdhkJ0PfHrf+ZnBjBwgmDOWv8YJIHh7Qv9mBtMqbHb3nOuIbbm+8eBYRD6hXGXaAuTCsU6cs8ngwBJ6y84mpVlszMzJMf1IP9+7uujz8O4q+BuKsJqDxI+JENhB/ZSEhJJqbivZiK98K3/8BqCaQiZioVsbMoj51FY6B7797cd1owL2yzsTqrhuXrDvL5jlx+dUo4g4M795+6/v3dP/4mm53aJju1jXbqmmwtr2ub7NQ22ahred3RMXbqGm0tr209cAPDYgJfs8m4VWIHx7ewO161fWp5dvp+B8easGHGjgUb5navbViwY8KGpflhMtmPvebYazP25uPb9jWbbK3et5/wtRkbFlPbtqLGODK2RxHs6/qicpF+KzDSuMsx7VoozzXWFmW8AYWZxj5Gez40poONv9CYSjfyDOMuUyeNiA7mngsm8OuFY3l3Wx4vrM9mR34Fb32Xy1vf5ZKaEM5VpwznwslxBPh2bX10TUMTX+0tNvb/2V3Ydv2Pxcypo6M4uzkBGhzWwRTyshzY+iJ89yJU5h97f9ipRgI04aJemf4u4gkeT4YiIiKc3v0pLy8Hjt0h6qyUlJQuFVywWq1kZmZ2uX9/597xTwEuAcBWVw4HvjDuGGWtwVJVSGTBN0QWfAOAPXYC9tFnG3eNEmYYe0h006xp8PGOAu58ezv7Shr53Zoy/nTxRBalDO2wj/79j43fZDJT09jqjkvzXRSX78LUGce1npfeXSZsBNCIP40M8rMS4WcjwreJcF8b4b5WwnyaCPVpIsRsJcTSSLCliSBzI4GmRgJMTQTQgL+pEX97A7404Gurx9fWgMlaS3VFGcFBAZjsduPTUJvVeLZbj/u6+b3WX7c+1mY1Ni9udYzJ3j/unDQkX4ElPN7lfo7/fkT6tfAEOO2XxuPILqMaXeabxhSxba8Yj5DBRuGFlCXGWqROfmAb6Gfh8hnDuGx6IltzynhxfTYfZBwmI7ec376ZwR8/3MXl0xP5ySnDSRwUdNLzHamsY22r9T/1rX7Phgf6smBcLGdPGMyc5BhC/Dv4U8/aCHtXGxXh9n9Gy0c3gYMg7UqYerWxpYbIAOfxZCg5OZn333+fpqamNuuG9u7dC8CYMWNcOp/FYunWH7Pd7d/fuX38wYMg5RLjYbNBQQbs+9SYp523GdORnZiO7IT//h38wyFpXnMhhrO6tYP4+anxpCZG8stX09mSXcptr25j/YESfn/BxBOWOx2I//52u53y2kaKKuuNR1V9y+sjLc91FJXX0PDOWmoarZxs+YgZm5FY0GAkJ6bmZxoIo5EYU0NzeyP+lkYCaCDI3ESYTxMhFuMRZG4i2NxIoLmJQJNxbAAN+NGIn70BX3sDPrZ6LLZ6LLYGzE11mGwNbQNpan7Udv/nFApQ0v3zdIvJAiaz8clzy2tzN99v/tpsMf5wa3l97H07UGANJzYsbsD99y/SJbHj4az7YP69kLPB2L9ox0qoKoRv/2E8okYbSVHKkk5XVDWZTEwdFsnUYZHcvWg8r23K4ZUNh8grq+Xprw6wfN0B5o2N5arZwzljzLGZE8b6n8o2639a/55OHBTI2eOHcPaEwcwY4WT9T2slB411QOkvG+NxGDnXqAg3/kLwGZibyIo44/Fk6KyzzuL111/nk08+4fzzz295f+XKlcTGxjJ5siqUDBhmM8SlGY8zfgs1JUY1un2fGJ9K1RyFnauMBxjVaRylu+OnuTQ1ASAhMojXfn4Kf/tsH8u+2M+KjTls/r6UJ6+cytgh/b/0Z12jtU1C0zrJKaqsa5P8NFpbZzd2oqgg3lRMvKmY8aYizjIVE2mqMhIYn0YCmpOTQMddleZEx59G/Oz1WOjinQ47xxKY7jL7GDubOx6+AR187W8U9fDxN6Z5OPnaZvbnYE4eI0YlYbH4nDR5MF47SzZO9L6lOVE5QRLjITarlfz0dGK1J4hIW2YzDJ9tPM59BLLWGHeM9nxk7MX3xUPGI36asX/RpEvg/7d353FNXfnfwD8JYQdBBMSfikqUsKW4Qdyo+45F69aZPmBdqtRqrdtYazuibbXWWqfgoFIcRceXjxv6uFXr1p90RqJisVRFcRdUNkVEZAv3+eOaSAQUZYmQz/v1ui/LuSfknJtwv/3ec+65Ns5V+tWONub4uHdbhPaU4+jFdGyKv4m4lCwcS87AseQMuDpY4T2/Fki+nos/jsWVv/+nhd3TBRBcKr7/p6ySIvF5QGdjgGu/Piu3dgLavy+OAtXhIzKI3iQGT4Z69uyJ7t27IywsDHl5eXB1dcX+/fsRFxeH5cuX8yplQ2blID6TQDlKnE505/enK9QdBu6cBe6eE7cTy8V53W2fPvBV3hewblKlt5CZSDFnoAJd5U3w6dZEpGTk4Z1Vv+Hvw7zwV3/XN+5J4ZpSAdmPyyY15Udysp7+96PCijMKKUrhjAdoLsmCnyQTzSVZaCHLQitZNlpIs+EiZMJcKKx6o152j47UtIIk47nE5AWJiP7PVUlunm4mNXf6EjQa5GgSAY/2AM85RFQRmZm4mIJisLhwUPJ+MTG6dhxISxC3Q5+LK9a9NQbwGFqlZ+6YSCUY4O2CAd4uuJaZh03xN7EjIRW37ufju0OXdfXMTKToKn92/4+LXRUeIZF1BTi7AUjcAuRnPS2UAPI+4r1A7oPFfhEZMYMnQwAQERGBlStXIjw8HDk5OXBzc8MPP/yAoUOHGrppVFekJkCLzuLW+3MgLwO4clRMjq4eFVf8SdoubpCIV+HaDRBX+2nW/qVX1bu3dcTPMwIwe9s5/O/lTCzY9Sf+cyULS999C3aW1b9P6UUEQcCjwhL9BKfcSI6Y6Nx/XPjSBQJMUQIXSTZ8pFloZZINd/MHaCXLRnNkwbk0HXbFGTCp7B6Vsrfv2LgA9q6AfUuUNmqBtJwiNG/dFlJTy5cnIrpExuKVR+yIiOo9c1vA9z1xy8sA/owVp9KlJYgx6+pR8UKPxxBxGp28b5WSDjcnGywc5o25AxX4f4l3sPfcHciKH2NMdw/08mha+f0/ZRUXiM9SSogRV8jTsnEBOgYDHYKBxq2q0XmihuWNSIasra3xxRdf4IsvvjB0U+hNYeMMtP+LuGlKgNTTwJWn9xrdSwLSzojbr0vEYf62T59pJO8tjiJVwNHGHOs/8EP0b9fw3cFLOJB0D+duP0TEXzvAt3mjV25iUUkpsvLKTFPTJTkF5RKeguKqLyJgKSmEl1UuPC1zIDe9j5bSbDRDJhxL7qFR4T1YFGRAUna4pqJpZxITwK45YCcmO7BrqUt8YNdSvFG4zJxwQaNBRmIi/qd9e46MEBG9ChtnoEuouGVfFS/a/bENuH9VXJ3uz53iogTew8WpdC1VL72AZ2Umw1/8XTGmU3MkJiaivY/Ly2fKZFwUE6A//q94AREQp+C27S+ultduQI2OqBM1FPyroDefiezZnO2+fxcfBHflyNNRo1+Bx5nPVvqRmAAt/Z8+8HUA0NRHb7UfqVSCyW/L4d+mCT7Z8jtu3c/H6DUnMatfO/g3ElBaKuBhQdGzRQUqG8nJK0ROmeVLq8LWXAYnW3O0tC6BwuI+2pjcR3NpFpqWZqBx8T3YPLkLi8dpkD7JBjQA8l50TMzLJDlPE52yiY9tMwY9IqK61kQO9PoM6DlPnPqdtF1MhvLSgTP/Ejc7V3F6+FtjxIUaqqMoX7zPNmGDuNCDVqMWT0eB/o948YuIKsX/W6L6p9H/iDd7dgwRbwq9rX52r1HmReDWSXE7ulhMCrSJUZuegIU4AtS+pT32fdIDn8cmYd8fd7H8l8uwMZOgIPYXlLzCg2xkUgmcbM3hbGsOJ1tzONmYwdU8H61kT0dzNBmwL7wHyyd3IMtNFZ/lkP7w5b/YzLbiER17V/FfayeD3nBPREQvIJEAzTuKW/+vgBsnxOcXXdwrLtX92w/i1lQpPr/IZ+SrJS33ksQE6I/tQOHTmCIxEe9n6vSBeE8QpzATVQmTIarfZGZAmwBxG/AVkHPr6dLdh4Hr/ws8uisuIXp2o3ijv2sX3Qp1jZwUiPhLBwS0c8TCPeeRV/RsKltjK1MxubE1h5ONOZwbWcDJxhxONjI0N3mIpkImHIrTYfXkDqQPb4lJzsPbwO3bQEkV1nm2dKh4REeb+FjYV/n5FURE9AYzkYnJibwPEPiDuBJd0nYxTqUnAYeTgMMLgVbdxcTIK6ji6d6FeeIoU8IGcZEhLftW4mII7d8HbF3qrFtEDQWTIWpY7F0Bv4niVlwA3Prvs+caZV8BbsSJ2+EvATtXSNr1x9h2A9DnUz8cO3sF3dsr4IwHMMt7OoqTc0tMcjJuASm3gYdpQGkVpseVWZzg2VS2Vs/u1zG3qf1jQUREbxZTS3H5bZ93xcdLXNgtPtj15n/ExQ5u/gYcmCtetFOOBtr2h1XOJUj2x4iJUNHT+dNSU3G1uk4fiLMeOFOA6LUxGaKGy9Ti2dW4QUvFG1u19xpdjxOnKpxZB5xZB0cTc4wwtYXpf7L1FyeoyCsuTkBERFSOlQPQeYK45dwG/twhTnvLOC8+Eyh5H6Qm5vDUlHkUgoNcHAXy/Stg41T57yaiKmMyRMajiVzcVFPEm05vxD0dNToESc4tmGkDDhcnICKiumTfEugxU9zSz4ur0SXtgCQ3FaVSU8ArCNJOHwCte3AKNVEN4//RkXEyswLcB4qbsByajEu4nHQG7n59YdLIhcGGiIgMo6k30H8R0HchNOnnkXQjC0r/t/nYA6JawkmmRBIJ4NgO+Y09xedFMBEiIiJDk0oBZy9ozF79OXhEVHVMhoiIiIiIyCgxGSIiIiIiIqPEZIiIiIiIiIwSkyEiIiIiIjJKTIaIiIiIiMgoMRkiIiIiIiKjxGSIiIiIiIiMEpMhIiIiIiIySkyGiIiIiIjIKDEZIiIiIiIio8RkiIiIiIiIjBKTISIiIiIiMkpMhoiIiIiIyCgxGSIiIiIiIqMkM3QDaoogCAAAjUbzWq/Xvu51X1/fsf/sf9l/jQ37X73+a1+nPQ/TM4xN1cP+s/9l/zU27H/dxCaJ0ECiV1FREZKSkgzdDCIio6VUKmFmZmboZrxRGJuIiAzrZbGpwSRDpaWlKCkpgVQqhUQiMXRziIiMhiAIKC0thUwmg1TK2ddlMTYRERlGVWNTg0mGiIiIiIiIXgUv4RERERERkVFiMkREREREREaJyRARERERERklJkNERERERGSUmAwREREREZFRYjJERERERERGickQEREREREZJaNIhmJjY6FQKHSbl5cXevTogZkzZ+LGjRt6dc+cOYMFCxbg3XffhY+PDxQKBVJTUw3T8BpS1f5rNBqsX78eEydOxNtvvw1fX18MHjwY33//PXJzcw3XgVry/HF5flOr1YZu4ms7ePAgFAoFDhw4UG7fO++8A4VCgbi4uHL7+vXrhxEjRgAAjh8/jr/97W8YNmwYvL29oVAoar3dNaW6/c/Ly8Pq1asRHByM7t27o0OHDhg2bBiioqJQWFhYF12olpr4/FeuXInhw4fD398fSqUSffv2xZdffom0tLRab7+xYGxibKoIYxNj0/MYm2o3Nsle+5X10NKlS+Hm5obCwkKcPXsWa9asgVqtxs8//ww7OzsAQHx8PE6ePAlPT09YW1vj1KlTBm51zXlZ/wsKChAREYHAwECMHj0ajRs3xoULF7B69WocP34cO3fuhIWFhaG7UeO0x+V5bdu2NUBraoa/vz8kEgni4+MxZMgQXXlOTg4uX74MKysrqNVqBAQE6Pbdu3cPt2/fxvjx4wEAhw8fxrlz5+Dp6QlTU1OcP3++zvvxuqrb/zt37iAmJgZBQUH44IMPYGVlhYSEBKxatQr//e9/sX79ekgkEkN0rUpq4vPPzc3F0KFDIZfLYW1tjStXrmD16tU4duwY9u3bh8aNG9d5vxoqxibGpoowNokYmxibajs2GVUy1K5dOyiVSgCASqWCRqNBREQEjhw5gpEjRwIApk6dimnTpgEA1q1b16ACzsv6b2FhgaNHj+p9kVQqFZo1a4YZM2bg0KFDCAoKMlTza03Z49JQODg4oF27duW+v6dPn4ZMJsPIkSPLXV2Mj48HIH7mAPD1119DKhUHjxcvXlyvAk51+9+iRQscO3YMVlZWuv1du3aFpaUlvvvuOyQkJKBz586135HXVBOf/8KFC/X2a4/L5MmTcfToUYwaNaoWe2BcGJsYmyrC2CRibGJsAmo3NhnFNLnKaE8y2dnZujLtH5gxeL7/JiYmFWbUb731FgAxO6f6Q6VS4fr168jIyNCVqdVq+Pj4oGfPnjh//jzy8vJ0+06dOgUTExPdibS+/y1Up/9WVlZ6wUarPv0tVPfzr4iDgwMAQCYzqutodY6xibGpIWNsYmx602JT/f5GVZN2vnXr1q0N2xADqWr/tVl5fR6af5HS0lKUlJTobRqNxtDNqrYuXboAgN4VGLVaDX9/f3Ts2BESiQQJCQl6+7y8vGBra1vnba0NtdH/+vS3UFP9LykpQUFBAS5cuIAlS5agdevW6N+/f910wkgxNjE2AYxNZfcxNjE21WZsMqpkSHtiefz4MeLi4rB69Wr4+fmhT58+hm5anXid/qenp2PFihXw8fFB796967C1dWfMmDHw9vbW2xrC1AQ/Pz9IpVLdCefBgwdISUmBn58frK2t4eXlpTuB3r17F6mpqbph6IagpvufnJyM6Oho9O/fHx4eHnXSh+qoif5nZmbC29sbvr6+GDFiBDQaDTZu3Ahra+s6709DxtjE2FQRxibGJsamuolNRjXXYcyYMXo/y+VyREZGGs2Uj1ftf05ODj788EMIgoB//OMf9X5oujLLli2DXC7XK3uTb0CsKjs7O3h4eOjm354+fRomJibo2LEjAPGEpD3haOs0pIBTk/1PTU1FaGgoXFxc8PXXX9dB66uvJvrfuHFj7NixA0VFRbh27Rqio6MREhKCTZs2wdnZuQ5707AxNjE2VYSxibGJsaluYlPDPINUYtmyZdixYwdiYmIwduxYXL16FbNmzTJ0s+rMq/T/4cOHmDBhAtLT0/Gvf/0LLVu2rOPW1h25XA6lUqm3+fj4GLpZNUKlUuHGjRtIT0+HWq2Gt7e37sqJv78/Ll68iEePHkGtVkMmk6FTp04GbnHNqon+p6WlISQkBCYmJoiJiYG9vX0d9+L1Vbf/MpkMSqUSnTp1wujRoxETE4PU1FRERUUZojsNFmMTY1NFGJsYmxib6iY2GVUypD2xdOnSBYsXL8bo0aMRFxeHgwcPGrppdaKq/X/48CHGjx+P1NRUrF+/vl4Mu1LFtFdTTp06hVOnTsHPz0+3T3tyOX36NNRqNZRKZYOb/lTd/qelpSE4OBgAsHHjRri4uNRRy2tGTX/+Li4ucHZ2LvcMHKoexibGJmPD2MTYBLw5scmokqHnzZ07F3Z2dggPD0dpaamhm1PnKuq/Ntjcvn0b69atg5eXl4FbSdXh5+cHExMTHDp0CCkpKfD399fts7W1haenJ3bv3o20tLQGNQ1Bqzr9v3PnDoKDg1FaWoqYmBg0b968rptfbTX9+d+8eRP37t1Dq1atarPZRo+xibGpoWNsYmx6k2KTcUxIroSdnR0mT56M5cuXY+/evQgKCsL9+/d1N3VdvnwZAHDixAk4ODjAwcFB7wOr757v/8CBAzFx4kRcuHABn3/+OTQaDRITE3X1HRwc4OrqargG15KUlJQKV+hxdXXVLddYX9nY2MDLywtHjhyBVCotN9Ts5+eHmJgYAOXn5KalpSEpKQkAcOvWLQDQXalt3rx5vbiR93X7n52djZCQEGRmZuKbb75Bdna23jLHLi4u9eJK3Ov2Pzk5GUuXLsXAgQPRsmVLSKVSXL58GRs2bIC9vT0mTJhQp/0wNoxNjE0AYxNjE2MTUDexyaiTIQAIDg7G5s2bERkZicDAQKSkpGDGjBl6dRYtWgRAnMe4adMmQzSz1pTtf4cOHXQnmG+++aZc3REjRuDbb7+t6ybWuvnz51dY/vXXX2P06NF13Jqap1KpkJSUBE9PT9jY2Ojt8/Pzw4YNG2BqaooOHTro7VOr1eWOjfZvoz59F16n/1euXMHt27cBiFepnzdt2jRMnz69dhteQ16n/46OjnB2dsb69euRmZmJkpISuLi4oFevXggNDUWzZs3quhtGh7GJsYmxibGJsaluYpNEEAShWr0hIiIiIiKqh4z6niEiIiIiIjJeTIaIiIiIiMgoMRkiIiIiIiKjxGSIiIiIiIiMEpMhIiIiIiIySkyGiIiIiIjIKDEZIiIiIiIio8RkiIiIiIiIjBKTIXptsbGxUCgUus3Lyws9evTAzJkzcePGDUM3DwCwZs0aHDlypFy5Wq2GQqGAWq02QKtEx44dQ2hoKLp16wYfHx/4+/tj3Lhx2LNnD4qLiw3WrudVdKw+++wz9OnTp1bfNz09HREREbh48WKtvg8RNSyMTdXD2PRijE0Nj8zQDaD6b+nSpXBzc0NhYSHOnj2LNWvWQK1W4+eff4adnZ1B27Z27VoMHDgQ/fr10yv39vbG1q1b0bZt2zpvkyAI+PzzzxEbG4uePXvis88+Q7NmzfDo0SOo1WosWrQIDx48wLhx4+q8bVU1depUhISE1Op7ZGRkYNWqVWjevDk8PT1r9b2IqOFhbHo1jE1Vw9jU8DAZompr164dlEolAEClUkGj0SAiIgJHjhzByJEjDdy6itnY2KB9+/YGee/o6GjExsZi+vTpmDZtmt6+Pn36YNKkSbh582adtqmgoAAWFhZVru/q6lqLrSEiqj7GplfD2ETGitPkqMZpg092drZeeVJSEkJDQ+Hv7w+lUonhw4fjwIEDenXu37+PsLAwDBkyBB06dEDXrl0REhKCM2fOlHufoqIirFq1CoMHD4ZSqYRKpUJwcDDOnj0LAFAoFMjPz8euXbt00yWCg4MBVD4V4ejRoxg7dix8fX3RoUMHjB8/Hr///rtenYiICCgUCqSkpGDWrFno1KkTunXrhvnz5+PRo0cvPDbFxcWIjo6Gm5sbPv744wrrODk5oXPnzrqfc3JyEBYWhoCAAPj4+KBv375YuXIlioqK9F5XWFiIFStWoE+fPvDx8UFAQAAWLVqE3NxcvXp9+vTBlClT8Msvv2D48OFQKpVYtWoVAODq1auYOHEifH19oVKp8Pe//x2PHz8u18aKpiIoFAosXrwYu3fvxuDBg+Hr64t33nkHx48f16t38+ZNzJ8/HwMGDICvry8CAgIQGhqKS5cu6eqo1WqMGjUKADB//nzd5xcREaGrU5XvExGRFmNT5RibGJuMGUeGqMalpqYCAFq3bq0ri4+Px6RJk+Dr64uwsDDY2triwIEDmDlzJgoKCvDuu+8CEE+uADBt2jQ4OjoiPz8fhw8fRnBwMDZs2ACVSgUAKCkpwaRJk5CQkICQkBB06dIFGo0G586dw927dwEAW7duxbhx46BSqTB16lQA4lW3yuzduxdz5sxBjx49sGLFChQVFSE6Olr33mWDAABMnz4dQ4YMwahRo3D58mWsWLECgDg1ozJ//vkncnJyMHr0aEgkkpcey8LCQoSEhOD27duYPn06FAoFzpw5g6ioKFy8eBFRUVEAxOkNU6dORXx8PCZPnozOnTvj0qVLiIiIQGJiIrZu3QozMzPd7z1//jyuXr2Kjz76CC1atIClpSWysrIQHBwMmUyGhQsXokmTJti7dy+++uqrl7ZT69dff0VSUhI++eQTWFlZITo6GtOmTcPBgwfRsmVLAOIUA3t7e8yePRsODg54+PAhdu3ahTFjxmDXrl1wc3ODt7c3li5divnz5+Ojjz5Cr169AAAuLi4Aqv59IiLSYmxibGJsogoJRK9p586dgru7u5CYmCgUFxcLeXl5wokTJ4Tu3bsL77//vlBcXKyrO2jQIGH48OF6ZYIgCFOmTBG6d+8uaDSaCt+jpKREKC4uFsaNGyd8/PHHuvJdu3YJ7u7uwrZt217Yxvbt2wvz5s0rVx4fHy+4u7sL8fHxgiAIgkajEXr06CEEBgbqtSUvL0/o2rWrMHbsWF1ZeHi44O7uLvz00096vzMsLExQKpVCaWlppe3Zv3+/4O7uLmzZsuWF7dbasmWL4O7uLhw4cECvPCoqSnB3dxd+++03QRAE4cSJExW2Sft+W7du1ZX17t1b8PT0FK5du6ZXd/ny5YJCoRAuXryoVz5+/Hi9YyUIgjBv3jyhd+/eevXc3d2Fbt26CY8ePdKVZWZmCh4eHsLatWsr7WNJSYlQVFQkDBgwQFiyZImu/I8//hDc3d2FnTt3lnvN636fiKjhY2xibCqLsYlehtPkqNrGjBkDb29vdOzYEZMmTUKjRo0QGRkJmUwceLx58yauXbuGYcOGARCvnGm3t99+G5mZmbh+/bru923ZsgUjRoyAUqmEl5cXvL29cfLkSVy9elVXJy4uDubm5jU27/v69evIyMhAUFAQpNJnfxbW1tYYMGAAzp07hydPnui9pqKh+MLCwnJTMKojPj4eVlZWGDRokF659urSyZMndfXKlmsNHjwYVlZWunpl29qmTRu9MrVajXbt2sHDw0OvPDAwsMrtValUelc4HR0d0aRJE6SlpenKSkpKsGbNGgwZMgQ+Pj7w8vKCj48Pbty4ofcZV+ZVv09EZJwYm0SMTYxN9GKcJkfVtmzZMsjlcjx+/BgHDhzA1q1bMWvWLERHRwMAsrKydPWWLVtW4e948OABAGD9+vX49ttv8d5772HGjBlo3LgxpFIpfvzxR1y7dk1X//79+3B2dtYLDtWhfX8nJ6dy+5ydnVFaWorc3FxYWlrqyu3t7fXqaYf6CwoKKn2fZs2aAXg2XeNlcnJy4OjoWG7aQpMmTSCTyXRTN3JyciCTyeDg4KBXTyKRwNHRUVdPq6J+5uTkoEWLFuXKHR0dq9RWoPwxAcTjUlhYqPv522+/xebNm/Hhhx/Cz88PdnZ2kEgk+OKLL/TqVeZVvk9EZLwYm0SMTYxN9GJMhqja5HK57sbULl26oLS0FNu3b8fBgwcxaNAgNG7cGAAwZcoU9O/fv8Lfob0StGfPHvj7+2PRokV6+5+/UdLBwQEJCQkoLS2tkaCjbWNmZma5fRkZGZBKpWjUqFG138fHxwf29vY4evQoZs+e/dK52fb29jh37hwEQdCrm52djZKSEl277e3tUVJSgvv37+sFHUEQkJWVpft8tCp6X3t7e93JvKyKyqpjz549GD58OGbNmqVX/uDBgyod41f5PhGR8WJsqjrGJsYmY8ZpclTj5s6dCzs7O4SHh6O0tBRubm5o3bo1kpOToVQqK9y0w9cSiUTvZkoASE5ORmJiol5ZQEAACgsLERsb+8K2mJmZvfBqmFabNm3QtGlT7Nu3D4Ig6Mrz8/Pxyy+/oH379npX3l6XqakpJk2ahGvXruGf//xnhXWys7ORkJAAAOjatSvy8/PLPZxv9+7duv1l/92zZ49evUOHDiE/P1+3/0VUKhVSUlKQnJysV75v376Xd+wVSCQSmJqa6pX9+uuvSE9P1yur7Grmq3yfiIi0GJsqx9jE2GTMODJENc7Ozg6TJ0/G8uXLsXfvXgQFBWHRokX48MMPMXHiRIwYMQJNmzbFw4cPcfXqVZw/fx7h4eEAgF69eiEyMhLh4eHw8/PD9evXERkZiRYtWkCj0ejeIzAwELGxsQgLC8P169ehUqkgCALOnTsHuVyOoUOHAgDc3d1x6tQpHDt2DE5OTrC2toabm1u5NkulUsydOxdz5szBlClTMHbsWBQVFWHdunXIzc3F7Nmza+z4aANOREQEkpKSEBgYqHuw3enTp7Ft2zZMnz4dnTp1wvDhw7F582bMmzcPaWlpcHd3R0JCAtauXYuePXuiW7duAIDu3bujR48e+P7775GXl4eOHTvi0qVLCA8Ph5eXF4KCgl7arnHjxmHnzp2YPHkyPv30U92KPWWngNSEXr166VbmUSgUOH/+PNatW6dbjUfL1dUVFhYW2Lt3L+RyOaysrODs7IymTZtW+ftERKTF2PRijE2MTcaKyRDViuDgYGzevBmRkZEIDAxEly5dsH37dqxZswZLlixBbm4u7O3tIZfLMXjwYN3rQkND8eTJE+zYsQPR0dFo27YtwsLCcOTIEZw6dUpXTyaT4aeffsLatWuxf/9+xMTEwNraGh4eHggICNDVW7BgARYtWoRZs2bhyZMn8Pf3x6ZNmyps87Bhw2BpaYmoqCjMnDkTJiYm8PX1xcaNG9GxY8caOzYSiQRLly5Fv379sG3bNt3x0LZ/zpw5uptNzc3NsXHjRqxcuRLR0dF48OABmjZtigkTJug9FE8ikSAyMhIRERGIjY3FmjVrYG9vj6CgIMyaNavcFc2KODk54d///je++eYbhIWFwdLSEv369cOXX36pW/61JixYsAAymQxRUVHIz8+Hl5cXIiIi8OOPP+rVs7S0xJIlS7Bq1SpMnDgRxcXFmDZtGqZPn17l7xMRUVmMTZVjbGJsMlYSoey4KxERERERkZHgPUNERERERGSUmAwREREREZFRYjJERERERERGickQEREREREZJSZDRERERERklJgMERERERGRUWIyRERERERERonJEBERERERGSUmQ0REREREZJSYDBERERERkVFiMkREREREREbp/wMMlVekcPGoiwAAAABJRU5ErkJggg==",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "import matplotlib.pyplot as plt\n",
+ "import seaborn as sns\n",
+ "%matplotlib inline\n",
+ "\n",
+ "sns.set_style(\"whitegrid\")\n",
+ "plt.rcParams[\"font.size\"] = 12\n",
+ "\n",
+ "for mof_name, mof_df in df.groupby(\"mof_name\"):\n",
+ " # Sort by region and distance\n",
+ " df_co2 = mof_df[mof_df[\"gas\"] == \"CO2\"].sort_values([\"region\", \"dist\"])\n",
+ " df_h2o = mof_df[mof_df[\"gas\"] == \"H2O\"].sort_values([\"region\", \"dist\"])\n",
+ " region_order = {\"R\": 0, \"E\": 1, \"P\": 2}\n",
+ " df_co2 = df_co2.sort_values(by=[\"region\", \"dist\"], key=lambda x: x.map(region_order))\n",
+ " df_h2o = df_h2o.sort_values(by=[\"region\", \"dist\"], key=lambda x: x.map(region_order))\n",
+ "\n",
+ " # Plot\n",
+ " fig, axes = plt.subplots(1, 2, figsize=(10, 5)) \n",
+ " # CO2\n",
+ " ax = axes[0]\n",
+ " sns.lineplot(data=df_co2, x=[\"R1\", \"R2\", \"E\", \"W1\", \"W2\", \"W3\"], y=\"true_ie\", ax=ax)\n",
+ " sns.lineplot(data=df_co2, x=[\"R1\", \"R2\", \"E\", \"W1\", \"W2\", \"W3\"], y=\"pred_ie\", ax=ax)\n",
+ " ax.set_title(f\"{mof_name} - CO$_2$\")\n",
+ " ax.set_ylabel(\"Intermolecular Energy (eV)\")\n",
+ " ax.set_xlabel(\"Reaction Coordinate\")\n",
+ " # H2O\n",
+ " ax = axes[1]\n",
+ " sns.lineplot(data=df_h2o, x=[\"R1\", \"R2\", \"E\", \"W1\", \"W2\", \"W3\"], y=\"true_ie\", ax=ax)\n",
+ " sns.lineplot(data=df_h2o, x=[\"R1\", \"R2\", \"E\", \"W1\", \"W2\", \"W3\"], y=\"pred_ie\", ax=ax)\n",
+ " axes[1].set_title(f\"{mof_name} - H$_2$O\")\n",
+ " axes[1].set_ylabel(None)\n",
+ " axes[1].set_xlabel(\"Reaction Coordinate\")\n",
+ " plt.show()\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "mlip-arena",
+ "language": "python",
+ "name": "mlip-arena"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.11.8"
+ },
+ "widgets": {
+ "application/vnd.jupyter.widget-state+json": {
+ "state": {},
+ "version_major": 2,
+ "version_minor": 0
+ }
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}
diff --git a/benchmarks/mof/structures/Al-MIL53.cif b/benchmarks/mof/structures/Al-MIL53.cif
new file mode 100644
index 0000000000000000000000000000000000000000..6467a56520f2d1359288706c78546576abf42146
--- /dev/null
+++ b/benchmarks/mof/structures/Al-MIL53.cif
@@ -0,0 +1,218 @@
+data_SABVOH_manual
+_audit_creation_date 2014-07-02
+_audit_creation_method 'Materials Studio'
+_symmetry_space_group_name_H-M 'P1'
+_symmetry_Int_Tables_number 1
+_symmetry_cell_setting triclinic
+loop_
+_symmetry_equiv_pos_as_xyz
+ x,y,z
+_cell_length_a 17.1290
+_cell_length_b 6.6284
+_cell_length_c 12.1816
+_cell_angle_alpha 90.0000
+_cell_angle_beta 90.0000
+_cell_angle_gamma 90.0000
+loop_
+_atom_site_label
+_atom_site_type_symbol
+_atom_site_fract_x
+_atom_site_fract_y
+_atom_site_fract_z
+_atom_site_U_iso_or_equiv
+_atom_site_adp_type
+_atom_site_occupancy
+O1 O 0.08295 0.92756 0.08189 0.00000 Uiso 1.00
+O2 O 0.43312 0.92799 0.39387 0.00000 Uiso 1.00
+C3 C 0.22872 0.93670 0.19502 0.00000 Uiso 1.00
+C4 C 0.29944 0.93681 0.25417 0.00000 Uiso 1.00
+H5 H 0.20344 0.07928 0.17100 0.00000 Uiso 1.00
+H6 H 0.32573 0.07955 0.27542 0.00000 Uiso 1.00
+O7 O 0.41958 0.08310 0.57835 0.00000 Uiso 1.00
+O8 O 0.07025 0.08486 0.89497 0.00000 Uiso 1.00
+C9 C 0.27318 0.07140 0.69256 0.00000 Uiso 1.00
+C10 C 0.20192 0.07178 0.75098 0.00000 Uiso 1.00
+H11 H 0.29906 0.92886 0.67006 0.00000 Uiso 1.00
+H12 H 0.17610 0.92868 0.77357 0.00000 Uiso 1.00
+O13 O 0.91868 0.42746 0.91654 0.00000 Uiso 1.00
+O14 O 0.56964 0.42801 0.60310 0.00000 Uiso 1.00
+C15 C 0.77142 0.43670 0.80673 0.00000 Uiso 1.00
+C16 C 0.70082 0.43685 0.74719 0.00000 Uiso 1.00
+H17 H 0.79674 0.57957 0.83025 0.00000 Uiso 1.00
+H18 H 0.67486 0.57972 0.72493 0.00000 Uiso 1.00
+O19 O 0.58352 0.58315 0.41688 0.00000 Uiso 1.00
+O20 O 0.93250 0.58439 0.09914 0.00000 Uiso 1.00
+C21 C 0.72987 0.57114 0.30225 0.00000 Uiso 1.00
+C22 C 0.80087 0.57158 0.24361 0.00000 Uiso 1.00
+H23 H 0.70477 0.42860 0.32652 0.00000 Uiso 1.00
+H24 H 0.82731 0.42877 0.22221 0.00000 Uiso 1.00
+O25 O 0.91829 0.08423 0.91904 0.00000 Uiso 1.00
+O26 O 0.57171 0.08591 0.59858 0.00000 Uiso 1.00
+C27 C 0.77155 0.07344 0.80614 0.00000 Uiso 1.00
+C28 C 0.70097 0.07362 0.74645 0.00000 Uiso 1.00
+H29 H 0.79709 0.93047 0.82929 0.00000 Uiso 1.00
+H30 H 0.67514 0.93071 0.72384 0.00000 Uiso 1.00
+O31 O 0.58293 0.92635 0.41246 0.00000 Uiso 1.00
+O32 O 0.93337 0.92749 0.10242 0.00000 Uiso 1.00
+C33 C 0.72994 0.93450 0.30253 0.00000 Uiso 1.00
+C34 C 0.80090 0.93487 0.24420 0.00000 Uiso 1.00
+H35 H 0.70489 0.07746 0.32704 0.00000 Uiso 1.00
+H36 H 0.82734 0.07745 0.22321 0.00000 Uiso 1.00
+O37 O 0.08348 0.58500 0.07900 0.00000 Uiso 1.00
+O38 O 0.43136 0.58522 0.39797 0.00000 Uiso 1.00
+C39 C 0.22857 0.57340 0.19548 0.00000 Uiso 1.00
+C40 C 0.29926 0.57338 0.25488 0.00000 Uiso 1.00
+H41 H 0.20314 0.43077 0.17175 0.00000 Uiso 1.00
+H42 H 0.32534 0.43037 0.27655 0.00000 Uiso 1.00
+O43 O 0.41998 0.42618 0.58233 0.00000 Uiso 1.00
+O44 O 0.06916 0.42744 0.89141 0.00000 Uiso 1.00
+C45 C 0.27313 0.43452 0.69225 0.00000 Uiso 1.00
+C46 C 0.20191 0.43507 0.75039 0.00000 Uiso 1.00
+H47 H 0.29897 0.57742 0.66955 0.00000 Uiso 1.00
+H48 H 0.17617 0.57802 0.77264 0.00000 Uiso 1.00
+Al49 Al 0.00184 0.00815 -0.00109 0.00000 Uiso 1.00
+Al50 Al 0.50246 0.00700 0.49631 0.00000 Uiso 1.00
+Al51 Al 0.00180 0.50804 -0.00372 0.00000 Uiso 1.00
+Al52 Al 0.50149 0.50826 0.49995 0.00000 Uiso 1.00
+O53 O 0.00033 0.75904 0.93824 0.00000 Uiso 1.00
+C54 C 0.40499 0.75581 0.36276 0.00000 Uiso 1.00
+C55 C 0.11410 0.75578 0.10647 0.00000 Uiso 1.00
+C56 C 0.33504 0.75518 0.28738 0.00000 Uiso 1.00
+C57 C 0.19073 0.75512 0.16757 0.00000 Uiso 1.00
+O58 O 0.50752 0.25915 0.43997 0.00000 Uiso 1.00
+C59 C 0.09648 0.25525 0.85941 0.00000 Uiso 1.00
+C60 C 0.38857 0.25366 0.60574 0.00000 Uiso 1.00
+C61 C 0.16579 0.25390 0.78301 0.00000 Uiso 1.00
+C62 C 0.31116 0.25317 0.66510 0.00000 Uiso 1.00
+O63 O 0.00901 0.25908 0.05589 0.00000 Uiso 1.00
+C64 C 0.59727 0.25599 0.63482 0.00000 Uiso 1.00
+C65 C 0.88710 0.25546 0.89295 0.00000 Uiso 1.00
+C66 C 0.66547 0.25545 0.71300 0.00000 Uiso 1.00
+C67 C 0.80956 0.25497 0.83393 0.00000 Uiso 1.00
+O68 O 0.50121 0.75932 0.55804 0.00000 Uiso 1.00
+C69 C 0.90602 0.75505 0.13439 0.00000 Uiso 1.00
+C70 C 0.61417 0.75373 0.38894 0.00000 Uiso 1.00
+C71 C 0.83658 0.75367 0.21089 0.00000 Uiso 1.00
+C72 C 0.69136 0.75312 0.32891 0.00000 Uiso 1.00
+H73 H 0.51416 0.26019 0.36979 0.00000 Uiso 1.00
+H74 H 0.50215 0.76047 0.62887 0.00000 Uiso 1.00
+H75 H 0.01841 0.26004 0.12543 0.00000 Uiso 1.00
+H76 H -0.00035 0.76007 0.86745 0.00000 Uiso 1.00
+loop_
+_geom_bond_atom_site_label_1
+_geom_bond_atom_site_label_2
+_geom_bond_distance
+_geom_bond_site_symmetry_2
+_ccdc_geom_bond_type
+O1 C55 1.293 . A
+O1 Al49 1.799 1_565 A
+O2 C54 1.295 . A
+O2 Al50 1.801 1_565 A
+C3 C4 1.409 . A
+C3 C57 1.409 . A
+C3 H5 1.080 1_565 A
+C4 C56 1.409 . A
+C4 H6 1.079 1_565 A
+H5 C3 1.080 1_545 A
+H6 C4 1.079 1_545 A
+O7 Al50 1.808 . S
+O7 C60 1.293 . A
+O8 C59 1.290 . A
+O8 Al49 1.799 1_556 A
+C9 C10 1.413 . A
+C9 C62 1.410 . A
+C9 H11 1.079 1_545 A
+C10 C61 1.412 . A
+C10 H12 1.082 1_545 A
+H11 C9 1.079 1_565 A
+H12 C10 1.082 1_565 A
+O13 C65 1.294 . A
+O13 Al51 1.804 1_656 A
+O14 C64 1.294 . A
+O14 Al52 1.796 . S
+C15 C16 1.410 . A
+C15 C67 1.410 . A
+C15 H17 1.080 . S
+C16 C66 1.409 . A
+C16 H18 1.081 . S
+O19 Al52 1.801 . S
+O19 C70 1.292 . A
+O20 C69 1.292 . A
+O20 Al51 1.799 1_655 A
+C21 C22 1.410 . A
+C21 C72 1.413 . A
+C21 H23 1.079 . S
+C22 C71 1.411 . A
+C22 H24 1.081 . S
+O25 C65 1.294 . A
+O25 Al49 1.803 1_656 S
+O26 C64 1.287 . A
+O26 Al50 1.798 . S
+C27 C28 1.411 . A
+C27 C67 1.409 . A
+C27 H29 1.081 1_545 A
+C28 C66 1.410 . A
+C28 H30 1.081 1_545 A
+H29 C27 1.081 1_565 A
+H30 C28 1.081 1_565 A
+O31 C70 1.295 . A
+O31 Al50 1.797 1_565 S
+O32 C69 1.295 . A
+O32 Al49 1.803 1_665 S
+C33 C34 1.408 . A
+C33 C72 1.409 . A
+C33 H35 1.082 1_565 A
+C34 C71 1.407 . A
+C34 H36 1.079 1_565 A
+H35 C33 1.082 1_545 A
+H36 C34 1.079 1_545 A
+O37 Al51 1.798 . S
+O37 C55 1.292 . A
+O38 C54 1.291 . A
+O38 Al52 1.802 . S
+C39 C40 1.411 . A
+C39 C57 1.409 . A
+C39 H41 1.080 . S
+C40 C56 1.409 . A
+C40 H42 1.081 . S
+O43 Al52 1.803 . S
+O43 C60 1.296 . A
+O44 C59 1.294 . A
+O44 Al51 1.802 1_556 S
+C45 C46 1.411 . A
+C45 C62 1.407 . A
+C45 H47 1.081 . S
+C46 C61 1.408 . A
+C46 H48 1.080 . S
+Al49 O63 1.806 . S
+Al49 O1 1.799 1_545 A
+Al49 O8 1.799 1_554 A
+Al49 O25 1.803 1_454 S
+Al49 O32 1.803 1_445 S
+Al49 O53 1.809 1_544 A
+Al50 O58 1.809 . S
+Al50 O2 1.801 1_545 A
+Al50 O31 1.797 1_545 S
+Al50 O68 1.806 1_545 A
+Al51 O63 1.807 . S
+Al51 O13 1.804 1_454 A
+Al51 O20 1.799 1_455 A
+Al51 O44 1.802 1_554 S
+Al51 O53 1.808 1_554 A
+Al52 O68 1.808 . S
+Al52 O58 1.809 . S
+O53 H76 0.862 . S
+O53 Al49 1.809 1_566 A
+O53 Al51 1.808 1_556 A
+C54 C56 1.510 . S
+C55 C57 1.509 . S
+O58 H73 0.862 . S
+C59 C61 1.509 . S
+C60 C62 1.510 . S
+O63 H75 0.862 . S
+C64 C66 1.507 . S
+C65 C67 1.510 . S
+O68 H74 0.863 . S
+O68 Al50 1.806 1_565 A
+C69 C71 1.511 . S
+C70 C72 1.511 . S
diff --git a/benchmarks/mof/structures/CALF20.cif b/benchmarks/mof/structures/CALF20.cif
new file mode 100644
index 0000000000000000000000000000000000000000..a8cd85afe688a75219deeefab1c92e6649f848f5
--- /dev/null
+++ b/benchmarks/mof/structures/CALF20.cif
@@ -0,0 +1,79 @@
+data_CALF20
+_audit_creation_date 2025-01-03
+_audit_creation_method 'Materials Studio'
+_symmetry_space_group_name_H-M 'P21/C'
+_symmetry_Int_Tables_number 14
+_symmetry_cell_setting monoclinic
+loop_
+_symmetry_equiv_pos_as_xyz
+ x,y,z
+ -x,y+1/2,-z+1/2
+ -x,-y,-z
+ x,-y+1/2,z+1/2
+_cell_length_a 8.9138
+_cell_length_b 9.6935
+_cell_length_c 9.4836
+_cell_angle_alpha 90.0000
+_cell_angle_beta 115.8950
+_cell_angle_gamma 90.0000
+loop_
+_atom_site_label
+_atom_site_type_symbol
+_atom_site_fract_x
+_atom_site_fract_y
+_atom_site_fract_z
+_atom_site_U_iso_or_equiv
+_atom_site_adp_type
+_atom_site_occupancy
+Zn1 Zn 0.17588 0.05771 0.43679 0.01878 Uani 1.00
+N1 N 0.03080 -0.11080 0.36830 0.02235 Uani 1.00
+N2 N -0.09220 -0.14750 0.41000 0.02454 Uani 1.00
+N3 N -0.09920 -0.29140 0.22590 0.02563 Uani 1.00
+O1 O 0.40980 0.07610 0.61020 0.03235 Uani 1.00
+O2 O 0.67530 0.03070 0.67320 0.02972 Uani 1.00
+C1 C 0.02150 -0.19830 0.25880 0.02987 Uani 1.00
+H1A H 0.09320 -0.19550 0.20860 0.03600 Uiso 1.00
+C2 C -0.16550 -0.25540 0.32320 0.02964 Uani 1.00
+H2A H -0.25590 -0.30290 0.32890 0.03600 Uiso 1.00
+C3 C 0.52480 0.03080 0.58150 0.02323 Uani 1.00
+loop_
+_atom_site_aniso_label
+_atom_site_aniso_U_11
+_atom_site_aniso_U_22
+_atom_site_aniso_U_33
+_atom_site_aniso_U_12
+_atom_site_aniso_U_13
+_atom_site_aniso_U_23
+Zn1 0.01910 0.01960 0.02120 -0.00037 0.01210 0.00021
+N1 0.02510 0.02230 0.02770 -0.00420 0.01900 -0.00430
+N2 0.02610 0.02640 0.02940 -0.00570 0.01980 -0.00540
+N3 0.02870 0.02630 0.02900 -0.00580 0.01920 -0.00810
+O1 0.01990 0.04770 0.03200 0.00370 0.01370 -0.00870
+O2 0.02170 0.03940 0.02870 0.00180 0.01160 -0.00580
+C1 0.03180 0.03110 0.03860 -0.01080 0.02640 -0.01070
+C2 0.03200 0.03190 0.03800 -0.01230 0.02730 -0.01110
+C3 0.01980 0.02350 0.02720 0.00070 0.01100 0.00160
+loop_
+_geom_bond_atom_site_label_1
+_geom_bond_atom_site_label_2
+_geom_bond_distance
+_geom_bond_site_symmetry_2
+_ccdc_geom_bond_type
+Zn1 N1 2.007 . S
+Zn1 O1 2.022 . S
+Zn1 N3 2.016 2 S
+Zn1 N2 2.091 3_556 S
+Zn1 O2 2.189 3_656 S
+N1 C1 1.315 . S
+N1 N2 1.365 . S
+N2 C2 1.315 . S
+N2 Zn1 2.091 3_556 S
+N3 C1 1.333 . S
+N3 C2 1.341 . S
+N3 Zn1 2.016 2_545 S
+O1 C3 1.250 . S
+O2 C3 1.240 . S
+O2 Zn1 2.189 3_656 S
+C1 H1A 0.950 . S
+C2 H2A 0.950 . S
+C3 C3 1.531 3_656 S
diff --git a/benchmarks/mof/structures/HKUST-1.cif b/benchmarks/mof/structures/HKUST-1.cif
new file mode 100644
index 0000000000000000000000000000000000000000..d7d2adad361d09830475837f67f22b7ca9a53f4d
--- /dev/null
+++ b/benchmarks/mof/structures/HKUST-1.cif
@@ -0,0 +1,180 @@
+data_FIQCEN_clean
+_audit_creation_date 2014-07-02
+_audit_creation_method 'Materials Studio'
+_symmetry_space_group_name_H-M 'P1'
+_symmetry_Int_Tables_number 1
+_symmetry_cell_setting triclinic
+loop_
+_symmetry_equiv_pos_as_xyz
+ x,y,z
+_cell_length_a 18.6273
+_cell_length_b 18.6273
+_cell_length_c 18.6273
+_cell_angle_alpha 60.0000
+_cell_angle_beta 60.0000
+_cell_angle_gamma 60.0000
+loop_
+_atom_site_label
+_atom_site_type_symbol
+_atom_site_fract_x
+_atom_site_fract_y
+_atom_site_fract_z
+_atom_site_U_iso_or_equiv
+_atom_site_adp_type
+_atom_site_occupancy
+Cu1 Cu 0.57057 -0.00000 0.42943 0.01267 Uiso 1.00
+Cu2 Cu 0.00000 0.57057 0.00000 0.01267 Uiso 1.00
+Cu3 Cu 0.42943 0.00000 0.57057 0.01267 Uiso 1.00
+Cu4 Cu 0.00000 0.42943 0.00000 0.01267 Uiso 1.00
+Cu5 Cu 0.57057 0.42943 -0.00000 0.01267 Uiso 1.00
+Cu6 Cu 0.00000 1.00000 0.42943 0.01267 Uiso 1.00
+Cu7 Cu 0.42943 0.57057 -0.00000 0.01267 Uiso 1.00
+Cu8 Cu 0.00000 0.00000 0.57057 0.01267 Uiso 1.00
+Cu9 Cu 0.57057 1.00000 -0.00000 0.01267 Uiso 1.00
+Cu10 Cu 0.00000 0.42943 0.57057 0.01267 Uiso 1.00
+Cu11 Cu 0.42943 1.00000 0.00000 0.01267 Uiso 1.00
+Cu12 Cu 0.00000 0.57057 0.42943 0.01267 Uiso 1.00
+H1 H 0.72800 0.72800 0.51160 0.01267 Uiso 1.00
+H2 H 0.72800 0.72800 0.03240 0.01267 Uiso 1.00
+H3 H 0.51160 0.03240 0.72800 0.01267 Uiso 1.00
+H4 H 0.03240 0.51160 0.72800 0.01267 Uiso 1.00
+H5 H 0.72800 0.51160 0.03240 0.01267 Uiso 1.00
+H6 H 0.72800 0.03240 0.51160 0.01267 Uiso 1.00
+H7 H 0.51160 0.72800 0.72800 0.01267 Uiso 1.00
+H8 H 0.03240 0.72800 0.72800 0.01267 Uiso 1.00
+H9 H 0.72800 0.03240 0.72800 0.01267 Uiso 1.00
+H10 H 0.72800 0.51160 0.72800 0.01267 Uiso 1.00
+H11 H 0.51160 0.72800 0.03240 0.01267 Uiso 1.00
+H12 H 0.03240 0.72800 0.51160 0.01267 Uiso 1.00
+H13 H 0.27200 0.27200 0.48840 0.01267 Uiso 1.00
+H14 H 0.27200 0.27200 0.96760 0.01267 Uiso 1.00
+H15 H 0.96760 0.48840 0.27200 0.01267 Uiso 1.00
+H16 H 0.48840 0.96760 0.27200 0.01267 Uiso 1.00
+H17 H 0.48840 0.27200 0.96760 0.01267 Uiso 1.00
+H18 H 0.96760 0.27200 0.48840 0.01267 Uiso 1.00
+H19 H 0.27200 0.48840 0.27200 0.01267 Uiso 1.00
+H20 H 0.27200 0.96760 0.27200 0.01267 Uiso 1.00
+H21 H 0.96760 0.27200 0.27200 0.01267 Uiso 1.00
+H22 H 0.48840 0.27200 0.27200 0.01267 Uiso 1.00
+H23 H 0.27200 0.48840 0.96760 0.01267 Uiso 1.00
+H24 H 0.27200 0.96760 0.48840 0.01267 Uiso 1.00
+C1 C 0.25700 0.96900 0.38700 0.01267 Uiso 1.00
+C2 C 0.96900 0.25700 0.38700 0.01267 Uiso 1.00
+C3 C 0.38700 0.38700 0.25700 0.01267 Uiso 1.00
+C4 C 0.38700 0.38700 0.96900 0.01267 Uiso 1.00
+C5 C 0.25700 0.38700 0.38700 0.01267 Uiso 1.00
+C6 C 0.96900 0.38700 0.38700 0.01267 Uiso 1.00
+C7 C 0.38700 0.25700 0.96900 0.01267 Uiso 1.00
+C8 C 0.38700 0.96900 0.25700 0.01267 Uiso 1.00
+C9 C 0.25700 0.38700 0.96900 0.01267 Uiso 1.00
+C10 C 0.96900 0.38700 0.25700 0.01267 Uiso 1.00
+C11 C 0.38700 0.96900 0.38700 0.01267 Uiso 1.00
+C12 C 0.38700 0.25700 0.38700 0.01267 Uiso 1.00
+C13 C 0.03100 0.74300 0.61300 0.01267 Uiso 1.00
+C14 C 0.74300 0.03100 0.61300 0.01267 Uiso 1.00
+C15 C 0.61300 0.61300 0.74300 0.01267 Uiso 1.00
+C16 C 0.61300 0.61300 0.03100 0.01267 Uiso 1.00
+C17 C 0.61300 0.74300 0.61300 0.01267 Uiso 1.00
+C18 C 0.61300 0.03100 0.61300 0.01267 Uiso 1.00
+C19 C 0.74300 0.61300 0.03100 0.01267 Uiso 1.00
+C20 C 0.03100 0.61300 0.74300 0.01267 Uiso 1.00
+C21 C 0.61300 0.74300 0.03100 0.01267 Uiso 1.00
+C22 C 0.61300 0.03100 0.74300 0.01267 Uiso 1.00
+C23 C 0.03100 0.61300 0.61300 0.01267 Uiso 1.00
+C24 C 0.74300 0.61300 0.61300 0.01267 Uiso 1.00
+C25 C 0.56870 0.56870 0.83770 0.01267 Uiso 1.00
+C26 C 0.56870 0.56870 0.02490 0.01267 Uiso 1.00
+C27 C 0.83770 0.02490 0.56870 0.01267 Uiso 1.00
+C28 C 0.02490 0.83770 0.56870 0.01267 Uiso 1.00
+C29 C 0.56870 0.83770 0.02490 0.01267 Uiso 1.00
+C30 C 0.56870 0.02490 0.83770 0.01267 Uiso 1.00
+C31 C 0.83770 0.56870 0.56870 0.01267 Uiso 1.00
+C32 C 0.02490 0.56870 0.56870 0.01267 Uiso 1.00
+C33 C 0.56870 0.02490 0.56870 0.01267 Uiso 1.00
+C34 C 0.56870 0.83770 0.56870 0.01267 Uiso 1.00
+C35 C 0.83770 0.56870 0.02490 0.01267 Uiso 1.00
+C36 C 0.02490 0.56870 0.83770 0.01267 Uiso 1.00
+C37 C 0.43130 0.43130 0.16230 0.01267 Uiso 1.00
+C38 C 0.43130 0.43130 0.97510 0.01267 Uiso 1.00
+C39 C 0.97510 0.16230 0.43130 0.01267 Uiso 1.00
+C40 C 0.16230 0.97510 0.43130 0.01267 Uiso 1.00
+C41 C 0.16230 0.43130 0.97510 0.01267 Uiso 1.00
+C42 C 0.97510 0.43130 0.16230 0.01267 Uiso 1.00
+C43 C 0.43130 0.16230 0.43130 0.01267 Uiso 1.00
+C44 C 0.43130 0.97510 0.43130 0.01267 Uiso 1.00
+C45 C 0.97510 0.43130 0.43130 0.01267 Uiso 1.00
+C46 C 0.16230 0.43130 0.43130 0.01267 Uiso 1.00
+C47 C 0.43130 0.16230 0.97510 0.01267 Uiso 1.00
+C48 C 0.43130 0.97510 0.16230 0.01267 Uiso 1.00
+C49 C 0.30060 0.96840 0.43040 0.01267 Uiso 1.00
+C50 C 0.96840 0.30060 0.30060 0.01267 Uiso 1.00
+C51 C 0.43040 0.30060 0.30060 0.01267 Uiso 1.00
+C52 C 0.30060 0.43040 0.96840 0.01267 Uiso 1.00
+C53 C 0.30060 0.43040 0.30060 0.01267 Uiso 1.00
+C54 C 0.96840 0.30060 0.43040 0.01267 Uiso 1.00
+C55 C 0.43040 0.30060 0.96840 0.01267 Uiso 1.00
+C56 C 0.30060 0.96840 0.30060 0.01267 Uiso 1.00
+C57 C 0.30060 0.30060 0.96840 0.01267 Uiso 1.00
+C58 C 0.96840 0.43040 0.30060 0.01267 Uiso 1.00
+C59 C 0.43040 0.96840 0.30060 0.01267 Uiso 1.00
+C60 C 0.30060 0.30060 0.43040 0.01267 Uiso 1.00
+C61 C 0.03160 0.69940 0.56960 0.01267 Uiso 1.00
+C62 C 0.69940 0.03160 0.69940 0.01267 Uiso 1.00
+C63 C 0.69940 0.56960 0.69940 0.01267 Uiso 1.00
+C64 C 0.56960 0.69940 0.03160 0.01267 Uiso 1.00
+C65 C 0.56960 0.69940 0.69940 0.01267 Uiso 1.00
+C66 C 0.69940 0.03160 0.56960 0.01267 Uiso 1.00
+C67 C 0.69940 0.56960 0.03160 0.01267 Uiso 1.00
+C68 C 0.03160 0.69940 0.69940 0.01267 Uiso 1.00
+C69 C 0.69940 0.69940 0.03160 0.01267 Uiso 1.00
+C70 C 0.56960 0.03160 0.69940 0.01267 Uiso 1.00
+C71 C 0.03160 0.56960 0.69940 0.01267 Uiso 1.00
+C72 C 0.69940 0.69940 0.56960 0.01267 Uiso 1.00
+O1 O 0.61201 0.49247 0.87425 0.01267 Uiso 1.00
+O2 O 0.49247 0.61201 0.02127 0.01267 Uiso 1.00
+O3 O 0.87425 0.02127 0.61201 0.01267 Uiso 1.00
+O4 O 0.02127 0.87425 0.49247 0.01267 Uiso 1.00
+O5 O 0.61201 0.87425 0.02127 0.01267 Uiso 1.00
+O6 O 0.49247 0.02127 0.87425 0.01267 Uiso 1.00
+O7 O 0.87425 0.61201 0.49247 0.01267 Uiso 1.00
+O8 O 0.02127 0.49247 0.61201 0.01267 Uiso 1.00
+O9 O 0.61201 0.02127 0.49247 0.01267 Uiso 1.00
+O10 O 0.49247 0.87425 0.61201 0.01267 Uiso 1.00
+O11 O 0.87425 0.49247 0.02127 0.01267 Uiso 1.00
+O12 O 0.02127 0.61201 0.87425 0.01267 Uiso 1.00
+O13 O 0.50753 0.38799 0.12575 0.01267 Uiso 1.00
+O14 O 0.38799 0.50753 0.97873 0.01267 Uiso 1.00
+O15 O 0.97873 0.12575 0.38799 0.01267 Uiso 1.00
+O16 O 0.12575 0.97873 0.50753 0.01267 Uiso 1.00
+O17 O 0.12575 0.38799 0.97873 0.01267 Uiso 1.00
+O18 O 0.97873 0.50753 0.12575 0.01267 Uiso 1.00
+O19 O 0.38799 0.12575 0.50753 0.01267 Uiso 1.00
+O20 O 0.50753 0.97873 0.38799 0.01267 Uiso 1.00
+O21 O 0.97873 0.38799 0.50753 0.01267 Uiso 1.00
+O22 O 0.12575 0.50753 0.38799 0.01267 Uiso 1.00
+O23 O 0.50753 0.12575 0.97873 0.01267 Uiso 1.00
+O24 O 0.38799 0.97873 0.12575 0.01267 Uiso 1.00
+O25 O 0.38799 0.50753 0.12575 0.01267 Uiso 1.00
+O26 O 0.50753 0.38799 0.97873 0.01267 Uiso 1.00
+O27 O 0.12575 0.97873 0.38799 0.01267 Uiso 1.00
+O28 O 0.97873 0.12575 0.50753 0.01267 Uiso 1.00
+O29 O 0.38799 0.12575 0.97873 0.01267 Uiso 1.00
+O30 O 0.50753 0.97873 0.12575 0.01267 Uiso 1.00
+O31 O 0.12575 0.38799 0.50753 0.01267 Uiso 1.00
+O32 O 0.97873 0.50753 0.38799 0.01267 Uiso 1.00
+O33 O 0.38799 0.97873 0.50753 0.01267 Uiso 1.00
+O34 O 0.50753 0.12575 0.38799 0.01267 Uiso 1.00
+O35 O 0.12575 0.50753 0.97873 0.01267 Uiso 1.00
+O36 O 0.97873 0.38799 0.12575 0.01267 Uiso 1.00
+O37 O 0.49247 0.61201 0.87425 0.01267 Uiso 1.00
+O38 O 0.61201 0.49247 0.02127 0.01267 Uiso 1.00
+O39 O 0.02127 0.87425 0.61201 0.01267 Uiso 1.00
+O40 O 0.87425 0.02127 0.49247 0.01267 Uiso 1.00
+O41 O 0.87425 0.61201 0.02127 0.01267 Uiso 1.00
+O42 O 0.02127 0.49247 0.87425 0.01267 Uiso 1.00
+O43 O 0.61201 0.87425 0.49247 0.01267 Uiso 1.00
+O44 O 0.49247 0.02127 0.61201 0.01267 Uiso 1.00
+O45 O 0.02127 0.61201 0.49247 0.01267 Uiso 1.00
+O46 O 0.87425 0.49247 0.61201 0.01267 Uiso 1.00
+O47 O 0.49247 0.87425 0.02127 0.01267 Uiso 1.00
+O48 O 0.61201 0.02127 0.87425 0.01267 Uiso 1.00
diff --git a/benchmarks/mof/structures/MOF-5.cif b/benchmarks/mof/structures/MOF-5.cif
new file mode 100644
index 0000000000000000000000000000000000000000..f49b1517443dde7d85b82c5e5835d479cc451062
--- /dev/null
+++ b/benchmarks/mof/structures/MOF-5.cif
@@ -0,0 +1,130 @@
+data_EDUSIF_clean
+_audit_creation_date 2014-07-02
+_audit_creation_method 'Materials Studio'
+_symmetry_space_group_name_H-M 'P1'
+_symmetry_Int_Tables_number 1
+_symmetry_cell_setting triclinic
+loop_
+_symmetry_equiv_pos_as_xyz
+ x,y,z
+_cell_length_a 18.2660
+_cell_length_b 18.2660
+_cell_length_c 18.2660
+_cell_angle_alpha 60.0000
+_cell_angle_beta 60.0000
+_cell_angle_gamma 60.0000
+loop_
+_atom_site_label
+_atom_site_type_symbol
+_atom_site_fract_x
+_atom_site_fract_y
+_atom_site_fract_z
+_atom_site_U_iso_or_equiv
+_atom_site_adp_type
+_atom_site_occupancy
+Zn1 Zn 0.29338 0.29338 0.29338 0.01267 Uiso 1.00
+Zn2 Zn 0.29338 0.29338 0.11986 0.01267 Uiso 1.00
+Zn3 Zn 0.29338 0.11986 0.29338 0.01267 Uiso 1.00
+Zn4 Zn 0.11986 0.29338 0.29338 0.01267 Uiso 1.00
+Zn5 Zn 0.70662 0.70662 0.70662 0.01267 Uiso 1.00
+Zn6 Zn 0.70662 0.70662 0.88014 0.01267 Uiso 1.00
+Zn7 Zn 0.88014 0.70662 0.70662 0.01267 Uiso 1.00
+Zn8 Zn 0.70662 0.88014 0.70662 0.01267 Uiso 1.00
+H1 H 0.15460 0.45520 0.45520 0.01267 Uiso 1.00
+H2 H 0.45520 0.15460 0.93500 0.01267 Uiso 1.00
+H3 H 0.45520 0.93500 0.15460 0.01267 Uiso 1.00
+H4 H 0.93500 0.45520 0.45520 0.01267 Uiso 1.00
+H5 H 0.15460 0.45520 0.93500 0.01267 Uiso 1.00
+H6 H 0.45520 0.93500 0.45520 0.01267 Uiso 1.00
+H7 H 0.45520 0.15460 0.45520 0.01267 Uiso 1.00
+H8 H 0.93500 0.45520 0.15460 0.01267 Uiso 1.00
+H9 H 0.15460 0.93500 0.45520 0.01267 Uiso 1.00
+H10 H 0.45520 0.45520 0.15460 0.01267 Uiso 1.00
+H11 H 0.45520 0.45520 0.93500 0.01267 Uiso 1.00
+H12 H 0.93500 0.15460 0.45520 0.01267 Uiso 1.00
+H13 H 0.54480 0.84540 0.54480 0.01267 Uiso 1.00
+H14 H 0.84540 0.54480 0.06500 0.01267 Uiso 1.00
+H15 H 0.06500 0.54480 0.84540 0.01267 Uiso 1.00
+H16 H 0.54480 0.06500 0.54480 0.01267 Uiso 1.00
+H17 H 0.54480 0.84540 0.06500 0.01267 Uiso 1.00
+H18 H 0.06500 0.54480 0.54480 0.01267 Uiso 1.00
+H19 H 0.84540 0.54480 0.54480 0.01267 Uiso 1.00
+H20 H 0.54480 0.06500 0.84540 0.01267 Uiso 1.00
+H21 H 0.06500 0.84540 0.54480 0.01267 Uiso 1.00
+H22 H 0.54480 0.54480 0.84540 0.01267 Uiso 1.00
+H23 H 0.54480 0.54480 0.06500 0.01267 Uiso 1.00
+H24 H 0.84540 0.06500 0.54480 0.01267 Uiso 1.00
+C1 C 0.09270 0.47310 0.47310 0.01267 Uiso 1.00
+C2 C 0.47310 0.09270 0.96110 0.01267 Uiso 1.00
+C3 C 0.47310 0.96110 0.09270 0.01267 Uiso 1.00
+C4 C 0.96110 0.47310 0.47310 0.01267 Uiso 1.00
+C5 C 0.09270 0.47310 0.96110 0.01267 Uiso 1.00
+C6 C 0.47310 0.96110 0.47310 0.01267 Uiso 1.00
+C7 C 0.47310 0.09270 0.47310 0.01267 Uiso 1.00
+C8 C 0.96110 0.47310 0.09270 0.01267 Uiso 1.00
+C9 C 0.09270 0.96110 0.47310 0.01267 Uiso 1.00
+C10 C 0.47310 0.47310 0.09270 0.01267 Uiso 1.00
+C11 C 0.47310 0.47310 0.96110 0.01267 Uiso 1.00
+C12 C 0.96110 0.09270 0.47310 0.01267 Uiso 1.00
+C13 C 0.52690 0.90730 0.52690 0.01267 Uiso 1.00
+C14 C 0.90730 0.52690 0.03890 0.01267 Uiso 1.00
+C15 C 0.03890 0.52690 0.90730 0.01267 Uiso 1.00
+C16 C 0.52690 0.03890 0.52690 0.01267 Uiso 1.00
+C17 C 0.52690 0.90730 0.03890 0.01267 Uiso 1.00
+C18 C 0.03890 0.52690 0.52690 0.01267 Uiso 1.00
+C19 C 0.90730 0.52690 0.52690 0.01267 Uiso 1.00
+C20 C 0.52690 0.03890 0.90730 0.01267 Uiso 1.00
+C21 C 0.03890 0.90730 0.52690 0.01267 Uiso 1.00
+C22 C 0.52690 0.52690 0.90730 0.01267 Uiso 1.00
+C23 C 0.52690 0.52690 0.03890 0.01267 Uiso 1.00
+C24 C 0.90730 0.03890 0.52690 0.01267 Uiso 1.00
+C25 C 0.11130 0.38870 0.38870 0.01267 Uiso 1.00
+C26 C 0.05380 0.44620 0.44620 0.01267 Uiso 1.00
+C27 C 0.38870 0.11130 0.11130 0.01267 Uiso 1.00
+C28 C 0.44620 0.05380 0.05380 0.01267 Uiso 1.00
+C29 C 0.11130 0.38870 0.11130 0.01267 Uiso 1.00
+C30 C 0.05380 0.44620 0.05380 0.01267 Uiso 1.00
+C31 C 0.38870 0.11130 0.38870 0.01267 Uiso 1.00
+C32 C 0.44620 0.05380 0.44620 0.01267 Uiso 1.00
+C33 C 0.11130 0.11130 0.38870 0.01267 Uiso 1.00
+C34 C 0.05380 0.05380 0.44620 0.01267 Uiso 1.00
+C35 C 0.38870 0.38870 0.11130 0.01267 Uiso 1.00
+C36 C 0.44620 0.44620 0.05380 0.01267 Uiso 1.00
+C37 C 0.61130 0.88870 0.61130 0.01267 Uiso 1.00
+C38 C 0.55380 0.94620 0.55380 0.01267 Uiso 1.00
+C39 C 0.88870 0.61130 0.88870 0.01267 Uiso 1.00
+C40 C 0.94620 0.55380 0.94620 0.01267 Uiso 1.00
+C41 C 0.61130 0.88870 0.88870 0.01267 Uiso 1.00
+C42 C 0.55380 0.94620 0.94620 0.01267 Uiso 1.00
+C43 C 0.88870 0.61130 0.61130 0.01267 Uiso 1.00
+C44 C 0.94620 0.55380 0.55380 0.01267 Uiso 1.00
+C45 C 0.88870 0.88870 0.61130 0.01267 Uiso 1.00
+C46 C 0.94620 0.94620 0.55380 0.01267 Uiso 1.00
+C47 C 0.61130 0.61130 0.88870 0.01267 Uiso 1.00
+C48 C 0.55380 0.55380 0.94620 0.01267 Uiso 1.00
+O1 O 0.25000 0.25000 0.25000 0.01267 Uiso 1.00
+O2 O 0.75000 0.75000 0.75000 0.01267 Uiso 1.00
+O3 O 0.19777 0.36600 0.36600 0.01267 Uiso 1.00
+O4 O 0.36600 0.19777 0.07023 0.01267 Uiso 1.00
+O5 O 0.36600 0.07023 0.19777 0.01267 Uiso 1.00
+O6 O 0.07023 0.36600 0.36600 0.01267 Uiso 1.00
+O7 O 0.19777 0.36600 0.07023 0.01267 Uiso 1.00
+O8 O 0.36600 0.07023 0.36600 0.01267 Uiso 1.00
+O9 O 0.36600 0.19777 0.36600 0.01267 Uiso 1.00
+O10 O 0.07023 0.36600 0.19777 0.01267 Uiso 1.00
+O11 O 0.19777 0.07023 0.36600 0.01267 Uiso 1.00
+O12 O 0.36600 0.36600 0.19777 0.01267 Uiso 1.00
+O13 O 0.36600 0.36600 0.07023 0.01267 Uiso 1.00
+O14 O 0.07023 0.19777 0.36600 0.01267 Uiso 1.00
+O15 O 0.63400 0.80223 0.63400 0.01267 Uiso 1.00
+O16 O 0.80223 0.63400 0.92977 0.01267 Uiso 1.00
+O17 O 0.92977 0.63400 0.80223 0.01267 Uiso 1.00
+O18 O 0.63400 0.92977 0.63400 0.01267 Uiso 1.00
+O19 O 0.63400 0.80223 0.92977 0.01267 Uiso 1.00
+O20 O 0.92977 0.63400 0.63400 0.01267 Uiso 1.00
+O21 O 0.80223 0.63400 0.63400 0.01267 Uiso 1.00
+O22 O 0.63400 0.92977 0.80223 0.01267 Uiso 1.00
+O23 O 0.92977 0.80223 0.63400 0.01267 Uiso 1.00
+O24 O 0.63400 0.63400 0.80223 0.01267 Uiso 1.00
+O25 O 0.63400 0.63400 0.92977 0.01267 Uiso 1.00
+O26 O 0.80223 0.92977 0.63400 0.01267 Uiso 1.00
diff --git a/benchmarks/mof/structures/SIFSIX-3-Cu.cif b/benchmarks/mof/structures/SIFSIX-3-Cu.cif
new file mode 100644
index 0000000000000000000000000000000000000000..a90ea36c24c944c89b8b1a16c7d9db3db6dec34f
--- /dev/null
+++ b/benchmarks/mof/structures/SIFSIX-3-Cu.cif
@@ -0,0 +1,468 @@
+ data_SIFIX-3-Cu_Mohamed_EDDAOUDI_FMD3_KAUST
+
+#=============================================================================
+
+# 1. SUBMISSION DETAILS
+
+_publ_contact_author_name 'Prof. Mohamed EDDAOUDI'
+_publ_contact_author_address
+;
+Functional Material Design, development & Discovery (FMD3), Advanced Membrane &
+Porous Materials (AMPM); King Abdullah University of Science and Technology
+(KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
+;
+_publ_contact_author_email ' Mohamed.eddaoudi@kaust.edu.sa '
+_publ_contact_author_fax ?
+_publ_contact_author_phone ?
+
+_publ_contact_letter
+; ?
+;
+
+_publ_requested_journal ' Nature Communications '
+_publ_requested_coeditor_name ?
+_publ_requested_category ? # Acta C: one of CI/CM/CO/FI/FM/FO
+
+
+# Definition of non standard CIF items (Reliability indices used in FULLPROF)
+
+loop_
+_publ_manuscript_incl_extra_item
+_publ_manuscript_incl_extra_info
+_publ_manuscript_incl_extra_defn
+# Name Explanation Standard?
+# ------ ----------- ---------
+ '_pd_proc_ls_prof_cR_factor' 'Prof. R-factor CORRECTED for background' no
+ '_pd_proc_ls_prof_cwR_factor' 'wProf.R-factor CORRECTED for background' no
+ '_pd_proc_ls_prof_cwR_expected' 'wProf.Expected CORRECTED for background' no
+ '_pd_proc_ls_prof_chi2' 'Chi-square for all considered points' no
+ '_pd_proc_ls_prof_echi2' 'Chi-2 for points with Bragg contribution' no
+#=============================================================================
+
+# 3. TITLE AND AUTHOR LIST
+
+_publ_section_title
+; ' SIFIX-3-Cu'
+;
+_publ_section_title_footnote
+;
+;
+
+# The loop structure below should contain the names and addresses of all
+# authors, in the required order of publication. Repeat as necessary.
+
+loop_
+ _publ_author_name
+ _publ_author_footnote
+ _publ_author_address
+? #<--'Last name, first name'
+; ?
+;
+; ?
+;
+
+#=============================================================================
+
+# 4. TEXT
+
+_publ_section_synopsis
+; ?
+;
+_publ_section_abstract
+; ?
+;
+_publ_section_comment
+; ?
+;
+_publ_section_exptl_prep # Details of the preparation of the sample(s)
+ # should be given here.
+; ?
+;
+_publ_section_exptl_refinement
+; ?
+;
+_publ_section_references
+; ?
+;
+_publ_section_figure_captions
+; ?
+;
+_publ_section_acknowledgements
+; ?
+;
+
+#=============================================================================
+
+#=============================================================================
+# If more than one structure is reported, the remaining sections should be
+# completed per structure. For each data set, replace the '?' in the
+# data_? line below by a unique identifier.
+
+data_SIFIX-3-Cu_Mohamed_EDDAOUDI_KAUST
+
+#=============================================================================
+
+# 5. CHEMICAL DATA
+
+_chemical_name_systematic
+; ?
+;
+_chemical_name_common ?
+_chemical_formula_moiety ' C8 H8 Cu F6 N4 Si '
+_chemical_formula_sum ' C8 H8 Cu F6 N4 Si '
+_chemical_formula_weight 365.82
+
+loop_
+ _atom_type_symbol
+ _atom_type_scat_Cromer_Mann_a1
+ _atom_type_scat_Cromer_Mann_b1
+ _atom_type_scat_Cromer_Mann_a2
+ _atom_type_scat_Cromer_Mann_b2
+ _atom_type_scat_Cromer_Mann_a3
+ _atom_type_scat_Cromer_Mann_b3
+ _atom_type_scat_Cromer_Mann_a4
+ _atom_type_scat_Cromer_Mann_b4
+ _atom_type_scat_Cromer_Mann_c
+ _atom_type_scat_dispersion_real
+ _atom_type_scat_dispersion_imag
+ _atom_type_scat_source
+n 12.21260 0.00570 3.13220 9.89330 2.01250 28.99750
+ 1.16630 0.58260 -11.52900 0.02900 0.01800
+ International_Tables_for_Crystallography_Vol.C(1991)_Tables_6.1.1.4_and_6.1.1.5
+c 2.31000 20.84390 1.02000 10.20750 1.58860 0.56870
+ 0.86500 51.65120 0.21560 0.01700 0.00900
+ International_Tables_for_Crystallography_Vol.C(1991)_Tables_6.1.1.4_and_6.1.1.5
+h 0.49300 10.51090 0.32291 26.12570 0.14019 3.14236
+ 0.04081 57.79970 0.00304 0.00000 0.00000
+ International_Tables_for_Crystallography_Vol.C(1991)_Tables_6.1.1.4_and_6.1.1.5
+cu 13.33800 3.58280 7.16760 0.24700 5.61580 11.39660
+ 1.67350 64.81260 1.19100 -2.01900 0.58900
+ International_Tables_for_Crystallography_Vol.C(1991)_Tables_6.1.1.4_and_6.1.1.5
+f 3.53920 10.28250 2.64120 4.29440 1.51700 0.26150
+ 1.02430 26.14760 0.27760 0.06900 0.05300
+ International_Tables_for_Crystallography_Vol.C(1991)_Tables_6.1.1.4_and_6.1.1.5
+si 6.29150 2.43860 3.03530 32.33370 1.98910 0.67850
+ 1.54100 81.69370 1.14070 0.24400 0.33000
+ International_Tables_for_Crystallography_Vol.C(1991)_Tables_6.1.1.4_and_6.1.1.5
+o 3.04850 13.27710 2.28680 5.70110 1.54630 0.32390
+ 0.86700 32.90890 0.25080 0.04700 0.03200
+ International_Tables_for_Crystallography_Vol.C(1991)_Tables_6.1.1.4_and_6.1.1.5
+
+#=============================================================================
+
+# 6. POWDER SPECIMEN AND CRYSTAL DATA
+
+_symmetry_cell_setting Tetragonal
+_symmetry_space_group_name_H-M 'P 4/m m m'
+_symmetry_space_group_name_Hall '-P 4 2'
+
+loop_
+ _symmetry_equiv_pos_as_xyz #<--must include 'x,y,z'
+'x,y,z'
+'-y,x,z'
+'-x,-y,z'
+'y,-x,z'
+'-x,y,z'
+'y,x,z'
+'x,-y,z'
+'-y,-x,z'
+'-x,-y,-z'
+'y,-x,-z'
+'x,y,-z'
+'-y,x,-z'
+'x,-y,-z'
+'-y,-x,-z'
+'-x,y,-z'
+'y,x,-z'
+
+_cell_length_a 6.9186(2)
+_cell_length_b 6.9186(2)
+_cell_length_c 7.9061(3)
+_cell_angle_alpha 90.00000
+_cell_angle_beta 90.00000
+_cell_angle_gamma 90.00000
+_cell_volume 378.44(2)
+_cell_formula_units_Z 1
+_cell_measurement_temperature 298
+_cell_special_details
+; ?
+;
+# The next three fields give the specimen dimensions in mm. The equatorial
+# plane contains the incident and diffracted beam.
+
+_pd_spec_size_axial ? # perpendicular to
+ # equatorial plane
+_pd_spec_size_equat ? # parallel to
+ # scattering vector
+ # in transmission
+_pd_spec_size_thick ? # parallel to
+ # scattering vector
+ # in reflection
+
+# The next five fields are character fields that describe the specimen.
+
+_pd_spec_mounting # This field should be
+ # used to give details of the
+ # container.
+; ?
+;
+_pd_spec_mount_mode ? # options are 'reflection'
+ # or 'transmission'
+_pd_spec_shape ? # options are 'cylinder'
+ # 'flat_sheet' or 'irregular'
+_pd_char_particle_morphology ?
+_pd_char_colour ? # use ICDD colour descriptions
+
+# The following three fields describe the preparation of the specimen.
+# The cooling rate is in K/min. The pressure at which the sample was
+# prepared is in kPa. The temperature of preparation is in K.
+
+_pd_prep_cool_rate ?
+_pd_prep_pressure ?
+_pd_prep_temperature ?
+
+# The next four fields are normally only needed for transmission experiments.
+
+_exptl_absorpt_coefficient_mu ?
+_exptl_absorpt_correction_type ?
+_exptl_absorpt_process_details ?
+_exptl_absorpt_correction_T_min ?
+_exptl_absorpt_correction_T_max ?
+
+#=============================================================================
+
+# 7. EXPERIMENTAL DATA
+
+_exptl_special_details
+; ?
+;
+
+# The following item is used to identify the equipment used to record
+# the powder pattern when the diffractogram was measured at a laboratory
+# other than the authors' home institution, e.g. when neutron or synchrotron
+# radiation is used.
+
+_pd_instr_location
+; ?
+;
+_pd_calibration_special_details # description of the method used
+ # to calibrate the instrument
+; ?
+;
+
+_diffrn_ambient_temperature 298
+_diffrn_source 'classical X-ray tube'
+_diffrn_radiation_type 'Cu K\a'
+_diffrn_radiation_wavelength 1.5418
+_diffrn_radiation_monochromator ?
+_diffrn_measurement_device_type ?
+_diffrn_measurement_method ?
+_diffrn_detector_area_resol_mean ? # Not in version 2.0.1
+_diffrn_detector ' X PANanalytical'
+_diffrn_detector_type ' CCD'
+_pd_meas_scan_method 'step-scan '
+_pd_meas_special_details
+; ?
+;
+
+# The following four items give details of the measured (not processed)
+# powder pattern. Angles are in degrees.
+
+_pd_meas_number_of_points 1501
+_pd_meas_2theta_range_min 3.00000
+_pd_meas_2theta_range_max 78.00000
+_pd_meas_2theta_range_inc 0.050000
+
+#=============================================================================
+
+# 8. REFINEMENT DATA
+
+_refine_special_details
+; ?
+;
+
+# Use the next field to give any special details about the fitting of the
+# powder pattern.
+
+_pd_proc_ls_special_details
+; ?
+;
+
+# The next three items are given as text.
+
+_pd_proc_ls_profile_function ?
+_pd_proc_ls_background_function ?
+_pd_proc_ls_pref_orient_corr
+; ?
+;
+
+# The following profile R-factors are NOT CORRECTED for background
+# The sum is extended to all non-excluded points.
+# These are the current CIF standard
+
+_pd_proc_ls_prof_R_factor 1.8180
+_pd_proc_ls_prof_wR_factor 2.7928
+_pd_proc_ls_prof_wR_expected 0.6200
+
+# The following profile R-factors are CORRECTED for background
+# The sum is extended to all non-excluded points.
+# These items are not in the current CIF standard, but are defined above
+
+_pd_proc_ls_prof_cR_factor 15.1079
+_pd_proc_ls_prof_cwR_factor 12.3179
+_pd_proc_ls_prof_cwR_expected 2.7348
+
+# The following items are not in the CIF standard, but are defined above
+
+_pd_proc_ls_prof_chi2 20.2879
+_pd_proc_ls_prof_echi2 20.7262
+
+# Items related to LS refinement
+
+_refine_ls_R_I_factor 5.1628
+_refine_ls_number_reflns 192
+_refine_ls_number_parameters 91
+_refine_ls_number_restraints 0
+_refine_ls_goodness_of_fit_all 20.7
+
+# The following four items apply to angular dispersive measurements.
+# 2theta minimum, maximum and increment (in degrees) are for the
+# intensities used in the refinement.
+
+_pd_proc_2theta_range_min 3.1108
+_pd_proc_2theta_range_max 78.1108
+_pd_proc_2theta_range_inc 0.050000
+_pd_proc_wavelength 1.540510
+
+_pd_block_diffractogram_id ? # The id used for the block containing
+ # the powder pattern profile (section 11)
+
+# Give appropriate details in the next two text fields.
+
+_pd_proc_info_excluded_regions ?
+_pd_proc_info_data_reduction ?
+
+# The following items are used to identify the programs used.
+
+_computing_cell_refinement 'McMaille (Le Bail, 2004)'
+_computing_structure_solution 'ESPOIR (Le Bail, 2001)'
+_computing_structure_refinement 'FULLPROF (Rodriguez-Carvajal, 1993)'
+_computing_molecular_graphics 'DIAMOND, '
+_computing_publication_material 'PLATON (Spek, 2003)'
+
+#=============================================================================
+
+# 9. ATOMIC COORDINATES AND DISPLACEMENT PARAMETERS
+
+loop_
+ _atom_site_label
+ _atom_site_fract_x
+ _atom_site_fract_y
+ _atom_site_fract_z
+ _atom_site_U_iso_or_equiv
+ _atom_site_occupancy
+ _atom_site_adp_type # Not in version 2.0.1
+ _atom_site_type_symbol
+ N1 0.50000 0.217(2) 0.50000 0.099(8) 1.00000 Uiso N
+ C1 0.50000 0.0893(1) 0.3843(1) 0.121(1) 1.00000 Uiso C
+ H1 0.50000 0.14010 0.27980 0.1665 1.00000 Uiso H
+ Cu1 0.50000 0.50000 0.50000 0.098(3) 1.00000 Uiso Cu
+ F1 0.50000 0.50000 0.232(3) 0.119(8) 1.00000 Uiso F
+ F2 0.3313(15) 0.3313(15) 0.00000 0.204(8) 1.00000 Uiso F
+ Si1 0.50000 0.50000 0.00000 0.158(7) 1.00000 Uiso Si
+
+
+# Note: if the displacement parameters were refined anisotropically
+# the U matrices should be given as for single-crystal studies.
+
+#=============================================================================
+
+## 10. DISTANCES AND ANGLES / MOLECULAR GEOMETRY
+
+_geom_special_details ?
+
+loop_
+_geom_bond_atom_site_label_1
+_geom_bond_atom_site_label_2
+_geom_bond_distance
+_geom_bond_site_symmetry_1
+_geom_bond_site_symmetry_2
+_geom_bond_publ_flag
+ Cu1 F1 2.12(1) . . no
+ Cu1 N1 1.96(1) . . no
+ Si1 F1 1.83(1) . . no
+ Si1 F2 1.65(1) . . no
+ N1 C1 1.27(1) . . no
+ C1 C1 1.235(1) . 3_655 no
+ C1 H1 0.9000 . . no
+
+
+loop_
+_geom_angle_atom_site_label_1
+_geom_angle_atom_site_label_2
+_geom_angle_atom_site_label_3
+_geom_angle
+_geom_angle_site_symmetry_1
+_geom_angle_site_symmetry_2
+_geom_angle_site_symmetry_3
+_geom_angle_publ_flag
+ F1 Cu1 N1 90.00 . . . no
+ F1 Cu1 F1 180.00 . . . no
+ N1 Cu1 N1 90.00 . . 2_655 no
+ N1 Cu1 N1 180.00 . . 3_665 no
+ F1 Si1 F2 90.00 . . . no
+ F1 Si1 F1 180.00 . . . no
+ Cu1 F1 Si1 180.00 . . . no
+ Cu1 N1 C1 134.0(3) . . . no
+ C1 N1 C1 91.99 . . . no
+ N1 C1 H1 113.00 . . . no
+ C1 C1 H1 113.00 3_655 . . no
+
+
+
+loop_
+_geom_torsion_atom_site_label_1
+_geom_torsion_atom_site_label_2
+_geom_torsion_atom_site_label_3
+_geom_torsion_atom_site_label_4
+_geom_torsion_site_symmetry_1
+_geom_torsion_site_symmetry_2
+_geom_torsion_site_symmetry_3
+_geom_torsion_site_symmetry_4
+_geom_torsion
+_geom_torsion_publ_flag
+? ? ? ? ? ? ? ? ? ?
+
+loop_
+_geom_hbond_atom_site_label_D
+_geom_hbond_atom_site_label_H
+_geom_hbond_atom_site_label_A
+_geom_hbond_site_symmetry_D
+_geom_hbond_site_symmetry_H
+_geom_hbond_site_symmetry_A
+_geom_hbond_distance_DH
+_geom_hbond_distance_HA
+_geom_hbond_distance_DA
+_geom_hbond_angle_DHA
+_geom_hbond_publ_flag
+? ? ? ? ? ? ? ? ? ? ?
+
+#=============================================================================
+
+#=============================================================================
+# Additional structures (last six sections and associated data_? identifiers)
+# may be added at this point.
+#=============================================================================
+
+# The following lines are used to test the character set of files sent by
+# network email or other means. They are not part of the CIF data set.
+# abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789
+# !@#$%^&*()_+{}:"~<>?|\-=[];'`,./
+
+# start Validation Reply Form
+_vrf_PLAT601_SIFIX-3-Cu_Mohamed_EDDAOUDI_KAUST
+;
+PROBLEM: Structure Contains Solvent Accessible VOIDS of . 108 Ang3
+RESPONSE: Highly disordered water molecules are localized within channels.
+;
+# end Validation Reply Form
diff --git a/benchmarks/mof/structures/UiO-66.cif b/benchmarks/mof/structures/UiO-66.cif
new file mode 100644
index 0000000000000000000000000000000000000000..60010d7dc80d744953041eb301c315922eab83e4
--- /dev/null
+++ b/benchmarks/mof/structures/UiO-66.cif
@@ -0,0 +1,138 @@
+data_RUBTAK02_clean_h\(2)
+_audit_creation_date 2015-05-11
+_audit_creation_method 'Materials Studio'
+_symmetry_space_group_name_H-M 'P1'
+_symmetry_Int_Tables_number 1
+_symmetry_cell_setting triclinic
+loop_
+_symmetry_equiv_pos_as_xyz
+ x,y,z
+_cell_length_a 14.6675
+_cell_length_b 14.6675
+_cell_length_c 14.6675
+_cell_angle_alpha 60.0000
+_cell_angle_beta 60.0000
+_cell_angle_gamma 60.0000
+loop_
+_atom_site_label
+_atom_site_type_symbol
+_atom_site_fract_x
+_atom_site_fract_y
+_atom_site_fract_z
+_atom_site_U_iso_or_equiv
+_atom_site_adp_type
+_atom_site_occupancy
+C1 C 0.91980 0.08020 0.44840 0.01267 Uiso 1.00
+O2 O 0.92340 0.07660 0.26860 0.01267 Uiso 1.00
+H3 H 0.85249 0.14751 0.40954 0.01267 Uiso 1.00
+C4 C 0.08020 0.91980 0.55160 0.01267 Uiso 1.00
+O5 O 0.07660 0.92340 0.73140 0.01267 Uiso 1.00
+H6 H 0.14751 0.85249 0.59046 0.01267 Uiso 1.00
+C7 C 0.44840 0.55160 0.91980 0.01267 Uiso 1.00
+O8 O 0.26860 0.73140 0.92340 0.01267 Uiso 1.00
+H9 H 0.40954 0.59046 0.85249 0.01267 Uiso 1.00
+C10 C 0.55160 0.44840 0.08020 0.01267 Uiso 1.00
+O11 O 0.73140 0.26860 0.07660 0.01267 Uiso 1.00
+H12 H 0.59046 0.40954 0.14751 0.01267 Uiso 1.00
+C13 C 0.44840 0.91980 0.08020 0.01267 Uiso 1.00
+O14 O 0.26860 0.92340 0.07660 0.01267 Uiso 1.00
+H15 H 0.40954 0.85249 0.14751 0.01267 Uiso 1.00
+C16 C 0.55160 0.08020 0.91980 0.01267 Uiso 1.00
+O17 O 0.73140 0.07660 0.92340 0.01267 Uiso 1.00
+H18 H 0.59046 0.14751 0.85249 0.01267 Uiso 1.00
+C19 C 0.91980 0.44840 0.55160 0.01267 Uiso 1.00
+O20 O 0.92340 0.26860 0.73140 0.01267 Uiso 1.00
+H21 H 0.85249 0.40954 0.59046 0.01267 Uiso 1.00
+C22 C 0.08020 0.55160 0.44840 0.01267 Uiso 1.00
+O23 O 0.07660 0.73140 0.26860 0.01267 Uiso 1.00
+H24 H 0.14751 0.59046 0.40954 0.01267 Uiso 1.00
+C25 C 0.08020 0.44840 0.91980 0.01267 Uiso 1.00
+O26 O 0.07660 0.26860 0.92340 0.01267 Uiso 1.00
+H27 H 0.14751 0.40954 0.85249 0.01267 Uiso 1.00
+C28 C 0.91980 0.55160 0.08020 0.01267 Uiso 1.00
+O29 O 0.92340 0.73140 0.07660 0.01267 Uiso 1.00
+H30 H 0.85249 0.59046 0.14751 0.01267 Uiso 1.00
+C31 C 0.55160 0.91980 0.44840 0.01267 Uiso 1.00
+O32 O 0.73140 0.92340 0.26860 0.01267 Uiso 1.00
+H33 H 0.59046 0.85249 0.40954 0.01267 Uiso 1.00
+C34 C 0.44840 0.08020 0.55160 0.01267 Uiso 1.00
+O35 O 0.26860 0.07660 0.73140 0.01267 Uiso 1.00
+H36 H 0.40954 0.14751 0.59046 0.01267 Uiso 1.00
+C37 C 0.08020 0.91980 0.44840 0.01267 Uiso 1.00
+O38 O 0.07660 0.92340 0.26860 0.01267 Uiso 1.00
+H39 H 0.14751 0.85249 0.40954 0.01267 Uiso 1.00
+C40 C 0.91980 0.08020 0.55160 0.01267 Uiso 1.00
+O41 O 0.92340 0.07660 0.73140 0.01267 Uiso 1.00
+H42 H 0.85249 0.14751 0.59046 0.01267 Uiso 1.00
+C43 C 0.55160 0.44840 0.91980 0.01267 Uiso 1.00
+O44 O 0.73140 0.26860 0.92340 0.01267 Uiso 1.00
+H45 H 0.59046 0.40954 0.85249 0.01267 Uiso 1.00
+C46 C 0.44840 0.55160 0.08020 0.01267 Uiso 1.00
+O47 O 0.26860 0.73140 0.07660 0.01267 Uiso 1.00
+H48 H 0.40954 0.59046 0.14751 0.01267 Uiso 1.00
+C49 C 0.91980 0.44840 0.08020 0.01267 Uiso 1.00
+O50 O 0.92340 0.26860 0.07660 0.01267 Uiso 1.00
+H51 H 0.85249 0.40954 0.14751 0.01267 Uiso 1.00
+C52 C 0.08020 0.55160 0.91980 0.01267 Uiso 1.00
+O53 O 0.07660 0.73140 0.92340 0.01267 Uiso 1.00
+H54 H 0.14751 0.59046 0.85249 0.01267 Uiso 1.00
+C55 C 0.44840 0.91980 0.55160 0.01267 Uiso 1.00
+O56 O 0.26860 0.92340 0.73140 0.01267 Uiso 1.00
+H57 H 0.40954 0.85249 0.59046 0.01267 Uiso 1.00
+C58 C 0.55160 0.08020 0.44840 0.01267 Uiso 1.00
+O59 O 0.73140 0.07660 0.26860 0.01267 Uiso 1.00
+H60 H 0.59046 0.14751 0.40954 0.01267 Uiso 1.00
+C61 C 0.44840 0.08020 0.91980 0.01267 Uiso 1.00
+O62 O 0.26860 0.07660 0.92340 0.01267 Uiso 1.00
+H63 H 0.40954 0.14751 0.85249 0.01267 Uiso 1.00
+C64 C 0.55160 0.91980 0.08020 0.01267 Uiso 1.00
+O65 O 0.73140 0.92340 0.07660 0.01267 Uiso 1.00
+H66 H 0.59046 0.85249 0.14751 0.01267 Uiso 1.00
+C67 C 0.91980 0.55160 0.44840 0.01267 Uiso 1.00
+O68 O 0.92340 0.73140 0.26860 0.01267 Uiso 1.00
+H69 H 0.85249 0.59046 0.40954 0.01267 Uiso 1.00
+C70 C 0.08020 0.44840 0.55160 0.01267 Uiso 1.00
+O71 O 0.07660 0.26860 0.73140 0.01267 Uiso 1.00
+H72 H 0.14751 0.40954 0.59046 0.01267 Uiso 1.00
+Zr73 Zr 0.87960 0.12040 0.12040 0.01267 Uiso 1.00
+Zr74 Zr 0.12040 0.87960 0.87960 0.01267 Uiso 1.00
+Zr75 Zr 0.12040 0.87960 0.12040 0.01267 Uiso 1.00
+Zr76 Zr 0.87960 0.12040 0.87960 0.01267 Uiso 1.00
+Zr77 Zr 0.12040 0.12040 0.87960 0.01267 Uiso 1.00
+Zr78 Zr 0.87960 0.87960 0.12040 0.01267 Uiso 1.00
+C79 C -0.00000 0.00000 0.29460 0.01267 Uiso 1.00
+C80 C -0.00000 0.00000 0.40380 0.01267 Uiso 1.00
+C81 C 0.00000 -0.00000 0.70540 0.01267 Uiso 1.00
+C82 C 0.00000 -0.00000 0.59620 0.01267 Uiso 1.00
+C83 C 0.29460 0.70540 -0.00000 0.01267 Uiso 1.00
+C84 C 0.40380 0.59620 -0.00000 0.01267 Uiso 1.00
+C85 C 0.70540 0.29460 0.00000 0.01267 Uiso 1.00
+C86 C 0.59620 0.40380 0.00000 0.01267 Uiso 1.00
+C87 C 0.29460 -0.00000 0.00000 0.01267 Uiso 1.00
+C88 C 0.40380 -0.00000 -0.00000 0.01267 Uiso 1.00
+C89 C 0.70540 0.00000 -0.00000 0.01267 Uiso 1.00
+C90 C 0.59620 0.00000 -0.00000 0.01267 Uiso 1.00
+C91 C -0.00000 0.29460 0.70540 0.01267 Uiso 1.00
+C92 C -0.00000 0.40380 0.59620 0.01267 Uiso 1.00
+C93 C -0.00000 0.70540 0.29460 0.01267 Uiso 1.00
+C94 C -0.00000 0.59620 0.40380 0.01267 Uiso 1.00
+C95 C -0.00000 0.29460 -0.00000 0.01267 Uiso 1.00
+C96 C -0.00000 0.40380 -0.00000 0.01267 Uiso 1.00
+C97 C -0.00000 0.70540 -0.00000 0.01267 Uiso 1.00
+C98 C -0.00000 0.59620 -0.00000 0.01267 Uiso 1.00
+C99 C 0.70540 -0.00000 0.29460 0.01267 Uiso 1.00
+C100 C 0.59620 -0.00000 0.40380 0.01267 Uiso 1.00
+C101 C 0.29460 -0.00000 0.70540 0.01267 Uiso 1.00
+C102 C 0.40380 -0.00000 0.59620 0.01267 Uiso 1.00
+O103 O 0.94390 0.16830 0.94390 0.01267 Uiso 1.00
+O104 O 0.05610 0.83170 0.05610 0.01267 Uiso 1.00
+O105 O 0.16830 0.94390 0.94390 0.01267 Uiso 1.00
+O106 O 0.83170 0.05610 0.05610 0.01267 Uiso 1.00
+O107 O 0.94390 0.94390 0.94390 0.01267 Uiso 1.00
+O108 O 0.05610 0.05610 0.05610 0.01267 Uiso 1.00
+O109 O 0.94390 0.94390 0.16830 0.01267 Uiso 1.00
+O110 O 0.05610 0.05610 0.83170 0.01267 Uiso 1.00
+H111 H 0.09200 0.09200 0.09200 0.00000 Uiso 1.00
+H112 H 0.09200 0.09200 0.72400 0.00000 Uiso 1.00
+H113 H 0.09200 0.72400 0.09200 0.00000 Uiso 1.00
+H114 H 0.72400 0.09200 0.09200 0.00000 Uiso 1.00
diff --git a/benchmarks/mof/structures/ZIF-7.cif b/benchmarks/mof/structures/ZIF-7.cif
new file mode 100644
index 0000000000000000000000000000000000000000..3a5cdd04e9841307919e7afc8a78814db019cd26
--- /dev/null
+++ b/benchmarks/mof/structures/ZIF-7.cif
@@ -0,0 +1,546 @@
+data_image0
+_cell_length_a 22.989
+_cell_length_b 22.989
+_cell_length_c 15.763
+_cell_angle_alpha 90
+_cell_angle_beta 90
+_cell_angle_gamma 120
+
+_symmetry_space_group_name_H-M "P 1"
+_symmetry_int_tables_number 1
+
+loop_
+ _symmetry_equiv_pos_as_xyz
+ 'x, y, z'
+
+loop_
+ _atom_site_label
+ _atom_site_occupancy
+ _atom_site_fract_x
+ _atom_site_fract_y
+ _atom_site_fract_z
+ _atom_site_thermal_displace_type
+ _atom_site_B_iso_or_equiv
+ _atom_site_type_symbol
+ C1 1.0000 0.69950 0.02850 0.17630 Biso 1.000 C
+ H1 1.0000 0.73820 0.07030 0.17200 Biso 1.000 H
+ C2 1.0000 0.60880 0.94520 0.22640 Biso 1.000 C
+ C3 1.0000 0.55290 0.90140 0.27220 Biso 1.000 C
+ H2 1.0000 0.54360 0.91310 0.32480 Biso 1.000 H
+ C4 1.0000 0.51170 0.83960 0.23700 Biso 1.000 C
+ H3 1.0000 0.47380 0.80870 0.26670 Biso 1.000 H
+ C5 1.0000 0.52510 0.82150 0.15630 Biso 1.000 C
+ H4 1.0000 0.49600 0.77900 0.13450 Biso 1.000 H
+ C6 1.0000 0.62220 0.92740 0.14630 Biso 1.000 C
+ C7 1.0000 0.58000 0.86540 0.11010 Biso 1.000 C
+ H5 1.0000 0.58860 0.85410 0.05670 Biso 1.000 H
+ C8 1.0000 0.80820 0.20120 0.33980 Biso 1.000 C
+ H6 1.0000 0.82440 0.18970 0.38710 Biso 1.000 H
+ C9 1.0000 0.80340 0.25700 0.23610 Biso 1.000 C
+ C10 1.0000 0.81400 0.30390 0.17010 Biso 1.000 C
+ H7 1.0000 0.85440 0.34400 0.16580 Biso 1.000 H
+ C11 1.0000 0.74430 0.19720 0.24000 Biso 1.000 C
+ C12 1.0000 0.69050 0.17970 0.18020 Biso 1.000 C
+ H8 1.0000 0.65050 0.13890 0.18320 Biso 1.000 H
+ C13 1.0000 0.76370 0.28860 0.11380 Biso 1.000 C
+ H9 1.0000 0.77020 0.31940 0.07140 Biso 1.000 H
+ C14 1.0000 0.70170 0.22710 0.11750 Biso 1.000 C
+ H10 1.0000 0.66830 0.21840 0.07800 Biso 1.000 H
+ N1 1.0000 0.65890 0.01130 0.24330 Biso 1.000 N
+ N2 1.0000 0.74800 0.16040 0.30920 Biso 1.000 N
+ N3 1.0000 0.68120 0.98190 0.11520 Biso 1.000 N
+ N4 1.0000 0.84450 0.25900 0.30060 Biso 1.000 N
+ Zn1 1.0000 0.67190 0.07047 0.34160 Biso 1.000 Zn
+ C15 1.0000 0.36617 0.36183 0.50963 Biso 1.000 C
+ H11 1.0000 0.40487 0.40363 0.50533 Biso 1.000 H
+ C16 1.0000 0.27547 0.27853 0.55973 Biso 1.000 C
+ C17 1.0000 0.21957 0.23473 0.60553 Biso 1.000 C
+ H12 1.0000 0.21027 0.24643 0.65813 Biso 1.000 H
+ C18 1.0000 0.17837 0.17293 0.57033 Biso 1.000 C
+ H13 1.0000 0.14047 0.14203 0.60003 Biso 1.000 H
+ C19 1.0000 0.19177 0.15483 0.48963 Biso 1.000 C
+ H14 1.0000 0.16267 0.11233 0.46783 Biso 1.000 H
+ C20 1.0000 0.28887 0.26073 0.47963 Biso 1.000 C
+ C21 1.0000 0.24667 0.19873 0.44343 Biso 1.000 C
+ H15 1.0000 0.25527 0.18743 0.39003 Biso 1.000 H
+ C22 1.0000 0.47487 0.53453 0.67313 Biso 1.000 C
+ H16 1.0000 0.49107 0.52303 0.72043 Biso 1.000 H
+ C23 1.0000 0.47007 0.59033 0.56943 Biso 1.000 C
+ C24 1.0000 0.48067 0.63723 0.50343 Biso 1.000 C
+ H17 1.0000 0.52107 0.67733 0.49913 Biso 1.000 H
+ C25 1.0000 0.41097 0.53053 0.57333 Biso 1.000 C
+ C26 1.0000 0.35717 0.51303 0.51353 Biso 1.000 C
+ H18 1.0000 0.31717 0.47223 0.51653 Biso 1.000 H
+ C27 1.0000 0.43037 0.62193 0.44713 Biso 1.000 C
+ H19 1.0000 0.43687 0.65273 0.40473 Biso 1.000 H
+ C28 1.0000 0.36837 0.56043 0.45083 Biso 1.000 C
+ H20 1.0000 0.33497 0.55173 0.41133 Biso 1.000 H
+ N5 1.0000 0.32557 0.34463 0.57663 Biso 1.000 N
+ N6 1.0000 0.41467 0.49373 0.64253 Biso 1.000 N
+ N7 1.0000 0.34787 0.31523 0.44853 Biso 1.000 N
+ N8 1.0000 0.51117 0.59233 0.63393 Biso 1.000 N
+ Zn2 1.0000 0.33857 0.40380 0.67493 Biso 1.000 Zn
+ C29 1.0000 0.03283 0.69517 0.84297 Biso 1.000 C
+ H21 1.0000 0.07153 0.73697 0.83867 Biso 1.000 H
+ C30 1.0000 0.94213 0.61187 0.89307 Biso 1.000 C
+ C31 1.0000 0.88623 0.56807 0.93887 Biso 1.000 C
+ H22 1.0000 0.87693 0.57977 0.99147 Biso 1.000 H
+ C32 1.0000 0.84503 0.50627 0.90367 Biso 1.000 C
+ H23 1.0000 0.80713 0.47537 0.93337 Biso 1.000 H
+ C33 1.0000 0.85843 0.48817 0.82297 Biso 1.000 C
+ H24 1.0000 0.82933 0.44567 0.80117 Biso 1.000 H
+ C34 1.0000 0.95553 0.59407 0.81297 Biso 1.000 C
+ C35 1.0000 0.91333 0.53207 0.77677 Biso 1.000 C
+ H25 1.0000 0.92193 0.52077 0.72337 Biso 1.000 H
+ C36 1.0000 0.14153 0.86787 0.00647 Biso 1.000 C
+ H26 1.0000 0.15773 0.85637 0.05377 Biso 1.000 H
+ C37 1.0000 0.13673 0.92367 0.90277 Biso 1.000 C
+ C38 1.0000 0.14733 0.97057 0.83677 Biso 1.000 C
+ H27 1.0000 0.18773 0.01067 0.83247 Biso 1.000 H
+ C39 1.0000 0.07763 0.86387 0.90667 Biso 1.000 C
+ C40 1.0000 0.02383 0.84637 0.84687 Biso 1.000 C
+ H28 1.0000 0.98383 0.80557 0.84987 Biso 1.000 H
+ C41 1.0000 0.09703 0.95527 0.78047 Biso 1.000 C
+ H29 1.0000 0.10353 0.98607 0.73807 Biso 1.000 H
+ C42 1.0000 0.03503 0.89377 0.78417 Biso 1.000 C
+ H30 1.0000 0.00163 0.88507 0.74467 Biso 1.000 H
+ N9 1.0000 0.99223 0.67797 0.90997 Biso 1.000 N
+ N10 1.0000 0.08133 0.82707 0.97587 Biso 1.000 N
+ N11 1.0000 0.01453 0.64857 0.78187 Biso 1.000 N
+ N12 1.0000 0.17783 0.92567 0.96727 Biso 1.000 N
+ Zn3 1.0000 0.00523 0.73714 0.00827 Biso 1.000 Zn
+ C43 1.0000 0.97150 0.67100 0.17630 Biso 1.000 C
+ H31 1.0000 0.92970 0.66790 0.17200 Biso 1.000 H
+ C44 1.0000 0.05480 0.66360 0.22640 Biso 1.000 C
+ C45 1.0000 0.09860 0.65150 0.27220 Biso 1.000 C
+ H32 1.0000 0.08690 0.63050 0.32480 Biso 1.000 H
+ C46 1.0000 0.16040 0.67210 0.23700 Biso 1.000 C
+ H33 1.0000 0.19130 0.66510 0.26670 Biso 1.000 H
+ C47 1.0000 0.17850 0.70360 0.15630 Biso 1.000 C
+ H34 1.0000 0.22100 0.71700 0.13450 Biso 1.000 H
+ C48 1.0000 0.07260 0.69480 0.14630 Biso 1.000 C
+ C49 1.0000 0.13460 0.71460 0.11010 Biso 1.000 C
+ H35 1.0000 0.14590 0.73450 0.05670 Biso 1.000 H
+ C50 1.0000 0.79880 0.60700 0.33980 Biso 1.000 C
+ H36 1.0000 0.81030 0.63470 0.38710 Biso 1.000 H
+ C51 1.0000 0.74300 0.54640 0.23610 Biso 1.000 C
+ C52 1.0000 0.69610 0.51010 0.17010 Biso 1.000 C
+ H37 1.0000 0.65600 0.51040 0.16580 Biso 1.000 H
+ C53 1.0000 0.80280 0.54710 0.24000 Biso 1.000 C
+ C54 1.0000 0.82030 0.51080 0.18020 Biso 1.000 C
+ H38 1.0000 0.86110 0.51160 0.18320 Biso 1.000 H
+ C55 1.0000 0.71140 0.47510 0.11380 Biso 1.000 C
+ H39 1.0000 0.68060 0.45080 0.07140 Biso 1.000 H
+ C56 1.0000 0.77290 0.47460 0.11750 Biso 1.000 C
+ H40 1.0000 0.78160 0.44990 0.07800 Biso 1.000 H
+ N13 1.0000 0.98870 0.64760 0.24330 Biso 1.000 N
+ N14 1.0000 0.83960 0.58760 0.30920 Biso 1.000 N
+ N15 1.0000 0.01810 0.69930 0.11520 Biso 1.000 N
+ N16 1.0000 0.74100 0.58550 0.30060 Biso 1.000 N
+ Zn4 1.0000 0.92953 0.60143 0.34160 Biso 1.000 Zn
+ C57 1.0000 0.63817 0.00433 0.50963 Biso 1.000 C
+ H41 1.0000 0.59637 0.00123 0.50533 Biso 1.000 H
+ C58 1.0000 0.72147 0.99693 0.55973 Biso 1.000 C
+ C59 1.0000 0.76527 0.98483 0.60553 Biso 1.000 C
+ H42 1.0000 0.75357 0.96383 0.65813 Biso 1.000 H
+ C60 1.0000 0.82707 0.00543 0.57033 Biso 1.000 C
+ H43 1.0000 0.85797 0.99843 0.60003 Biso 1.000 H
+ C61 1.0000 0.84517 0.03693 0.48963 Biso 1.000 C
+ H44 1.0000 0.88767 0.05033 0.46783 Biso 1.000 H
+ C62 1.0000 0.73927 0.02813 0.47963 Biso 1.000 C
+ C63 1.0000 0.80127 0.04793 0.44343 Biso 1.000 C
+ H45 1.0000 0.81257 0.06783 0.39003 Biso 1.000 H
+ C64 1.0000 0.46547 0.94033 0.67313 Biso 1.000 C
+ H46 1.0000 0.47697 0.96803 0.72043 Biso 1.000 H
+ C65 1.0000 0.40967 0.87973 0.56943 Biso 1.000 C
+ C66 1.0000 0.36277 0.84343 0.50343 Biso 1.000 C
+ H47 1.0000 0.32267 0.84373 0.49913 Biso 1.000 H
+ C67 1.0000 0.46947 0.88043 0.57333 Biso 1.000 C
+ C68 1.0000 0.48697 0.84413 0.51353 Biso 1.000 C
+ H48 1.0000 0.52777 0.84493 0.51653 Biso 1.000 H
+ C69 1.0000 0.37807 0.80843 0.44713 Biso 1.000 C
+ H49 1.0000 0.34727 0.78413 0.40473 Biso 1.000 H
+ C70 1.0000 0.43957 0.80793 0.45083 Biso 1.000 C
+ H50 1.0000 0.44827 0.78323 0.41133 Biso 1.000 H
+ N17 1.0000 0.65537 0.98093 0.57663 Biso 1.000 N
+ N18 1.0000 0.50627 0.92093 0.64253 Biso 1.000 N
+ N19 1.0000 0.68477 0.03263 0.44853 Biso 1.000 N
+ N20 1.0000 0.40767 0.91883 0.63393 Biso 1.000 N
+ Zn5 1.0000 0.59620 0.93476 0.67493 Biso 1.000 Zn
+ C71 1.0000 0.30483 0.33767 0.84297 Biso 1.000 C
+ H51 1.0000 0.26303 0.33457 0.83867 Biso 1.000 H
+ C72 1.0000 0.38813 0.33027 0.89307 Biso 1.000 C
+ C73 1.0000 0.43193 0.31817 0.93887 Biso 1.000 C
+ H52 1.0000 0.42023 0.29717 0.99147 Biso 1.000 H
+ C74 1.0000 0.49373 0.33877 0.90367 Biso 1.000 C
+ H53 1.0000 0.52463 0.33177 0.93337 Biso 1.000 H
+ C75 1.0000 0.51183 0.37027 0.82297 Biso 1.000 C
+ H54 1.0000 0.55433 0.38367 0.80117 Biso 1.000 H
+ C76 1.0000 0.40593 0.36147 0.81297 Biso 1.000 C
+ C77 1.0000 0.46793 0.38127 0.77677 Biso 1.000 C
+ H55 1.0000 0.47923 0.40117 0.72337 Biso 1.000 H
+ C78 1.0000 0.13213 0.27367 0.00647 Biso 1.000 C
+ H56 1.0000 0.14363 0.30137 0.05377 Biso 1.000 H
+ C79 1.0000 0.07633 0.21307 0.90277 Biso 1.000 C
+ C80 1.0000 0.02943 0.17677 0.83677 Biso 1.000 C
+ H57 1.0000 0.98933 0.17707 0.83247 Biso 1.000 H
+ C81 1.0000 0.13613 0.21377 0.90667 Biso 1.000 C
+ C82 1.0000 0.15363 0.17747 0.84687 Biso 1.000 C
+ H58 1.0000 0.19443 0.17827 0.84987 Biso 1.000 H
+ C83 1.0000 0.04473 0.14177 0.78047 Biso 1.000 C
+ H59 1.0000 0.01393 0.11747 0.73807 Biso 1.000 H
+ C84 1.0000 0.10623 0.14127 0.78417 Biso 1.000 C
+ H60 1.0000 0.11493 0.11657 0.74467 Biso 1.000 H
+ N21 1.0000 0.32203 0.31427 0.90997 Biso 1.000 N
+ N22 1.0000 0.17293 0.25427 0.97587 Biso 1.000 N
+ N23 1.0000 0.35143 0.36597 0.78187 Biso 1.000 N
+ N24 1.0000 0.07433 0.25217 0.96727 Biso 1.000 N
+ Zn6 1.0000 0.26286 0.26810 0.00827 Biso 1.000 Zn
+ C85 1.0000 0.32900 0.30050 0.17630 Biso 1.000 C
+ H61 1.0000 0.33210 0.26180 0.17200 Biso 1.000 H
+ C86 1.0000 0.33640 0.39120 0.22640 Biso 1.000 C
+ C87 1.0000 0.34850 0.44710 0.27220 Biso 1.000 C
+ H62 1.0000 0.36950 0.45640 0.32480 Biso 1.000 H
+ C88 1.0000 0.32790 0.48830 0.23700 Biso 1.000 C
+ H63 1.0000 0.33490 0.52620 0.26670 Biso 1.000 H
+ C89 1.0000 0.29640 0.47490 0.15630 Biso 1.000 C
+ H64 1.0000 0.28300 0.50400 0.13450 Biso 1.000 H
+ C90 1.0000 0.30520 0.37780 0.14630 Biso 1.000 C
+ C91 1.0000 0.28540 0.42000 0.11010 Biso 1.000 C
+ H65 1.0000 0.26550 0.41140 0.05670 Biso 1.000 H
+ C92 1.0000 0.39300 0.19180 0.33980 Biso 1.000 C
+ H66 1.0000 0.36530 0.17560 0.38710 Biso 1.000 H
+ C93 1.0000 0.45360 0.19660 0.23610 Biso 1.000 C
+ C94 1.0000 0.48990 0.18600 0.17010 Biso 1.000 C
+ H67 1.0000 0.48960 0.14560 0.16580 Biso 1.000 H
+ C95 1.0000 0.45290 0.25570 0.24000 Biso 1.000 C
+ C96 1.0000 0.48920 0.30950 0.18020 Biso 1.000 C
+ H68 1.0000 0.48840 0.34950 0.18320 Biso 1.000 H
+ C97 1.0000 0.52490 0.23630 0.11380 Biso 1.000 C
+ H69 1.0000 0.54920 0.22980 0.07140 Biso 1.000 H
+ C98 1.0000 0.52540 0.29830 0.11750 Biso 1.000 C
+ H70 1.0000 0.55010 0.33170 0.07800 Biso 1.000 H
+ N25 1.0000 0.35240 0.34110 0.24330 Biso 1.000 N
+ N26 1.0000 0.41240 0.25200 0.30920 Biso 1.000 N
+ N27 1.0000 0.30070 0.31880 0.11520 Biso 1.000 N
+ N28 1.0000 0.41450 0.15550 0.30060 Biso 1.000 N
+ Zn7 1.0000 0.39857 0.32810 0.34160 Biso 1.000 Zn
+ C99 1.0000 0.99567 0.63383 0.50963 Biso 1.000 C
+ H71 1.0000 0.99877 0.59513 0.50533 Biso 1.000 H
+ C100 1.0000 0.00307 0.72453 0.55973 Biso 1.000 C
+ C101 1.0000 0.01517 0.78043 0.60553 Biso 1.000 C
+ H72 1.0000 0.03617 0.78973 0.65813 Biso 1.000 H
+ C102 1.0000 0.99457 0.82163 0.57033 Biso 1.000 C
+ H73 1.0000 0.00157 0.85953 0.60003 Biso 1.000 H
+ C103 1.0000 0.96307 0.80823 0.48963 Biso 1.000 C
+ H74 1.0000 0.94967 0.83733 0.46783 Biso 1.000 H
+ C104 1.0000 0.97187 0.71113 0.47963 Biso 1.000 C
+ C105 1.0000 0.95207 0.75333 0.44343 Biso 1.000 C
+ H75 1.0000 0.93217 0.74473 0.39003 Biso 1.000 H
+ C106 1.0000 0.05967 0.52513 0.67313 Biso 1.000 C
+ H76 1.0000 0.03197 0.50893 0.72043 Biso 1.000 H
+ C107 1.0000 0.12027 0.52993 0.56943 Biso 1.000 C
+ C108 1.0000 0.15657 0.51933 0.50343 Biso 1.000 C
+ H77 1.0000 0.15627 0.47893 0.49913 Biso 1.000 H
+ C109 1.0000 0.11957 0.58903 0.57333 Biso 1.000 C
+ C110 1.0000 0.15587 0.64283 0.51353 Biso 1.000 C
+ H78 1.0000 0.15507 0.68283 0.51653 Biso 1.000 H
+ C111 1.0000 0.19157 0.56963 0.44713 Biso 1.000 C
+ H79 1.0000 0.21587 0.56313 0.40473 Biso 1.000 H
+ C112 1.0000 0.19207 0.63163 0.45083 Biso 1.000 C
+ H80 1.0000 0.21677 0.66503 0.41133 Biso 1.000 H
+ N29 1.0000 0.01907 0.67443 0.57663 Biso 1.000 N
+ N30 1.0000 0.07907 0.58533 0.64253 Biso 1.000 N
+ N31 1.0000 0.96737 0.65213 0.44853 Biso 1.000 N
+ N32 1.0000 0.08117 0.48883 0.63393 Biso 1.000 N
+ Zn8 1.0000 0.06524 0.66143 0.67493 Biso 1.000 Zn
+ C113 1.0000 0.66233 0.96717 0.84297 Biso 1.000 C
+ H81 1.0000 0.66543 0.92847 0.83867 Biso 1.000 H
+ C114 1.0000 0.66973 0.05787 0.89307 Biso 1.000 C
+ C115 1.0000 0.68183 0.11377 0.93887 Biso 1.000 C
+ H82 1.0000 0.70283 0.12307 0.99147 Biso 1.000 H
+ C116 1.0000 0.66123 0.15497 0.90367 Biso 1.000 C
+ H83 1.0000 0.66823 0.19287 0.93337 Biso 1.000 H
+ C117 1.0000 0.62973 0.14157 0.82297 Biso 1.000 C
+ H84 1.0000 0.61633 0.17067 0.80117 Biso 1.000 H
+ C118 1.0000 0.63853 0.04447 0.81297 Biso 1.000 C
+ C119 1.0000 0.61873 0.08667 0.77677 Biso 1.000 C
+ H85 1.0000 0.59883 0.07807 0.72337 Biso 1.000 H
+ C120 1.0000 0.72633 0.85847 0.00647 Biso 1.000 C
+ H86 1.0000 0.69863 0.84227 0.05377 Biso 1.000 H
+ C121 1.0000 0.78693 0.86327 0.90277 Biso 1.000 C
+ C122 1.0000 0.82323 0.85267 0.83677 Biso 1.000 C
+ H87 1.0000 0.82293 0.81227 0.83247 Biso 1.000 H
+ C123 1.0000 0.78623 0.92237 0.90667 Biso 1.000 C
+ C124 1.0000 0.82253 0.97617 0.84687 Biso 1.000 C
+ H88 1.0000 0.82173 0.01617 0.84987 Biso 1.000 H
+ C125 1.0000 0.85823 0.90297 0.78047 Biso 1.000 C
+ H89 1.0000 0.88253 0.89647 0.73807 Biso 1.000 H
+ C126 1.0000 0.85873 0.96497 0.78417 Biso 1.000 C
+ H90 1.0000 0.88343 0.99837 0.74467 Biso 1.000 H
+ N33 1.0000 0.68573 0.00777 0.90997 Biso 1.000 N
+ N34 1.0000 0.74573 0.91867 0.97587 Biso 1.000 N
+ N35 1.0000 0.63403 0.98547 0.78187 Biso 1.000 N
+ N36 1.0000 0.74783 0.82217 0.96727 Biso 1.000 N
+ Zn9 1.0000 0.73190 0.99477 0.00827 Biso 1.000 Zn
+ C127 1.0000 0.30050 0.97150 0.82370 Biso 1.000 C
+ H91 1.0000 0.26180 0.92970 0.82800 Biso 1.000 H
+ C128 1.0000 0.39120 0.05480 0.77360 Biso 1.000 C
+ C129 1.0000 0.44710 0.09860 0.72780 Biso 1.000 C
+ H92 1.0000 0.45640 0.08690 0.67520 Biso 1.000 H
+ C130 1.0000 0.48830 0.16040 0.76300 Biso 1.000 C
+ H93 1.0000 0.52620 0.19130 0.73330 Biso 1.000 H
+ C131 1.0000 0.47490 0.17850 0.84370 Biso 1.000 C
+ H94 1.0000 0.50400 0.22100 0.86550 Biso 1.000 H
+ C132 1.0000 0.37780 0.07260 0.85370 Biso 1.000 C
+ C133 1.0000 0.42000 0.13460 0.88990 Biso 1.000 C
+ H95 1.0000 0.41140 0.14590 0.94330 Biso 1.000 H
+ C134 1.0000 0.19180 0.79880 0.66020 Biso 1.000 C
+ H96 1.0000 0.17560 0.81030 0.61290 Biso 1.000 H
+ C135 1.0000 0.19660 0.74300 0.76390 Biso 1.000 C
+ C136 1.0000 0.18600 0.69610 0.82990 Biso 1.000 C
+ H97 1.0000 0.14560 0.65600 0.83420 Biso 1.000 H
+ C137 1.0000 0.25570 0.80280 0.76000 Biso 1.000 C
+ C138 1.0000 0.30950 0.82030 0.81980 Biso 1.000 C
+ H98 1.0000 0.34950 0.86110 0.81680 Biso 1.000 H
+ C139 1.0000 0.23630 0.71140 0.88620 Biso 1.000 C
+ H99 1.0000 0.22980 0.68060 0.92860 Biso 1.000 H
+ C140 1.0000 0.29830 0.77290 0.88250 Biso 1.000 C
+ H100 1.0000 0.33170 0.78160 0.92200 Biso 1.000 H
+ N37 1.0000 0.34110 0.98870 0.75670 Biso 1.000 N
+ N38 1.0000 0.25200 0.83960 0.69080 Biso 1.000 N
+ N39 1.0000 0.31880 0.01810 0.88480 Biso 1.000 N
+ N40 1.0000 0.15550 0.74100 0.69940 Biso 1.000 N
+ Zn10 1.0000 0.32810 0.92953 0.65840 Biso 1.000 Zn
+ C141 1.0000 0.96717 0.30483 0.15703 Biso 1.000 C
+ H101 1.0000 0.92847 0.26303 0.16133 Biso 1.000 H
+ C142 1.0000 0.05787 0.38813 0.10693 Biso 1.000 C
+ C143 1.0000 0.11377 0.43193 0.06113 Biso 1.000 C
+ H102 1.0000 0.12307 0.42023 0.00853 Biso 1.000 H
+ C144 1.0000 0.15497 0.49373 0.09633 Biso 1.000 C
+ H103 1.0000 0.19287 0.52463 0.06663 Biso 1.000 H
+ C145 1.0000 0.14157 0.51183 0.17703 Biso 1.000 C
+ H104 1.0000 0.17067 0.55433 0.19883 Biso 1.000 H
+ C146 1.0000 0.04447 0.40593 0.18703 Biso 1.000 C
+ C147 1.0000 0.08667 0.46793 0.22323 Biso 1.000 C
+ H105 1.0000 0.07807 0.47923 0.27663 Biso 1.000 H
+ C148 1.0000 0.85847 0.13213 0.99353 Biso 1.000 C
+ H106 1.0000 0.84227 0.14363 0.94623 Biso 1.000 H
+ C149 1.0000 0.86327 0.07633 0.09723 Biso 1.000 C
+ C150 1.0000 0.85267 0.02943 0.16323 Biso 1.000 C
+ H107 1.0000 0.81227 0.98933 0.16753 Biso 1.000 H
+ C151 1.0000 0.92237 0.13613 0.09333 Biso 1.000 C
+ C152 1.0000 0.97617 0.15363 0.15313 Biso 1.000 C
+ H108 1.0000 0.01617 0.19443 0.15013 Biso 1.000 H
+ C153 1.0000 0.90297 0.04473 0.21953 Biso 1.000 C
+ H109 1.0000 0.89647 0.01393 0.26193 Biso 1.000 H
+ C154 1.0000 0.96497 0.10623 0.21583 Biso 1.000 C
+ H110 1.0000 0.99837 0.11493 0.25533 Biso 1.000 H
+ N41 1.0000 0.00777 0.32203 0.09003 Biso 1.000 N
+ N42 1.0000 0.91867 0.17293 0.02413 Biso 1.000 N
+ N43 1.0000 0.98547 0.35143 0.21813 Biso 1.000 N
+ N44 1.0000 0.82217 0.07433 0.03273 Biso 1.000 N
+ Zn11 1.0000 0.99477 0.26286 0.99173 Biso 1.000 Zn
+ C155 1.0000 0.63383 0.63817 0.49037 Biso 1.000 C
+ H111 1.0000 0.59513 0.59637 0.49467 Biso 1.000 H
+ C156 1.0000 0.72453 0.72147 0.44027 Biso 1.000 C
+ C157 1.0000 0.78043 0.76527 0.39447 Biso 1.000 C
+ H112 1.0000 0.78973 0.75357 0.34187 Biso 1.000 H
+ C158 1.0000 0.82163 0.82707 0.42967 Biso 1.000 C
+ H113 1.0000 0.85953 0.85797 0.39997 Biso 1.000 H
+ C159 1.0000 0.80823 0.84517 0.51037 Biso 1.000 C
+ H114 1.0000 0.83733 0.88767 0.53217 Biso 1.000 H
+ C160 1.0000 0.71113 0.73927 0.52037 Biso 1.000 C
+ C161 1.0000 0.75333 0.80127 0.55657 Biso 1.000 C
+ H115 1.0000 0.74473 0.81257 0.60997 Biso 1.000 H
+ C162 1.0000 0.52513 0.46547 0.32687 Biso 1.000 C
+ H116 1.0000 0.50893 0.47697 0.27957 Biso 1.000 H
+ C163 1.0000 0.52993 0.40967 0.43057 Biso 1.000 C
+ C164 1.0000 0.51933 0.36277 0.49657 Biso 1.000 C
+ H117 1.0000 0.47893 0.32267 0.50087 Biso 1.000 H
+ C165 1.0000 0.58903 0.46947 0.42667 Biso 1.000 C
+ C166 1.0000 0.64283 0.48697 0.48647 Biso 1.000 C
+ H118 1.0000 0.68283 0.52777 0.48347 Biso 1.000 H
+ C167 1.0000 0.56963 0.37807 0.55287 Biso 1.000 C
+ H119 1.0000 0.56313 0.34727 0.59527 Biso 1.000 H
+ C168 1.0000 0.63163 0.43957 0.54917 Biso 1.000 C
+ H120 1.0000 0.66503 0.44827 0.58867 Biso 1.000 H
+ N45 1.0000 0.67443 0.65537 0.42337 Biso 1.000 N
+ N46 1.0000 0.58533 0.50627 0.35747 Biso 1.000 N
+ N47 1.0000 0.65213 0.68477 0.55147 Biso 1.000 N
+ N48 1.0000 0.48883 0.40767 0.36607 Biso 1.000 N
+ Zn12 1.0000 0.66143 0.59620 0.32507 Biso 1.000 Zn
+ C169 1.0000 0.02850 0.32900 0.82370 Biso 1.000 C
+ H121 1.0000 0.07030 0.33210 0.82800 Biso 1.000 H
+ C170 1.0000 0.94520 0.33640 0.77360 Biso 1.000 C
+ C171 1.0000 0.90140 0.34850 0.72780 Biso 1.000 C
+ H122 1.0000 0.91310 0.36950 0.67520 Biso 1.000 H
+ C172 1.0000 0.83960 0.32790 0.76300 Biso 1.000 C
+ H123 1.0000 0.80870 0.33490 0.73330 Biso 1.000 H
+ C173 1.0000 0.82150 0.29640 0.84370 Biso 1.000 C
+ H124 1.0000 0.77900 0.28300 0.86550 Biso 1.000 H
+ C174 1.0000 0.92740 0.30520 0.85370 Biso 1.000 C
+ C175 1.0000 0.86540 0.28540 0.88990 Biso 1.000 C
+ H125 1.0000 0.85410 0.26550 0.94330 Biso 1.000 H
+ C176 1.0000 0.20120 0.39300 0.66020 Biso 1.000 C
+ H126 1.0000 0.18970 0.36530 0.61290 Biso 1.000 H
+ C177 1.0000 0.25700 0.45360 0.76390 Biso 1.000 C
+ C178 1.0000 0.30390 0.48990 0.82990 Biso 1.000 C
+ H127 1.0000 0.34400 0.48960 0.83420 Biso 1.000 H
+ C179 1.0000 0.19720 0.45290 0.76000 Biso 1.000 C
+ C180 1.0000 0.17970 0.48920 0.81980 Biso 1.000 C
+ H128 1.0000 0.13890 0.48840 0.81680 Biso 1.000 H
+ C181 1.0000 0.28860 0.52490 0.88620 Biso 1.000 C
+ H129 1.0000 0.31940 0.54920 0.92860 Biso 1.000 H
+ C182 1.0000 0.22710 0.52540 0.88250 Biso 1.000 C
+ H130 1.0000 0.21840 0.55010 0.92200 Biso 1.000 H
+ N49 1.0000 0.01130 0.35240 0.75670 Biso 1.000 N
+ N50 1.0000 0.16040 0.41240 0.69080 Biso 1.000 N
+ N51 1.0000 0.98190 0.30070 0.88480 Biso 1.000 N
+ N52 1.0000 0.25900 0.41450 0.69940 Biso 1.000 N
+ Zn13 1.0000 0.07047 0.39857 0.65840 Biso 1.000 Zn
+ C183 1.0000 0.69517 0.66233 0.15703 Biso 1.000 C
+ H131 1.0000 0.73697 0.66543 0.16133 Biso 1.000 H
+ C184 1.0000 0.61187 0.66973 0.10693 Biso 1.000 C
+ C185 1.0000 0.56807 0.68183 0.06113 Biso 1.000 C
+ H132 1.0000 0.57977 0.70283 0.00853 Biso 1.000 H
+ C186 1.0000 0.50627 0.66123 0.09633 Biso 1.000 C
+ H133 1.0000 0.47537 0.66823 0.06663 Biso 1.000 H
+ C187 1.0000 0.48817 0.62973 0.17703 Biso 1.000 C
+ H134 1.0000 0.44567 0.61633 0.19883 Biso 1.000 H
+ C188 1.0000 0.59407 0.63853 0.18703 Biso 1.000 C
+ C189 1.0000 0.53207 0.61873 0.22323 Biso 1.000 C
+ H135 1.0000 0.52077 0.59883 0.27663 Biso 1.000 H
+ C190 1.0000 0.86787 0.72633 0.99353 Biso 1.000 C
+ H136 1.0000 0.85637 0.69863 0.94623 Biso 1.000 H
+ C191 1.0000 0.92367 0.78693 0.09723 Biso 1.000 C
+ C192 1.0000 0.97057 0.82323 0.16323 Biso 1.000 C
+ H137 1.0000 0.01067 0.82293 0.16753 Biso 1.000 H
+ C193 1.0000 0.86387 0.78623 0.09333 Biso 1.000 C
+ C194 1.0000 0.84637 0.82253 0.15313 Biso 1.000 C
+ H138 1.0000 0.80557 0.82173 0.15013 Biso 1.000 H
+ C195 1.0000 0.95527 0.85823 0.21953 Biso 1.000 C
+ H139 1.0000 0.98607 0.88253 0.26193 Biso 1.000 H
+ C196 1.0000 0.89377 0.85873 0.21583 Biso 1.000 C
+ H140 1.0000 0.88507 0.88343 0.25533 Biso 1.000 H
+ N53 1.0000 0.67797 0.68573 0.09003 Biso 1.000 N
+ N54 1.0000 0.82707 0.74573 0.02413 Biso 1.000 N
+ N55 1.0000 0.64857 0.63403 0.21813 Biso 1.000 N
+ N56 1.0000 0.92567 0.74783 0.03273 Biso 1.000 N
+ Zn14 1.0000 0.73714 0.73190 0.99173 Biso 1.000 Zn
+ C197 1.0000 0.36183 0.99567 0.49037 Biso 1.000 C
+ H141 1.0000 0.40363 0.99877 0.49467 Biso 1.000 H
+ C198 1.0000 0.27853 0.00307 0.44027 Biso 1.000 C
+ C199 1.0000 0.23473 0.01517 0.39447 Biso 1.000 C
+ H142 1.0000 0.24643 0.03617 0.34187 Biso 1.000 H
+ C200 1.0000 0.17293 0.99457 0.42967 Biso 1.000 C
+ H143 1.0000 0.14203 0.00157 0.39997 Biso 1.000 H
+ C201 1.0000 0.15483 0.96307 0.51037 Biso 1.000 C
+ H144 1.0000 0.11233 0.94967 0.53217 Biso 1.000 H
+ C202 1.0000 0.26073 0.97187 0.52037 Biso 1.000 C
+ C203 1.0000 0.19873 0.95207 0.55657 Biso 1.000 C
+ H145 1.0000 0.18743 0.93217 0.60997 Biso 1.000 H
+ C204 1.0000 0.53453 0.05967 0.32687 Biso 1.000 C
+ H146 1.0000 0.52303 0.03197 0.27957 Biso 1.000 H
+ C205 1.0000 0.59033 0.12027 0.43057 Biso 1.000 C
+ C206 1.0000 0.63723 0.15657 0.49657 Biso 1.000 C
+ H147 1.0000 0.67733 0.15627 0.50087 Biso 1.000 H
+ C207 1.0000 0.53053 0.11957 0.42667 Biso 1.000 C
+ C208 1.0000 0.51303 0.15587 0.48647 Biso 1.000 C
+ H148 1.0000 0.47223 0.15507 0.48347 Biso 1.000 H
+ C209 1.0000 0.62193 0.19157 0.55287 Biso 1.000 C
+ H149 1.0000 0.65273 0.21587 0.59527 Biso 1.000 H
+ C210 1.0000 0.56043 0.19207 0.54917 Biso 1.000 C
+ H150 1.0000 0.55173 0.21677 0.58867 Biso 1.000 H
+ N57 1.0000 0.34463 0.01907 0.42337 Biso 1.000 N
+ N58 1.0000 0.49373 0.07907 0.35747 Biso 1.000 N
+ N59 1.0000 0.31523 0.96737 0.55147 Biso 1.000 N
+ N60 1.0000 0.59233 0.08117 0.36607 Biso 1.000 N
+ Zn15 1.0000 0.40380 0.06524 0.32507 Biso 1.000 Zn
+ C211 1.0000 0.67100 0.69950 0.82370 Biso 1.000 C
+ H151 1.0000 0.66790 0.73820 0.82800 Biso 1.000 H
+ C212 1.0000 0.66360 0.60880 0.77360 Biso 1.000 C
+ C213 1.0000 0.65150 0.55290 0.72780 Biso 1.000 C
+ H152 1.0000 0.63050 0.54360 0.67520 Biso 1.000 H
+ C214 1.0000 0.67210 0.51170 0.76300 Biso 1.000 C
+ H153 1.0000 0.66510 0.47380 0.73330 Biso 1.000 H
+ C215 1.0000 0.70360 0.52510 0.84370 Biso 1.000 C
+ H154 1.0000 0.71700 0.49600 0.86550 Biso 1.000 H
+ C216 1.0000 0.69480 0.62220 0.85370 Biso 1.000 C
+ C217 1.0000 0.71460 0.58000 0.88990 Biso 1.000 C
+ H155 1.0000 0.73450 0.58860 0.94330 Biso 1.000 H
+ C218 1.0000 0.60700 0.80820 0.66020 Biso 1.000 C
+ H156 1.0000 0.63470 0.82440 0.61290 Biso 1.000 H
+ C219 1.0000 0.54640 0.80340 0.76390 Biso 1.000 C
+ C220 1.0000 0.51010 0.81400 0.82990 Biso 1.000 C
+ H157 1.0000 0.51040 0.85440 0.83420 Biso 1.000 H
+ C221 1.0000 0.54710 0.74430 0.76000 Biso 1.000 C
+ C222 1.0000 0.51080 0.69050 0.81980 Biso 1.000 C
+ H158 1.0000 0.51160 0.65050 0.81680 Biso 1.000 H
+ C223 1.0000 0.47510 0.76370 0.88620 Biso 1.000 C
+ H159 1.0000 0.45080 0.77020 0.92860 Biso 1.000 H
+ C224 1.0000 0.47460 0.70170 0.88250 Biso 1.000 C
+ H160 1.0000 0.44990 0.66830 0.92200 Biso 1.000 H
+ N61 1.0000 0.64760 0.65890 0.75670 Biso 1.000 N
+ N62 1.0000 0.58760 0.74800 0.69080 Biso 1.000 N
+ N63 1.0000 0.69930 0.68120 0.88480 Biso 1.000 N
+ N64 1.0000 0.58550 0.84450 0.69940 Biso 1.000 N
+ Zn16 1.0000 0.60143 0.67190 0.65840 Biso 1.000 Zn
+ C225 1.0000 0.33767 0.03283 0.15703 Biso 1.000 C
+ H161 1.0000 0.33457 0.07153 0.16133 Biso 1.000 H
+ C226 1.0000 0.33027 0.94213 0.10693 Biso 1.000 C
+ C227 1.0000 0.31817 0.88623 0.06113 Biso 1.000 C
+ H162 1.0000 0.29717 0.87693 0.00853 Biso 1.000 H
+ C228 1.0000 0.33877 0.84503 0.09633 Biso 1.000 C
+ H163 1.0000 0.33177 0.80713 0.06663 Biso 1.000 H
+ C229 1.0000 0.37027 0.85843 0.17703 Biso 1.000 C
+ H164 1.0000 0.38367 0.82933 0.19883 Biso 1.000 H
+ C230 1.0000 0.36147 0.95553 0.18703 Biso 1.000 C
+ C231 1.0000 0.38127 0.91333 0.22323 Biso 1.000 C
+ H165 1.0000 0.40117 0.92193 0.27663 Biso 1.000 H
+ C232 1.0000 0.27367 0.14153 0.99353 Biso 1.000 C
+ H166 1.0000 0.30137 0.15773 0.94623 Biso 1.000 H
+ C233 1.0000 0.21307 0.13673 0.09723 Biso 1.000 C
+ C234 1.0000 0.17677 0.14733 0.16323 Biso 1.000 C
+ H167 1.0000 0.17707 0.18773 0.16753 Biso 1.000 H
+ C235 1.0000 0.21377 0.07763 0.09333 Biso 1.000 C
+ C236 1.0000 0.17747 0.02383 0.15313 Biso 1.000 C
+ H168 1.0000 0.17827 0.98383 0.15013 Biso 1.000 H
+ C237 1.0000 0.14177 0.09703 0.21953 Biso 1.000 C
+ H169 1.0000 0.11747 0.10353 0.26193 Biso 1.000 H
+ C238 1.0000 0.14127 0.03503 0.21583 Biso 1.000 C
+ H170 1.0000 0.11657 0.00163 0.25533 Biso 1.000 H
+ N65 1.0000 0.31427 0.99223 0.09003 Biso 1.000 N
+ N66 1.0000 0.25427 0.08133 0.02413 Biso 1.000 N
+ N67 1.0000 0.36597 0.01453 0.21813 Biso 1.000 N
+ N68 1.0000 0.25217 0.17783 0.03273 Biso 1.000 N
+ Zn17 1.0000 0.26810 0.00523 0.99173 Biso 1.000 Zn
+ C239 1.0000 0.00433 0.36617 0.49037 Biso 1.000 C
+ H171 1.0000 0.00123 0.40487 0.49467 Biso 1.000 H
+ C240 1.0000 0.99693 0.27547 0.44027 Biso 1.000 C
+ C241 1.0000 0.98483 0.21957 0.39447 Biso 1.000 C
+ H172 1.0000 0.96383 0.21027 0.34187 Biso 1.000 H
+ C242 1.0000 0.00543 0.17837 0.42967 Biso 1.000 C
+ H173 1.0000 0.99843 0.14047 0.39997 Biso 1.000 H
+ C243 1.0000 0.03693 0.19177 0.51037 Biso 1.000 C
+ H174 1.0000 0.05033 0.16267 0.53217 Biso 1.000 H
+ C244 1.0000 0.02813 0.28887 0.52037 Biso 1.000 C
+ C245 1.0000 0.04793 0.24667 0.55657 Biso 1.000 C
+ H175 1.0000 0.06783 0.25527 0.60997 Biso 1.000 H
+ C246 1.0000 0.94033 0.47487 0.32687 Biso 1.000 C
+ H176 1.0000 0.96803 0.49107 0.27957 Biso 1.000 H
+ C247 1.0000 0.87973 0.47007 0.43057 Biso 1.000 C
+ C248 1.0000 0.84343 0.48067 0.49657 Biso 1.000 C
+ H177 1.0000 0.84373 0.52107 0.50087 Biso 1.000 H
+ C249 1.0000 0.88043 0.41097 0.42667 Biso 1.000 C
+ C250 1.0000 0.84413 0.35717 0.48647 Biso 1.000 C
+ H178 1.0000 0.84493 0.31717 0.48347 Biso 1.000 H
+ C251 1.0000 0.80843 0.43037 0.55287 Biso 1.000 C
+ H179 1.0000 0.78413 0.43687 0.59527 Biso 1.000 H
+ C252 1.0000 0.80793 0.36837 0.54917 Biso 1.000 C
+ H180 1.0000 0.78323 0.33497 0.58867 Biso 1.000 H
+ N69 1.0000 0.98093 0.32557 0.42337 Biso 1.000 N
+ N70 1.0000 0.92093 0.41467 0.35747 Biso 1.000 N
+ N71 1.0000 0.03263 0.34787 0.55147 Biso 1.000 N
+ N72 1.0000 0.91883 0.51117 0.36607 Biso 1.000 N
+ Zn18 1.0000 0.93476 0.33857 0.32507 Biso 1.000 Zn
diff --git a/benchmarks/mof/structures/ZIF-8.cif b/benchmarks/mof/structures/ZIF-8.cif
new file mode 100644
index 0000000000000000000000000000000000000000..40827d68c164e2d0a42d3bab95593837ad0d53fc
--- /dev/null
+++ b/benchmarks/mof/structures/ZIF-8.cif
@@ -0,0 +1,162 @@
+data_OFERUN_clean
+_audit_creation_date 2014-07-02
+_audit_creation_method 'Materials Studio'
+_symmetry_space_group_name_H-M 'P1'
+_symmetry_Int_Tables_number 1
+_symmetry_cell_setting triclinic
+loop_
+_symmetry_equiv_pos_as_xyz
+ x,y,z
+_cell_length_a 14.7138
+_cell_length_b 14.7138
+_cell_length_c 14.7138
+_cell_angle_alpha 109.4710
+_cell_angle_beta 109.4710
+_cell_angle_gamma 109.4710
+loop_
+_atom_site_label
+_atom_site_type_symbol
+_atom_site_fract_x
+_atom_site_fract_y
+_atom_site_fract_z
+_atom_site_U_iso_or_equiv
+_atom_site_adp_type
+_atom_site_occupancy
+Zn1 Zn 0.25000 0.75000 0.50000 0.01267 Uiso 1.00
+Zn2 Zn 0.75000 0.25000 0.50000 0.01267 Uiso 1.00
+Zn3 Zn 0.50000 0.75000 0.25000 0.01267 Uiso 1.00
+Zn4 Zn 0.50000 0.25000 0.75000 0.01267 Uiso 1.00
+Zn5 Zn 0.75000 0.50000 0.25000 0.01267 Uiso 1.00
+Zn6 Zn 0.25000 0.50000 0.75000 0.01267 Uiso 1.00
+H1 H 0.42240 0.65640 0.53660 0.01267 Uiso 1.00
+H2 H 0.31040 0.79410 0.24430 0.01267 Uiso 1.00
+H3 H 0.11980 0.88580 0.46340 0.01267 Uiso 1.00
+H4 H 0.54980 0.06610 0.75570 0.01267 Uiso 1.00
+H5 H 0.88020 0.34360 0.76600 0.01267 Uiso 1.00
+H6 H 0.45020 0.20590 0.51630 0.01267 Uiso 1.00
+H7 H 0.57760 0.11420 0.23400 0.01267 Uiso 1.00
+H8 H 0.68960 0.93390 0.48370 0.01267 Uiso 1.00
+H9 H 0.76600 0.88020 0.34360 0.01267 Uiso 1.00
+H10 H 0.51630 0.45020 0.20590 0.01267 Uiso 1.00
+H11 H 0.23400 0.57760 0.11420 0.01267 Uiso 1.00
+H12 H 0.48370 0.68960 0.93390 0.01267 Uiso 1.00
+H13 H 0.53660 0.42240 0.65640 0.01267 Uiso 1.00
+H14 H 0.24430 0.31040 0.79410 0.01267 Uiso 1.00
+H15 H 0.46340 0.11980 0.88580 0.01267 Uiso 1.00
+H16 H 0.75570 0.54980 0.06610 0.01267 Uiso 1.00
+H17 H 0.88580 0.46340 0.11980 0.01267 Uiso 1.00
+H18 H 0.06610 0.75570 0.54980 0.01267 Uiso 1.00
+H19 H 0.65640 0.53660 0.42240 0.01267 Uiso 1.00
+H20 H 0.79410 0.24430 0.31040 0.01267 Uiso 1.00
+H21 H 0.11420 0.23400 0.57760 0.01267 Uiso 1.00
+H22 H 0.93390 0.48370 0.68960 0.01267 Uiso 1.00
+H23 H 0.34360 0.76600 0.88020 0.01267 Uiso 1.00
+H24 H 0.20590 0.51630 0.45020 0.01267 Uiso 1.00
+H25 H 0.88580 0.11980 0.46340 0.01267 Uiso 1.00
+H26 H 0.06610 0.54980 0.75570 0.01267 Uiso 1.00
+H27 H 0.65640 0.42240 0.53660 0.01267 Uiso 1.00
+H28 H 0.79410 0.31040 0.24430 0.01267 Uiso 1.00
+H29 H 0.11420 0.57760 0.23400 0.01267 Uiso 1.00
+H30 H 0.93390 0.68960 0.48370 0.01267 Uiso 1.00
+H31 H 0.34360 0.88020 0.76600 0.01267 Uiso 1.00
+H32 H 0.20590 0.45020 0.51630 0.01267 Uiso 1.00
+H33 H 0.42240 0.53660 0.65640 0.01267 Uiso 1.00
+H34 H 0.31040 0.24430 0.79410 0.01267 Uiso 1.00
+H35 H 0.11980 0.46340 0.88580 0.01267 Uiso 1.00
+H36 H 0.54980 0.75570 0.06610 0.01267 Uiso 1.00
+H37 H 0.88020 0.76600 0.34360 0.01267 Uiso 1.00
+H38 H 0.45020 0.51630 0.20590 0.01267 Uiso 1.00
+H39 H 0.57760 0.23400 0.11420 0.01267 Uiso 1.00
+H40 H 0.68960 0.48370 0.93390 0.01267 Uiso 1.00
+H41 H 0.76600 0.34360 0.88020 0.01267 Uiso 1.00
+H42 H 0.51630 0.20590 0.45020 0.01267 Uiso 1.00
+H43 H 0.23400 0.11420 0.57760 0.01267 Uiso 1.00
+H44 H 0.48370 0.93390 0.68960 0.01267 Uiso 1.00
+H45 H 0.53660 0.65640 0.42240 0.01267 Uiso 1.00
+H46 H 0.24430 0.79410 0.31040 0.01267 Uiso 1.00
+H47 H 0.46340 0.88580 0.11980 0.01267 Uiso 1.00
+H48 H 0.75570 0.06610 0.54980 0.01267 Uiso 1.00
+H49 H 0.37010 0.88180 0.37010 0.01267 Uiso 1.00
+H50 H 0.51170 0.00000 0.62990 0.01267 Uiso 1.00
+H51 H 0.48830 0.11820 0.48830 0.01267 Uiso 1.00
+H52 H 0.62990 0.00000 0.51170 0.01267 Uiso 1.00
+H53 H 0.48830 0.48830 0.11820 0.01267 Uiso 1.00
+H54 H 0.51170 0.62990 -0.00000 0.01267 Uiso 1.00
+H55 H 0.37010 0.37010 0.88180 0.01267 Uiso 1.00
+H56 H 0.62990 0.51170 -0.00000 0.01267 Uiso 1.00
+H57 H 0.00000 0.62990 0.51170 0.01267 Uiso 1.00
+H58 H 0.88180 0.37010 0.37010 0.01267 Uiso 1.00
+H59 H 0.00000 0.51170 0.62990 0.01267 Uiso 1.00
+H60 H 0.11820 0.48830 0.48830 0.01267 Uiso 1.00
+C1 C 0.41456 0.68356 0.47280 0.01267 Uiso 1.00
+C2 C 0.21076 0.94176 0.52720 0.01267 Uiso 1.00
+C3 C 0.78924 0.31644 0.73100 0.01267 Uiso 1.00
+C4 C 0.58544 0.05824 0.26900 0.01267 Uiso 1.00
+C5 C 0.73100 0.78924 0.31644 0.01267 Uiso 1.00
+C6 C 0.26900 0.58544 0.05824 0.01267 Uiso 1.00
+C7 C 0.47280 0.41456 0.68356 0.01267 Uiso 1.00
+C8 C 0.52720 0.21076 0.94176 0.01267 Uiso 1.00
+C9 C 0.94176 0.52720 0.21076 0.01267 Uiso 1.00
+C10 C 0.68356 0.47280 0.41456 0.01267 Uiso 1.00
+C11 C 0.05824 0.26900 0.58544 0.01267 Uiso 1.00
+C12 C 0.31644 0.73100 0.78924 0.01267 Uiso 1.00
+C13 C 0.94176 0.21076 0.52720 0.01267 Uiso 1.00
+C14 C 0.68356 0.41456 0.47280 0.01267 Uiso 1.00
+C15 C 0.05824 0.58544 0.26900 0.01267 Uiso 1.00
+C16 C 0.31644 0.78924 0.73100 0.01267 Uiso 1.00
+C17 C 0.41456 0.47280 0.68356 0.01267 Uiso 1.00
+C18 C 0.21076 0.52720 0.94176 0.01267 Uiso 1.00
+C19 C 0.78924 0.73100 0.31644 0.01267 Uiso 1.00
+C20 C 0.58544 0.26900 0.05824 0.01267 Uiso 1.00
+C21 C 0.73100 0.31644 0.78924 0.01267 Uiso 1.00
+C22 C 0.26900 0.05824 0.58544 0.01267 Uiso 1.00
+C23 C 0.47280 0.68356 0.41456 0.01267 Uiso 1.00
+C24 C 0.52720 0.94176 0.21076 0.01267 Uiso 1.00
+C25 C 0.37300 0.75680 0.37300 0.01267 Uiso 1.00
+C26 C 0.31950 0.80580 0.31950 0.01267 Uiso 1.00
+C27 C 0.38380 1.00000 0.62700 0.01267 Uiso 1.00
+C28 C 0.48630 1.00000 0.68050 0.01267 Uiso 1.00
+C29 C 0.61620 0.24320 0.61620 0.01267 Uiso 1.00
+C30 C 0.51370 0.19420 0.51370 0.01267 Uiso 1.00
+C31 C 0.62700 -0.00000 0.38380 0.01267 Uiso 1.00
+C32 C 0.68050 0.00000 0.48630 0.01267 Uiso 1.00
+C33 C 0.61620 0.61620 0.24320 0.01267 Uiso 1.00
+C34 C 0.51370 0.51370 0.19420 0.01267 Uiso 1.00
+C35 C 0.38380 0.62700 -0.00000 0.01267 Uiso 1.00
+C36 C 0.48630 0.68050 -0.00000 0.01267 Uiso 1.00
+C37 C 0.37300 0.37300 0.75680 0.01267 Uiso 1.00
+C38 C 0.31950 0.31950 0.80580 0.01267 Uiso 1.00
+C39 C 0.62700 0.38380 -0.00000 0.01267 Uiso 1.00
+C40 C 0.68050 0.48630 -0.00000 0.01267 Uiso 1.00
+C41 C 0.00000 0.62700 0.38380 0.01267 Uiso 1.00
+C42 C 0.00000 0.68050 0.48630 0.01267 Uiso 1.00
+C43 C 0.75680 0.37300 0.37300 0.01267 Uiso 1.00
+C44 C 0.80580 0.31950 0.31950 0.01267 Uiso 1.00
+C45 C 0.00000 0.38380 0.62700 0.01267 Uiso 1.00
+C46 C 0.00000 0.48630 0.68050 0.01267 Uiso 1.00
+C47 C 0.24320 0.61620 0.61620 0.01267 Uiso 1.00
+C48 C 0.19420 0.51370 0.51370 0.01267 Uiso 1.00
+N1 N 0.35145 0.72798 0.44533 0.01267 Uiso 1.00
+N2 N 0.28265 0.90612 0.55467 0.01267 Uiso 1.00
+N3 N 0.71735 0.27202 0.62347 0.01267 Uiso 1.00
+N4 N 0.64855 0.09388 0.37653 0.01267 Uiso 1.00
+N5 N 0.62347 0.71735 0.27202 0.01267 Uiso 1.00
+N6 N 0.37653 0.64855 0.09388 0.01267 Uiso 1.00
+N7 N 0.44533 0.35145 0.72798 0.01267 Uiso 1.00
+N8 N 0.55467 0.28265 0.90612 0.01267 Uiso 1.00
+N9 N 0.90612 0.55467 0.28265 0.01267 Uiso 1.00
+N10 N 0.72798 0.44533 0.35145 0.01267 Uiso 1.00
+N11 N 0.09388 0.37653 0.64855 0.01267 Uiso 1.00
+N12 N 0.27202 0.62347 0.71735 0.01267 Uiso 1.00
+N13 N 0.90612 0.28265 0.55467 0.01267 Uiso 1.00
+N14 N 0.72798 0.35145 0.44533 0.01267 Uiso 1.00
+N15 N 0.09388 0.64855 0.37653 0.01267 Uiso 1.00
+N16 N 0.27202 0.71735 0.62347 0.01267 Uiso 1.00
+N17 N 0.35145 0.44533 0.72798 0.01267 Uiso 1.00
+N18 N 0.28265 0.55467 0.90612 0.01267 Uiso 1.00
+N19 N 0.71735 0.62347 0.27202 0.01267 Uiso 1.00
+N20 N 0.64855 0.37653 0.09388 0.01267 Uiso 1.00
+N21 N 0.62347 0.27202 0.71735 0.01267 Uiso 1.00
+N22 N 0.37653 0.09388 0.64855 0.01267 Uiso 1.00
+N23 N 0.44533 0.72798 0.35145 0.01267 Uiso 1.00
+N24 N 0.55467 0.90612 0.28265 0.01267 Uiso 1.00
diff --git a/benchmarks/mof/structures/Zn-MOF-74.cif b/benchmarks/mof/structures/Zn-MOF-74.cif
new file mode 100644
index 0000000000000000000000000000000000000000..953e34ed02614ec1700b98900c6193935f42c29d
--- /dev/null
+++ b/benchmarks/mof/structures/Zn-MOF-74.cif
@@ -0,0 +1,186 @@
+data_image0
+_cell_length_a 26.179
+_cell_length_b 26.179
+_cell_length_c 6.652
+_cell_angle_alpha 90
+_cell_angle_beta 90
+_cell_angle_gamma 120
+
+_symmetry_space_group_name_H-M "P 1"
+_symmetry_int_tables_number 1
+
+loop_
+ _symmetry_equiv_pos_as_xyz
+ 'x, y, z'
+
+loop_
+ _atom_site_label
+ _atom_site_occupancy
+ _atom_site_fract_x
+ _atom_site_fract_y
+ _atom_site_fract_z
+ _atom_site_thermal_displace_type
+ _atom_site_B_iso_or_equiv
+ _atom_site_type_symbol
+ Zn1 1.0000 0.38790 0.35068 0.15211 Biso 1.000 Zn
+ C1 1.0000 0.32290 0.20386 0.28779 Biso 1.000 C
+ C2 1.0000 0.34291 0.22040 0.09164 Biso 1.000 C
+ C3 1.0000 0.35335 0.18320 0.97052 Biso 1.000 C
+ H1 1.0000 0.36889 0.19605 0.81817 Biso 1.000 H
+ C4 1.0000 0.31168 0.24386 0.41805 Biso 1.000 C
+ O1 1.0000 0.32032 0.29230 0.35040 Biso 1.000 O
+ O2 1.0000 0.29364 0.22895 0.59490 Biso 1.000 O
+ O3 1.0000 0.35220 0.27243 0.01900 Biso 1.000 O
+ Zn2 1.0000 0.05457 0.68401 0.48544 Biso 1.000 Zn
+ C5 1.0000 0.98957 0.53719 0.62112 Biso 1.000 C
+ C6 1.0000 0.00958 0.55373 0.42497 Biso 1.000 C
+ C7 1.0000 0.02002 0.51653 0.30385 Biso 1.000 C
+ H2 1.0000 0.03556 0.52938 0.15150 Biso 1.000 H
+ C8 1.0000 0.97835 0.57719 0.75138 Biso 1.000 C
+ O4 1.0000 0.98699 0.62563 0.68373 Biso 1.000 O
+ O5 1.0000 0.96031 0.56228 0.92823 Biso 1.000 O
+ O6 1.0000 0.01887 0.60576 0.35233 Biso 1.000 O
+ Zn3 1.0000 0.72123 0.01735 0.81878 Biso 1.000 Zn
+ C9 1.0000 0.65623 0.87053 0.95446 Biso 1.000 C
+ C10 1.0000 0.67624 0.88707 0.75831 Biso 1.000 C
+ C11 1.0000 0.68668 0.84987 0.63719 Biso 1.000 C
+ H3 1.0000 0.70222 0.86272 0.48484 Biso 1.000 H
+ C12 1.0000 0.64501 0.91053 0.08472 Biso 1.000 C
+ O7 1.0000 0.65365 0.95897 0.01707 Biso 1.000 O
+ O8 1.0000 0.62697 0.89562 0.26157 Biso 1.000 O
+ O9 1.0000 0.68553 0.93910 0.68567 Biso 1.000 O
+ Zn4 1.0000 0.64932 0.03722 0.15211 Biso 1.000 Zn
+ C13 1.0000 0.79614 0.11904 0.28779 Biso 1.000 C
+ C14 1.0000 0.77960 0.12251 0.09164 Biso 1.000 C
+ C15 1.0000 0.81680 0.17015 0.97052 Biso 1.000 C
+ H4 1.0000 0.80395 0.17284 0.81817 Biso 1.000 H
+ C16 1.0000 0.75614 0.06782 0.41805 Biso 1.000 C
+ O10 1.0000 0.70770 0.02802 0.35040 Biso 1.000 O
+ O11 1.0000 0.77105 0.06469 0.59490 Biso 1.000 O
+ O12 1.0000 0.72757 0.07977 0.01900 Biso 1.000 O
+ Zn5 1.0000 0.31599 0.37055 0.48544 Biso 1.000 Zn
+ C17 1.0000 0.46281 0.45237 0.62112 Biso 1.000 C
+ C18 1.0000 0.44627 0.45584 0.42497 Biso 1.000 C
+ C19 1.0000 0.48347 0.50348 0.30385 Biso 1.000 C
+ H5 1.0000 0.47062 0.50617 0.15150 Biso 1.000 H
+ C20 1.0000 0.42281 0.40115 0.75138 Biso 1.000 C
+ O13 1.0000 0.37437 0.36135 0.68373 Biso 1.000 O
+ O14 1.0000 0.43772 0.39802 0.92823 Biso 1.000 O
+ O15 1.0000 0.39424 0.41310 0.35233 Biso 1.000 O
+ Zn6 1.0000 0.98265 0.70389 0.81878 Biso 1.000 Zn
+ C21 1.0000 0.12947 0.78571 0.95446 Biso 1.000 C
+ C22 1.0000 0.11293 0.78918 0.75831 Biso 1.000 C
+ C23 1.0000 0.15013 0.83682 0.63719 Biso 1.000 C
+ H6 1.0000 0.13728 0.83951 0.48484 Biso 1.000 H
+ C24 1.0000 0.08947 0.73449 0.08472 Biso 1.000 C
+ O16 1.0000 0.04103 0.69469 0.01707 Biso 1.000 O
+ O17 1.0000 0.10438 0.73136 0.26157 Biso 1.000 O
+ O18 1.0000 0.06090 0.74644 0.68567 Biso 1.000 O
+ Zn7 1.0000 0.96278 0.61210 0.15211 Biso 1.000 Zn
+ C25 1.0000 0.88096 0.67710 0.28779 Biso 1.000 C
+ C26 1.0000 0.87749 0.65709 0.09164 Biso 1.000 C
+ C27 1.0000 0.82985 0.64665 0.97052 Biso 1.000 C
+ H7 1.0000 0.82716 0.63111 0.81817 Biso 1.000 H
+ C28 1.0000 0.93218 0.68832 0.41805 Biso 1.000 C
+ O19 1.0000 0.97198 0.67968 0.35040 Biso 1.000 O
+ O20 1.0000 0.93531 0.70636 0.59490 Biso 1.000 O
+ O21 1.0000 0.92023 0.64780 0.01900 Biso 1.000 O
+ Zn8 1.0000 0.62945 0.94543 0.48544 Biso 1.000 Zn
+ C29 1.0000 0.54763 0.01043 0.62112 Biso 1.000 C
+ C30 1.0000 0.54416 0.99042 0.42497 Biso 1.000 C
+ C31 1.0000 0.49652 0.97998 0.30385 Biso 1.000 C
+ H8 1.0000 0.49383 0.96444 0.15150 Biso 1.000 H
+ C32 1.0000 0.59885 0.02165 0.75138 Biso 1.000 C
+ O22 1.0000 0.63865 0.01301 0.68373 Biso 1.000 O
+ O23 1.0000 0.60198 0.03969 0.92823 Biso 1.000 O
+ O24 1.0000 0.58690 0.98113 0.35233 Biso 1.000 O
+ Zn9 1.0000 0.29611 0.27877 0.81878 Biso 1.000 Zn
+ C33 1.0000 0.21429 0.34377 0.95446 Biso 1.000 C
+ C34 1.0000 0.21082 0.32376 0.75831 Biso 1.000 C
+ C35 1.0000 0.16318 0.31332 0.63719 Biso 1.000 C
+ H9 1.0000 0.16049 0.29778 0.48484 Biso 1.000 H
+ C36 1.0000 0.26551 0.35499 0.08472 Biso 1.000 C
+ O25 1.0000 0.30531 0.34635 0.01707 Biso 1.000 O
+ O26 1.0000 0.26864 0.37303 0.26157 Biso 1.000 O
+ O27 1.0000 0.25356 0.31447 0.68567 Biso 1.000 O
+ Zn10 1.0000 0.61210 0.64932 0.84789 Biso 1.000 Zn
+ C37 1.0000 0.67710 0.79614 0.71221 Biso 1.000 C
+ C38 1.0000 0.65709 0.77960 0.90836 Biso 1.000 C
+ C39 1.0000 0.64665 0.81680 0.02948 Biso 1.000 C
+ H10 1.0000 0.63111 0.80395 0.18183 Biso 1.000 H
+ C40 1.0000 0.68832 0.75614 0.58195 Biso 1.000 C
+ O28 1.0000 0.67968 0.70770 0.64960 Biso 1.000 O
+ O29 1.0000 0.70636 0.77105 0.40510 Biso 1.000 O
+ O30 1.0000 0.64780 0.72757 0.98100 Biso 1.000 O
+ Zn11 1.0000 0.27877 0.98265 0.18122 Biso 1.000 Zn
+ C41 1.0000 0.34377 0.12947 0.04554 Biso 1.000 C
+ C42 1.0000 0.32376 0.11293 0.24169 Biso 1.000 C
+ C43 1.0000 0.31332 0.15013 0.36281 Biso 1.000 C
+ H11 1.0000 0.29778 0.13728 0.51516 Biso 1.000 H
+ C44 1.0000 0.35499 0.08947 0.91528 Biso 1.000 C
+ O31 1.0000 0.34635 0.04103 0.98293 Biso 1.000 O
+ O32 1.0000 0.37303 0.10438 0.73843 Biso 1.000 O
+ O33 1.0000 0.31447 0.06090 0.31433 Biso 1.000 O
+ Zn12 1.0000 0.94543 0.31599 0.51456 Biso 1.000 Zn
+ C45 1.0000 0.01043 0.46281 0.37888 Biso 1.000 C
+ C46 1.0000 0.99042 0.44627 0.57503 Biso 1.000 C
+ C47 1.0000 0.97998 0.48347 0.69615 Biso 1.000 C
+ H12 1.0000 0.96444 0.47062 0.84850 Biso 1.000 H
+ C48 1.0000 0.02165 0.42281 0.24862 Biso 1.000 C
+ O34 1.0000 0.01301 0.37437 0.31627 Biso 1.000 O
+ O35 1.0000 0.03969 0.43772 0.07177 Biso 1.000 O
+ O36 1.0000 0.98113 0.39424 0.64767 Biso 1.000 O
+ Zn13 1.0000 0.35068 0.96278 0.84789 Biso 1.000 Zn
+ C49 1.0000 0.20386 0.88096 0.71221 Biso 1.000 C
+ C50 1.0000 0.22040 0.87749 0.90836 Biso 1.000 C
+ C51 1.0000 0.18320 0.82985 0.02948 Biso 1.000 C
+ H13 1.0000 0.19605 0.82716 0.18183 Biso 1.000 H
+ C52 1.0000 0.24386 0.93218 0.58195 Biso 1.000 C
+ O37 1.0000 0.29230 0.97198 0.64960 Biso 1.000 O
+ O38 1.0000 0.22895 0.93531 0.40510 Biso 1.000 O
+ O39 1.0000 0.27243 0.92023 0.98100 Biso 1.000 O
+ Zn14 1.0000 0.01735 0.29611 0.18122 Biso 1.000 Zn
+ C53 1.0000 0.87053 0.21429 0.04554 Biso 1.000 C
+ C54 1.0000 0.88707 0.21082 0.24169 Biso 1.000 C
+ C55 1.0000 0.84987 0.16318 0.36281 Biso 1.000 C
+ H14 1.0000 0.86272 0.16049 0.51516 Biso 1.000 H
+ C56 1.0000 0.91053 0.26551 0.91528 Biso 1.000 C
+ O40 1.0000 0.95897 0.30531 0.98293 Biso 1.000 O
+ O41 1.0000 0.89562 0.26864 0.73843 Biso 1.000 O
+ O42 1.0000 0.93910 0.25356 0.31433 Biso 1.000 O
+ Zn15 1.0000 0.68401 0.62945 0.51456 Biso 1.000 Zn
+ C57 1.0000 0.53719 0.54763 0.37888 Biso 1.000 C
+ C58 1.0000 0.55373 0.54416 0.57503 Biso 1.000 C
+ C59 1.0000 0.51653 0.49652 0.69615 Biso 1.000 C
+ H15 1.0000 0.52938 0.49383 0.84850 Biso 1.000 H
+ C60 1.0000 0.57719 0.59885 0.24862 Biso 1.000 C
+ O43 1.0000 0.62563 0.63865 0.31627 Biso 1.000 O
+ O44 1.0000 0.56228 0.60198 0.07177 Biso 1.000 O
+ O45 1.0000 0.60576 0.58690 0.64767 Biso 1.000 O
+ Zn16 1.0000 0.03722 0.38790 0.84789 Biso 1.000 Zn
+ C61 1.0000 0.11904 0.32290 0.71221 Biso 1.000 C
+ C62 1.0000 0.12251 0.34291 0.90836 Biso 1.000 C
+ C63 1.0000 0.17015 0.35335 0.02948 Biso 1.000 C
+ H16 1.0000 0.17284 0.36889 0.18183 Biso 1.000 H
+ C64 1.0000 0.06782 0.31168 0.58195 Biso 1.000 C
+ O46 1.0000 0.02802 0.32032 0.64960 Biso 1.000 O
+ O47 1.0000 0.06469 0.29364 0.40510 Biso 1.000 O
+ O48 1.0000 0.07977 0.35220 0.98100 Biso 1.000 O
+ Zn17 1.0000 0.70389 0.72123 0.18122 Biso 1.000 Zn
+ C65 1.0000 0.78571 0.65623 0.04554 Biso 1.000 C
+ C66 1.0000 0.78918 0.67624 0.24169 Biso 1.000 C
+ C67 1.0000 0.83682 0.68668 0.36281 Biso 1.000 C
+ H17 1.0000 0.83951 0.70222 0.51516 Biso 1.000 H
+ C68 1.0000 0.73449 0.64501 0.91528 Biso 1.000 C
+ O49 1.0000 0.69469 0.65365 0.98293 Biso 1.000 O
+ O50 1.0000 0.73136 0.62697 0.73843 Biso 1.000 O
+ O51 1.0000 0.74644 0.68553 0.31433 Biso 1.000 O
+ Zn18 1.0000 0.37055 0.05457 0.51456 Biso 1.000 Zn
+ C69 1.0000 0.45237 0.98957 0.37888 Biso 1.000 C
+ C70 1.0000 0.45584 0.00958 0.57503 Biso 1.000 C
+ C71 1.0000 0.50348 0.02002 0.69615 Biso 1.000 C
+ H18 1.0000 0.50617 0.03556 0.84850 Biso 1.000 H
+ C72 1.0000 0.40115 0.97835 0.24862 Biso 1.000 C
+ O52 1.0000 0.36135 0.98699 0.31627 Biso 1.000 O
+ O53 1.0000 0.39802 0.96031 0.07177 Biso 1.000 O
+ O54 1.0000 0.41310 0.01887 0.64767 Biso 1.000 O
diff --git a/benchmarks/mof/structures/dac/CFA-1-OH(Zn).cif b/benchmarks/mof/structures/dac/CFA-1-OH(Zn).cif
new file mode 100644
index 0000000000000000000000000000000000000000..a3ff22601cb7723f498e7708d58de1a53faebc47
--- /dev/null
+++ b/benchmarks/mof/structures/dac/CFA-1-OH(Zn).cif
@@ -0,0 +1,194 @@
+data_Zn-CFA-1-OH
+_audit_creation_date 2024-02-27
+_audit_creation_method 'Materials Studio'
+_symmetry_space_group_name_H-M 'P1'
+_symmetry_Int_Tables_number 1
+_symmetry_cell_setting triclinic
+loop_
+_symmetry_equiv_pos_as_xyz
+ x,y,z
+_cell_length_a 17.7500
+_cell_length_b 17.7500
+_cell_length_c 19.1920
+_cell_angle_alpha 90.0000
+_cell_angle_beta 90.0000
+_cell_angle_gamma 120.0000
+loop_
+_atom_site_label
+_atom_site_type_symbol
+_atom_site_fract_x
+_atom_site_fract_y
+_atom_site_fract_z
+_atom_site_U_iso_or_equiv
+_atom_site_adp_type
+_atom_site_occupancy
+C1 C 0.13251 0.47278 0.60099 0.01267 Uiso 1.00
+C2 C 0.52717 0.65924 0.60145 0.01267 Uiso 1.00
+C3 C 0.34054 0.86768 0.60110 0.01267 Uiso 1.00
+C4 C 0.47278 0.13251 0.39901 0.01267 Uiso 1.00
+C5 C 0.65924 0.52717 0.39855 0.01267 Uiso 1.00
+C6 C 0.86768 0.34054 0.39890 0.01267 Uiso 1.00
+C7 C 0.18881 0.43840 0.60309 0.01267 Uiso 1.00
+C8 C 0.56134 0.74988 0.60338 0.01267 Uiso 1.00
+C9 C 0.24988 0.81128 0.60314 0.01267 Uiso 1.00
+C10 C 0.43840 0.18881 0.39691 0.01267 Uiso 1.00
+C11 C 0.74988 0.56134 0.39662 0.01267 Uiso 1.00
+C12 C 0.81128 0.24988 0.39686 0.01267 Uiso 1.00
+C13 C 0.16934 0.36248 0.56642 0.01267 Uiso 1.00
+C14 C 0.63720 0.80647 0.56673 0.01267 Uiso 1.00
+C15 C 0.19332 0.83058 0.56649 0.01267 Uiso 1.00
+C16 C 0.36248 0.16934 0.43358 0.01267 Uiso 1.00
+C17 C 0.80647 0.63720 0.43327 0.01267 Uiso 1.00
+C18 C 0.83058 0.19332 0.43351 0.01267 Uiso 1.00
+C19 C 0.09438 0.32519 0.52709 0.01267 Uiso 1.00
+C20 C 0.67462 0.76899 0.52736 0.01267 Uiso 1.00
+C21 C 0.23088 0.90552 0.52715 0.01267 Uiso 1.00
+C22 C 0.32519 0.09438 0.47291 0.01267 Uiso 1.00
+C23 C 0.76899 0.67462 0.47264 0.01267 Uiso 1.00
+C24 C 0.90551 0.23088 0.47286 0.01267 Uiso 1.00
+C25 C 0.03841 0.36098 0.52299 0.01267 Uiso 1.00
+C26 C 0.63892 0.67723 0.52316 0.01267 Uiso 1.00
+C27 C 0.32263 0.96162 0.52307 0.01267 Uiso 1.00
+C28 C 0.36098 0.03841 0.47701 0.01267 Uiso 1.00
+C29 C 0.67723 0.63892 0.47685 0.01267 Uiso 1.00
+C30 C 0.96162 0.32263 0.47693 0.01267 Uiso 1.00
+C31 C 0.05648 0.43436 0.56136 0.01267 Uiso 1.00
+C32 C 0.56569 0.62180 0.56167 0.01267 Uiso 1.00
+C33 C 0.37804 0.94371 0.56146 0.01267 Uiso 1.00
+C34 C 0.43436 0.05648 0.43864 0.01267 Uiso 1.00
+C35 C 0.62180 0.56569 0.43833 0.01267 Uiso 1.00
+C36 C 0.94371 0.37804 0.43854 0.01267 Uiso 1.00
+C37 C 0.09165 0.61513 0.83198 0.01267 Uiso 1.00
+C38 C 0.38223 0.47632 0.83322 0.01267 Uiso 1.00
+C39 C 0.52377 0.90807 0.83233 0.01267 Uiso 1.00
+C40 C 0.61513 0.09165 0.16802 0.01267 Uiso 1.00
+C41 C 0.47632 0.38224 0.16679 0.01267 Uiso 1.00
+C42 C 0.90807 0.52377 0.16767 0.01267 Uiso 1.00
+C43 C 0.14157 0.62308 0.89145 0.01267 Uiso 1.00
+C44 C 0.37545 0.51853 0.89300 0.01267 Uiso 1.00
+C45 C 0.48126 0.85826 0.89172 0.01267 Uiso 1.00
+C46 C 0.62308 0.14157 0.10855 0.01267 Uiso 1.00
+C47 C 0.51853 0.37545 0.10700 0.01267 Uiso 1.00
+C48 C 0.85826 0.48126 0.10828 0.01267 Uiso 1.00
+C49 C 0.10720 0.60993 0.95871 0.01267 Uiso 1.00
+C50 C 0.38919 0.49669 0.95983 0.01267 Uiso 1.00
+C51 C 0.50192 0.89238 0.95910 0.01267 Uiso 1.00
+C52 C 0.60993 0.10720 0.04130 0.01267 Uiso 1.00
+C53 C 0.49669 0.38919 0.04017 0.01267 Uiso 1.00
+C54 C 0.89238 0.50192 0.04090 0.01267 Uiso 1.00
+C55 C 0.02065 0.58763 0.96512 0.01267 Uiso 1.00
+C56 C 0.40977 0.43115 0.96556 0.01267 Uiso 1.00
+C57 C 0.56671 0.97874 0.96561 0.01267 Uiso 1.00
+C58 C 0.58763 0.02065 0.03488 0.01267 Uiso 1.00
+C59 C 0.43115 0.40977 0.03444 0.01267 Uiso 1.00
+C60 C 0.97874 0.56671 0.03439 0.01267 Uiso 1.00
+C61 C 0.97123 0.58133 0.90446 0.01267 Uiso 1.00
+C62 C 0.41439 0.38765 0.90455 0.01267 Uiso 1.00
+C63 C 0.61033 0.02818 0.90506 0.01267 Uiso 1.00
+C64 C 0.58132 0.97123 0.09554 0.01267 Uiso 1.00
+C65 C 0.38765 0.41439 0.09545 0.01267 Uiso 1.00
+C66 C 0.02818 0.61033 0.09494 0.01267 Uiso 1.00
+C67 C 0.00475 0.59477 0.83802 0.01267 Uiso 1.00
+C68 C 0.40121 0.40880 0.83841 0.01267 Uiso 1.00
+C69 C 0.59049 0.99487 0.83854 0.01267 Uiso 1.00
+C70 C 0.59477 0.00475 0.16198 0.01267 Uiso 1.00
+C71 C 0.40880 0.40121 0.16159 0.01267 Uiso 1.00
+C72 C 0.99487 0.59049 0.16146 0.01267 Uiso 1.00
+H73 H 0.63846 0.32288 0.95223 0.01267 Uiso 1.00
+H74 H 0.32288 0.63846 0.04777 0.01267 Uiso 1.00
+H75 H 0.61542 0.00736 0.40399 0.01267 Uiso 1.00
+H76 H 0.99385 0.60840 0.40307 0.01267 Uiso 1.00
+H77 H 0.39126 0.38543 0.40039 0.01267 Uiso 1.00
+H78 H 0.00736 0.61542 0.59601 0.01267 Uiso 1.00
+H79 H 0.60840 0.99385 0.59693 0.01267 Uiso 1.00
+H80 H 0.38543 0.39126 0.59961 0.01267 Uiso 1.00
+H81 H 0.21170 0.33489 0.56893 0.01267 Uiso 1.00
+H82 H 0.66452 0.87637 0.56937 0.01267 Uiso 1.00
+H83 H 0.12341 0.78803 0.56904 0.01267 Uiso 1.00
+H84 H 0.33489 0.21170 0.43107 0.01267 Uiso 1.00
+H85 H 0.87637 0.66452 0.43063 0.01267 Uiso 1.00
+H86 H 0.78803 0.12341 0.43096 0.01267 Uiso 1.00
+H87 H 0.07809 0.26752 0.49664 0.01267 Uiso 1.00
+H88 H 0.73228 0.81052 0.49696 0.01267 Uiso 1.00
+H89 H 0.18942 0.92163 0.49663 0.01267 Uiso 1.00
+H90 H 0.26752 0.07809 0.50336 0.01267 Uiso 1.00
+H91 H 0.81052 0.73228 0.50304 0.01267 Uiso 1.00
+H92 H 0.92163 0.18942 0.50338 0.01267 Uiso 1.00
+H93 H 0.01291 0.46062 0.56161 0.01267 Uiso 1.00
+H94 H 0.53969 0.55202 0.56179 0.01267 Uiso 1.00
+H95 H 0.44784 0.98737 0.56164 0.01267 Uiso 1.00
+H96 H 0.46062 0.01291 0.43839 0.01267 Uiso 1.00
+H97 H 0.55202 0.53969 0.43821 0.01267 Uiso 1.00
+H98 H 0.98737 0.44784 0.43837 0.01267 Uiso 1.00
+H99 H 0.14705 0.61492 1.00324 0.01267 Uiso 1.00
+H100 H 0.38769 0.53261 1.00499 0.01267 Uiso 1.00
+H101 H 0.46562 0.85264 1.00331 0.01267 Uiso 1.00
+H102 H 0.61492 0.14705 -0.00324 0.01267 Uiso 1.00
+H103 H 0.53261 0.38769 -0.00499 0.01267 Uiso 1.00
+H104 H 0.85264 0.46562 -0.00331 0.01267 Uiso 1.00
+H105 H 0.90433 0.56575 0.91138 0.01267 Uiso 1.00
+H106 H 0.42832 0.33513 0.91094 0.01267 Uiso 1.00
+H107 H 0.66186 0.09497 0.91211 0.01267 Uiso 1.00
+H108 H 0.56575 0.90433 0.08862 0.01267 Uiso 1.00
+H109 H 0.33513 0.42832 0.08906 0.01267 Uiso 1.00
+H110 H 0.09497 0.66186 0.08789 0.01267 Uiso 1.00
+H111 H 0.96647 0.58994 0.79241 0.01267 Uiso 1.00
+H112 H 0.40509 0.37550 0.79231 0.01267 Uiso 1.00
+H113 H 0.62424 0.03324 0.79304 0.01267 Uiso 1.00
+H114 H 0.58994 0.96647 0.20759 0.01267 Uiso 1.00
+H115 H 0.37550 0.40509 0.20769 0.01267 Uiso 1.00
+H116 H 0.03324 0.62424 0.20696 0.01267 Uiso 1.00
+N117 N 0.25674 0.49225 0.64454 0.01267 Uiso 1.00
+N118 N 0.50751 0.76408 0.64475 0.01267 Uiso 1.00
+N119 N 0.23574 0.74326 0.64447 0.01267 Uiso 1.00
+N120 N 0.49225 0.25674 0.35546 0.01267 Uiso 1.00
+N121 N 0.76408 0.50751 0.35525 0.01267 Uiso 1.00
+N122 N 0.74326 0.23574 0.35553 0.01267 Uiso 1.00
+N123 N 0.24275 0.55512 0.66652 0.01267 Uiso 1.00
+N124 N 0.44483 0.68730 0.66694 0.01267 Uiso 1.00
+N125 N 0.31262 0.75734 0.66644 0.01267 Uiso 1.00
+N126 N 0.55512 0.24275 0.33348 0.01267 Uiso 1.00
+N127 N 0.68730 0.44483 0.33306 0.01267 Uiso 1.00
+N128 N 0.75734 0.31262 0.33356 0.01267 Uiso 1.00
+N129 N 0.16861 0.54513 0.64175 0.01267 Uiso 1.00
+N130 N 0.45493 0.62308 0.64236 0.01267 Uiso 1.00
+N131 N 0.37683 0.83158 0.64181 0.01267 Uiso 1.00
+N132 N 0.54513 0.16861 0.35825 0.01267 Uiso 1.00
+N133 N 0.62308 0.45493 0.35764 0.01267 Uiso 1.00
+N134 N 0.83158 0.37683 0.35819 0.01267 Uiso 1.00
+N135 N 0.14403 0.62971 0.77592 0.01267 Uiso 1.00
+N136 N 0.36824 0.51498 0.77747 0.01267 Uiso 1.00
+N137 N 0.48603 0.85580 0.77619 0.01267 Uiso 1.00
+N138 N 0.62971 0.14403 0.22408 0.01267 Uiso 1.00
+N139 N 0.51498 0.36825 0.22253 0.01267 Uiso 1.00
+N140 N 0.85580 0.48603 0.22381 0.01267 Uiso 1.00
+N141 N 0.22093 0.64541 0.79950 0.01267 Uiso 1.00
+N142 N 0.35368 0.57666 0.80145 0.01267 Uiso 1.00
+N143 N 0.42437 0.77904 0.79964 0.01267 Uiso 1.00
+N144 N 0.64541 0.22093 0.20050 0.01267 Uiso 1.00
+N145 N 0.57666 0.35368 0.19855 0.01267 Uiso 1.00
+N146 N 0.77904 0.42437 0.20036 0.01267 Uiso 1.00
+N147 N 0.22162 0.64202 0.86845 0.01267 Uiso 1.00
+N148 N 0.35736 0.58043 0.87053 0.01267 Uiso 1.00
+N149 N 0.41996 0.77840 0.86857 0.01267 Uiso 1.00
+N150 N 0.64202 0.22162 0.13155 0.01267 Uiso 1.00
+N151 N 0.58043 0.35736 0.12947 0.01267 Uiso 1.00
+N152 N 0.77840 0.41996 0.13143 0.01267 Uiso 1.00
+O153 O 0.68765 0.33426 0.98063 0.01267 Uiso 1.00
+O154 O 0.33426 0.68765 0.01937 0.01267 Uiso 1.00
+O155 O 0.60710 0.01200 0.35502 0.01267 Uiso 1.00
+O156 O 0.98814 0.59581 0.35401 0.01267 Uiso 1.00
+O157 O 0.40473 0.39279 0.35148 0.01267 Uiso 1.00
+O158 O 0.01200 0.60710 0.64498 0.01267 Uiso 1.00
+O159 O 0.59581 0.98814 0.64599 0.01267 Uiso 1.00
+O160 O 0.39279 0.40473 0.64852 0.01267 Uiso 1.00
+Zn161 Zn 0.33310 0.66750 0.73393 0.01267 Uiso 1.00
+Zn162 Zn 0.66750 0.33310 0.26607 0.01267 Uiso 1.00
+Zn163 Zn 0.33330 0.66822 0.92337 0.01267 Uiso 1.00
+Zn164 Zn 0.66822 0.33330 0.07663 0.01267 Uiso 1.00
+Zn165 Zn 0.12297 0.62905 0.67054 0.01267 Uiso 1.00
+Zn166 Zn 0.37052 0.49432 0.67149 0.01267 Uiso 1.00
+Zn167 Zn 0.50635 0.87704 0.67074 0.01267 Uiso 1.00
+Zn168 Zn 0.62905 0.12297 0.32946 0.01267 Uiso 1.00
+Zn169 Zn 0.49432 0.37052 0.32851 0.01267 Uiso 1.00
+Zn170 Zn 0.87704 0.50635 0.32926 0.01267 Uiso 1.00
diff --git a/benchmarks/mof/structures/dac/NbOFFIVE-1-Ni.cif b/benchmarks/mof/structures/dac/NbOFFIVE-1-Ni.cif
new file mode 100644
index 0000000000000000000000000000000000000000..785ba17d0ab68c7cfdeceacc15b93774c0832d42
--- /dev/null
+++ b/benchmarks/mof/structures/dac/NbOFFIVE-1-Ni.cif
@@ -0,0 +1,136 @@
+data_image0
+_cell_length_a 9.8884
+_cell_length_b 9.8884
+_cell_length_c 15.7829
+_cell_angle_alpha 90
+_cell_angle_beta 90
+_cell_angle_gamma 90
+
+_symmetry_space_group_name_H-M "P 1"
+_symmetry_int_tables_number 1
+
+loop_
+ _symmetry_equiv_pos_as_xyz
+ 'x, y, z'
+
+loop_
+ _atom_site_label
+ _atom_site_occupancy
+ _atom_site_fract_x
+ _atom_site_fract_y
+ _atom_site_fract_z
+ _atom_site_thermal_displace_type
+ _atom_site_B_iso_or_equiv
+ _atom_site_type_symbol
+ C1 1.0000 0.24340 0.15710 0.18870 Biso 1.000 C
+ H1 1.0000 0.24100 0.09370 0.14520 Biso 1.000 H
+ C2 1.0000 0.74340 0.65710 0.68870 Biso 1.000 C
+ H2 1.0000 0.74100 0.59370 0.64520 Biso 1.000 H
+ C3 1.0000 0.75660 0.84290 0.18870 Biso 1.000 C
+ H3 1.0000 0.75900 0.90630 0.14520 Biso 1.000 H
+ C4 1.0000 0.25660 0.34290 0.68870 Biso 1.000 C
+ H4 1.0000 0.25900 0.40630 0.64520 Biso 1.000 H
+ C5 1.0000 0.84290 0.24340 0.18870 Biso 1.000 C
+ H5 1.0000 0.90630 0.24100 0.14520 Biso 1.000 H
+ C6 1.0000 0.34290 0.74340 0.68870 Biso 1.000 C
+ H6 1.0000 0.40630 0.74100 0.64520 Biso 1.000 H
+ C7 1.0000 0.15710 0.75660 0.18870 Biso 1.000 C
+ H7 1.0000 0.09370 0.75900 0.14520 Biso 1.000 H
+ C8 1.0000 0.65710 0.25660 0.68870 Biso 1.000 C
+ H8 1.0000 0.59370 0.25900 0.64520 Biso 1.000 H
+ C9 1.0000 0.75660 0.15710 0.31130 Biso 1.000 C
+ H9 1.0000 0.75900 0.09370 0.35480 Biso 1.000 H
+ C10 1.0000 0.25660 0.65710 0.81130 Biso 1.000 C
+ H10 1.0000 0.25900 0.59370 0.85480 Biso 1.000 H
+ C11 1.0000 0.24340 0.84290 0.31130 Biso 1.000 C
+ H11 1.0000 0.24100 0.90630 0.35480 Biso 1.000 H
+ C12 1.0000 0.74340 0.34290 0.81130 Biso 1.000 C
+ H12 1.0000 0.74100 0.40630 0.85480 Biso 1.000 H
+ C13 1.0000 0.15710 0.24340 0.31130 Biso 1.000 C
+ H13 1.0000 0.09370 0.24100 0.35480 Biso 1.000 H
+ C14 1.0000 0.65710 0.74340 0.81130 Biso 1.000 C
+ H14 1.0000 0.59370 0.74100 0.85480 Biso 1.000 H
+ C15 1.0000 0.84290 0.75660 0.31130 Biso 1.000 C
+ H15 1.0000 0.90630 0.75900 0.35480 Biso 1.000 H
+ C16 1.0000 0.34290 0.25660 0.81130 Biso 1.000 C
+ H16 1.0000 0.40630 0.25900 0.85480 Biso 1.000 H
+ C17 1.0000 0.75660 0.84290 0.81130 Biso 1.000 C
+ H17 1.0000 0.75900 0.90630 0.85480 Biso 1.000 H
+ C18 1.0000 0.25660 0.34290 0.31130 Biso 1.000 C
+ H18 1.0000 0.25900 0.40630 0.35480 Biso 1.000 H
+ C19 1.0000 0.24340 0.15710 0.81130 Biso 1.000 C
+ H19 1.0000 0.24100 0.09370 0.85480 Biso 1.000 H
+ C20 1.0000 0.74340 0.65710 0.31130 Biso 1.000 C
+ H20 1.0000 0.74100 0.59370 0.35480 Biso 1.000 H
+ C21 1.0000 0.15710 0.75660 0.81130 Biso 1.000 C
+ H21 1.0000 0.09370 0.75900 0.85480 Biso 1.000 H
+ C22 1.0000 0.65710 0.25660 0.31130 Biso 1.000 C
+ H22 1.0000 0.59370 0.25900 0.35480 Biso 1.000 H
+ C23 1.0000 0.84290 0.24340 0.81130 Biso 1.000 C
+ H23 1.0000 0.90630 0.24100 0.85480 Biso 1.000 H
+ C24 1.0000 0.34290 0.74340 0.31130 Biso 1.000 C
+ H24 1.0000 0.40630 0.74100 0.35480 Biso 1.000 H
+ C25 1.0000 0.24340 0.84290 0.68870 Biso 1.000 C
+ H25 1.0000 0.24100 0.90630 0.64520 Biso 1.000 H
+ C26 1.0000 0.74340 0.34290 0.18870 Biso 1.000 C
+ H26 1.0000 0.74100 0.40630 0.14520 Biso 1.000 H
+ C27 1.0000 0.75660 0.15710 0.68870 Biso 1.000 C
+ H27 1.0000 0.75900 0.09370 0.64520 Biso 1.000 H
+ C28 1.0000 0.25660 0.65710 0.18870 Biso 1.000 C
+ H28 1.0000 0.25900 0.59370 0.14520 Biso 1.000 H
+ C29 1.0000 0.84290 0.75660 0.68870 Biso 1.000 C
+ H29 1.0000 0.90630 0.75900 0.64520 Biso 1.000 H
+ C30 1.0000 0.34290 0.25660 0.18870 Biso 1.000 C
+ H30 1.0000 0.40630 0.25900 0.14520 Biso 1.000 H
+ C31 1.0000 0.15710 0.24340 0.68870 Biso 1.000 C
+ H31 1.0000 0.09370 0.24100 0.64520 Biso 1.000 H
+ C32 1.0000 0.65710 0.74340 0.18870 Biso 1.000 C
+ H32 1.0000 0.59370 0.74100 0.14520 Biso 1.000 H
+ Nb1 1.0000 0.00000 0.00000 0.00000 Biso 1.000 Nb
+ Nb2 1.0000 0.50000 0.50000 0.50000 Biso 1.000 Nb
+ Nb3 1.0000 0.00000 0.00000 0.50000 Biso 1.000 Nb
+ Nb4 1.0000 0.50000 0.50000 0.00000 Biso 1.000 Nb
+ Ni1 1.0000 0.00000 0.00000 0.25000 Biso 1.000 Ni
+ Ni2 1.0000 0.50000 0.50000 0.75000 Biso 1.000 Ni
+ Ni3 1.0000 0.00000 0.00000 0.75000 Biso 1.000 Ni
+ Ni4 1.0000 0.50000 0.50000 0.25000 Biso 1.000 Ni
+ O1 1.0000 0.00000 0.00000 0.12230 Biso 1.000 O
+ F1 1.0000 0.00000 0.00000 0.37770 Biso 1.000 F
+ O2 1.0000 0.50000 0.50000 0.62230 Biso 1.000 O
+ F2 1.0000 0.50000 0.50000 0.87770 Biso 1.000 F
+ O3 1.0000 0.00000 0.00000 0.87770 Biso 1.000 O
+ F3 1.0000 0.00000 0.00000 0.62230 Biso 1.000 F
+ O4 1.0000 0.50000 0.50000 0.37770 Biso 1.000 O
+ F4 1.0000 0.50000 0.50000 0.12230 Biso 1.000 F
+ F5 1.0000 0.19200 0.01930 0.00000 Biso 1.000 F
+ F6 1.0000 0.69200 0.51930 0.50000 Biso 1.000 F
+ F7 1.0000 0.80800 0.98070 0.00000 Biso 1.000 F
+ F8 1.0000 0.30800 0.48070 0.50000 Biso 1.000 F
+ F9 1.0000 0.98070 0.19200 0.00000 Biso 1.000 F
+ F10 1.0000 0.48070 0.69200 0.50000 Biso 1.000 F
+ F11 1.0000 0.01930 0.80800 0.00000 Biso 1.000 F
+ F12 1.0000 0.51930 0.30800 0.50000 Biso 1.000 F
+ F13 1.0000 0.80800 0.01930 0.50000 Biso 1.000 F
+ F14 1.0000 0.30800 0.51930 0.00000 Biso 1.000 F
+ F15 1.0000 0.19200 0.98070 0.50000 Biso 1.000 F
+ F16 1.0000 0.69200 0.48070 0.00000 Biso 1.000 F
+ F17 1.0000 0.01930 0.19200 0.50000 Biso 1.000 F
+ F18 1.0000 0.51930 0.69200 0.00000 Biso 1.000 F
+ F19 1.0000 0.98070 0.80800 0.50000 Biso 1.000 F
+ F20 1.0000 0.48070 0.30800 0.00000 Biso 1.000 F
+ N1 1.0000 0.15180 0.15180 0.25000 Biso 1.000 N
+ N2 1.0000 0.65180 0.65180 0.75000 Biso 1.000 N
+ N3 1.0000 0.84820 0.84820 0.25000 Biso 1.000 N
+ N4 1.0000 0.34820 0.34820 0.75000 Biso 1.000 N
+ N5 1.0000 0.84820 0.15180 0.25000 Biso 1.000 N
+ N6 1.0000 0.34820 0.65180 0.75000 Biso 1.000 N
+ N7 1.0000 0.15180 0.84820 0.25000 Biso 1.000 N
+ N8 1.0000 0.65180 0.34820 0.75000 Biso 1.000 N
+ N9 1.0000 0.84820 0.84820 0.75000 Biso 1.000 N
+ N10 1.0000 0.34820 0.34820 0.25000 Biso 1.000 N
+ N11 1.0000 0.15180 0.15180 0.75000 Biso 1.000 N
+ N12 1.0000 0.65180 0.65180 0.25000 Biso 1.000 N
+ N13 1.0000 0.15180 0.84820 0.75000 Biso 1.000 N
+ N14 1.0000 0.65180 0.34820 0.25000 Biso 1.000 N
+ N15 1.0000 0.84820 0.15180 0.75000 Biso 1.000 N
+ N16 1.0000 0.34820 0.65180 0.25000 Biso 1.000 N
diff --git a/benchmarks/mof/structures/dac/SGU-29.cif b/benchmarks/mof/structures/dac/SGU-29.cif
new file mode 100644
index 0000000000000000000000000000000000000000..fb15f604b05ccdc345c547ca5cc415b848701fef
--- /dev/null
+++ b/benchmarks/mof/structures/dac/SGU-29.cif
@@ -0,0 +1,995 @@
+data_sgu-29b_1\(2)
+_audit_creation_date 2025-02-06
+_audit_creation_method 'Materials Studio'
+_symmetry_space_group_name_H-M 'P1'
+_symmetry_Int_Tables_number 1
+_symmetry_cell_setting triclinic
+loop_
+_symmetry_equiv_pos_as_xyz
+ x,y,z
+_cell_length_a 20.8200
+_cell_length_b 20.8190
+_cell_length_c 14.6970
+_cell_angle_alpha 90.0000
+_cell_angle_beta 110.7300
+_cell_angle_gamma 90.0000
+loop_
+_atom_site_label
+_atom_site_type_symbol
+_atom_site_fract_x
+_atom_site_fract_y
+_atom_site_fract_z
+_atom_site_U_iso_or_equiv
+_atom_site_adp_type
+_atom_site_occupancy
+Si1 Si 0.24909 0.06259 0.24949 0.00000 Uiso 1.00
+O2 O 0.37297 0.87246 0.00024 0.00000 Uiso 1.00
+O3 O 0.31082 0.10699 0.31523 0.00000 Uiso 1.00
+O4 O 0.43778 0.35840 0.18606 0.00000 Uiso 1.00
+O5 O 0.53049 0.76657 0.18649 0.00000 Uiso 1.00
+O6 O 0.43915 0.85680 0.18418 0.00000 Uiso 1.00
+O7 O 0.18809 0.10887 0.18562 0.00000 Uiso 1.00
+O8 O 0.21990 0.01612 0.31305 0.00000 Uiso 1.00
+O9 O 0.27771 0.01820 0.18331 0.00000 Uiso 1.00
+O10 O 0.47221 0.26806 0.31627 0.00000 Uiso 1.00
+O11 O 0.24662 0.99791 0.99886 0.00000 Uiso 1.00
+O12 O 0.49794 0.25289 0.50055 0.00000 Uiso 1.00
+O13 O 0.12201 0.12220 0.99919 0.00000 Uiso 1.00
+Cu14 Cu 0.37361 0.37328 0.50133 0.00000 Uiso 1.00
+Si15 Si 0.25762 0.96125 0.10339 0.00000 Uiso 1.00
+Si16 Si 0.36206 0.85698 0.10386 0.00000 Uiso 1.00
+Si17 Si 0.18420 0.01989 0.39513 0.00000 Uiso 1.00
+Si18 Si 0.43514 0.26839 0.39631 0.00000 Uiso 1.00
+Si19 Si 0.50622 0.71051 0.10427 0.00000 Uiso 1.00
+Si20 Si 0.42111 0.41440 0.10420 0.00000 Uiso 1.00
+Si21 Si 0.11160 0.10500 0.10374 0.00000 Uiso 1.00
+Si22 Si 0.33078 0.16403 0.39571 0.00000 Uiso 1.00
+O23 O 0.39390 0.33193 0.39620 0.00000 Uiso 1.00
+O24 O 0.32810 0.92030 0.13270 0.00000 Uiso 1.00
+O25 O 0.48780 0.45070 0.10450 0.00000 Uiso 1.00
+O26 O 0.38650 0.20540 0.36660 0.00000 Uiso 1.00
+O27 O 0.19360 0.92010 0.10310 0.00000 Uiso 1.00
+O28 O 0.07510 0.03850 0.10390 0.00000 Uiso 1.00
+O29 O 0.13050 0.96040 0.36510 0.00000 Uiso 1.00
+O30 O 0.32090 0.79310 0.10440 0.00000 Uiso 1.00
+O31 O 0.26670 0.20480 0.39540 0.00000 Uiso 1.00
+O32 O 0.14760 0.08654 0.39450 0.00000 Uiso 1.00
+O33 O 0.44000 0.67410 0.10510 0.00000 Uiso 1.00
+O34 O 0.57300 0.66390 0.13370 0.00000 Uiso 1.00
+Na35 Na 0.76421 0.81238 0.30670 0.00000 Uiso 1.00
+Na36 Na 0.61250 0.43394 0.18653 0.00000 Uiso 1.00
+Na37 Na 0.64365 0.69124 0.31112 0.00000 Uiso 1.00
+Si38 Si 0.74909 0.56259 0.24949 0.00000 Uiso 1.00
+O39 O 0.87297 0.37246 0.00024 0.00000 Uiso 1.00
+O40 O 0.81082 0.60699 0.31523 0.00000 Uiso 1.00
+O41 O 0.93778 0.85840 0.18606 0.00000 Uiso 1.00
+O42 O 0.03049 0.26657 0.18649 0.00000 Uiso 1.00
+O43 O 0.93915 0.35680 0.18418 0.00000 Uiso 1.00
+O44 O 0.68809 0.60887 0.18562 0.00000 Uiso 1.00
+O45 O 0.71990 0.51612 0.31305 0.00000 Uiso 1.00
+O46 O 0.77771 0.51820 0.18331 0.00000 Uiso 1.00
+O47 O 0.97221 0.76806 0.31627 0.00000 Uiso 1.00
+O48 O 0.74662 0.49791 0.99886 0.00000 Uiso 1.00
+O49 O 0.99794 0.75289 0.50055 0.00000 Uiso 1.00
+O50 O 0.62201 0.62220 0.99919 0.00000 Uiso 1.00
+Cu51 Cu 0.87361 0.87328 0.50133 0.00000 Uiso 1.00
+Si52 Si 0.75762 0.46125 0.10339 0.00000 Uiso 1.00
+Si53 Si 0.86206 0.35698 0.10386 0.00000 Uiso 1.00
+Si54 Si 0.68420 0.51989 0.39513 0.00000 Uiso 1.00
+Si55 Si 0.93514 0.76839 0.39631 0.00000 Uiso 1.00
+Si56 Si 0.00622 0.21051 0.10427 0.00000 Uiso 1.00
+Si57 Si 0.92111 0.91440 0.10420 0.00000 Uiso 1.00
+Si58 Si 0.61160 0.60500 0.10374 0.00000 Uiso 1.00
+Si59 Si 0.83078 0.66403 0.39571 0.00000 Uiso 1.00
+O60 O 0.89390 0.83193 0.39620 0.00000 Uiso 1.00
+O61 O 0.82810 0.42030 0.13270 0.00000 Uiso 1.00
+O62 O 0.98780 0.95070 0.10450 0.00000 Uiso 1.00
+O63 O 0.88650 0.70540 0.36660 0.00000 Uiso 1.00
+O64 O 0.69360 0.42010 0.10310 0.00000 Uiso 1.00
+O65 O 0.57510 0.53850 0.10390 0.00000 Uiso 1.00
+O66 O 0.63050 0.46040 0.36510 0.00000 Uiso 1.00
+O67 O 0.82090 0.29310 0.10440 0.00000 Uiso 1.00
+O68 O 0.76670 0.70480 0.39540 0.00000 Uiso 1.00
+O69 O 0.64760 0.58654 0.39450 0.00000 Uiso 1.00
+O70 O 0.94000 0.17410 0.10510 0.00000 Uiso 1.00
+O71 O 0.07300 0.16390 0.13370 0.00000 Uiso 1.00
+Na72 Na 0.26421 0.31238 0.30670 0.00000 Uiso 1.00
+Na73 Na 0.11250 0.93394 0.18653 0.00000 Uiso 1.00
+Na74 Na 0.14365 0.19124 0.31112 0.00000 Uiso 1.00
+Na75 Na 0.98990 0.56290 0.20950 0.00000 Uiso 1.00
+Si76 Si 0.75091 0.06259 0.25051 0.00000 Uiso 1.00
+O77 O 0.62703 0.87246 0.49976 0.00000 Uiso 1.00
+O78 O 0.68918 0.10699 0.18477 0.00000 Uiso 1.00
+O79 O 0.56222 0.35840 0.31394 0.00000 Uiso 1.00
+O80 O 0.46951 0.76657 0.31351 0.00000 Uiso 1.00
+O81 O 0.56085 0.85680 0.31582 0.00000 Uiso 1.00
+O82 O 0.81191 0.10887 0.31438 0.00000 Uiso 1.00
+O83 O 0.78010 0.01612 0.18695 0.00000 Uiso 1.00
+O84 O 0.72229 0.01820 0.31669 0.00000 Uiso 1.00
+O85 O 0.52779 0.26806 0.18373 0.00000 Uiso 1.00
+O86 O 0.75338 0.99791 0.50114 0.00000 Uiso 1.00
+O87 O 0.50206 0.25289 0.99945 0.00000 Uiso 1.00
+O88 O 0.87799 0.12220 0.50081 0.00000 Uiso 1.00
+Cu89 Cu 0.62639 0.37328 0.99867 0.00000 Uiso 1.00
+Si90 Si 0.74238 0.96125 0.39661 0.00000 Uiso 1.00
+Si91 Si 0.63794 0.85698 0.39614 0.00000 Uiso 1.00
+Si92 Si 0.81580 0.01989 0.10487 0.00000 Uiso 1.00
+Si93 Si 0.56486 0.26839 0.10369 0.00000 Uiso 1.00
+Si94 Si 0.49378 0.71051 0.39573 0.00000 Uiso 1.00
+Si95 Si 0.57889 0.41440 0.39580 0.00000 Uiso 1.00
+Si96 Si 0.88840 0.10500 0.39626 0.00000 Uiso 1.00
+Si97 Si 0.66922 0.16403 0.10429 0.00000 Uiso 1.00
+O98 O 0.60610 0.33193 0.10380 0.00000 Uiso 1.00
+O99 O 0.67190 0.92030 0.36730 0.00000 Uiso 1.00
+O100 O 0.51220 0.45070 0.39550 0.00000 Uiso 1.00
+O101 O 0.61350 0.20540 0.13340 0.00000 Uiso 1.00
+O102 O 0.80640 0.92010 0.39690 0.00000 Uiso 1.00
+O103 O 0.92490 0.03850 0.39610 0.00000 Uiso 1.00
+O104 O 0.86950 0.96040 0.13490 0.00000 Uiso 1.00
+O105 O 0.67910 0.79310 0.39560 0.00000 Uiso 1.00
+O106 O 0.73330 0.20480 0.10460 0.00000 Uiso 1.00
+O107 O 0.85240 0.08654 0.10550 0.00000 Uiso 1.00
+O108 O 0.56000 0.67410 0.39490 0.00000 Uiso 1.00
+O109 O 0.42700 0.66390 0.36630 0.00000 Uiso 1.00
+Na110 Na 0.23579 0.81238 0.19330 0.00000 Uiso 1.00
+Na111 Na 0.38750 0.43394 0.31347 0.00000 Uiso 1.00
+Na112 Na 0.35635 0.69124 0.18888 0.00000 Uiso 1.00
+Na113 Na 0.51010 0.06290 0.29050 0.00000 Uiso 1.00
+Si114 Si 0.25091 0.56259 0.25051 0.00000 Uiso 1.00
+O115 O 0.12703 0.37246 0.49976 0.00000 Uiso 1.00
+O116 O 0.18918 0.60699 0.18477 0.00000 Uiso 1.00
+O117 O 0.06222 0.85840 0.31394 0.00000 Uiso 1.00
+O118 O 0.96951 0.26657 0.31351 0.00000 Uiso 1.00
+O119 O 0.06085 0.35680 0.31582 0.00000 Uiso 1.00
+O120 O 0.31191 0.60887 0.31438 0.00000 Uiso 1.00
+O121 O 0.28010 0.51612 0.18695 0.00000 Uiso 1.00
+O122 O 0.22229 0.51820 0.31669 0.00000 Uiso 1.00
+O123 O 0.02779 0.76806 0.18373 0.00000 Uiso 1.00
+O124 O 0.25338 0.49791 0.50114 0.00000 Uiso 1.00
+O125 O 0.00206 0.75289 0.99945 0.00000 Uiso 1.00
+O126 O 0.37799 0.62220 0.50081 0.00000 Uiso 1.00
+Cu127 Cu 0.12639 0.87328 0.99867 0.00000 Uiso 1.00
+Si128 Si 0.24238 0.46125 0.39661 0.00000 Uiso 1.00
+Si129 Si 0.13794 0.35698 0.39614 0.00000 Uiso 1.00
+Si130 Si 0.31580 0.51989 0.10487 0.00000 Uiso 1.00
+Si131 Si 0.06486 0.76839 0.10369 0.00000 Uiso 1.00
+Si132 Si 0.99378 0.21051 0.39573 0.00000 Uiso 1.00
+Si133 Si 0.07889 0.91440 0.39580 0.00000 Uiso 1.00
+Si134 Si 0.38840 0.60500 0.39626 0.00000 Uiso 1.00
+Si135 Si 0.16922 0.66403 0.10429 0.00000 Uiso 1.00
+O136 O 0.10610 0.83193 0.10380 0.00000 Uiso 1.00
+O137 O 0.17190 0.42030 0.36730 0.00000 Uiso 1.00
+O138 O 0.01220 0.95070 0.39550 0.00000 Uiso 1.00
+O139 O 0.11350 0.70540 0.13340 0.00000 Uiso 1.00
+O140 O 0.30640 0.42010 0.39690 0.00000 Uiso 1.00
+O141 O 0.42490 0.53850 0.39610 0.00000 Uiso 1.00
+O142 O 0.36950 0.46040 0.13490 0.00000 Uiso 1.00
+O143 O 0.17910 0.29310 0.39560 0.00000 Uiso 1.00
+O144 O 0.23330 0.70480 0.10460 0.00000 Uiso 1.00
+O145 O 0.35240 0.58654 0.10550 0.00000 Uiso 1.00
+O146 O 0.06000 0.17410 0.39490 0.00000 Uiso 1.00
+O147 O 0.92700 0.16390 0.36630 0.00000 Uiso 1.00
+Na148 Na 0.73579 0.31238 0.19330 0.00000 Uiso 1.00
+Na149 Na 0.88750 0.93394 0.31347 0.00000 Uiso 1.00
+Na150 Na 0.85635 0.19124 0.18888 0.00000 Uiso 1.00
+Si151 Si 0.75091 0.93741 0.75051 0.00000 Uiso 1.00
+O152 O 0.62703 0.12754 0.99976 0.00000 Uiso 1.00
+O153 O 0.68918 0.89301 0.68477 0.00000 Uiso 1.00
+O154 O 0.56222 0.64160 0.81394 0.00000 Uiso 1.00
+O155 O 0.46951 0.23343 0.81351 0.00000 Uiso 1.00
+O156 O 0.56085 0.14320 0.81582 0.00000 Uiso 1.00
+O157 O 0.81191 0.89113 0.81438 0.00000 Uiso 1.00
+O158 O 0.78010 0.98388 0.68695 0.00000 Uiso 1.00
+O159 O 0.72229 0.98180 0.81669 0.00000 Uiso 1.00
+O160 O 0.52779 0.73194 0.68373 0.00000 Uiso 1.00
+O161 O 0.75338 0.00209 0.00114 0.00000 Uiso 1.00
+O162 O 0.50206 0.74711 0.49945 0.00000 Uiso 1.00
+O163 O 0.87799 0.87780 0.00081 0.00000 Uiso 1.00
+Cu164 Cu 0.62639 0.62672 0.49867 0.00000 Uiso 1.00
+Si165 Si 0.74238 0.03875 0.89661 0.00000 Uiso 1.00
+Si166 Si 0.63794 0.14302 0.89614 0.00000 Uiso 1.00
+Si167 Si 0.81580 0.98011 0.60487 0.00000 Uiso 1.00
+Si168 Si 0.56486 0.73161 0.60369 0.00000 Uiso 1.00
+Si169 Si 0.49378 0.28949 0.89573 0.00000 Uiso 1.00
+Si170 Si 0.57889 0.58560 0.89580 0.00000 Uiso 1.00
+Si171 Si 0.88840 0.89500 0.89626 0.00000 Uiso 1.00
+Si172 Si 0.66922 0.83597 0.60429 0.00000 Uiso 1.00
+O173 O 0.60610 0.66807 0.60380 0.00000 Uiso 1.00
+O174 O 0.67190 0.07970 0.86730 0.00000 Uiso 1.00
+O175 O 0.51220 0.54930 0.89550 0.00000 Uiso 1.00
+O176 O 0.61350 0.79460 0.63340 0.00000 Uiso 1.00
+O177 O 0.80640 0.07990 0.89690 0.00000 Uiso 1.00
+O178 O 0.92490 0.96150 0.89610 0.00000 Uiso 1.00
+O179 O 0.86950 0.03960 0.63490 0.00000 Uiso 1.00
+O180 O 0.67910 0.20690 0.89560 0.00000 Uiso 1.00
+O181 O 0.73330 0.79520 0.60460 0.00000 Uiso 1.00
+O182 O 0.85240 0.91346 0.60550 0.00000 Uiso 1.00
+O183 O 0.56000 0.32590 0.89490 0.00000 Uiso 1.00
+O184 O 0.42700 0.33610 0.86630 0.00000 Uiso 1.00
+Na185 Na 0.23579 0.18762 0.69330 0.00000 Uiso 1.00
+Na186 Na 0.38750 0.56606 0.81347 0.00000 Uiso 1.00
+Na187 Na 0.35635 0.30876 0.68888 0.00000 Uiso 1.00
+Si188 Si 0.25091 0.43741 0.75051 0.00000 Uiso 1.00
+O189 O 0.12703 0.62754 0.99976 0.00000 Uiso 1.00
+O190 O 0.18918 0.39301 0.68477 0.00000 Uiso 1.00
+O191 O 0.06222 0.14160 0.81394 0.00000 Uiso 1.00
+O192 O 0.96951 0.73343 0.81351 0.00000 Uiso 1.00
+O193 O 0.06085 0.64320 0.81582 0.00000 Uiso 1.00
+O194 O 0.31191 0.39113 0.81438 0.00000 Uiso 1.00
+O195 O 0.28010 0.48388 0.68695 0.00000 Uiso 1.00
+O196 O 0.22229 0.48180 0.81669 0.00000 Uiso 1.00
+O197 O 0.02779 0.23194 0.68373 0.00000 Uiso 1.00
+O198 O 0.25338 0.50209 0.00114 0.00000 Uiso 1.00
+O199 O 0.00206 0.24711 0.49945 0.00000 Uiso 1.00
+O200 O 0.37799 0.37780 0.00081 0.00000 Uiso 1.00
+Cu201 Cu 0.12639 0.12672 0.49867 0.00000 Uiso 1.00
+Si202 Si 0.24238 0.53875 0.89661 0.00000 Uiso 1.00
+Si203 Si 0.13794 0.64302 0.89614 0.00000 Uiso 1.00
+Si204 Si 0.31580 0.48011 0.60487 0.00000 Uiso 1.00
+Si205 Si 0.06486 0.23161 0.60369 0.00000 Uiso 1.00
+Si206 Si 0.99378 0.78949 0.89573 0.00000 Uiso 1.00
+Si207 Si 0.07889 0.08560 0.89580 0.00000 Uiso 1.00
+Si208 Si 0.38840 0.39500 0.89626 0.00000 Uiso 1.00
+Si209 Si 0.16922 0.33597 0.60429 0.00000 Uiso 1.00
+O210 O 0.10610 0.16807 0.60380 0.00000 Uiso 1.00
+O211 O 0.17190 0.57970 0.86730 0.00000 Uiso 1.00
+O212 O 0.01220 0.04930 0.89550 0.00000 Uiso 1.00
+O213 O 0.11350 0.29460 0.63340 0.00000 Uiso 1.00
+O214 O 0.30640 0.57990 0.89690 0.00000 Uiso 1.00
+O215 O 0.42490 0.46150 0.89610 0.00000 Uiso 1.00
+O216 O 0.36950 0.53960 0.63490 0.00000 Uiso 1.00
+O217 O 0.17910 0.70690 0.89560 0.00000 Uiso 1.00
+O218 O 0.23330 0.29520 0.60460 0.00000 Uiso 1.00
+O219 O 0.35240 0.41346 0.60550 0.00000 Uiso 1.00
+O220 O 0.06000 0.82590 0.89490 0.00000 Uiso 1.00
+O221 O 0.92700 0.83610 0.86630 0.00000 Uiso 1.00
+Na222 Na 0.73579 0.68762 0.69330 0.00000 Uiso 1.00
+Na223 Na 0.88750 0.06606 0.81347 0.00000 Uiso 1.00
+Na224 Na 0.85635 0.80876 0.68888 0.00000 Uiso 1.00
+Na225 Na 0.01010 0.43710 0.79050 0.00000 Uiso 1.00
+Si226 Si 0.24909 0.93741 0.74949 0.00000 Uiso 1.00
+O227 O 0.37297 0.12754 0.50024 0.00000 Uiso 1.00
+O228 O 0.31082 0.89301 0.81523 0.00000 Uiso 1.00
+O229 O 0.43778 0.64160 0.68606 0.00000 Uiso 1.00
+O230 O 0.53049 0.23343 0.68649 0.00000 Uiso 1.00
+O231 O 0.43915 0.14320 0.68418 0.00000 Uiso 1.00
+O232 O 0.18809 0.89113 0.68562 0.00000 Uiso 1.00
+O233 O 0.21990 0.98388 0.81305 0.00000 Uiso 1.00
+O234 O 0.27771 0.98180 0.68331 0.00000 Uiso 1.00
+O235 O 0.47221 0.73194 0.81627 0.00000 Uiso 1.00
+O236 O 0.24662 0.00209 0.49886 0.00000 Uiso 1.00
+O237 O 0.49794 0.74711 0.00055 0.00000 Uiso 1.00
+O238 O 0.12201 0.87780 0.49919 0.00000 Uiso 1.00
+Cu239 Cu 0.37361 0.62672 0.00133 0.00000 Uiso 1.00
+Si240 Si 0.25762 0.03875 0.60339 0.00000 Uiso 1.00
+Si241 Si 0.36206 0.14302 0.60386 0.00000 Uiso 1.00
+Si242 Si 0.18420 0.98011 0.89513 0.00000 Uiso 1.00
+Si243 Si 0.43514 0.73161 0.89631 0.00000 Uiso 1.00
+Si244 Si 0.50622 0.28949 0.60427 0.00000 Uiso 1.00
+Si245 Si 0.42111 0.58560 0.60420 0.00000 Uiso 1.00
+Si246 Si 0.11160 0.89500 0.60374 0.00000 Uiso 1.00
+Si247 Si 0.33078 0.83597 0.89571 0.00000 Uiso 1.00
+O248 O 0.39390 0.66807 0.89620 0.00000 Uiso 1.00
+O249 O 0.32810 0.07970 0.63270 0.00000 Uiso 1.00
+O250 O 0.48780 0.54930 0.60450 0.00000 Uiso 1.00
+O251 O 0.38650 0.79460 0.86660 0.00000 Uiso 1.00
+O252 O 0.19360 0.07990 0.60310 0.00000 Uiso 1.00
+O253 O 0.07510 0.96150 0.60390 0.00000 Uiso 1.00
+O254 O 0.13050 0.03960 0.86510 0.00000 Uiso 1.00
+O255 O 0.32090 0.20690 0.60440 0.00000 Uiso 1.00
+O256 O 0.26670 0.79520 0.89540 0.00000 Uiso 1.00
+O257 O 0.14760 0.91346 0.89450 0.00000 Uiso 1.00
+O258 O 0.44000 0.32590 0.60510 0.00000 Uiso 1.00
+O259 O 0.57300 0.33610 0.63370 0.00000 Uiso 1.00
+Na260 Na 0.76421 0.18762 0.80670 0.00000 Uiso 1.00
+Na261 Na 0.61250 0.56606 0.68653 0.00000 Uiso 1.00
+Na262 Na 0.64365 0.30876 0.81112 0.00000 Uiso 1.00
+Na263 Na 0.48990 0.93710 0.70950 0.00000 Uiso 1.00
+Si264 Si 0.74909 0.43741 0.74949 0.00000 Uiso 1.00
+O265 O 0.87297 0.62754 0.50024 0.00000 Uiso 1.00
+O266 O 0.81082 0.39301 0.81523 0.00000 Uiso 1.00
+O267 O 0.93778 0.14160 0.68606 0.00000 Uiso 1.00
+O268 O 0.03049 0.73343 0.68649 0.00000 Uiso 1.00
+O269 O 0.93915 0.64320 0.68418 0.00000 Uiso 1.00
+O270 O 0.68809 0.39113 0.68562 0.00000 Uiso 1.00
+O271 O 0.71990 0.48388 0.81305 0.00000 Uiso 1.00
+O272 O 0.77771 0.48180 0.68331 0.00000 Uiso 1.00
+O273 O 0.97221 0.23194 0.81627 0.00000 Uiso 1.00
+O274 O 0.74662 0.50209 0.49886 0.00000 Uiso 1.00
+O275 O 0.99794 0.24711 0.00055 0.00000 Uiso 1.00
+O276 O 0.62201 0.37780 0.49919 0.00000 Uiso 1.00
+Cu277 Cu 0.87361 0.12672 0.00133 0.00000 Uiso 1.00
+Si278 Si 0.75762 0.53875 0.60339 0.00000 Uiso 1.00
+Si279 Si 0.86206 0.64302 0.60386 0.00000 Uiso 1.00
+Si280 Si 0.68420 0.48011 0.89513 0.00000 Uiso 1.00
+Si281 Si 0.93514 0.23161 0.89631 0.00000 Uiso 1.00
+Si282 Si 0.00622 0.78949 0.60427 0.00000 Uiso 1.00
+Si283 Si 0.92111 0.08560 0.60420 0.00000 Uiso 1.00
+Si284 Si 0.61160 0.39500 0.60374 0.00000 Uiso 1.00
+Si285 Si 0.83078 0.33597 0.89571 0.00000 Uiso 1.00
+O286 O 0.89390 0.16807 0.89620 0.00000 Uiso 1.00
+O287 O 0.82810 0.57970 0.63270 0.00000 Uiso 1.00
+O288 O 0.98780 0.04930 0.60450 0.00000 Uiso 1.00
+O289 O 0.88650 0.29460 0.86660 0.00000 Uiso 1.00
+O290 O 0.69360 0.57990 0.60310 0.00000 Uiso 1.00
+O291 O 0.57510 0.46150 0.60390 0.00000 Uiso 1.00
+O292 O 0.63050 0.53960 0.86510 0.00000 Uiso 1.00
+O293 O 0.82090 0.70690 0.60440 0.00000 Uiso 1.00
+O294 O 0.76670 0.29520 0.89540 0.00000 Uiso 1.00
+O295 O 0.64760 0.41346 0.89450 0.00000 Uiso 1.00
+O296 O 0.94000 0.82590 0.60510 0.00000 Uiso 1.00
+O297 O 0.07300 0.83610 0.63370 0.00000 Uiso 1.00
+Na298 Na 0.26421 0.68762 0.80670 0.00000 Uiso 1.00
+Na299 Na 0.11250 0.06606 0.68653 0.00000 Uiso 1.00
+Na300 Na 0.14365 0.80876 0.81112 0.00000 Uiso 1.00
+Si301 Si 0.50000 0.31328 0.25000 0.00000 Uiso 1.00
+Si302 Si 0.50000 0.81163 0.25000 0.00000 Uiso 1.00
+Na303 Na 0.50000 0.56280 0.25000 0.00000 Uiso 1.00
+Si304 Si 0.00000 0.81328 0.25000 0.00000 Uiso 1.00
+Si305 Si 0.00000 0.31163 0.25000 0.00000 Uiso 1.00
+Na306 Na 0.00000 0.06280 0.25000 0.00000 Uiso 1.00
+Si307 Si 0.50000 0.68672 0.75000 0.00000 Uiso 1.00
+Si308 Si 0.50000 0.18837 0.75000 0.00000 Uiso 1.00
+Na309 Na 0.50000 0.43720 0.75000 0.00000 Uiso 1.00
+Si310 Si -0.00000 0.18672 0.75000 0.00000 Uiso 1.00
+Si311 Si -0.00000 0.68837 0.75000 0.00000 Uiso 1.00
+Na312 Na -0.00000 0.93720 0.75000 0.00000 Uiso 1.00
+Cu313 Cu 0.25000 0.75000 -0.00000 0.00000 Uiso 1.00
+Cu314 Cu 0.75000 0.75000 0.50000 0.00000 Uiso 1.00
+Cu315 Cu 0.25000 0.25000 0.50000 0.00000 Uiso 1.00
+Cu316 Cu 0.75000 0.25000 0.00000 0.00000 Uiso 1.00
+Cu317 Cu 0.50000 0.50000 -0.00000 0.00000 Uiso 1.00
+Cu318 Cu 0.00000 0.00000 0.00000 0.00000 Uiso 1.00
+Cu319 Cu 0.50000 0.50000 0.50000 0.00000 Uiso 1.00
+Cu320 Cu 0.00000 0.00000 0.50000 0.00000 Uiso 1.00
+loop_
+_geom_bond_atom_site_label_1
+_geom_bond_atom_site_label_2
+_geom_bond_distance
+_geom_bond_site_symmetry_2
+_ccdc_geom_bond_type
+Si1 O3 1.600 . S
+Si1 O7 1.606 . S
+Si1 O8 1.606 . S
+Si1 O9 1.602 . S
+O2 Si16 1.649 . S
+O2 Si247 1.659 1_554 S
+O3 Si22 1.623 . S
+O4 Si20 1.622 . S
+O4 Si301 1.607 . S
+O5 Si19 1.626 . S
+O5 Si302 1.604 . S
+O6 Si16 1.621 . S
+O6 Si302 1.599 . S
+O7 Si21 1.623 . S
+O8 Si17 1.627 . S
+O9 Si15 1.616 1_545 S
+O10 Si18 1.619 . S
+O10 Si301 1.603 . S
+O11 Si15 1.657 1_556 S
+O11 Si242 1.658 . S
+O12 Si18 1.656 . S
+O12 Si244 1.658 . S
+O13 Si21 1.665 1_556 S
+O13 Si207 1.652 . S
+Cu14 O23 1.941 . S
+Cu14 O219 1.928 . S
+Cu14 Na187 3.199 . S
+Cu14 O258 1.928 . S
+Cu14 Na111 3.141 . S
+Cu14 O140 1.935 . S
+Cu14 Na72 3.220 . S
+Si15 O11 1.657 1_554 S
+Si15 O9 1.616 1_565 S
+Si15 O24 1.618 . S
+Si15 O27 1.583 . S
+Si16 O24 1.622 . S
+Si16 O30 1.584 . S
+Si17 O29 1.622 1_545 S
+Si17 O32 1.582 . S
+Si17 O236 1.658 . S
+Si18 O23 1.577 . S
+Si18 O26 1.620 . S
+Si19 O33 1.577 . S
+Si19 O34 1.624 . S
+Si19 O237 1.658 . S
+Si20 O25 1.579 . S
+Si20 O200 1.652 . S
+Si20 O142 1.618 . S
+Si21 O13 1.665 1_554 S
+Si21 O28 1.580 . S
+Si21 O71 1.611 . S
+Si22 O26 1.619 . S
+Si22 O31 1.580 . S
+Si22 O227 1.659 . S
+O23 Na72 2.583 . S
+O23 Na111 2.427 . S
+O25 Na36 2.470 . S
+O25 Cu317 1.937 . S
+O27 Cu127 1.935 1_554 S
+O27 Na73 2.430 . S
+O27 Na110 2.595 . S
+O28 Cu318 1.931 . S
+O28 Na73 2.480 1_545 S
+O29 Si17 1.622 1_565 S
+O29 Si133 1.618 . S
+O29 Na73 2.576 . S
+O30 Cu313 1.933 . S
+O30 Na110 2.578 . S
+O30 Na112 2.436 . S
+O31 Cu315 1.936 . S
+O31 Na72 2.583 . S
+O31 Na74 2.435 . S
+O32 Cu201 1.928 . S
+O32 Na74 2.488 . S
+O33 Cu239 1.928 . S
+O33 Na112 2.489 . S
+O34 Na37 2.564 . S
+O34 Si58 1.611 . S
+Na35 Na37 3.575 . S
+Na35 Cu51 3.220 . S
+Na35 O60 2.583 . S
+Na35 O102 2.595 . S
+Na35 O105 2.578 . S
+Na35 O68 2.583 . S
+Na35 Na149 3.581 . S
+Na35 Cu314 3.231 . S
+Na36 Cu317 3.217 . S
+Na36 Cu89 3.141 1_554 S
+Na36 O98 2.427 . S
+Na36 O64 2.430 . S
+Na36 O65 2.480 . S
+Na36 O66 2.576 . S
+Na36 Na148 3.581 . S
+Na37 Cu164 3.199 . S
+Na37 O105 2.436 . S
+Na37 O68 2.435 . S
+Na37 O69 2.488 . S
+Na37 O108 2.489 . S
+Na37 Cu314 3.123 . S
+Si38 O40 1.600 . S
+Si38 O44 1.606 . S
+Si38 O45 1.606 . S
+Si38 O46 1.602 . S
+O39 Si53 1.649 . S
+O39 Si285 1.659 1_554 S
+O40 Si59 1.623 . S
+O41 Si57 1.622 . S
+O41 Si304 1.607 1_655 S
+O42 Si56 1.626 . S
+O42 Si305 1.604 . S
+O43 Si53 1.621 . S
+O43 Si305 1.599 1_655 S
+O44 Si58 1.623 . S
+O45 Si54 1.627 . S
+O46 Si52 1.616 . S
+O47 Si55 1.619 . S
+O47 Si304 1.603 1_655 S
+O48 Si52 1.657 1_556 S
+O48 Si280 1.658 . S
+O49 Si55 1.656 . S
+O49 Si282 1.658 1_655 S
+O50 Si58 1.665 1_556 S
+O50 Si170 1.652 . S
+Cu51 O60 1.941 . S
+Cu51 O182 1.928 . S
+Cu51 Na224 3.199 . S
+Cu51 O296 1.928 . S
+Cu51 Na149 3.141 . S
+Cu51 O102 1.935 . S
+Si52 O48 1.657 1_554 S
+Si52 O61 1.618 . S
+Si52 O64 1.583 . S
+Si53 O61 1.622 . S
+Si53 O67 1.584 . S
+Si54 O66 1.622 . S
+Si54 O69 1.582 . S
+Si54 O274 1.658 . S
+Si55 O60 1.577 . S
+Si55 O63 1.620 . S
+Si56 O70 1.577 1_455 S
+Si56 O71 1.624 . S
+Si56 O275 1.658 1_455 S
+Si57 O62 1.579 . S
+Si57 O163 1.652 . S
+Si57 O104 1.618 . S
+Si58 O50 1.665 1_554 S
+Si58 O65 1.580 . S
+Si59 O63 1.619 . S
+Si59 O68 1.580 . S
+Si59 O265 1.659 . S
+O60 Na149 2.427 . S
+O62 Na73 2.470 1_655 S
+O62 Cu318 1.937 1_665 S
+O64 Cu89 1.935 1_554 S
+O64 Na148 2.595 . S
+O65 Cu317 1.931 . S
+O66 Si95 1.618 . S
+O67 Cu316 1.933 . S
+O67 Na148 2.578 . S
+O67 Na150 2.436 . S
+O68 Cu314 1.936 . S
+O69 Cu164 1.928 . S
+O70 Si56 1.577 1_655 S
+O70 Cu277 1.928 . S
+O70 Na150 2.489 . S
+O71 Na74 2.564 . S
+Na72 Na74 3.575 . S
+Na72 O140 2.595 . S
+Na72 O143 2.578 . S
+Na72 Na111 3.581 . S
+Na72 Cu315 3.231 . S
+Na73 O62 2.470 1_455 S
+Na73 Cu318 3.217 1_565 S
+Na73 Cu127 3.141 1_554 S
+Na73 O136 2.427 . S
+Na73 O28 2.480 1_565 S
+Na73 Na110 3.581 . S
+Na74 Cu201 3.199 . S
+Na74 O143 2.436 . S
+Na74 O146 2.489 . S
+Na74 Cu315 3.123 . S
+Si76 O78 1.600 . S
+Si76 O82 1.606 . S
+Si76 O83 1.606 . S
+Si76 O84 1.602 . S
+O77 Si91 1.649 . S
+O77 Si172 1.659 . S
+O78 Si97 1.623 . S
+O79 Si95 1.622 . S
+O79 Si301 1.607 . S
+O80 Si94 1.626 . S
+O80 Si302 1.604 . S
+O81 Si91 1.621 . S
+O81 Si302 1.599 . S
+O82 Si96 1.623 . S
+O83 Si92 1.627 . S
+O84 Si90 1.616 1_545 S
+O85 Si93 1.619 . S
+O85 Si301 1.603 . S
+O86 Si90 1.657 . S
+O86 Si167 1.658 . S
+O87 Si93 1.656 1_556 S
+O87 Si169 1.658 . S
+O88 Si96 1.665 . S
+O88 Si283 1.652 . S
+Cu89 O98 1.941 1_556 S
+Cu89 O295 1.928 . S
+Cu89 Na262 3.199 . S
+Cu89 O183 1.928 . S
+Cu89 Na36 3.141 1_556 S
+Cu89 O64 1.935 1_556 S
+Cu89 Na148 3.220 1_556 S
+Si90 O84 1.616 1_565 S
+Si90 O99 1.618 . S
+Si90 O102 1.583 . S
+Si91 O99 1.622 . S
+Si91 O105 1.584 . S
+Si92 O104 1.622 1_545 S
+Si92 O107 1.582 . S
+Si92 O161 1.658 . S
+Si93 O87 1.656 1_554 S
+Si93 O98 1.577 . S
+Si93 O101 1.620 . S
+Si94 O108 1.577 . S
+Si94 O109 1.624 . S
+Si94 O162 1.658 . S
+Si95 O100 1.579 . S
+Si95 O276 1.652 . S
+Si96 O103 1.580 . S
+Si96 O147 1.611 . S
+Si97 O101 1.619 . S
+Si97 O106 1.580 . S
+Si97 O152 1.659 1_554 S
+O98 Cu89 1.941 1_554 S
+O98 Na148 2.583 . S
+O100 Na111 2.470 . S
+O100 Cu319 1.937 . S
+O102 Na149 2.430 . S
+O103 Cu320 1.931 1_655 S
+O103 Na149 2.480 1_545 S
+O104 Si92 1.622 1_565 S
+O104 Na149 2.576 . S
+O105 Cu314 1.933 . S
+O106 Cu316 1.936 . S
+O106 Na148 2.583 . S
+O106 Na150 2.435 . S
+O107 Cu277 1.928 . S
+O107 Na150 2.488 . S
+O108 Cu164 1.928 . S
+O109 Na112 2.564 . S
+O109 Si134 1.611 . S
+Na110 Na112 3.575 . S
+Na110 Cu127 3.220 1_554 S
+Na110 O136 2.583 . S
+Na110 O144 2.583 . S
+Na110 Cu313 3.231 . S
+Na111 Cu319 3.217 . S
+Na111 O140 2.430 . S
+Na111 O141 2.480 . S
+Na111 O142 2.576 . S
+Na112 Cu239 3.199 . S
+Na112 O144 2.435 . S
+Na112 O145 2.488 . S
+Na112 Cu313 3.123 . S
+Si114 O116 1.600 . S
+Si114 O120 1.606 . S
+Si114 O121 1.606 . S
+Si114 O122 1.602 . S
+O115 Si129 1.649 . S
+O115 Si209 1.659 . S
+O116 Si135 1.623 . S
+O117 Si133 1.622 . S
+O117 Si304 1.607 . S
+O118 Si132 1.626 . S
+O118 Si305 1.604 1_655 S
+O119 Si129 1.621 . S
+O119 Si305 1.599 . S
+O120 Si134 1.623 . S
+O121 Si130 1.627 . S
+O122 Si128 1.616 . S
+O123 Si131 1.619 . S
+O123 Si304 1.603 . S
+O124 Si128 1.657 . S
+O124 Si204 1.658 . S
+O125 Si131 1.656 1_556 S
+O125 Si206 1.658 1_455 S
+O126 Si134 1.665 . S
+O126 Si245 1.652 . S
+Cu127 O136 1.941 1_556 S
+Cu127 O257 1.928 . S
+Cu127 Na300 3.199 . S
+Cu127 O220 1.928 . S
+Cu127 Na73 3.141 1_556 S
+Cu127 O27 1.935 1_556 S
+Cu127 Na110 3.220 1_556 S
+Si128 O137 1.618 . S
+Si128 O140 1.583 . S
+Si129 O137 1.622 . S
+Si129 O143 1.584 . S
+Si130 O142 1.622 . S
+Si130 O145 1.582 . S
+Si130 O198 1.658 . S
+Si131 O125 1.656 1_554 S
+Si131 O136 1.577 . S
+Si131 O139 1.620 . S
+Si132 O146 1.577 1_655 S
+Si132 O147 1.624 . S
+Si132 O199 1.658 1_655 S
+Si133 O138 1.579 . S
+Si133 O238 1.652 . S
+Si134 O141 1.580 . S
+Si135 O139 1.619 . S
+Si135 O144 1.580 . S
+Si135 O189 1.659 1_554 S
+O136 Cu127 1.941 1_554 S
+O138 Na149 2.470 1_455 S
+O138 Cu320 1.937 1_565 S
+O141 Cu319 1.931 . S
+O143 Cu315 1.933 . S
+O144 Cu313 1.936 . S
+O145 Cu239 1.928 . S
+O146 Si132 1.577 1_455 S
+O146 Cu201 1.928 . S
+O147 Na150 2.564 . S
+Na148 Na150 3.575 . S
+Na148 Cu89 3.220 1_554 S
+Na148 Cu316 3.231 . S
+Na149 O138 2.470 1_655 S
+Na149 Cu320 3.217 1_665 S
+Na149 O103 2.480 1_565 S
+Na150 Cu277 3.199 . S
+Na150 Cu316 3.123 . S
+Si151 O153 1.600 . S
+Si151 O157 1.606 . S
+Si151 O158 1.606 . S
+Si151 O159 1.602 . S
+O152 Si166 1.649 . S
+O152 Si97 1.659 1_556 S
+O153 Si172 1.623 . S
+O154 Si170 1.622 . S
+O154 Si307 1.607 . S
+O155 Si169 1.626 . S
+O155 Si308 1.604 . S
+O156 Si166 1.621 . S
+O156 Si308 1.599 . S
+O157 Si171 1.623 . S
+O158 Si167 1.627 . S
+O159 Si165 1.616 1_565 S
+O160 Si168 1.619 . S
+O160 Si307 1.603 . S
+O161 Si165 1.657 1_554 S
+O162 Si168 1.656 . S
+O163 Si171 1.665 1_554 S
+Cu164 O173 1.941 . S
+Cu164 Na261 3.141 . S
+Cu164 O290 1.935 . S
+Cu164 Na222 3.220 . S
+Si165 O161 1.657 1_556 S
+Si165 O159 1.616 1_545 S
+Si165 O174 1.618 . S
+Si165 O177 1.583 . S
+Si166 O174 1.622 . S
+Si166 O180 1.584 . S
+Si167 O179 1.622 1_565 S
+Si167 O182 1.582 . S
+Si168 O173 1.577 . S
+Si168 O176 1.620 . S
+Si169 O183 1.577 . S
+Si169 O184 1.624 . S
+Si170 O175 1.579 . S
+Si170 O292 1.618 . S
+Si171 O163 1.665 1_556 S
+Si171 O178 1.580 . S
+Si171 O221 1.611 . S
+Si172 O176 1.619 . S
+Si172 O181 1.580 . S
+O173 Na222 2.583 . S
+O173 Na261 2.427 . S
+O175 Na186 2.470 . S
+O175 Cu317 1.937 1_556 S
+O177 Cu277 1.935 1_556 S
+O177 Na223 2.430 . S
+O177 Na260 2.595 . S
+O178 Cu318 1.931 1_666 S
+O178 Na223 2.480 1_565 S
+O179 Si167 1.622 1_545 S
+O179 Si283 1.618 . S
+O179 Na223 2.576 . S
+O180 Cu316 1.933 1_556 S
+O180 Na260 2.578 . S
+O180 Na262 2.436 . S
+O181 Cu314 1.936 . S
+O181 Na222 2.583 . S
+O181 Na224 2.435 . S
+O182 Na224 2.488 . S
+O183 Na262 2.489 . S
+O184 Na187 2.564 . S
+O184 Si208 1.611 . S
+Na185 Na187 3.575 . S
+Na185 Cu201 3.220 . S
+Na185 O210 2.583 . S
+Na185 O252 2.595 . S
+Na185 O255 2.578 . S
+Na185 O218 2.583 . S
+Na185 Na299 3.581 . S
+Na185 Cu315 3.231 . S
+Na186 Cu317 3.217 1_556 S
+Na186 Cu239 3.141 1_556 S
+Na186 O248 2.427 . S
+Na186 O214 2.430 . S
+Na186 O215 2.480 . S
+Na186 O216 2.576 . S
+Na186 Na298 3.581 . S
+Na187 O255 2.436 . S
+Na187 O218 2.435 . S
+Na187 O219 2.488 . S
+Na187 O258 2.489 . S
+Na187 Cu315 3.123 . S
+Si188 O190 1.600 . S
+Si188 O194 1.606 . S
+Si188 O195 1.606 . S
+Si188 O196 1.602 . S
+O189 Si203 1.649 . S
+O189 Si135 1.659 1_556 S
+O190 Si209 1.623 . S
+O191 Si207 1.622 . S
+O191 Si310 1.607 . S
+O192 Si206 1.626 . S
+O192 Si311 1.604 1_655 S
+O193 Si203 1.621 . S
+O193 Si311 1.599 . S
+O194 Si208 1.623 . S
+O195 Si204 1.627 . S
+O196 Si202 1.616 . S
+O197 Si205 1.619 . S
+O197 Si310 1.603 . S
+O198 Si202 1.657 1_554 S
+O199 Si205 1.656 . S
+O199 Si132 1.658 1_455 S
+O200 Si208 1.665 1_554 S
+Cu201 O210 1.941 . S
+Cu201 Na299 3.141 . S
+Cu201 O252 1.935 . S
+Si202 O198 1.657 1_556 S
+Si202 O211 1.618 . S
+Si202 O214 1.583 . S
+Si203 O211 1.622 . S
+Si203 O217 1.584 . S
+Si204 O216 1.622 . S
+Si204 O219 1.582 . S
+Si205 O210 1.577 . S
+Si205 O213 1.620 . S
+Si206 O220 1.577 1_655 S
+Si206 O221 1.624 . S
+Si206 O125 1.658 1_655 S
+Si207 O212 1.579 . S
+Si207 O254 1.618 . S
+Si208 O200 1.665 1_556 S
+Si208 O215 1.580 . S
+Si209 O213 1.619 . S
+Si209 O218 1.580 . S
+O210 Na299 2.427 . S
+O212 Na223 2.470 1_455 S
+O212 Cu318 1.937 1_556 S
+O214 Cu239 1.935 1_556 S
+O214 Na298 2.595 . S
+O215 Cu317 1.931 1_556 S
+O216 Si245 1.618 . S
+O217 Cu313 1.933 1_556 S
+O217 Na298 2.578 . S
+O217 Na300 2.436 . S
+O218 Cu315 1.936 . S
+O220 Si206 1.577 1_455 S
+O220 Na300 2.489 . S
+O221 Na224 2.564 . S
+Na222 Na224 3.575 . S
+Na222 O290 2.595 . S
+Na222 O293 2.578 . S
+Na222 Na261 3.581 . S
+Na222 Cu314 3.231 . S
+Na223 O212 2.470 1_655 S
+Na223 Cu318 3.217 1_656 S
+Na223 Cu277 3.141 1_556 S
+Na223 O286 2.427 . S
+Na223 O178 2.480 1_545 S
+Na223 Na260 3.581 . S
+Na224 O293 2.436 . S
+Na224 O296 2.489 . S
+Na224 Cu314 3.123 . S
+Si226 O228 1.600 . S
+Si226 O232 1.606 . S
+Si226 O233 1.606 . S
+Si226 O234 1.602 . S
+O227 Si241 1.649 . S
+O228 Si247 1.623 . S
+O229 Si245 1.622 . S
+O229 Si307 1.607 . S
+O230 Si244 1.626 . S
+O230 Si308 1.604 . S
+O231 Si241 1.621 . S
+O231 Si308 1.599 . S
+O232 Si246 1.623 . S
+O233 Si242 1.627 . S
+O234 Si240 1.616 1_565 S
+O235 Si243 1.619 . S
+O235 Si307 1.603 . S
+O236 Si240 1.657 . S
+O237 Si243 1.656 1_554 S
+O238 Si246 1.665 . S
+Cu239 O248 1.941 1_554 S
+Cu239 Na186 3.141 1_554 S
+Cu239 O214 1.935 1_554 S
+Cu239 Na298 3.220 1_554 S
+Si240 O234 1.616 1_545 S
+Si240 O249 1.618 . S
+Si240 O252 1.583 . S
+Si241 O249 1.622 . S
+Si241 O255 1.584 . S
+Si242 O254 1.622 1_565 S
+Si242 O257 1.582 . S
+Si243 O237 1.656 1_556 S
+Si243 O248 1.577 . S
+Si243 O251 1.620 . S
+Si244 O258 1.577 . S
+Si244 O259 1.624 . S
+Si245 O250 1.579 . S
+Si246 O253 1.580 . S
+Si246 O297 1.611 . S
+Si247 O251 1.619 . S
+Si247 O256 1.580 . S
+Si247 O2 1.659 1_556 S
+O248 Cu239 1.941 1_556 S
+O248 Na298 2.583 . S
+O250 Na261 2.470 . S
+O250 Cu319 1.937 . S
+O252 Na299 2.430 . S
+O253 Cu320 1.931 1_565 S
+O253 Na299 2.480 1_565 S
+O254 Si242 1.622 1_545 S
+O254 Na299 2.576 . S
+O255 Cu315 1.933 . S
+O256 Cu313 1.936 1_556 S
+O256 Na298 2.583 . S
+O256 Na300 2.435 . S
+O257 Na300 2.488 . S
+O259 Na262 2.564 . S
+O259 Si284 1.611 . S
+Na260 Na262 3.575 . S
+Na260 Cu277 3.220 1_556 S
+Na260 O286 2.583 . S
+Na260 O294 2.583 . S
+Na260 Cu316 3.231 1_556 S
+Na261 Cu319 3.217 . S
+Na261 O290 2.430 . S
+Na261 O291 2.480 . S
+Na261 O292 2.576 . S
+Na262 O294 2.435 . S
+Na262 O295 2.488 . S
+Na262 Cu316 3.123 1_556 S
+Si264 O266 1.600 . S
+Si264 O270 1.606 . S
+Si264 O271 1.606 . S
+Si264 O272 1.602 . S
+O265 Si279 1.649 . S
+O266 Si285 1.623 . S
+O267 Si283 1.622 . S
+O267 Si310 1.607 1_655 S
+O268 Si282 1.626 . S
+O268 Si311 1.604 . S
+O269 Si279 1.621 . S
+O269 Si311 1.599 1_655 S
+O270 Si284 1.623 . S
+O271 Si280 1.627 . S
+O272 Si278 1.616 . S
+O273 Si281 1.619 . S
+O273 Si310 1.603 1_655 S
+O274 Si278 1.657 . S
+O275 Si281 1.656 1_554 S
+O275 Si56 1.658 1_655 S
+O276 Si284 1.665 . S
+Cu277 O286 1.941 1_554 S
+Cu277 Na223 3.141 1_554 S
+Cu277 O177 1.935 1_554 S
+Cu277 Na260 3.220 1_554 S
+Si278 O287 1.618 . S
+Si278 O290 1.583 . S
+Si279 O287 1.622 . S
+Si279 O293 1.584 . S
+Si280 O292 1.622 . S
+Si280 O295 1.582 . S
+Si281 O275 1.656 1_556 S
+Si281 O286 1.577 . S
+Si281 O289 1.620 . S
+Si282 O296 1.577 1_455 S
+Si282 O297 1.624 . S
+Si282 O49 1.658 1_455 S
+Si283 O288 1.579 . S
+Si284 O291 1.580 . S
+Si285 O289 1.619 . S
+Si285 O294 1.580 . S
+Si285 O39 1.659 1_556 S
+O286 Cu277 1.941 1_556 S
+O288 Na299 2.470 1_655 S
+O288 Cu320 1.937 1_655 S
+O291 Cu319 1.931 . S
+O293 Cu314 1.933 . S
+O294 Cu316 1.936 1_556 S
+O296 Si282 1.577 1_655 S
+O297 Na300 2.564 . S
+Na298 Na300 3.575 . S
+Na298 Cu239 3.220 1_556 S
+Na298 Cu313 3.231 1_556 S
+Na299 O288 2.470 1_455 S
+Na299 Cu320 3.217 . S
+Na299 O253 2.480 1_545 S
+Na300 Cu313 3.123 1_556 S
+Si304 O41 1.607 1_455 S
+Si304 O47 1.603 1_455 S
+Si305 O118 1.604 1_455 S
+Si305 O43 1.599 1_455 S
+Si310 O267 1.607 1_455 S
+Si310 O273 1.603 1_455 S
+Si311 O192 1.604 1_455 S
+Si311 O269 1.599 1_455 S
+Cu313 O217 1.933 1_554 S
+Cu313 O256 1.936 1_554 S
+Cu313 Na298 3.231 1_554 S
+Cu313 Na300 3.123 1_554 S
+Cu316 O180 1.933 1_554 S
+Cu316 O294 1.936 1_554 S
+Cu316 Na260 3.231 1_554 S
+Cu316 Na262 3.123 1_554 S
+Cu317 O175 1.937 1_554 S
+Cu317 Na186 3.217 1_554 S
+Cu317 O215 1.931 1_554 S
+Cu318 O62 1.937 1_445 S
+Cu318 O212 1.937 1_554 S
+Cu318 Na73 3.217 1_545 S
+Cu318 Na223 3.217 1_454 S
+Cu318 O178 1.931 1_444 S
+Cu320 O138 1.937 1_545 S
+Cu320 O288 1.937 1_455 S
+Cu320 Na149 3.217 1_445 S
+Cu320 O103 1.931 1_455 S
+Cu320 O253 1.931 1_545 S
diff --git a/benchmarks/mof/structures/dac/SIFSIX-18-Ni-beta.cif b/benchmarks/mof/structures/dac/SIFSIX-18-Ni-beta.cif
new file mode 100644
index 0000000000000000000000000000000000000000..8064cb6205bfad2d25c855ba32a89ec915d8e901
--- /dev/null
+++ b/benchmarks/mof/structures/dac/SIFSIX-18-Ni-beta.cif
@@ -0,0 +1,330 @@
+data_1888095
+_audit_creation_date 2025-01-20
+_audit_creation_method 'Materials Studio'
+_symmetry_space_group_name_H-M 'P1'
+_symmetry_Int_Tables_number 1
+_symmetry_cell_setting triclinic
+loop_
+_symmetry_equiv_pos_as_xyz
+ x,y,z
+_cell_length_a 14.1630
+_cell_length_b 13.8690
+_cell_length_c 7.4930
+_cell_angle_alpha 90.0000
+_cell_angle_beta 94.7800
+_cell_angle_gamma 90.0000
+loop_
+_atom_site_label
+_atom_site_type_symbol
+_atom_site_fract_x
+_atom_site_fract_y
+_atom_site_fract_z
+_atom_site_U_iso_or_equiv
+_atom_site_adp_type
+_atom_site_occupancy
+F1 F 0.41747 0.41536 0.50000 0.01000 Uiso 1.00
+F2 F 0.50989 0.50002 0.73391 0.01000 Uiso 1.00
+F3 F 0.41747 0.58464 0.50000 0.01000 Uiso 1.00
+C4 C 0.68052 0.14651 0.63773 0.01000 Uiso 1.00
+H5 H 0.70881 0.16808 0.52958 0.01000 Uiso 1.00
+H6 H 0.62907 0.19030 0.66309 0.01000 Uiso 1.00
+H7 H 0.65572 0.08087 0.61944 0.01000 Uiso 1.00
+C8 C 0.75349 0.14693 0.79106 0.01000 Uiso 1.00
+C9 C 0.75910 0.19535 0.95517 0.01000 Uiso 1.00
+C10 C 0.68990 0.26364 0.01986 0.01000 Uiso 1.00
+C11 C 0.67841 0.36082 0.97210 0.01000 Uiso 1.00
+C12 C 0.73167 0.42231 0.85120 0.01000 Uiso 1.00
+H13 H 0.68691 0.45856 0.77008 0.01000 Uiso 1.00
+H14 H 0.77105 0.38119 0.78101 0.01000 Uiso 1.00
+H15 H 0.77202 0.46766 0.92291 0.01000 Uiso 1.00
+N16 N 0.83080 0.09220 0.78621 0.01000 Uiso 1.00
+H17 H 0.84388 0.05483 0.69639 0.01000 Uiso 1.00
+N18 N 0.60784 0.39589 0.06070 0.01000 Uiso 1.00
+C19 C 0.89121 0.19126 0.22266 0.01000 Uiso 1.00
+H20 H 0.90027 0.13294 0.29596 0.01000 Uiso 1.00
+H21 H 0.85176 0.23729 0.28233 0.01000 Uiso 1.00
+H22 H 0.95280 0.22070 0.20663 0.01000 Uiso 1.00
+C23 C 0.84413 0.16539 0.04519 0.01000 Uiso 1.00
+C24 C 0.62253 0.24419 0.14141 0.01000 Uiso 1.00
+C25 C 0.59980 0.15257 0.23376 0.01000 Uiso 1.00
+H26 H 0.59482 0.16551 0.36145 0.01000 Uiso 1.00
+H27 H 0.65011 0.10528 0.22019 0.01000 Uiso 1.00
+H28 H 0.53968 0.12683 0.18061 0.01000 Uiso 1.00
+N29 N 0.88530 0.10320 0.93930 0.01000 Uiso 1.00
+N30 N 0.57469 0.32598 0.16335 0.01000 Uiso 1.00
+H31 H 0.52867 0.33305 0.23421 0.01000 Uiso 1.00
+F32 F 0.91747 0.91536 0.50000 0.01000 Uiso 1.00
+F33 F 0.00989 0.00002 0.73391 0.01000 Uiso 1.00
+F34 F 0.91747 0.08464 0.50000 0.01000 Uiso 1.00
+C35 C 0.18052 0.64651 0.63773 0.01000 Uiso 1.00
+H36 H 0.20881 0.66808 0.52958 0.01000 Uiso 1.00
+H37 H 0.12907 0.69030 0.66309 0.01000 Uiso 1.00
+H38 H 0.15572 0.58087 0.61944 0.01000 Uiso 1.00
+C39 C 0.25349 0.64693 0.79106 0.01000 Uiso 1.00
+C40 C 0.25910 0.69535 0.95517 0.01000 Uiso 1.00
+C41 C 0.18990 0.76364 0.01986 0.01000 Uiso 1.00
+C42 C 0.17841 0.86082 0.97210 0.01000 Uiso 1.00
+C43 C 0.23167 0.92231 0.85120 0.01000 Uiso 1.00
+H44 H 0.18691 0.95856 0.77008 0.01000 Uiso 1.00
+H45 H 0.27105 0.88119 0.78101 0.01000 Uiso 1.00
+H46 H 0.27202 0.96766 0.92291 0.01000 Uiso 1.00
+N47 N 0.33080 0.59220 0.78621 0.01000 Uiso 1.00
+H48 H 0.34388 0.55483 0.69639 0.01000 Uiso 1.00
+N49 N 0.10784 0.89589 0.06070 0.01000 Uiso 1.00
+C50 C 0.39121 0.69126 0.22266 0.01000 Uiso 1.00
+H51 H 0.40027 0.63294 0.29596 0.01000 Uiso 1.00
+H52 H 0.35176 0.73729 0.28233 0.01000 Uiso 1.00
+H53 H 0.45280 0.72070 0.20663 0.01000 Uiso 1.00
+C54 C 0.34413 0.66539 0.04519 0.01000 Uiso 1.00
+C55 C 0.12253 0.74419 0.14141 0.01000 Uiso 1.00
+C56 C 0.09980 0.65257 0.23376 0.01000 Uiso 1.00
+H57 H 0.09482 0.66551 0.36145 0.01000 Uiso 1.00
+H58 H 0.15011 0.60528 0.22019 0.01000 Uiso 1.00
+H59 H 0.03968 0.62683 0.18061 0.01000 Uiso 1.00
+N60 N 0.38530 0.60320 0.93930 0.01000 Uiso 1.00
+N61 N 0.07469 0.82598 0.16335 0.01000 Uiso 1.00
+H62 H 0.02867 0.83305 0.23421 0.01000 Uiso 1.00
+F63 F 0.58253 0.41536 0.50000 0.01000 Uiso 1.00
+F64 F 0.49011 0.50002 0.26609 0.01000 Uiso 1.00
+F65 F 0.58253 0.58464 0.50000 0.01000 Uiso 1.00
+C66 C 0.31948 0.14651 0.36227 0.01000 Uiso 1.00
+H67 H 0.29119 0.16808 0.47042 0.01000 Uiso 1.00
+H68 H 0.37093 0.19030 0.33691 0.01000 Uiso 1.00
+H69 H 0.34428 0.08087 0.38056 0.01000 Uiso 1.00
+C70 C 0.24651 0.14693 0.20894 0.01000 Uiso 1.00
+C71 C 0.24090 0.19535 0.04483 0.01000 Uiso 1.00
+C72 C 0.31010 0.26364 0.98014 0.01000 Uiso 1.00
+C73 C 0.32159 0.36082 0.02790 0.01000 Uiso 1.00
+C74 C 0.26833 0.42231 0.14880 0.01000 Uiso 1.00
+H75 H 0.31309 0.45856 0.22992 0.01000 Uiso 1.00
+H76 H 0.22895 0.38119 0.21899 0.01000 Uiso 1.00
+H77 H 0.22798 0.46766 0.07709 0.01000 Uiso 1.00
+N78 N 0.16920 0.09220 0.21379 0.01000 Uiso 1.00
+H79 H 0.15612 0.05483 0.30361 0.01000 Uiso 1.00
+N80 N 0.39216 0.39589 0.93930 0.01000 Uiso 1.00
+C81 C 0.10879 0.19126 0.77734 0.01000 Uiso 1.00
+H82 H 0.09973 0.13294 0.70404 0.01000 Uiso 1.00
+H83 H 0.14824 0.23729 0.71767 0.01000 Uiso 1.00
+H84 H 0.04720 0.22070 0.79337 0.01000 Uiso 1.00
+C85 C 0.15587 0.16539 0.95481 0.01000 Uiso 1.00
+C86 C 0.37747 0.24419 0.85859 0.01000 Uiso 1.00
+C87 C 0.40020 0.15257 0.76624 0.01000 Uiso 1.00
+H88 H 0.40518 0.16551 0.63855 0.01000 Uiso 1.00
+H89 H 0.34989 0.10528 0.77981 0.01000 Uiso 1.00
+H90 H 0.46032 0.12683 0.81939 0.01000 Uiso 1.00
+N91 N 0.11470 0.10320 0.06070 0.01000 Uiso 1.00
+N92 N 0.42531 0.32598 0.83665 0.01000 Uiso 1.00
+H93 H 0.47133 0.33305 0.76579 0.01000 Uiso 1.00
+F94 F 0.08253 0.91536 0.50000 0.01000 Uiso 1.00
+F95 F 0.99011 0.00002 0.26609 0.01000 Uiso 1.00
+F96 F 0.08253 0.08464 0.50000 0.01000 Uiso 1.00
+C97 C 0.81948 0.64651 0.36227 0.01000 Uiso 1.00
+H98 H 0.79119 0.66808 0.47042 0.01000 Uiso 1.00
+H99 H 0.87093 0.69030 0.33691 0.01000 Uiso 1.00
+H100 H 0.84428 0.58087 0.38056 0.01000 Uiso 1.00
+C101 C 0.74651 0.64693 0.20894 0.01000 Uiso 1.00
+C102 C 0.74090 0.69535 0.04483 0.01000 Uiso 1.00
+C103 C 0.81010 0.76364 0.98014 0.01000 Uiso 1.00
+C104 C 0.82159 0.86082 0.02790 0.01000 Uiso 1.00
+C105 C 0.76833 0.92231 0.14880 0.01000 Uiso 1.00
+H106 H 0.81309 0.95856 0.22992 0.01000 Uiso 1.00
+H107 H 0.72895 0.88119 0.21899 0.01000 Uiso 1.00
+H108 H 0.72798 0.96766 0.07709 0.01000 Uiso 1.00
+N109 N 0.66920 0.59220 0.21379 0.01000 Uiso 1.00
+H110 H 0.65612 0.55483 0.30361 0.01000 Uiso 1.00
+N111 N 0.89216 0.89589 0.93930 0.01000 Uiso 1.00
+C112 C 0.60879 0.69126 0.77734 0.01000 Uiso 1.00
+H113 H 0.59973 0.63294 0.70404 0.01000 Uiso 1.00
+H114 H 0.64824 0.73729 0.71767 0.01000 Uiso 1.00
+H115 H 0.54720 0.72070 0.79337 0.01000 Uiso 1.00
+C116 C 0.65587 0.66539 0.95481 0.01000 Uiso 1.00
+C117 C 0.87747 0.74419 0.85859 0.01000 Uiso 1.00
+C118 C 0.90020 0.65257 0.76624 0.01000 Uiso 1.00
+H119 H 0.90518 0.66551 0.63855 0.01000 Uiso 1.00
+H120 H 0.84989 0.60528 0.77981 0.01000 Uiso 1.00
+H121 H 0.96032 0.62683 0.81939 0.01000 Uiso 1.00
+N122 N 0.61470 0.60320 0.06070 0.01000 Uiso 1.00
+N123 N 0.92531 0.82598 0.83665 0.01000 Uiso 1.00
+H124 H 0.97133 0.83305 0.76579 0.01000 Uiso 1.00
+Si125 Si 0.50000 0.50002 0.50000 0.01000 Uiso 1.00
+Si126 Si 0.00000 0.00002 0.50000 0.01000 Uiso 1.00
+Ni127 Ni 0.50000 0.50000 -0.00000 0.01000 Uiso 1.00
+Ni128 Ni 0.00000 0.00000 -0.00000 0.01000 Uiso 1.00
+loop_
+_geom_bond_atom_site_label_1
+_geom_bond_atom_site_label_2
+_geom_bond_distance
+_geom_bond_site_symmetry_2
+_ccdc_geom_bond_type
+F1 Si125 1.657 . S
+F2 Si125 1.747 . S
+F2 Ni127 2.010 1_556 S
+F3 Si125 1.656 . S
+C4 H5 0.980 . S
+C4 H6 0.979 . S
+C4 H7 0.981 . S
+C4 C8 1.480 . S
+C8 C9 1.398 . D
+C8 N16 1.335 . S
+C9 C10 1.474 1_556 S
+C9 C23 1.394 1_556 S
+C10 C9 1.474 1_554 S
+C10 C11 1.400 1_554 S
+C10 C24 1.399 . D
+C11 C10 1.400 1_556 S
+C11 C12 1.494 . S
+C11 N18 1.337 1_556 D
+C12 H13 0.980 . S
+C12 H14 0.981 . S
+C12 H15 0.980 . S
+N16 H17 0.881 . S
+N16 N29 1.337 . S
+N18 C11 1.337 1_554 D
+N18 N30 1.346 . S
+N18 Ni127 2.123 . S
+C19 H20 0.980 . S
+C19 H21 0.980 . S
+C19 H22 0.980 . S
+C19 C23 1.481 . S
+C23 C9 1.394 1_554 S
+C23 N29 1.338 1_554 D
+C24 C25 1.495 . S
+C24 N30 1.338 . S
+C25 H26 0.982 . S
+C25 H27 0.980 . S
+C25 H28 0.977 . S
+N29 C23 1.338 1_556 D
+N29 Ni128 2.184 1_656 S
+N30 H31 0.880 . S
+F32 Si126 1.657 1_665 S
+F33 Si126 1.747 . S
+F33 Ni128 2.010 1_556 S
+F34 Si126 1.656 1_655 S
+C35 H36 0.980 . S
+C35 H37 0.979 . S
+C35 H38 0.981 . S
+C35 C39 1.480 . S
+C39 C40 1.398 . D
+C39 N47 1.335 . S
+C40 C41 1.474 1_556 S
+C40 C54 1.394 1_556 S
+C41 C40 1.474 1_554 S
+C41 C42 1.400 1_554 S
+C41 C55 1.399 . D
+C42 C41 1.400 1_556 S
+C42 C43 1.494 . S
+C42 N49 1.337 1_556 D
+C43 H44 0.980 . S
+C43 H45 0.981 . S
+C43 H46 0.980 . S
+N47 H48 0.881 . S
+N47 N60 1.337 . S
+N49 C42 1.337 1_554 D
+N49 N61 1.346 . S
+N49 Ni128 2.123 1_565 S
+C50 H51 0.980 . S
+C50 H52 0.980 . S
+C50 H53 0.980 . S
+C50 C54 1.481 . S
+C54 C40 1.394 1_554 S
+C54 N60 1.338 1_554 D
+C55 C56 1.495 . S
+C55 N61 1.338 . S
+C56 H57 0.982 . S
+C56 H58 0.980 . S
+C56 H59 0.977 . S
+N60 C54 1.338 1_556 D
+N60 Ni127 2.184 1_556 S
+N61 H62 0.880 . S
+F63 Si125 1.657 . S
+F64 Si125 1.747 . S
+F64 Ni127 2.010 . S
+F65 Si125 1.656 . S
+C66 H67 0.980 . S
+C66 H68 0.979 . S
+C66 H69 0.981 . S
+C66 C70 1.480 . S
+C70 C71 1.398 . D
+C70 N78 1.335 . S
+C71 C72 1.474 1_554 S
+C71 C85 1.394 1_554 S
+C72 C71 1.474 1_556 S
+C72 C73 1.400 1_556 S
+C72 C86 1.399 . D
+C73 C72 1.400 1_554 S
+C73 C74 1.494 . S
+C73 N80 1.337 1_554 D
+C74 H75 0.980 . S
+C74 H76 0.981 . S
+C74 H77 0.980 . S
+N78 H79 0.881 . S
+N78 N91 1.337 . S
+N80 C73 1.337 1_556 D
+N80 N92 1.346 . S
+N80 Ni127 2.123 1_556 S
+C81 H82 0.980 . S
+C81 H83 0.980 . S
+C81 H84 0.980 . S
+C81 C85 1.481 . S
+C85 C71 1.394 1_556 S
+C85 N91 1.338 1_556 D
+C86 C87 1.495 . S
+C86 N92 1.338 . S
+C87 H88 0.982 . S
+C87 H89 0.980 . S
+C87 H90 0.977 . S
+N91 C85 1.338 1_554 D
+N91 Ni128 2.184 . S
+N92 H93 0.880 . S
+F94 Si126 1.657 1_565 S
+F95 Si126 1.747 1_655 S
+F95 Ni128 2.010 1_655 S
+F96 Si126 1.656 . S
+C97 H98 0.980 . S
+C97 H99 0.979 . S
+C97 H100 0.981 . S
+C97 C101 1.480 . S
+C101 C102 1.398 . D
+C101 N109 1.335 . S
+C102 C103 1.474 1_554 S
+C102 C116 1.394 1_554 S
+C103 C102 1.474 1_556 S
+C103 C104 1.400 1_556 S
+C103 C117 1.399 . D
+C104 C103 1.400 1_554 S
+C104 C105 1.494 . S
+C104 N111 1.337 1_554 D
+C105 H106 0.980 . S
+C105 H107 0.981 . S
+C105 H108 0.980 . S
+N109 H110 0.881 . S
+N109 N122 1.337 . S
+N111 C104 1.337 1_556 D
+N111 N123 1.346 . S
+N111 Ni128 2.123 1_666 S
+C112 H113 0.980 . S
+C112 H114 0.980 . S
+C112 H115 0.980 . S
+C112 C116 1.481 . S
+C116 C102 1.394 1_556 S
+C116 N122 1.338 1_556 D
+C117 C118 1.495 . S
+C117 N123 1.338 . S
+C118 H119 0.982 . S
+C118 H120 0.980 . S
+C118 H121 0.977 . S
+N122 C116 1.338 1_554 D
+N122 Ni127 2.184 . S
+N123 H124 0.880 . S
+Si126 F32 1.657 1_445 S
+Si126 F94 1.657 1_545 S
+Si126 F95 1.747 1_455 S
+Si126 F34 1.656 1_455 S
+Ni127 N80 2.123 1_554 S
+Ni127 F2 2.010 1_554 S
+Ni127 N60 2.184 1_554 S
+Ni128 N49 2.123 1_545 S
+Ni128 N111 2.123 1_444 S
+Ni128 F33 2.010 1_554 S
+Ni128 F95 2.010 1_455 S
+Ni128 N29 2.184 1_454 S
diff --git a/benchmarks/mof/structures/dac/SIFSIX-3-Cu.cif b/benchmarks/mof/structures/dac/SIFSIX-3-Cu.cif
new file mode 100644
index 0000000000000000000000000000000000000000..9424b82a24a24891f93584c1e45b478ffe8443fd
--- /dev/null
+++ b/benchmarks/mof/structures/dac/SIFSIX-3-Cu.cif
@@ -0,0 +1,95 @@
+data_SIFSIX-3-Cu
+_audit_creation_date 2025-01-20
+_audit_creation_method 'Materials Studio'
+_symmetry_space_group_name_H-M 'P1'
+_symmetry_Int_Tables_number 1
+_symmetry_cell_setting triclinic
+loop_
+_symmetry_equiv_pos_as_xyz
+ x,y,z
+_cell_length_a 6.9186
+_cell_length_b 6.9186
+_cell_length_c 7.9061
+_cell_angle_alpha 90.0000
+_cell_angle_beta 90.0000
+_cell_angle_gamma 90.0000
+loop_
+_atom_site_label
+_atom_site_type_symbol
+_atom_site_fract_x
+_atom_site_fract_y
+_atom_site_fract_z
+_atom_site_U_iso_or_equiv
+_atom_site_adp_type
+_atom_site_occupancy
+N1 N 0.50000 0.21700 0.50000 0.09900 Uiso 1.00
+N2 N 0.50000 0.78300 0.50000 0.09900 Uiso 1.00
+N3 N 0.78300 0.50000 0.50000 0.09900 Uiso 1.00
+N4 N 0.21700 0.50000 0.50000 0.09900 Uiso 1.00
+C5 C 0.50000 0.08930 0.38430 0.12100 Uiso 1.00
+H6 H 0.50000 0.14010 0.27980 0.16650 Uiso 1.00
+C7 C 0.50000 0.91070 0.38430 0.12100 Uiso 1.00
+H8 H 0.50000 0.85990 0.27980 0.16650 Uiso 1.00
+C9 C 0.91070 0.50000 0.38430 0.12100 Uiso 1.00
+H10 H 0.85990 0.50000 0.27980 0.16650 Uiso 1.00
+C11 C 0.08930 0.50000 0.38430 0.12100 Uiso 1.00
+H12 H 0.14010 0.50000 0.27980 0.16650 Uiso 1.00
+C13 C 0.50000 0.08930 0.61570 0.12100 Uiso 1.00
+H14 H 0.50000 0.14010 0.72020 0.16650 Uiso 1.00
+C15 C 0.50000 0.91070 0.61570 0.12100 Uiso 1.00
+H16 H 0.50000 0.85990 0.72020 0.16650 Uiso 1.00
+C17 C 0.08930 0.50000 0.61570 0.12100 Uiso 1.00
+H18 H 0.14010 0.50000 0.72020 0.16650 Uiso 1.00
+C19 C 0.91070 0.50000 0.61570 0.12100 Uiso 1.00
+H20 H 0.85990 0.50000 0.72020 0.16650 Uiso 1.00
+Cu21 Cu 0.50000 0.50000 0.50000 0.09800 Uiso 1.00
+F22 F 0.50000 0.50000 0.23200 0.11900 Uiso 1.00
+F23 F 0.50000 0.50000 0.76800 0.11900 Uiso 1.00
+F24 F 0.33130 0.33130 0.00000 0.20400 Uiso 1.00
+F25 F 0.66870 0.66870 0.00000 0.20400 Uiso 1.00
+F26 F 0.66870 0.33130 0.00000 0.20400 Uiso 1.00
+F27 F 0.33130 0.66870 0.00000 0.20400 Uiso 1.00
+Si28 Si 0.50000 0.50000 0.00000 0.15800 Uiso 1.00
+loop_
+_geom_bond_atom_site_label_1
+_geom_bond_atom_site_label_2
+_geom_bond_distance
+_geom_bond_site_symmetry_2
+_ccdc_geom_bond_type
+N1 Cu21 1.958 . S
+N1 C5 1.272 . S
+N1 C13 1.272 . S
+N2 Cu21 1.958 . S
+N2 C7 1.272 . S
+N2 C15 1.272 . S
+N3 Cu21 1.958 . S
+N3 C9 1.272 . S
+N3 C19 1.272 . S
+N4 Cu21 1.958 . S
+N4 C11 1.272 . S
+N4 C17 1.272 . S
+C5 H6 0.898 . S
+C5 C7 1.236 1_545 S
+C7 H8 0.898 . S
+C7 C5 1.236 1_565 S
+C9 H10 0.898 . S
+C9 C11 1.236 1_655 S
+C11 H12 0.898 . S
+C11 C9 1.236 1_455 S
+C13 H14 0.898 . S
+C13 C15 1.236 1_545 S
+C15 H16 0.898 . S
+C15 C13 1.236 1_565 S
+C17 H18 0.898 . S
+C17 C19 1.236 1_455 S
+C19 H20 0.898 . S
+C19 C17 1.236 1_655 S
+Cu21 F22 2.119 . S
+Cu21 F23 2.119 . S
+F22 Si28 1.834 . S
+F23 Si28 1.834 1_556 S
+F24 Si28 1.651 . S
+F25 Si28 1.651 . S
+F26 Si28 1.651 . S
+F27 Si28 1.651 . S
+Si28 F23 1.834 1_554 S
diff --git a/benchmarks/mof/structures/dac/TIFSIX-3-Ni.cif b/benchmarks/mof/structures/dac/TIFSIX-3-Ni.cif
new file mode 100644
index 0000000000000000000000000000000000000000..d32e9bd37e2680036b0f0b41649a289d12c3f7d9
--- /dev/null
+++ b/benchmarks/mof/structures/dac/TIFSIX-3-Ni.cif
@@ -0,0 +1,95 @@
+data_1517365
+_audit_creation_date 2024-01-26
+_audit_creation_method 'Materials Studio'
+_symmetry_space_group_name_H-M 'P1'
+_symmetry_Int_Tables_number 1
+_symmetry_cell_setting triclinic
+loop_
+_symmetry_equiv_pos_as_xyz
+ x,y,z
+_cell_length_a 7.0012
+_cell_length_b 7.0012
+_cell_length_c 7.4979
+_cell_angle_alpha 90.0000
+_cell_angle_beta 90.0000
+_cell_angle_gamma 90.0000
+loop_
+_atom_site_label
+_atom_site_type_symbol
+_atom_site_fract_x
+_atom_site_fract_y
+_atom_site_fract_z
+_atom_site_U_iso_or_equiv
+_atom_site_adp_type
+_atom_site_occupancy
+C1 C 0.90026 0.49844 0.65431 0.03390 Uiso 1.00
+H2 H 0.81423 0.49723 0.77818 0.04060 Uiso 1.00
+C3 C 0.50124 0.90015 0.65433 0.03390 Uiso 1.00
+H4 H 0.50222 0.81403 0.77815 0.04060 Uiso 1.00
+C5 C 0.90056 0.50154 0.34578 0.03390 Uiso 1.00
+H6 H 0.81477 0.50278 0.22176 0.04060 Uiso 1.00
+C7 C 0.49876 0.90067 0.34580 0.03390 Uiso 1.00
+H8 H 0.49779 0.81497 0.22172 0.04060 Uiso 1.00
+C9 C 0.09955 0.50035 0.34574 0.03390 Uiso 1.00
+H10 H 0.18543 0.50060 0.22177 0.04060 Uiso 1.00
+C11 C 0.49897 0.09954 0.34575 0.03390 Uiso 1.00
+H12 H 0.49795 0.18541 0.22177 0.04060 Uiso 1.00
+C13 C 0.09963 0.49965 0.65428 0.03390 Uiso 1.00
+H14 H 0.18557 0.49940 0.77821 0.04060 Uiso 1.00
+C15 C 0.50118 0.09964 0.65428 0.03390 Uiso 1.00
+H16 H 0.50190 0.18559 0.77820 0.04060 Uiso 1.00
+Ni17 Ni 0.50000 0.50000 0.50000 0.01300 Uiso 1.00
+Ti18 Ti 0.50000 0.50000 0.00000 0.03680 Uiso 1.00
+F19 F 0.50000 0.50000 0.76510 0.02310 Uiso 1.00
+F20 F 0.50000 0.50000 0.23490 0.02310 Uiso 1.00
+F21 F 0.66555 0.66555 0.00000 0.05180 Uiso 1.00
+F22 F 0.33445 0.33445 0.00000 0.05180 Uiso 1.00
+F23 F 0.33445 0.66555 0.00000 0.05180 Uiso 1.00
+F24 F 0.66555 0.33445 0.00000 0.05180 Uiso 1.00
+N25 N 0.80390 0.50001 0.49996 0.01620 Uiso 1.00
+N26 N 0.19610 0.50000 0.50000 0.01620 Uiso 1.00
+N27 N 0.50000 0.80390 0.50000 0.01620 Uiso 1.00
+N28 N 0.50000 0.19610 0.50000 0.01620 Uiso 1.00
+loop_
+_geom_bond_atom_site_label_1
+_geom_bond_atom_site_label_2
+_geom_bond_distance
+_geom_bond_site_symmetry_2
+_ccdc_geom_bond_type
+C1 N25 1.340 . S
+C1 H2 1.107 . S
+C1 C13 1.396 1_655 S
+C3 N27 1.339 . S
+C3 H4 1.107 . S
+C3 C15 1.397 1_565 S
+C5 N25 1.340 . S
+C5 H6 1.107 . S
+C5 C9 1.393 1_655 S
+C7 N27 1.340 . S
+C7 H8 1.107 . S
+C7 C11 1.392 1_565 S
+C9 N26 1.340 . S
+C9 H10 1.107 . S
+C9 C5 1.393 1_455 S
+C11 N28 1.340 . S
+C11 H12 1.107 . S
+C11 C7 1.392 1_545 S
+C13 N26 1.340 . S
+C13 H14 1.107 . S
+C13 C1 1.396 1_455 S
+C15 N28 1.339 . S
+C15 H16 1.107 . S
+C15 C3 1.397 1_545 S
+Ni17 F19 1.988 . S
+Ni17 F20 1.988 . S
+Ni17 N25 2.128 . S
+Ni17 N26 2.128 . S
+Ni17 N27 2.128 . S
+Ni17 N28 2.128 . S
+Ti18 F19 1.761 1_554 S
+Ti18 F20 1.761 . S
+Ti18 F21 1.639 . S
+Ti18 F22 1.639 . S
+Ti18 F23 1.639 . S
+Ti18 F24 1.639 . S
+F19 Si18 1.761 1_556 S
diff --git a/benchmarks/mof/structures/dac/en-Mg2(dobpdc).cif b/benchmarks/mof/structures/dac/en-Mg2(dobpdc).cif
new file mode 100644
index 0000000000000000000000000000000000000000..4470ea3df77d2ec207e5152475ac417957132270
--- /dev/null
+++ b/benchmarks/mof/structures/dac/en-Mg2(dobpdc).cif
@@ -0,0 +1,492 @@
+data_image0
+_cell_length_a 36.6982
+_cell_length_b 36.6982
+_cell_length_c 6.93828
+_cell_angle_alpha 90
+_cell_angle_beta 90
+_cell_angle_gamma 120
+
+_symmetry_space_group_name_H-M "P 1"
+_symmetry_int_tables_number 1
+
+loop_
+ _symmetry_equiv_pos_as_xyz
+ 'x, y, z'
+
+loop_
+ _atom_site_label
+ _atom_site_occupancy
+ _atom_site_fract_x
+ _atom_site_fract_y
+ _atom_site_fract_z
+ _atom_site_thermal_displace_type
+ _atom_site_B_iso_or_equiv
+ _atom_site_type_symbol
+ C1 1.0000 0.01357 0.58780 0.71593 Biso 1.000 C
+ C2 1.0000 0.50638 0.98341 0.74715 Biso 1.000 C
+ C3 1.0000 0.65006 0.81037 0.58606 Biso 1.000 C
+ C4 1.0000 0.18963 0.83969 0.58606 Biso 1.000 C
+ C5 1.0000 0.16031 0.34994 0.58606 Biso 1.000 C
+ C6 1.0000 0.68813 0.89017 0.97288 Biso 1.000 C
+ C7 1.0000 0.10983 0.79796 0.97288 Biso 1.000 C
+ C8 1.0000 0.20204 0.31187 0.97287 Biso 1.000 C
+ C9 1.0000 0.47703 0.49362 0.74715 Biso 1.000 C
+ C10 1.0000 0.31187 0.10983 0.02712 Biso 1.000 C
+ C11 1.0000 0.79796 0.68813 0.02713 Biso 1.000 C
+ C12 1.0000 0.35482 0.22350 0.30643 Biso 1.000 C
+ C13 1.0000 0.77650 0.13131 0.30643 Biso 1.000 C
+ C14 1.0000 0.86869 0.64518 0.30643 Biso 1.000 C
+ C15 1.0000 0.97852 0.44314 0.36028 Biso 1.000 C
+ C16 1.0000 0.55686 0.53538 0.36028 Biso 1.000 C
+ C17 1.0000 0.46462 0.02148 0.36028 Biso 1.000 C
+ C18 1.0000 0.89017 0.20204 0.02712 Biso 1.000 C
+ C19 1.0000 0.01659 0.52297 0.74715 Biso 1.000 C
+ C20 1.0000 0.49362 0.01659 0.25285 Biso 1.000 C
+ C21 1.0000 0.52297 0.50638 0.25285 Biso 1.000 C
+ C22 1.0000 0.48498 0.00329 0.05850 Biso 1.000 C
+ C23 1.0000 0.00329 0.51831 0.94150 Biso 1.000 C
+ C24 1.0000 0.48169 0.48498 0.94150 Biso 1.000 C
+ C25 1.0000 0.51502 0.99671 0.94150 Biso 1.000 C
+ C26 1.0000 0.66336 0.81501 0.39171 Biso 1.000 C
+ C27 1.0000 0.18499 0.84835 0.39171 Biso 1.000 C
+ C28 1.0000 0.15165 0.33664 0.39171 Biso 1.000 C
+ C29 1.0000 0.68324 0.85628 0.08033 Biso 1.000 C
+ C30 1.0000 0.14372 0.82696 0.08033 Biso 1.000 C
+ C31 1.0000 0.17304 0.31676 0.08033 Biso 1.000 C
+ C32 1.0000 0.31676 0.14372 0.91967 Biso 1.000 C
+ C33 1.0000 0.85628 0.17304 0.91967 Biso 1.000 C
+ C34 1.0000 0.82696 0.68324 0.91967 Biso 1.000 C
+ C35 1.0000 0.34994 0.18963 0.41394 Biso 1.000 C
+ C36 1.0000 0.81037 0.16031 0.41394 Biso 1.000 C
+ C37 1.0000 0.83969 0.65006 0.41394 Biso 1.000 C
+ C38 1.0000 0.98341 0.47703 0.25285 Biso 1.000 C
+ C39 1.0000 0.02148 0.55686 0.63972 Biso 1.000 C
+ C40 1.0000 0.51831 0.51502 0.05850 Biso 1.000 C
+ C41 1.0000 0.44314 0.46462 0.63972 Biso 1.000 C
+ C42 1.0000 0.64518 0.77650 0.69357 Biso 1.000 C
+ C43 1.0000 0.77310 0.78457 0.42273 Biso 1.000 C
+ C44 1.0000 0.21543 0.98853 0.42273 Biso 1.000 C
+ C45 1.0000 0.29734 0.46199 0.19013 Biso 1.000 C
+ C46 1.0000 0.53801 0.83535 0.19013 Biso 1.000 C
+ C47 1.0000 0.16465 0.70266 0.19013 Biso 1.000 C
+ C48 1.0000 0.70266 0.53801 0.80987 Biso 1.000 C
+ C49 1.0000 0.46199 0.16465 0.80986 Biso 1.000 C
+ C50 1.0000 0.01147 0.22690 0.42273 Biso 1.000 C
+ C51 1.0000 0.83535 0.29734 0.80987 Biso 1.000 C
+ C52 1.0000 0.20468 0.16868 0.52353 Biso 1.000 C
+ C53 1.0000 0.83132 0.03600 0.52352 Biso 1.000 C
+ C54 1.0000 0.36932 0.87133 0.14310 Biso 1.000 C
+ C55 1.0000 0.12867 0.49799 0.14310 Biso 1.000 C
+ C56 1.0000 0.50202 0.63068 0.14310 Biso 1.000 C
+ C57 1.0000 0.63068 0.12867 0.85690 Biso 1.000 C
+ C58 1.0000 0.87133 0.50201 0.85690 Biso 1.000 C
+ C59 1.0000 0.96400 0.79532 0.52352 Biso 1.000 C
+ C60 1.0000 0.45124 0.34479 0.91065 Biso 1.000 C
+ C61 1.0000 0.89355 0.54876 0.91065 Biso 1.000 C
+ C62 1.0000 0.65521 0.10645 0.91065 Biso 1.000 C
+ C63 1.0000 0.22350 0.86869 0.69357 Biso 1.000 C
+ C64 1.0000 0.13131 0.35482 0.69357 Biso 1.000 C
+ C65 1.0000 0.49798 0.36932 0.85690 Biso 1.000 C
+ C66 1.0000 0.16868 0.96400 0.47648 Biso 1.000 C
+ C67 1.0000 0.79532 0.83132 0.47647 Biso 1.000 C
+ C68 1.0000 0.32187 0.43977 0.24391 Biso 1.000 C
+ C69 1.0000 0.56022 0.88210 0.24391 Biso 1.000 C
+ C70 1.0000 0.11790 0.67813 0.24391 Biso 1.000 C
+ C71 1.0000 0.67813 0.56023 0.75609 Biso 1.000 C
+ C72 1.0000 0.43978 0.11790 0.75609 Biso 1.000 C
+ C73 1.0000 0.88210 0.32187 0.75609 Biso 1.000 C
+ C74 1.0000 0.98853 0.77310 0.57727 Biso 1.000 C
+ C75 1.0000 0.22690 0.21543 0.57727 Biso 1.000 C
+ C76 1.0000 0.78457 0.01147 0.57727 Biso 1.000 C
+ C77 1.0000 0.34479 0.89355 0.08935 Biso 1.000 C
+ C78 1.0000 0.10645 0.45124 0.08935 Biso 1.000 C
+ C79 1.0000 0.54876 0.65521 0.08935 Biso 1.000 C
+ C80 1.0000 0.53538 0.97852 0.63972 Biso 1.000 C
+ C81 1.0000 0.99671 0.48169 0.05850 Biso 1.000 C
+ C82 1.0000 0.03600 0.20468 0.47648 Biso 1.000 C
+ C83 1.0000 0.81501 0.15165 0.60829 Biso 1.000 C
+ C84 1.0000 0.90755 0.65309 0.38257 Biso 1.000 C
+ C85 1.0000 0.74554 0.09245 0.38257 Biso 1.000 C
+ C86 1.0000 0.34691 0.25446 0.38257 Biso 1.000 C
+ C87 1.0000 0.09245 0.34691 0.61743 Biso 1.000 C
+ C88 1.0000 0.25446 0.90755 0.61743 Biso 1.000 C
+ C89 1.0000 0.65309 0.74554 0.61743 Biso 1.000 C
+ C90 1.0000 0.24089 0.31976 0.04908 Biso 1.000 C
+ C91 1.0000 0.31976 0.07887 0.95092 Biso 1.000 C
+ C92 1.0000 0.07887 0.75911 0.04908 Biso 1.000 C
+ C93 1.0000 0.42577 0.01357 0.28407 Biso 1.000 C
+ C94 1.0000 0.58780 0.57423 0.28407 Biso 1.000 C
+ C95 1.0000 0.98643 0.41220 0.28407 Biso 1.000 C
+ C96 1.0000 0.57423 0.98643 0.71593 Biso 1.000 C
+ C97 1.0000 0.41220 0.42577 0.71593 Biso 1.000 C
+ C98 1.0000 0.66760 0.91756 0.24680 Biso 1.000 C
+ C99 1.0000 0.08244 0.75004 0.24680 Biso 1.000 C
+ C100 1.0000 0.68024 0.92113 0.04908 Biso 1.000 C
+ C101 1.0000 0.92113 0.24089 0.95092 Biso 1.000 C
+ C102 1.0000 0.75911 0.68024 0.95092 Biso 1.000 C
+ C103 1.0000 0.31468 0.04448 0.08100 Biso 1.000 C
+ C104 1.0000 0.84835 0.66336 0.60829 Biso 1.000 C
+ C105 1.0000 0.37782 0.39646 0.58578 Biso 1.000 C
+ C106 1.0000 0.01863 0.62218 0.58578 Biso 1.000 C
+ C107 1.0000 0.06314 0.35197 0.74759 Biso 1.000 C
+ C108 1.0000 0.28883 0.93686 0.74759 Biso 1.000 C
+ C109 1.0000 0.64803 0.71117 0.74759 Biso 1.000 C
+ C110 1.0000 0.93686 0.64803 0.25241 Biso 1.000 C
+ C111 1.0000 0.71117 0.06314 0.25241 Biso 1.000 C
+ C112 1.0000 0.35197 0.28883 0.25241 Biso 1.000 C
+ C113 1.0000 0.39646 0.01863 0.41422 Biso 1.000 C
+ C114 1.0000 0.60354 0.98137 0.58578 Biso 1.000 C
+ C115 1.0000 0.62218 0.60354 0.41422 Biso 1.000 C
+ C116 1.0000 0.98137 0.37782 0.41422 Biso 1.000 C
+ C117 1.0000 0.04448 0.72980 0.91900 Biso 1.000 C
+ C118 1.0000 0.68532 0.95552 0.91900 Biso 1.000 C
+ C119 1.0000 0.72980 0.68532 0.08100 Biso 1.000 C
+ C120 1.0000 0.95552 0.27020 0.08100 Biso 1.000 C
+ C121 1.0000 0.24996 0.33240 0.24680 Biso 1.000 C
+ C122 1.0000 0.33240 0.08244 0.75320 Biso 1.000 C
+ C123 1.0000 0.27020 0.31468 0.91900 Biso 1.000 C
+ C124 1.0000 0.75004 0.66760 0.75320 Biso 1.000 C
+ C125 1.0000 0.00359 0.45059 0.97986 Biso 1.000 C
+ C126 1.0000 0.54941 0.55300 0.97986 Biso 1.000 C
+ C127 1.0000 0.44700 0.99641 0.97986 Biso 1.000 C
+ C128 1.0000 0.99641 0.54941 0.02014 Biso 1.000 C
+ C129 1.0000 0.45059 0.44700 0.02014 Biso 1.000 C
+ C130 1.0000 0.55300 0.00359 0.02014 Biso 1.000 C
+ C131 1.0000 0.67024 0.78391 0.31315 Biso 1.000 C
+ C132 1.0000 0.88634 0.67024 0.68685 Biso 1.000 C
+ C133 1.0000 0.21609 0.88634 0.31315 Biso 1.000 C
+ C134 1.0000 0.14836 0.81831 0.27470 Biso 1.000 C
+ C135 1.0000 0.18169 0.33005 0.27470 Biso 1.000 C
+ C136 1.0000 0.33005 0.14837 0.72530 Biso 1.000 C
+ C137 1.0000 0.85164 0.18169 0.72530 Biso 1.000 C
+ C138 1.0000 0.81831 0.66995 0.72530 Biso 1.000 C
+ C139 1.0000 0.91756 0.24996 0.75320 Biso 1.000 C
+ C140 1.0000 0.33664 0.18499 0.60829 Biso 1.000 C
+ C141 1.0000 0.66995 0.85163 0.27470 Biso 1.000 C
+ C142 1.0000 0.78391 0.11366 0.68685 Biso 1.000 C
+ C143 1.0000 0.11366 0.32976 0.31315 Biso 1.000 C
+ C144 1.0000 0.78034 0.66308 0.64670 Biso 1.000 C
+ C145 1.0000 0.74910 0.08338 0.58029 Biso 1.000 C
+ C146 1.0000 0.32976 0.21609 0.68685 Biso 1.000 C
+ C147 1.0000 0.33428 0.25090 0.58029 Biso 1.000 C
+ C148 1.0000 0.91662 0.66572 0.58029 Biso 1.000 C
+ C149 1.0000 0.99907 0.41577 0.08638 Biso 1.000 C
+ C150 1.0000 0.58423 0.58330 0.08638 Biso 1.000 C
+ C151 1.0000 0.00093 0.58423 0.91362 Biso 1.000 C
+ C152 1.0000 0.41577 0.41670 0.91362 Biso 1.000 C
+ C153 1.0000 0.58330 0.99907 0.91362 Biso 1.000 C
+ C154 1.0000 0.41670 0.00093 0.08638 Biso 1.000 C
+ C155 1.0000 0.25090 0.91662 0.41971 Biso 1.000 C
+ C156 1.0000 0.08338 0.33428 0.41971 Biso 1.000 C
+ C157 1.0000 0.66308 0.88275 0.35330 Biso 1.000 C
+ C158 1.0000 0.11725 0.78034 0.35330 Biso 1.000 C
+ C159 1.0000 0.88275 0.21966 0.64670 Biso 1.000 C
+ C160 1.0000 0.21966 0.33692 0.35330 Biso 1.000 C
+ C161 1.0000 0.66572 0.74910 0.41971 Biso 1.000 C
+ C162 1.0000 0.33692 0.11725 0.64670 Biso 1.000 C
+ H1 1.0000 0.47813 0.60416 0.87858 Biso 1.000 H
+ H2 1.0000 0.26735 0.43892 0.12244 Biso 1.000 H
+ H3 1.0000 0.14480 0.93748 0.21195 Biso 1.000 H
+ H4 1.0000 0.79268 0.85520 0.21195 Biso 1.000 H
+ H5 1.0000 0.87397 0.47813 0.12142 Biso 1.000 H
+ H6 1.0000 0.52187 0.39584 0.12142 Biso 1.000 H
+ H7 1.0000 0.60416 0.12603 0.12142 Biso 1.000 H
+ H8 1.0000 0.12603 0.52187 0.87858 Biso 1.000 H
+ H9 1.0000 0.56108 0.82843 0.12244 Biso 1.000 H
+ H10 1.0000 0.06252 0.20732 0.21195 Biso 1.000 H
+ H11 1.0000 0.17157 0.73265 0.12244 Biso 1.000 H
+ H12 1.0000 0.10560 0.50491 0.21080 Biso 1.000 H
+ H13 1.0000 0.43892 0.17157 0.87756 Biso 1.000 H
+ H14 1.0000 0.82843 0.26735 0.87756 Biso 1.000 H
+ H15 1.0000 0.93401 0.77224 0.45585 Biso 1.000 H
+ H16 1.0000 0.22776 0.16176 0.45585 Biso 1.000 H
+ H17 1.0000 0.83824 0.06599 0.45585 Biso 1.000 H
+ H18 1.0000 0.39931 0.89440 0.21080 Biso 1.000 H
+ H19 1.0000 0.49509 0.60069 0.21080 Biso 1.000 H
+ H20 1.0000 0.60069 0.10560 0.78920 Biso 1.000 H
+ H21 1.0000 0.89440 0.49509 0.78920 Biso 1.000 H
+ H22 1.0000 0.39584 0.87397 0.87858 Biso 1.000 H
+ H23 1.0000 0.50491 0.39931 0.78920 Biso 1.000 H
+ H24 1.0000 0.73265 0.56108 0.87756 Biso 1.000 H
+ H25 1.0000 0.85520 0.06252 0.78805 Biso 1.000 H
+ H26 1.0000 0.16277 0.14399 0.74937 Biso 1.000 H
+ H27 1.0000 0.93748 0.79268 0.78805 Biso 1.000 H
+ H28 1.0000 0.06599 0.22776 0.54415 Biso 1.000 H
+ H29 1.0000 0.31456 0.50390 0.41601 Biso 1.000 H
+ H30 1.0000 0.49610 0.81066 0.41601 Biso 1.000 H
+ H31 1.0000 0.18934 0.68544 0.41601 Biso 1.000 H
+ H32 1.0000 0.68544 0.49610 0.58399 Biso 1.000 H
+ H33 1.0000 0.50390 0.18934 0.58399 Biso 1.000 H
+ H34 1.0000 0.81066 0.31456 0.58399 Biso 1.000 H
+ H35 1.0000 0.98122 0.83723 0.74937 Biso 1.000 H
+ H36 1.0000 0.85601 0.01878 0.74937 Biso 1.000 H
+ H37 1.0000 0.35209 0.82942 0.91723 Biso 1.000 H
+ H38 1.0000 0.17058 0.52267 0.91723 Biso 1.000 H
+ H39 1.0000 0.20732 0.14480 0.78805 Biso 1.000 H
+ H40 1.0000 0.47733 0.64791 0.91723 Biso 1.000 H
+ H41 1.0000 0.82942 0.47733 0.08277 Biso 1.000 H
+ H42 1.0000 0.52267 0.35209 0.08277 Biso 1.000 H
+ H43 1.0000 0.01878 0.16277 0.25063 Biso 1.000 H
+ H44 1.0000 0.83723 0.85601 0.25063 Biso 1.000 H
+ H45 1.0000 0.14399 0.98122 0.25063 Biso 1.000 H
+ H46 1.0000 0.27082 0.45935 0.45465 Biso 1.000 H
+ H47 1.0000 0.54065 0.81147 0.45465 Biso 1.000 H
+ H48 1.0000 0.18853 0.72918 0.45465 Biso 1.000 H
+ H49 1.0000 0.72918 0.54065 0.54535 Biso 1.000 H
+ H50 1.0000 0.45935 0.18853 0.54535 Biso 1.000 H
+ H51 1.0000 0.81147 0.27082 0.54535 Biso 1.000 H
+ H52 1.0000 0.64791 0.17058 0.08277 Biso 1.000 H
+ H53 1.0000 0.77224 0.83824 0.54415 Biso 1.000 H
+ H54 1.0000 0.69507 0.58325 0.64119 Biso 1.000 H
+ H55 1.0000 0.31487 0.48650 0.08131 Biso 1.000 H
+ H56 1.0000 0.56662 0.63436 0.32733 Biso 1.000 H
+ H57 1.0000 0.06774 0.43338 0.32733 Biso 1.000 H
+ H58 1.0000 0.36564 0.93226 0.32733 Biso 1.000 H
+ H59 1.0000 0.26561 0.23328 0.33929 Biso 1.000 H
+ H60 1.0000 0.96767 0.73439 0.33929 Biso 1.000 H
+ H61 1.0000 0.89997 0.30103 0.99407 Biso 1.000 H
+ H62 1.0000 0.40106 0.10003 0.99407 Biso 1.000 H
+ H63 1.0000 0.69897 0.59894 0.99407 Biso 1.000 H
+ H64 1.0000 0.63436 0.06774 0.67267 Biso 1.000 H
+ H65 1.0000 0.10003 0.69897 0.00593 Biso 1.000 H
+ H66 1.0000 0.30103 0.40106 0.00593 Biso 1.000 H
+ H67 1.0000 0.22402 0.01962 0.36396 Biso 1.000 H
+ H68 1.0000 0.79560 0.77598 0.36396 Biso 1.000 H
+ H69 1.0000 0.98038 0.20440 0.36396 Biso 1.000 H
+ H70 1.0000 0.44265 0.31370 0.96944 Biso 1.000 H
+ H71 1.0000 0.87106 0.55735 0.96944 Biso 1.000 H
+ H72 1.0000 0.68630 0.12894 0.96944 Biso 1.000 H
+ H73 1.0000 0.55735 0.68630 0.03056 Biso 1.000 H
+ H74 1.0000 0.59894 0.89997 0.00593 Biso 1.000 H
+ H75 1.0000 0.12894 0.44265 0.03056 Biso 1.000 H
+ H76 1.0000 0.93226 0.56662 0.67267 Biso 1.000 H
+ H77 1.0000 0.03233 0.26561 0.66071 Biso 1.000 H
+ H78 1.0000 0.98284 0.22910 0.67725 Biso 1.000 H
+ H79 1.0000 0.42040 0.31616 0.65614 Biso 1.000 H
+ H80 1.0000 0.89576 0.57960 0.65614 Biso 1.000 H
+ H81 1.0000 0.68384 0.10424 0.65614 Biso 1.000 H
+ H82 1.0000 0.57960 0.68384 0.34386 Biso 1.000 H
+ H83 1.0000 0.10424 0.42040 0.34386 Biso 1.000 H
+ H84 1.0000 0.31616 0.89576 0.34386 Biso 1.000 H
+ H85 1.0000 0.75374 0.98284 0.32275 Biso 1.000 H
+ H86 1.0000 0.43338 0.36564 0.67267 Biso 1.000 H
+ H87 1.0000 0.22910 0.24626 0.32275 Biso 1.000 H
+ H88 1.0000 0.91294 0.35051 0.01057 Biso 1.000 H
+ H89 1.0000 0.43757 0.08706 0.01057 Biso 1.000 H
+ H90 1.0000 0.64949 0.56243 0.01057 Biso 1.000 H
+ H91 1.0000 0.08706 0.64949 0.98943 Biso 1.000 H
+ H92 1.0000 0.56243 0.91294 0.98943 Biso 1.000 H
+ H93 1.0000 0.35051 0.43757 0.98943 Biso 1.000 H
+ H94 1.0000 0.23328 0.96767 0.66071 Biso 1.000 H
+ H95 1.0000 0.73439 0.76672 0.66071 Biso 1.000 H
+ H96 1.0000 0.01716 0.77090 0.32275 Biso 1.000 H
+ H97 1.0000 0.31370 0.87106 0.03056 Biso 1.000 H
+ H98 1.0000 0.77598 0.98038 0.63604 Biso 1.000 H
+ H99 1.0000 0.20440 0.22402 0.63604 Biso 1.000 H
+ H100 1.0000 0.30493 0.41675 0.35881 Biso 1.000 H
+ H101 1.0000 0.16171 0.98153 0.58533 Biso 1.000 H
+ H102 1.0000 0.81982 0.83829 0.58533 Biso 1.000 H
+ H103 1.0000 0.01847 0.18018 0.58533 Biso 1.000 H
+ H104 1.0000 0.50496 0.35179 0.74807 Biso 1.000 H
+ H105 1.0000 0.84682 0.49504 0.74807 Biso 1.000 H
+ H106 1.0000 0.64821 0.15318 0.74807 Biso 1.000 H
+ H107 1.0000 0.49504 0.64821 0.25193 Biso 1.000 H
+ H108 1.0000 0.58325 0.88818 0.35881 Biso 1.000 H
+ H109 1.0000 0.15318 0.50496 0.25193 Biso 1.000 H
+ H110 1.0000 0.83829 0.01847 0.41467 Biso 1.000 H
+ H111 1.0000 0.18018 0.16171 0.41467 Biso 1.000 H
+ H112 1.0000 0.98153 0.81982 0.41467 Biso 1.000 H
+ H113 1.0000 0.82837 0.31487 0.91869 Biso 1.000 H
+ H114 1.0000 0.48650 0.17163 0.91869 Biso 1.000 H
+ H115 1.0000 0.68513 0.51350 0.91869 Biso 1.000 H
+ H116 1.0000 0.17163 0.68513 0.08131 Biso 1.000 H
+ H117 1.0000 0.51350 0.82837 0.08131 Biso 1.000 H
+ H118 1.0000 0.35179 0.84682 0.25193 Biso 1.000 H
+ H119 1.0000 0.11182 0.69507 0.35881 Biso 1.000 H
+ H120 1.0000 0.41675 0.11182 0.64119 Biso 1.000 H
+ H121 1.0000 0.88818 0.30493 0.64119 Biso 1.000 H
+ H122 1.0000 0.01962 0.79560 0.63604 Biso 1.000 H
+ H123 1.0000 0.89068 0.35296 0.69729 Biso 1.000 H
+ H124 1.0000 0.46228 0.10932 0.69729 Biso 1.000 H
+ H125 1.0000 0.64704 0.53772 0.69729 Biso 1.000 H
+ H126 1.0000 0.10932 0.64704 0.30271 Biso 1.000 H
+ H127 1.0000 0.53772 0.89068 0.30271 Biso 1.000 H
+ H128 1.0000 0.35296 0.46228 0.30271 Biso 1.000 H
+ H129 1.0000 0.22151 0.97160 0.30782 Biso 1.000 H
+ H130 1.0000 0.75008 0.77849 0.30782 Biso 1.000 H
+ H131 1.0000 0.02840 0.24992 0.30782 Biso 1.000 H
+ H132 1.0000 0.44516 0.36173 0.02555 Biso 1.000 H
+ H133 1.0000 0.91657 0.55484 0.02555 Biso 1.000 H
+ H134 1.0000 0.63827 0.08343 0.02555 Biso 1.000 H
+ H135 1.0000 0.55484 0.63827 0.97445 Biso 1.000 H
+ H136 1.0000 0.08343 0.44516 0.97445 Biso 1.000 H
+ H137 1.0000 0.36173 0.91657 0.97445 Biso 1.000 H
+ H138 1.0000 0.77849 0.02840 0.69218 Biso 1.000 H
+ H139 1.0000 0.24992 0.22151 0.69218 Biso 1.000 H
+ H140 1.0000 0.97160 0.75008 0.69218 Biso 1.000 H
+ H141 1.0000 0.16176 0.93401 0.54415 Biso 1.000 H
+ H142 1.0000 0.76672 0.03233 0.33929 Biso 1.000 H
+ H143 1.0000 0.24626 0.01716 0.67725 Biso 1.000 H
+ H144 1.0000 0.63491 0.77286 0.84321 Biso 1.000 H
+ H145 1.0000 0.43949 0.47125 0.49006 Biso 1.000 H
+ H146 1.0000 0.03176 0.56051 0.49006 Biso 1.000 H
+ H147 1.0000 0.80460 0.69840 0.17678 Biso 1.000 H
+ H148 1.0000 0.89381 0.19540 0.17678 Biso 1.000 H
+ H149 1.0000 0.30160 0.10619 0.17678 Biso 1.000 H
+ H150 1.0000 0.86205 0.63491 0.15679 Biso 1.000 H
+ H151 1.0000 0.77286 0.13795 0.15679 Biso 1.000 H
+ H152 1.0000 0.36509 0.22714 0.15679 Biso 1.000 H
+ H153 1.0000 0.52875 0.96824 0.49006 Biso 1.000 H
+ H154 1.0000 0.13795 0.36509 0.84321 Biso 1.000 H
+ H155 1.0000 0.01302 0.45171 0.83023 Biso 1.000 H
+ H156 1.0000 0.77090 0.75374 0.67725 Biso 1.000 H
+ H157 1.0000 0.83329 0.18957 0.34557 Biso 1.000 H
+ H158 1.0000 0.35628 0.16671 0.34557 Biso 1.000 H
+ H159 1.0000 0.81043 0.64372 0.34557 Biso 1.000 H
+ H160 1.0000 0.83336 0.14378 0.98808 Biso 1.000 H
+ H161 1.0000 0.31043 0.16664 0.98808 Biso 1.000 H
+ H162 1.0000 0.85622 0.68957 0.98808 Biso 1.000 H
+ H163 1.0000 0.22714 0.86205 0.84321 Biso 1.000 H
+ H164 1.0000 0.96824 0.43949 0.50994 Biso 1.000 H
+ H165 1.0000 0.56051 0.52875 0.50994 Biso 1.000 H
+ H166 1.0000 0.47125 0.03176 0.50994 Biso 1.000 H
+ H167 1.0000 0.54829 0.56132 0.83023 Biso 1.000 H
+ H168 1.0000 0.65365 0.88163 0.50292 Biso 1.000 H
+ H169 1.0000 0.22799 0.34635 0.50292 Biso 1.000 H
+ H170 1.0000 0.11837 0.77201 0.50292 Biso 1.000 H
+ H171 1.0000 0.34635 0.11837 0.49708 Biso 1.000 H
+ H172 1.0000 0.77202 0.65365 0.49708 Biso 1.000 H
+ H173 1.0000 0.88163 0.22799 0.49708 Biso 1.000 H
+ H174 1.0000 0.98698 0.54829 0.16977 Biso 1.000 H
+ H175 1.0000 0.56132 0.01302 0.16977 Biso 1.000 H
+ H176 1.0000 0.45171 0.43868 0.16977 Biso 1.000 H
+ H177 1.0000 0.67968 0.78502 0.16354 Biso 1.000 H
+ H178 1.0000 0.10534 0.32032 0.16354 Biso 1.000 H
+ H179 1.0000 0.21498 0.89466 0.16354 Biso 1.000 H
+ H180 1.0000 0.32032 0.21498 0.83646 Biso 1.000 H
+ H181 1.0000 0.89466 0.67968 0.83646 Biso 1.000 H
+ H182 1.0000 0.78502 0.10534 0.83646 Biso 1.000 H
+ H183 1.0000 0.19540 0.30160 0.82322 Biso 1.000 H
+ H184 1.0000 0.10619 0.80460 0.82322 Biso 1.000 H
+ H185 1.0000 0.69840 0.89381 0.82322 Biso 1.000 H
+ H186 1.0000 0.16664 0.85622 0.01192 Biso 1.000 H
+ H187 1.0000 0.68957 0.83336 0.01192 Biso 1.000 H
+ H188 1.0000 0.43868 0.98698 0.83023 Biso 1.000 H
+ H189 1.0000 0.16671 0.81043 0.65443 Biso 1.000 H
+ H190 1.0000 0.14378 0.31043 0.01192 Biso 1.000 H
+ H191 1.0000 0.97706 0.49994 0.32129 Biso 1.000 H
+ H192 1.0000 0.50006 0.47712 0.32129 Biso 1.000 H
+ H193 1.0000 0.47712 0.97706 0.67871 Biso 1.000 H
+ H194 1.0000 0.52288 0.02294 0.32129 Biso 1.000 H
+ H195 1.0000 0.49994 0.52288 0.67871 Biso 1.000 H
+ H196 1.0000 0.18957 0.35628 0.65443 Biso 1.000 H
+ H197 1.0000 0.64372 0.83329 0.65443 Biso 1.000 H
+ H198 1.0000 0.02294 0.50006 0.67871 Biso 1.000 H
+ Mg1 1.0000 0.29846 0.30760 0.52720 Biso 1.000 Mg
+ Mg2 1.0000 0.96512 0.64094 0.86059 Biso 1.000 Mg
+ Mg3 1.0000 0.67582 0.03488 0.86059 Biso 1.000 Mg
+ Mg4 1.0000 0.35906 0.32418 0.86059 Biso 1.000 Mg
+ Mg5 1.0000 0.70154 0.69240 0.47280 Biso 1.000 Mg
+ Mg6 1.0000 0.99085 0.29846 0.47280 Biso 1.000 Mg
+ Mg7 1.0000 0.30761 0.00915 0.47280 Biso 1.000 Mg
+ Mg8 1.0000 0.00915 0.70154 0.52720 Biso 1.000 Mg
+ Mg9 1.0000 0.03488 0.35906 0.13941 Biso 1.000 Mg
+ Mg10 1.0000 0.32418 0.96512 0.13941 Biso 1.000 Mg
+ Mg11 1.0000 0.64094 0.67582 0.13941 Biso 1.000 Mg
+ Mg12 1.0000 0.63180 0.97428 0.19390 Biso 1.000 Mg
+ Mg13 1.0000 0.34248 0.36820 0.19390 Biso 1.000 Mg
+ Mg14 1.0000 0.02572 0.65752 0.19390 Biso 1.000 Mg
+ Mg15 1.0000 0.36820 0.02572 0.80610 Biso 1.000 Mg
+ Mg16 1.0000 0.65752 0.63180 0.80610 Biso 1.000 Mg
+ Mg17 1.0000 0.69239 0.99085 0.52720 Biso 1.000 Mg
+ Mg18 1.0000 0.97428 0.34248 0.80610 Biso 1.000 Mg
+ N1 1.0000 0.95429 0.81467 0.68512 Biso 1.000 N
+ N2 1.0000 0.80628 0.28762 0.64827 Biso 1.000 N
+ N3 1.0000 0.48134 0.19372 0.64827 Biso 1.000 N
+ N4 1.0000 0.28762 0.48134 0.35173 Biso 1.000 N
+ N5 1.0000 0.19372 0.71238 0.35173 Biso 1.000 N
+ N6 1.0000 0.51866 0.80628 0.35173 Biso 1.000 N
+ N7 1.0000 0.71238 0.51866 0.64827 Biso 1.000 N
+ N8 1.0000 0.24481 0.99503 0.58316 Biso 1.000 N
+ N9 1.0000 0.47294 0.62097 0.98149 Biso 1.000 N
+ N10 1.0000 0.86039 0.04571 0.68512 Biso 1.000 N
+ N11 1.0000 0.32838 0.41689 0.08351 Biso 1.000 N
+ N12 1.0000 0.58311 0.91149 0.08351 Biso 1.000 N
+ N13 1.0000 0.08851 0.67162 0.08351 Biso 1.000 N
+ N14 1.0000 0.67162 0.58311 0.91649 Biso 1.000 N
+ N15 1.0000 0.41689 0.08851 0.91649 Biso 1.000 N
+ N16 1.0000 0.91149 0.32838 0.91649 Biso 1.000 N
+ N17 1.0000 0.99503 0.75022 0.41684 Biso 1.000 N
+ N18 1.0000 0.24978 0.24481 0.41684 Biso 1.000 N
+ N19 1.0000 0.75519 0.00497 0.41684 Biso 1.000 N
+ N20 1.0000 0.33829 0.91644 0.24977 Biso 1.000 N
+ N21 1.0000 0.08356 0.42186 0.24977 Biso 1.000 N
+ N22 1.0000 0.18533 0.13961 0.68512 Biso 1.000 N
+ N23 1.0000 0.57814 0.66171 0.24977 Biso 1.000 N
+ N24 1.0000 0.91644 0.57814 0.75023 Biso 1.000 N
+ N25 1.0000 0.42186 0.33829 0.75023 Biso 1.000 N
+ N26 1.0000 0.00497 0.24978 0.58316 Biso 1.000 N
+ N27 1.0000 0.13961 0.95429 0.31488 Biso 1.000 N
+ N28 1.0000 0.81467 0.86039 0.31488 Biso 1.000 N
+ N29 1.0000 0.04571 0.18533 0.31488 Biso 1.000 N
+ N30 1.0000 0.52706 0.37903 0.01851 Biso 1.000 N
+ N31 1.0000 0.85197 0.47294 0.01851 Biso 1.000 N
+ N32 1.0000 0.62097 0.14803 0.01851 Biso 1.000 N
+ N33 1.0000 0.14803 0.52706 0.98149 Biso 1.000 N
+ N34 1.0000 0.37903 0.85197 0.98149 Biso 1.000 N
+ N35 1.0000 0.66171 0.08356 0.75023 Biso 1.000 N
+ N36 1.0000 0.75022 0.75519 0.58316 Biso 1.000 N
+ O1 1.0000 0.95572 0.25935 0.25478 Biso 1.000 O
+ O2 1.0000 0.28901 0.92601 0.92138 Biso 1.000 O
+ O3 1.0000 0.98890 0.34951 0.34709 Biso 1.000 O
+ O4 1.0000 0.65050 0.63939 0.34709 Biso 1.000 O
+ O5 1.0000 0.36061 0.01110 0.34709 Biso 1.000 O
+ O6 1.0000 0.67778 0.98382 0.98619 Biso 1.000 O
+ O7 1.0000 0.01618 0.69396 0.98619 Biso 1.000 O
+ O8 1.0000 0.34109 0.05549 0.66578 Biso 1.000 O
+ O9 1.0000 0.94451 0.28560 0.66578 Biso 1.000 O
+ O10 1.0000 0.71440 0.65891 0.66578 Biso 1.000 O
+ O11 1.0000 0.65891 0.94451 0.33422 Biso 1.000 O
+ O12 1.0000 0.05549 0.71440 0.33422 Biso 1.000 O
+ O13 1.0000 0.28560 0.34109 0.33422 Biso 1.000 O
+ O14 1.0000 0.00778 0.38883 0.99897 Biso 1.000 O
+ O15 1.0000 0.61117 0.61895 0.99897 Biso 1.000 O
+ O16 1.0000 0.38105 0.99222 0.99897 Biso 1.000 O
+ O17 1.0000 0.32557 0.27784 0.66765 Biso 1.000 O
+ O18 1.0000 0.72216 0.04773 0.66765 Biso 1.000 O
+ O19 1.0000 0.95227 0.67442 0.66765 Biso 1.000 O
+ O20 1.0000 0.67443 0.72216 0.33235 Biso 1.000 O
+ O21 1.0000 0.27784 0.95227 0.33235 Biso 1.000 O
+ O22 1.0000 0.04773 0.32558 0.33235 Biso 1.000 O
+ O23 1.0000 0.99222 0.61117 0.00103 Biso 1.000 O
+ O24 1.0000 0.38883 0.38105 0.00103 Biso 1.000 O
+ O25 1.0000 0.61895 0.00778 0.00103 Biso 1.000 O
+ O26 1.0000 0.63939 0.98890 0.65291 Biso 1.000 O
+ O27 1.0000 0.63700 0.71099 0.92138 Biso 1.000 O
+ O28 1.0000 0.34950 0.36061 0.65291 Biso 1.000 O
+ O29 1.0000 0.69396 0.67778 0.01381 Biso 1.000 O
+ O30 1.0000 0.07399 0.36300 0.92138 Biso 1.000 O
+ O31 1.0000 0.36300 0.28901 0.07862 Biso 1.000 O
+ O32 1.0000 0.71099 0.07399 0.07862 Biso 1.000 O
+ O33 1.0000 0.92601 0.63700 0.07862 Biso 1.000 O
+ O34 1.0000 0.30363 0.04428 0.25477 Biso 1.000 O
+ O35 1.0000 0.74065 0.69637 0.25478 Biso 1.000 O
+ O36 1.0000 0.02966 0.62236 0.41201 Biso 1.000 O
+ O37 1.0000 0.37764 0.40730 0.41201 Biso 1.000 O
+ O38 1.0000 0.59270 0.97034 0.41201 Biso 1.000 O
+ O39 1.0000 0.97034 0.37764 0.58799 Biso 1.000 O
+ O40 1.0000 0.62236 0.59270 0.58799 Biso 1.000 O
+ O41 1.0000 0.40730 0.02966 0.58799 Biso 1.000 O
+ O42 1.0000 0.69637 0.95572 0.74523 Biso 1.000 O
+ O43 1.0000 0.04428 0.74065 0.74522 Biso 1.000 O
+ O44 1.0000 0.25935 0.30363 0.74522 Biso 1.000 O
+ O45 1.0000 0.65556 0.68285 0.68047 Biso 1.000 O
+ O46 1.0000 0.31715 0.97271 0.68047 Biso 1.000 O
+ O47 1.0000 0.02729 0.34444 0.68047 Biso 1.000 O
+ O48 1.0000 0.34444 0.31715 0.31953 Biso 1.000 O
+ O49 1.0000 0.68285 0.02729 0.31953 Biso 1.000 O
+ O50 1.0000 0.97271 0.65556 0.31953 Biso 1.000 O
+ O51 1.0000 0.32222 0.01618 0.01381 Biso 1.000 O
+ O52 1.0000 0.98382 0.30604 0.01381 Biso 1.000 O
+ O53 1.0000 0.01110 0.65049 0.65291 Biso 1.000 O
+ O54 1.0000 0.30604 0.32222 0.98619 Biso 1.000 O
diff --git a/benchmarks/mof/structures/flue_gas/Al-PyrMOF.cif b/benchmarks/mof/structures/flue_gas/Al-PyrMOF.cif
new file mode 100644
index 0000000000000000000000000000000000000000..60b9a8538959bd6fe9bf4dc74c3e61cd29368b86
--- /dev/null
+++ b/benchmarks/mof/structures/flue_gas/Al-PyrMOF.cif
@@ -0,0 +1,185 @@
+data_image0
+_chemical_formula_structural OC4OC4OC4OC5O2COCOCOC5OC4OC4OC4OCOCOCOAl4OHOHOHOHC2HC5HC5HC5HC5HC5HC5HC5HC5HC2HC2HC2H33
+_chemical_formula_sum "O20 C88 Al4 H48"
+_cell_length_a 30.779
+_cell_length_b 6.6323
+_cell_length_c 15.589
+_cell_angle_alpha 90
+_cell_angle_beta 90
+_cell_angle_gamma 90
+
+_space_group_name_H-M_alt "P 1"
+_space_group_IT_number 1
+
+loop_
+ _space_group_symop_operation_xyz
+ 'x, y, z'
+
+loop_
+ _atom_site_type_symbol
+ _atom_site_label
+ _atom_site_symmetry_multiplicity
+ _atom_site_fract_x
+ _atom_site_fract_y
+ _atom_site_fract_z
+ _atom_site_occupancy
+ O O1 1.0 0.20590 0.34840 0.09560 1.0000
+ C C1 1.0 0.17159 0.39543 0.26965 1.0000
+ C C2 1.0 0.14561 0.38868 0.34163 1.0000
+ C C3 1.0 0.09895 0.61376 0.27998 1.0000
+ C C4 1.0 0.12493 0.62051 0.20801 1.0000
+ O O2 1.0 0.70590 0.84840 0.09560 1.0000
+ C C5 1.0 0.67159 0.89543 0.26965 1.0000
+ C C6 1.0 0.64561 0.88868 0.34163 1.0000
+ C C7 1.0 0.59895 0.11376 0.27998 1.0000
+ C C8 1.0 0.62493 0.12051 0.20801 1.0000
+ O O3 1.0 0.79410 0.65160 0.09560 1.0000
+ C C9 1.0 0.82841 0.60457 0.26965 1.0000
+ C C10 1.0 0.85439 0.61132 0.34163 1.0000
+ C C11 1.0 0.90105 0.38624 0.27998 1.0000
+ C C12 1.0 0.87507 0.37949 0.20801 1.0000
+ O O4 1.0 0.29410 0.15160 0.09560 1.0000
+ C C13 1.0 0.33875 0.98866 0.20284 1.0000
+ C C14 1.0 0.32841 0.10457 0.26965 1.0000
+ C C15 1.0 0.35439 0.11132 0.34163 1.0000
+ C C16 1.0 0.40105 0.88624 0.27998 1.0000
+ C C17 1.0 0.37507 0.87949 0.20801 1.0000
+ O O5 1.0 0.79410 0.34840 0.90440 1.0000
+ O O6 1.0 0.29410 0.84840 0.90440 1.0000
+ C C18 1.0 0.33875 0.01134 0.79716 1.0000
+ O O7 1.0 0.20590 0.65160 0.90440 1.0000
+ C C19 1.0 0.16125 0.48866 0.79716 1.0000
+ O O8 1.0 0.70590 0.15160 0.90440 1.0000
+ C C20 1.0 0.66125 0.98866 0.79716 1.0000
+ O O9 1.0 0.79410 0.65160 0.90440 1.0000
+ C C21 1.0 0.83875 0.48866 0.79716 1.0000
+ C C22 1.0 0.82841 0.60457 0.73035 1.0000
+ C C23 1.0 0.85439 0.61132 0.65837 1.0000
+ C C24 1.0 0.90105 0.38624 0.72002 1.0000
+ C C25 1.0 0.87507 0.37949 0.79199 1.0000
+ O O10 1.0 0.29410 0.15160 0.90440 1.0000
+ C C26 1.0 0.32841 0.10457 0.73035 1.0000
+ C C27 1.0 0.35439 0.11132 0.65837 1.0000
+ C C28 1.0 0.40105 0.88624 0.72002 1.0000
+ C C29 1.0 0.37507 0.87949 0.79199 1.0000
+ O O11 1.0 0.20590 0.34840 0.90440 1.0000
+ C C30 1.0 0.17159 0.39543 0.73035 1.0000
+ C C31 1.0 0.14561 0.38868 0.65837 1.0000
+ C C32 1.0 0.09895 0.61376 0.72002 1.0000
+ C C33 1.0 0.12493 0.62051 0.79199 1.0000
+ O O12 1.0 0.70590 0.84840 0.90440 1.0000
+ C C34 1.0 0.67159 0.89543 0.73035 1.0000
+ C C35 1.0 0.64561 0.88868 0.65837 1.0000
+ C C36 1.0 0.59895 0.11376 0.72002 1.0000
+ C C37 1.0 0.62493 0.12051 0.79199 1.0000
+ O O13 1.0 0.20590 0.65160 0.09560 1.0000
+ C C38 1.0 0.16125 0.48866 0.20284 1.0000
+ O O14 1.0 0.70590 0.15160 0.09560 1.0000
+ C C39 1.0 0.66125 0.98866 0.20284 1.0000
+ O O15 1.0 0.79410 0.34840 0.09560 1.0000
+ C C40 1.0 0.83875 0.51134 0.20284 1.0000
+ O O16 1.0 0.29410 0.84840 0.09560 1.0000
+ Al Al1 1.0 0.25000 0.25000 0.00000 1.0000
+ Al Al2 1.0 0.75000 0.75000 0.00000 1.0000
+ Al Al3 1.0 0.75000 0.25000 0.00000 1.0000
+ Al Al4 1.0 0.25000 0.75000 0.00000 1.0000
+ O O17 1.0 0.28370 0.50000 0.00000 1.0000
+ H H1 1.0 0.31560 0.50000 0.00000 1.0000
+ O O18 1.0 0.78370 0.00000 0.00000 1.0000
+ H H2 1.0 0.81560 0.00000 0.00000 1.0000
+ O O19 1.0 0.71630 0.50000 0.00000 1.0000
+ H H3 1.0 0.68440 0.50000 0.00000 1.0000
+ O O20 1.0 0.21630 0.00000 0.00000 1.0000
+ H H4 1.0 0.18440 0.00000 0.00000 1.0000
+ C C41 1.0 0.19440 0.50000 0.12230 1.0000
+ C C42 1.0 0.02490 0.50000 0.33930 1.0000
+ H H5 1.0 0.04160 0.50000 0.28920 1.0000
+ C C43 1.0 0.09010 0.50000 0.42570 1.0000
+ C C44 1.0 0.04410 0.50000 0.42130 1.0000
+ C C45 1.0 0.10929 0.50000 0.34679 1.0000
+ C C46 1.0 0.69440 0.00000 0.12230 1.0000
+ C C47 1.0 0.52490 0.00000 0.33930 1.0000
+ H H6 1.0 0.54160 0.00000 0.28920 1.0000
+ C C48 1.0 0.59010 0.00000 0.42570 1.0000
+ C C49 1.0 0.54410 0.00000 0.42130 1.0000
+ C C50 1.0 0.60929 0.00000 0.34679 1.0000
+ C C51 1.0 0.80560 0.50000 0.12230 1.0000
+ C C52 1.0 0.97510 0.50000 0.33930 1.0000
+ H H7 1.0 0.95840 0.50000 0.28920 1.0000
+ C C53 1.0 0.90990 0.50000 0.42570 1.0000
+ C C54 1.0 0.95590 0.50000 0.42130 1.0000
+ C C55 1.0 0.89071 0.50000 0.34679 1.0000
+ C C56 1.0 0.30560 0.00000 0.12230 1.0000
+ C C57 1.0 0.47510 0.00000 0.33930 1.0000
+ H H8 1.0 0.45840 0.00000 0.28920 1.0000
+ C C58 1.0 0.40990 0.00000 0.42570 1.0000
+ C C59 1.0 0.45590 0.00000 0.42130 1.0000
+ C C60 1.0 0.39071 0.00000 0.34679 1.0000
+ C C61 1.0 0.80560 0.50000 0.87770 1.0000
+ C C62 1.0 0.97510 0.50000 0.66070 1.0000
+ H H9 1.0 0.95840 0.50000 0.71080 1.0000
+ C C63 1.0 0.90990 0.50000 0.57430 1.0000
+ C C64 1.0 0.95590 0.50000 0.57870 1.0000
+ C C65 1.0 0.89071 0.50000 0.65321 1.0000
+ C C66 1.0 0.30560 0.00000 0.87770 1.0000
+ C C67 1.0 0.47510 0.00000 0.66070 1.0000
+ H H10 1.0 0.45840 0.00000 0.71080 1.0000
+ C C68 1.0 0.40990 0.00000 0.57430 1.0000
+ C C69 1.0 0.45590 0.00000 0.57870 1.0000
+ C C70 1.0 0.39071 0.00000 0.65321 1.0000
+ C C71 1.0 0.19440 0.50000 0.87770 1.0000
+ C C72 1.0 0.02490 0.50000 0.66070 1.0000
+ H H11 1.0 0.04160 0.50000 0.71080 1.0000
+ C C73 1.0 0.09010 0.50000 0.57430 1.0000
+ C C74 1.0 0.04410 0.50000 0.57870 1.0000
+ C C75 1.0 0.10929 0.50000 0.65321 1.0000
+ C C76 1.0 0.69440 0.00000 0.87770 1.0000
+ C C77 1.0 0.52490 0.00000 0.66070 1.0000
+ H H12 1.0 0.54160 0.00000 0.71080 1.0000
+ C C78 1.0 0.59010 0.00000 0.57430 1.0000
+ C C79 1.0 0.54410 0.00000 0.57870 1.0000
+ C C80 1.0 0.60929 0.00000 0.65321 1.0000
+ C C81 1.0 0.02240 0.50000 0.50000 1.0000
+ C C82 1.0 0.11390 0.50000 0.50000 1.0000
+ H H13 1.0 0.14480 0.50000 0.50000 1.0000
+ C C83 1.0 0.52240 0.00000 0.50000 1.0000
+ C C84 1.0 0.61390 0.00000 0.50000 1.0000
+ H H14 1.0 0.64480 0.00000 0.50000 1.0000
+ C C85 1.0 0.97760 0.50000 0.50000 1.0000
+ C C86 1.0 0.88610 0.50000 0.50000 1.0000
+ H H15 1.0 0.85520 0.50000 0.50000 1.0000
+ C C87 1.0 0.47760 0.00000 0.50000 1.0000
+ C C88 1.0 0.38610 0.00000 0.50000 1.0000
+ H H16 1.0 0.35520 0.00000 0.50000 1.0000
+ H H17 1.0 0.70417 0.81367 0.26919 1.0000
+ H H18 1.0 0.65486 0.78752 0.39786 1.0000
+ H H19 1.0 0.56789 0.20721 0.28279 1.0000
+ H H20 1.0 0.61712 0.23049 0.15396 1.0000
+ H H21 1.0 0.20417 0.31367 0.26919 1.0000
+ H H22 1.0 0.15486 0.28752 0.39786 1.0000
+ H H23 1.0 0.06789 0.70721 0.28279 1.0000
+ H H24 1.0 0.11712 0.73049 0.15396 1.0000
+ H H25 1.0 0.79583 0.68633 0.26919 1.0000
+ H H26 1.0 0.84514 0.71248 0.39786 1.0000
+ H H27 1.0 0.93211 0.29279 0.28279 1.0000
+ H H28 1.0 0.88288 0.26951 0.15396 1.0000
+ H H29 1.0 0.29765 0.20023 0.26786 1.0000
+ H H30 1.0 0.34514 0.21248 0.39786 1.0000
+ H H31 1.0 0.43211 0.79279 0.28279 1.0000
+ H H32 1.0 0.38509 0.77836 0.15229 1.0000
+ H H33 1.0 0.79765 0.70023 0.73214 1.0000
+ H H34 1.0 0.84514 0.71248 0.60214 1.0000
+ H H35 1.0 0.93211 0.29279 0.71721 1.0000
+ H H36 1.0 0.88509 0.27836 0.84771 1.0000
+ H H37 1.0 0.29583 0.18633 0.73081 1.0000
+ H H38 1.0 0.34514 0.21248 0.60214 1.0000
+ H H39 1.0 0.43211 0.79279 0.71721 1.0000
+ H H40 1.0 0.38288 0.76951 0.84604 1.0000
+ H H41 1.0 0.20417 0.31367 0.73081 1.0000
+ H H42 1.0 0.15486 0.28752 0.60214 1.0000
+ H H43 1.0 0.06789 0.70721 0.71721 1.0000
+ H H44 1.0 0.11712 0.73049 0.84604 1.0000
+ H H45 1.0 0.70417 0.81367 0.73081 1.0000
+ H H46 1.0 0.65486 0.78752 0.60214 1.0000
+ H H47 1.0 0.56789 0.20721 0.71721 1.0000
+ H H48 1.0 0.61712 0.23049 0.84604 1.0000
diff --git a/benchmarks/mof/structures/flue_gas/CALF20.cif b/benchmarks/mof/structures/flue_gas/CALF20.cif
new file mode 100644
index 0000000000000000000000000000000000000000..a8cd85afe688a75219deeefab1c92e6649f848f5
--- /dev/null
+++ b/benchmarks/mof/structures/flue_gas/CALF20.cif
@@ -0,0 +1,79 @@
+data_CALF20
+_audit_creation_date 2025-01-03
+_audit_creation_method 'Materials Studio'
+_symmetry_space_group_name_H-M 'P21/C'
+_symmetry_Int_Tables_number 14
+_symmetry_cell_setting monoclinic
+loop_
+_symmetry_equiv_pos_as_xyz
+ x,y,z
+ -x,y+1/2,-z+1/2
+ -x,-y,-z
+ x,-y+1/2,z+1/2
+_cell_length_a 8.9138
+_cell_length_b 9.6935
+_cell_length_c 9.4836
+_cell_angle_alpha 90.0000
+_cell_angle_beta 115.8950
+_cell_angle_gamma 90.0000
+loop_
+_atom_site_label
+_atom_site_type_symbol
+_atom_site_fract_x
+_atom_site_fract_y
+_atom_site_fract_z
+_atom_site_U_iso_or_equiv
+_atom_site_adp_type
+_atom_site_occupancy
+Zn1 Zn 0.17588 0.05771 0.43679 0.01878 Uani 1.00
+N1 N 0.03080 -0.11080 0.36830 0.02235 Uani 1.00
+N2 N -0.09220 -0.14750 0.41000 0.02454 Uani 1.00
+N3 N -0.09920 -0.29140 0.22590 0.02563 Uani 1.00
+O1 O 0.40980 0.07610 0.61020 0.03235 Uani 1.00
+O2 O 0.67530 0.03070 0.67320 0.02972 Uani 1.00
+C1 C 0.02150 -0.19830 0.25880 0.02987 Uani 1.00
+H1A H 0.09320 -0.19550 0.20860 0.03600 Uiso 1.00
+C2 C -0.16550 -0.25540 0.32320 0.02964 Uani 1.00
+H2A H -0.25590 -0.30290 0.32890 0.03600 Uiso 1.00
+C3 C 0.52480 0.03080 0.58150 0.02323 Uani 1.00
+loop_
+_atom_site_aniso_label
+_atom_site_aniso_U_11
+_atom_site_aniso_U_22
+_atom_site_aniso_U_33
+_atom_site_aniso_U_12
+_atom_site_aniso_U_13
+_atom_site_aniso_U_23
+Zn1 0.01910 0.01960 0.02120 -0.00037 0.01210 0.00021
+N1 0.02510 0.02230 0.02770 -0.00420 0.01900 -0.00430
+N2 0.02610 0.02640 0.02940 -0.00570 0.01980 -0.00540
+N3 0.02870 0.02630 0.02900 -0.00580 0.01920 -0.00810
+O1 0.01990 0.04770 0.03200 0.00370 0.01370 -0.00870
+O2 0.02170 0.03940 0.02870 0.00180 0.01160 -0.00580
+C1 0.03180 0.03110 0.03860 -0.01080 0.02640 -0.01070
+C2 0.03200 0.03190 0.03800 -0.01230 0.02730 -0.01110
+C3 0.01980 0.02350 0.02720 0.00070 0.01100 0.00160
+loop_
+_geom_bond_atom_site_label_1
+_geom_bond_atom_site_label_2
+_geom_bond_distance
+_geom_bond_site_symmetry_2
+_ccdc_geom_bond_type
+Zn1 N1 2.007 . S
+Zn1 O1 2.022 . S
+Zn1 N3 2.016 2 S
+Zn1 N2 2.091 3_556 S
+Zn1 O2 2.189 3_656 S
+N1 C1 1.315 . S
+N1 N2 1.365 . S
+N2 C2 1.315 . S
+N2 Zn1 2.091 3_556 S
+N3 C1 1.333 . S
+N3 C2 1.341 . S
+N3 Zn1 2.016 2_545 S
+O1 C3 1.250 . S
+O2 C3 1.240 . S
+O2 Zn1 2.189 3_656 S
+C1 H1A 0.950 . S
+C2 H2A 0.950 . S
+C3 C3 1.531 3_656 S
diff --git a/benchmarks/mof/structures/flue_gas/MIL-120.cif b/benchmarks/mof/structures/flue_gas/MIL-120.cif
new file mode 100644
index 0000000000000000000000000000000000000000..21eedbae0ed0f1bb90b66e8d264f8cbb672b6ae2
--- /dev/null
+++ b/benchmarks/mof/structures/flue_gas/MIL-120.cif
@@ -0,0 +1,64 @@
+data_BUSQIQ_clean
+_audit_creation_date 2014-07-02
+_audit_creation_method 'Materials Studio'
+_symmetry_space_group_name_H-M 'P1'
+_symmetry_Int_Tables_number 1
+_symmetry_cell_setting triclinic
+loop_
+_symmetry_equiv_pos_as_xyz
+ x,y,z
+_cell_length_a 6.9941
+_cell_length_b 7.4890
+_cell_length_c 11.1461
+_cell_angle_alpha 107.8220
+_cell_angle_beta 106.3640
+_cell_angle_gamma 95.4664
+loop_
+_atom_site_label
+_atom_site_type_symbol
+_atom_site_fract_x
+_atom_site_fract_y
+_atom_site_fract_z
+_atom_site_U_iso_or_equiv
+_atom_site_adp_type
+_atom_site_occupancy
+Al1 Al 0.29518 0.29518 0.59036 0.01267 Uiso 1.00
+Al2 Al 0.70482 0.70482 0.40964 0.01267 Uiso 1.00
+Al3 Al 0.00000 0.50000 0.50000 0.01267 Uiso 1.00
+Al4 Al 0.50000 1.00000 0.50000 0.01267 Uiso 1.00
+H1 H 0.99400 0.31000 0.64800 0.01267 Uiso 1.00
+H2 H 0.14200 0.97300 0.47800 0.01267 Uiso 1.00
+H3 H 0.65400 0.33800 0.64800 0.01267 Uiso 1.00
+H4 H 0.33600 0.50500 0.47800 0.01267 Uiso 1.00
+H5 H 0.00600 0.69000 0.35200 0.01267 Uiso 1.00
+H6 H 0.85800 0.02700 0.52200 0.01267 Uiso 1.00
+H7 H 0.34600 0.66200 0.35200 0.01267 Uiso 1.00
+H8 H 0.66400 0.49500 0.52200 0.01267 Uiso 1.00
+H9 H 0.55190 0.31210 -0.00000 0.01267 Uiso 1.00
+H10 H 0.44810 0.68790 -0.00000 0.01267 Uiso 1.00
+C1 C 0.42680 0.06950 0.75140 0.01267 Uiso 1.00
+C2 C 0.45580 0.03390 0.88040 0.01267 Uiso 1.00
+C3 C 0.32460 0.68190 0.75140 0.01267 Uiso 1.00
+C4 C 0.42460 0.84650 0.88040 0.01267 Uiso 1.00
+C5 C 0.57320 0.93050 0.24860 0.01267 Uiso 1.00
+C6 C 0.54420 0.96610 0.11960 0.01267 Uiso 1.00
+C7 C 0.67540 0.31810 0.24860 0.01267 Uiso 1.00
+C8 C 0.57540 0.15350 0.11960 0.01267 Uiso 1.00
+C9 C 0.53070 0.18490 0.00000 0.01267 Uiso 1.00
+C10 C 0.46930 0.81510 0.00000 0.01267 Uiso 1.00
+O1 O 0.02770 0.31620 0.58360 0.01267 Uiso 1.00
+O2 O 0.23550 0.04250 0.46700 0.01267 Uiso 1.00
+O3 O 0.32790 0.19900 0.73560 0.01267 Uiso 1.00
+O4 O 0.50340 0.97020 0.66940 0.01267 Uiso 1.00
+O5 O 0.55590 0.26740 0.58360 0.01267 Uiso 1.00
+O6 O 0.23150 0.42450 0.46700 0.01267 Uiso 1.00
+O7 O 0.40770 0.53660 0.73560 0.01267 Uiso 1.00
+O8 O 0.16600 0.69920 0.66940 0.01267 Uiso 1.00
+O9 O 0.97230 0.68380 0.41640 0.01267 Uiso 1.00
+O10 O 0.76450 0.95750 0.53300 0.01267 Uiso 1.00
+O11 O 0.67210 0.80100 0.26440 0.01267 Uiso 1.00
+O12 O 0.49660 0.02980 0.33060 0.01267 Uiso 1.00
+O13 O 0.44410 0.73260 0.41640 0.01267 Uiso 1.00
+O14 O 0.76850 0.57550 0.53300 0.01267 Uiso 1.00
+O15 O 0.59230 0.46340 0.26440 0.01267 Uiso 1.00
+O16 O 0.83400 0.30080 0.33060 0.01267 Uiso 1.00
diff --git a/benchmarks/mof/structures/flue_gas/MIL-96(Al).cif b/benchmarks/mof/structures/flue_gas/MIL-96(Al).cif
new file mode 100644
index 0000000000000000000000000000000000000000..49b82762d6755cb6aa5dc3cfe2b6ce16d412db6d
--- /dev/null
+++ b/benchmarks/mof/structures/flue_gas/MIL-96(Al).cif
@@ -0,0 +1,1120 @@
+data_cm7b03203_si_003
+_audit_creation_date 2025-01-21
+_audit_creation_method 'Materials Studio'
+_symmetry_space_group_name_H-M 'P1'
+_symmetry_Int_Tables_number 1
+_symmetry_cell_setting triclinic
+loop_
+_symmetry_equiv_pos_as_xyz
+ x,y,z
+_cell_length_a 14.2900
+_cell_length_b 14.2900
+_cell_length_c 31.3000
+_cell_angle_alpha 90.0000
+_cell_angle_beta 90.0000
+_cell_angle_gamma 120.0000
+loop_
+_atom_site_label
+_atom_site_type_symbol
+_atom_site_fract_x
+_atom_site_fract_y
+_atom_site_fract_z
+_atom_site_U_iso_or_equiv
+_atom_site_adp_type
+_atom_site_occupancy
+O1 O 0.82863 0.99283 0.70681 0.05110 Uani 1.00
+O2 O 0.62232 0.05854 0.59420 0.05078 Uani 1.00
+O3 O 0.56890 0.95117 0.53712 0.06411 Uani 1.00
+C4 C 0.70600 0.93630 0.63241 0.05891 Uani 1.00
+H5 H 0.72690 0.00440 0.64510 0.07100 Uiso 1.00
+C6 C 0.64390 0.90620 0.59422 0.05929 Uani 1.00
+C7 C 0.60910 0.97520 0.57378 0.05387 Uani 1.00
+H8 H 0.39645 0.79395 0.49614 0.00000 Uiso 1.00
+H9 H 0.86732 0.66988 0.72275 0.00000 Uiso 1.00
+H10 H 0.77462 0.54924 0.95020 0.00000 Uiso 1.00
+O11 O 0.00717 0.83580 0.70681 0.05110 Uani 1.00
+O12 O 0.94146 0.56378 0.59420 0.05078 Uani 1.00
+O13 O 0.04883 0.61773 0.53712 0.06411 Uani 1.00
+C14 C 0.06370 0.76970 0.63241 0.05891 Uani 1.00
+H15 H 0.99560 0.72250 0.64510 0.07100 Uiso 1.00
+C16 C 0.09380 0.73770 0.59422 0.05929 Uani 1.00
+C17 C 0.02480 0.63390 0.57378 0.05387 Uani 1.00
+H18 H 0.20605 0.60250 0.49614 0.00000 Uiso 1.00
+H19 H 0.45075 0.22537 0.95019 0.00000 Uiso 1.00
+O20 O 0.16420 0.17137 0.70681 0.05110 Uani 1.00
+O21 O 0.43622 0.37768 0.59420 0.05078 Uani 1.00
+O22 O 0.38227 0.43110 0.53712 0.06411 Uani 1.00
+C23 C 0.23030 0.29400 0.63241 0.05891 Uani 1.00
+H24 H 0.27750 0.27310 0.64510 0.07100 Uiso 1.00
+C25 C 0.26230 0.35610 0.59422 0.05929 Uani 1.00
+C26 C 0.36610 0.39090 0.57378 0.05387 Uani 1.00
+H27 H 0.39750 0.60355 0.49614 0.00000 Uiso 1.00
+H28 H 0.80165 0.13109 0.72240 0.00000 Uiso 1.00
+H29 H 0.63445 0.14726 0.84378 0.00000 Uiso 1.00
+O30 O 0.17137 0.00717 0.20681 0.05110 Uani 1.00
+O31 O 0.37768 0.94146 0.09420 0.05078 Uani 1.00
+O32 O 0.43110 0.04883 0.03712 0.06411 Uani 1.00
+C33 C 0.29400 0.06370 0.13241 0.05891 Uani 1.00
+H34 H 0.27310 0.99560 0.14510 0.07100 Uiso 1.00
+C35 C 0.35610 0.09380 0.09422 0.05929 Uani 1.00
+C36 C 0.39090 0.02480 0.07378 0.05387 Uani 1.00
+H37 H 0.60355 0.20605 0.99614 0.00000 Uiso 1.00
+H38 H 0.13339 0.32882 0.22106 0.00000 Uiso 1.00
+H39 H 0.14968 0.51499 0.33850 0.00000 Uiso 1.00
+O40 O 0.99283 0.16420 0.20681 0.05110 Uani 1.00
+O41 O 0.05854 0.43622 0.09420 0.05078 Uani 1.00
+O42 O 0.95117 0.38227 0.03712 0.06411 Uani 1.00
+C43 C 0.93630 0.23030 0.13241 0.05891 Uani 1.00
+H44 H 0.00440 0.27750 0.14510 0.07100 Uiso 1.00
+C45 C 0.90620 0.26230 0.09422 0.05929 Uani 1.00
+C46 C 0.97520 0.36610 0.07378 0.05387 Uani 1.00
+H47 H 0.79395 0.39750 0.99614 0.00000 Uiso 1.00
+O48 O 0.83580 0.82863 0.20681 0.05110 Uani 1.00
+O49 O 0.56378 0.62232 0.09420 0.05078 Uani 1.00
+O50 O 0.61773 0.56890 0.03712 0.06411 Uani 1.00
+C51 C 0.76970 0.70600 0.13241 0.05891 Uani 1.00
+H52 H 0.72250 0.72690 0.14510 0.07100 Uiso 1.00
+C53 C 0.73770 0.64390 0.09422 0.05929 Uani 1.00
+C54 C 0.63390 0.60910 0.07378 0.05387 Uani 1.00
+H55 H 0.60250 0.39645 0.99614 0.00000 Uiso 1.00
+H56 H 0.22545 0.77455 0.45030 0.00000 Uiso 1.00
+O57 O 0.99283 0.82863 0.29319 0.05110 Uani 1.00
+O58 O 0.05854 0.62232 0.40580 0.05078 Uani 1.00
+O59 O 0.95117 0.56890 0.46288 0.06411 Uani 1.00
+C60 C 0.93630 0.70600 0.36759 0.05891 Uani 1.00
+H61 H 0.00440 0.72690 0.35490 0.07100 Uiso 1.00
+C62 C 0.90620 0.64390 0.40578 0.05929 Uani 1.00
+C63 C 0.97520 0.60910 0.42622 0.05387 Uani 1.00
+H64 H 0.79395 0.39645 0.50386 0.00000 Uiso 1.00
+H65 H 0.67316 0.87405 0.27918 0.00000 Uiso 1.00
+H66 H 0.54906 0.77453 0.04968 0.00000 Uiso 1.00
+H67 H 0.48717 0.85271 0.15622 0.00000 Uiso 1.00
+O68 O 0.83580 0.00717 0.29319 0.05110 Uani 1.00
+O69 O 0.56378 0.94146 0.40580 0.05078 Uani 1.00
+O70 O 0.61773 0.04883 0.46288 0.06411 Uani 1.00
+C71 C 0.76970 0.06370 0.36759 0.05891 Uani 1.00
+H72 H 0.72250 0.99560 0.35490 0.07100 Uiso 1.00
+C73 C 0.73770 0.09380 0.40578 0.05929 Uani 1.00
+C74 C 0.63390 0.02480 0.42622 0.05387 Uani 1.00
+H75 H 0.60250 0.20605 0.50386 0.00000 Uiso 1.00
+H76 H 0.36531 0.51499 0.16150 0.00000 Uiso 1.00
+O77 O 0.17137 0.16420 0.29319 0.05110 Uani 1.00
+O78 O 0.37768 0.43622 0.40580 0.05078 Uani 1.00
+O79 O 0.43110 0.38227 0.46288 0.06411 Uani 1.00
+C80 C 0.29400 0.23030 0.36759 0.05891 Uani 1.00
+H81 H 0.27310 0.27750 0.35490 0.07100 Uiso 1.00
+C82 C 0.35610 0.26230 0.40578 0.05929 Uani 1.00
+C83 C 0.39090 0.36610 0.42622 0.05387 Uani 1.00
+H84 H 0.60355 0.39750 0.50386 0.00000 Uiso 1.00
+H85 H 0.13151 0.80505 0.28094 0.00000 Uiso 1.00
+O86 O 0.00717 0.17137 0.79319 0.05110 Uani 1.00
+O87 O 0.94146 0.37768 0.90580 0.05078 Uani 1.00
+O88 O 0.04883 0.43110 0.96288 0.06411 Uani 1.00
+C89 C 0.06370 0.29400 0.86759 0.05891 Uani 1.00
+H90 H 0.99560 0.27310 0.85490 0.07100 Uiso 1.00
+C91 C 0.09380 0.35610 0.90578 0.05929 Uani 1.00
+C92 C 0.02480 0.39090 0.92622 0.05387 Uani 1.00
+H93 H 0.20605 0.60355 0.00386 0.00000 Uiso 1.00
+H94 H 0.32728 0.12552 0.77857 0.00000 Uiso 1.00
+O95 O 0.16420 0.99283 0.79319 0.05110 Uani 1.00
+O96 O 0.43622 0.05854 0.90580 0.05078 Uani 1.00
+O97 O 0.38227 0.95117 0.96288 0.06411 Uani 1.00
+C98 C 0.23030 0.93630 0.86759 0.05891 Uani 1.00
+H99 H 0.27750 0.00440 0.85490 0.07100 Uiso 1.00
+C100 C 0.26230 0.90620 0.90578 0.05929 Uani 1.00
+C101 C 0.36610 0.97520 0.92622 0.05387 Uani 1.00
+H102 H 0.39750 0.79395 0.00386 0.00000 Uiso 1.00
+H103 H 0.67622 0.47466 0.65259 0.00000 Uiso 1.00
+O104 O 0.82863 0.83580 0.79319 0.05110 Uani 1.00
+O105 O 0.62232 0.56378 0.90580 0.05078 Uani 1.00
+O106 O 0.56890 0.61773 0.96288 0.06411 Uani 1.00
+C107 C 0.70600 0.76970 0.86759 0.05891 Uani 1.00
+H108 H 0.72690 0.72250 0.85490 0.07100 Uiso 1.00
+C109 C 0.64390 0.73770 0.90578 0.05929 Uani 1.00
+C110 C 0.60910 0.63390 0.92622 0.05387 Uani 1.00
+H111 H 0.39645 0.60250 0.00386 0.00000 Uiso 1.00
+H112 H 0.77463 0.22537 0.54981 0.00000 Uiso 1.00
+H113 H 0.84500 0.36774 0.65751 0.00000 Uiso 1.00
+O114 O 0.17137 0.00717 0.29319 0.05110 Uani 1.00
+O115 O 0.37768 0.94146 0.40580 0.05078 Uani 1.00
+O116 O 0.43110 0.04883 0.46288 0.06411 Uani 1.00
+C117 C 0.29400 0.06370 0.36759 0.05891 Uani 1.00
+H118 H 0.27310 0.99560 0.35490 0.07100 Uiso 1.00
+C119 C 0.35610 0.09380 0.40578 0.05929 Uani 1.00
+C120 C 0.39090 0.02480 0.42622 0.05387 Uani 1.00
+H121 H 0.60355 0.20605 0.50386 0.00000 Uiso 1.00
+H122 H 0.13339 0.32878 0.27898 0.00000 Uiso 1.00
+H123 H 0.22544 0.45087 0.04972 0.00000 Uiso 1.00
+H124 H 0.14968 0.51499 0.16150 0.00000 Uiso 1.00
+O125 O 0.99283 0.16420 0.29319 0.05110 Uani 1.00
+O126 O 0.05854 0.43622 0.40580 0.05078 Uani 1.00
+O127 O 0.95117 0.38227 0.46288 0.06411 Uani 1.00
+C128 C 0.93630 0.23030 0.36759 0.05891 Uani 1.00
+H129 H 0.00440 0.27750 0.35490 0.07100 Uiso 1.00
+C130 C 0.90620 0.26230 0.40578 0.05929 Uani 1.00
+C131 C 0.97520 0.36610 0.42622 0.05387 Uani 1.00
+H132 H 0.79395 0.39750 0.50386 0.00000 Uiso 1.00
+O133 O 0.83580 0.82863 0.29319 0.05110 Uani 1.00
+O134 O 0.56378 0.62232 0.40580 0.05078 Uani 1.00
+O135 O 0.61773 0.56890 0.46288 0.06411 Uani 1.00
+C136 C 0.76970 0.70600 0.36759 0.05891 Uani 1.00
+H137 H 0.72250 0.72690 0.35490 0.07100 Uiso 1.00
+C138 C 0.73770 0.64390 0.40578 0.05929 Uani 1.00
+C139 C 0.63390 0.60910 0.42622 0.05387 Uani 1.00
+H140 H 0.60250 0.39645 0.50386 0.00000 Uiso 1.00
+H141 H 0.22545 0.77455 0.04971 0.00000 Uiso 1.00
+O142 O 0.82863 0.99283 0.79319 0.05110 Uani 1.00
+O143 O 0.62232 0.05854 0.90580 0.05078 Uani 1.00
+O144 O 0.56890 0.95117 0.96288 0.06411 Uani 1.00
+C145 C 0.70600 0.93630 0.86759 0.05891 Uani 1.00
+H146 H 0.72690 0.00440 0.85490 0.07100 Uiso 1.00
+C147 C 0.64390 0.90620 0.90578 0.05929 Uani 1.00
+C148 C 0.60910 0.97520 0.92622 0.05387 Uani 1.00
+H149 H 0.39645 0.79395 0.00386 0.00000 Uiso 1.00
+H150 H 0.86750 0.67305 0.78065 0.00000 Uiso 1.00
+H151 H 0.77462 0.54924 0.54980 0.00000 Uiso 1.00
+O152 O 0.00717 0.83580 0.79319 0.05110 Uani 1.00
+O153 O 0.94146 0.56378 0.90580 0.05078 Uani 1.00
+O154 O 0.04883 0.61773 0.96288 0.06411 Uani 1.00
+C155 C 0.06370 0.76970 0.86759 0.05891 Uani 1.00
+H156 H 0.99560 0.72250 0.85490 0.07100 Uiso 1.00
+C157 C 0.09380 0.73770 0.90578 0.05929 Uani 1.00
+C158 C 0.02480 0.63390 0.92622 0.05387 Uani 1.00
+H159 H 0.20605 0.60250 0.00386 0.00000 Uiso 1.00
+H160 H 0.45074 0.22537 0.54981 0.00000 Uiso 1.00
+O161 O 0.16420 0.17137 0.79319 0.05110 Uani 1.00
+O162 O 0.43622 0.37768 0.90580 0.05078 Uani 1.00
+O163 O 0.38227 0.43110 0.96288 0.06411 Uani 1.00
+C164 C 0.23030 0.29400 0.86759 0.05891 Uani 1.00
+H165 H 0.27750 0.27310 0.85490 0.07100 Uiso 1.00
+C166 C 0.26230 0.35610 0.90578 0.05929 Uani 1.00
+C167 C 0.36610 0.39090 0.92622 0.05387 Uani 1.00
+H168 H 0.39750 0.60355 0.00386 0.00000 Uiso 1.00
+H169 H 0.79810 0.12329 0.78023 0.00000 Uiso 1.00
+H170 H 0.63448 0.14732 0.65622 0.00000 Uiso 1.00
+O171 O 0.00717 0.17137 0.70681 0.05110 Uani 1.00
+O172 O 0.94146 0.37768 0.59420 0.05078 Uani 1.00
+O173 O 0.04883 0.43110 0.53712 0.06411 Uani 1.00
+C174 C 0.06370 0.29400 0.63241 0.05891 Uani 1.00
+H175 H 0.99560 0.27310 0.64510 0.07100 Uiso 1.00
+C176 C 0.09380 0.35610 0.59422 0.05929 Uani 1.00
+C177 C 0.02480 0.39090 0.57378 0.05387 Uani 1.00
+H178 H 0.20605 0.60355 0.49614 0.00000 Uiso 1.00
+H179 H 0.32680 0.12639 0.72066 0.00000 Uiso 1.00
+O180 O 0.16420 0.99283 0.70681 0.05110 Uani 1.00
+O181 O 0.43622 0.05854 0.59420 0.05078 Uani 1.00
+O182 O 0.38227 0.95117 0.53712 0.06411 Uani 1.00
+C183 C 0.23030 0.93630 0.63241 0.05891 Uani 1.00
+H184 H 0.27750 0.00440 0.64510 0.07100 Uiso 1.00
+C185 C 0.26230 0.90620 0.59422 0.05929 Uani 1.00
+C186 C 0.36610 0.97520 0.57378 0.05387 Uani 1.00
+H187 H 0.39750 0.79395 0.49614 0.00000 Uiso 1.00
+H188 H 0.67625 0.47461 0.84742 0.00000 Uiso 1.00
+O189 O 0.82863 0.83580 0.70681 0.05110 Uani 1.00
+O190 O 0.62232 0.56378 0.59420 0.05078 Uani 1.00
+O191 O 0.56890 0.61773 0.53712 0.06411 Uani 1.00
+C192 C 0.70600 0.76970 0.63241 0.05891 Uani 1.00
+H193 H 0.72690 0.72250 0.64510 0.07100 Uiso 1.00
+C194 C 0.64390 0.73770 0.59422 0.05929 Uani 1.00
+C195 C 0.60910 0.63390 0.57378 0.05387 Uani 1.00
+H196 H 0.39645 0.60250 0.49614 0.00000 Uiso 1.00
+H197 H 0.77462 0.22538 0.95020 0.00000 Uiso 1.00
+H198 H 0.84507 0.36775 0.84249 0.00000 Uiso 1.00
+O199 O 0.99283 0.82863 0.20681 0.05110 Uani 1.00
+O200 O 0.05854 0.62232 0.09420 0.05078 Uani 1.00
+O201 O 0.95117 0.56890 0.03712 0.06411 Uani 1.00
+C202 C 0.93630 0.70600 0.13241 0.05891 Uani 1.00
+H203 H 0.00440 0.72690 0.14510 0.07100 Uiso 1.00
+C204 C 0.90620 0.64390 0.09422 0.05929 Uani 1.00
+C205 C 0.97520 0.60910 0.07378 0.05387 Uani 1.00
+H206 H 0.79395 0.39645 0.99614 0.00000 Uiso 1.00
+H207 H 0.67306 0.87529 0.22127 0.00000 Uiso 1.00
+H208 H 0.54911 0.77456 0.45029 0.00000 Uiso 1.00
+H209 H 0.48716 0.85268 0.34378 0.00000 Uiso 1.00
+O210 O 0.83580 0.00717 0.20681 0.05110 Uani 1.00
+O211 O 0.56378 0.94146 0.09420 0.05078 Uani 1.00
+O212 O 0.61773 0.04883 0.03712 0.06411 Uani 1.00
+C213 C 0.76970 0.06370 0.13241 0.05891 Uani 1.00
+H214 H 0.72250 0.99560 0.14510 0.07100 Uiso 1.00
+C215 C 0.73770 0.09380 0.09422 0.05929 Uani 1.00
+C216 C 0.63390 0.02480 0.07378 0.05387 Uani 1.00
+H217 H 0.60250 0.20605 0.99614 0.00000 Uiso 1.00
+H218 H 0.22546 0.45092 0.45031 0.00000 Uiso 1.00
+H219 H 0.36531 0.51499 0.33850 0.00000 Uiso 1.00
+O220 O 0.17137 0.16420 0.20681 0.05110 Uani 1.00
+O221 O 0.37768 0.43622 0.09420 0.05078 Uani 1.00
+O222 O 0.43110 0.38227 0.03712 0.06411 Uani 1.00
+C223 C 0.29400 0.23030 0.13241 0.05891 Uani 1.00
+H224 H 0.27310 0.27750 0.14510 0.07100 Uiso 1.00
+C225 C 0.35610 0.26230 0.09422 0.05929 Uani 1.00
+C226 C 0.39090 0.36610 0.07378 0.05387 Uani 1.00
+H227 H 0.60355 0.39750 0.99614 0.00000 Uiso 1.00
+H228 H 0.13294 0.80252 0.22304 0.00000 Uiso 1.00
+Al229 Al 0.92604 0.07396 0.75000 0.04466 Uani 1.00
+O230 O 0.85142 0.14877 0.75172 0.04842 Uani 1.00
+Al231 Al 0.92604 0.85208 0.75000 0.04466 Uani 1.00
+O232 O 0.84727 0.70269 0.75126 0.04842 Uani 1.00
+Al233 Al 0.14792 0.07396 0.75000 0.04466 Uani 1.00
+O234 O 0.29741 0.14791 0.74980 0.04842 Uani 1.00
+Al235 Al 0.07396 0.92604 0.25000 0.04466 Uani 1.00
+O236 O 0.15246 0.85517 0.25159 0.04842 Uani 1.00
+Al237 Al 0.07396 0.14792 0.25000 0.04466 Uani 1.00
+O238 O 0.15325 0.29733 0.25002 0.04842 Uani 1.00
+Al239 Al 0.85208 0.92604 0.25000 0.04466 Uani 1.00
+O240 O 0.70260 0.85255 0.25005 0.04842 Uani 1.00
+Al241 Al 0.50000 -0.00000 0.50000 0.04422 Uani 1.00
+Al242 Al 0.00000 0.50000 0.50000 0.04422 Uani 1.00
+Al243 Al 0.50000 0.50000 0.50000 0.04422 Uani 1.00
+Al244 Al 0.50000 -0.00000 0.00000 0.04422 Uani 1.00
+Al245 Al 0.00000 0.50000 0.00000 0.04422 Uani 1.00
+Al246 Al 0.50000 0.50000 0.00000 0.04422 Uani 1.00
+Al247 Al 0.41534 0.83068 0.41659 0.04683 Uani 1.00
+O248 O 0.43275 0.86550 0.47476 0.04364 Uani 1.00
+O249 O 0.40497 0.81158 0.35797 0.07053 Uani 1.00
+Al250 Al 0.16932 0.58466 0.41659 0.04683 Uani 1.00
+O251 O 0.13450 0.56725 0.47476 0.04364 Uani 1.00
+O252 O 0.18870 0.59435 0.35503 0.07053 Uani 1.00
+Al253 Al 0.41534 0.58466 0.41659 0.04683 Uani 1.00
+O254 O 0.43275 0.56725 0.47476 0.04364 Uani 1.00
+O255 O 0.40565 0.59435 0.35503 0.07053 Uani 1.00
+Al256 Al 0.58466 0.16932 0.91659 0.04683 Uani 1.00
+O257 O 0.56725 0.13450 0.97476 0.04364 Uani 1.00
+O258 O 0.59334 0.18834 0.85797 0.07053 Uani 1.00
+Al259 Al 0.83068 0.41534 0.91659 0.04683 Uani 1.00
+O260 O 0.86550 0.43275 0.97476 0.04364 Uani 1.00
+O261 O 0.80483 0.40764 0.85843 0.07053 Uani 1.00
+Al262 Al 0.58466 0.41534 0.91659 0.04683 Uani 1.00
+O263 O 0.56725 0.43275 0.97476 0.04364 Uani 1.00
+O264 O 0.59921 0.40486 0.85834 0.07053 Uani 1.00
+Al265 Al 0.83068 0.41534 0.58341 0.04683 Uani 1.00
+O266 O 0.86550 0.43275 0.52524 0.04364 Uani 1.00
+O267 O 0.80486 0.40772 0.64158 0.07053 Uani 1.00
+Al268 Al 0.58466 0.16932 0.58341 0.04683 Uani 1.00
+O269 O 0.56725 0.13450 0.52524 0.04364 Uani 1.00
+O270 O 0.59336 0.18839 0.64203 0.07053 Uani 1.00
+Al271 Al 0.58466 0.41534 0.58341 0.04683 Uani 1.00
+O272 O 0.56725 0.43275 0.52524 0.04364 Uani 1.00
+O273 O 0.59920 0.40488 0.64166 0.07053 Uani 1.00
+Al274 Al 0.16932 0.58466 0.08341 0.04683 Uani 1.00
+O275 O 0.13450 0.56725 0.02524 0.04364 Uani 1.00
+O276 O 0.18870 0.59435 0.14497 0.07053 Uani 1.00
+Al277 Al 0.41534 0.83068 0.08341 0.04683 Uani 1.00
+O278 O 0.43275 0.86550 0.02524 0.04364 Uani 1.00
+O279 O 0.40498 0.81161 0.14203 0.07053 Uani 1.00
+Al280 Al 0.41534 0.58466 0.08341 0.04683 Uani 1.00
+O281 O 0.43275 0.56725 0.02524 0.04364 Uani 1.00
+O282 O 0.40565 0.59435 0.14497 0.07053 Uani 1.00
+O283 O 0.00000 0.00000 0.75000 0.03909 Uani 1.00
+O284 O 0.00000 0.00000 0.25000 0.03909 Uani 1.00
+O285 O 0.26387 0.73613 0.43201 0.05318 Uani 1.00
+O286 O 0.26387 0.52775 0.43201 0.05318 Uani 1.00
+O287 O 0.47226 0.73613 0.43200 0.05318 Uani 1.00
+O288 O 0.73614 0.26386 0.93201 0.05318 Uani 1.00
+O289 O 0.73614 0.47228 0.93201 0.05318 Uani 1.00
+O290 O 0.52772 0.26386 0.93201 0.05318 Uani 1.00
+O291 O 0.73614 0.26386 0.56799 0.05318 Uani 1.00
+O292 O 0.52772 0.26386 0.56799 0.05318 Uani 1.00
+O293 O 0.73614 0.47227 0.56799 0.05318 Uani 1.00
+O294 O 0.26387 0.73613 0.06799 0.05318 Uani 1.00
+O295 O 0.47224 0.73612 0.06798 0.05318 Uani 1.00
+O296 O 0.26386 0.52773 0.06800 0.05318 Uani 1.00
+C297 C 0.73650 0.86825 0.65150 0.05511 Uani 1.00
+C298 C 0.61800 0.80900 0.57680 0.06433 Uani 1.00
+H299 H 0.57900 0.78950 0.55070 0.07700 Uiso 1.00
+C300 C 0.80300 0.90150 0.69154 0.05253 Uani 1.00
+C301 C 0.13175 0.86825 0.65150 0.05511 Uani 1.00
+C302 C 0.19100 0.80900 0.57680 0.06433 Uani 1.00
+H303 H 0.21050 0.78950 0.55070 0.07700 Uiso 1.00
+C304 C 0.09850 0.90150 0.69154 0.05253 Uani 1.00
+C305 C 0.13175 0.26350 0.65150 0.05511 Uani 1.00
+C306 C 0.19100 0.38200 0.57680 0.06433 Uani 1.00
+H307 H 0.21050 0.42100 0.55070 0.07700 Uiso 1.00
+C308 C 0.09850 0.19700 0.69154 0.05253 Uani 1.00
+C309 C 0.26350 0.13175 0.15150 0.05511 Uani 1.00
+C310 C 0.38200 0.19100 0.07680 0.06433 Uani 1.00
+H311 H 0.42100 0.21050 0.05070 0.07700 Uiso 1.00
+C312 C 0.19700 0.09850 0.19154 0.05253 Uani 1.00
+C313 C 0.86825 0.13175 0.15150 0.05511 Uani 1.00
+C314 C 0.80900 0.19100 0.07680 0.06433 Uani 1.00
+H315 H 0.78950 0.21050 0.05070 0.07700 Uiso 1.00
+C316 C 0.90150 0.09850 0.19154 0.05253 Uani 1.00
+C317 C 0.86825 0.73650 0.15150 0.05511 Uani 1.00
+C318 C 0.80900 0.61800 0.07680 0.06433 Uani 1.00
+H319 H 0.78950 0.57900 0.05070 0.07700 Uiso 1.00
+C320 C 0.90150 0.80300 0.19154 0.05253 Uani 1.00
+C321 C 0.86825 0.73650 0.34850 0.05511 Uani 1.00
+C322 C 0.80900 0.61800 0.42320 0.06433 Uani 1.00
+H323 H 0.78950 0.57900 0.44930 0.07700 Uiso 1.00
+C324 C 0.90150 0.80300 0.30846 0.05253 Uani 1.00
+C325 C 0.86825 0.13175 0.34850 0.05511 Uani 1.00
+C326 C 0.80900 0.19100 0.42320 0.06433 Uani 1.00
+H327 H 0.78950 0.21050 0.44930 0.07700 Uiso 1.00
+C328 C 0.90150 0.09850 0.30846 0.05253 Uani 1.00
+C329 C 0.26350 0.13175 0.34850 0.05511 Uani 1.00
+C330 C 0.38200 0.19100 0.42320 0.06433 Uani 1.00
+H331 H 0.42100 0.21050 0.44930 0.07700 Uiso 1.00
+C332 C 0.19700 0.09850 0.30846 0.05253 Uani 1.00
+C333 C 0.13175 0.26350 0.84850 0.05511 Uani 1.00
+C334 C 0.19100 0.38200 0.92320 0.06433 Uani 1.00
+H335 H 0.21050 0.42100 0.94930 0.07700 Uiso 1.00
+C336 C 0.09850 0.19700 0.80846 0.05253 Uani 1.00
+C337 C 0.13175 0.86825 0.84850 0.05511 Uani 1.00
+C338 C 0.19100 0.80900 0.92320 0.06433 Uani 1.00
+H339 H 0.21050 0.78950 0.94930 0.07700 Uiso 1.00
+C340 C 0.09850 0.90150 0.80846 0.05253 Uani 1.00
+C341 C 0.73650 0.86825 0.84850 0.05511 Uani 1.00
+C342 C 0.61800 0.80900 0.92320 0.06433 Uani 1.00
+H343 H 0.57900 0.78950 0.94930 0.07700 Uiso 1.00
+C344 C 0.80300 0.90150 0.80846 0.05253 Uani 1.00
+loop_
+_atom_site_aniso_label
+_atom_site_aniso_U_11
+_atom_site_aniso_U_22
+_atom_site_aniso_U_33
+_atom_site_aniso_U_12
+_atom_site_aniso_U_13
+_atom_site_aniso_U_23
+O1 0.05010 0.04480 0.05890 0.02410 -0.01860 -0.02290
+O2 0.04840 0.04910 0.05580 0.02510 -0.01120 0.00140
+O3 0.08140 0.05710 0.06860 0.04570 -0.04190 -0.02070
+C4 0.06400 0.03660 0.07900 0.02730 0.00200 -0.01130
+C6 0.07800 0.05000 0.05200 0.03360 -0.01700 -0.01970
+C7 0.05660 0.03200 0.08600 0.03190 -0.01600 -0.00890
+O11 0.04480 0.04670 0.05890 0.02070 0.02290 0.00430
+O12 0.04910 0.04730 0.05580 0.02400 -0.00140 -0.01260
+O13 0.05710 0.04710 0.06860 0.01140 0.02070 -0.02120
+C14 0.03660 0.04600 0.07900 0.00930 0.01130 0.01330
+C16 0.05000 0.06080 0.05200 0.01640 0.01970 0.00270
+C17 0.03200 0.02480 0.08600 0.00010 0.00890 -0.00710
+O20 0.04670 0.05010 0.05890 0.02600 -0.00430 0.01860
+O21 0.04730 0.04840 0.05580 0.02330 0.01260 0.01120
+O22 0.04710 0.08140 0.06860 0.03570 0.02120 0.04190
+C23 0.04600 0.06400 0.07900 0.03670 -0.01330 -0.00200
+C25 0.06080 0.07800 0.05200 0.04440 -0.00270 0.01700
+C26 0.02480 0.05660 0.08600 0.02470 0.00710 0.01600
+O30 0.05010 0.04480 0.05890 0.02410 0.01860 0.02290
+O31 0.04840 0.04910 0.05580 0.02510 0.01120 -0.00140
+O32 0.08140 0.05710 0.06860 0.04570 0.04190 0.02070
+C33 0.06400 0.03660 0.07900 0.02730 -0.00200 0.01130
+C35 0.07800 0.05000 0.05200 0.03360 0.01700 0.01970
+C36 0.05660 0.03200 0.08600 0.03190 0.01600 0.00890
+O40 0.04480 0.04670 0.05890 0.02070 -0.02290 -0.00430
+O41 0.04910 0.04730 0.05580 0.02400 0.00140 0.01260
+O42 0.05710 0.04710 0.06860 0.01140 -0.02070 0.02120
+C43 0.03660 0.04600 0.07900 0.00930 -0.01130 -0.01330
+C45 0.05000 0.06080 0.05200 0.01640 -0.01970 -0.00270
+C46 0.03200 0.02480 0.08600 0.00010 -0.00890 0.00710
+O48 0.04670 0.05010 0.05890 0.02600 0.00430 -0.01860
+O49 0.04730 0.04840 0.05580 0.02330 -0.01260 -0.01120
+O50 0.04710 0.08140 0.06860 0.03570 -0.02120 -0.04190
+C51 0.04600 0.06400 0.07900 0.03670 0.01330 0.00200
+C53 0.06080 0.07800 0.05200 0.04440 0.00270 -0.01700
+C54 0.02480 0.05660 0.08600 0.02470 -0.00710 -0.01600
+O57 0.04480 0.05010 0.05890 0.02410 0.02290 0.01860
+O58 0.04910 0.04840 0.05580 0.02510 -0.00140 0.01120
+O59 0.05710 0.08140 0.06860 0.04570 0.02070 0.04190
+C60 0.03660 0.06400 0.07900 0.02730 0.01130 -0.00200
+C62 0.05000 0.07800 0.05200 0.03360 0.01970 0.01700
+C63 0.03200 0.05660 0.08600 0.03190 0.00890 0.01600
+O68 0.04670 0.04480 0.05890 0.02070 -0.00430 -0.02290
+O69 0.04730 0.04910 0.05580 0.02400 0.01260 0.00140
+O70 0.04710 0.05710 0.06860 0.01140 0.02120 -0.02070
+C71 0.04600 0.03660 0.07900 0.00930 -0.01330 -0.01130
+C73 0.06080 0.05000 0.05200 0.01640 -0.00270 -0.01970
+C74 0.02480 0.03200 0.08600 0.00010 0.00710 -0.00890
+O77 0.05010 0.04670 0.05890 0.02600 -0.01860 0.00430
+O78 0.04840 0.04730 0.05580 0.02330 -0.01120 -0.01260
+O79 0.08140 0.04710 0.06860 0.03570 -0.04190 -0.02120
+C80 0.06400 0.04600 0.07900 0.03670 0.00200 0.01330
+C82 0.07800 0.06080 0.05200 0.04440 -0.01700 0.00270
+C83 0.05660 0.02480 0.08600 0.02470 -0.01600 -0.00710
+O86 0.04480 0.05010 0.05890 0.02410 -0.02290 -0.01860
+O87 0.04910 0.04840 0.05580 0.02510 0.00140 -0.01120
+O88 0.05710 0.08140 0.06860 0.04570 -0.02070 -0.04190
+C89 0.03660 0.06400 0.07900 0.02730 -0.01130 0.00200
+C91 0.05000 0.07800 0.05200 0.03360 -0.01970 -0.01700
+C92 0.03200 0.05660 0.08600 0.03190 -0.00890 -0.01600
+O95 0.04670 0.04480 0.05890 0.02070 0.00430 0.02290
+O96 0.04730 0.04910 0.05580 0.02400 -0.01260 -0.00140
+O97 0.04710 0.05710 0.06860 0.01140 -0.02120 0.02070
+C98 0.04600 0.03660 0.07900 0.00930 0.01330 0.01130
+C100 0.06080 0.05000 0.05200 0.01640 0.00270 0.01970
+C101 0.02480 0.03200 0.08600 0.00010 -0.00710 0.00890
+O104 0.05010 0.04670 0.05890 0.02600 0.01860 -0.00430
+O105 0.04840 0.04730 0.05580 0.02330 0.01120 0.01260
+O106 0.08140 0.04710 0.06860 0.03570 0.04190 0.02120
+C107 0.06400 0.04600 0.07900 0.03670 -0.00200 -0.01330
+C109 0.07800 0.06080 0.05200 0.04440 0.01700 -0.00270
+C110 0.05660 0.02480 0.08600 0.02470 0.01600 0.00710
+O114 0.05010 0.04480 0.05890 0.02410 -0.01860 -0.02290
+O115 0.04840 0.04910 0.05580 0.02510 -0.01120 0.00140
+O116 0.08140 0.05710 0.06860 0.04570 -0.04190 -0.02070
+C117 0.06400 0.03660 0.07900 0.02730 0.00200 -0.01130
+C119 0.07800 0.05000 0.05200 0.03360 -0.01700 -0.01970
+C120 0.05660 0.03200 0.08600 0.03190 -0.01600 -0.00890
+O125 0.04480 0.04670 0.05890 0.02070 0.02290 0.00430
+O126 0.04910 0.04730 0.05580 0.02400 -0.00140 -0.01260
+O127 0.05710 0.04710 0.06860 0.01140 0.02070 -0.02120
+C128 0.03660 0.04600 0.07900 0.00930 0.01130 0.01330
+C130 0.05000 0.06080 0.05200 0.01640 0.01970 0.00270
+C131 0.03200 0.02480 0.08600 0.00010 0.00890 -0.00710
+O133 0.04670 0.05010 0.05890 0.02600 -0.00430 0.01860
+O134 0.04730 0.04840 0.05580 0.02330 0.01260 0.01120
+O135 0.04710 0.08140 0.06860 0.03570 0.02120 0.04190
+C136 0.04600 0.06400 0.07900 0.03670 -0.01330 -0.00200
+C138 0.06080 0.07800 0.05200 0.04440 -0.00270 0.01700
+C139 0.02480 0.05660 0.08600 0.02470 0.00710 0.01600
+O142 0.05010 0.04480 0.05890 0.02410 0.01860 0.02290
+O143 0.04840 0.04910 0.05580 0.02510 0.01120 -0.00140
+O144 0.08140 0.05710 0.06860 0.04570 0.04190 0.02070
+C145 0.06400 0.03660 0.07900 0.02730 -0.00200 0.01130
+C147 0.07800 0.05000 0.05200 0.03360 0.01700 0.01970
+C148 0.05660 0.03200 0.08600 0.03190 0.01600 0.00890
+O152 0.04480 0.04670 0.05890 0.02070 -0.02290 -0.00430
+O153 0.04910 0.04730 0.05580 0.02400 0.00140 0.01260
+O154 0.05710 0.04710 0.06860 0.01140 -0.02070 0.02120
+C155 0.03660 0.04600 0.07900 0.00930 -0.01130 -0.01330
+C157 0.05000 0.06080 0.05200 0.01640 -0.01970 -0.00270
+C158 0.03200 0.02480 0.08600 0.00010 -0.00890 0.00710
+O161 0.04670 0.05010 0.05890 0.02600 0.00430 -0.01860
+O162 0.04730 0.04840 0.05580 0.02330 -0.01260 -0.01120
+O163 0.04710 0.08140 0.06860 0.03570 -0.02120 -0.04190
+C164 0.04600 0.06400 0.07900 0.03670 0.01330 0.00200
+C166 0.06080 0.07800 0.05200 0.04440 0.00270 -0.01700
+C167 0.02480 0.05660 0.08600 0.02470 -0.00710 -0.01600
+O171 0.04480 0.05010 0.05890 0.02410 0.02290 0.01860
+O172 0.04910 0.04840 0.05580 0.02510 -0.00140 0.01120
+O173 0.05710 0.08140 0.06860 0.04570 0.02070 0.04190
+C174 0.03660 0.06400 0.07900 0.02730 0.01130 -0.00200
+C176 0.05000 0.07800 0.05200 0.03360 0.01970 0.01700
+C177 0.03200 0.05660 0.08600 0.03190 0.00890 0.01600
+O180 0.04670 0.04480 0.05890 0.02070 -0.00430 -0.02290
+O181 0.04730 0.04910 0.05580 0.02400 0.01260 0.00140
+O182 0.04710 0.05710 0.06860 0.01140 0.02120 -0.02070
+C183 0.04600 0.03660 0.07900 0.00930 -0.01330 -0.01130
+C185 0.06080 0.05000 0.05200 0.01640 -0.00270 -0.01970
+C186 0.02480 0.03200 0.08600 0.00010 0.00710 -0.00890
+O189 0.05010 0.04670 0.05890 0.02600 -0.01860 0.00430
+O190 0.04840 0.04730 0.05580 0.02330 -0.01120 -0.01260
+O191 0.08140 0.04710 0.06860 0.03570 -0.04190 -0.02120
+C192 0.06400 0.04600 0.07900 0.03670 0.00200 0.01330
+C194 0.07800 0.06080 0.05200 0.04440 -0.01700 0.00270
+C195 0.05660 0.02480 0.08600 0.02470 -0.01600 -0.00710
+O199 0.04480 0.05010 0.05890 0.02410 -0.02290 -0.01860
+O200 0.04910 0.04840 0.05580 0.02510 0.00140 -0.01120
+O201 0.05710 0.08140 0.06860 0.04570 -0.02070 -0.04190
+C202 0.03660 0.06400 0.07900 0.02730 -0.01130 0.00200
+C204 0.05000 0.07800 0.05200 0.03360 -0.01970 -0.01700
+C205 0.03200 0.05660 0.08600 0.03190 -0.00890 -0.01600
+O210 0.04670 0.04480 0.05890 0.02070 0.00430 0.02290
+O211 0.04730 0.04910 0.05580 0.02400 -0.01260 -0.00140
+O212 0.04710 0.05710 0.06860 0.01140 -0.02120 0.02070
+C213 0.04600 0.03660 0.07900 0.00930 0.01330 0.01130
+C215 0.06080 0.05000 0.05200 0.01640 0.00270 0.01970
+C216 0.02480 0.03200 0.08600 0.00010 -0.00710 0.00890
+O220 0.05010 0.04670 0.05890 0.02600 0.01860 -0.00430
+O221 0.04840 0.04730 0.05580 0.02330 0.01120 0.01260
+O222 0.08140 0.04710 0.06860 0.03570 0.04190 0.02120
+C223 0.06400 0.04600 0.07900 0.03670 -0.00200 -0.01330
+C225 0.07800 0.06080 0.05200 0.04440 0.01700 -0.00270
+C226 0.05660 0.02480 0.08600 0.02470 0.01600 0.00710
+Al229 0.03950 0.03950 0.05330 0.01850 0.00000 0.00000
+O230 0.04800 0.04800 0.05700 0.02980 0.00000 0.00000
+Al231 0.03950 0.04200 0.05330 0.02100 0.00000 0.00000
+O232 0.04800 0.03640 0.05700 0.01820 0.00000 0.00000
+Al233 0.04200 0.03950 0.05330 0.02100 0.00000 0.00000
+O234 0.03640 0.04800 0.05700 0.01820 0.00000 0.00000
+Al235 0.03950 0.03950 0.05330 0.01850 0.00000 0.00000
+O236 0.04800 0.04800 0.05700 0.02980 0.00000 0.00000
+Al237 0.03950 0.04200 0.05330 0.02100 0.00000 0.00000
+O238 0.04800 0.03640 0.05700 0.01820 0.00000 0.00000
+Al239 0.04200 0.03950 0.05330 0.02100 0.00000 0.00000
+O240 0.03640 0.04800 0.05700 0.01820 0.00000 0.00000
+Al241 0.03705 0.04030 0.05640 0.02015 -0.00015 -0.00030
+Al242 0.04030 0.03705 0.05640 0.02015 0.00030 0.00015
+Al243 0.03705 0.03705 0.05640 0.01690 -0.00015 0.00015
+Al244 0.03705 0.04030 0.05640 0.02015 0.00015 0.00030
+Al245 0.04030 0.03705 0.05640 0.02015 -0.00030 -0.00015
+Al246 0.03705 0.03705 0.05640 0.01690 0.00015 -0.00015
+Al247 0.04460 0.04580 0.05050 0.02290 0.00140 0.00280
+O248 0.05010 0.04100 0.03680 0.02050 -0.00250 -0.00500
+O249 0.08120 0.06800 0.05800 0.03400 -0.00450 -0.00900
+Al250 0.04580 0.04460 0.05050 0.02290 -0.00280 -0.00140
+O251 0.04100 0.05010 0.03680 0.02050 0.00500 0.00250
+O252 0.06800 0.08120 0.05800 0.03400 0.00900 0.00450
+Al253 0.04460 0.04460 0.05050 0.02170 0.00140 -0.00140
+O254 0.05010 0.05010 0.03680 0.02960 -0.00250 0.00250
+O255 0.08120 0.08120 0.05800 0.04720 -0.00450 0.00450
+Al256 0.04460 0.04580 0.05050 0.02290 -0.00140 -0.00280
+O257 0.05010 0.04100 0.03680 0.02050 0.00250 0.00500
+O258 0.08120 0.06800 0.05800 0.03400 0.00450 0.00900
+Al259 0.04580 0.04460 0.05050 0.02290 0.00280 0.00140
+O260 0.04100 0.05010 0.03680 0.02050 -0.00500 -0.00250
+O261 0.06800 0.08120 0.05800 0.03400 -0.00900 -0.00450
+Al262 0.04460 0.04460 0.05050 0.02170 -0.00140 0.00140
+O263 0.05010 0.05010 0.03680 0.02960 0.00250 -0.00250
+O264 0.08120 0.08120 0.05800 0.04720 0.00450 -0.00450
+Al265 0.04580 0.04460 0.05050 0.02290 -0.00280 -0.00140
+O266 0.04100 0.05010 0.03680 0.02050 0.00500 0.00250
+O267 0.06800 0.08120 0.05800 0.03400 0.00900 0.00450
+Al268 0.04460 0.04580 0.05050 0.02290 0.00140 0.00280
+O269 0.05010 0.04100 0.03680 0.02050 -0.00250 -0.00500
+O270 0.08120 0.06800 0.05800 0.03400 -0.00450 -0.00900
+Al271 0.04460 0.04460 0.05050 0.02170 0.00140 -0.00140
+O272 0.05010 0.05010 0.03680 0.02960 -0.00250 0.00250
+O273 0.08120 0.08120 0.05800 0.04720 -0.00450 0.00450
+Al274 0.04580 0.04460 0.05050 0.02290 0.00280 0.00140
+O275 0.04100 0.05010 0.03680 0.02050 -0.00500 -0.00250
+O276 0.06800 0.08120 0.05800 0.03400 -0.00900 -0.00450
+Al277 0.04460 0.04580 0.05050 0.02290 -0.00140 -0.00280
+O278 0.05010 0.04100 0.03680 0.02050 0.00250 0.00500
+O279 0.08120 0.06800 0.05800 0.03400 0.00450 0.00900
+Al280 0.04460 0.04460 0.05050 0.02170 -0.00140 0.00140
+O281 0.05010 0.05010 0.03680 0.02960 0.00250 -0.00250
+O282 0.08120 0.08120 0.05800 0.04720 0.00450 -0.00450
+O283 0.03113 0.03113 0.05500 0.01557 0.00000 0.00000
+O284 0.03113 0.03113 0.05500 0.01557 0.00000 0.00000
+O285 0.03930 0.03930 0.07700 0.01670 -0.00270 0.00270
+O286 0.03930 0.04520 0.07700 0.02260 -0.00270 -0.00540
+O287 0.04520 0.03930 0.07700 0.02260 0.00540 0.00270
+O288 0.03930 0.03930 0.07700 0.01670 0.00270 -0.00270
+O289 0.03930 0.04520 0.07700 0.02260 0.00270 0.00540
+O290 0.04520 0.03930 0.07700 0.02260 -0.00540 -0.00270
+O291 0.03930 0.03930 0.07700 0.01670 -0.00270 0.00270
+O292 0.04520 0.03930 0.07700 0.02260 0.00540 0.00270
+O293 0.03930 0.04520 0.07700 0.02260 -0.00270 -0.00540
+O294 0.03930 0.03930 0.07700 0.01670 0.00270 -0.00270
+O295 0.04520 0.03930 0.07700 0.02260 -0.00540 -0.00270
+O296 0.03930 0.04520 0.07700 0.02260 0.00270 0.00540
+C297 0.05900 0.03450 0.08000 0.02950 -0.00900 -0.00450
+C298 0.07100 0.05450 0.07300 0.03550 -0.02200 -0.01100
+C300 0.04300 0.07120 0.03400 0.02150 -0.00100 -0.00050
+C301 0.03450 0.03450 0.08000 0.00500 0.00450 -0.00450
+C302 0.05450 0.05450 0.07300 0.01900 0.01100 -0.01100
+C304 0.07120 0.07120 0.03400 0.04970 0.00050 -0.00050
+C305 0.03450 0.05900 0.08000 0.02950 0.00450 0.00900
+C306 0.05450 0.07100 0.07300 0.03550 0.01100 0.02200
+C308 0.07120 0.04300 0.03400 0.02150 0.00050 0.00100
+C309 0.05900 0.03450 0.08000 0.02950 0.00900 0.00450
+C310 0.07100 0.05450 0.07300 0.03550 0.02200 0.01100
+C312 0.04300 0.07120 0.03400 0.02150 0.00100 0.00050
+C313 0.03450 0.03450 0.08000 0.00500 -0.00450 0.00450
+C314 0.05450 0.05450 0.07300 0.01900 -0.01100 0.01100
+C316 0.07120 0.07120 0.03400 0.04970 -0.00050 0.00050
+C317 0.03450 0.05900 0.08000 0.02950 -0.00450 -0.00900
+C318 0.05450 0.07100 0.07300 0.03550 -0.01100 -0.02200
+C320 0.07120 0.04300 0.03400 0.02150 -0.00050 -0.00100
+C321 0.03450 0.05900 0.08000 0.02950 0.00450 0.00900
+C322 0.05450 0.07100 0.07300 0.03550 0.01100 0.02200
+C324 0.07120 0.04300 0.03400 0.02150 0.00050 0.00100
+C325 0.03450 0.03450 0.08000 0.00500 0.00450 -0.00450
+C326 0.05450 0.05450 0.07300 0.01900 0.01100 -0.01100
+C328 0.07120 0.07120 0.03400 0.04970 0.00050 -0.00050
+C329 0.05900 0.03450 0.08000 0.02950 -0.00900 -0.00450
+C330 0.07100 0.05450 0.07300 0.03550 -0.02200 -0.01100
+C332 0.04300 0.07120 0.03400 0.02150 -0.00100 -0.00050
+C333 0.03450 0.05900 0.08000 0.02950 -0.00450 -0.00900
+C334 0.05450 0.07100 0.07300 0.03550 -0.01100 -0.02200
+C336 0.07120 0.04300 0.03400 0.02150 -0.00050 -0.00100
+C337 0.03450 0.03450 0.08000 0.00500 -0.00450 0.00450
+C338 0.05450 0.05450 0.07300 0.01900 -0.01100 0.01100
+C340 0.07120 0.07120 0.03400 0.04970 -0.00050 0.00050
+C341 0.05900 0.03450 0.08000 0.02950 0.00900 0.00450
+C342 0.07100 0.05450 0.07300 0.03550 0.02200 0.01100
+C344 0.04300 0.07120 0.03400 0.02150 0.00100 0.00050
+loop_
+_geom_bond_atom_site_label_1
+_geom_bond_atom_site_label_2
+_geom_bond_distance
+_geom_bond_site_symmetry_2
+_ccdc_geom_bond_type
+O1 Al229 1.870 1_565 S
+O1 C300 1.260 . D
+O2 C7 1.280 1_545 D
+O2 Al268 1.939 . S
+O3 Al241 1.869 1_565 S
+O3 C7 1.252 . S
+C4 C297 1.384 . D
+C4 C6 1.421 . S
+C4 H5 0.950 1_565 S
+H5 C4 0.950 1_545 S
+C6 C298 1.360 . D
+C6 C7 1.456 . S
+C7 O2 1.280 1_565 D
+H8 O248 1.110 . S
+H9 O232 1.110 . S
+H10 O289 1.110 . S
+O11 Al231 1.870 1_455 S
+O11 C304 1.260 . D
+O12 C17 1.280 1_655 D
+O12 Al265 1.939 . S
+O13 Al242 1.869 . S
+O13 C17 1.252 . S
+C14 C301 1.384 . D
+C14 C16 1.421 . S
+C14 H15 0.950 1_455 S
+H15 C14 0.950 1_655 S
+C16 C302 1.360 . D
+C16 C17 1.456 . S
+C17 O12 1.280 1_455 D
+H18 O251 1.110 . S
+H19 O290 1.110 . S
+O20 Al233 1.870 . S
+O20 C308 1.260 . D
+O21 C26 1.280 . D
+O21 Al271 1.939 . S
+O22 Al243 1.869 . S
+O22 C26 1.252 . S
+C23 C305 1.384 . D
+C23 C25 1.421 . S
+C23 H24 0.950 . S
+C25 C306 1.360 . D
+C25 C26 1.456 . S
+H27 O254 1.110 . S
+H28 O230 1.110 . S
+H29 O258 1.110 . S
+O30 Al235 1.870 1_545 S
+O30 C312 1.260 . D
+O31 C36 1.280 1_565 D
+O31 Al277 1.939 . S
+O32 Al244 1.869 . S
+O32 C36 1.252 . S
+C33 C309 1.384 . D
+C33 C35 1.421 . S
+C33 H34 0.950 1_545 S
+H34 C33 0.950 1_565 S
+C35 C310 1.360 . D
+C35 C36 1.456 . S
+C36 O31 1.280 1_545 D
+H37 O257 1.110 . S
+H38 O238 1.110 . S
+H39 O252 1.110 . S
+O40 Al237 1.870 1_655 S
+O40 C316 1.260 . D
+O41 C46 1.280 1_455 D
+O41 Al274 1.939 . S
+O42 Al245 1.869 1_655 S
+O42 C46 1.252 . S
+C43 C313 1.384 . D
+C43 C45 1.421 . S
+C43 H44 0.950 1_655 S
+H44 C43 0.950 1_455 S
+C45 C314 1.360 . D
+C45 C46 1.456 . S
+C46 O41 1.280 1_655 D
+H47 O260 1.110 . S
+O48 Al239 1.870 . S
+O48 C320 1.260 . D
+O49 C54 1.280 . D
+O49 Al280 1.939 . S
+O50 Al246 1.869 . S
+O50 C54 1.252 . S
+C51 C317 1.384 . D
+C51 C53 1.421 . S
+C51 H52 0.950 . S
+C53 C318 1.360 . D
+C53 C54 1.456 . S
+H55 O263 1.110 . S
+H56 O285 1.110 . S
+O57 Al235 1.870 1_655 S
+O57 C324 1.260 . D
+O58 C63 1.280 1_455 D
+O58 Al250 1.939 . S
+O59 Al242 1.869 1_655 S
+O59 C63 1.252 . S
+C60 C321 1.384 . D
+C60 C62 1.421 . S
+C60 H61 0.950 1_655 S
+H61 C60 0.950 1_455 S
+C62 C322 1.360 . D
+C62 C63 1.456 . S
+C63 O58 1.280 1_655 D
+H64 O266 1.110 . S
+H65 O240 1.110 . S
+H66 O295 1.110 . S
+H67 O279 1.110 . S
+O68 Al239 1.870 1_545 S
+O68 C328 1.260 . D
+O69 C74 1.280 1_565 D
+O69 Al247 1.939 . S
+O70 Al241 1.869 . S
+O70 C74 1.252 . S
+C71 C325 1.384 . D
+C71 C73 1.421 . S
+C71 H72 0.950 1_545 S
+H72 C71 0.950 1_565 S
+C73 C326 1.360 . D
+C73 C74 1.456 . S
+C74 O69 1.280 1_545 D
+H75 O269 1.110 . S
+H76 O282 1.110 . S
+O77 Al237 1.870 . S
+O77 C332 1.260 . D
+O78 C83 1.280 . D
+O78 Al253 1.939 . S
+O79 Al243 1.869 . S
+O79 C83 1.252 . S
+C80 C329 1.384 . D
+C80 C82 1.421 . S
+C80 H81 0.950 . S
+C82 C330 1.360 . D
+C82 C83 1.456 . S
+H84 O272 1.110 . S
+H85 O236 1.110 . S
+O86 Al229 1.870 1_455 S
+O86 C336 1.260 . D
+O87 C92 1.280 1_655 D
+O87 Al259 1.939 . S
+O88 Al245 1.869 1_556 S
+O88 C92 1.252 . S
+C89 C333 1.384 . D
+C89 C91 1.421 . S
+C89 H90 0.950 1_455 S
+H90 C89 0.950 1_655 S
+C91 C334 1.360 . D
+C91 C92 1.456 . S
+C92 O87 1.280 1_455 D
+H93 O275 1.110 . S
+H94 O234 1.110 . S
+O95 Al233 1.870 1_565 S
+O95 C340 1.260 . D
+O96 C101 1.280 1_545 D
+O96 Al256 1.939 . S
+O97 Al244 1.869 1_566 S
+O97 C101 1.252 . S
+C98 C337 1.384 . D
+C98 C100 1.421 . S
+C98 H99 0.950 1_565 S
+H99 C98 0.950 1_545 S
+C100 C338 1.360 . D
+C100 C101 1.456 . S
+C101 O96 1.280 1_565 D
+H102 O278 1.110 . S
+H103 O273 1.107 . S
+O104 Al231 1.870 . S
+O104 C344 1.260 . D
+O105 C110 1.280 . D
+O105 Al262 1.939 . S
+O106 Al246 1.869 1_556 S
+O106 C110 1.252 . S
+C107 C341 1.384 . D
+C107 C109 1.421 . S
+C107 H108 0.950 . S
+C109 C342 1.360 . D
+C109 C110 1.456 . S
+H111 O281 1.110 . S
+H112 O291 1.110 . S
+H113 O267 1.110 . S
+O114 Al235 1.870 1_545 S
+O114 C332 1.260 . S
+O115 C120 1.280 1_565 D
+O115 Al247 1.939 . S
+O116 Al241 1.869 . S
+O116 C120 1.252 . S
+C117 C329 1.384 . S
+C117 C119 1.421 . D
+C117 H118 0.950 1_545 S
+H118 C117 0.950 1_565 S
+C119 C330 1.360 . S
+C119 C120 1.456 . S
+C120 O115 1.280 1_545 D
+H121 O269 1.110 . S
+H122 O238 1.110 . S
+H123 O296 1.110 . S
+H124 O276 1.110 . S
+O125 Al237 1.870 1_655 S
+O125 C328 1.260 . S
+O126 C131 1.280 1_455 D
+O126 Al250 1.939 . S
+O127 Al242 1.869 1_655 S
+O127 C131 1.252 . S
+C128 C325 1.384 . S
+C128 C130 1.421 . D
+C128 H129 0.950 1_655 S
+H129 C128 0.950 1_455 S
+C130 C326 1.360 . S
+C130 C131 1.456 . S
+C131 O126 1.280 1_655 D
+H132 O266 1.110 . S
+O133 Al239 1.870 . S
+O133 C324 1.260 . S
+O134 C139 1.280 . D
+O134 Al253 1.939 . S
+O135 Al243 1.869 . S
+O135 C139 1.252 . S
+C136 C321 1.384 . S
+C136 C138 1.421 . D
+C136 H137 0.950 . S
+C138 C322 1.360 . S
+C138 C139 1.456 . S
+H140 O272 1.110 . S
+H141 O294 1.110 . S
+O142 Al229 1.870 1_565 S
+O142 C344 1.260 . S
+O143 C148 1.280 1_545 D
+O143 Al256 1.939 . S
+O144 Al244 1.869 1_566 S
+O144 C148 1.252 . S
+C145 C341 1.384 . S
+C145 C147 1.421 . D
+C145 H146 0.950 1_565 S
+H146 C145 0.950 1_545 S
+C147 C342 1.360 . S
+C147 C148 1.456 . S
+C148 O143 1.280 1_565 D
+H149 O278 1.110 . S
+H150 O232 1.110 . S
+H151 O293 1.110 . S
+O152 Al231 1.870 1_455 S
+O152 C340 1.260 . S
+O153 C158 1.280 1_655 D
+O153 Al259 1.939 . S
+O154 Al245 1.869 1_556 S
+O154 C158 1.252 . S
+C155 C337 1.384 . S
+C155 C157 1.421 . D
+C155 H156 0.950 1_455 S
+H156 C155 0.950 1_655 S
+C157 C338 1.360 . S
+C157 C158 1.456 . S
+C158 O153 1.280 1_455 D
+H159 O275 1.110 . S
+H160 O292 1.110 . S
+O161 Al233 1.870 . S
+O161 C336 1.260 . S
+O162 C167 1.280 . D
+O162 Al262 1.939 . S
+O163 Al246 1.869 1_556 S
+O163 C167 1.252 . S
+C164 C333 1.384 . S
+C164 C166 1.421 . D
+C164 H165 0.950 . S
+C166 C334 1.360 . S
+C166 C167 1.456 . S
+H168 O281 1.110 . S
+H169 O230 1.110 . S
+H170 O270 1.110 . S
+O171 Al229 1.870 1_455 S
+O171 C308 1.260 . S
+O172 C177 1.280 1_655 D
+O172 Al265 1.939 . S
+O173 Al242 1.869 . S
+O173 C177 1.252 . S
+C174 C305 1.384 . S
+C174 C176 1.421 . D
+C174 H175 0.950 1_455 S
+H175 C174 0.950 1_655 S
+C176 C306 1.360 . S
+C176 C177 1.456 . S
+C177 O172 1.280 1_455 D
+H178 O251 1.110 . S
+H179 O234 1.110 . S
+O180 Al233 1.870 1_565 S
+O180 C304 1.260 . S
+O181 C186 1.280 1_545 D
+O181 Al268 1.939 . S
+O182 Al241 1.869 1_565 S
+O182 C186 1.252 . S
+C183 C301 1.384 . S
+C183 C185 1.421 . D
+C183 H184 0.950 1_565 S
+H184 C183 0.950 1_545 S
+C185 C302 1.360 . S
+C185 C186 1.456 . S
+C186 O181 1.280 1_565 D
+H187 O248 1.110 . S
+H188 O264 1.107 . S
+O189 Al231 1.870 . S
+O189 C300 1.260 . S
+O190 C195 1.280 . D
+O190 Al271 1.939 . S
+O191 Al243 1.869 . S
+O191 C195 1.252 . S
+C192 C297 1.384 . S
+C192 C194 1.421 . D
+C192 H193 0.950 . S
+C194 C298 1.360 . S
+C194 C195 1.456 . S
+H196 O254 1.110 . S
+H197 O288 1.110 . S
+H198 O261 1.110 . S
+O199 Al235 1.870 1_655 S
+O199 C320 1.260 . S
+O200 C205 1.280 1_455 D
+O200 Al274 1.939 . S
+O201 Al245 1.869 1_655 S
+O201 C205 1.252 . S
+C202 C317 1.384 . S
+C202 C204 1.421 . D
+C202 H203 0.950 1_655 S
+H203 C202 0.950 1_455 S
+C204 C318 1.360 . S
+C204 C205 1.456 . S
+C205 O200 1.280 1_655 D
+H206 O260 1.110 . S
+H207 O240 1.110 . S
+H208 O287 1.110 . S
+H209 O249 1.110 . S
+O210 Al239 1.870 1_545 S
+O210 C316 1.260 . S
+O211 C216 1.280 1_565 D
+O211 Al277 1.939 . S
+O212 Al244 1.869 . S
+O212 C216 1.252 . S
+C213 C313 1.384 . S
+C213 C215 1.421 . D
+C213 H214 0.950 1_545 S
+H214 C213 0.950 1_565 S
+C215 C314 1.360 . S
+C215 C216 1.456 . S
+C216 O211 1.280 1_545 D
+H217 O257 1.110 . S
+H218 O286 1.110 . S
+H219 O255 1.110 . S
+O220 Al237 1.870 . S
+O220 C312 1.260 . S
+O221 C226 1.280 . D
+O221 Al280 1.939 . S
+O222 Al246 1.869 . S
+O222 C226 1.252 . S
+C223 C309 1.384 . S
+C223 C225 1.421 . D
+C223 H224 0.950 . S
+C225 C310 1.360 . S
+C225 C226 1.456 . S
+H227 O263 1.110 . S
+H228 O236 1.110 . S
+Al229 O283 1.831 1_655 S
+Al229 O1 1.870 1_545 S
+Al229 O86 1.870 1_655 S
+Al229 O142 1.870 1_545 S
+Al229 O171 1.870 1_655 S
+Al229 O230 1.850 . S
+Al231 O283 1.831 1_665 S
+Al231 O11 1.870 1_655 S
+Al231 O152 1.870 1_655 S
+Al231 O232 1.850 . S
+Al233 O283 1.831 . S
+Al233 O95 1.870 1_545 S
+Al233 O180 1.870 1_545 S
+Al233 O234 1.850 . S
+Al235 O284 1.831 1_565 S
+Al235 O30 1.870 1_565 S
+Al235 O57 1.870 1_455 S
+Al235 O114 1.870 1_565 S
+Al235 O199 1.870 1_455 S
+Al235 O236 1.850 . S
+Al237 O284 1.831 . S
+Al237 O40 1.870 1_455 S
+Al237 O125 1.870 1_455 S
+Al237 O238 1.850 . S
+Al239 O284 1.831 1_665 S
+Al239 O68 1.870 1_565 S
+Al239 O210 1.870 1_565 S
+Al239 O240 1.850 . S
+Al241 O248 1.842 1_545 S
+Al241 O269 1.842 . S
+Al241 O3 1.869 1_545 S
+Al241 O182 1.869 1_545 S
+Al242 O251 1.842 . S
+Al242 O266 1.842 1_455 S
+Al242 O59 1.869 1_455 S
+Al242 O127 1.869 1_455 S
+Al243 O254 1.842 . S
+Al243 O272 1.842 . S
+Al244 O257 1.842 1_554 S
+Al244 O278 1.842 1_545 S
+Al244 O97 1.869 1_544 S
+Al244 O144 1.869 1_544 S
+Al245 O260 1.842 1_454 S
+Al245 O275 1.842 . S
+Al245 O42 1.869 1_455 S
+Al245 O88 1.869 1_554 S
+Al245 O154 1.869 1_554 S
+Al245 O201 1.869 1_455 S
+Al246 O263 1.842 1_554 S
+Al246 O281 1.842 . S
+Al246 O106 1.869 1_554 S
+Al246 O163 1.869 1_554 S
+Al247 O285 1.954 . S
+Al247 O287 1.954 . S
+Al247 O248 1.871 . S
+Al247 O249 1.850 . S
+O248 Al241 1.842 1_565 S
+Al250 O286 1.954 . S
+Al250 O285 1.954 . S
+Al250 O251 1.871 . S
+Al250 O252 1.942 . S
+Al253 O287 1.954 . S
+Al253 O286 1.954 . S
+Al253 O254 1.871 . S
+Al253 O255 1.942 . S
+Al256 O288 1.954 . S
+Al256 O290 1.954 . S
+Al256 O257 1.871 . S
+Al256 O258 1.850 . S
+O257 Al244 1.842 1_556 S
+Al259 O289 1.954 . S
+Al259 O288 1.954 . S
+Al259 O260 1.871 . S
+Al259 O261 1.850 . S
+O260 Al245 1.842 1_656 S
+Al262 O290 1.954 . S
+Al262 O289 1.954 . S
+Al262 O263 1.871 . S
+Al262 O264 1.850 . S
+O263 Al246 1.842 1_556 S
+Al265 O291 1.954 . S
+Al265 O293 1.954 . S
+Al265 O266 1.871 . S
+Al265 O267 1.850 . S
+O266 Al242 1.842 1_655 S
+Al268 O292 1.954 . S
+Al268 O291 1.954 . S
+Al268 O269 1.871 . S
+Al268 O270 1.850 . S
+Al271 O293 1.954 . S
+Al271 O292 1.954 . S
+Al271 O272 1.871 . S
+Al271 O273 1.850 . S
+Al274 O294 1.954 . S
+Al274 O296 1.954 . S
+Al274 O275 1.871 . S
+Al274 O276 1.942 . S
+Al277 O295 1.954 . S
+Al277 O294 1.954 . S
+Al277 O278 1.871 . S
+Al277 O279 1.850 . S
+O278 Al244 1.842 1_565 S
+Al280 O296 1.954 . S
+Al280 O295 1.954 . S
+Al280 O281 1.871 . S
+Al280 O282 1.942 . S
+O283 Al229 1.831 1_455 S
+O283 Al231 1.831 1_445 S
+O284 Al235 1.831 1_545 S
+O284 Al239 1.831 1_445 S
+C297 C300 1.499 . S
+C298 H299 0.949 . S
+C301 C304 1.499 . S
+C302 H303 0.949 . S
+C305 C308 1.499 . S
+C306 H307 0.949 . S
+C309 C312 1.499 . S
+C310 H311 0.949 . S
+C313 C316 1.499 . S
+C314 H315 0.949 . S
+C317 C320 1.499 . S
+C318 H319 0.949 . S
+C321 C324 1.499 . S
+C322 H323 0.949 . S
+C325 C328 1.499 . S
+C326 H327 0.949 . S
+C329 C332 1.499 . S
+C330 H331 0.949 . S
+C333 C336 1.499 . S
+C334 H335 0.949 . S
+C337 C340 1.499 . S
+C338 H339 0.949 . S
+C341 C344 1.499 . S
+C342 H343 0.949 . S
diff --git a/benchmarks/mof/structures/flue_gas/MUF-16.cif b/benchmarks/mof/structures/flue_gas/MUF-16.cif
new file mode 100644
index 0000000000000000000000000000000000000000..625c01482f199920536f7844e358b43cf9e54b1b
--- /dev/null
+++ b/benchmarks/mof/structures/flue_gas/MUF-16.cif
@@ -0,0 +1,382 @@
+data_MUF16(Mn)\guest\free\NPD\structure
+_audit_creation_date 2025-01-20
+_audit_creation_method 'Materials Studio'
+_symmetry_space_group_name_H-M 'P1'
+_symmetry_Int_Tables_number 1
+_symmetry_cell_setting triclinic
+loop_
+_symmetry_equiv_pos_as_xyz
+ x,y,z
+_cell_length_a 15.4733
+_cell_length_b 4.5111
+_cell_length_c 25.4716
+_cell_angle_alpha 90.0000
+_cell_angle_beta 97.0740
+_cell_angle_gamma 90.0000
+loop_
+_atom_site_label
+_atom_site_type_symbol
+_atom_site_fract_x
+_atom_site_fract_y
+_atom_site_fract_z
+_atom_site_U_iso_or_equiv
+_atom_site_adp_type
+_atom_site_occupancy
+C1 C 0.42660 0.00200 0.12870 0.03812 Uiso 1.00
+C2 C 0.43100 0.20500 0.17330 0.03812 Uiso 1.00
+C3 C 0.50360 0.36900 0.18630 0.03812 Uiso 1.00
+C4 C 0.58420 0.31500 0.16290 0.03812 Uiso 1.00
+C5 C 0.58150 0.13000 0.11990 0.03812 Uiso 1.00
+C6 C 0.49880 0.98400 0.10410 0.03812 Uiso 1.00
+C7 C 0.35040 0.22300 0.20050 0.03812 Uiso 1.00
+C8 C 0.49870 0.76200 0.05810 0.03812 Uiso 1.00
+N9 N 0.66090 0.45600 0.18040 0.03812 Uiso 1.00
+O10 O 0.35220 0.46000 0.23250 0.03812 Uiso 1.00
+O11 O 0.29200 0.05300 0.19010 0.03812 Uiso 1.00
+O12 O 0.42140 0.63500 0.04110 0.03812 Uiso 1.00
+O13 O 0.56460 0.72400 0.03710 0.03812 Uiso 1.00
+H14 H 0.63590 0.08100 0.10590 0.03812 Uiso 1.00
+H15 H 0.49580 0.51800 0.21510 0.03812 Uiso 1.00
+H16 H 0.37140 0.85200 0.11700 0.03812 Uiso 1.00
+H17 H 0.64650 0.69200 0.19730 0.03812 Uiso 1.00
+H18 H 0.70140 0.47100 0.15320 0.03812 Uiso 1.00
+H19 H 0.43390 0.51200 0.01120 0.03812 Uiso 1.00
+C20 C 0.92660 0.50200 0.62870 0.03812 Uiso 1.00
+C21 C 0.93100 0.70500 0.67330 0.03812 Uiso 1.00
+C22 C 1.00360 0.86900 0.68630 0.03812 Uiso 1.00
+C23 C 1.08420 0.81500 0.66290 0.03812 Uiso 1.00
+C24 C 1.08150 0.63000 0.61990 0.03812 Uiso 1.00
+C25 C 0.99880 0.48400 0.60410 0.03812 Uiso 1.00
+C26 C 0.85040 0.72300 0.70050 0.03812 Uiso 1.00
+C27 C 0.99870 0.26200 0.55810 0.03812 Uiso 1.00
+N28 N 1.16090 0.95600 0.68040 0.03812 Uiso 1.00
+O29 O 0.85220 0.96000 0.73250 0.03812 Uiso 1.00
+O30 O 0.79200 0.55300 0.69010 0.03812 Uiso 1.00
+O31 O 0.92140 0.13500 0.54110 0.03812 Uiso 1.00
+O32 O 1.06460 0.22400 0.53710 0.03812 Uiso 1.00
+H33 H 1.13590 0.58100 0.60590 0.03812 Uiso 1.00
+H34 H 0.99580 0.01800 0.71510 0.03812 Uiso 1.00
+H35 H 0.87140 0.35200 0.61700 0.03812 Uiso 1.00
+H36 H 1.14650 0.19200 0.69730 0.03812 Uiso 1.00
+H37 H 1.20140 0.97100 0.65320 0.03812 Uiso 1.00
+H38 H 0.93390 0.01200 0.51120 0.03812 Uiso 1.00
+C39 C 0.07340 0.00200 0.87130 0.03812 Uiso 1.00
+C40 C 0.06900 0.20500 0.82670 0.03812 Uiso 1.00
+C41 C -0.00360 0.36900 0.81370 0.03812 Uiso 1.00
+C42 C -0.08420 0.31500 0.83710 0.03812 Uiso 1.00
+C43 C -0.08150 0.13000 0.88010 0.03812 Uiso 1.00
+C44 C 0.00120 0.98400 0.89590 0.03812 Uiso 1.00
+C45 C 0.14960 0.22300 0.79950 0.03812 Uiso 1.00
+C46 C 0.00130 0.76200 0.94190 0.03812 Uiso 1.00
+N47 N -0.16090 0.45600 0.81960 0.03812 Uiso 1.00
+O48 O 0.14780 0.46000 0.76750 0.03812 Uiso 1.00
+O49 O 0.20800 0.05300 0.80990 0.03812 Uiso 1.00
+O50 O 0.07860 0.63500 0.95890 0.03812 Uiso 1.00
+O51 O -0.06460 0.72400 0.96290 0.03812 Uiso 1.00
+H52 H -0.13590 0.08100 0.89410 0.03812 Uiso 1.00
+H53 H 0.00420 0.51800 0.78490 0.03812 Uiso 1.00
+H54 H 0.12860 0.85200 0.88300 0.03812 Uiso 1.00
+H55 H -0.14650 0.69200 0.80270 0.03812 Uiso 1.00
+H56 H -0.20140 0.47100 0.84680 0.03812 Uiso 1.00
+H57 H 0.06610 0.51200 0.98880 0.03812 Uiso 1.00
+C58 C 0.57340 0.50200 0.37130 0.03812 Uiso 1.00
+C59 C 0.56900 0.70500 0.32670 0.03812 Uiso 1.00
+C60 C 0.49640 0.86900 0.31370 0.03812 Uiso 1.00
+C61 C 0.41580 0.81500 0.33710 0.03812 Uiso 1.00
+C62 C 0.41850 0.63000 0.38010 0.03812 Uiso 1.00
+C63 C 0.50120 0.48400 0.39590 0.03812 Uiso 1.00
+C64 C 0.64960 0.72300 0.29950 0.03812 Uiso 1.00
+C65 C 0.50130 0.26200 0.44190 0.03812 Uiso 1.00
+N66 N 0.33910 0.95600 0.31960 0.03812 Uiso 1.00
+O67 O 0.64780 0.96000 0.26750 0.03812 Uiso 1.00
+O68 O 0.70800 0.55300 0.30990 0.03812 Uiso 1.00
+O69 O 0.57860 0.13500 0.45890 0.03812 Uiso 1.00
+O70 O 0.43540 0.22400 0.46290 0.03812 Uiso 1.00
+H71 H 0.36410 0.58100 0.39410 0.03812 Uiso 1.00
+H72 H 0.50420 0.01800 0.28490 0.03812 Uiso 1.00
+H73 H 0.62860 0.35200 0.38300 0.03812 Uiso 1.00
+H74 H 0.35350 0.19200 0.30270 0.03812 Uiso 1.00
+H75 H 0.29860 0.97100 0.34680 0.03812 Uiso 1.00
+H76 H 0.56610 0.01200 0.48880 0.03812 Uiso 1.00
+C77 C 0.57340 0.99800 0.87130 0.03812 Uiso 1.00
+C78 C 0.56900 0.79500 0.82670 0.03812 Uiso 1.00
+C79 C 0.49640 0.63100 0.81370 0.03812 Uiso 1.00
+C80 C 0.41580 0.68500 0.83710 0.03812 Uiso 1.00
+C81 C 0.41850 0.87000 0.88010 0.03812 Uiso 1.00
+C82 C 0.50120 0.01600 0.89590 0.03812 Uiso 1.00
+C83 C 0.64960 0.77700 0.79950 0.03812 Uiso 1.00
+C84 C 0.50130 0.23800 0.94190 0.03812 Uiso 1.00
+N85 N 0.33910 0.54400 0.81960 0.03812 Uiso 1.00
+O86 O 0.64780 0.54000 0.76750 0.03812 Uiso 1.00
+O87 O 0.70800 0.94700 0.80990 0.03812 Uiso 1.00
+O88 O 0.57860 0.36500 0.95890 0.03812 Uiso 1.00
+O89 O 0.43540 0.27600 0.96290 0.03812 Uiso 1.00
+H90 H 0.36410 0.91900 0.89410 0.03812 Uiso 1.00
+H91 H 0.50420 0.48200 0.78490 0.03812 Uiso 1.00
+H92 H 0.62860 0.14800 0.88300 0.03812 Uiso 1.00
+H93 H 0.35350 0.30800 0.80270 0.03812 Uiso 1.00
+H94 H 0.29860 0.52900 0.84680 0.03812 Uiso 1.00
+H95 H 0.56610 0.48800 0.98880 0.03812 Uiso 1.00
+C96 C 0.07340 0.49800 0.37130 0.03812 Uiso 1.00
+C97 C 0.06900 0.29500 0.32670 0.03812 Uiso 1.00
+C98 C -0.00360 0.13100 0.31370 0.03812 Uiso 1.00
+C99 C -0.08420 0.18500 0.33710 0.03812 Uiso 1.00
+C100 C -0.08150 0.37000 0.38010 0.03812 Uiso 1.00
+C101 C 0.00120 0.51600 0.39590 0.03812 Uiso 1.00
+C102 C 0.14960 0.27700 0.29950 0.03812 Uiso 1.00
+C103 C 0.00130 0.73800 0.44190 0.03812 Uiso 1.00
+N104 N -0.16090 0.04400 0.31960 0.03812 Uiso 1.00
+O105 O 0.14780 0.04000 0.26750 0.03812 Uiso 1.00
+O106 O 0.20800 0.44700 0.30990 0.03812 Uiso 1.00
+O107 O 0.07860 0.86500 0.45890 0.03812 Uiso 1.00
+O108 O -0.06460 0.77600 0.46290 0.03812 Uiso 1.00
+H109 H -0.13590 0.41900 0.39410 0.03812 Uiso 1.00
+H110 H 0.00420 0.98200 0.28490 0.03812 Uiso 1.00
+H111 H 0.12860 0.64800 0.38300 0.03812 Uiso 1.00
+H112 H -0.14650 0.80800 0.30270 0.03812 Uiso 1.00
+H113 H -0.20140 0.02900 0.34680 0.03812 Uiso 1.00
+H114 H 0.06610 0.98800 0.48880 0.03812 Uiso 1.00
+C115 C 0.92660 0.99800 0.12870 0.03812 Uiso 1.00
+C116 C 0.93100 0.79500 0.17330 0.03812 Uiso 1.00
+C117 C 1.00360 0.63100 0.18630 0.03812 Uiso 1.00
+C118 C 1.08420 0.68500 0.16290 0.03812 Uiso 1.00
+C119 C 1.08150 0.87000 0.11990 0.03812 Uiso 1.00
+C120 C 0.99880 0.01600 0.10410 0.03812 Uiso 1.00
+C121 C 0.85040 0.77700 0.20050 0.03812 Uiso 1.00
+C122 C 0.99870 0.23800 0.05810 0.03812 Uiso 1.00
+N123 N 1.16090 0.54400 0.18040 0.03812 Uiso 1.00
+O124 O 0.85220 0.54000 0.23250 0.03812 Uiso 1.00
+O125 O 0.79200 0.94700 0.19010 0.03812 Uiso 1.00
+O126 O 0.92140 0.36500 0.04110 0.03812 Uiso 1.00
+O127 O 1.06460 0.27600 0.03710 0.03812 Uiso 1.00
+H128 H 1.13590 0.91900 0.10590 0.03812 Uiso 1.00
+H129 H 0.99580 0.48200 0.21510 0.03812 Uiso 1.00
+H130 H 0.87140 0.14800 0.11700 0.03812 Uiso 1.00
+H131 H 1.14650 0.30800 0.19730 0.03812 Uiso 1.00
+H132 H 1.20140 0.52900 0.15320 0.03812 Uiso 1.00
+H133 H 0.93390 0.48800 0.01120 0.03812 Uiso 1.00
+C134 C 0.42660 0.49800 0.62870 0.03812 Uiso 1.00
+C135 C 0.43100 0.29500 0.67330 0.03812 Uiso 1.00
+C136 C 0.50360 0.13100 0.68630 0.03812 Uiso 1.00
+C137 C 0.58420 0.18500 0.66290 0.03812 Uiso 1.00
+C138 C 0.58150 0.37000 0.61990 0.03812 Uiso 1.00
+C139 C 0.49880 0.51600 0.60410 0.03812 Uiso 1.00
+C140 C 0.35040 0.27700 0.70050 0.03812 Uiso 1.00
+C141 C 0.49870 0.73800 0.55810 0.03812 Uiso 1.00
+N142 N 0.66090 0.04400 0.68040 0.03812 Uiso 1.00
+O143 O 0.35220 0.04000 0.73250 0.03812 Uiso 1.00
+O144 O 0.29200 0.44700 0.69010 0.03812 Uiso 1.00
+O145 O 0.42140 0.86500 0.54110 0.03812 Uiso 1.00
+O146 O 0.56460 0.77600 0.53710 0.03812 Uiso 1.00
+H147 H 0.63590 0.41900 0.60590 0.03812 Uiso 1.00
+H148 H 0.49580 0.98200 0.71510 0.03812 Uiso 1.00
+H149 H 0.37140 0.64800 0.61700 0.03812 Uiso 1.00
+H150 H 0.64650 0.80800 0.69730 0.03812 Uiso 1.00
+H151 H 0.70140 0.02900 0.65320 0.03812 Uiso 1.00
+H152 H 0.43390 0.98800 0.51120 0.03812 Uiso 1.00
+Co153 Co 0.25000 0.75000 0.25000 0.00798 Uiso 1.00
+Co154 Co 0.25000 0.75000 0.75000 0.00798 Uiso 1.00
+Co155 Co 0.75000 0.25000 0.75000 0.00798 Uiso 1.00
+Co156 Co 0.75000 0.25000 0.25000 0.00798 Uiso 1.00
+loop_
+_geom_bond_atom_site_label_1
+_geom_bond_atom_site_label_2
+_geom_bond_distance
+_geom_bond_site_symmetry_2
+_ccdc_geom_bond_type
+C1 C2 1.454 . S
+C1 C6 1.349 1_545 D
+C1 H16 1.102 1_545 S
+C2 C3 1.352 . D
+C2 C7 1.502 . S
+C3 C4 1.467 . S
+C3 H15 1.013 . S
+C4 C5 1.374 . D
+C4 N9 1.372 . S
+C5 C6 1.451 1_545 S
+C5 H14 0.979 . S
+C6 C1 1.349 1_565 D
+C6 C5 1.451 1_565 S
+C6 C8 1.541 . S
+C7 O10 1.343 . D
+C7 O11 1.190 . S
+C8 O12 1.349 . S
+C8 O13 1.220 . D
+N9 H17 1.180 . S
+N9 H18 0.992 . S
+O10 Co153 2.141 . S
+O11 Co153 2.205 1_545 S
+O12 H19 0.981 . S
+H16 C1 1.102 1_565 S
+C20 C21 1.454 . S
+C20 C25 1.349 . D
+C20 H35 1.102 . S
+C21 C22 1.352 . D
+C21 C26 1.502 . S
+C22 C23 1.467 . S
+C22 H34 1.013 1_565 S
+C23 C24 1.374 . D
+C23 N28 1.372 . S
+C24 C25 1.451 . S
+C24 H33 0.979 . S
+C25 C27 1.541 . S
+C26 O29 1.343 . D
+C26 O30 1.190 . S
+C27 O31 1.349 . S
+C27 O32 1.220 . D
+N28 H36 1.180 1_565 S
+N28 H37 0.992 . S
+O29 Co155 2.141 1_565 S
+O30 Co155 2.205 . S
+O31 H38 0.981 . S
+H34 C22 1.013 1_545 S
+H36 N28 1.180 1_545 S
+C39 C40 1.454 . S
+C39 C44 1.349 1_545 D
+C39 H54 1.102 1_545 S
+C40 C41 1.352 . D
+C40 C45 1.502 . S
+C41 C42 1.467 . S
+C41 H53 1.013 . S
+C42 C43 1.374 . D
+C42 N47 1.372 . S
+C43 C44 1.451 1_545 S
+C43 H52 0.979 . S
+C44 C39 1.349 1_565 D
+C44 C43 1.451 1_565 S
+C44 C46 1.541 . S
+C45 O48 1.343 . D
+C45 O49 1.190 . S
+C46 O50 1.349 . S
+C46 O51 1.220 . D
+N47 H55 1.180 . S
+N47 H56 0.992 . S
+O48 Co154 2.141 . S
+O49 Co154 2.205 1_545 S
+O50 H57 0.981 . S
+H54 C39 1.102 1_565 S
+C58 C59 1.454 . S
+C58 C63 1.349 . D
+C58 H73 1.102 . S
+C59 C60 1.352 . D
+C59 C64 1.502 . S
+C60 C61 1.467 . S
+C60 H72 1.013 1_565 S
+C61 C62 1.374 . D
+C61 N66 1.372 . S
+C62 C63 1.451 . S
+C62 H71 0.979 . S
+C63 C65 1.541 . S
+C64 O67 1.343 . D
+C64 O68 1.190 . S
+C65 O69 1.349 . S
+C65 O70 1.220 . D
+N66 H74 1.180 1_565 S
+N66 H75 0.992 . S
+O67 Co156 2.141 1_565 S
+O68 Co156 2.205 . S
+O69 H76 0.981 . S
+H72 C60 1.013 1_545 S
+H74 N66 1.180 1_545 S
+C77 C78 1.454 . S
+C77 C82 1.349 1_565 D
+C77 H92 1.102 1_565 S
+C78 C79 1.352 . D
+C78 C83 1.502 . S
+C79 C80 1.467 . S
+C79 H91 1.013 . S
+C80 C81 1.374 . D
+C80 N85 1.372 . S
+C81 C82 1.451 1_565 S
+C81 H90 0.979 . S
+C82 C77 1.349 1_545 D
+C82 C81 1.451 1_545 S
+C82 C84 1.541 . S
+C83 O86 1.343 . D
+C83 O87 1.190 . S
+C84 O88 1.349 . S
+C84 O89 1.220 . D
+N85 H93 1.180 . S
+N85 H94 0.992 . S
+O86 Co155 2.141 . S
+O87 Co155 2.205 1_565 S
+O88 H95 0.981 . S
+H92 C77 1.102 1_545 S
+C96 C97 1.454 . S
+C96 C101 1.349 . D
+C96 H111 1.102 . S
+C97 C98 1.352 . D
+C97 C102 1.502 . S
+C98 C99 1.467 . S
+C98 H110 1.013 1_545 S
+C99 C100 1.374 . D
+C99 N104 1.372 . S
+C100 C101 1.451 . S
+C100 H109 0.979 . S
+C101 C103 1.541 . S
+C102 O105 1.343 . D
+C102 O106 1.190 . S
+C103 O107 1.349 . S
+C103 O108 1.220 . D
+N104 H112 1.180 1_545 S
+N104 H113 0.992 . S
+O105 Co153 2.141 1_545 S
+O106 Co153 2.205 . S
+O107 H114 0.981 . S
+H110 C98 1.013 1_565 S
+H112 N104 1.180 1_565 S
+C115 C116 1.454 . S
+C115 C120 1.349 1_565 D
+C115 H130 1.102 1_565 S
+C116 C117 1.352 . D
+C116 C121 1.502 . S
+C117 C118 1.467 . S
+C117 H129 1.013 . S
+C118 C119 1.374 . D
+C118 N123 1.372 . S
+C119 C120 1.451 1_565 S
+C119 H128 0.979 . S
+C120 C115 1.349 1_545 D
+C120 C119 1.451 1_545 S
+C120 C122 1.541 . S
+C121 O124 1.343 . D
+C121 O125 1.190 . S
+C122 O126 1.349 . S
+C122 O127 1.220 . D
+N123 H131 1.180 . S
+N123 H132 0.992 . S
+O124 Co156 2.141 . S
+O125 Co156 2.205 1_565 S
+O126 H133 0.981 . S
+H130 C115 1.102 1_545 S
+C134 C135 1.454 . S
+C134 C139 1.349 . D
+C134 H149 1.102 . S
+C135 C136 1.352 . D
+C135 C140 1.502 . S
+C136 C137 1.467 . S
+C136 H148 1.013 1_545 S
+C137 C138 1.374 . D
+C137 N142 1.372 . S
+C138 C139 1.451 . S
+C138 H147 0.979 . S
+C139 C141 1.541 . S
+C140 O143 1.343 . D
+C140 O144 1.190 . S
+C141 O145 1.349 . S
+C141 O146 1.220 . D
+N142 H150 1.180 1_545 S
+N142 H151 0.992 . S
+O143 Co154 2.141 1_545 S
+O144 Co154 2.205 . S
+O145 H152 0.981 . S
+H148 C136 1.013 1_565 S
+H150 N142 1.180 1_565 S
+Co153 O105 2.141 1_565 S
+Co153 O11 2.205 1_565 S
+Co154 O143 2.141 1_565 S
+Co154 O49 2.205 1_565 S
+Co155 O29 2.141 1_545 S
+Co155 O87 2.205 1_545 S
+Co156 O67 2.141 1_545 S
+Co156 O125 2.205 1_545 S
diff --git a/benchmarks/mof/structures/flue_gas/UTSA-16.cif b/benchmarks/mof/structures/flue_gas/UTSA-16.cif
new file mode 100644
index 0000000000000000000000000000000000000000..ac9cc8252fc218562cbdf6a25e8e43ace228609b
--- /dev/null
+++ b/benchmarks/mof/structures/flue_gas/UTSA-16.cif
@@ -0,0 +1,176 @@
+data_RAZXIA_clean
+_audit_creation_date 2014-07-02
+_audit_creation_method 'Materials Studio'
+_symmetry_space_group_name_H-M 'P1'
+_symmetry_Int_Tables_number 1
+_symmetry_cell_setting triclinic
+loop_
+_symmetry_equiv_pos_as_xyz
+ x,y,z
+_cell_length_a 12.9064
+_cell_length_b 12.9064
+_cell_length_c 17.6614
+_cell_angle_alpha 111.4310
+_cell_angle_beta 111.4310
+_cell_angle_gamma 90.0000
+loop_
+_atom_site_label
+_atom_site_type_symbol
+_atom_site_fract_x
+_atom_site_fract_y
+_atom_site_fract_z
+_atom_site_U_iso_or_equiv
+_atom_site_adp_type
+_atom_site_occupancy
+K1 K 0.62500 0.71041 0.75000 0.01267 Uiso 1.00
+K2 K 0.12500 0.03959 0.75000 0.01267 Uiso 1.00
+K3 K 0.28959 0.87500 0.25000 0.01267 Uiso 1.00
+K4 K 0.96041 0.37500 0.25000 0.01267 Uiso 1.00
+Co1 Co 0.85501 0.91019 0.91934 0.01267 Uiso 1.00
+Co2 Co 0.06433 0.00915 0.91934 0.01267 Uiso 1.00
+Co3 Co 0.08981 0.93567 0.08066 0.01267 Uiso 1.00
+Co4 Co 0.99085 0.14499 0.08066 0.01267 Uiso 1.00
+Co5 Co 0.18567 0.83981 0.58066 0.01267 Uiso 1.00
+Co6 Co 0.39499 0.74085 0.58066 0.01267 Uiso 1.00
+Co7 Co 0.25915 0.81433 0.41934 0.01267 Uiso 1.00
+Co8 Co 0.16019 0.60501 0.41934 0.01267 Uiso 1.00
+Co9 Co 0.44213 0.94213 0.88426 0.01267 Uiso 1.00
+Co10 Co 0.05787 0.55787 0.11574 0.01267 Uiso 1.00
+Co11 Co 0.80787 0.80787 0.61574 0.01267 Uiso 1.00
+Co12 Co 0.19213 0.19213 0.38426 0.01267 Uiso 1.00
+H1 H 0.71910 0.87090 0.08420 0.01267 Uiso 1.00
+H2 H 0.77850 0.80820 0.02100 0.01267 Uiso 1.00
+H3 H 0.93680 0.86410 0.16260 0.01267 Uiso 1.00
+H4 H 0.88020 0.94920 0.21860 0.01267 Uiso 1.00
+H5 H 0.36510 0.21330 0.08420 0.01267 Uiso 1.00
+H6 H 0.24250 0.21280 0.02100 0.01267 Uiso 1.00
+H7 H 0.22580 0.29850 0.16260 0.01267 Uiso 1.00
+H8 H 0.33840 0.26940 0.21860 0.01267 Uiso 1.00
+H9 H 0.12910 0.63490 0.91580 0.01267 Uiso 1.00
+H10 H 0.19180 0.75750 0.97900 0.01267 Uiso 1.00
+H11 H 0.13590 0.77420 0.83740 0.01267 Uiso 1.00
+H12 H 0.05080 0.66160 0.78140 0.01267 Uiso 1.00
+H13 H 0.78670 0.28090 0.91580 0.01267 Uiso 1.00
+H14 H 0.78720 0.22150 0.97900 0.01267 Uiso 1.00
+H15 H 0.70150 0.06320 0.83740 0.01267 Uiso 1.00
+H16 H 0.73060 0.11980 0.78140 0.01267 Uiso 1.00
+H17 H 0.88490 0.87910 0.41580 0.01267 Uiso 1.00
+H18 H 0.00750 0.94180 0.47900 0.01267 Uiso 1.00
+H19 H 0.02420 0.88590 0.33740 0.01267 Uiso 1.00
+H20 H 0.91160 0.80080 0.28140 0.01267 Uiso 1.00
+H21 H 0.53090 0.53670 0.41580 0.01267 Uiso 1.00
+H22 H 0.47150 0.53720 0.47900 0.01267 Uiso 1.00
+H23 H 0.31320 0.45150 0.33740 0.01267 Uiso 1.00
+H24 H 0.36980 0.48060 0.28140 0.01267 Uiso 1.00
+H25 H 0.46330 0.11510 0.58420 0.01267 Uiso 1.00
+H26 H 0.46280 0.99250 0.52100 0.01267 Uiso 1.00
+H27 H 0.54850 0.97580 0.66260 0.01267 Uiso 1.00
+H28 H 0.51940 0.08840 0.71860 0.01267 Uiso 1.00
+H29 H 0.12090 0.46910 0.58420 0.01267 Uiso 1.00
+H30 H 0.05820 0.52850 0.52100 0.01267 Uiso 1.00
+H31 H 0.11410 0.68680 0.66260 0.01267 Uiso 1.00
+H32 H 0.19920 0.63020 0.71860 0.01267 Uiso 1.00
+C1 C 0.66914 0.90376 0.97330 0.01267 Uiso 1.00
+C2 C 0.75451 0.87938 0.04648 0.01267 Uiso 1.00
+C3 C 0.85970 0.97169 0.10402 0.01267 Uiso 1.00
+C4 C 0.92563 0.94220 0.18420 0.01267 Uiso 1.00
+C5 C 0.03824 0.01433 0.24384 0.01267 Uiso 1.00
+C6 C 0.82318 0.08701 0.13594 0.01267 Uiso 1.00
+C7 C 0.30416 0.06954 0.97330 0.01267 Uiso 1.00
+C8 C 0.29197 0.16710 0.04648 0.01267 Uiso 1.00
+C9 C 0.24432 0.13233 0.10402 0.01267 Uiso 1.00
+C10 C 0.25857 0.24200 0.18420 0.01267 Uiso 1.00
+C11 C 0.20560 0.22951 0.24384 0.01267 Uiso 1.00
+C12 C 0.31276 0.04893 0.13594 0.01267 Uiso 1.00
+C13 C 0.09624 0.69584 0.02670 0.01267 Uiso 1.00
+C14 C 0.12062 0.70803 0.95352 0.01267 Uiso 1.00
+C15 C 0.02831 0.75568 0.89598 0.01267 Uiso 1.00
+C16 C 0.05780 0.74143 0.81580 0.01267 Uiso 1.00
+C17 C 0.98567 0.79440 0.75616 0.01267 Uiso 1.00
+C18 C 0.91299 0.68724 0.86406 0.01267 Uiso 1.00
+C19 C 0.93046 0.33086 0.02670 0.01267 Uiso 1.00
+C20 C 0.83290 0.24549 0.95352 0.01267 Uiso 1.00
+C21 C 0.86767 0.14030 0.89598 0.01267 Uiso 1.00
+C22 C 0.75800 0.07437 0.81580 0.01267 Uiso 1.00
+C23 C 0.77049 0.96176 0.75616 0.01267 Uiso 1.00
+C24 C 0.95107 0.17682 0.86406 0.01267 Uiso 1.00
+C25 C 0.94584 0.84624 0.52670 0.01267 Uiso 1.00
+C26 C 0.95803 0.87062 0.45352 0.01267 Uiso 1.00
+C27 C 0.00568 0.77831 0.39598 0.01267 Uiso 1.00
+C28 C 0.99143 0.80780 0.31580 0.01267 Uiso 1.00
+C29 C 0.04440 0.73567 0.25616 0.01267 Uiso 1.00
+C30 C 0.93724 0.66299 0.36406 0.01267 Uiso 1.00
+C31 C 0.58086 0.68046 0.52670 0.01267 Uiso 1.00
+C32 C 0.49549 0.58290 0.45352 0.01267 Uiso 1.00
+C33 C 0.39030 0.61767 0.39598 0.01267 Uiso 1.00
+C34 C 0.32437 0.50800 0.31580 0.01267 Uiso 1.00
+C35 C 0.21176 0.52049 0.25616 0.01267 Uiso 1.00
+C36 C 0.42682 0.70107 0.36406 0.01267 Uiso 1.00
+C37 C 0.31954 0.05416 0.47330 0.01267 Uiso 1.00
+C38 C 0.41710 0.04197 0.54648 0.01267 Uiso 1.00
+C39 C 0.38233 0.99432 0.60402 0.01267 Uiso 1.00
+C40 C 0.49200 0.00857 0.68420 0.01267 Uiso 1.00
+C41 C 0.47951 0.95560 0.74384 0.01267 Uiso 1.00
+C42 C 0.29893 0.06276 0.63594 0.01267 Uiso 1.00
+C43 C 0.15376 0.41914 0.47330 0.01267 Uiso 1.00
+C44 C 0.12938 0.50451 0.54648 0.01267 Uiso 1.00
+C45 C 0.22169 0.60970 0.60402 0.01267 Uiso 1.00
+C46 C 0.19220 0.67563 0.68420 0.01267 Uiso 1.00
+C47 C 0.26433 0.78824 0.74384 0.01267 Uiso 1.00
+C48 C 0.33701 0.57318 0.63594 0.01267 Uiso 1.00
+O1 O 0.69431 0.91855 0.91524 0.01267 Uiso 1.00
+O2 O 0.56860 0.90487 0.97080 0.01267 Uiso 1.00
+O3 O 0.11830 0.99939 0.21804 0.01267 Uiso 1.00
+O4 O 0.04836 0.08785 0.31778 0.01267 Uiso 1.00
+O5 O 0.86224 0.16703 0.12332 0.01267 Uiso 1.00
+O6 O 0.75153 0.09633 0.17022 0.01267 Uiso 1.00
+O7 O 0.92894 0.97387 0.05734 0.01267 Uiso 1.00
+O8 O 0.22093 0.99669 0.91524 0.01267 Uiso 1.00
+O9 O 0.40220 0.06593 0.97080 0.01267 Uiso 1.00
+O10 O 0.09974 0.21865 0.21804 0.01267 Uiso 1.00
+O11 O 0.26942 0.22993 0.31778 0.01267 Uiso 1.00
+O12 O 0.26108 0.95629 0.12332 0.01267 Uiso 1.00
+O13 O 0.41869 0.07389 0.17022 0.01267 Uiso 1.00
+O14 O 0.12840 0.08347 0.05734 0.01267 Uiso 1.00
+O15 O 0.08145 0.77907 0.08476 0.01267 Uiso 1.00
+O16 O 0.09513 0.59780 0.02920 0.01267 Uiso 1.00
+O17 O 0.00061 0.90026 0.78196 0.01267 Uiso 1.00
+O18 O 0.91215 0.73058 0.68222 0.01267 Uiso 1.00
+O19 O 0.83297 0.73892 0.87668 0.01267 Uiso 1.00
+O20 O 0.90367 0.58131 0.82978 0.01267 Uiso 1.00
+O21 O 0.02613 0.87160 0.94266 0.01267 Uiso 1.00
+O22 O 0.00331 0.30569 0.08476 0.01267 Uiso 1.00
+O23 O 0.93407 0.43140 0.02920 0.01267 Uiso 1.00
+O24 O 0.78135 0.88170 0.78196 0.01267 Uiso 1.00
+O25 O 0.77007 0.95164 0.68222 0.01267 Uiso 1.00
+O26 O 0.04371 0.13776 0.87668 0.01267 Uiso 1.00
+O27 O 0.92611 0.24847 0.82978 0.01267 Uiso 1.00
+O28 O 0.91653 0.07106 0.94266 0.01267 Uiso 1.00
+O29 O 0.02907 0.83145 0.58476 0.01267 Uiso 1.00
+O30 O 0.84780 0.84513 0.52920 0.01267 Uiso 1.00
+O31 O 0.15026 0.75061 0.28196 0.01267 Uiso 1.00
+O32 O 0.98058 0.66215 0.18222 0.01267 Uiso 1.00
+O33 O 0.98892 0.58297 0.37668 0.01267 Uiso 1.00
+O34 O 0.83131 0.65367 0.32978 0.01267 Uiso 1.00
+O35 O 0.12160 0.77613 0.44266 0.01267 Uiso 1.00
+O36 O 0.55569 0.75331 0.58476 0.01267 Uiso 1.00
+O37 O 0.68140 0.68407 0.52920 0.01267 Uiso 1.00
+O38 O 0.13170 0.53135 0.28196 0.01267 Uiso 1.00
+O39 O 0.20164 0.52007 0.18222 0.01267 Uiso 1.00
+O40 O 0.38776 0.79371 0.37668 0.01267 Uiso 1.00
+O41 O 0.49847 0.67611 0.32978 0.01267 Uiso 1.00
+O42 O 0.32106 0.66653 0.44266 0.01267 Uiso 1.00
+O43 O 0.24669 0.97093 0.41524 0.01267 Uiso 1.00
+O44 O 0.31593 0.15220 0.47080 0.01267 Uiso 1.00
+O45 O 0.46865 0.84974 0.71804 0.01267 Uiso 1.00
+O46 O 0.47993 0.01942 0.81778 0.01267 Uiso 1.00
+O47 O 0.20629 0.01108 0.62332 0.01267 Uiso 1.00
+O48 O 0.32389 0.16869 0.67022 0.01267 Uiso 1.00
+O49 O 0.33347 0.87840 0.55734 0.01267 Uiso 1.00
+O50 O 0.16855 0.44431 0.41524 0.01267 Uiso 1.00
+O51 O 0.15487 0.31860 0.47080 0.01267 Uiso 1.00
+O52 O 0.24939 0.86830 0.71804 0.01267 Uiso 1.00
+O53 O 0.33785 0.79836 0.81778 0.01267 Uiso 1.00
+O54 O 0.41703 0.61224 0.62332 0.01267 Uiso 1.00
+O55 O 0.34633 0.50153 0.67022 0.01267 Uiso 1.00
+O56 O 0.22387 0.67894 0.55734 0.01267 Uiso 1.00
diff --git a/benchmarks/mof/structures/flue_gas/ZnH-MFU-4l.cif b/benchmarks/mof/structures/flue_gas/ZnH-MFU-4l.cif
new file mode 100644
index 0000000000000000000000000000000000000000..f3d07d6a5be274d04bc875d06f5e38d0d481dbd8
--- /dev/null
+++ b/benchmarks/mof/structures/flue_gas/ZnH-MFU-4l.cif
@@ -0,0 +1,1550 @@
+data_ZnH-MFU-4l
+_audit_creation_date 2025-01-22
+_audit_creation_method 'Materials Studio'
+_symmetry_space_group_name_H-M 'P1'
+_symmetry_Int_Tables_number 1
+_symmetry_cell_setting triclinic
+loop_
+_symmetry_equiv_pos_as_xyz
+ x,y,z
+_cell_length_a 31.0196
+_cell_length_b 31.0196
+_cell_length_c 31.0196
+_cell_angle_alpha 90.0000
+_cell_angle_beta 90.0000
+_cell_angle_gamma 90.0000
+loop_
+_atom_site_label
+_atom_site_type_symbol
+_atom_site_fract_x
+_atom_site_fract_y
+_atom_site_fract_z
+_atom_site_U_iso_or_equiv
+_atom_site_adp_type
+_atom_site_occupancy
+Zn1 Zn 0.31463 0.31463 0.18537 0.05500 Uiso 1.00
+O2 H 0.34403 0.34404 0.15596 0.05760 Uiso 1.00
+Zn3 Zn 0.68537 0.68537 0.18537 0.05500 Uiso 1.00
+O4 H 0.65597 0.65596 0.15596 0.05760 Uiso 1.00
+Zn5 Zn 0.18537 0.18537 0.18537 0.05500 Uiso 1.00
+O6 H 0.15597 0.15596 0.15596 0.05760 Uiso 1.00
+Zn7 Zn 0.68537 0.31463 0.81463 0.05500 Uiso 1.00
+O8 H 0.65597 0.34404 0.84404 0.05760 Uiso 1.00
+Zn9 Zn 0.18537 0.31463 0.31463 0.05500 Uiso 1.00
+O10 H 0.15597 0.34404 0.34404 0.05760 Uiso 1.00
+Zn11 Zn 0.31462 0.68538 0.81462 0.05500 Uiso 1.00
+O12 H 0.34404 0.65596 0.84404 0.05760 Uiso 1.00
+Zn13 Zn 0.31463 0.18537 0.31463 0.05500 Uiso 1.00
+O14 H 0.34403 0.15596 0.34404 0.05760 Uiso 1.00
+Zn15 Zn 0.18538 0.81462 0.81462 0.05500 Uiso 1.00
+O16 H 0.15597 0.84404 0.84404 0.05760 Uiso 1.00
+Zn17 Zn 0.18538 0.68538 0.68538 0.05500 Uiso 1.00
+O18 H 0.15597 0.65596 0.65596 0.05760 Uiso 1.00
+Zn19 Zn 0.81463 0.68537 0.31463 0.05500 Uiso 1.00
+O20 H 0.84403 0.65596 0.34404 0.05760 Uiso 1.00
+Zn21 Zn 0.81463 0.18537 0.81463 0.05500 Uiso 1.00
+O22 H 0.84403 0.15596 0.84404 0.05760 Uiso 1.00
+Zn23 Zn 0.81463 0.31463 0.68537 0.05500 Uiso 1.00
+O24 H 0.84403 0.34404 0.65596 0.05760 Uiso 1.00
+Zn25 Zn 0.81463 0.81463 0.18537 0.05500 Uiso 1.00
+O26 H 0.84403 0.84404 0.15596 0.05760 Uiso 1.00
+Zn27 Zn 0.68537 0.18537 0.68537 0.05500 Uiso 1.00
+O28 H 0.65597 0.15596 0.65596 0.05760 Uiso 1.00
+Zn29 Zn 0.31462 0.81462 0.68538 0.05500 Uiso 1.00
+O30 H 0.34403 0.84404 0.65596 0.05760 Uiso 1.00
+Zn31 Zn 0.68537 0.81463 0.31463 0.05500 Uiso 1.00
+O32 H 0.65597 0.84404 0.34404 0.05760 Uiso 1.00
+Zn33 Zn 0.31463 0.31463 0.81463 0.05500 Uiso 1.00
+O34 H 0.34403 0.34404 0.84404 0.05760 Uiso 1.00
+Zn35 Zn 0.68537 0.68537 0.81463 0.05500 Uiso 1.00
+O36 H 0.65597 0.65596 0.84404 0.05760 Uiso 1.00
+Zn37 Zn 0.68537 0.18537 0.31463 0.05500 Uiso 1.00
+O38 H 0.65597 0.15596 0.34404 0.05760 Uiso 1.00
+Zn39 Zn 0.18538 0.68538 0.31462 0.05500 Uiso 1.00
+O40 H 0.15597 0.65596 0.34404 0.05760 Uiso 1.00
+Zn41 Zn 0.31462 0.68538 0.18538 0.05500 Uiso 1.00
+O42 H 0.34403 0.65596 0.15596 0.05760 Uiso 1.00
+Zn43 Zn 0.68537 0.31463 0.18537 0.05500 Uiso 1.00
+O44 H 0.65597 0.34404 0.15596 0.05760 Uiso 1.00
+Zn45 Zn 0.18538 0.81462 0.18538 0.05500 Uiso 1.00
+O46 H 0.15597 0.84404 0.15596 0.05760 Uiso 1.00
+Zn47 Zn 0.31463 0.18537 0.68537 0.05500 Uiso 1.00
+O48 H 0.34403 0.15596 0.65596 0.05760 Uiso 1.00
+Zn49 Zn 0.18537 0.18537 0.81463 0.05500 Uiso 1.00
+O50 H 0.15597 0.15596 0.84404 0.05760 Uiso 1.00
+Zn51 Zn 0.68537 0.81463 0.68537 0.05500 Uiso 1.00
+O52 H 0.65597 0.84404 0.65596 0.05760 Uiso 1.00
+Zn53 Zn 0.18537 0.31463 0.68537 0.05500 Uiso 1.00
+O54 H 0.15597 0.34404 0.65596 0.05760 Uiso 1.00
+Zn55 Zn 0.31462 0.81462 0.31462 0.05500 Uiso 1.00
+O56 H 0.34404 0.84404 0.34404 0.05760 Uiso 1.00
+Zn57 Zn 0.81463 0.31463 0.31463 0.05500 Uiso 1.00
+O58 H 0.84403 0.34404 0.34404 0.05760 Uiso 1.00
+Zn59 Zn 0.81463 0.81463 0.81463 0.05500 Uiso 1.00
+O60 H 0.84403 0.84404 0.84404 0.05760 Uiso 1.00
+Zn61 Zn 0.81463 0.68537 0.68537 0.05500 Uiso 1.00
+O62 H 0.84403 0.65596 0.65596 0.05760 Uiso 1.00
+Zn63 Zn 0.81463 0.18537 0.18537 0.05500 Uiso 1.00
+O64 H 0.84403 0.15596 0.15596 0.05760 Uiso 1.00
+Zn65 Zn 0.25000 0.25000 0.25000 0.05500 Uiso 1.00
+Zn66 Zn 0.75000 0.75000 0.25000 0.05500 Uiso 1.00
+Zn67 Zn 0.75000 0.25000 0.75000 0.05500 Uiso 1.00
+Zn68 Zn 0.25000 0.75000 0.75000 0.05500 Uiso 1.00
+Zn69 Zn 0.25000 0.25000 0.75000 0.05500 Uiso 1.00
+Zn70 Zn 0.75000 0.75000 0.75000 0.05500 Uiso 1.00
+Zn71 Zn 0.75000 0.25000 0.25000 0.05500 Uiso 1.00
+Zn72 Zn 0.25000 0.75000 0.25000 0.05500 Uiso 1.00
+N73 N 0.34050 0.27501 0.22499 0.05600 Uiso 1.00
+C74 C 0.38230 0.26679 0.23321 0.06100 Uiso 1.00
+C75 C 0.42100 0.28292 0.21708 0.06100 Uiso 1.00
+C76 C 0.46090 0.26659 0.23341 0.06100 Uiso 1.00
+H77 H 0.42094 0.30413 0.19587 0.03800 Uiso 1.00
+N78 N 0.84050 0.27501 0.72499 0.05600 Uiso 1.00
+C79 C 0.88230 0.26679 0.73321 0.06100 Uiso 1.00
+C80 C 0.92100 0.28292 0.71708 0.06100 Uiso 1.00
+C81 C 0.96090 0.26659 0.73341 0.06100 Uiso 1.00
+H82 H 0.92094 0.30413 0.69587 0.03800 Uiso 1.00
+N83 N 0.65950 0.72499 0.22499 0.05600 Uiso 1.00
+C84 C 0.61770 0.73321 0.23321 0.06100 Uiso 1.00
+C85 C 0.57900 0.71708 0.21708 0.06100 Uiso 1.00
+C86 C 0.53910 0.73341 0.23341 0.06100 Uiso 1.00
+H87 H 0.57906 0.69587 0.19587 0.03800 Uiso 1.00
+N88 N 0.15950 0.72499 0.72499 0.05600 Uiso 1.00
+C89 C 0.11770 0.73321 0.73321 0.06100 Uiso 1.00
+C90 C 0.07900 0.71708 0.71708 0.06100 Uiso 1.00
+C91 C 0.03910 0.73341 0.73341 0.06100 Uiso 1.00
+H92 H 0.07906 0.69587 0.69587 0.03800 Uiso 1.00
+N93 N 0.15950 0.22499 0.22499 0.05600 Uiso 1.00
+C94 C 0.11770 0.23321 0.23321 0.06100 Uiso 1.00
+C95 C 0.07900 0.21708 0.21708 0.06100 Uiso 1.00
+C96 C 0.03910 0.23341 0.23341 0.06100 Uiso 1.00
+H97 H 0.07906 0.19587 0.19587 0.03800 Uiso 1.00
+N98 N 0.65950 0.27501 0.77501 0.05600 Uiso 1.00
+C99 C 0.61770 0.26679 0.76679 0.06100 Uiso 1.00
+C100 C 0.57900 0.28292 0.78292 0.06100 Uiso 1.00
+C101 C 0.53910 0.26659 0.76659 0.06100 Uiso 1.00
+H102 H 0.57906 0.30413 0.80413 0.03800 Uiso 1.00
+N103 N 0.15950 0.27501 0.27501 0.05600 Uiso 1.00
+C104 C 0.11770 0.26679 0.26679 0.06100 Uiso 1.00
+C105 C 0.07900 0.28292 0.28292 0.06100 Uiso 1.00
+C106 C 0.03910 0.26659 0.26659 0.06100 Uiso 1.00
+H107 H 0.07906 0.30413 0.30413 0.03800 Uiso 1.00
+N108 N 0.34050 0.72499 0.77501 0.05600 Uiso 1.00
+C109 C 0.38230 0.73321 0.76679 0.06100 Uiso 1.00
+C110 C 0.42100 0.71708 0.78292 0.06100 Uiso 1.00
+C111 C 0.46090 0.73341 0.76659 0.06100 Uiso 1.00
+H112 H 0.42094 0.69587 0.80413 0.03800 Uiso 1.00
+N113 N 0.34050 0.22499 0.27501 0.05600 Uiso 1.00
+C114 C 0.38230 0.23321 0.26679 0.06100 Uiso 1.00
+C115 C 0.42100 0.21708 0.28292 0.06100 Uiso 1.00
+C116 C 0.46090 0.23341 0.26659 0.06100 Uiso 1.00
+H117 H 0.42094 0.19587 0.30413 0.03800 Uiso 1.00
+N118 N 0.84050 0.72499 0.27501 0.05600 Uiso 1.00
+C119 C 0.88230 0.73321 0.26679 0.06100 Uiso 1.00
+C120 C 0.92100 0.71708 0.28292 0.06100 Uiso 1.00
+C121 C 0.96090 0.73341 0.26659 0.06100 Uiso 1.00
+H122 H 0.92094 0.69587 0.30413 0.03800 Uiso 1.00
+N123 N 0.22499 0.34050 0.27501 0.05600 Uiso 1.00
+C124 C 0.23321 0.38230 0.26679 0.06100 Uiso 1.00
+C125 C 0.21708 0.42100 0.28292 0.06100 Uiso 1.00
+C126 C 0.23341 0.46090 0.26659 0.06100 Uiso 1.00
+H127 H 0.19587 0.42094 0.30413 0.03800 Uiso 1.00
+N128 N 0.22499 0.84050 0.77501 0.05600 Uiso 1.00
+C129 C 0.23321 0.88230 0.76679 0.06100 Uiso 1.00
+C130 C 0.21708 0.92100 0.78292 0.06100 Uiso 1.00
+C131 C 0.23341 0.96090 0.76659 0.06100 Uiso 1.00
+H132 H 0.19587 0.92094 0.80413 0.03800 Uiso 1.00
+N133 N 0.22499 0.65950 0.72499 0.05600 Uiso 1.00
+C134 C 0.23321 0.61770 0.73321 0.06100 Uiso 1.00
+C135 C 0.21708 0.57900 0.71708 0.06100 Uiso 1.00
+C136 C 0.23341 0.53910 0.73341 0.06100 Uiso 1.00
+H137 H 0.19587 0.57906 0.69587 0.03800 Uiso 1.00
+N138 N 0.22499 0.15950 0.22499 0.05600 Uiso 1.00
+C139 C 0.23321 0.11770 0.23321 0.06100 Uiso 1.00
+C140 C 0.21708 0.07900 0.21708 0.06100 Uiso 1.00
+C141 C 0.23341 0.03910 0.23341 0.06100 Uiso 1.00
+H142 H 0.19587 0.07906 0.19587 0.03800 Uiso 1.00
+N143 N 0.77501 0.65950 0.27501 0.05600 Uiso 1.00
+C144 C 0.76679 0.61770 0.26679 0.06100 Uiso 1.00
+C145 C 0.78292 0.57900 0.28292 0.06100 Uiso 1.00
+C146 C 0.76659 0.53910 0.26659 0.06100 Uiso 1.00
+H147 H 0.80413 0.57906 0.30413 0.03800 Uiso 1.00
+N148 N 0.77501 0.15950 0.77501 0.05600 Uiso 1.00
+C149 C 0.76679 0.11770 0.76679 0.06100 Uiso 1.00
+C150 C 0.78292 0.07900 0.78292 0.06100 Uiso 1.00
+C151 C 0.76659 0.03910 0.76659 0.06100 Uiso 1.00
+H152 H 0.80413 0.07906 0.80413 0.03800 Uiso 1.00
+N153 N 0.27501 0.15950 0.27501 0.05600 Uiso 1.00
+C154 C 0.26679 0.11770 0.26679 0.06100 Uiso 1.00
+C155 C 0.28292 0.07900 0.28292 0.06100 Uiso 1.00
+C156 C 0.26659 0.03910 0.26659 0.06100 Uiso 1.00
+H157 H 0.30413 0.07906 0.30413 0.03800 Uiso 1.00
+N158 N 0.77501 0.34050 0.72499 0.05600 Uiso 1.00
+C159 C 0.76679 0.38230 0.73321 0.06100 Uiso 1.00
+C160 C 0.78292 0.42100 0.71708 0.06100 Uiso 1.00
+C161 C 0.76659 0.46090 0.73341 0.06100 Uiso 1.00
+H162 H 0.80413 0.42094 0.69587 0.03800 Uiso 1.00
+N163 N 0.77501 0.84050 0.22499 0.05600 Uiso 1.00
+C164 C 0.76679 0.88230 0.23321 0.06100 Uiso 1.00
+C165 C 0.78292 0.92100 0.21708 0.06100 Uiso 1.00
+C166 C 0.76659 0.96090 0.23341 0.06100 Uiso 1.00
+H167 H 0.80413 0.92094 0.19587 0.03800 Uiso 1.00
+N168 N 0.27501 0.34050 0.22499 0.05600 Uiso 1.00
+C169 C 0.26679 0.38230 0.23321 0.06100 Uiso 1.00
+C170 C 0.28292 0.42100 0.21708 0.06100 Uiso 1.00
+C171 C 0.26659 0.46090 0.23341 0.06100 Uiso 1.00
+H172 H 0.30413 0.42094 0.19587 0.03800 Uiso 1.00
+N173 N 0.27501 0.22499 0.34050 0.05600 Uiso 1.00
+C174 C 0.26679 0.23321 0.38230 0.06100 Uiso 1.00
+C175 C 0.28292 0.21708 0.42100 0.06100 Uiso 1.00
+C176 C 0.26659 0.23341 0.46090 0.06100 Uiso 1.00
+H177 H 0.30413 0.19587 0.42094 0.03800 Uiso 1.00
+N178 N 0.27501 0.72499 0.84050 0.05600 Uiso 1.00
+C179 C 0.26679 0.73321 0.88230 0.06100 Uiso 1.00
+C180 C 0.28292 0.71708 0.92100 0.06100 Uiso 1.00
+C181 C 0.26659 0.73341 0.96090 0.06100 Uiso 1.00
+H182 H 0.30413 0.69587 0.92094 0.03800 Uiso 1.00
+N183 N 0.72499 0.22499 0.65950 0.05600 Uiso 1.00
+C184 C 0.73321 0.23321 0.61770 0.06100 Uiso 1.00
+C185 C 0.71708 0.21708 0.57900 0.06100 Uiso 1.00
+C186 C 0.73341 0.23341 0.53910 0.06100 Uiso 1.00
+H187 H 0.69587 0.19587 0.57906 0.03800 Uiso 1.00
+N188 N 0.72499 0.72499 0.15950 0.05600 Uiso 1.00
+C189 C 0.73321 0.73321 0.11770 0.06100 Uiso 1.00
+C190 C 0.71708 0.71708 0.07900 0.06100 Uiso 1.00
+C191 C 0.73341 0.73341 0.03910 0.06100 Uiso 1.00
+H192 H 0.69587 0.69587 0.07906 0.03800 Uiso 1.00
+N193 N 0.22499 0.22499 0.15950 0.05600 Uiso 1.00
+C194 C 0.23321 0.23321 0.11770 0.06100 Uiso 1.00
+C195 C 0.21708 0.21708 0.07900 0.06100 Uiso 1.00
+C196 C 0.23341 0.23341 0.03910 0.06100 Uiso 1.00
+H197 H 0.19587 0.19587 0.07906 0.03800 Uiso 1.00
+N198 N 0.27501 0.77501 0.65950 0.05600 Uiso 1.00
+C199 C 0.26679 0.76679 0.61770 0.06100 Uiso 1.00
+C200 C 0.28292 0.78292 0.57900 0.06100 Uiso 1.00
+C201 C 0.26659 0.76659 0.53910 0.06100 Uiso 1.00
+H202 H 0.30413 0.80413 0.57906 0.03800 Uiso 1.00
+N203 N 0.27501 0.27501 0.15950 0.05600 Uiso 1.00
+C204 C 0.26679 0.26679 0.11770 0.06100 Uiso 1.00
+C205 C 0.28292 0.28292 0.07900 0.06100 Uiso 1.00
+C206 C 0.26659 0.26659 0.03910 0.06100 Uiso 1.00
+H207 H 0.30413 0.30413 0.07906 0.03800 Uiso 1.00
+N208 N 0.72499 0.77501 0.34050 0.05600 Uiso 1.00
+C209 C 0.73321 0.76679 0.38230 0.06100 Uiso 1.00
+C210 C 0.71708 0.78292 0.42100 0.06100 Uiso 1.00
+C211 C 0.73341 0.76659 0.46090 0.06100 Uiso 1.00
+H212 H 0.69587 0.80413 0.42094 0.03800 Uiso 1.00
+N213 N 0.72499 0.27501 0.84050 0.05600 Uiso 1.00
+C214 C 0.73321 0.26679 0.88230 0.06100 Uiso 1.00
+C215 C 0.71708 0.28292 0.92100 0.06100 Uiso 1.00
+C216 C 0.73341 0.26659 0.96090 0.06100 Uiso 1.00
+H217 H 0.69587 0.30413 0.92094 0.03800 Uiso 1.00
+N218 N 0.22499 0.27501 0.34050 0.05600 Uiso 1.00
+C219 C 0.23321 0.26679 0.38230 0.06100 Uiso 1.00
+C220 C 0.21708 0.28292 0.42100 0.06100 Uiso 1.00
+C221 C 0.23341 0.26659 0.46090 0.06100 Uiso 1.00
+H222 H 0.19587 0.30413 0.42094 0.03800 Uiso 1.00
+N223 N 0.27501 0.34050 0.77501 0.05600 Uiso 1.00
+C224 C 0.26679 0.38230 0.76679 0.06100 Uiso 1.00
+C225 C 0.28292 0.42100 0.78292 0.06100 Uiso 1.00
+C226 C 0.26659 0.46090 0.76659 0.06100 Uiso 1.00
+H227 H 0.30413 0.42094 0.80413 0.03800 Uiso 1.00
+N228 N 0.27501 0.84050 0.27501 0.05600 Uiso 1.00
+C229 C 0.26679 0.88230 0.26679 0.06100 Uiso 1.00
+C230 C 0.28292 0.92100 0.28292 0.06100 Uiso 1.00
+C231 C 0.26659 0.96090 0.26659 0.06100 Uiso 1.00
+H232 H 0.30413 0.92094 0.30413 0.03800 Uiso 1.00
+N233 N 0.72499 0.65950 0.77501 0.05600 Uiso 1.00
+C234 C 0.73321 0.61770 0.76679 0.06100 Uiso 1.00
+C235 C 0.71708 0.57900 0.78292 0.06100 Uiso 1.00
+C236 C 0.73341 0.53910 0.76659 0.06100 Uiso 1.00
+H237 H 0.69587 0.57906 0.80413 0.03800 Uiso 1.00
+N238 N 0.72499 0.15950 0.27501 0.05600 Uiso 1.00
+C239 C 0.73321 0.11770 0.26679 0.06100 Uiso 1.00
+C240 C 0.71708 0.07900 0.28292 0.06100 Uiso 1.00
+C241 C 0.73341 0.03910 0.26659 0.06100 Uiso 1.00
+H242 H 0.69587 0.07906 0.30413 0.03800 Uiso 1.00
+N243 N 0.22499 0.65950 0.27501 0.05600 Uiso 1.00
+C244 C 0.23321 0.61770 0.26679 0.06100 Uiso 1.00
+C245 C 0.21708 0.57900 0.28292 0.06100 Uiso 1.00
+C246 C 0.23341 0.53910 0.26659 0.06100 Uiso 1.00
+H247 H 0.19587 0.57906 0.30413 0.03800 Uiso 1.00
+N248 N 0.27501 0.65950 0.22499 0.05600 Uiso 1.00
+C249 C 0.26679 0.61770 0.23321 0.06100 Uiso 1.00
+C250 C 0.28292 0.57900 0.21708 0.06100 Uiso 1.00
+C251 C 0.26659 0.53910 0.23341 0.06100 Uiso 1.00
+H252 H 0.30413 0.57906 0.19587 0.03800 Uiso 1.00
+N253 N 0.27501 0.15950 0.72499 0.05600 Uiso 1.00
+C254 C 0.26679 0.11770 0.73321 0.06100 Uiso 1.00
+C255 C 0.28292 0.07900 0.71708 0.06100 Uiso 1.00
+C256 C 0.26659 0.03910 0.73341 0.06100 Uiso 1.00
+H257 H 0.30413 0.07906 0.69587 0.03800 Uiso 1.00
+N258 N 0.72499 0.34050 0.22499 0.05600 Uiso 1.00
+C259 C 0.73321 0.38230 0.23321 0.06100 Uiso 1.00
+C260 C 0.71708 0.42100 0.21708 0.06100 Uiso 1.00
+C261 C 0.73341 0.46090 0.23341 0.06100 Uiso 1.00
+H262 H 0.69587 0.42094 0.19587 0.03800 Uiso 1.00
+N263 N 0.72499 0.84050 0.72499 0.05600 Uiso 1.00
+C264 C 0.73321 0.88230 0.73321 0.06100 Uiso 1.00
+C265 C 0.71708 0.92100 0.71708 0.06100 Uiso 1.00
+C266 C 0.73341 0.96090 0.73341 0.06100 Uiso 1.00
+H267 H 0.69587 0.92094 0.69587 0.03800 Uiso 1.00
+N268 N 0.22499 0.84050 0.22499 0.05600 Uiso 1.00
+C269 C 0.23321 0.88230 0.23321 0.06100 Uiso 1.00
+C270 C 0.21708 0.92100 0.21708 0.06100 Uiso 1.00
+C271 C 0.23341 0.96090 0.23341 0.06100 Uiso 1.00
+H272 H 0.19587 0.92094 0.19587 0.03800 Uiso 1.00
+N273 N 0.34050 0.22499 0.72499 0.05600 Uiso 1.00
+C274 C 0.38230 0.23321 0.73321 0.06100 Uiso 1.00
+C275 C 0.42100 0.21708 0.71708 0.06100 Uiso 1.00
+C276 C 0.46090 0.23341 0.73341 0.06100 Uiso 1.00
+H277 H 0.42094 0.19587 0.69587 0.03800 Uiso 1.00
+N278 N 0.84050 0.22499 0.22499 0.05600 Uiso 1.00
+C279 C 0.88230 0.23321 0.23321 0.06100 Uiso 1.00
+C280 C 0.92100 0.21708 0.21708 0.06100 Uiso 1.00
+C281 C 0.96090 0.23341 0.23341 0.06100 Uiso 1.00
+H282 H 0.92094 0.19587 0.19587 0.03800 Uiso 1.00
+N283 N 0.65950 0.22499 0.27501 0.05600 Uiso 1.00
+C284 C 0.61770 0.23321 0.26679 0.06100 Uiso 1.00
+C285 C 0.57900 0.21708 0.28292 0.06100 Uiso 1.00
+C286 C 0.53910 0.23341 0.26659 0.06100 Uiso 1.00
+H287 H 0.57906 0.19587 0.30413 0.03800 Uiso 1.00
+N288 N 0.15950 0.22499 0.77501 0.05600 Uiso 1.00
+C289 C 0.11770 0.23321 0.76679 0.06100 Uiso 1.00
+C290 C 0.07900 0.21708 0.78292 0.06100 Uiso 1.00
+C291 C 0.03910 0.23341 0.76659 0.06100 Uiso 1.00
+H292 H 0.07906 0.19587 0.80413 0.03800 Uiso 1.00
+N293 N 0.65950 0.77501 0.72499 0.05600 Uiso 1.00
+C294 C 0.61770 0.76679 0.73321 0.06100 Uiso 1.00
+C295 C 0.57900 0.78292 0.71708 0.06100 Uiso 1.00
+C296 C 0.53910 0.76659 0.73341 0.06100 Uiso 1.00
+H297 H 0.57906 0.80413 0.69587 0.03800 Uiso 1.00
+N298 N 0.65950 0.27501 0.22499 0.05600 Uiso 1.00
+C299 C 0.61770 0.26679 0.23321 0.06100 Uiso 1.00
+C300 C 0.57900 0.28292 0.21708 0.06100 Uiso 1.00
+C301 C 0.53910 0.26659 0.23341 0.06100 Uiso 1.00
+H302 H 0.57906 0.30413 0.19587 0.03800 Uiso 1.00
+N303 N 0.15950 0.77501 0.22499 0.05600 Uiso 1.00
+C304 C 0.11770 0.76679 0.23321 0.06100 Uiso 1.00
+C305 C 0.07900 0.78292 0.21708 0.06100 Uiso 1.00
+C306 C 0.03910 0.76659 0.23341 0.06100 Uiso 1.00
+H307 H 0.07906 0.80413 0.19587 0.03800 Uiso 1.00
+N308 N 0.34050 0.77501 0.27501 0.05600 Uiso 1.00
+C309 C 0.38230 0.76679 0.26679 0.06100 Uiso 1.00
+C310 C 0.42100 0.78292 0.28292 0.06100 Uiso 1.00
+C311 C 0.46090 0.76659 0.26659 0.06100 Uiso 1.00
+H312 H 0.42094 0.80413 0.30413 0.03800 Uiso 1.00
+N313 N 0.84050 0.77501 0.77501 0.05600 Uiso 1.00
+C314 C 0.88230 0.76679 0.76679 0.06100 Uiso 1.00
+C315 C 0.92100 0.78292 0.78292 0.06100 Uiso 1.00
+C316 C 0.96090 0.76659 0.76659 0.06100 Uiso 1.00
+H317 H 0.92094 0.80413 0.80413 0.03800 Uiso 1.00
+N318 N 0.84050 0.27501 0.27501 0.05600 Uiso 1.00
+C319 C 0.88230 0.26679 0.26679 0.06100 Uiso 1.00
+C320 C 0.92100 0.28292 0.28292 0.06100 Uiso 1.00
+C321 C 0.96090 0.26659 0.26659 0.06100 Uiso 1.00
+H322 H 0.92094 0.30413 0.30413 0.03800 Uiso 1.00
+N323 N 0.22499 0.27501 0.65950 0.05600 Uiso 1.00
+C324 C 0.23321 0.26679 0.61770 0.06100 Uiso 1.00
+C325 C 0.21708 0.28292 0.57900 0.06100 Uiso 1.00
+C326 C 0.23341 0.26659 0.53910 0.06100 Uiso 1.00
+H327 H 0.19587 0.30413 0.57906 0.03800 Uiso 1.00
+N328 N 0.22499 0.77501 0.15950 0.05600 Uiso 1.00
+C329 C 0.23321 0.76679 0.11770 0.06100 Uiso 1.00
+C330 C 0.21708 0.78292 0.07900 0.06100 Uiso 1.00
+C331 C 0.23341 0.76659 0.03910 0.06100 Uiso 1.00
+H332 H 0.19587 0.80413 0.07906 0.03800 Uiso 1.00
+N333 N 0.22499 0.72499 0.34050 0.05600 Uiso 1.00
+C334 C 0.23321 0.73321 0.38230 0.06100 Uiso 1.00
+C335 C 0.21708 0.71708 0.42100 0.06100 Uiso 1.00
+C336 C 0.23341 0.73341 0.46090 0.06100 Uiso 1.00
+H337 H 0.19587 0.69587 0.42094 0.03800 Uiso 1.00
+N338 N 0.22499 0.22499 0.84050 0.05600 Uiso 1.00
+C339 C 0.23321 0.23321 0.88230 0.06100 Uiso 1.00
+C340 C 0.21708 0.21708 0.92100 0.06100 Uiso 1.00
+C341 C 0.23341 0.23341 0.96090 0.06100 Uiso 1.00
+H342 H 0.19587 0.19587 0.92094 0.03800 Uiso 1.00
+N343 N 0.77501 0.27501 0.34050 0.05600 Uiso 1.00
+C344 C 0.76679 0.26679 0.38230 0.06100 Uiso 1.00
+C345 C 0.78292 0.28292 0.42100 0.06100 Uiso 1.00
+C346 C 0.76659 0.26659 0.46090 0.06100 Uiso 1.00
+H347 H 0.80413 0.30413 0.42094 0.03800 Uiso 1.00
+N348 N 0.77501 0.77501 0.84050 0.05600 Uiso 1.00
+C349 C 0.76679 0.76679 0.88230 0.06100 Uiso 1.00
+C350 C 0.78292 0.78292 0.92100 0.06100 Uiso 1.00
+C351 C 0.76659 0.76659 0.96090 0.06100 Uiso 1.00
+H352 H 0.80413 0.80413 0.92094 0.03800 Uiso 1.00
+N353 N 0.27501 0.27501 0.84050 0.05600 Uiso 1.00
+C354 C 0.26679 0.26679 0.88230 0.06100 Uiso 1.00
+C355 C 0.28292 0.28292 0.92100 0.06100 Uiso 1.00
+C356 C 0.26659 0.26659 0.96090 0.06100 Uiso 1.00
+H357 H 0.30413 0.30413 0.92094 0.03800 Uiso 1.00
+N358 N 0.77501 0.72499 0.65950 0.05600 Uiso 1.00
+C359 C 0.76679 0.73321 0.61770 0.06100 Uiso 1.00
+C360 C 0.78292 0.71708 0.57900 0.06100 Uiso 1.00
+C361 C 0.76659 0.73341 0.53910 0.06100 Uiso 1.00
+H362 H 0.80413 0.69587 0.57906 0.03800 Uiso 1.00
+N363 N 0.77501 0.22499 0.15950 0.05600 Uiso 1.00
+C364 C 0.76679 0.23321 0.11770 0.06100 Uiso 1.00
+C365 C 0.78292 0.21708 0.07900 0.06100 Uiso 1.00
+C366 C 0.76659 0.23341 0.03910 0.06100 Uiso 1.00
+H367 H 0.80413 0.19587 0.07906 0.03800 Uiso 1.00
+N368 N 0.27501 0.22499 0.65950 0.05600 Uiso 1.00
+C369 C 0.26679 0.23321 0.61770 0.06100 Uiso 1.00
+C370 C 0.28292 0.21708 0.57900 0.06100 Uiso 1.00
+C371 C 0.26659 0.23341 0.53910 0.06100 Uiso 1.00
+H372 H 0.30413 0.19587 0.57906 0.03800 Uiso 1.00
+N373 N 0.65950 0.72499 0.77501 0.05600 Uiso 1.00
+C374 C 0.61770 0.73321 0.76679 0.06100 Uiso 1.00
+C375 C 0.57900 0.71708 0.78292 0.06100 Uiso 1.00
+C376 C 0.53910 0.73341 0.76659 0.06100 Uiso 1.00
+H377 H 0.57906 0.69587 0.80413 0.03800 Uiso 1.00
+N378 N 0.15950 0.72499 0.27501 0.05600 Uiso 1.00
+C379 C 0.11770 0.73321 0.26679 0.06100 Uiso 1.00
+C380 C 0.07900 0.71708 0.28292 0.06100 Uiso 1.00
+C381 C 0.03910 0.73341 0.26659 0.06100 Uiso 1.00
+H382 H 0.07906 0.69587 0.30413 0.03800 Uiso 1.00
+N383 N 0.34050 0.27501 0.77501 0.05600 Uiso 1.00
+C384 C 0.38230 0.26679 0.76679 0.06100 Uiso 1.00
+C385 C 0.42100 0.28292 0.78292 0.06100 Uiso 1.00
+C386 C 0.46090 0.26659 0.76659 0.06100 Uiso 1.00
+H387 H 0.42094 0.30413 0.80413 0.03800 Uiso 1.00
+N388 N 0.34050 0.72499 0.22499 0.05600 Uiso 1.00
+C389 C 0.38230 0.73321 0.23321 0.06100 Uiso 1.00
+C390 C 0.42100 0.71708 0.21708 0.06100 Uiso 1.00
+C391 C 0.46090 0.73341 0.23341 0.06100 Uiso 1.00
+H392 H 0.42094 0.69587 0.19587 0.03800 Uiso 1.00
+N393 N 0.84050 0.72499 0.72499 0.05600 Uiso 1.00
+C394 C 0.88230 0.73321 0.73321 0.06100 Uiso 1.00
+C395 C 0.92100 0.71708 0.71708 0.06100 Uiso 1.00
+C396 C 0.96090 0.73341 0.73341 0.06100 Uiso 1.00
+H397 H 0.92094 0.69587 0.69587 0.03800 Uiso 1.00
+N398 N 0.15950 0.27501 0.72499 0.05600 Uiso 1.00
+C399 C 0.11770 0.26679 0.73321 0.06100 Uiso 1.00
+C400 C 0.07900 0.28292 0.71708 0.06100 Uiso 1.00
+C401 C 0.03910 0.26659 0.73341 0.06100 Uiso 1.00
+H402 H 0.07906 0.30413 0.69587 0.03800 Uiso 1.00
+N403 N 0.77501 0.65950 0.72499 0.05600 Uiso 1.00
+C404 C 0.76679 0.61770 0.73321 0.06100 Uiso 1.00
+C405 C 0.78292 0.57900 0.71708 0.06100 Uiso 1.00
+C406 C 0.76659 0.53910 0.73341 0.06100 Uiso 1.00
+H407 H 0.80413 0.57906 0.69587 0.03800 Uiso 1.00
+N408 N 0.77501 0.15950 0.22499 0.05600 Uiso 1.00
+C409 C 0.76679 0.11770 0.23321 0.06100 Uiso 1.00
+C410 C 0.78292 0.07900 0.21708 0.06100 Uiso 1.00
+C411 C 0.76659 0.03910 0.23341 0.06100 Uiso 1.00
+H412 H 0.80413 0.07906 0.19587 0.03800 Uiso 1.00
+N413 N 0.77501 0.34050 0.27501 0.05600 Uiso 1.00
+C414 C 0.76679 0.38230 0.26679 0.06100 Uiso 1.00
+C415 C 0.78292 0.42100 0.28292 0.06100 Uiso 1.00
+C416 C 0.76659 0.46090 0.26659 0.06100 Uiso 1.00
+H417 H 0.80413 0.42094 0.30413 0.03800 Uiso 1.00
+N418 N 0.77501 0.84050 0.77501 0.05600 Uiso 1.00
+C419 C 0.76679 0.88230 0.76679 0.06100 Uiso 1.00
+C420 C 0.78292 0.92100 0.78292 0.06100 Uiso 1.00
+C421 C 0.76659 0.96090 0.76659 0.06100 Uiso 1.00
+H422 H 0.80413 0.92094 0.80413 0.03800 Uiso 1.00
+N423 N 0.22499 0.34050 0.72499 0.05600 Uiso 1.00
+C424 C 0.23321 0.38230 0.73321 0.06100 Uiso 1.00
+C425 C 0.21708 0.42100 0.71708 0.06100 Uiso 1.00
+C426 C 0.23341 0.46090 0.73341 0.06100 Uiso 1.00
+H427 H 0.19587 0.42094 0.69587 0.03800 Uiso 1.00
+N428 N 0.22499 0.15950 0.77501 0.05600 Uiso 1.00
+C429 C 0.23321 0.11770 0.76679 0.06100 Uiso 1.00
+C430 C 0.21708 0.07900 0.78292 0.06100 Uiso 1.00
+C431 C 0.23341 0.03910 0.76659 0.06100 Uiso 1.00
+H432 H 0.19587 0.07906 0.80413 0.03800 Uiso 1.00
+N433 N 0.72499 0.77501 0.65950 0.05600 Uiso 1.00
+C434 C 0.73321 0.76679 0.61770 0.06100 Uiso 1.00
+C435 C 0.71708 0.78292 0.57900 0.06100 Uiso 1.00
+C436 C 0.73341 0.76659 0.53910 0.06100 Uiso 1.00
+H437 H 0.69587 0.80413 0.57906 0.03800 Uiso 1.00
+N438 N 0.72499 0.27501 0.15950 0.05600 Uiso 1.00
+C439 C 0.73321 0.26679 0.11770 0.06100 Uiso 1.00
+C440 C 0.71708 0.28292 0.07900 0.06100 Uiso 1.00
+C441 C 0.73341 0.26659 0.03910 0.06100 Uiso 1.00
+H442 H 0.69587 0.30413 0.07906 0.03800 Uiso 1.00
+N443 N 0.27501 0.77501 0.34050 0.05600 Uiso 1.00
+C444 C 0.26679 0.76679 0.38230 0.06100 Uiso 1.00
+C445 C 0.28292 0.78292 0.42100 0.06100 Uiso 1.00
+C446 C 0.26659 0.76659 0.46090 0.06100 Uiso 1.00
+H447 H 0.30413 0.80413 0.42094 0.03800 Uiso 1.00
+N448 N 0.72499 0.22499 0.34050 0.05600 Uiso 1.00
+C449 C 0.73321 0.23321 0.38230 0.06100 Uiso 1.00
+C450 C 0.71708 0.21708 0.42100 0.06100 Uiso 1.00
+C451 C 0.73341 0.23341 0.46090 0.06100 Uiso 1.00
+H452 H 0.69587 0.19587 0.42094 0.03800 Uiso 1.00
+N453 N 0.72499 0.72499 0.84050 0.05600 Uiso 1.00
+C454 C 0.73321 0.73321 0.88230 0.06100 Uiso 1.00
+C455 C 0.71708 0.71708 0.92100 0.06100 Uiso 1.00
+C456 C 0.73341 0.73341 0.96090 0.06100 Uiso 1.00
+H457 H 0.69587 0.69587 0.92094 0.03800 Uiso 1.00
+N458 N 0.27501 0.72499 0.15950 0.05600 Uiso 1.00
+C459 C 0.26679 0.73321 0.11770 0.06100 Uiso 1.00
+C460 C 0.28292 0.71708 0.07900 0.06100 Uiso 1.00
+C461 C 0.26659 0.73341 0.03910 0.06100 Uiso 1.00
+H462 H 0.30413 0.69587 0.07906 0.03800 Uiso 1.00
+N463 N 0.72499 0.65950 0.22499 0.05600 Uiso 1.00
+C464 C 0.73321 0.61770 0.23321 0.06100 Uiso 1.00
+C465 C 0.71708 0.57900 0.21708 0.06100 Uiso 1.00
+C466 C 0.73341 0.53910 0.23341 0.06100 Uiso 1.00
+H467 H 0.69587 0.57906 0.19587 0.03800 Uiso 1.00
+N468 N 0.72499 0.15950 0.72499 0.05600 Uiso 1.00
+C469 C 0.73321 0.11770 0.73321 0.06100 Uiso 1.00
+C470 C 0.71708 0.07900 0.71708 0.06100 Uiso 1.00
+C471 C 0.73341 0.03910 0.73341 0.06100 Uiso 1.00
+H472 H 0.69587 0.07906 0.69587 0.03800 Uiso 1.00
+N473 N 0.27501 0.84050 0.72499 0.05600 Uiso 1.00
+C474 C 0.26679 0.88230 0.73321 0.06100 Uiso 1.00
+C475 C 0.28292 0.92100 0.71708 0.06100 Uiso 1.00
+C476 C 0.26659 0.96090 0.73341 0.06100 Uiso 1.00
+H477 H 0.30413 0.92094 0.69587 0.03800 Uiso 1.00
+N478 N 0.72499 0.34050 0.77501 0.05600 Uiso 1.00
+C479 C 0.73321 0.38230 0.76679 0.06100 Uiso 1.00
+C480 C 0.71708 0.42100 0.78292 0.06100 Uiso 1.00
+C481 C 0.73341 0.46090 0.76659 0.06100 Uiso 1.00
+H482 H 0.69587 0.42094 0.80413 0.03800 Uiso 1.00
+N483 N 0.72499 0.84050 0.27501 0.05600 Uiso 1.00
+C484 C 0.73321 0.88230 0.26679 0.06100 Uiso 1.00
+C485 C 0.71708 0.92100 0.28292 0.06100 Uiso 1.00
+C486 C 0.73341 0.96090 0.26659 0.06100 Uiso 1.00
+H487 H 0.69587 0.92094 0.30413 0.03800 Uiso 1.00
+N488 N 0.27501 0.65950 0.77501 0.05600 Uiso 1.00
+C489 C 0.26679 0.61770 0.76679 0.06100 Uiso 1.00
+C490 C 0.28292 0.57900 0.78292 0.06100 Uiso 1.00
+C491 C 0.26659 0.53910 0.76659 0.06100 Uiso 1.00
+H492 H 0.30413 0.57906 0.80413 0.03800 Uiso 1.00
+N493 N 0.65950 0.77501 0.27501 0.05600 Uiso 1.00
+C494 C 0.61770 0.76679 0.26679 0.06100 Uiso 1.00
+C495 C 0.57900 0.78292 0.28292 0.06100 Uiso 1.00
+C496 C 0.53910 0.76659 0.26659 0.06100 Uiso 1.00
+H497 H 0.57906 0.80413 0.30413 0.03800 Uiso 1.00
+N498 N 0.15950 0.77501 0.77501 0.05600 Uiso 1.00
+C499 C 0.11770 0.76679 0.76679 0.06100 Uiso 1.00
+C500 C 0.07900 0.78292 0.78292 0.06100 Uiso 1.00
+C501 C 0.03910 0.76659 0.76659 0.06100 Uiso 1.00
+H502 H 0.07906 0.80413 0.80413 0.03800 Uiso 1.00
+N503 N 0.34050 0.77501 0.72499 0.05600 Uiso 1.00
+C504 C 0.38230 0.76679 0.73321 0.06100 Uiso 1.00
+C505 C 0.42100 0.78292 0.71708 0.06100 Uiso 1.00
+C506 C 0.46090 0.76659 0.73341 0.06100 Uiso 1.00
+H507 H 0.42094 0.80413 0.69587 0.03800 Uiso 1.00
+N508 N 0.84050 0.77501 0.22499 0.05600 Uiso 1.00
+C509 C 0.88230 0.76679 0.23321 0.06100 Uiso 1.00
+C510 C 0.92100 0.78292 0.21708 0.06100 Uiso 1.00
+C511 C 0.96090 0.76659 0.23341 0.06100 Uiso 1.00
+H512 H 0.92094 0.80413 0.19587 0.03800 Uiso 1.00
+N513 N 0.84050 0.22499 0.77501 0.05600 Uiso 1.00
+C514 C 0.88230 0.23321 0.76679 0.06100 Uiso 1.00
+C515 C 0.92100 0.21708 0.78292 0.06100 Uiso 1.00
+C516 C 0.96090 0.23341 0.76659 0.06100 Uiso 1.00
+H517 H 0.92094 0.19587 0.80413 0.03800 Uiso 1.00
+N518 N 0.65950 0.22499 0.72499 0.05600 Uiso 1.00
+C519 C 0.61770 0.23321 0.73321 0.06100 Uiso 1.00
+C520 C 0.57900 0.21708 0.71708 0.06100 Uiso 1.00
+C521 C 0.53910 0.23341 0.73341 0.06100 Uiso 1.00
+H522 H 0.57906 0.19587 0.69587 0.03800 Uiso 1.00
+N523 N 0.77501 0.72499 0.34050 0.05600 Uiso 1.00
+C524 C 0.76679 0.73321 0.38230 0.06100 Uiso 1.00
+C525 C 0.78292 0.71708 0.42100 0.06100 Uiso 1.00
+C526 C 0.76659 0.73341 0.46090 0.06100 Uiso 1.00
+H527 H 0.80413 0.69587 0.42094 0.03800 Uiso 1.00
+N528 N 0.77501 0.22499 0.84050 0.05600 Uiso 1.00
+C529 C 0.76679 0.23321 0.88230 0.06100 Uiso 1.00
+C530 C 0.78292 0.21708 0.92100 0.06100 Uiso 1.00
+C531 C 0.76659 0.23341 0.96090 0.06100 Uiso 1.00
+H532 H 0.80413 0.19587 0.92094 0.03800 Uiso 1.00
+N533 N 0.77501 0.27501 0.65950 0.05600 Uiso 1.00
+C534 C 0.76679 0.26679 0.61770 0.06100 Uiso 1.00
+C535 C 0.78292 0.28292 0.57900 0.06100 Uiso 1.00
+C536 C 0.76659 0.26659 0.53910 0.06100 Uiso 1.00
+H537 H 0.80413 0.30413 0.57906 0.03800 Uiso 1.00
+N538 N 0.77501 0.77501 0.15950 0.05600 Uiso 1.00
+C539 C 0.76679 0.76679 0.11770 0.06100 Uiso 1.00
+C540 C 0.78292 0.78292 0.07900 0.06100 Uiso 1.00
+C541 C 0.76659 0.76659 0.03910 0.06100 Uiso 1.00
+H542 H 0.80413 0.80413 0.07906 0.03800 Uiso 1.00
+N543 N 0.22499 0.72499 0.65950 0.05600 Uiso 1.00
+C544 C 0.23321 0.73321 0.61770 0.06100 Uiso 1.00
+C545 C 0.21708 0.71708 0.57900 0.06100 Uiso 1.00
+C546 C 0.23341 0.73341 0.53910 0.06100 Uiso 1.00
+H547 H 0.19587 0.69587 0.57906 0.03800 Uiso 1.00
+N548 N 0.22499 0.77501 0.84050 0.05600 Uiso 1.00
+C549 C 0.23321 0.76679 0.88230 0.06100 Uiso 1.00
+C550 C 0.21708 0.78292 0.92100 0.06100 Uiso 1.00
+C551 C 0.23341 0.76659 0.96090 0.06100 Uiso 1.00
+H552 H 0.19587 0.80413 0.92094 0.03800 Uiso 1.00
+N553 N 0.31570 0.25000 0.25000 0.05600 Uiso 1.00
+N554 N 0.81570 0.25000 0.75000 0.05600 Uiso 1.00
+N555 N 0.68430 0.75000 0.25000 0.05600 Uiso 1.00
+N556 N 0.18430 0.75000 0.75000 0.05600 Uiso 1.00
+N557 N 0.18430 0.25000 0.25000 0.05600 Uiso 1.00
+N558 N 0.68430 0.25000 0.75000 0.05600 Uiso 1.00
+N559 N 0.31570 0.75000 0.75000 0.05600 Uiso 1.00
+N560 N 0.81570 0.75000 0.25000 0.05600 Uiso 1.00
+N561 N 0.25000 0.31570 0.25000 0.05600 Uiso 1.00
+N562 N 0.25000 0.81570 0.75000 0.05600 Uiso 1.00
+N563 N 0.25000 0.68430 0.75000 0.05600 Uiso 1.00
+N564 N 0.25000 0.18430 0.25000 0.05600 Uiso 1.00
+N565 N 0.75000 0.68430 0.25000 0.05600 Uiso 1.00
+N566 N 0.75000 0.18430 0.75000 0.05600 Uiso 1.00
+N567 N 0.75000 0.31570 0.75000 0.05600 Uiso 1.00
+N568 N 0.75000 0.81570 0.25000 0.05600 Uiso 1.00
+N569 N 0.25000 0.25000 0.31570 0.05600 Uiso 1.00
+N570 N 0.25000 0.75000 0.81570 0.05600 Uiso 1.00
+N571 N 0.75000 0.25000 0.68430 0.05600 Uiso 1.00
+N572 N 0.75000 0.75000 0.18430 0.05600 Uiso 1.00
+N573 N 0.25000 0.25000 0.18430 0.05600 Uiso 1.00
+N574 N 0.25000 0.75000 0.68430 0.05600 Uiso 1.00
+N575 N 0.75000 0.75000 0.31570 0.05600 Uiso 1.00
+N576 N 0.75000 0.25000 0.81570 0.05600 Uiso 1.00
+N577 N 0.25000 0.31570 0.75000 0.05600 Uiso 1.00
+N578 N 0.25000 0.81570 0.25000 0.05600 Uiso 1.00
+N579 N 0.75000 0.68430 0.75000 0.05600 Uiso 1.00
+N580 N 0.75000 0.18430 0.25000 0.05600 Uiso 1.00
+N581 N 0.25000 0.68430 0.25000 0.05600 Uiso 1.00
+N582 N 0.25000 0.18430 0.75000 0.05600 Uiso 1.00
+N583 N 0.75000 0.31570 0.25000 0.05600 Uiso 1.00
+N584 N 0.75000 0.81570 0.75000 0.05600 Uiso 1.00
+N585 N 0.31570 0.25000 0.75000 0.05600 Uiso 1.00
+N586 N 0.81570 0.25000 0.25000 0.05600 Uiso 1.00
+N587 N 0.68430 0.25000 0.25000 0.05600 Uiso 1.00
+N588 N 0.18430 0.25000 0.75000 0.05600 Uiso 1.00
+N589 N 0.68430 0.75000 0.75000 0.05600 Uiso 1.00
+N590 N 0.18430 0.75000 0.25000 0.05600 Uiso 1.00
+N591 N 0.31570 0.75000 0.25000 0.05600 Uiso 1.00
+N592 N 0.81570 0.75000 0.75000 0.05600 Uiso 1.00
+N593 N 0.25000 0.25000 0.68430 0.05600 Uiso 1.00
+N594 N 0.25000 0.75000 0.18430 0.05600 Uiso 1.00
+N595 N 0.25000 0.75000 0.31570 0.05600 Uiso 1.00
+N596 N 0.25000 0.25000 0.81570 0.05600 Uiso 1.00
+N597 N 0.75000 0.25000 0.31570 0.05600 Uiso 1.00
+N598 N 0.75000 0.75000 0.81570 0.05600 Uiso 1.00
+N599 N 0.75000 0.75000 0.68430 0.05600 Uiso 1.00
+N600 N 0.75000 0.25000 0.18430 0.05600 Uiso 1.00
+O601 O 0.50000 0.28282 0.21718 0.06100 Uiso 1.00
+O602 O 0.00000 0.28282 0.71718 0.06100 Uiso 1.00
+O603 O 0.50000 0.71718 0.21718 0.06100 Uiso 1.00
+O604 O 0.00000 0.71718 0.71718 0.06100 Uiso 1.00
+O605 O 0.50000 0.28282 0.78282 0.06100 Uiso 1.00
+O606 O 0.00000 0.28282 0.28282 0.06100 Uiso 1.00
+O607 O 0.50000 0.71718 0.78282 0.06100 Uiso 1.00
+O608 O 0.00000 0.71718 0.28282 0.06100 Uiso 1.00
+O609 O 0.21718 0.50000 0.28282 0.06100 Uiso 1.00
+O610 O 0.21718 0.00000 0.78282 0.06100 Uiso 1.00
+O611 O 0.21718 0.50000 0.71718 0.06100 Uiso 1.00
+O612 O 0.21718 0.00000 0.21718 0.06100 Uiso 1.00
+O613 O 0.78282 0.50000 0.28282 0.06100 Uiso 1.00
+O614 O 0.78282 0.00000 0.78282 0.06100 Uiso 1.00
+O615 O 0.78282 0.50000 0.71718 0.06100 Uiso 1.00
+O616 O 0.78282 0.00000 0.21718 0.06100 Uiso 1.00
+O617 O 0.28282 0.21718 0.50000 0.06100 Uiso 1.00
+O618 O 0.28282 0.71718 0.00000 0.06100 Uiso 1.00
+O619 O 0.71718 0.21718 0.50000 0.06100 Uiso 1.00
+O620 O 0.71718 0.71718 0.00000 0.06100 Uiso 1.00
+O621 O 0.28282 0.78282 0.50000 0.06100 Uiso 1.00
+O622 O 0.28282 0.28282 0.00000 0.06100 Uiso 1.00
+O623 O 0.71718 0.78282 0.50000 0.06100 Uiso 1.00
+O624 O 0.71718 0.28282 0.00000 0.06100 Uiso 1.00
+O625 O 0.28282 0.50000 0.78282 0.06100 Uiso 1.00
+O626 O 0.28282 0.00000 0.28282 0.06100 Uiso 1.00
+O627 O 0.71718 0.50000 0.78282 0.06100 Uiso 1.00
+O628 O 0.71718 0.00000 0.28282 0.06100 Uiso 1.00
+O629 O 0.28282 0.50000 0.21718 0.06100 Uiso 1.00
+O630 O 0.28282 0.00000 0.71718 0.06100 Uiso 1.00
+O631 O 0.71718 0.50000 0.21718 0.06100 Uiso 1.00
+O632 O 0.71718 0.00000 0.71718 0.06100 Uiso 1.00
+O633 O 0.50000 0.21718 0.71718 0.06100 Uiso 1.00
+O634 O 0.00000 0.21718 0.21718 0.06100 Uiso 1.00
+O635 O 0.50000 0.21718 0.28282 0.06100 Uiso 1.00
+O636 O 0.00000 0.21718 0.78282 0.06100 Uiso 1.00
+O637 O 0.50000 0.78282 0.71718 0.06100 Uiso 1.00
+O638 O 0.00000 0.78282 0.21718 0.06100 Uiso 1.00
+O639 O 0.50000 0.78282 0.28282 0.06100 Uiso 1.00
+O640 O 0.00000 0.78282 0.78282 0.06100 Uiso 1.00
+O641 O 0.21718 0.28282 0.50000 0.06100 Uiso 1.00
+O642 O 0.21718 0.78282 0.00000 0.06100 Uiso 1.00
+O643 O 0.21718 0.71718 0.50000 0.06100 Uiso 1.00
+O644 O 0.21718 0.21718 0.00000 0.06100 Uiso 1.00
+O645 O 0.78282 0.28282 0.50000 0.06100 Uiso 1.00
+O646 O 0.78282 0.78282 0.00000 0.06100 Uiso 1.00
+O647 O 0.78282 0.71718 0.50000 0.06100 Uiso 1.00
+O648 O 0.78282 0.21718 0.00000 0.06100 Uiso 1.00
+loop_
+_geom_bond_atom_site_label_1
+_geom_bond_atom_site_label_2
+_geom_bond_distance
+_geom_bond_site_symmetry_2
+_ccdc_geom_bond_type
+Zn1 O2 1.580 . S
+Zn1 N73 1.914 . S
+Zn1 N168 1.914 . S
+Zn1 N203 1.914 . S
+Zn3 O4 1.580 . S
+Zn3 N83 1.914 . S
+Zn3 N463 1.914 . S
+Zn3 N188 1.914 . S
+Zn5 O6 1.580 . S
+Zn5 N138 1.914 . S
+Zn5 N193 1.914 . S
+Zn5 N93 1.914 . S
+Zn7 O8 1.580 . S
+Zn7 N98 1.914 . S
+Zn7 N478 1.914 . S
+Zn7 N213 1.914 . S
+Zn9 O10 1.580 . S
+Zn9 N123 1.914 . S
+Zn9 N218 1.914 . S
+Zn9 N103 1.914 . S
+Zn11 O12 1.580 . S
+Zn11 N108 1.914 . S
+Zn11 N488 1.914 . S
+Zn11 N178 1.914 . S
+Zn13 O14 1.580 . S
+Zn13 N173 1.914 . S
+Zn13 N113 1.914 . S
+Zn13 N153 1.914 . S
+Zn15 O16 1.580 . S
+Zn15 N128 1.914 . S
+Zn15 N548 1.914 . S
+Zn15 N498 1.914 . S
+Zn17 O18 1.580 . S
+Zn17 N133 1.914 . S
+Zn17 N543 1.914 . S
+Zn17 N88 1.914 . S
+Zn19 O20 1.580 . S
+Zn19 N143 1.914 . S
+Zn19 N523 1.914 . S
+Zn19 N118 1.914 . S
+Zn21 O22 1.580 . S
+Zn21 N148 1.914 . S
+Zn21 N528 1.914 . S
+Zn21 N513 1.914 . S
+Zn23 O24 1.580 . S
+Zn23 N158 1.914 . S
+Zn23 N533 1.914 . S
+Zn23 N78 1.914 . S
+Zn25 O26 1.580 . S
+Zn25 N163 1.914 . S
+Zn25 N538 1.914 . S
+Zn25 N508 1.914 . S
+Zn27 O28 1.580 . S
+Zn27 N183 1.914 . S
+Zn27 N518 1.914 . S
+Zn27 N468 1.914 . S
+Zn29 O30 1.580 . S
+Zn29 N198 1.914 . S
+Zn29 N503 1.914 . S
+Zn29 N473 1.914 . S
+Zn31 O32 1.580 . S
+Zn31 N208 1.914 . S
+Zn31 N493 1.914 . S
+Zn31 N483 1.914 . S
+Zn33 O34 1.580 . S
+Zn33 N223 1.914 . S
+Zn33 N383 1.914 . S
+Zn33 N353 1.914 . S
+Zn35 O36 1.580 . S
+Zn35 N233 1.914 . S
+Zn35 N373 1.914 . S
+Zn35 N453 1.914 . S
+Zn37 O38 1.580 . S
+Zn37 N283 1.914 . S
+Zn37 N448 1.914 . S
+Zn37 N238 1.914 . S
+Zn39 O40 1.580 . S
+Zn39 N333 1.914 . S
+Zn39 N243 1.914 . S
+Zn39 N378 1.914 . S
+Zn41 O42 1.580 . S
+Zn41 N248 1.914 . S
+Zn41 N388 1.914 . S
+Zn41 N458 1.914 . S
+Zn43 O44 1.580 . S
+Zn43 N258 1.914 . S
+Zn43 N298 1.914 . S
+Zn43 N438 1.914 . S
+Zn45 O46 1.580 . S
+Zn45 N328 1.914 . S
+Zn45 N268 1.914 . S
+Zn45 N303 1.914 . S
+Zn47 O48 1.580 . S
+Zn47 N273 1.914 . S
+Zn47 N368 1.914 . S
+Zn47 N253 1.914 . S
+Zn49 O50 1.580 . S
+Zn49 N338 1.914 . S
+Zn49 N428 1.914 . S
+Zn49 N288 1.914 . S
+Zn51 O52 1.580 . S
+Zn51 N293 1.914 . S
+Zn51 N433 1.914 . S
+Zn51 N263 1.914 . S
+Zn53 O54 1.580 . S
+Zn53 N323 1.914 . S
+Zn53 N423 1.914 . S
+Zn53 N398 1.914 . S
+Zn55 O56 1.580 . S
+Zn55 N308 1.914 . S
+Zn55 N443 1.914 . S
+Zn55 N228 1.914 . S
+Zn57 O58 1.580 . S
+Zn57 N343 1.914 . S
+Zn57 N413 1.914 . S
+Zn57 N318 1.914 . S
+Zn59 O60 1.580 . S
+Zn59 N348 1.914 . S
+Zn59 N418 1.914 . S
+Zn59 N313 1.914 . S
+Zn61 O62 1.580 . S
+Zn61 N358 1.914 . S
+Zn61 N403 1.914 . S
+Zn61 N393 1.914 . S
+Zn63 O64 1.580 . S
+Zn63 N363 1.914 . S
+Zn63 N408 1.914 . S
+Zn63 N278 1.914 . S
+Zn65 N553 2.038 . S
+Zn65 N561 2.038 . S
+Zn65 N569 2.038 . S
+Zn65 N564 2.038 . S
+Zn65 N573 2.038 . S
+Zn65 N557 2.038 . S
+Zn66 N555 2.038 . S
+Zn66 N565 2.038 . S
+Zn66 N575 2.038 . S
+Zn66 N568 2.038 . S
+Zn66 N572 2.038 . S
+Zn66 N560 2.038 . S
+Zn67 N558 2.038 . S
+Zn67 N567 2.038 . S
+Zn67 N571 2.038 . S
+Zn67 N566 2.038 . S
+Zn67 N576 2.038 . S
+Zn67 N554 2.038 . S
+Zn68 N559 2.038 . S
+Zn68 N563 2.038 . S
+Zn68 N574 2.038 . S
+Zn68 N562 2.038 . S
+Zn68 N570 2.038 . S
+Zn68 N556 2.038 . S
+Zn69 N577 2.038 . S
+Zn69 N585 2.038 . S
+Zn69 N593 2.038 . S
+Zn69 N588 2.038 . S
+Zn69 N596 2.038 . S
+Zn69 N582 2.038 . S
+Zn70 N579 2.038 . S
+Zn70 N589 2.038 . S
+Zn70 N599 2.038 . S
+Zn70 N592 2.038 . S
+Zn70 N598 2.038 . S
+Zn70 N584 2.038 . S
+Zn71 N583 2.038 . S
+Zn71 N587 2.038 . S
+Zn71 N597 2.038 . S
+Zn71 N586 2.038 . S
+Zn71 N600 2.038 . S
+Zn71 N580 2.038 . S
+Zn72 N581 2.038 . S
+Zn72 N591 2.038 . S
+Zn72 N595 2.038 . S
+Zn72 N590 2.038 . S
+Zn72 N594 2.038 . S
+Zn72 N578 2.038 . S
+N73 C74 1.346 . D
+N73 N553 1.340 . S
+C74 C75 1.393 . S
+C74 C114 1.473 . S
+C75 C76 1.430 . D
+C75 H77 0.930 . S
+C76 O601 1.406 . S
+C76 C116 1.456 . S
+N78 C79 1.346 . D
+N78 N554 1.340 . S
+C79 C80 1.393 . S
+C79 C514 1.473 . S
+C80 C81 1.430 . D
+C80 H82 0.930 . S
+C81 C516 1.456 . S
+C81 O602 1.406 1_655 S
+N83 C84 1.346 . D
+N83 N555 1.340 . S
+C84 C85 1.393 . S
+C84 C494 1.473 . S
+C85 C86 1.430 . D
+C85 H87 0.930 . S
+C86 O603 1.406 . S
+C86 C496 1.456 . S
+N88 C89 1.346 . D
+N88 N556 1.340 . S
+C89 C90 1.393 . S
+C89 C499 1.473 . S
+C90 C91 1.430 . D
+C90 H92 0.930 . S
+C91 O604 1.406 . S
+C91 C501 1.456 . S
+N93 C94 1.346 . D
+N93 N557 1.340 . S
+C94 C95 1.393 . S
+C94 C104 1.473 . S
+C95 C96 1.430 . D
+C95 H97 0.930 . S
+C96 O634 1.406 . S
+C96 C106 1.456 . S
+N98 C99 1.346 . D
+N98 N558 1.340 . S
+C99 C100 1.393 . S
+C99 C519 1.473 . S
+C100 C101 1.430 . D
+C100 H102 0.930 . S
+C101 O605 1.406 . S
+C101 C521 1.456 . S
+N103 C104 1.346 . D
+N103 N557 1.340 . S
+C104 C105 1.393 . S
+C105 C106 1.430 . D
+C105 H107 0.930 . S
+C106 O606 1.406 . S
+N108 C109 1.346 . D
+N108 N559 1.340 . S
+C109 C110 1.393 . S
+C109 C504 1.473 . S
+C110 C111 1.430 . D
+C110 H112 0.930 . S
+C111 O607 1.406 . S
+C111 C506 1.456 . S
+N113 C114 1.346 . D
+N113 N553 1.340 . S
+C114 C115 1.393 . S
+C115 C116 1.430 . D
+C115 H117 0.930 . S
+C116 O635 1.406 . S
+N118 C119 1.346 . D
+N118 N560 1.340 . S
+C119 C120 1.393 . S
+C119 C509 1.473 . S
+C120 C121 1.430 . D
+C120 H122 0.930 . S
+C121 C511 1.456 . S
+C121 O608 1.406 1_655 S
+N123 C124 1.346 . D
+N123 N561 1.340 . S
+C124 C125 1.393 . S
+C124 C169 1.473 . S
+C125 C126 1.430 . D
+C125 H127 0.930 . S
+C126 O609 1.406 . S
+C126 C171 1.456 . S
+N128 C129 1.346 . D
+N128 N562 1.340 . S
+C129 C130 1.393 . S
+C129 C474 1.473 . S
+C130 C131 1.430 . D
+C130 H132 0.930 . S
+C131 C476 1.456 . S
+C131 O610 1.406 1_565 S
+N133 C134 1.346 . D
+N133 N563 1.340 . S
+C134 C135 1.393 . S
+C134 C489 1.473 . S
+C135 C136 1.430 . D
+C135 H137 0.930 . S
+C136 O611 1.406 . S
+C136 C491 1.456 . S
+N138 C139 1.346 . D
+N138 N564 1.340 . S
+C139 C140 1.393 . S
+C139 C154 1.473 . S
+C140 C141 1.430 . D
+C140 H142 0.930 . S
+C141 O612 1.406 . S
+C141 C156 1.456 . S
+N143 C144 1.346 . D
+N143 N565 1.340 . S
+C144 C145 1.393 . S
+C144 C464 1.473 . S
+C145 C146 1.430 . D
+C145 H147 0.930 . S
+C146 O613 1.406 . S
+C146 C466 1.456 . S
+N148 C149 1.346 . D
+N148 N566 1.340 . S
+C149 C150 1.393 . S
+C149 C469 1.473 . S
+C150 C151 1.430 . D
+C150 H152 0.930 . S
+C151 O614 1.406 . S
+C151 C471 1.456 . S
+N153 C154 1.346 . D
+N153 N564 1.340 . S
+C154 C155 1.393 . S
+C155 C156 1.430 . D
+C155 H157 0.930 . S
+C156 O626 1.406 . S
+N158 C159 1.346 . D
+N158 N567 1.340 . S
+C159 C160 1.393 . S
+C159 C479 1.473 . S
+C160 C161 1.430 . D
+C160 H162 0.930 . S
+C161 O615 1.406 . S
+C161 C481 1.456 . S
+N163 C164 1.346 . D
+N163 N568 1.340 . S
+C164 C165 1.393 . S
+C164 C484 1.473 . S
+C165 C166 1.430 . D
+C165 H167 0.930 . S
+C166 C486 1.456 . S
+C166 O616 1.406 1_565 S
+N168 C169 1.346 . D
+N168 N561 1.340 . S
+C169 C170 1.393 . S
+C170 C171 1.430 . D
+C170 H172 0.930 . S
+C171 O629 1.406 . S
+N173 C174 1.346 . D
+N173 N569 1.340 . S
+C174 C175 1.393 . S
+C174 C219 1.473 . S
+C175 C176 1.430 . D
+C175 H177 0.930 . S
+C176 O617 1.406 . S
+C176 C221 1.456 . S
+N178 C179 1.346 . D
+N178 N570 1.340 . S
+C179 C180 1.393 . S
+C179 C549 1.473 . S
+C180 C181 1.430 . D
+C180 H182 0.930 . S
+C181 C551 1.456 . S
+C181 O618 1.406 1_556 S
+N183 C184 1.346 . D
+N183 N571 1.340 . S
+C184 C185 1.393 . S
+C184 C534 1.473 . S
+C185 C186 1.430 . D
+C185 H187 0.930 . S
+C186 O619 1.406 . S
+C186 C536 1.456 . S
+N188 C189 1.346 . D
+N188 N572 1.340 . S
+C189 C190 1.393 . S
+C189 C539 1.473 . S
+C190 C191 1.430 . D
+C190 H192 0.930 . S
+C191 O620 1.406 . S
+C191 C541 1.456 . S
+N193 C194 1.346 . D
+N193 N573 1.340 . S
+C194 C195 1.393 . S
+C194 C204 1.473 . S
+C195 C196 1.430 . D
+C195 H197 0.930 . S
+C196 O644 1.406 . S
+C196 C206 1.456 . S
+N198 C199 1.346 . D
+N198 N574 1.340 . S
+C199 C200 1.393 . S
+C199 C544 1.473 . S
+C200 C201 1.430 . D
+C200 H202 0.930 . S
+C201 O621 1.406 . S
+C201 C546 1.456 . S
+N203 C204 1.346 . D
+N203 N573 1.340 . S
+C204 C205 1.393 . S
+C205 C206 1.430 . D
+C205 H207 0.930 . S
+C206 O622 1.406 . S
+N208 C209 1.346 . D
+N208 N575 1.340 . S
+C209 C210 1.393 . S
+C209 C524 1.473 . S
+C210 C211 1.430 . D
+C210 H212 0.930 . S
+C211 O623 1.406 . S
+C211 C526 1.456 . S
+N213 C214 1.346 . D
+N213 N576 1.340 . S
+C214 C215 1.393 . S
+C214 C529 1.473 . S
+C215 C216 1.430 . D
+C215 H217 0.930 . S
+C216 C531 1.456 . S
+C216 O624 1.406 1_556 S
+N218 C219 1.346 . D
+N218 N569 1.340 . S
+C219 C220 1.393 . S
+C220 C221 1.430 . D
+C220 H222 0.930 . S
+C221 O641 1.406 . S
+N223 C224 1.346 . D
+N223 N577 1.340 . S
+C224 C225 1.393 . S
+C224 C424 1.473 . S
+C225 C226 1.430 . D
+C225 H227 0.930 . S
+C226 O625 1.406 . S
+C226 C426 1.456 . S
+N228 C229 1.346 . D
+N228 N578 1.340 . S
+C229 C230 1.393 . S
+C229 C269 1.473 . S
+C230 C231 1.430 . D
+C230 H232 0.930 . S
+C231 C271 1.456 . S
+C231 O626 1.406 1_565 S
+N233 C234 1.346 . D
+N233 N579 1.340 . S
+C234 C235 1.393 . S
+C234 C404 1.473 . S
+C235 C236 1.430 . D
+C235 H237 0.930 . S
+C236 O627 1.406 . S
+C236 C406 1.456 . S
+N238 C239 1.346 . D
+N238 N580 1.340 . S
+C239 C240 1.393 . S
+C239 C409 1.473 . S
+C240 C241 1.430 . D
+C240 H242 0.930 . S
+C241 O628 1.406 . S
+C241 C411 1.456 . S
+N243 C244 1.346 . D
+N243 N581 1.340 . S
+C244 C245 1.393 . S
+C244 C249 1.473 . S
+C245 C246 1.430 . D
+C245 H247 0.930 . S
+C246 O609 1.406 . S
+C246 C251 1.456 . S
+N248 C249 1.346 . D
+N248 N581 1.340 . S
+C249 C250 1.393 . S
+C250 C251 1.430 . D
+C250 H252 0.930 . S
+C251 O629 1.406 . S
+N253 C254 1.346 . D
+N253 N582 1.340 . S
+C254 C255 1.393 . S
+C254 C429 1.473 . S
+C255 C256 1.430 . D
+C255 H257 0.930 . S
+C256 O630 1.406 . S
+C256 C431 1.456 . S
+N258 C259 1.346 . D
+N258 N583 1.340 . S
+C259 C260 1.393 . S
+C259 C414 1.473 . S
+C260 C261 1.430 . D
+C260 H262 0.930 . S
+C261 O631 1.406 . S
+C261 C416 1.456 . S
+N263 C264 1.346 . D
+N263 N584 1.340 . S
+C264 C265 1.393 . S
+C264 C419 1.473 . S
+C265 C266 1.430 . D
+C265 H267 0.930 . S
+C266 C421 1.456 . S
+C266 O632 1.406 1_565 S
+N268 C269 1.346 . D
+N268 N578 1.340 . S
+C269 C270 1.393 . S
+C270 C271 1.430 . D
+C270 H272 0.930 . S
+C271 O612 1.406 1_565 S
+N273 C274 1.346 . D
+N273 N585 1.340 . S
+C274 C275 1.393 . S
+C274 C384 1.473 . S
+C275 C276 1.430 . D
+C275 H277 0.930 . S
+C276 O633 1.406 . S
+C276 C386 1.456 . S
+N278 C279 1.346 . D
+N278 N586 1.340 . S
+C279 C280 1.393 . S
+C279 C319 1.473 . S
+C280 C281 1.430 . D
+C280 H282 0.930 . S
+C281 C321 1.456 . S
+C281 O634 1.406 1_655 S
+N283 C284 1.346 . D
+N283 N587 1.340 . S
+C284 C285 1.393 . S
+C284 C299 1.473 . S
+C285 C286 1.430 . D
+C285 H287 0.930 . S
+C286 O635 1.406 . S
+C286 C301 1.456 . S
+N288 C289 1.346 . D
+N288 N588 1.340 . S
+C289 C290 1.393 . S
+C289 C399 1.473 . S
+C290 C291 1.430 . D
+C290 H292 0.930 . S
+C291 O636 1.406 . S
+C291 C401 1.456 . S
+N293 C294 1.346 . D
+N293 N589 1.340 . S
+C294 C295 1.393 . S
+C294 C374 1.473 . S
+C295 C296 1.430 . D
+C295 H297 0.930 . S
+C296 O637 1.406 . S
+C296 C376 1.456 . S
+N298 C299 1.346 . D
+N298 N587 1.340 . S
+C299 C300 1.393 . S
+C300 C301 1.430 . D
+C300 H302 0.930 . S
+C301 O601 1.406 . S
+N303 C304 1.346 . D
+N303 N590 1.340 . S
+C304 C305 1.393 . S
+C304 C379 1.473 . S
+C305 C306 1.430 . D
+C305 H307 0.930 . S
+C306 O638 1.406 . S
+C306 C381 1.456 . S
+N308 C309 1.346 . D
+N308 N591 1.340 . S
+C309 C310 1.393 . S
+C309 C389 1.473 . S
+C310 C311 1.430 . D
+C310 H312 0.930 . S
+C311 O639 1.406 . S
+C311 C391 1.456 . S
+N313 C314 1.346 . D
+N313 N592 1.340 . S
+C314 C315 1.393 . S
+C314 C394 1.473 . S
+C315 C316 1.430 . D
+C315 H317 0.930 . S
+C316 C396 1.456 . S
+C316 O640 1.406 1_655 S
+N318 C319 1.346 . D
+N318 N586 1.340 . S
+C319 C320 1.393 . S
+C320 C321 1.430 . D
+C320 H322 0.930 . S
+C321 O606 1.406 1_655 S
+N323 C324 1.346 . D
+N323 N593 1.340 . S
+C324 C325 1.393 . S
+C324 C369 1.473 . S
+C325 C326 1.430 . D
+C325 H327 0.930 . S
+C326 O641 1.406 . S
+C326 C371 1.456 . S
+N328 C329 1.346 . D
+N328 N594 1.340 . S
+C329 C330 1.393 . S
+C329 C459 1.473 . S
+C330 C331 1.430 . D
+C330 H332 0.930 . S
+C331 O642 1.406 . S
+C331 C461 1.456 . S
+N333 C334 1.346 . D
+N333 N595 1.340 . S
+C334 C335 1.393 . S
+C334 C444 1.473 . S
+C335 C336 1.430 . D
+C335 H337 0.930 . S
+C336 O643 1.406 . S
+C336 C446 1.456 . S
+N338 C339 1.346 . D
+N338 N596 1.340 . S
+C339 C340 1.393 . S
+C339 C354 1.473 . S
+C340 C341 1.430 . D
+C340 H342 0.930 . S
+C341 C356 1.456 . S
+C341 O644 1.406 1_556 S
+N343 C344 1.346 . D
+N343 N597 1.340 . S
+C344 C345 1.393 . S
+C344 C449 1.473 . S
+C345 C346 1.430 . D
+C345 H347 0.930 . S
+C346 O645 1.406 . S
+C346 C451 1.456 . S
+N348 C349 1.346 . D
+N348 N598 1.340 . S
+C349 C350 1.393 . S
+C349 C454 1.473 . S
+C350 C351 1.430 . D
+C350 H352 0.930 . S
+C351 C456 1.456 . S
+C351 O646 1.406 1_556 S
+N353 C354 1.346 . D
+N353 N596 1.340 . S
+C354 C355 1.393 . S
+C355 C356 1.430 . D
+C355 H357 0.930 . S
+C356 O622 1.406 1_556 S
+N358 C359 1.346 . D
+N358 N599 1.340 . S
+C359 C360 1.393 . S
+C359 C434 1.473 . S
+C360 C361 1.430 . D
+C360 H362 0.930 . S
+C361 O647 1.406 . S
+C361 C436 1.456 . S
+N363 C364 1.346 . D
+N363 N600 1.340 . S
+C364 C365 1.393 . S
+C364 C439 1.473 . S
+C365 C366 1.430 . D
+C365 H367 0.930 . S
+C366 O648 1.406 . S
+C366 C441 1.456 . S
+N368 C369 1.346 . D
+N368 N593 1.340 . S
+C369 C370 1.393 . S
+C370 C371 1.430 . D
+C370 H372 0.930 . S
+C371 O617 1.406 . S
+N373 C374 1.346 . D
+N373 N589 1.340 . S
+C374 C375 1.393 . S
+C375 C376 1.430 . D
+C375 H377 0.930 . S
+C376 O607 1.406 . S
+N378 C379 1.346 . D
+N378 N590 1.340 . S
+C379 C380 1.393 . S
+C380 C381 1.430 . D
+C380 H382 0.930 . S
+C381 O608 1.406 . S
+N383 C384 1.346 . D
+N383 N585 1.340 . S
+C384 C385 1.393 . S
+C385 C386 1.430 . D
+C385 H387 0.930 . S
+C386 O605 1.406 . S
+N388 C389 1.346 . D
+N388 N591 1.340 . S
+C389 C390 1.393 . S
+C390 C391 1.430 . D
+C390 H392 0.930 . S
+C391 O603 1.406 . S
+N393 C394 1.346 . D
+N393 N592 1.340 . S
+C394 C395 1.393 . S
+C395 C396 1.430 . D
+C395 H397 0.930 . S
+C396 O604 1.406 1_655 S
+N398 C399 1.346 . D
+N398 N588 1.340 . S
+C399 C400 1.393 . S
+C400 C401 1.430 . D
+C400 H402 0.930 . S
+C401 O602 1.406 . S
+N403 C404 1.346 . D
+N403 N579 1.340 . S
+C404 C405 1.393 . S
+C405 C406 1.430 . D
+C405 H407 0.930 . S
+C406 O615 1.406 . S
+N408 C409 1.346 . D
+N408 N580 1.340 . S
+C409 C410 1.393 . S
+C410 C411 1.430 . D
+C410 H412 0.930 . S
+C411 O616 1.406 . S
+N413 C414 1.346 . D
+N413 N583 1.340 . S
+C414 C415 1.393 . S
+C415 C416 1.430 . D
+C415 H417 0.930 . S
+C416 O613 1.406 . S
+N418 C419 1.346 . D
+N418 N584 1.340 . S
+C419 C420 1.393 . S
+C420 C421 1.430 . D
+C420 H422 0.930 . S
+C421 O614 1.406 1_565 S
+N423 C424 1.346 . D
+N423 N577 1.340 . S
+C424 C425 1.393 . S
+C425 C426 1.430 . D
+C425 H427 0.930 . S
+C426 O611 1.406 . S
+N428 C429 1.346 . D
+N428 N582 1.340 . S
+C429 C430 1.393 . S
+C430 C431 1.430 . D
+C430 H432 0.930 . S
+C431 O610 1.406 . S
+N433 C434 1.346 . D
+N433 N599 1.340 . S
+C434 C435 1.393 . S
+C435 C436 1.430 . D
+C435 H437 0.930 . S
+C436 O623 1.406 . S
+N438 C439 1.346 . D
+N438 N600 1.340 . S
+C439 C440 1.393 . S
+C440 C441 1.430 . D
+C440 H442 0.930 . S
+C441 O624 1.406 . S
+N443 C444 1.346 . D
+N443 N595 1.340 . S
+C444 C445 1.393 . S
+C445 C446 1.430 . D
+C445 H447 0.930 . S
+C446 O621 1.406 . S
+N448 C449 1.346 . D
+N448 N597 1.340 . S
+C449 C450 1.393 . S
+C450 C451 1.430 . D
+C450 H452 0.930 . S
+C451 O619 1.406 . S
+N453 C454 1.346 . D
+N453 N598 1.340 . S
+C454 C455 1.393 . S
+C455 C456 1.430 . D
+C455 H457 0.930 . S
+C456 O620 1.406 1_556 S
+N458 C459 1.346 . D
+N458 N594 1.340 . S
+C459 C460 1.393 . S
+C460 C461 1.430 . D
+C460 H462 0.930 . S
+C461 O618 1.406 . S
+N463 C464 1.346 . D
+N463 N565 1.340 . S
+C464 C465 1.393 . S
+C465 C466 1.430 . D
+C465 H467 0.930 . S
+C466 O631 1.406 . S
+N468 C469 1.346 . D
+N468 N566 1.340 . S
+C469 C470 1.393 . S
+C470 C471 1.430 . D
+C470 H472 0.930 . S
+C471 O632 1.406 . S
+N473 C474 1.346 . D
+N473 N562 1.340 . S
+C474 C475 1.393 . S
+C475 C476 1.430 . D
+C475 H477 0.930 . S
+C476 O630 1.406 1_565 S
+N478 C479 1.346 . D
+N478 N567 1.340 . S
+C479 C480 1.393 . S
+C480 C481 1.430 . D
+C480 H482 0.930 . S
+C481 O627 1.406 . S
+N483 C484 1.346 . D
+N483 N568 1.340 . S
+C484 C485 1.393 . S
+C485 C486 1.430 . D
+C485 H487 0.930 . S
+C486 O628 1.406 1_565 S
+N488 C489 1.346 . D
+N488 N563 1.340 . S
+C489 C490 1.393 . S
+C490 C491 1.430 . D
+C490 H492 0.930 . S
+C491 O625 1.406 . S
+N493 C494 1.346 . D
+N493 N555 1.340 . S
+C494 C495 1.393 . S
+C495 C496 1.430 . D
+C495 H497 0.930 . S
+C496 O639 1.406 . S
+N498 C499 1.346 . D
+N498 N556 1.340 . S
+C499 C500 1.393 . S
+C500 C501 1.430 . D
+C500 H502 0.930 . S
+C501 O640 1.406 . S
+N503 C504 1.346 . D
+N503 N559 1.340 . S
+C504 C505 1.393 . S
+C505 C506 1.430 . D
+C505 H507 0.930 . S
+C506 O637 1.406 . S
+N508 C509 1.346 . D
+N508 N560 1.340 . S
+C509 C510 1.393 . S
+C510 C511 1.430 . D
+C510 H512 0.930 . S
+C511 O638 1.406 1_655 S
+N513 C514 1.346 . D
+N513 N554 1.340 . S
+C514 C515 1.393 . S
+C515 C516 1.430 . D
+C515 H517 0.930 . S
+C516 O636 1.406 1_655 S
+N518 C519 1.346 . D
+N518 N558 1.340 . S
+C519 C520 1.393 . S
+C520 C521 1.430 . D
+C520 H522 0.930 . S
+C521 O633 1.406 . S
+N523 C524 1.346 . D
+N523 N575 1.340 . S
+C524 C525 1.393 . S
+C525 C526 1.430 . D
+C525 H527 0.930 . S
+C526 O647 1.406 . S
+N528 C529 1.346 . D
+N528 N576 1.340 . S
+C529 C530 1.393 . S
+C530 C531 1.430 . D
+C530 H532 0.930 . S
+C531 O648 1.406 1_556 S
+N533 C534 1.346 . D
+N533 N571 1.340 . S
+C534 C535 1.393 . S
+C535 C536 1.430 . D
+C535 H537 0.930 . S
+C536 O645 1.406 . S
+N538 C539 1.346 . D
+N538 N572 1.340 . S
+C539 C540 1.393 . S
+C540 C541 1.430 . D
+C540 H542 0.930 . S
+C541 O646 1.406 . S
+N543 C544 1.346 . D
+N543 N574 1.340 . S
+C544 C545 1.393 . S
+C545 C546 1.430 . D
+C545 H547 0.930 . S
+C546 O643 1.406 . S
+N548 C549 1.346 . D
+N548 N570 1.340 . S
+C549 C550 1.393 . S
+C550 C551 1.430 . D
+C550 H552 0.930 . S
+C551 O642 1.406 1_556 S
+O602 C81 1.406 1_455 S
+O604 C396 1.406 1_455 S
+O606 C321 1.406 1_455 S
+O608 C121 1.406 1_455 S
+O610 C131 1.406 1_545 S
+O612 C271 1.406 1_545 S
+O614 C421 1.406 1_545 S
+O616 C166 1.406 1_545 S
+O618 C181 1.406 1_554 S
+O620 C456 1.406 1_554 S
+O622 C356 1.406 1_554 S
+O624 C216 1.406 1_554 S
+O626 C231 1.406 1_545 S
+O628 C486 1.406 1_545 S
+O630 C476 1.406 1_545 S
+O632 C266 1.406 1_545 S
+O634 C281 1.406 1_455 S
+O636 C516 1.406 1_455 S
+O638 C511 1.406 1_455 S
+O640 C316 1.406 1_455 S
+O642 C551 1.406 1_554 S
+O644 C341 1.406 1_554 S
+O646 C351 1.406 1_554 S
+O648 C531 1.406 1_554 S
diff --git a/benchmarks/mof/structures/general/Fe-MOF-74.cif b/benchmarks/mof/structures/general/Fe-MOF-74.cif
new file mode 100644
index 0000000000000000000000000000000000000000..07f3ba17d17e35152a3e696b107a609049963bf7
--- /dev/null
+++ b/benchmarks/mof/structures/general/Fe-MOF-74.cif
@@ -0,0 +1,186 @@
+data_image0
+_cell_length_a 26.179
+_cell_length_b 26.179
+_cell_length_c 6.652
+_cell_angle_alpha 90
+_cell_angle_beta 90
+_cell_angle_gamma 120
+
+_symmetry_space_group_name_H-M "P 1"
+_symmetry_int_tables_number 1
+
+loop_
+ _symmetry_equiv_pos_as_xyz
+ 'x, y, z'
+
+loop_
+ _atom_site_label
+ _atom_site_occupancy
+ _atom_site_fract_x
+ _atom_site_fract_y
+ _atom_site_fract_z
+ _atom_site_thermal_displace_type
+ _atom_site_B_iso_or_equiv
+ _atom_site_type_symbol
+ Fe1 1.0000 0.38790 0.35068 0.15211 Biso 1.000 Fe
+ C1 1.0000 0.32290 0.20386 0.28779 Biso 1.000 C
+ C2 1.0000 0.34291 0.22040 0.09164 Biso 1.000 C
+ C3 1.0000 0.35335 0.18320 0.97052 Biso 1.000 C
+ H1 1.0000 0.36889 0.19605 0.81817 Biso 1.000 H
+ C4 1.0000 0.31168 0.24386 0.41805 Biso 1.000 C
+ O1 1.0000 0.32032 0.29230 0.35040 Biso 1.000 O
+ O2 1.0000 0.29364 0.22895 0.59490 Biso 1.000 O
+ O3 1.0000 0.35220 0.27243 0.01900 Biso 1.000 O
+ Fe2 1.0000 0.05457 0.68401 0.48544 Biso 1.000 Fe
+ C5 1.0000 0.98957 0.53719 0.62112 Biso 1.000 C
+ C6 1.0000 0.00958 0.55373 0.42497 Biso 1.000 C
+ C7 1.0000 0.02002 0.51653 0.30385 Biso 1.000 C
+ H2 1.0000 0.03556 0.52938 0.15150 Biso 1.000 H
+ C8 1.0000 0.97835 0.57719 0.75138 Biso 1.000 C
+ O4 1.0000 0.98699 0.62563 0.68373 Biso 1.000 O
+ O5 1.0000 0.96031 0.56228 0.92823 Biso 1.000 O
+ O6 1.0000 0.01887 0.60576 0.35233 Biso 1.000 O
+ Fe3 1.0000 0.72123 0.01735 0.81878 Biso 1.000 Fe
+ C9 1.0000 0.65623 0.87053 0.95446 Biso 1.000 C
+ C10 1.0000 0.67624 0.88707 0.75831 Biso 1.000 C
+ C11 1.0000 0.68668 0.84987 0.63719 Biso 1.000 C
+ H3 1.0000 0.70222 0.86272 0.48484 Biso 1.000 H
+ C12 1.0000 0.64501 0.91053 0.08472 Biso 1.000 C
+ O7 1.0000 0.65365 0.95897 0.01707 Biso 1.000 O
+ O8 1.0000 0.62697 0.89562 0.26157 Biso 1.000 O
+ O9 1.0000 0.68553 0.93910 0.68567 Biso 1.000 O
+ Fe4 1.0000 0.64932 0.03722 0.15211 Biso 1.000 Fe
+ C13 1.0000 0.79614 0.11904 0.28779 Biso 1.000 C
+ C14 1.0000 0.77960 0.12251 0.09164 Biso 1.000 C
+ C15 1.0000 0.81680 0.17015 0.97052 Biso 1.000 C
+ H4 1.0000 0.80395 0.17284 0.81817 Biso 1.000 H
+ C16 1.0000 0.75614 0.06782 0.41805 Biso 1.000 C
+ O10 1.0000 0.70770 0.02802 0.35040 Biso 1.000 O
+ O11 1.0000 0.77105 0.06469 0.59490 Biso 1.000 O
+ O12 1.0000 0.72757 0.07977 0.01900 Biso 1.000 O
+ Fe5 1.0000 0.31599 0.37055 0.48544 Biso 1.000 Fe
+ C17 1.0000 0.46281 0.45237 0.62112 Biso 1.000 C
+ C18 1.0000 0.44627 0.45584 0.42497 Biso 1.000 C
+ C19 1.0000 0.48347 0.50348 0.30385 Biso 1.000 C
+ H5 1.0000 0.47062 0.50617 0.15150 Biso 1.000 H
+ C20 1.0000 0.42281 0.40115 0.75138 Biso 1.000 C
+ O13 1.0000 0.37437 0.36135 0.68373 Biso 1.000 O
+ O14 1.0000 0.43772 0.39802 0.92823 Biso 1.000 O
+ O15 1.0000 0.39424 0.41310 0.35233 Biso 1.000 O
+ Fe6 1.0000 0.98265 0.70389 0.81878 Biso 1.000 Fe
+ C21 1.0000 0.12947 0.78571 0.95446 Biso 1.000 C
+ C22 1.0000 0.11293 0.78918 0.75831 Biso 1.000 C
+ C23 1.0000 0.15013 0.83682 0.63719 Biso 1.000 C
+ H6 1.0000 0.13728 0.83951 0.48484 Biso 1.000 H
+ C24 1.0000 0.08947 0.73449 0.08472 Biso 1.000 C
+ O16 1.0000 0.04103 0.69469 0.01707 Biso 1.000 O
+ O17 1.0000 0.10438 0.73136 0.26157 Biso 1.000 O
+ O18 1.0000 0.06090 0.74644 0.68567 Biso 1.000 O
+ Fe7 1.0000 0.96278 0.61210 0.15211 Biso 1.000 Fe
+ C25 1.0000 0.88096 0.67710 0.28779 Biso 1.000 C
+ C26 1.0000 0.87749 0.65709 0.09164 Biso 1.000 C
+ C27 1.0000 0.82985 0.64665 0.97052 Biso 1.000 C
+ H7 1.0000 0.82716 0.63111 0.81817 Biso 1.000 H
+ C28 1.0000 0.93218 0.68832 0.41805 Biso 1.000 C
+ O19 1.0000 0.97198 0.67968 0.35040 Biso 1.000 O
+ O20 1.0000 0.93531 0.70636 0.59490 Biso 1.000 O
+ O21 1.0000 0.92023 0.64780 0.01900 Biso 1.000 O
+ Fe8 1.0000 0.62945 0.94543 0.48544 Biso 1.000 Fe
+ C29 1.0000 0.54763 0.01043 0.62112 Biso 1.000 C
+ C30 1.0000 0.54416 0.99042 0.42497 Biso 1.000 C
+ C31 1.0000 0.49652 0.97998 0.30385 Biso 1.000 C
+ H8 1.0000 0.49383 0.96444 0.15150 Biso 1.000 H
+ C32 1.0000 0.59885 0.02165 0.75138 Biso 1.000 C
+ O22 1.0000 0.63865 0.01301 0.68373 Biso 1.000 O
+ O23 1.0000 0.60198 0.03969 0.92823 Biso 1.000 O
+ O24 1.0000 0.58690 0.98113 0.35233 Biso 1.000 O
+ Fe9 1.0000 0.29611 0.27877 0.81878 Biso 1.000 Fe
+ C33 1.0000 0.21429 0.34377 0.95446 Biso 1.000 C
+ C34 1.0000 0.21082 0.32376 0.75831 Biso 1.000 C
+ C35 1.0000 0.16318 0.31332 0.63719 Biso 1.000 C
+ H9 1.0000 0.16049 0.29778 0.48484 Biso 1.000 H
+ C36 1.0000 0.26551 0.35499 0.08472 Biso 1.000 C
+ O25 1.0000 0.30531 0.34635 0.01707 Biso 1.000 O
+ O26 1.0000 0.26864 0.37303 0.26157 Biso 1.000 O
+ O27 1.0000 0.25356 0.31447 0.68567 Biso 1.000 O
+ Fe10 1.0000 0.61210 0.64932 0.84789 Biso 1.000 Fe
+ C37 1.0000 0.67710 0.79614 0.71221 Biso 1.000 C
+ C38 1.0000 0.65709 0.77960 0.90836 Biso 1.000 C
+ C39 1.0000 0.64665 0.81680 0.02948 Biso 1.000 C
+ H10 1.0000 0.63111 0.80395 0.18183 Biso 1.000 H
+ C40 1.0000 0.68832 0.75614 0.58195 Biso 1.000 C
+ O28 1.0000 0.67968 0.70770 0.64960 Biso 1.000 O
+ O29 1.0000 0.70636 0.77105 0.40510 Biso 1.000 O
+ O30 1.0000 0.64780 0.72757 0.98100 Biso 1.000 O
+ Fe11 1.0000 0.27877 0.98265 0.18122 Biso 1.000 Fe
+ C41 1.0000 0.34377 0.12947 0.04554 Biso 1.000 C
+ C42 1.0000 0.32376 0.11293 0.24169 Biso 1.000 C
+ C43 1.0000 0.31332 0.15013 0.36281 Biso 1.000 C
+ H11 1.0000 0.29778 0.13728 0.51516 Biso 1.000 H
+ C44 1.0000 0.35499 0.08947 0.91528 Biso 1.000 C
+ O31 1.0000 0.34635 0.04103 0.98293 Biso 1.000 O
+ O32 1.0000 0.37303 0.10438 0.73843 Biso 1.000 O
+ O33 1.0000 0.31447 0.06090 0.31433 Biso 1.000 O
+ Fe12 1.0000 0.94543 0.31599 0.51456 Biso 1.000 Fe
+ C45 1.0000 0.01043 0.46281 0.37888 Biso 1.000 C
+ C46 1.0000 0.99042 0.44627 0.57503 Biso 1.000 C
+ C47 1.0000 0.97998 0.48347 0.69615 Biso 1.000 C
+ H12 1.0000 0.96444 0.47062 0.84850 Biso 1.000 H
+ C48 1.0000 0.02165 0.42281 0.24862 Biso 1.000 C
+ O34 1.0000 0.01301 0.37437 0.31627 Biso 1.000 O
+ O35 1.0000 0.03969 0.43772 0.07177 Biso 1.000 O
+ O36 1.0000 0.98113 0.39424 0.64767 Biso 1.000 O
+ Fe13 1.0000 0.35068 0.96278 0.84789 Biso 1.000 Fe
+ C49 1.0000 0.20386 0.88096 0.71221 Biso 1.000 C
+ C50 1.0000 0.22040 0.87749 0.90836 Biso 1.000 C
+ C51 1.0000 0.18320 0.82985 0.02948 Biso 1.000 C
+ H13 1.0000 0.19605 0.82716 0.18183 Biso 1.000 H
+ C52 1.0000 0.24386 0.93218 0.58195 Biso 1.000 C
+ O37 1.0000 0.29230 0.97198 0.64960 Biso 1.000 O
+ O38 1.0000 0.22895 0.93531 0.40510 Biso 1.000 O
+ O39 1.0000 0.27243 0.92023 0.98100 Biso 1.000 O
+ Fe14 1.0000 0.01735 0.29611 0.18122 Biso 1.000 Fe
+ C53 1.0000 0.87053 0.21429 0.04554 Biso 1.000 C
+ C54 1.0000 0.88707 0.21082 0.24169 Biso 1.000 C
+ C55 1.0000 0.84987 0.16318 0.36281 Biso 1.000 C
+ H14 1.0000 0.86272 0.16049 0.51516 Biso 1.000 H
+ C56 1.0000 0.91053 0.26551 0.91528 Biso 1.000 C
+ O40 1.0000 0.95897 0.30531 0.98293 Biso 1.000 O
+ O41 1.0000 0.89562 0.26864 0.73843 Biso 1.000 O
+ O42 1.0000 0.93910 0.25356 0.31433 Biso 1.000 O
+ Fe15 1.0000 0.68401 0.62945 0.51456 Biso 1.000 Fe
+ C57 1.0000 0.53719 0.54763 0.37888 Biso 1.000 C
+ C58 1.0000 0.55373 0.54416 0.57503 Biso 1.000 C
+ C59 1.0000 0.51653 0.49652 0.69615 Biso 1.000 C
+ H15 1.0000 0.52938 0.49383 0.84850 Biso 1.000 H
+ C60 1.0000 0.57719 0.59885 0.24862 Biso 1.000 C
+ O43 1.0000 0.62563 0.63865 0.31627 Biso 1.000 O
+ O44 1.0000 0.56228 0.60198 0.07177 Biso 1.000 O
+ O45 1.0000 0.60576 0.58690 0.64767 Biso 1.000 O
+ Fe16 1.0000 0.03722 0.38790 0.84789 Biso 1.000 Fe
+ C61 1.0000 0.11904 0.32290 0.71221 Biso 1.000 C
+ C62 1.0000 0.12251 0.34291 0.90836 Biso 1.000 C
+ C63 1.0000 0.17015 0.35335 0.02948 Biso 1.000 C
+ H16 1.0000 0.17284 0.36889 0.18183 Biso 1.000 H
+ C64 1.0000 0.06782 0.31168 0.58195 Biso 1.000 C
+ O46 1.0000 0.02802 0.32032 0.64960 Biso 1.000 O
+ O47 1.0000 0.06469 0.29364 0.40510 Biso 1.000 O
+ O48 1.0000 0.07977 0.35220 0.98100 Biso 1.000 O
+ Fe17 1.0000 0.70389 0.72123 0.18122 Biso 1.000 Fe
+ C65 1.0000 0.78571 0.65623 0.04554 Biso 1.000 C
+ C66 1.0000 0.78918 0.67624 0.24169 Biso 1.000 C
+ C67 1.0000 0.83682 0.68668 0.36281 Biso 1.000 C
+ H17 1.0000 0.83951 0.70222 0.51516 Biso 1.000 H
+ C68 1.0000 0.73449 0.64501 0.91528 Biso 1.000 C
+ O49 1.0000 0.69469 0.65365 0.98293 Biso 1.000 O
+ O50 1.0000 0.73136 0.62697 0.73843 Biso 1.000 O
+ O51 1.0000 0.74644 0.68553 0.31433 Biso 1.000 O
+ Fe18 1.0000 0.37055 0.05457 0.51456 Biso 1.000 Fe
+ C69 1.0000 0.45237 0.98957 0.37888 Biso 1.000 C
+ C70 1.0000 0.45584 0.00958 0.57503 Biso 1.000 C
+ C71 1.0000 0.50348 0.02002 0.69615 Biso 1.000 C
+ H18 1.0000 0.50617 0.03556 0.84850 Biso 1.000 H
+ C72 1.0000 0.40115 0.97835 0.24862 Biso 1.000 C
+ O52 1.0000 0.36135 0.98699 0.31627 Biso 1.000 O
+ O53 1.0000 0.39802 0.96031 0.07177 Biso 1.000 O
+ O54 1.0000 0.41310 0.01887 0.64767 Biso 1.000 O
diff --git a/benchmarks/mof/structures/general/HKUST-1.cif b/benchmarks/mof/structures/general/HKUST-1.cif
new file mode 100644
index 0000000000000000000000000000000000000000..d7d2adad361d09830475837f67f22b7ca9a53f4d
--- /dev/null
+++ b/benchmarks/mof/structures/general/HKUST-1.cif
@@ -0,0 +1,180 @@
+data_FIQCEN_clean
+_audit_creation_date 2014-07-02
+_audit_creation_method 'Materials Studio'
+_symmetry_space_group_name_H-M 'P1'
+_symmetry_Int_Tables_number 1
+_symmetry_cell_setting triclinic
+loop_
+_symmetry_equiv_pos_as_xyz
+ x,y,z
+_cell_length_a 18.6273
+_cell_length_b 18.6273
+_cell_length_c 18.6273
+_cell_angle_alpha 60.0000
+_cell_angle_beta 60.0000
+_cell_angle_gamma 60.0000
+loop_
+_atom_site_label
+_atom_site_type_symbol
+_atom_site_fract_x
+_atom_site_fract_y
+_atom_site_fract_z
+_atom_site_U_iso_or_equiv
+_atom_site_adp_type
+_atom_site_occupancy
+Cu1 Cu 0.57057 -0.00000 0.42943 0.01267 Uiso 1.00
+Cu2 Cu 0.00000 0.57057 0.00000 0.01267 Uiso 1.00
+Cu3 Cu 0.42943 0.00000 0.57057 0.01267 Uiso 1.00
+Cu4 Cu 0.00000 0.42943 0.00000 0.01267 Uiso 1.00
+Cu5 Cu 0.57057 0.42943 -0.00000 0.01267 Uiso 1.00
+Cu6 Cu 0.00000 1.00000 0.42943 0.01267 Uiso 1.00
+Cu7 Cu 0.42943 0.57057 -0.00000 0.01267 Uiso 1.00
+Cu8 Cu 0.00000 0.00000 0.57057 0.01267 Uiso 1.00
+Cu9 Cu 0.57057 1.00000 -0.00000 0.01267 Uiso 1.00
+Cu10 Cu 0.00000 0.42943 0.57057 0.01267 Uiso 1.00
+Cu11 Cu 0.42943 1.00000 0.00000 0.01267 Uiso 1.00
+Cu12 Cu 0.00000 0.57057 0.42943 0.01267 Uiso 1.00
+H1 H 0.72800 0.72800 0.51160 0.01267 Uiso 1.00
+H2 H 0.72800 0.72800 0.03240 0.01267 Uiso 1.00
+H3 H 0.51160 0.03240 0.72800 0.01267 Uiso 1.00
+H4 H 0.03240 0.51160 0.72800 0.01267 Uiso 1.00
+H5 H 0.72800 0.51160 0.03240 0.01267 Uiso 1.00
+H6 H 0.72800 0.03240 0.51160 0.01267 Uiso 1.00
+H7 H 0.51160 0.72800 0.72800 0.01267 Uiso 1.00
+H8 H 0.03240 0.72800 0.72800 0.01267 Uiso 1.00
+H9 H 0.72800 0.03240 0.72800 0.01267 Uiso 1.00
+H10 H 0.72800 0.51160 0.72800 0.01267 Uiso 1.00
+H11 H 0.51160 0.72800 0.03240 0.01267 Uiso 1.00
+H12 H 0.03240 0.72800 0.51160 0.01267 Uiso 1.00
+H13 H 0.27200 0.27200 0.48840 0.01267 Uiso 1.00
+H14 H 0.27200 0.27200 0.96760 0.01267 Uiso 1.00
+H15 H 0.96760 0.48840 0.27200 0.01267 Uiso 1.00
+H16 H 0.48840 0.96760 0.27200 0.01267 Uiso 1.00
+H17 H 0.48840 0.27200 0.96760 0.01267 Uiso 1.00
+H18 H 0.96760 0.27200 0.48840 0.01267 Uiso 1.00
+H19 H 0.27200 0.48840 0.27200 0.01267 Uiso 1.00
+H20 H 0.27200 0.96760 0.27200 0.01267 Uiso 1.00
+H21 H 0.96760 0.27200 0.27200 0.01267 Uiso 1.00
+H22 H 0.48840 0.27200 0.27200 0.01267 Uiso 1.00
+H23 H 0.27200 0.48840 0.96760 0.01267 Uiso 1.00
+H24 H 0.27200 0.96760 0.48840 0.01267 Uiso 1.00
+C1 C 0.25700 0.96900 0.38700 0.01267 Uiso 1.00
+C2 C 0.96900 0.25700 0.38700 0.01267 Uiso 1.00
+C3 C 0.38700 0.38700 0.25700 0.01267 Uiso 1.00
+C4 C 0.38700 0.38700 0.96900 0.01267 Uiso 1.00
+C5 C 0.25700 0.38700 0.38700 0.01267 Uiso 1.00
+C6 C 0.96900 0.38700 0.38700 0.01267 Uiso 1.00
+C7 C 0.38700 0.25700 0.96900 0.01267 Uiso 1.00
+C8 C 0.38700 0.96900 0.25700 0.01267 Uiso 1.00
+C9 C 0.25700 0.38700 0.96900 0.01267 Uiso 1.00
+C10 C 0.96900 0.38700 0.25700 0.01267 Uiso 1.00
+C11 C 0.38700 0.96900 0.38700 0.01267 Uiso 1.00
+C12 C 0.38700 0.25700 0.38700 0.01267 Uiso 1.00
+C13 C 0.03100 0.74300 0.61300 0.01267 Uiso 1.00
+C14 C 0.74300 0.03100 0.61300 0.01267 Uiso 1.00
+C15 C 0.61300 0.61300 0.74300 0.01267 Uiso 1.00
+C16 C 0.61300 0.61300 0.03100 0.01267 Uiso 1.00
+C17 C 0.61300 0.74300 0.61300 0.01267 Uiso 1.00
+C18 C 0.61300 0.03100 0.61300 0.01267 Uiso 1.00
+C19 C 0.74300 0.61300 0.03100 0.01267 Uiso 1.00
+C20 C 0.03100 0.61300 0.74300 0.01267 Uiso 1.00
+C21 C 0.61300 0.74300 0.03100 0.01267 Uiso 1.00
+C22 C 0.61300 0.03100 0.74300 0.01267 Uiso 1.00
+C23 C 0.03100 0.61300 0.61300 0.01267 Uiso 1.00
+C24 C 0.74300 0.61300 0.61300 0.01267 Uiso 1.00
+C25 C 0.56870 0.56870 0.83770 0.01267 Uiso 1.00
+C26 C 0.56870 0.56870 0.02490 0.01267 Uiso 1.00
+C27 C 0.83770 0.02490 0.56870 0.01267 Uiso 1.00
+C28 C 0.02490 0.83770 0.56870 0.01267 Uiso 1.00
+C29 C 0.56870 0.83770 0.02490 0.01267 Uiso 1.00
+C30 C 0.56870 0.02490 0.83770 0.01267 Uiso 1.00
+C31 C 0.83770 0.56870 0.56870 0.01267 Uiso 1.00
+C32 C 0.02490 0.56870 0.56870 0.01267 Uiso 1.00
+C33 C 0.56870 0.02490 0.56870 0.01267 Uiso 1.00
+C34 C 0.56870 0.83770 0.56870 0.01267 Uiso 1.00
+C35 C 0.83770 0.56870 0.02490 0.01267 Uiso 1.00
+C36 C 0.02490 0.56870 0.83770 0.01267 Uiso 1.00
+C37 C 0.43130 0.43130 0.16230 0.01267 Uiso 1.00
+C38 C 0.43130 0.43130 0.97510 0.01267 Uiso 1.00
+C39 C 0.97510 0.16230 0.43130 0.01267 Uiso 1.00
+C40 C 0.16230 0.97510 0.43130 0.01267 Uiso 1.00
+C41 C 0.16230 0.43130 0.97510 0.01267 Uiso 1.00
+C42 C 0.97510 0.43130 0.16230 0.01267 Uiso 1.00
+C43 C 0.43130 0.16230 0.43130 0.01267 Uiso 1.00
+C44 C 0.43130 0.97510 0.43130 0.01267 Uiso 1.00
+C45 C 0.97510 0.43130 0.43130 0.01267 Uiso 1.00
+C46 C 0.16230 0.43130 0.43130 0.01267 Uiso 1.00
+C47 C 0.43130 0.16230 0.97510 0.01267 Uiso 1.00
+C48 C 0.43130 0.97510 0.16230 0.01267 Uiso 1.00
+C49 C 0.30060 0.96840 0.43040 0.01267 Uiso 1.00
+C50 C 0.96840 0.30060 0.30060 0.01267 Uiso 1.00
+C51 C 0.43040 0.30060 0.30060 0.01267 Uiso 1.00
+C52 C 0.30060 0.43040 0.96840 0.01267 Uiso 1.00
+C53 C 0.30060 0.43040 0.30060 0.01267 Uiso 1.00
+C54 C 0.96840 0.30060 0.43040 0.01267 Uiso 1.00
+C55 C 0.43040 0.30060 0.96840 0.01267 Uiso 1.00
+C56 C 0.30060 0.96840 0.30060 0.01267 Uiso 1.00
+C57 C 0.30060 0.30060 0.96840 0.01267 Uiso 1.00
+C58 C 0.96840 0.43040 0.30060 0.01267 Uiso 1.00
+C59 C 0.43040 0.96840 0.30060 0.01267 Uiso 1.00
+C60 C 0.30060 0.30060 0.43040 0.01267 Uiso 1.00
+C61 C 0.03160 0.69940 0.56960 0.01267 Uiso 1.00
+C62 C 0.69940 0.03160 0.69940 0.01267 Uiso 1.00
+C63 C 0.69940 0.56960 0.69940 0.01267 Uiso 1.00
+C64 C 0.56960 0.69940 0.03160 0.01267 Uiso 1.00
+C65 C 0.56960 0.69940 0.69940 0.01267 Uiso 1.00
+C66 C 0.69940 0.03160 0.56960 0.01267 Uiso 1.00
+C67 C 0.69940 0.56960 0.03160 0.01267 Uiso 1.00
+C68 C 0.03160 0.69940 0.69940 0.01267 Uiso 1.00
+C69 C 0.69940 0.69940 0.03160 0.01267 Uiso 1.00
+C70 C 0.56960 0.03160 0.69940 0.01267 Uiso 1.00
+C71 C 0.03160 0.56960 0.69940 0.01267 Uiso 1.00
+C72 C 0.69940 0.69940 0.56960 0.01267 Uiso 1.00
+O1 O 0.61201 0.49247 0.87425 0.01267 Uiso 1.00
+O2 O 0.49247 0.61201 0.02127 0.01267 Uiso 1.00
+O3 O 0.87425 0.02127 0.61201 0.01267 Uiso 1.00
+O4 O 0.02127 0.87425 0.49247 0.01267 Uiso 1.00
+O5 O 0.61201 0.87425 0.02127 0.01267 Uiso 1.00
+O6 O 0.49247 0.02127 0.87425 0.01267 Uiso 1.00
+O7 O 0.87425 0.61201 0.49247 0.01267 Uiso 1.00
+O8 O 0.02127 0.49247 0.61201 0.01267 Uiso 1.00
+O9 O 0.61201 0.02127 0.49247 0.01267 Uiso 1.00
+O10 O 0.49247 0.87425 0.61201 0.01267 Uiso 1.00
+O11 O 0.87425 0.49247 0.02127 0.01267 Uiso 1.00
+O12 O 0.02127 0.61201 0.87425 0.01267 Uiso 1.00
+O13 O 0.50753 0.38799 0.12575 0.01267 Uiso 1.00
+O14 O 0.38799 0.50753 0.97873 0.01267 Uiso 1.00
+O15 O 0.97873 0.12575 0.38799 0.01267 Uiso 1.00
+O16 O 0.12575 0.97873 0.50753 0.01267 Uiso 1.00
+O17 O 0.12575 0.38799 0.97873 0.01267 Uiso 1.00
+O18 O 0.97873 0.50753 0.12575 0.01267 Uiso 1.00
+O19 O 0.38799 0.12575 0.50753 0.01267 Uiso 1.00
+O20 O 0.50753 0.97873 0.38799 0.01267 Uiso 1.00
+O21 O 0.97873 0.38799 0.50753 0.01267 Uiso 1.00
+O22 O 0.12575 0.50753 0.38799 0.01267 Uiso 1.00
+O23 O 0.50753 0.12575 0.97873 0.01267 Uiso 1.00
+O24 O 0.38799 0.97873 0.12575 0.01267 Uiso 1.00
+O25 O 0.38799 0.50753 0.12575 0.01267 Uiso 1.00
+O26 O 0.50753 0.38799 0.97873 0.01267 Uiso 1.00
+O27 O 0.12575 0.97873 0.38799 0.01267 Uiso 1.00
+O28 O 0.97873 0.12575 0.50753 0.01267 Uiso 1.00
+O29 O 0.38799 0.12575 0.97873 0.01267 Uiso 1.00
+O30 O 0.50753 0.97873 0.12575 0.01267 Uiso 1.00
+O31 O 0.12575 0.38799 0.50753 0.01267 Uiso 1.00
+O32 O 0.97873 0.50753 0.38799 0.01267 Uiso 1.00
+O33 O 0.38799 0.97873 0.50753 0.01267 Uiso 1.00
+O34 O 0.50753 0.12575 0.38799 0.01267 Uiso 1.00
+O35 O 0.12575 0.50753 0.97873 0.01267 Uiso 1.00
+O36 O 0.97873 0.38799 0.12575 0.01267 Uiso 1.00
+O37 O 0.49247 0.61201 0.87425 0.01267 Uiso 1.00
+O38 O 0.61201 0.49247 0.02127 0.01267 Uiso 1.00
+O39 O 0.02127 0.87425 0.61201 0.01267 Uiso 1.00
+O40 O 0.87425 0.02127 0.49247 0.01267 Uiso 1.00
+O41 O 0.87425 0.61201 0.02127 0.01267 Uiso 1.00
+O42 O 0.02127 0.49247 0.87425 0.01267 Uiso 1.00
+O43 O 0.61201 0.87425 0.49247 0.01267 Uiso 1.00
+O44 O 0.49247 0.02127 0.61201 0.01267 Uiso 1.00
+O45 O 0.02127 0.61201 0.49247 0.01267 Uiso 1.00
+O46 O 0.87425 0.49247 0.61201 0.01267 Uiso 1.00
+O47 O 0.49247 0.87425 0.02127 0.01267 Uiso 1.00
+O48 O 0.61201 0.02127 0.87425 0.01267 Uiso 1.00
diff --git a/benchmarks/mof/structures/general/MIL53(Al).cif b/benchmarks/mof/structures/general/MIL53(Al).cif
new file mode 100644
index 0000000000000000000000000000000000000000..6467a56520f2d1359288706c78546576abf42146
--- /dev/null
+++ b/benchmarks/mof/structures/general/MIL53(Al).cif
@@ -0,0 +1,218 @@
+data_SABVOH_manual
+_audit_creation_date 2014-07-02
+_audit_creation_method 'Materials Studio'
+_symmetry_space_group_name_H-M 'P1'
+_symmetry_Int_Tables_number 1
+_symmetry_cell_setting triclinic
+loop_
+_symmetry_equiv_pos_as_xyz
+ x,y,z
+_cell_length_a 17.1290
+_cell_length_b 6.6284
+_cell_length_c 12.1816
+_cell_angle_alpha 90.0000
+_cell_angle_beta 90.0000
+_cell_angle_gamma 90.0000
+loop_
+_atom_site_label
+_atom_site_type_symbol
+_atom_site_fract_x
+_atom_site_fract_y
+_atom_site_fract_z
+_atom_site_U_iso_or_equiv
+_atom_site_adp_type
+_atom_site_occupancy
+O1 O 0.08295 0.92756 0.08189 0.00000 Uiso 1.00
+O2 O 0.43312 0.92799 0.39387 0.00000 Uiso 1.00
+C3 C 0.22872 0.93670 0.19502 0.00000 Uiso 1.00
+C4 C 0.29944 0.93681 0.25417 0.00000 Uiso 1.00
+H5 H 0.20344 0.07928 0.17100 0.00000 Uiso 1.00
+H6 H 0.32573 0.07955 0.27542 0.00000 Uiso 1.00
+O7 O 0.41958 0.08310 0.57835 0.00000 Uiso 1.00
+O8 O 0.07025 0.08486 0.89497 0.00000 Uiso 1.00
+C9 C 0.27318 0.07140 0.69256 0.00000 Uiso 1.00
+C10 C 0.20192 0.07178 0.75098 0.00000 Uiso 1.00
+H11 H 0.29906 0.92886 0.67006 0.00000 Uiso 1.00
+H12 H 0.17610 0.92868 0.77357 0.00000 Uiso 1.00
+O13 O 0.91868 0.42746 0.91654 0.00000 Uiso 1.00
+O14 O 0.56964 0.42801 0.60310 0.00000 Uiso 1.00
+C15 C 0.77142 0.43670 0.80673 0.00000 Uiso 1.00
+C16 C 0.70082 0.43685 0.74719 0.00000 Uiso 1.00
+H17 H 0.79674 0.57957 0.83025 0.00000 Uiso 1.00
+H18 H 0.67486 0.57972 0.72493 0.00000 Uiso 1.00
+O19 O 0.58352 0.58315 0.41688 0.00000 Uiso 1.00
+O20 O 0.93250 0.58439 0.09914 0.00000 Uiso 1.00
+C21 C 0.72987 0.57114 0.30225 0.00000 Uiso 1.00
+C22 C 0.80087 0.57158 0.24361 0.00000 Uiso 1.00
+H23 H 0.70477 0.42860 0.32652 0.00000 Uiso 1.00
+H24 H 0.82731 0.42877 0.22221 0.00000 Uiso 1.00
+O25 O 0.91829 0.08423 0.91904 0.00000 Uiso 1.00
+O26 O 0.57171 0.08591 0.59858 0.00000 Uiso 1.00
+C27 C 0.77155 0.07344 0.80614 0.00000 Uiso 1.00
+C28 C 0.70097 0.07362 0.74645 0.00000 Uiso 1.00
+H29 H 0.79709 0.93047 0.82929 0.00000 Uiso 1.00
+H30 H 0.67514 0.93071 0.72384 0.00000 Uiso 1.00
+O31 O 0.58293 0.92635 0.41246 0.00000 Uiso 1.00
+O32 O 0.93337 0.92749 0.10242 0.00000 Uiso 1.00
+C33 C 0.72994 0.93450 0.30253 0.00000 Uiso 1.00
+C34 C 0.80090 0.93487 0.24420 0.00000 Uiso 1.00
+H35 H 0.70489 0.07746 0.32704 0.00000 Uiso 1.00
+H36 H 0.82734 0.07745 0.22321 0.00000 Uiso 1.00
+O37 O 0.08348 0.58500 0.07900 0.00000 Uiso 1.00
+O38 O 0.43136 0.58522 0.39797 0.00000 Uiso 1.00
+C39 C 0.22857 0.57340 0.19548 0.00000 Uiso 1.00
+C40 C 0.29926 0.57338 0.25488 0.00000 Uiso 1.00
+H41 H 0.20314 0.43077 0.17175 0.00000 Uiso 1.00
+H42 H 0.32534 0.43037 0.27655 0.00000 Uiso 1.00
+O43 O 0.41998 0.42618 0.58233 0.00000 Uiso 1.00
+O44 O 0.06916 0.42744 0.89141 0.00000 Uiso 1.00
+C45 C 0.27313 0.43452 0.69225 0.00000 Uiso 1.00
+C46 C 0.20191 0.43507 0.75039 0.00000 Uiso 1.00
+H47 H 0.29897 0.57742 0.66955 0.00000 Uiso 1.00
+H48 H 0.17617 0.57802 0.77264 0.00000 Uiso 1.00
+Al49 Al 0.00184 0.00815 -0.00109 0.00000 Uiso 1.00
+Al50 Al 0.50246 0.00700 0.49631 0.00000 Uiso 1.00
+Al51 Al 0.00180 0.50804 -0.00372 0.00000 Uiso 1.00
+Al52 Al 0.50149 0.50826 0.49995 0.00000 Uiso 1.00
+O53 O 0.00033 0.75904 0.93824 0.00000 Uiso 1.00
+C54 C 0.40499 0.75581 0.36276 0.00000 Uiso 1.00
+C55 C 0.11410 0.75578 0.10647 0.00000 Uiso 1.00
+C56 C 0.33504 0.75518 0.28738 0.00000 Uiso 1.00
+C57 C 0.19073 0.75512 0.16757 0.00000 Uiso 1.00
+O58 O 0.50752 0.25915 0.43997 0.00000 Uiso 1.00
+C59 C 0.09648 0.25525 0.85941 0.00000 Uiso 1.00
+C60 C 0.38857 0.25366 0.60574 0.00000 Uiso 1.00
+C61 C 0.16579 0.25390 0.78301 0.00000 Uiso 1.00
+C62 C 0.31116 0.25317 0.66510 0.00000 Uiso 1.00
+O63 O 0.00901 0.25908 0.05589 0.00000 Uiso 1.00
+C64 C 0.59727 0.25599 0.63482 0.00000 Uiso 1.00
+C65 C 0.88710 0.25546 0.89295 0.00000 Uiso 1.00
+C66 C 0.66547 0.25545 0.71300 0.00000 Uiso 1.00
+C67 C 0.80956 0.25497 0.83393 0.00000 Uiso 1.00
+O68 O 0.50121 0.75932 0.55804 0.00000 Uiso 1.00
+C69 C 0.90602 0.75505 0.13439 0.00000 Uiso 1.00
+C70 C 0.61417 0.75373 0.38894 0.00000 Uiso 1.00
+C71 C 0.83658 0.75367 0.21089 0.00000 Uiso 1.00
+C72 C 0.69136 0.75312 0.32891 0.00000 Uiso 1.00
+H73 H 0.51416 0.26019 0.36979 0.00000 Uiso 1.00
+H74 H 0.50215 0.76047 0.62887 0.00000 Uiso 1.00
+H75 H 0.01841 0.26004 0.12543 0.00000 Uiso 1.00
+H76 H -0.00035 0.76007 0.86745 0.00000 Uiso 1.00
+loop_
+_geom_bond_atom_site_label_1
+_geom_bond_atom_site_label_2
+_geom_bond_distance
+_geom_bond_site_symmetry_2
+_ccdc_geom_bond_type
+O1 C55 1.293 . A
+O1 Al49 1.799 1_565 A
+O2 C54 1.295 . A
+O2 Al50 1.801 1_565 A
+C3 C4 1.409 . A
+C3 C57 1.409 . A
+C3 H5 1.080 1_565 A
+C4 C56 1.409 . A
+C4 H6 1.079 1_565 A
+H5 C3 1.080 1_545 A
+H6 C4 1.079 1_545 A
+O7 Al50 1.808 . S
+O7 C60 1.293 . A
+O8 C59 1.290 . A
+O8 Al49 1.799 1_556 A
+C9 C10 1.413 . A
+C9 C62 1.410 . A
+C9 H11 1.079 1_545 A
+C10 C61 1.412 . A
+C10 H12 1.082 1_545 A
+H11 C9 1.079 1_565 A
+H12 C10 1.082 1_565 A
+O13 C65 1.294 . A
+O13 Al51 1.804 1_656 A
+O14 C64 1.294 . A
+O14 Al52 1.796 . S
+C15 C16 1.410 . A
+C15 C67 1.410 . A
+C15 H17 1.080 . S
+C16 C66 1.409 . A
+C16 H18 1.081 . S
+O19 Al52 1.801 . S
+O19 C70 1.292 . A
+O20 C69 1.292 . A
+O20 Al51 1.799 1_655 A
+C21 C22 1.410 . A
+C21 C72 1.413 . A
+C21 H23 1.079 . S
+C22 C71 1.411 . A
+C22 H24 1.081 . S
+O25 C65 1.294 . A
+O25 Al49 1.803 1_656 S
+O26 C64 1.287 . A
+O26 Al50 1.798 . S
+C27 C28 1.411 . A
+C27 C67 1.409 . A
+C27 H29 1.081 1_545 A
+C28 C66 1.410 . A
+C28 H30 1.081 1_545 A
+H29 C27 1.081 1_565 A
+H30 C28 1.081 1_565 A
+O31 C70 1.295 . A
+O31 Al50 1.797 1_565 S
+O32 C69 1.295 . A
+O32 Al49 1.803 1_665 S
+C33 C34 1.408 . A
+C33 C72 1.409 . A
+C33 H35 1.082 1_565 A
+C34 C71 1.407 . A
+C34 H36 1.079 1_565 A
+H35 C33 1.082 1_545 A
+H36 C34 1.079 1_545 A
+O37 Al51 1.798 . S
+O37 C55 1.292 . A
+O38 C54 1.291 . A
+O38 Al52 1.802 . S
+C39 C40 1.411 . A
+C39 C57 1.409 . A
+C39 H41 1.080 . S
+C40 C56 1.409 . A
+C40 H42 1.081 . S
+O43 Al52 1.803 . S
+O43 C60 1.296 . A
+O44 C59 1.294 . A
+O44 Al51 1.802 1_556 S
+C45 C46 1.411 . A
+C45 C62 1.407 . A
+C45 H47 1.081 . S
+C46 C61 1.408 . A
+C46 H48 1.080 . S
+Al49 O63 1.806 . S
+Al49 O1 1.799 1_545 A
+Al49 O8 1.799 1_554 A
+Al49 O25 1.803 1_454 S
+Al49 O32 1.803 1_445 S
+Al49 O53 1.809 1_544 A
+Al50 O58 1.809 . S
+Al50 O2 1.801 1_545 A
+Al50 O31 1.797 1_545 S
+Al50 O68 1.806 1_545 A
+Al51 O63 1.807 . S
+Al51 O13 1.804 1_454 A
+Al51 O20 1.799 1_455 A
+Al51 O44 1.802 1_554 S
+Al51 O53 1.808 1_554 A
+Al52 O68 1.808 . S
+Al52 O58 1.809 . S
+O53 H76 0.862 . S
+O53 Al49 1.809 1_566 A
+O53 Al51 1.808 1_556 A
+C54 C56 1.510 . S
+C55 C57 1.509 . S
+O58 H73 0.862 . S
+C59 C61 1.509 . S
+C60 C62 1.510 . S
+O63 H75 0.862 . S
+C64 C66 1.507 . S
+C65 C67 1.510 . S
+O68 H74 0.863 . S
+O68 Al50 1.806 1_565 A
+C69 C71 1.511 . S
+C70 C72 1.511 . S
diff --git a/benchmarks/mof/structures/general/MOF-177.cif b/benchmarks/mof/structures/general/MOF-177.cif
new file mode 100644
index 0000000000000000000000000000000000000000..f9273ba9801dbfc5696e88ef3e6aec851e5d2ed1
--- /dev/null
+++ b/benchmarks/mof/structures/general/MOF-177.cif
@@ -0,0 +1,1802 @@
+data_ERIRIG_tobacco
+_audit_creation_date 2015-12-08
+_audit_creation_method 'Materials Studio'
+_symmetry_space_group_name_H-M 'P1'
+_symmetry_Int_Tables_number 1
+_symmetry_cell_setting triclinic
+loop_
+_symmetry_equiv_pos_as_xyz
+ x,y,z
+_cell_length_a 37.0720
+_cell_length_b 37.0720
+_cell_length_c 30.0333
+_cell_angle_alpha 90.0000
+_cell_angle_beta 90.0000
+_cell_angle_gamma 120.0000
+loop_
+_atom_site_label
+_atom_site_type_symbol
+_atom_site_fract_x
+_atom_site_fract_y
+_atom_site_fract_z
+_atom_site_U_iso_or_equiv
+_atom_site_adp_type
+_atom_site_occupancy
+X1 C 1.02226 0.97844 0.24989 0.00000 Uiso 1.00
+C2 C 0.97843 0.95713 0.25052 0.00000 Uiso 1.00
+X3 C 0.95647 0.97901 0.25116 0.00000 Uiso 1.00
+C4 C 0.97900 1.02292 0.25149 0.00000 Uiso 1.00
+X5 C 1.02318 1.04551 0.25053 0.00000 Uiso 1.00
+C6 C 1.04422 1.02237 0.24957 0.00000 Uiso 1.00
+H7 H 0.96134 0.92337 0.25052 0.00000 Uiso 1.00
+H8 H 0.96160 1.03923 0.25105 0.00000 Uiso 1.00
+H9 H 1.07791 1.03826 0.25000 0.00000 Uiso 1.00
+X10 C 1.04399 1.02356 0.75063 0.00000 Uiso 1.00
+C11 C 1.02095 1.04470 0.74880 0.00000 Uiso 1.00
+X12 C 0.97667 1.02330 0.75111 0.00000 Uiso 1.00
+C13 C 0.95575 0.97916 0.75394 0.00000 Uiso 1.00
+X14 C 0.97763 0.95717 0.75395 0.00000 Uiso 1.00
+C15 C 1.02141 0.97955 0.75295 0.00000 Uiso 1.00
+H16 H 1.03796 1.07833 0.74961 0.00000 Uiso 1.00
+H17 H 0.92211 0.96109 0.75346 0.00000 Uiso 1.00
+H18 H 1.03767 0.96210 0.75250 0.00000 Uiso 1.00
+X19 C 0.31136 0.62241 0.24792 0.00000 Uiso 1.00
+C20 C 0.28984 0.64481 0.24803 0.00000 Uiso 1.00
+X21 C 0.31125 0.68872 0.24860 0.00000 Uiso 1.00
+C22 C 0.35516 0.71024 0.24902 0.00000 Uiso 1.00
+X23 C 0.37768 0.68884 0.24890 0.00000 Uiso 1.00
+C24 C 0.35528 0.64493 0.24833 0.00000 Uiso 1.00
+H25 H 0.25618 0.62793 0.24772 0.00000 Uiso 1.00
+H26 H 0.37195 0.74391 0.24945 0.00000 Uiso 1.00
+H27 H 0.37216 0.62814 0.24825 0.00000 Uiso 1.00
+X28 C 0.62149 0.31152 0.74884 0.00000 Uiso 1.00
+C29 C 0.64398 0.35551 0.74831 0.00000 Uiso 1.00
+X30 C 0.68796 0.37800 0.74770 0.00000 Uiso 1.00
+C31 C 0.70936 0.35548 0.74712 0.00000 Uiso 1.00
+X32 C 0.68781 0.31167 0.74809 0.00000 Uiso 1.00
+C33 C 0.64400 0.29011 0.74915 0.00000 Uiso 1.00
+H34 H 0.62715 0.37234 0.74842 0.00000 Uiso 1.00
+H35 H 0.74299 0.37198 0.74483 0.00000 Uiso 1.00
+H36 H 0.62749 0.25647 0.75140 0.00000 Uiso 1.00
+X37 C 0.36988 0.30344 1.10053 0.00000 Uiso 1.00
+C38 C 0.40891 0.31325 1.11908 0.00000 Uiso 1.00
+X39 C 0.43797 0.30523 1.09640 0.00000 Uiso 1.00
+C40 C 0.42747 0.28902 1.05245 0.00000 Uiso 1.00
+X41 C 0.38908 0.27938 1.03287 0.00000 Uiso 1.00
+C42 C 0.36091 0.28650 1.05710 0.00000 Uiso 1.00
+H43 H 0.41640 0.32685 1.15179 0.00000 Uiso 1.00
+H44 H 0.44769 0.28140 1.03378 0.00000 Uiso 1.00
+H45 H 0.33266 0.28066 1.04037 0.00000 Uiso 1.00
+X46 C 0.38493 0.10801 0.46656 0.00000 Uiso 1.00
+C47 C 0.42332 0.13771 0.44783 0.00000 Uiso 1.00
+X48 C 0.43450 0.13285 0.40424 0.00000 Uiso 1.00
+C49 C 0.40666 0.09724 0.37954 0.00000 Uiso 1.00
+X50 C 0.36783 0.06728 0.39740 0.00000 Uiso 1.00
+C51 C 0.35761 0.07313 0.44106 0.00000 Uiso 1.00
+H52 H 0.44443 0.16484 0.46717 0.00000 Uiso 1.00
+H53 H 0.41457 0.09378 0.34570 0.00000 Uiso 1.00
+H54 H 0.32852 0.04992 0.45586 0.00000 Uiso 1.00
+X55 C 0.71573 0.10770 1.03219 0.00000 Uiso 1.00
+C56 C 0.70690 0.13695 1.05243 0.00000 Uiso 1.00
+X57 C 0.69146 0.13179 1.09670 0.00000 Uiso 1.00
+C58 C 0.68388 0.09502 1.11959 0.00000 Uiso 1.00
+X59 C 0.69258 0.06554 1.10033 0.00000 Uiso 1.00
+C60 C 0.70825 0.07225 1.05660 0.00000 Uiso 1.00
+H61 H 0.71366 0.16446 1.03370 0.00000 Uiso 1.00
+H62 H 0.67077 0.08851 1.15265 0.00000 Uiso 1.00
+H63 H 0.71530 0.04993 1.04168 0.00000 Uiso 1.00
+X64 C 0.30349 0.37019 0.59969 0.00000 Uiso 1.00
+C65 C 0.31229 0.40864 0.61837 0.00000 Uiso 1.00
+X66 C 0.30445 0.43714 0.59479 0.00000 Uiso 1.00
+C67 C 0.28890 0.42683 0.55080 0.00000 Uiso 1.00
+X68 C 0.28020 0.38865 0.53123 0.00000 Uiso 1.00
+C69 C 0.28759 0.36081 0.55600 0.00000 Uiso 1.00
+H70 H 0.32467 0.41601 0.65182 0.00000 Uiso 1.00
+H71 H 0.28195 0.44766 0.53223 0.00000 Uiso 1.00
+H72 H 0.28160 0.33190 0.54064 0.00000 Uiso 1.00
+X73 C 0.11005 0.72143 0.53408 0.00000 Uiso 1.00
+C74 C 0.07469 0.71415 0.55850 0.00000 Uiso 1.00
+X75 C 0.06701 0.69753 0.60220 0.00000 Uiso 1.00
+C76 C 0.09645 0.68785 0.62059 0.00000 Uiso 1.00
+X77 C 0.13311 0.69593 0.59739 0.00000 Uiso 1.00
+C78 C 0.13905 0.71223 0.55374 0.00000 Uiso 1.00
+H79 H 0.05211 0.71971 0.54174 0.00000 Uiso 1.00
+H80 H 0.09184 0.67535 0.65387 0.00000 Uiso 1.00
+H81 H 0.16695 0.71923 0.53542 0.00000 Uiso 1.00
+X82 C 0.10776 0.38186 -0.03687 0.00000 Uiso 1.00
+C83 C 0.13806 0.41981 -0.05574 0.00000 Uiso 1.00
+X84 C 0.13421 0.43047 -0.09982 0.00000 Uiso 1.00
+C85 C 0.09926 0.40234 -0.12518 0.00000 Uiso 1.00
+X86 C 0.06778 0.36416 -0.10700 0.00000 Uiso 1.00
+C87 C 0.07294 0.35458 -0.06257 0.00000 Uiso 1.00
+H88 H 0.16480 0.44110 -0.03603 0.00000 Uiso 1.00
+H89 H 0.09626 0.41115 -0.15873 0.00000 Uiso 1.00
+H90 H 0.05043 0.32518 -0.04780 0.00000 Uiso 1.00
+X91 C 0.89317 0.27983 0.46558 0.00000 Uiso 1.00
+C92 C 0.92896 0.28824 0.44118 0.00000 Uiso 1.00
+X93 C 0.93612 0.30461 0.39724 0.00000 Uiso 1.00
+C94 C 0.90620 0.31359 0.37879 0.00000 Uiso 1.00
+X95 C 0.86977 0.30496 0.40235 0.00000 Uiso 1.00
+C96 C 0.86385 0.28837 0.44563 0.00000 Uiso 1.00
+H97 H 0.95150 0.28228 0.45725 0.00000 Uiso 1.00
+H98 H 0.90934 0.32461 0.34490 0.00000 Uiso 1.00
+H99 H 0.83638 0.28265 0.46405 0.00000 Uiso 1.00
+X100 C 0.69929 0.63249 0.39801 0.00000 Uiso 1.00
+C101 C 0.69035 0.59367 0.38006 0.00000 Uiso 1.00
+X102 C 0.69804 0.56574 0.40466 0.00000 Uiso 1.00
+C103 C 0.71414 0.57683 0.44825 0.00000 Uiso 1.00
+X104 C 0.72292 0.61522 0.46707 0.00000 Uiso 1.00
+C105 C 0.71541 0.64262 0.44166 0.00000 Uiso 1.00
+H106 H 0.67896 0.58584 0.34622 0.00000 Uiso 1.00
+H107 H 0.72009 0.55564 0.46751 0.00000 Uiso 1.00
+H108 H 0.72137 0.67172 0.45652 0.00000 Uiso 1.00
+X109 C 0.89129 0.61035 1.03285 0.00000 Uiso 1.00
+C110 C 0.86196 0.57203 1.05233 0.00000 Uiso 1.00
+X111 C 0.86669 0.56159 1.09671 0.00000 Uiso 1.00
+C112 C 0.90328 0.59070 1.12003 0.00000 Uiso 1.00
+X113 C 0.93285 0.62910 1.10123 0.00000 Uiso 1.00
+C114 C 0.92632 0.63837 1.05762 0.00000 Uiso 1.00
+H115 H 0.83440 0.55189 1.03323 0.00000 Uiso 1.00
+H116 H 0.90964 0.58383 1.15304 0.00000 Uiso 1.00
+H117 H 0.94915 0.66734 1.04228 0.00000 Uiso 1.00
+X118 C 0.61468 0.89063 0.53573 0.00000 Uiso 1.00
+C119 C 0.57690 0.86042 0.55525 0.00000 Uiso 1.00
+X120 C 0.56702 0.86435 0.59978 0.00000 Uiso 1.00
+C121 C 0.59578 0.89984 0.62428 0.00000 Uiso 1.00
+X122 C 0.63371 0.93103 0.60555 0.00000 Uiso 1.00
+C123 C 0.64246 0.92560 0.56098 0.00000 Uiso 1.00
+H124 H 0.55595 0.83315 0.53607 0.00000 Uiso 1.00
+H125 H 0.58734 0.90427 0.65744 0.00000 Uiso 1.00
+H126 H 0.67166 0.94796 0.54575 0.00000 Uiso 1.00
+X127 C 0.27671 0.89112 -0.03400 0.00000 Uiso 1.00
+C128 C 0.28396 0.92612 -0.05904 0.00000 Uiso 1.00
+X129 C 0.30040 0.93310 -0.10288 0.00000 Uiso 1.00
+C130 C 0.31001 0.90338 -0.12072 0.00000 Uiso 1.00
+X131 C 0.30222 0.86747 -0.09647 0.00000 Uiso 1.00
+C132 C 0.28587 0.86196 -0.05303 0.00000 Uiso 1.00
+H133 H 0.27855 0.94896 -0.04267 0.00000 Uiso 1.00
+H134 H 0.32110 0.90637 -0.15457 0.00000 Uiso 1.00
+H135 H 0.28002 0.83473 -0.03400 0.00000 Uiso 1.00
+X136 C 0.63301 0.69916 -0.10173 0.00000 Uiso 1.00
+C137 C 0.59364 0.68932 -0.11962 0.00000 Uiso 1.00
+X138 C 0.56544 0.69791 -0.09615 0.00000 Uiso 1.00
+C139 C 0.57703 0.71524 -0.05289 0.00000 Uiso 1.00
+X140 C 0.61523 0.72419 -0.03371 0.00000 Uiso 1.00
+C141 C 0.64270 0.71629 -0.05828 0.00000 Uiso 1.00
+H142 H 0.58647 0.67851 -0.15359 0.00000 Uiso 1.00
+H143 H 0.55596 0.72091 -0.03313 0.00000 Uiso 1.00
+H144 H 0.67091 0.72171 -0.04180 0.00000 Uiso 1.00
+Zn145 Zn 0.62252 0.33842 0.27310 0.00000 Uiso 1.00
+Zn146 Zn 0.66613 0.33349 0.18965 0.00000 Uiso 1.00
+Zn147 Zn 0.71485 0.37760 0.27282 0.00000 Uiso 1.00
+Zn148 Zn 0.66189 0.28533 0.27325 0.00000 Uiso 1.00
+O149 O 0.66632 0.33368 0.25184 0.00000 Uiso 1.00
+O150 O 0.58905 0.33619 0.22889 0.00000 Uiso 1.00
+O151 O 0.71044 0.38162 0.16669 0.00000 Uiso 1.00
+O152 O 0.70665 0.41227 0.30837 0.00000 Uiso 1.00
+O153 O 0.61792 0.32964 0.16708 0.00000 Uiso 1.00
+O154 O 0.63853 0.38644 0.30385 0.00000 Uiso 1.00
+O155 O 0.74564 0.41091 0.22850 0.00000 Uiso 1.00
+O156 O 0.70551 0.29385 0.30782 0.00000 Uiso 1.00
+O157 O 0.66965 0.28892 0.16713 0.00000 Uiso 1.00
+O158 O 0.74745 0.36199 0.30289 0.00000 Uiso 1.00
+O159 O 0.66342 0.25378 0.22909 0.00000 Uiso 1.00
+O160 O 0.61415 0.25344 0.30447 0.00000 Uiso 1.00
+O161 O 0.58784 0.29535 0.30845 0.00000 Uiso 1.00
+X162 C 0.58811 0.33101 0.18695 0.00000 Uiso 1.00
+X163 C 0.74148 0.41164 0.18655 0.00000 Uiso 1.00
+X164 C 0.67429 0.41457 0.31723 0.00000 Uiso 1.00
+X165 C 0.74028 0.32634 0.31607 0.00000 Uiso 1.00
+X166 C 0.66817 0.25772 0.18711 0.00000 Uiso 1.00
+X167 C 0.58579 0.26085 0.31757 0.00000 Uiso 1.00
+Zn168 Zn 0.28557 0.66125 0.77405 0.00000 Uiso 1.00
+Zn169 Zn 0.33900 0.62219 0.77301 0.00000 Uiso 1.00
+Zn170 Zn 0.33412 0.66664 0.69055 0.00000 Uiso 1.00
+Zn171 Zn 0.37793 0.71430 0.77450 0.00000 Uiso 1.00
+O172 O 0.33411 0.66611 0.75266 0.00000 Uiso 1.00
+O173 O 0.25351 0.61269 0.80417 0.00000 Uiso 1.00
+O174 O 0.33583 0.58869 0.72847 0.00000 Uiso 1.00
+O175 O 0.29016 0.67138 0.66815 0.00000 Uiso 1.00
+O176 O 0.29629 0.58737 0.80851 0.00000 Uiso 1.00
+O177 O 0.25446 0.66419 0.72998 0.00000 Uiso 1.00
+O178 O 0.32949 0.61836 0.66719 0.00000 Uiso 1.00
+O179 O 0.41243 0.74489 0.73063 0.00000 Uiso 1.00
+O180 O 0.38744 0.63786 0.80283 0.00000 Uiso 1.00
+O181 O 0.38290 0.71048 0.66840 0.00000 Uiso 1.00
+O182 O 0.41184 0.70553 0.81089 0.00000 Uiso 1.00
+O183 O 0.36197 0.74695 0.80416 0.00000 Uiso 1.00
+O184 O 0.29395 0.70425 0.80967 0.00000 Uiso 1.00
+X185 C 0.26138 0.58458 0.81717 0.00000 Uiso 1.00
+X186 C 0.33033 0.58810 0.68665 0.00000 Uiso 1.00
+X187 C 0.25899 0.67000 0.68813 0.00000 Uiso 1.00
+X188 C 0.41338 0.74070 0.68869 0.00000 Uiso 1.00
+X189 C 0.41486 0.67326 0.81779 0.00000 Uiso 1.00
+X190 C 0.32622 0.73927 0.81772 0.00000 Uiso 1.00
+Zn191 Zn 0.16075 0.29989 0.20029 0.00000 Uiso 1.00
+Zn192 Zn 0.22324 0.36678 0.26029 0.00000 Uiso 1.00
+Zn193 Zn 0.14427 0.36627 0.23486 0.00000 Uiso 1.00
+Zn194 Zn 0.14108 0.30098 0.29662 0.00000 Uiso 1.00
+O195 O 0.16735 0.33353 0.24801 0.00000 Uiso 1.00
+O196 O 0.20932 0.30512 0.18295 0.00000 Uiso 1.00
+O197 O 0.24057 0.42126 0.25240 0.00000 Uiso 1.00
+O198 O 0.12977 0.36251 0.17693 0.00000 Uiso 1.00
+O199 O 0.25658 0.35389 0.22667 0.00000 Uiso 1.00
+O200 O 0.14083 0.31292 0.15105 0.00000 Uiso 1.00
+O201 O 0.18130 0.42107 0.24160 0.00000 Uiso 1.00
+O202 O 0.09770 0.30623 0.31360 0.00000 Uiso 1.00
+O203 O 0.23480 0.36461 0.31829 0.00000 Uiso 1.00
+O204 O 0.09824 0.35381 0.26870 0.00000 Uiso 1.00
+O205 O 0.17458 0.31558 0.34560 0.00000 Uiso 1.00
+O206 O 0.11849 0.24561 0.28561 0.00000 Uiso 1.00
+O207 O 0.12846 0.24482 0.21283 0.00000 Uiso 1.00
+X208 C 0.24696 0.32738 0.19532 0.00000 Uiso 1.00
+X209 C 0.22064 0.44065 0.24692 0.00000 Uiso 1.00
+X210 C 0.13067 0.34069 0.14469 0.00000 Uiso 1.00
+X211 C 0.08185 0.32792 0.30067 0.00000 Uiso 1.00
+X212 C 0.21251 0.34370 0.35118 0.00000 Uiso 1.00
+X213 C 0.11376 0.22569 0.24947 0.00000 Uiso 1.00
+Zn214 Zn 0.29948 0.14021 0.79816 0.00000 Uiso 1.00
+Zn215 Zn 0.36569 0.22243 0.76200 0.00000 Uiso 1.00
+Zn216 Zn 0.36525 0.14354 0.73727 0.00000 Uiso 1.00
+Zn217 Zn 0.29904 0.16008 0.70181 0.00000 Uiso 1.00
+O218 O 0.33237 0.16656 0.74980 0.00000 Uiso 1.00
+O219 O 0.31456 0.17356 0.84735 0.00000 Uiso 1.00
+O220 O 0.42017 0.23983 0.75393 0.00000 Uiso 1.00
+O221 O 0.35201 0.09699 0.77051 0.00000 Uiso 1.00
+O222 O 0.36371 0.23379 0.82008 0.00000 Uiso 1.00
+O223 O 0.30395 0.09620 0.81481 0.00000 Uiso 1.00
+O224 O 0.42005 0.18043 0.74486 0.00000 Uiso 1.00
+O225 O 0.31280 0.14060 0.65268 0.00000 Uiso 1.00
+O226 O 0.35283 0.25584 0.72847 0.00000 Uiso 1.00
+O227 O 0.36227 0.12970 0.67934 0.00000 Uiso 1.00
+O228 O 0.30409 0.20867 0.68464 0.00000 Uiso 1.00
+O229 O 0.24382 0.12763 0.71389 0.00000 Uiso 1.00
+O230 O 0.24413 0.11830 0.78686 0.00000 Uiso 1.00
+X231 C 0.34293 0.21141 0.85298 0.00000 Uiso 1.00
+X232 C 0.43961 0.21987 0.74937 0.00000 Uiso 1.00
+X233 C 0.32556 0.08023 0.80194 0.00000 Uiso 1.00
+X234 C 0.34087 0.13075 0.64678 0.00000 Uiso 1.00
+X235 C 0.32629 0.24627 0.69716 0.00000 Uiso 1.00
+X236 C 0.22442 0.11336 0.75049 0.00000 Uiso 1.00
+Zn237 Zn 0.15952 0.85889 0.29813 0.00000 Uiso 1.00
+Zn238 Zn 0.22196 0.85547 0.23721 0.00000 Uiso 1.00
+Zn239 Zn 0.14363 0.77671 0.26242 0.00000 Uiso 1.00
+Zn240 Zn 0.13946 0.83906 0.20191 0.00000 Uiso 1.00
+O241 O 0.16616 0.83250 0.24991 0.00000 Uiso 1.00
+O242 O 0.20787 0.90322 0.31434 0.00000 Uiso 1.00
+O243 O 0.23990 0.81873 0.24496 0.00000 Uiso 1.00
+O244 O 0.13040 0.76552 0.32066 0.00000 Uiso 1.00
+O245 O 0.25514 0.90201 0.27033 0.00000 Uiso 1.00
+O246 O 0.14148 0.82587 0.34754 0.00000 Uiso 1.00
+O247 O 0.18068 0.75926 0.25419 0.00000 Uiso 1.00
+O248 O 0.09553 0.79055 0.18523 0.00000 Uiso 1.00
+O249 O 0.23290 0.86913 0.17916 0.00000 Uiso 1.00
+O250 O 0.09722 0.74339 0.22904 0.00000 Uiso 1.00
+O251 O 0.17243 0.85793 0.15260 0.00000 Uiso 1.00
+O252 O 0.11757 0.87230 0.21367 0.00000 Uiso 1.00
+O253 O 0.12585 0.88043 0.28681 0.00000 Uiso 1.00
+X254 C 0.24540 0.91907 0.30139 0.00000 Uiso 1.00
+X255 C 0.22008 0.77931 0.24948 0.00000 Uiso 1.00
+X256 C 0.13200 0.78805 0.35343 0.00000 Uiso 1.00
+X257 C 0.08011 0.75298 0.19787 0.00000 Uiso 1.00
+X258 C 0.21033 0.86781 0.14659 0.00000 Uiso 1.00
+X259 C 0.11192 0.88619 0.25027 0.00000 Uiso 1.00
+Zn260 Zn 0.69978 0.84097 0.29848 0.00000 Uiso 1.00
+Zn261 Zn 0.63386 0.77860 0.23753 0.00000 Uiso 1.00
+Zn262 Zn 0.63329 0.85682 0.26332 0.00000 Uiso 1.00
+Zn263 Zn 0.69982 0.86132 0.20237 0.00000 Uiso 1.00
+O264 O 0.66662 0.83442 0.25041 0.00000 Uiso 1.00
+O265 O 0.69556 0.79258 0.31482 0.00000 Uiso 1.00
+O266 O 0.57914 0.76056 0.24504 0.00000 Uiso 1.00
+O267 O 0.63604 0.87066 0.32151 0.00000 Uiso 1.00
+O268 O 0.64710 0.74537 0.27075 0.00000 Uiso 1.00
+O269 O 0.68538 0.85945 0.34786 0.00000 Uiso 1.00
+O270 O 0.57872 0.81951 0.25584 0.00000 Uiso 1.00
+O271 O 0.69461 0.90485 0.18553 0.00000 Uiso 1.00
+O272 O 0.63681 0.76777 0.17950 0.00000 Uiso 1.00
+O273 O 0.64567 0.90279 0.22950 0.00000 Uiso 1.00
+O274 O 0.68598 0.82835 0.15305 0.00000 Uiso 1.00
+O275 O 0.75505 0.88367 0.21410 0.00000 Uiso 1.00
+O276 O 0.75490 0.87438 0.28704 0.00000 Uiso 1.00
+X277 C 0.67382 0.75506 0.30188 0.00000 Uiso 1.00
+X278 C 0.55945 0.78020 0.25039 0.00000 Uiso 1.00
+X279 C 0.65733 0.86926 0.35404 0.00000 Uiso 1.00
+X280 C 0.67210 0.91990 0.19810 0.00000 Uiso 1.00
+X281 C 0.65809 0.79042 0.14698 0.00000 Uiso 1.00
+X282 C 0.77459 0.88885 0.25063 0.00000 Uiso 1.00
+Zn283 Zn 0.79617 0.16454 0.70658 0.00000 Uiso 1.00
+Zn284 Zn 0.81114 0.11416 0.77300 0.00000 Uiso 1.00
+Zn285 Zn 0.88450 0.18705 0.72623 0.00000 Uiso 1.00
+Zn286 Zn 0.83404 0.20283 0.79163 0.00000 Uiso 1.00
+O287 O 0.83183 0.16674 0.74937 0.00000 Uiso 1.00
+O288 O 0.75953 0.11247 0.68935 0.00000 Uiso 1.00
+O289 O 0.85083 0.09865 0.77168 0.00000 Uiso 1.00
+O290 O 0.88847 0.20596 0.66862 0.00000 Uiso 1.00
+O291 O 0.76826 0.07409 0.73989 0.00000 Uiso 1.00
+O292 O 0.82309 0.18993 0.65687 0.00000 Uiso 1.00
+O293 O 0.89980 0.14738 0.72849 0.00000 Uiso 1.00
+O294 O 0.88610 0.23939 0.80905 0.00000 Uiso 1.00
+O295 O 0.79155 0.11071 0.83039 0.00000 Uiso 1.00
+O296 O 0.92450 0.23016 0.75897 0.00000 Uiso 1.00
+O297 O 0.80804 0.17634 0.84130 0.00000 Uiso 1.00
+O298 O 0.80927 0.23199 0.77468 0.00000 Uiso 1.00
+O299 O 0.76720 0.18976 0.72268 0.00000 Uiso 1.00
+X300 C 0.75058 0.07706 0.70477 0.00000 Uiso 1.00
+X301 C 0.88515 0.11321 0.75020 0.00000 Uiso 1.00
+X302 C 0.86050 0.20589 0.64360 0.00000 Uiso 1.00
+X303 C 0.92152 0.24814 0.79380 0.00000 Uiso 1.00
+X304 C 0.79157 0.13898 0.85489 0.00000 Uiso 1.00
+X305 C 0.77844 0.22076 0.74856 0.00000 Uiso 1.00
+Zn306 Zn 0.86089 0.70074 0.70250 0.00000 Uiso 1.00
+Zn307 Zn 0.77824 0.63443 0.73773 0.00000 Uiso 1.00
+Zn308 Zn 0.85664 0.63362 0.76202 0.00000 Uiso 1.00
+Zn309 Zn 0.84074 0.69960 0.79897 0.00000 Uiso 1.00
+O310 O 0.83413 0.66708 0.75029 0.00000 Uiso 1.00
+O311 O 0.82772 0.68701 0.65329 0.00000 Uiso 1.00
+O312 O 0.76021 0.57964 0.74489 0.00000 Uiso 1.00
+O313 O 0.90310 0.64693 0.72852 0.00000 Uiso 1.00
+O314 O 0.76730 0.63762 0.67987 0.00000 Uiso 1.00
+O315 O 0.90471 0.69602 0.68521 0.00000 Uiso 1.00
+O316 O 0.81936 0.57913 0.75345 0.00000 Uiso 1.00
+O317 O 0.85929 0.68445 0.84776 0.00000 Uiso 1.00
+O318 O 0.74501 0.64752 0.77128 0.00000 Uiso 1.00
+O319 O 0.87010 0.63527 0.82007 0.00000 Uiso 1.00
+O320 O 0.79231 0.69503 0.81600 0.00000 Uiso 1.00
+O321 O 0.87401 0.75496 0.78812 0.00000 Uiso 1.00
+O322 O 0.88288 0.75588 0.71501 0.00000 Uiso 1.00
+X323 C 0.78979 0.65901 0.64733 0.00000 Uiso 1.00
+X324 C 0.77993 0.55989 0.74893 0.00000 Uiso 1.00
+X325 C 0.92015 0.67373 0.69742 0.00000 Uiso 1.00
+X326 C 0.86881 0.65608 0.85311 0.00000 Uiso 1.00
+X327 C 0.75474 0.67365 0.80303 0.00000 Uiso 1.00
+X328 C 0.88815 0.77505 0.75184 0.00000 Uiso 1.00
+C329 C 0.47936 0.31367 0.16489 0.00000 Uiso 1.00
+X330 C 0.47581 0.31224 0.11788 0.00000 Uiso 1.00
+C331 C 0.51101 0.31726 0.09368 0.00000 Uiso 1.00
+C332 C 0.54754 0.32363 0.11548 0.00000 Uiso 1.00
+X333 C 0.55043 0.32542 0.16219 0.00000 Uiso 1.00
+C334 C 0.51571 0.32036 0.18630 0.00000 Uiso 1.00
+H335 H 0.45354 0.30766 0.18627 0.00000 Uiso 1.00
+H336 H 0.51141 0.31765 0.05772 0.00000 Uiso 1.00
+H337 H 0.57362 0.32742 0.09567 0.00000 Uiso 1.00
+H338 H 0.51607 0.32059 0.22236 0.00000 Uiso 1.00
+C339 C 0.50061 0.15509 0.36022 0.00000 Uiso 1.00
+X340 C 0.47449 0.16572 0.38393 0.00000 Uiso 1.00
+C341 C 0.48638 0.20810 0.38722 0.00000 Uiso 1.00
+C342 C 0.52276 0.23890 0.36643 0.00000 Uiso 1.00
+X343 C 0.54877 0.22831 0.34241 0.00000 Uiso 1.00
+C344 C 0.53747 0.18599 0.34011 0.00000 Uiso 1.00
+H345 H 0.49251 0.12278 0.35727 0.00000 Uiso 1.00
+H346 H 0.46685 0.21738 0.40489 0.00000 Uiso 1.00
+H347 H 0.53035 0.27109 0.36885 0.00000 Uiso 1.00
+H348 H 0.55653 0.17661 0.32168 0.00000 Uiso 1.00
+C349 C 0.67988 0.19309 0.09396 0.00000 Uiso 1.00
+X350 C 0.68489 0.16290 0.11817 0.00000 Uiso 1.00
+C351 C 0.68392 0.16530 0.16518 0.00000 Uiso 1.00
+C352 C 0.67794 0.19542 0.18658 0.00000 Uiso 1.00
+X353 C 0.67308 0.22520 0.16242 0.00000 Uiso 1.00
+C354 C 0.67422 0.22368 0.11572 0.00000 Uiso 1.00
+H355 H 0.67895 0.19283 0.05802 0.00000 Uiso 1.00
+H356 H 0.68972 0.14532 0.18652 0.00000 Uiso 1.00
+H357 H 0.67807 0.19580 0.22264 0.00000 Uiso 1.00
+H358 H 0.67047 0.24599 0.09590 0.00000 Uiso 1.00
+C359 C 0.30428 0.47674 0.66333 0.00000 Uiso 1.00
+X360 C 0.31084 0.47642 0.61718 0.00000 Uiso 1.00
+C361 C 0.32319 0.51373 0.59337 0.00000 Uiso 1.00
+C362 C 0.32921 0.55008 0.61525 0.00000 Uiso 1.00
+X363 C 0.32363 0.55025 0.66160 0.00000 Uiso 1.00
+C364 C 0.31093 0.51293 0.68508 0.00000 Uiso 1.00
+H365 H 0.29333 0.44873 0.68299 0.00000 Uiso 1.00
+H366 H 0.32886 0.51512 0.55790 0.00000 Uiso 1.00
+H367 H 0.33890 0.57818 0.59606 0.00000 Uiso 1.00
+H368 H 0.30546 0.51141 0.72064 0.00000 Uiso 1.00
+C369 C 0.79448 0.28019 0.38402 0.00000 Uiso 1.00
+X370 C 0.83670 0.31131 0.38117 0.00000 Uiso 1.00
+C371 C 0.84680 0.34809 0.35782 0.00000 Uiso 1.00
+C372 C 0.81551 0.35357 0.33791 0.00000 Uiso 1.00
+X373 C 0.77333 0.32208 0.34011 0.00000 Uiso 1.00
+C374 C 0.76333 0.28535 0.36351 0.00000 Uiso 1.00
+H375 H 0.78559 0.25133 0.40139 0.00000 Uiso 1.00
+H376 H 0.87895 0.37276 0.35519 0.00000 Uiso 1.00
+H377 H 0.82445 0.38214 0.31991 0.00000 Uiso 1.00
+H378 H 0.73131 0.26036 0.36582 0.00000 Uiso 1.00
+C379 C 0.65405 0.49985 0.36034 0.00000 Uiso 1.00
+X380 C 0.69078 0.52575 0.38420 0.00000 Uiso 1.00
+C381 C 0.72115 0.51369 0.38740 0.00000 Uiso 1.00
+C382 C 0.71547 0.47736 0.36638 0.00000 Uiso 1.00
+X383 C 0.67889 0.45158 0.34220 0.00000 Uiso 1.00
+C384 C 0.64800 0.46306 0.33998 0.00000 Uiso 1.00
+H385 H 0.62993 0.50808 0.35744 0.00000 Uiso 1.00
+H386 H 0.74993 0.53304 0.40518 0.00000 Uiso 1.00
+H387 H 0.73997 0.46963 0.36877 0.00000 Uiso 1.00
+H388 H 0.61958 0.44416 0.32146 0.00000 Uiso 1.00
+C389 C 0.83288 0.52036 0.16491 0.00000 Uiso 1.00
+X390 C 0.83551 0.52384 0.11793 0.00000 Uiso 1.00
+C391 C 0.80556 0.48865 0.09353 0.00000 Uiso 1.00
+C392 C 0.77515 0.45214 0.11515 0.00000 Uiso 1.00
+X393 C 0.77359 0.44931 0.16186 0.00000 Uiso 1.00
+C394 C 0.80299 0.48406 0.18614 0.00000 Uiso 1.00
+H395 H 0.85254 0.54617 0.18637 0.00000 Uiso 1.00
+H396 H 0.80594 0.48824 0.05757 0.00000 Uiso 1.00
+H397 H 0.75308 0.42603 0.09523 0.00000 Uiso 1.00
+H398 H 0.80252 0.48375 0.22220 0.00000 Uiso 1.00
+C399 C 0.19113 0.67735 0.59561 0.00000 Uiso 1.00
+X400 C 0.16579 0.68904 0.61976 0.00000 Uiso 1.00
+C401 C 0.17242 0.69478 0.66604 0.00000 Uiso 1.00
+C402 C 0.20219 0.68818 0.68748 0.00000 Uiso 1.00
+X403 C 0.22732 0.67638 0.66358 0.00000 Uiso 1.00
+C404 C 0.22167 0.67142 0.61717 0.00000 Uiso 1.00
+H405 H 0.18708 0.67222 0.56005 0.00000 Uiso 1.00
+H406 H 0.15508 0.70517 0.68604 0.00000 Uiso 1.00
+H407 H 0.20597 0.69309 0.72313 0.00000 Uiso 1.00
+H408 H 0.24040 0.66237 0.59762 0.00000 Uiso 1.00
+C409 C 0.20937 0.48390 0.88480 0.00000 Uiso 1.00
+X410 C 0.16681 0.47098 0.88055 0.00000 Uiso 1.00
+C411 C 0.15576 0.49690 0.85704 0.00000 Uiso 1.00
+C412 C 0.18642 0.53451 0.83798 0.00000 Uiso 1.00
+X413 C 0.22895 0.54686 0.84120 0.00000 Uiso 1.00
+C414 C 0.23995 0.52106 0.86506 0.00000 Uiso 1.00
+H415 H 0.21897 0.46463 0.90248 0.00000 Uiso 1.00
+H416 H 0.12330 0.48807 0.85349 0.00000 Uiso 1.00
+H417 H 0.17673 0.55337 0.81963 0.00000 Uiso 1.00
+H418 H 0.27232 0.52943 0.86816 0.00000 Uiso 1.00
+C419 C 0.52619 0.82346 0.66730 0.00000 Uiso 1.00
+X420 C 0.52718 0.83155 0.62137 0.00000 Uiso 1.00
+C421 C 0.48982 0.80825 0.59706 0.00000 Uiso 1.00
+C422 C 0.45279 0.77839 0.61826 0.00000 Uiso 1.00
+X423 C 0.45196 0.77150 0.66443 0.00000 Uiso 1.00
+C424 C 0.48932 0.79441 0.68841 0.00000 Uiso 1.00
+H425 H 0.55416 0.83930 0.68728 0.00000 Uiso 1.00
+H426 H 0.48890 0.81355 0.56176 0.00000 Uiso 1.00
+H427 H 0.42468 0.76127 0.59869 0.00000 Uiso 1.00
+H428 H 0.49030 0.78949 0.72384 0.00000 Uiso 1.00
+C429 C 0.34615 0.84534 0.85912 0.00000 Uiso 1.00
+X430 C 0.30941 0.83469 0.88288 0.00000 Uiso 1.00
+C431 C 0.27907 0.79224 0.88633 0.00000 Uiso 1.00
+C432 C 0.28485 0.76143 0.86588 0.00000 Uiso 1.00
+X433 C 0.32150 0.77201 0.84196 0.00000 Uiso 1.00
+C434 C 0.35229 0.81441 0.83929 0.00000 Uiso 1.00
+H435 H 0.37026 0.87767 0.85601 0.00000 Uiso 1.00
+H436 H 0.25025 0.78289 0.90401 0.00000 Uiso 1.00
+H437 H 0.26038 0.72921 0.86858 0.00000 Uiso 1.00
+H438 H 0.38076 0.82380 0.82090 0.00000 Uiso 1.00
+C439 C 0.50590 0.65861 0.85201 0.00000 Uiso 1.00
+X440 C 0.52705 0.69041 0.88404 0.00000 Uiso 1.00
+C441 C 0.50901 0.71509 0.89510 0.00000 Uiso 1.00
+C442 C 0.47260 0.70922 0.87406 0.00000 Uiso 1.00
+X443 C 0.45194 0.67761 0.84229 0.00000 Uiso 1.00
+C444 C 0.46872 0.65197 0.83208 0.00000 Uiso 1.00
+H445 H 0.51719 0.63774 0.84302 0.00000 Uiso 1.00
+H446 H 0.52408 0.74076 0.91825 0.00000 Uiso 1.00
+H447 H 0.46071 0.72975 0.88247 0.00000 Uiso 1.00
+H448 H 0.45366 0.62738 0.80763 0.00000 Uiso 1.00
+C449 C 0.07516 0.96219 0.28286 0.00000 Uiso 1.00
+X450 C 0.04520 0.95478 0.24999 0.00000 Uiso 1.00
+C451 C 0.03723 0.92450 0.21731 0.00000 Uiso 1.00
+C452 C 0.05916 0.90263 0.21710 0.00000 Uiso 1.00
+X453 C 0.08880 0.90965 0.25030 0.00000 Uiso 1.00
+C454 C 0.09628 0.93953 0.28337 0.00000 Uiso 1.00
+H455 H 0.08182 0.98519 0.30855 0.00000 Uiso 1.00
+H456 H 0.01440 0.91820 0.19152 0.00000 Uiso 1.00
+H457 H 0.05253 0.87979 0.19124 0.00000 Uiso 1.00
+H458 H 0.11899 0.94585 0.30930 0.00000 Uiso 1.00
+C459 C 0.08472 0.11292 0.22881 0.00000 Uiso 1.00
+X460 C 0.04573 0.09014 0.25047 0.00000 Uiso 1.00
+C461 C 0.02994 0.11336 0.27198 0.00000 Uiso 1.00
+C462 C 0.05243 0.15713 0.27250 0.00000 Uiso 1.00
+X463 C 0.09058 0.17929 0.25000 0.00000 Uiso 1.00
+C464 C 0.10626 0.15670 0.22782 0.00000 Uiso 1.00
+H465 H 0.09801 0.09712 0.21068 0.00000 Uiso 1.00
+H466 H 0.00092 0.09791 0.29027 0.00000 Uiso 1.00
+H467 H 0.03964 0.17377 0.28998 0.00000 Uiso 1.00
+H468 H 0.13558 0.17299 0.21009 0.00000 Uiso 1.00
+C469 C 0.88765 0.96410 0.21844 0.00000 Uiso 1.00
+X470 C 0.90988 0.95597 0.25108 0.00000 Uiso 1.00
+C471 C 0.88725 0.92563 0.28358 0.00000 Uiso 1.00
+C472 C 0.84347 0.90434 0.28380 0.00000 Uiso 1.00
+X473 C 0.82116 0.91203 0.25080 0.00000 Uiso 1.00
+C474 C 0.84386 0.94203 0.21794 0.00000 Uiso 1.00
+H475 H 0.90424 0.98718 0.19289 0.00000 Uiso 1.00
+H476 H 0.90352 0.91879 0.30920 0.00000 Uiso 1.00
+H477 H 0.82701 0.88135 0.30947 0.00000 Uiso 1.00
+H478 H 0.82772 0.94883 0.19214 0.00000 Uiso 1.00
+C479 C 0.11176 0.08441 0.72806 0.00000 Uiso 1.00
+X480 C 0.08868 0.04592 0.75058 0.00000 Uiso 1.00
+C481 C 0.11167 0.03045 0.77324 0.00000 Uiso 1.00
+C482 C 0.15546 0.05276 0.77401 0.00000 Uiso 1.00
+X483 C 0.17794 0.09040 0.75069 0.00000 Uiso 1.00
+C484 C 0.15559 0.10575 0.72736 0.00000 Uiso 1.00
+H485 H 0.09616 0.09743 0.70911 0.00000 Uiso 1.00
+H486 H 0.09602 0.00186 0.79224 0.00000 Uiso 1.00
+H487 H 0.17185 0.04020 0.79238 0.00000 Uiso 1.00
+H488 H 0.17210 0.13467 0.70896 0.00000 Uiso 1.00
+C489 C 0.91346 0.02813 0.76935 0.00000 Uiso 1.00
+X490 C 0.95395 0.04548 0.75079 0.00000 Uiso 1.00
+C491 C 0.97095 0.08582 0.73198 0.00000 Uiso 1.00
+C492 C 0.94871 0.10739 0.73166 0.00000 Uiso 1.00
+X493 C 0.90868 0.08993 0.75043 0.00000 Uiso 1.00
+C494 C 0.89148 0.04999 0.76934 0.00000 Uiso 1.00
+H495 H 0.89884 -0.00181 0.78577 0.00000 Uiso 1.00
+H496 H 1.00094 0.10063 0.71563 0.00000 Uiso 1.00
+H497 H 0.96304 0.13797 0.71647 0.00000 Uiso 1.00
+H498 H 0.86084 0.03546 0.78437 0.00000 Uiso 1.00
+C499 C 0.96248 0.88858 0.72028 0.00000 Uiso 1.00
+X500 C 0.95466 0.91049 0.75359 0.00000 Uiso 1.00
+C501 C 0.92475 0.88748 0.78634 0.00000 Uiso 1.00
+C502 C 0.90367 0.84365 0.78616 0.00000 Uiso 1.00
+X503 C 0.91111 0.82168 0.75250 0.00000 Uiso 1.00
+C504 C 0.94062 0.84479 0.71940 0.00000 Uiso 1.00
+H505 H 0.98518 0.90543 0.69448 0.00000 Uiso 1.00
+H506 H 0.91812 0.90346 0.81245 0.00000 Uiso 1.00
+H507 H 0.88104 0.82691 0.81204 0.00000 Uiso 1.00
+H508 H 0.94723 0.82897 0.69308 0.00000 Uiso 1.00
+C509 C 0.35181 0.33986 0.15918 0.00000 Uiso 1.00
+X510 C 0.34005 0.30980 0.12474 0.00000 Uiso 1.00
+C511 C 0.29700 0.28570 0.11521 0.00000 Uiso 1.00
+C512 C 0.26753 0.29160 0.13817 0.00000 Uiso 1.00
+X513 C 0.27944 0.32175 0.17186 0.00000 Uiso 1.00
+C514 C 0.32202 0.34575 0.18219 0.00000 Uiso 1.00
+H515 H 0.38415 0.36041 0.16755 0.00000 Uiso 1.00
+H516 H 0.28515 0.26069 0.09114 0.00000 Uiso 1.00
+H517 H 0.23502 0.27198 0.12950 0.00000 Uiso 1.00
+H518 H 0.33243 0.36944 0.20780 0.00000 Uiso 1.00
+C519 C -0.01110 0.33959 0.33681 0.00000 Uiso 1.00
+X520 C -0.02821 0.31059 0.37232 0.00000 Uiso 1.00
+C521 C -0.00858 0.28719 0.38222 0.00000 Uiso 1.00
+C522 C 0.02653 0.29303 0.35887 0.00000 Uiso 1.00
+X523 C 0.04384 0.32236 0.32431 0.00000 Uiso 1.00
+C524 C 0.02442 0.34547 0.31338 0.00000 Uiso 1.00
+H525 H -0.02382 0.35925 0.32790 0.00000 Uiso 1.00
+H526 H -0.02098 0.26272 0.40691 0.00000 Uiso 1.00
+H527 H 0.03999 0.27400 0.36797 0.00000 Uiso 1.00
+H528 H 0.03688 0.36840 0.28698 0.00000 Uiso 1.00
+C529 C 0.29426 1.01561 0.37470 0.00000 Uiso 1.00
+X530 C 0.33721 1.03032 0.37065 0.00000 Uiso 1.00
+C531 C 0.35004 1.00888 0.34173 0.00000 Uiso 1.00
+C532 C 0.32060 0.97316 0.31850 0.00000 Uiso 1.00
+X533 C 0.27763 0.95794 0.32379 0.00000 Uiso 1.00
+C534 C 0.26505 0.98000 0.35189 0.00000 Uiso 1.00
+H535 H 0.28301 1.03173 0.39554 0.00000 Uiso 1.00
+H536 H 0.38280 1.01908 0.33788 0.00000 Uiso 1.00
+H537 H 0.33144 0.95700 0.29713 0.00000 Uiso 1.00
+H538 H 0.23233 0.96973 0.35642 0.00000 Uiso 1.00
+C539 C 0.71614 1.01488 0.12237 0.00000 Uiso 1.00
+X540 C 0.68700 1.02846 0.12643 0.00000 Uiso 1.00
+C541 C 0.65307 1.00643 0.15566 0.00000 Uiso 1.00
+C542 C 0.64829 0.97162 0.17960 0.00000 Uiso 1.00
+X543 C 0.67717 0.95778 0.17470 0.00000 Uiso 1.00
+C544 C 0.71122 0.98011 0.14588 0.00000 Uiso 1.00
+H545 H 0.74324 1.03143 0.10124 0.00000 Uiso 1.00
+H546 H 0.62972 1.01559 0.15946 0.00000 Uiso 1.00
+H547 H 0.62162 0.95514 0.20132 0.00000 Uiso 1.00
+H548 H 0.73440 0.97078 0.14147 0.00000 Uiso 1.00
+C549 C 0.34329 0.35142 0.65557 0.00000 Uiso 1.00
+X550 C 0.30952 0.33906 0.62598 0.00000 Uiso 1.00
+C551 C 0.28113 0.29618 0.62148 0.00000 Uiso 1.00
+C552 C 0.28667 0.26664 0.64481 0.00000 Uiso 1.00
+X553 C 0.32062 0.27880 0.67389 0.00000 Uiso 1.00
+C554 C 0.34871 0.32167 0.67930 0.00000 Uiso 1.00
+H555 H 0.36605 0.38407 0.65975 0.00000 Uiso 1.00
+H556 H 0.25416 0.28526 0.60008 0.00000 Uiso 1.00
+H557 H 0.26405 0.23401 0.64004 0.00000 Uiso 1.00
+H558 H 0.37524 0.33220 0.70130 0.00000 Uiso 1.00
+C559 C 0.28313 -0.01151 0.88198 0.00000 Uiso 1.00
+X560 C 0.30647 -0.03122 0.87213 0.00000 Uiso 1.00
+C561 C 0.33579 -0.01391 0.83692 0.00000 Uiso 1.00
+C562 C 0.34219 0.02203 0.81395 0.00000 Uiso 1.00
+X563 C 0.31928 0.04166 0.82499 0.00000 Uiso 1.00
+C564 C 0.28947 0.02400 0.85907 0.00000 Uiso 1.00
+H565 H 0.25846 -0.02407 0.90645 0.00000 Uiso 1.00
+H566 H 0.35534 -0.02674 0.82800 0.00000 Uiso 1.00
+H567 H 0.36543 0.03470 0.78785 0.00000 Uiso 1.00
+H568 H 0.27054 0.03756 0.86818 0.00000 Uiso 1.00
+C569 C -0.00800 0.64789 0.15631 0.00000 Uiso 1.00
+X570 C -0.02985 0.66023 0.12732 0.00000 Uiso 1.00
+C571 C -0.01565 0.70307 0.12320 0.00000 Uiso 1.00
+C572 C 0.01957 0.73262 0.14636 0.00000 Uiso 1.00
+X573 C 0.04175 0.72047 0.17487 0.00000 Uiso 1.00
+C574 C 0.02726 0.67763 0.17989 0.00000 Uiso 1.00
+H575 H -0.01761 0.61527 0.16012 0.00000 Uiso 1.00
+H576 H -0.03200 0.71394 0.10220 0.00000 Uiso 1.00
+H577 H 0.02938 0.76524 0.14189 0.00000 Uiso 1.00
+H578 H 0.04360 0.66712 0.20141 0.00000 Uiso 1.00
+C579 C 1.01334 0.66210 0.66189 0.00000 Uiso 1.00
+X580 C 1.03100 0.69141 0.62669 0.00000 Uiso 1.00
+C581 C 1.01150 0.71493 0.61664 0.00000 Uiso 1.00
+C582 C 0.97615 0.70905 0.63967 0.00000 Uiso 1.00
+X583 C 0.95841 0.67949 0.67399 0.00000 Uiso 1.00
+C584 C 0.97761 0.65617 0.68493 0.00000 Uiso 1.00
+H585 H 1.02572 0.64217 0.67086 0.00000 Uiso 1.00
+H586 H 1.02417 0.73947 0.59202 0.00000 Uiso 1.00
+H587 H 0.96281 0.72816 0.63051 0.00000 Uiso 1.00
+H588 H 0.96482 0.63300 0.71109 0.00000 Uiso 1.00
+C589 C 0.99323 0.31024 0.88902 0.00000 Uiso 1.00
+X590 C 1.03175 0.33617 0.86775 0.00000 Uiso 1.00
+C591 C 1.03299 0.33302 0.82081 0.00000 Uiso 1.00
+C592 C 0.99762 0.30426 0.79665 0.00000 Uiso 1.00
+X593 C 0.95953 0.27897 0.81834 0.00000 Uiso 1.00
+C594 C 0.95779 0.28270 0.86470 0.00000 Uiso 1.00
+H595 H 0.98958 0.31216 0.92453 0.00000 Uiso 1.00
+H596 H 1.06172 0.35126 0.80261 0.00000 Uiso 1.00
+H597 H 0.99998 0.30203 0.76093 0.00000 Uiso 1.00
+H598 H 0.92890 0.26372 0.88248 0.00000 Uiso 1.00
+C599 C 0.65874 0.65037 0.34236 0.00000 Uiso 1.00
+X600 C 0.69298 0.66316 0.37133 0.00000 Uiso 1.00
+C601 C 0.72125 0.70610 0.37541 0.00000 Uiso 1.00
+C602 C 0.71494 0.73534 0.35256 0.00000 Uiso 1.00
+X603 C 0.68035 0.72279 0.32437 0.00000 Uiso 1.00
+C604 C 0.65254 0.67984 0.31908 0.00000 Uiso 1.00
+H605 H 0.63616 0.61763 0.33848 0.00000 Uiso 1.00
+H606 H 0.74859 0.71731 0.39629 0.00000 Uiso 1.00
+H607 H 0.73742 0.76805 0.35709 0.00000 Uiso 1.00
+H608 H 0.62559 0.66904 0.29766 0.00000 Uiso 1.00
+C609 C 0.66562 -0.03432 0.67757 0.00000 Uiso 1.00
+X610 C 0.66219 -0.03301 0.63065 0.00000 Uiso 1.00
+C611 C 0.68826 0.00548 0.60939 0.00000 Uiso 1.00
+C612 C 0.71600 0.04084 0.63374 0.00000 Uiso 1.00
+X613 C 0.71981 0.03905 0.68011 0.00000 Uiso 1.00
+C614 C 0.69452 0.00095 0.70174 0.00000 Uiso 1.00
+H615 H 0.64740 -0.06306 0.69577 0.00000 Uiso 1.00
+H616 H 0.68628 0.00917 0.57390 0.00000 Uiso 1.00
+H617 H 0.73502 0.06973 0.61598 0.00000 Uiso 1.00
+H618 H 0.69682 -0.00150 0.73744 0.00000 Uiso 1.00
+C619 C 0.70565 0.71638 0.88299 0.00000 Uiso 1.00
+X620 C 0.66254 0.69279 0.87349 0.00000 Uiso 1.00
+C621 C 0.65041 0.66303 0.83871 0.00000 Uiso 1.00
+C622 C 0.67990 0.65662 0.81567 0.00000 Uiso 1.00
+X623 C 0.72251 0.67988 0.82627 0.00000 Uiso 1.00
+C624 C 0.73477 0.70998 0.86005 0.00000 Uiso 1.00
+H625 H 0.71785 0.74133 0.90715 0.00000 Uiso 1.00
+H626 H 0.61798 0.64317 0.83015 0.00000 Uiso 1.00
+H627 H 0.66924 0.63311 0.78986 0.00000 Uiso 1.00
+H628 H 0.76732 0.72915 0.86883 0.00000 Uiso 1.00
+C629 C 0.10789 0.33142 0.01976 0.00000 Uiso 1.00
+X630 C 0.11231 0.37056 0.00982 0.00000 Uiso 1.00
+C631 C 0.12103 0.39886 0.04488 0.00000 Uiso 1.00
+C632 C 0.12537 0.38840 0.08870 0.00000 Uiso 1.00
+X633 C 0.12193 0.34964 0.09862 0.00000 Uiso 1.00
+C634 C 0.11312 0.32127 0.06351 0.00000 Uiso 1.00
+H635 H 0.10133 0.30901 -0.00657 0.00000 Uiso 1.00
+H636 H 0.12430 0.42909 0.03839 0.00000 Uiso 1.00
+H637 H 0.13256 0.41124 0.11472 0.00000 Uiso 1.00
+H638 H 0.11050 0.29129 0.06982 0.00000 Uiso 1.00
+C639 C 0.28125 0.40491 0.44942 0.00000 Uiso 1.00
+X640 C 0.26279 0.37709 0.48509 0.00000 Uiso 1.00
+C641 C 0.22817 0.33756 0.47616 0.00000 Uiso 1.00
+C642 C 0.21204 0.32639 0.43280 0.00000 Uiso 1.00
+X643 C 0.23072 0.35410 0.39701 0.00000 Uiso 1.00
+C644 C 0.26571 0.39343 0.40593 0.00000 Uiso 1.00
+H645 H 0.30810 0.43541 0.45511 0.00000 Uiso 1.00
+H646 H 0.21315 0.31547 0.50296 0.00000 Uiso 1.00
+H647 H 0.18494 0.29604 0.42729 0.00000 Uiso 1.00
+H648 H 0.28063 0.41581 0.37935 0.00000 Uiso 1.00
+C649 C 0.40489 0.28027 0.95091 0.00000 Uiso 1.00
+X650 C 0.37757 0.26149 0.98689 0.00000 Uiso 1.00
+C651 C 0.33822 0.22644 0.97832 0.00000 Uiso 1.00
+C652 C 0.32667 0.21036 0.93501 0.00000 Uiso 1.00
+X653 C 0.35380 0.22944 0.89888 0.00000 Uiso 1.00
+C654 C 0.39304 0.26472 0.90747 0.00000 Uiso 1.00
+H655 H 0.43521 0.30747 0.95631 0.00000 Uiso 1.00
+H656 H 0.31648 0.21120 1.00536 0.00000 Uiso 1.00
+H657 H 0.29643 0.18301 0.92978 0.00000 Uiso 1.00
+H658 H 0.41501 0.27995 0.88062 0.00000 Uiso 1.00
+C659 C 0.40103 0.12222 0.54834 0.00000 Uiso 1.00
+X660 C 0.37315 0.11311 0.51280 0.00000 Uiso 1.00
+C661 C 0.33372 0.10837 0.52188 0.00000 Uiso 1.00
+C662 C 0.32281 0.11349 0.56531 0.00000 Uiso 1.00
+X663 C 0.35071 0.12251 0.60093 0.00000 Uiso 1.00
+C664 C 0.38983 0.12645 0.59183 0.00000 Uiso 1.00
+H665 H 0.43144 0.12571 0.54251 0.00000 Uiso 1.00
+H666 H 0.31160 0.10147 0.49515 0.00000 Uiso 1.00
+H667 H 0.29259 0.11050 0.57100 0.00000 Uiso 1.00
+H668 H 0.41232 0.13382 0.61828 0.00000 Uiso 1.00
+C669 C 0.76422 0.15553 0.97252 0.00000 Uiso 1.00
+X670 C 0.73481 0.11507 0.98641 0.00000 Uiso 1.00
+C671 C 0.72496 0.08186 0.95662 0.00000 Uiso 1.00
+C672 C 0.74380 0.08905 0.91432 0.00000 Uiso 1.00
+X673 C 0.77266 0.12969 0.90046 0.00000 Uiso 1.00
+C674 C 0.78257 0.16271 0.93030 0.00000 Uiso 1.00
+H675 H 0.77371 0.18187 0.99454 0.00000 Uiso 1.00
+H676 H 0.70218 0.05025 0.96569 0.00000 Uiso 1.00
+H677 H 0.73515 0.06293 0.89217 0.00000 Uiso 1.00
+H678 H 0.80493 0.19446 0.92111 0.00000 Uiso 1.00
+C679 C 0.27881 0.87655 0.04774 0.00000 Uiso 1.00
+X680 C 0.25979 0.88552 0.01232 0.00000 Uiso 1.00
+C681 C 0.22494 0.88992 0.02163 0.00000 Uiso 1.00
+C682 C 0.20906 0.88472 0.06513 0.00000 Uiso 1.00
+X683 C 0.22822 0.87592 0.10064 0.00000 Uiso 1.00
+C684 C 0.26350 0.87222 0.09134 0.00000 Uiso 1.00
+H685 H 0.30587 0.87333 0.04176 0.00000 Uiso 1.00
+H686 H 0.20953 0.89672 -0.00499 0.00000 Uiso 1.00
+H687 H 0.18175 0.88753 0.07096 0.00000 Uiso 1.00
+H688 H 0.27883 0.86502 0.11770 0.00000 Uiso 1.00
+C689 C 0.12523 0.72006 0.45223 0.00000 Uiso 1.00
+X690 C 0.11617 0.73883 0.48785 0.00000 Uiso 1.00
+C691 C 0.11141 0.77351 0.47872 0.00000 Uiso 1.00
+C692 C 0.11608 0.78931 0.43523 0.00000 Uiso 1.00
+X693 C 0.12471 0.77027 0.39947 0.00000 Uiso 1.00
+C694 C 0.12903 0.73530 0.40861 0.00000 Uiso 1.00
+H695 H 0.12872 0.69314 0.45805 0.00000 Uiso 1.00
+H696 H 0.10453 0.78875 0.50545 0.00000 Uiso 1.00
+H697 H 0.11286 0.81641 0.42959 0.00000 Uiso 1.00
+H698 H 0.13619 0.72011 0.38207 0.00000 Uiso 1.00
+C699 C 0.84514 0.23128 0.52485 0.00000 Uiso 1.00
+X700 C 0.88569 0.26078 0.51131 0.00000 Uiso 1.00
+C701 C 0.91862 0.27119 0.54164 0.00000 Uiso 1.00
+C702 C 0.91102 0.25287 0.58424 0.00000 Uiso 1.00
+X703 C 0.87026 0.22405 0.59778 0.00000 Uiso 1.00
+C704 C 0.83755 0.21346 0.56733 0.00000 Uiso 1.00
+H705 H 0.81903 0.22148 0.50240 0.00000 Uiso 1.00
+H706 H 0.95026 0.29412 0.53287 0.00000 Uiso 1.00
+H707 H 0.93689 0.26197 0.60689 0.00000 Uiso 1.00
+H708 H 0.80574 0.19108 0.57628 0.00000 Uiso 1.00
+C709 C 0.72107 0.59901 0.54883 0.00000 Uiso 1.00
+X710 C 0.73986 0.62692 0.51331 0.00000 Uiso 1.00
+C711 C 0.77459 0.66631 0.52244 0.00000 Uiso 1.00
+C712 C 0.79063 0.67716 0.56587 0.00000 Uiso 1.00
+X713 C 0.77173 0.64924 0.60146 0.00000 Uiso 1.00
+C714 C 0.73651 0.61015 0.59233 0.00000 Uiso 1.00
+H715 H 0.69411 0.56862 0.54297 0.00000 Uiso 1.00
+H716 H 0.78983 0.68846 0.49573 0.00000 Uiso 1.00
+H717 H 0.81789 0.70735 0.57159 0.00000 Uiso 1.00
+H718 H 0.72137 0.58764 0.61875 0.00000 Uiso 1.00
+C719 C 0.89001 0.66146 0.97812 0.00000 Uiso 1.00
+X720 C 0.88539 0.62201 0.98678 0.00000 Uiso 1.00
+C721 C 0.87636 0.59444 0.95093 0.00000 Uiso 1.00
+C722 C 0.87236 0.60613 0.90751 0.00000 Uiso 1.00
+X723 C 0.87647 0.64540 0.89886 0.00000 Uiso 1.00
+C724 C 0.88517 0.67284 0.93484 0.00000 Uiso 1.00
+H725 H 0.89683 0.68336 1.00507 0.00000 Uiso 1.00
+H726 H 0.87294 0.56401 0.95642 0.00000 Uiso 1.00
+H727 H 0.86516 0.58396 0.88076 0.00000 Uiso 1.00
+H728 H 0.88824 0.70314 0.92955 0.00000 Uiso 1.00
+C729 C 0.66569 0.77608 0.02194 0.00000 Uiso 1.00
+X730 C 0.62650 0.74114 0.01261 0.00000 Uiso 1.00
+C731 C 0.59857 0.72195 0.04804 0.00000 Uiso 1.00
+C732 C 0.60951 0.73720 0.09165 0.00000 Uiso 1.00
+X733 C 0.64841 0.77259 0.10099 0.00000 Uiso 1.00
+C734 C 0.67632 0.79190 0.06547 0.00000 Uiso 1.00
+H735 H 0.68787 0.79158 -0.00468 0.00000 Uiso 1.00
+H736 H 0.56836 0.69479 0.04204 0.00000 Uiso 1.00
+H737 H 0.58701 0.72174 0.11801 0.00000 Uiso 1.00
+H738 H 0.70639 0.81930 0.07133 0.00000 Uiso 1.00
+C739 C 0.66520 0.89052 0.47923 0.00000 Uiso 1.00
+X740 C 0.62585 0.88567 0.48906 0.00000 Uiso 1.00
+C741 C 0.59764 0.87675 0.45386 0.00000 Uiso 1.00
+C742 C 0.60851 0.87293 0.40999 0.00000 Uiso 1.00
+X743 C 0.64761 0.87709 0.40019 0.00000 Uiso 1.00
+C744 C 0.67577 0.88584 0.43549 0.00000 Uiso 1.00
+H745 H 0.68758 0.89722 0.50563 0.00000 Uiso 1.00
+H746 H 0.56724 0.87312 0.46025 0.00000 Uiso 1.00
+H747 H 0.58580 0.86572 0.38382 0.00000 Uiso 1.00
+H748 H 0.70598 0.88896 0.42932 0.00000 Uiso 1.00
+C749 C 0.30386 0.55289 0.26958 0.00000 Uiso 1.00
+X750 C 0.28802 0.57561 0.24750 0.00000 Uiso 1.00
+C751 C 0.24959 0.55306 0.22513 0.00000 Uiso 1.00
+C752 C 0.22758 0.50939 0.22529 0.00000 Uiso 1.00
+X753 C 0.24377 0.48697 0.24697 0.00000 Uiso 1.00
+C754 C 0.28228 0.50925 0.26889 0.00000 Uiso 1.00
+H755 H 0.33272 0.56873 0.28810 0.00000 Uiso 1.00
+H756 H 0.23659 0.56906 0.20686 0.00000 Uiso 1.00
+H757 H 0.19815 0.49312 0.20776 0.00000 Uiso 1.00
+H758 H 0.29539 0.49287 0.28630 0.00000 Uiso 1.00
+C759 C 0.30383 0.75089 0.22727 0.00000 Uiso 1.00
+X760 C 0.28778 0.71206 0.24882 0.00000 Uiso 1.00
+C761 C 0.24905 0.69580 0.27062 0.00000 Uiso 1.00
+C762 C 0.22695 0.71737 0.27041 0.00000 Uiso 1.00
+X763 C 0.24334 0.75625 0.24928 0.00000 Uiso 1.00
+C764 C 0.28214 0.77286 0.22792 0.00000 Uiso 1.00
+H765 H 0.33296 0.76422 0.20921 0.00000 Uiso 1.00
+H766 H 0.23588 0.66660 0.28852 0.00000 Uiso 1.00
+H767 H 0.19731 0.70393 0.28754 0.00000 Uiso 1.00
+H768 H 0.29541 0.80257 0.21096 0.00000 Uiso 1.00
+C769 C 0.44737 0.69668 0.22727 0.00000 Uiso 1.00
+X770 C 0.42448 0.71231 0.24938 0.00000 Uiso 1.00
+C771 C 0.44686 0.75066 0.27194 0.00000 Uiso 1.00
+C772 C 0.49053 0.77280 0.27190 0.00000 Uiso 1.00
+X773 C 0.51313 0.75684 0.25017 0.00000 Uiso 1.00
+C774 C 0.49103 0.71840 0.22808 0.00000 Uiso 1.00
+H775 H 0.43167 0.66787 0.20863 0.00000 Uiso 1.00
+H776 H 0.43074 0.76348 0.29028 0.00000 Uiso 1.00
+H777 H 0.50665 0.80216 0.28957 0.00000 Uiso 1.00
+H778 H 0.50756 0.70547 0.21065 0.00000 Uiso 1.00
+C779 C 0.55211 0.24879 0.72805 0.00000 Uiso 1.00
+X780 C 0.57466 0.28790 0.74916 0.00000 Uiso 1.00
+C781 C 0.55190 0.30411 0.77044 0.00000 Uiso 1.00
+C782 C 0.50822 0.28224 0.77012 0.00000 Uiso 1.00
+X783 C 0.48596 0.24312 0.74938 0.00000 Uiso 1.00
+C784 C 0.50844 0.22655 0.72860 0.00000 Uiso 1.00
+H785 H 0.56812 0.23545 0.71042 0.00000 Uiso 1.00
+H786 H 0.56770 0.33350 0.78799 0.00000 Uiso 1.00
+H787 H 0.49182 0.29569 0.78682 0.00000 Uiso 1.00
+H788 H 0.49221 0.19665 0.71196 0.00000 Uiso 1.00
+C789 C 0.74723 0.30213 0.77407 0.00000 Uiso 1.00
+X790 C 0.71109 0.28839 0.74812 0.00000 Uiso 1.00
+C791 C 0.69737 0.25220 0.72225 0.00000 Uiso 1.00
+C792 C 0.71924 0.23040 0.72225 0.00000 Uiso 1.00
+X793 C 0.75530 0.24406 0.74834 0.00000 Uiso 1.00
+C794 C 0.76897 0.28021 0.77428 0.00000 Uiso 1.00
+H795 H 0.75841 0.32959 0.79477 0.00000 Uiso 1.00
+H796 H 0.66994 0.24100 0.70149 0.00000 Uiso 1.00
+H797 H 0.70780 0.20275 0.70181 0.00000 Uiso 1.00
+H798 H 0.79655 0.29164 0.79483 0.00000 Uiso 1.00
+C799 C 0.75070 0.44716 0.76893 0.00000 Uiso 1.00
+X800 C 0.71160 0.42484 0.74778 0.00000 Uiso 1.00
+C801 C 0.69542 0.44783 0.72695 0.00000 Uiso 1.00
+C802 C 0.71734 0.49152 0.72770 0.00000 Uiso 1.00
+X803 C 0.75649 0.51354 0.74844 0.00000 Uiso 1.00
+C804 C 0.77299 0.49082 0.76882 0.00000 Uiso 1.00
+H805 H 0.76401 0.43098 0.78629 0.00000 Uiso 1.00
+H806 H 0.66600 0.43220 0.70942 0.00000 Uiso 1.00
+H807 H 0.70394 0.50812 0.71134 0.00000 Uiso 1.00
+H808 H 0.80289 0.50685 0.78547 0.00000 Uiso 1.00
+loop_
+_geom_bond_atom_site_label_1
+_geom_bond_atom_site_label_2
+_geom_bond_distance
+_geom_bond_site_symmetry_2
+_ccdc_geom_bond_type
+X1 C2 1.407 . A
+X1 C6 1.410 . A
+X1 X450 1.496 1_655 S
+C2 X3 1.407 . A
+C2 H7 1.084 . S
+X3 C4 1.410 . A
+X3 X470 1.496 . S
+C4 X5 1.419 . A
+C4 H8 1.082 . S
+X5 C6 1.419 . A
+X5 X460 1.433 1_665 A
+C6 H9 1.083 . S
+X10 C11 1.420 . A
+X10 C15 1.415 . A
+X10 X480 1.435 1_665 A
+C11 X12 1.424 . A
+C11 H16 1.080 . S
+X12 C13 1.420 . A
+X12 X490 1.442 1_565 A
+C13 X14 1.408 . A
+C13 H17 1.081 . S
+X14 C15 1.406 . A
+X14 X500 1.499 . S
+C15 H18 1.083 . S
+X19 C20 1.410 . A
+X19 C24 1.410 . A
+X19 X750 1.503 . S
+C20 X21 1.410 . A
+C20 H25 1.081 . S
+X21 C22 1.410 . A
+X21 X760 1.503 . S
+C22 X23 1.410 . A
+C22 H26 1.081 . S
+X23 C24 1.410 . A
+X23 X770 1.503 . S
+C24 H27 1.081 . S
+X28 C29 1.413 . A
+X28 C33 1.410 . A
+X28 X780 1.504 . S
+C29 X30 1.412 . A
+C29 H34 1.081 . S
+X30 C31 1.410 . A
+X30 X800 1.504 . S
+C31 X32 1.407 . A
+C31 H35 1.082 . S
+X32 C33 1.407 . A
+X32 X790 1.495 . S
+C33 H36 1.082 . S
+X37 C38 1.418 . A
+X37 C42 1.413 . A
+X37 X510 1.438 1_556 A
+C38 X39 1.426 . A
+C38 H43 1.075 . S
+X39 C40 1.422 . A
+X39 X330 1.445 1_556 A
+C40 X41 1.411 . A
+C40 H44 1.080 . S
+X41 C42 1.402 . A
+X41 X650 1.499 . S
+C42 H45 1.081 . S
+X46 C47 1.409 . A
+X46 C51 1.405 . A
+X46 X660 1.496 . S
+C47 X48 1.412 . A
+C47 H52 1.083 . S
+X48 C49 1.413 . A
+X48 X340 1.499 . S
+C49 X50 1.412 . A
+C49 H53 1.083 . S
+X50 C51 1.411 . A
+X50 X530 1.502 1_545 S
+C51 H54 1.083 . S
+X55 C56 1.417 . A
+X55 C60 1.406 . A
+X55 X670 1.507 . S
+C56 X57 1.422 . A
+C56 H61 1.079 . S
+X57 C58 1.423 . A
+X57 X350 1.444 1_556 A
+C58 X59 1.409 . A
+C58 H62 1.078 . S
+X59 C60 1.407 . A
+X59 X540 1.504 1_546 S
+C60 H63 1.082 . S
+X64 C65 1.410 . A
+X64 C69 1.409 . A
+X64 X550 1.504 . S
+C65 X66 1.417 . A
+C65 H70 1.081 . S
+X66 C67 1.416 . A
+X66 X360 1.511 . S
+C67 X68 1.413 . A
+C67 H71 1.082 . S
+X68 C69 1.406 . A
+X68 X640 1.498 . S
+C69 H72 1.083 . S
+X73 C74 1.405 . A
+X73 C78 1.410 . A
+X73 X690 1.499 . S
+C74 X75 1.417 . A
+C74 H79 1.081 . S
+X75 C76 1.420 . A
+X75 X580 1.439 1_455 A
+C76 X77 1.420 . A
+C76 H80 1.079 . S
+X77 C78 1.414 . A
+X77 X400 1.515 . S
+C78 H81 1.082 . S
+X82 C83 1.408 . A
+X82 C87 1.407 . A
+X82 X630 1.497 . S
+C83 X84 1.409 . A
+C83 H88 1.084 . S
+X84 C85 1.412 . A
+X84 X410 1.500 1_554 S
+C85 X86 1.418 . A
+C85 H89 1.082 . S
+X86 C87 1.418 . A
+X86 X590 1.432 1_454 A
+C87 H90 1.082 . S
+X91 C92 1.408 . A
+X91 C96 1.409 . A
+X91 X700 1.505 . S
+C92 X93 1.421 . A
+C92 H97 1.079 . S
+X93 C94 1.420 . A
+X93 X520 1.437 1_655 A
+C94 X95 1.412 . A
+C94 H98 1.081 . S
+X95 C96 1.407 . A
+X95 X370 1.500 . S
+C96 H99 1.083 . S
+X100 C101 1.412 . A
+X100 C105 1.411 . A
+X100 X600 1.502 . S
+C101 X102 1.413 . A
+C101 H106 1.083 . S
+X102 C103 1.412 . A
+X102 X380 1.499 . S
+C103 X104 1.410 . A
+C103 H107 1.083 . S
+X104 C105 1.405 . A
+X104 X710 1.496 . S
+C105 H108 1.083 . S
+X109 C110 1.413 . A
+X109 C114 1.403 . A
+X109 X720 1.498 . S
+C110 X111 1.423 . A
+C110 H115 1.080 . S
+X111 C112 1.425 . A
+X111 X390 1.443 1_556 A
+C112 X113 1.409 . A
+C112 H116 1.078 . S
+X113 C114 1.405 . A
+X113 X570 1.504 1_656 S
+C114 H117 1.083 . S
+X118 C119 1.411 . A
+X118 C123 1.407 . A
+X118 X740 1.499 . S
+C119 X120 1.413 . A
+C119 H124 1.083 . S
+X120 C121 1.416 . A
+X120 X420 1.511 . S
+C121 X122 1.416 . A
+C121 H125 1.081 . S
+X122 C123 1.415 . A
+X122 X610 1.433 1_565 A
+C123 H126 1.082 . S
+X127 C128 1.405 . A
+X127 C132 1.406 . A
+X127 X680 1.497 . S
+C128 X129 1.419 . A
+C128 H133 1.081 . S
+X129 C130 1.421 . A
+X129 X560 1.437 1_564 A
+C130 X131 1.415 . A
+C130 H134 1.081 . S
+X131 C132 1.410 . A
+X131 X430 1.502 1_554 S
+C132 H135 1.083 . S
+X136 C137 1.421 . A
+X136 C141 1.417 . A
+X136 X620 1.438 1_554 A
+C137 X138 1.423 . A
+C137 H142 1.080 . S
+X138 C139 1.418 . A
+X138 X440 1.436 1_554 A
+C139 X140 1.406 . A
+C139 H143 1.082 . S
+X140 C141 1.402 . A
+X140 X730 1.497 . S
+C141 H144 1.081 . S
+Zn145 O149 1.833 . S
+Zn145 O150 1.791 . S
+Zn145 O154 1.822 . S
+Zn145 O161 1.810 . S
+Zn146 O149 1.868 . S
+Zn146 O151 1.851 . S
+Zn146 O153 1.849 . S
+Zn146 O157 1.849 . S
+Zn147 O149 1.832 . S
+Zn147 O152 1.810 . S
+Zn147 O155 1.786 . S
+Zn147 O158 1.819 . S
+Zn148 O149 1.833 . S
+Zn148 O156 1.812 . S
+Zn148 O159 1.788 . S
+Zn148 O160 1.821 . S
+O150 X162 1.272 . A
+O151 X163 1.280 . A
+O152 X164 1.273 . A
+O153 X162 1.280 . A
+O154 X164 1.274 . A
+O155 X163 1.271 . A
+O156 X165 1.273 . A
+O157 X166 1.280 . A
+O158 X165 1.274 . A
+O159 X166 1.271 . A
+O160 X167 1.274 . A
+O161 X167 1.273 . A
+X162 X333 1.502 . S
+X163 X393 1.502 . S
+X164 X383 1.497 . S
+X165 X373 1.497 . S
+X166 X353 1.502 . S
+X167 X343 1.497 . S
+Zn168 O172 1.833 . S
+Zn168 O173 1.826 . S
+Zn168 O177 1.794 . S
+Zn168 O184 1.813 . S
+Zn169 O172 1.831 . S
+Zn169 O174 1.789 . S
+Zn169 O176 1.807 . S
+Zn169 O180 1.822 . S
+Zn170 O172 1.866 . S
+Zn170 O175 1.851 . S
+Zn170 O178 1.849 . S
+Zn170 O181 1.848 . S
+Zn171 O172 1.833 . S
+Zn171 O179 1.791 . S
+Zn171 O182 1.813 . S
+Zn171 O183 1.824 . S
+O173 X185 1.276 . A
+O174 X186 1.271 . A
+O175 X187 1.280 . A
+O176 X185 1.273 . A
+O177 X187 1.272 . A
+O178 X186 1.279 . A
+O179 X188 1.272 . A
+O180 X189 1.274 . A
+O181 X188 1.280 . A
+O182 X189 1.273 . A
+O183 X190 1.275 . A
+O184 X190 1.274 . A
+X185 X413 1.497 . S
+X186 X363 1.499 . S
+X187 X403 1.502 . S
+X188 X423 1.499 . S
+X189 X443 1.495 . S
+X190 X433 1.499 . S
+Zn191 O195 1.834 . S
+Zn191 O196 1.790 . S
+Zn191 O200 1.823 . S
+Zn191 O207 1.817 . S
+Zn192 O195 1.843 . S
+Zn192 O197 1.803 . S
+Zn192 O199 1.834 . S
+Zn192 O203 1.805 . S
+Zn193 O195 1.844 . S
+Zn193 O198 1.806 . S
+Zn193 O201 1.807 . S
+Zn193 O204 1.835 . S
+Zn194 O195 1.833 . S
+Zn194 O202 1.788 . S
+Zn194 O205 1.824 . S
+Zn194 O206 1.818 . S
+O196 X208 1.270 . A
+O197 X209 1.273 . A
+O198 X210 1.273 . A
+O199 X208 1.277 . A
+O200 X210 1.275 . A
+O201 X209 1.273 . A
+O202 X211 1.271 . A
+O203 X212 1.272 . A
+O204 X211 1.276 . A
+O205 X212 1.275 . A
+O206 X213 1.275 . A
+O207 X213 1.274 . A
+X208 X513 1.497 . S
+X209 X753 1.487 . S
+X210 X633 1.496 . S
+X211 X523 1.497 . S
+X212 X643 1.496 . S
+X213 X463 1.490 . S
+Zn214 O218 1.833 . S
+Zn214 O219 1.825 . S
+Zn214 O223 1.792 . S
+Zn214 O230 1.822 . S
+Zn215 O218 1.842 . S
+Zn215 O220 1.803 . S
+Zn215 O222 1.805 . S
+Zn215 O226 1.835 . S
+Zn216 O218 1.843 . S
+Zn216 O221 1.836 . S
+Zn216 O224 1.809 . S
+Zn216 O227 1.802 . S
+Zn217 O218 1.834 . S
+Zn217 O225 1.824 . S
+Zn217 O228 1.791 . S
+Zn217 O229 1.818 . S
+O219 X231 1.276 . A
+O220 X232 1.273 . A
+O221 X233 1.276 . A
+O222 X231 1.272 . A
+O223 X233 1.271 . A
+O224 X232 1.274 . A
+O225 X234 1.276 . A
+O226 X235 1.277 . A
+O227 X234 1.272 . A
+O228 X235 1.271 . A
+O229 X236 1.275 . A
+O230 X236 1.276 . A
+X231 X653 1.496 . S
+X232 X783 1.488 . S
+X233 X563 1.498 . S
+X234 X663 1.495 . S
+X235 X553 1.497 . S
+X236 X483 1.492 . S
+Zn237 O241 1.832 . S
+Zn237 O242 1.790 . S
+Zn237 O246 1.825 . S
+Zn237 O253 1.819 . S
+Zn238 O241 1.841 . S
+Zn238 O243 1.805 . S
+Zn238 O245 1.832 . S
+Zn238 O249 1.804 . S
+Zn239 O241 1.841 . S
+Zn239 O244 1.808 . S
+Zn239 O247 1.804 . S
+Zn239 O250 1.834 . S
+Zn240 O241 1.832 . S
+Zn240 O248 1.791 . S
+Zn240 O251 1.823 . S
+Zn240 O252 1.817 . S
+O242 X254 1.271 . A
+O243 X255 1.273 . A
+O244 X256 1.273 . A
+O245 X254 1.276 . A
+O246 X256 1.276 . A
+O247 X255 1.273 . A
+O248 X257 1.271 . A
+O249 X258 1.272 . A
+O250 X257 1.277 . A
+O251 X258 1.275 . A
+O252 X259 1.275 . A
+O253 X259 1.275 . A
+X254 X533 1.495 . S
+X255 X763 1.487 . S
+X256 X693 1.497 . S
+X257 X573 1.496 . S
+X258 X683 1.495 . S
+X259 X453 1.495 . S
+Zn260 O264 1.832 . S
+Zn260 O265 1.790 . S
+Zn260 O269 1.822 . S
+Zn260 O276 1.816 . S
+Zn261 O264 1.842 . S
+Zn261 O266 1.805 . S
+Zn261 O268 1.833 . S
+Zn261 O272 1.804 . S
+Zn262 O264 1.842 . S
+Zn262 O267 1.810 . S
+Zn262 O270 1.805 . S
+Zn262 O273 1.834 . S
+Zn263 O264 1.834 . S
+Zn263 O271 1.791 . S
+Zn263 O274 1.823 . S
+Zn263 O275 1.818 . S
+O265 X277 1.271 . A
+O266 X278 1.273 . A
+O267 X279 1.273 . A
+O268 X277 1.276 . A
+O269 X279 1.275 . A
+O270 X278 1.273 . A
+O271 X280 1.271 . A
+O272 X281 1.272 . A
+O273 X280 1.277 . A
+O274 X281 1.275 . A
+O275 X282 1.275 . A
+O276 X282 1.275 . A
+X277 X603 1.495 . S
+X278 X773 1.487 . S
+X279 X743 1.497 . S
+X280 X543 1.496 . S
+X281 X733 1.495 . S
+X282 X473 1.495 . S
+Zn283 O287 1.816 . S
+Zn283 O288 1.793 . S
+Zn283 O292 1.781 . S
+Zn283 O299 1.807 . S
+Zn284 O287 1.843 . S
+Zn284 O289 1.828 . S
+Zn284 O291 1.833 . S
+Zn284 O295 1.850 . S
+Zn285 O287 1.842 . S
+Zn285 O290 1.845 . S
+Zn285 O293 1.823 . S
+Zn285 O296 1.830 . S
+Zn286 O287 1.816 . S
+Zn286 O294 1.794 . S
+Zn286 O297 1.781 . S
+Zn286 O298 1.807 . S
+O288 X300 1.270 . A
+O289 X301 1.280 . A
+O290 X302 1.279 . A
+O291 X300 1.275 . A
+O292 X302 1.270 . A
+O293 X301 1.279 . A
+O294 X303 1.270 . A
+O295 X304 1.280 . A
+O296 X303 1.275 . A
+O297 X304 1.270 . A
+O298 X305 1.273 . A
+O299 X305 1.273 . A
+X300 X613 1.492 . S
+X301 X493 1.503 . S
+X302 X703 1.495 . S
+X303 X593 1.491 . S
+X304 X673 1.497 . S
+X305 X793 1.491 . S
+Zn306 O310 1.834 . S
+Zn306 O311 1.825 . S
+Zn306 O315 1.796 . S
+Zn306 O322 1.821 . S
+Zn307 O310 1.842 . S
+Zn307 O312 1.806 . S
+Zn307 O314 1.801 . S
+Zn307 O318 1.835 . S
+Zn308 O310 1.842 . S
+Zn308 O313 1.837 . S
+Zn308 O316 1.807 . S
+Zn308 O319 1.806 . S
+Zn309 O310 1.832 . S
+Zn309 O317 1.823 . S
+Zn309 O320 1.791 . S
+Zn309 O321 1.819 . S
+O311 X323 1.276 . A
+O312 X324 1.273 . A
+O313 X325 1.277 . A
+O314 X323 1.272 . A
+O315 X325 1.272 . A
+O316 X324 1.273 . A
+O317 X326 1.275 . A
+O318 X327 1.276 . A
+O319 X326 1.273 . A
+O320 X327 1.271 . A
+O321 X328 1.275 . A
+O322 X328 1.276 . A
+X323 X713 1.495 . S
+X324 X803 1.488 . S
+X325 X583 1.500 . S
+X326 X723 1.496 . S
+X327 X623 1.498 . S
+X328 X503 1.497 . S
+C329 X330 1.417 . A
+C329 C334 1.399 . A
+C329 H335 1.079 . S
+X330 C331 1.422 . A
+X330 X39 1.445 1_554 A
+C331 C332 1.414 . A
+C331 H336 1.080 . S
+C332 X333 1.406 . A
+C332 H337 1.083 . S
+X333 C334 1.405 . A
+C334 H338 1.083 . S
+C339 X340 1.408 . A
+C339 C344 1.407 . A
+C339 H345 1.083 . S
+X340 C341 1.407 . A
+C341 C342 1.404 . A
+C341 H346 1.083 . S
+C342 X343 1.408 . A
+C342 H347 1.083 . S
+X343 C344 1.409 . A
+C344 H348 1.083 . S
+C349 X350 1.423 . A
+C349 C354 1.413 . A
+C349 H355 1.080 . S
+X350 C351 1.416 . A
+X350 X57 1.444 1_554 A
+C351 C352 1.399 . A
+C351 H356 1.079 . S
+C352 X353 1.406 . A
+C352 H357 1.083 . S
+X353 C354 1.405 . A
+C354 H358 1.083 . S
+C359 X360 1.408 . A
+C359 C364 1.399 . A
+C359 H365 1.082 . S
+X360 C361 1.415 . A
+C361 C362 1.413 . A
+C361 H366 1.082 . S
+C362 X363 1.408 . A
+C362 H367 1.083 . S
+X363 C364 1.408 . A
+C364 H368 1.083 . S
+C369 X370 1.408 . A
+C369 C374 1.404 . A
+C369 H375 1.083 . S
+X370 C371 1.408 . A
+C371 C372 1.407 . A
+C371 H376 1.083 . S
+C372 X373 1.409 . A
+C372 H377 1.083 . S
+X373 C374 1.408 . A
+C374 H378 1.083 . S
+C379 X380 1.408 . A
+C379 C384 1.407 . A
+C379 H385 1.083 . S
+X380 C381 1.407 . A
+C381 C382 1.404 . A
+C381 H386 1.083 . S
+C382 X383 1.408 . A
+C382 H387 1.083 . S
+X383 C384 1.408 . A
+C384 H388 1.083 . S
+C389 X390 1.416 . A
+C389 C394 1.398 . A
+C389 H395 1.079 . S
+X390 C391 1.422 . A
+X390 X111 1.443 1_554 A
+C391 C392 1.414 . A
+C391 H396 1.080 . S
+C392 X393 1.406 . A
+C392 H397 1.083 . S
+X393 C394 1.406 . A
+C394 H398 1.083 . S
+C399 X400 1.415 . A
+C399 C404 1.414 . A
+C399 H405 1.082 . S
+X400 C401 1.409 . A
+C401 C402 1.401 . A
+C401 H406 1.082 . S
+C402 X403 1.408 . A
+C402 H407 1.083 . S
+X403 C404 1.408 . A
+C404 H408 1.083 . S
+C409 X410 1.407 . A
+C409 C414 1.405 . A
+C409 H415 1.083 . S
+X410 C411 1.408 . A
+X410 X84 1.500 1_556 S
+C411 C412 1.407 . A
+C411 H416 1.083 . S
+C412 X413 1.408 . A
+C412 H417 1.083 . S
+X413 C414 1.409 . A
+C414 H418 1.083 . S
+C419 X420 1.408 . A
+C419 C424 1.399 . A
+C419 H425 1.082 . S
+X420 C421 1.415 . A
+C421 C422 1.413 . A
+C421 H426 1.082 . S
+C422 X423 1.408 . A
+C422 H427 1.083 . S
+X423 C424 1.408 . A
+C424 H428 1.083 . S
+C429 X430 1.408 . A
+C429 C434 1.408 . A
+C429 H435 1.083 . S
+X430 C431 1.408 . A
+X430 X131 1.502 1_556 S
+C431 C432 1.405 . A
+C431 H436 1.083 . S
+C432 X433 1.408 . A
+C432 H437 1.083 . S
+X433 C434 1.409 . A
+C434 H438 1.083 . S
+C439 X440 1.416 . A
+C439 C444 1.407 . A
+C439 H445 1.082 . S
+X440 C441 1.417 . A
+X440 X138 1.436 1_556 A
+C441 C442 1.405 . A
+C441 H446 1.082 . S
+C442 X443 1.404 . A
+C442 H447 1.083 . S
+X443 C444 1.405 . A
+C444 H448 1.083 . S
+C449 X450 1.407 . A
+C449 C454 1.406 . A
+C449 H455 1.083 . S
+X450 C451 1.407 . A
+X450 X1 1.496 1_455 S
+C451 C452 1.406 . A
+C451 H456 1.083 . S
+C452 X453 1.408 . A
+C452 H457 1.083 . S
+X453 C454 1.408 . A
+C454 H458 1.083 . S
+C459 X460 1.416 . A
+C459 C464 1.406 . A
+C459 H465 1.082 . S
+X460 C461 1.416 . A
+X460 X5 1.433 1_445 A
+C461 C462 1.406 . A
+C461 H466 1.082 . S
+C462 X463 1.403 . A
+C462 H467 1.083 . S
+X463 C464 1.404 . A
+C464 H468 1.083 . S
+C469 X470 1.407 . A
+C469 C474 1.406 . A
+C469 H475 1.083 . S
+X470 C471 1.406 . A
+C471 C472 1.406 . A
+C471 H476 1.083 . S
+C472 X473 1.408 . A
+C472 H477 1.083 . S
+X473 C474 1.408 . A
+C474 H478 1.083 . S
+C479 X480 1.416 . A
+C479 C484 1.407 . A
+C479 H485 1.082 . S
+X480 C481 1.417 . A
+X480 X10 1.435 1_445 A
+C481 C482 1.406 . A
+C481 H486 1.082 . S
+C482 X483 1.403 . A
+C482 H487 1.083 . S
+X483 C484 1.405 . A
+C484 H488 1.083 . S
+C489 X490 1.418 . A
+C489 C494 1.407 . A
+C489 H495 1.081 . S
+X490 C491 1.418 . A
+X490 X12 1.442 1_545 A
+C491 C492 1.407 . A
+C491 H496 1.081 . S
+C492 X493 1.407 . A
+C492 H497 1.083 . S
+X493 C494 1.406 . A
+C494 H498 1.083 . S
+C499 X500 1.407 . A
+C499 C504 1.406 . A
+C499 H505 1.083 . S
+X500 C501 1.407 . A
+C501 C502 1.407 . A
+C501 H506 1.083 . S
+C502 X503 1.409 . A
+C502 H507 1.083 . S
+X503 C504 1.408 . A
+C504 H508 1.083 . S
+C509 X510 1.420 . A
+C509 C514 1.409 . A
+C509 H515 1.080 . S
+X510 C511 1.415 . A
+X510 X37 1.438 1_554 A
+C511 C512 1.398 . A
+C511 H516 1.081 . S
+C512 X513 1.405 . A
+C512 H517 1.083 . S
+X513 C514 1.405 . A
+C514 H518 1.083 . S
+C519 X520 1.419 . A
+C519 C524 1.411 . A
+C519 H525 1.081 . S
+X520 C521 1.415 . A
+X520 X93 1.437 1_455 A
+C521 C522 1.397 . A
+C521 H526 1.080 . S
+C522 X523 1.405 . A
+C522 H527 1.083 . S
+X523 C524 1.406 . A
+C524 H528 1.083 . S
+C529 X530 1.407 . A
+C529 C534 1.398 . A
+C529 H535 1.083 . S
+X530 C531 1.411 . A
+X530 X50 1.502 1_565 S
+C531 C532 1.409 . A
+C531 H536 1.082 . S
+C532 X533 1.408 . A
+C532 H537 1.083 . S
+X533 C534 1.407 . A
+C534 H538 1.083 . S
+C539 X540 1.407 . A
+C539 C544 1.399 . A
+C539 H545 1.083 . S
+X540 C541 1.412 . A
+X540 X59 1.504 1_564 S
+C541 C542 1.409 . A
+C541 H546 1.082 . S
+C542 X543 1.407 . A
+C542 H547 1.083 . S
+X543 C544 1.408 . A
+C544 H548 1.083 . S
+C549 X550 1.412 . A
+C549 C554 1.409 . A
+C549 H555 1.082 . S
+X550 C551 1.407 . A
+C551 C552 1.399 . A
+C551 H556 1.083 . S
+C552 X553 1.408 . A
+C552 H557 1.083 . S
+X553 C554 1.408 . A
+C554 H558 1.083 . S
+C559 X560 1.415 . A
+C559 C564 1.397 . A
+C559 H565 1.081 . S
+X560 C561 1.419 . A
+X560 X129 1.437 1_546 A
+C561 C562 1.411 . A
+C561 H566 1.081 . S
+C562 X563 1.407 . A
+C562 H567 1.083 . S
+X563 C564 1.405 . A
+C564 H568 1.083 . S
+C569 X570 1.412 . A
+C569 C574 1.409 . A
+C569 H575 1.082 . S
+X570 C571 1.407 . A
+X570 X113 1.504 1_454 S
+C571 C572 1.399 . A
+C571 H576 1.083 . S
+C572 X573 1.408 . A
+C572 H577 1.083 . S
+X573 C574 1.407 . A
+C574 H578 1.083 . S
+C579 X580 1.420 . A
+C579 C584 1.411 . A
+C579 H585 1.081 . S
+X580 C581 1.416 . A
+X580 X75 1.439 1_655 A
+C581 C582 1.399 . A
+C581 H586 1.081 . S
+C582 X583 1.405 . A
+C582 H587 1.083 . S
+X583 C584 1.406 . A
+C584 H588 1.083 . S
+C589 X590 1.414 . A
+C589 C594 1.400 . A
+C589 H595 1.082 . S
+X590 C591 1.417 . A
+X590 X86 1.432 1_656 A
+C591 C592 1.409 . A
+C591 H596 1.082 . S
+C592 X593 1.405 . A
+C592 H597 1.083 . S
+X593 C594 1.404 . A
+C594 H598 1.083 . S
+C599 X600 1.411 . A
+C599 C604 1.409 . A
+C599 H605 1.082 . S
+X600 C601 1.407 . A
+C601 C602 1.398 . A
+C601 H606 1.083 . S
+C602 X603 1.408 . A
+C602 H607 1.083 . S
+X603 C604 1.408 . A
+C604 H608 1.083 . S
+C609 X610 1.418 . A
+C609 C614 1.408 . A
+C609 H615 1.082 . S
+X610 C611 1.414 . A
+X610 X122 1.433 1_545 A
+C611 C612 1.401 . A
+C611 H616 1.082 . S
+C612 X613 1.405 . A
+C612 H617 1.083 . S
+X613 C614 1.404 . A
+C614 H618 1.083 . S
+C619 X620 1.415 . A
+C619 C624 1.398 . A
+C619 H625 1.081 . S
+X620 C621 1.419 . A
+X620 X136 1.438 1_556 A
+C621 C622 1.411 . A
+C621 H626 1.081 . S
+C622 X623 1.406 . A
+C622 H627 1.083 . S
+X623 C624 1.405 . A
+C624 H628 1.083 . S
+C629 X630 1.409 . A
+C629 C634 1.407 . A
+C629 H635 1.083 . S
+X630 C631 1.405 . A
+C631 C632 1.404 . A
+C631 H636 1.083 . S
+C632 X633 1.410 . A
+C632 H637 1.083 . S
+X633 C634 1.408 . A
+C634 H638 1.083 . S
+C639 X640 1.405 . A
+C639 C644 1.405 . A
+C639 H645 1.083 . S
+X640 C641 1.409 . A
+C641 C642 1.406 . A
+C641 H646 1.083 . S
+C642 X643 1.407 . A
+C642 H647 1.083 . S
+X643 C644 1.410 . A
+C644 H648 1.083 . S
+C649 X650 1.405 . A
+C649 C654 1.405 . A
+C649 H655 1.083 . S
+X650 C651 1.410 . A
+C651 C652 1.406 . A
+C651 H656 1.083 . S
+C652 X653 1.407 . A
+C652 H657 1.083 . S
+X653 C654 1.411 . A
+C654 H658 1.083 . S
+C659 X660 1.405 . A
+C659 C664 1.403 . A
+C659 H665 1.083 . S
+X660 C661 1.409 . A
+C661 C662 1.406 . A
+C661 H666 1.083 . S
+C662 X663 1.407 . A
+C662 H667 1.083 . S
+X663 C664 1.410 . A
+C664 H668 1.083 . S
+C669 X670 1.406 . A
+C669 C674 1.400 . A
+C669 H675 1.082 . S
+X670 C671 1.414 . A
+C671 C672 1.410 . A
+C671 H676 1.082 . S
+C672 X673 1.406 . A
+C672 H677 1.083 . S
+X673 C674 1.410 . A
+C674 H678 1.083 . S
+C679 X680 1.405 . A
+C679 C684 1.404 . A
+C679 H685 1.083 . S
+X680 C681 1.409 . A
+C681 C682 1.406 . A
+C681 H686 1.083 . S
+C682 X683 1.407 . A
+C682 H687 1.083 . S
+X683 C684 1.410 . A
+C684 H688 1.083 . S
+C689 X690 1.405 . A
+C689 C694 1.406 . A
+C689 H695 1.083 . S
+X690 C691 1.409 . A
+C691 C692 1.406 . A
+C691 H696 1.083 . S
+C692 X693 1.407 . A
+C692 H697 1.083 . S
+X693 C694 1.411 . A
+C694 H698 1.083 . S
+C699 X700 1.406 . A
+C699 C704 1.399 . A
+C699 H705 1.082 . S
+X700 C701 1.414 . A
+C701 C702 1.409 . A
+C701 H706 1.082 . S
+C702 X703 1.406 . A
+C702 H707 1.083 . S
+X703 C704 1.409 . A
+C704 H708 1.083 . S
+C709 X710 1.405 . A
+C709 C714 1.403 . A
+C709 H715 1.083 . S
+X710 C711 1.409 . A
+C711 C712 1.406 . A
+C711 H716 1.083 . S
+C712 X713 1.407 . A
+C712 H717 1.083 . S
+X713 C714 1.410 . A
+C714 H718 1.083 . S
+C719 X720 1.409 . A
+C719 C724 1.405 . A
+C719 H725 1.083 . S
+X720 C721 1.405 . A
+C721 C722 1.405 . A
+C721 H726 1.083 . S
+C722 X723 1.410 . A
+C722 H727 1.083 . S
+X723 C724 1.407 . A
+C724 H728 1.083 . S
+C729 X730 1.409 . A
+C729 C734 1.406 . A
+C729 H735 1.083 . S
+X730 C731 1.405 . A
+C731 C732 1.404 . A
+C731 H736 1.083 . S
+C732 X733 1.410 . A
+C732 H737 1.083 . S
+X733 C734 1.407 . A
+C734 H738 1.083 . S
+C739 X740 1.409 . A
+C739 C744 1.406 . A
+C739 H745 1.083 . S
+X740 C741 1.405 . A
+C741 C742 1.405 . A
+C741 H746 1.083 . S
+C742 X743 1.410 . A
+C742 H747 1.083 . S
+X743 C744 1.407 . A
+C744 H748 1.083 . S
+C749 X750 1.410 . A
+C749 C754 1.402 . A
+C749 H755 1.082 . S
+X750 C751 1.410 . A
+C751 C752 1.402 . A
+C751 H756 1.082 . S
+C752 X753 1.405 . A
+C752 H757 1.083 . S
+X753 C754 1.405 . A
+C754 H758 1.083 . S
+C759 X760 1.410 . A
+C759 C764 1.402 . A
+C759 H765 1.082 . S
+X760 C761 1.410 . A
+C761 C762 1.402 . A
+C761 H766 1.082 . S
+C762 X763 1.405 . A
+C762 H767 1.083 . S
+X763 C764 1.405 . A
+C764 H768 1.083 . S
+C769 X770 1.410 . A
+C769 C774 1.402 . A
+C769 H775 1.082 . S
+X770 C771 1.410 . A
+C771 C772 1.402 . A
+C771 H776 1.082 . S
+C772 X773 1.405 . A
+C772 H777 1.083 . S
+X773 C774 1.405 . A
+C774 H778 1.083 . S
+C779 X780 1.411 . A
+C779 C784 1.402 . A
+C779 H785 1.082 . S
+X780 C781 1.410 . A
+C781 C782 1.402 . A
+C781 H786 1.082 . S
+C782 X783 1.406 . A
+C782 H787 1.083 . S
+X783 C784 1.405 . A
+C784 H788 1.083 . S
+C789 X790 1.407 . A
+C789 C794 1.402 . A
+C789 H795 1.083 . S
+X790 C791 1.407 . A
+C791 C792 1.402 . A
+C791 H796 1.083 . S
+C792 X793 1.407 . A
+C792 H797 1.083 . S
+X793 C794 1.407 . A
+C794 H798 1.083 . S
+C799 X800 1.411 . A
+C799 C804 1.402 . A
+C799 H805 1.082 . S
+X800 C801 1.410 . A
+C801 C802 1.403 . A
+C801 H806 1.082 . S
+C802 X803 1.406 . A
+C802 H807 1.083 . S
+X803 C804 1.405 . A
+C804 H808 1.083 . S
diff --git a/benchmarks/mof/structures/general/MOF-5.cif b/benchmarks/mof/structures/general/MOF-5.cif
new file mode 100644
index 0000000000000000000000000000000000000000..f49b1517443dde7d85b82c5e5835d479cc451062
--- /dev/null
+++ b/benchmarks/mof/structures/general/MOF-5.cif
@@ -0,0 +1,130 @@
+data_EDUSIF_clean
+_audit_creation_date 2014-07-02
+_audit_creation_method 'Materials Studio'
+_symmetry_space_group_name_H-M 'P1'
+_symmetry_Int_Tables_number 1
+_symmetry_cell_setting triclinic
+loop_
+_symmetry_equiv_pos_as_xyz
+ x,y,z
+_cell_length_a 18.2660
+_cell_length_b 18.2660
+_cell_length_c 18.2660
+_cell_angle_alpha 60.0000
+_cell_angle_beta 60.0000
+_cell_angle_gamma 60.0000
+loop_
+_atom_site_label
+_atom_site_type_symbol
+_atom_site_fract_x
+_atom_site_fract_y
+_atom_site_fract_z
+_atom_site_U_iso_or_equiv
+_atom_site_adp_type
+_atom_site_occupancy
+Zn1 Zn 0.29338 0.29338 0.29338 0.01267 Uiso 1.00
+Zn2 Zn 0.29338 0.29338 0.11986 0.01267 Uiso 1.00
+Zn3 Zn 0.29338 0.11986 0.29338 0.01267 Uiso 1.00
+Zn4 Zn 0.11986 0.29338 0.29338 0.01267 Uiso 1.00
+Zn5 Zn 0.70662 0.70662 0.70662 0.01267 Uiso 1.00
+Zn6 Zn 0.70662 0.70662 0.88014 0.01267 Uiso 1.00
+Zn7 Zn 0.88014 0.70662 0.70662 0.01267 Uiso 1.00
+Zn8 Zn 0.70662 0.88014 0.70662 0.01267 Uiso 1.00
+H1 H 0.15460 0.45520 0.45520 0.01267 Uiso 1.00
+H2 H 0.45520 0.15460 0.93500 0.01267 Uiso 1.00
+H3 H 0.45520 0.93500 0.15460 0.01267 Uiso 1.00
+H4 H 0.93500 0.45520 0.45520 0.01267 Uiso 1.00
+H5 H 0.15460 0.45520 0.93500 0.01267 Uiso 1.00
+H6 H 0.45520 0.93500 0.45520 0.01267 Uiso 1.00
+H7 H 0.45520 0.15460 0.45520 0.01267 Uiso 1.00
+H8 H 0.93500 0.45520 0.15460 0.01267 Uiso 1.00
+H9 H 0.15460 0.93500 0.45520 0.01267 Uiso 1.00
+H10 H 0.45520 0.45520 0.15460 0.01267 Uiso 1.00
+H11 H 0.45520 0.45520 0.93500 0.01267 Uiso 1.00
+H12 H 0.93500 0.15460 0.45520 0.01267 Uiso 1.00
+H13 H 0.54480 0.84540 0.54480 0.01267 Uiso 1.00
+H14 H 0.84540 0.54480 0.06500 0.01267 Uiso 1.00
+H15 H 0.06500 0.54480 0.84540 0.01267 Uiso 1.00
+H16 H 0.54480 0.06500 0.54480 0.01267 Uiso 1.00
+H17 H 0.54480 0.84540 0.06500 0.01267 Uiso 1.00
+H18 H 0.06500 0.54480 0.54480 0.01267 Uiso 1.00
+H19 H 0.84540 0.54480 0.54480 0.01267 Uiso 1.00
+H20 H 0.54480 0.06500 0.84540 0.01267 Uiso 1.00
+H21 H 0.06500 0.84540 0.54480 0.01267 Uiso 1.00
+H22 H 0.54480 0.54480 0.84540 0.01267 Uiso 1.00
+H23 H 0.54480 0.54480 0.06500 0.01267 Uiso 1.00
+H24 H 0.84540 0.06500 0.54480 0.01267 Uiso 1.00
+C1 C 0.09270 0.47310 0.47310 0.01267 Uiso 1.00
+C2 C 0.47310 0.09270 0.96110 0.01267 Uiso 1.00
+C3 C 0.47310 0.96110 0.09270 0.01267 Uiso 1.00
+C4 C 0.96110 0.47310 0.47310 0.01267 Uiso 1.00
+C5 C 0.09270 0.47310 0.96110 0.01267 Uiso 1.00
+C6 C 0.47310 0.96110 0.47310 0.01267 Uiso 1.00
+C7 C 0.47310 0.09270 0.47310 0.01267 Uiso 1.00
+C8 C 0.96110 0.47310 0.09270 0.01267 Uiso 1.00
+C9 C 0.09270 0.96110 0.47310 0.01267 Uiso 1.00
+C10 C 0.47310 0.47310 0.09270 0.01267 Uiso 1.00
+C11 C 0.47310 0.47310 0.96110 0.01267 Uiso 1.00
+C12 C 0.96110 0.09270 0.47310 0.01267 Uiso 1.00
+C13 C 0.52690 0.90730 0.52690 0.01267 Uiso 1.00
+C14 C 0.90730 0.52690 0.03890 0.01267 Uiso 1.00
+C15 C 0.03890 0.52690 0.90730 0.01267 Uiso 1.00
+C16 C 0.52690 0.03890 0.52690 0.01267 Uiso 1.00
+C17 C 0.52690 0.90730 0.03890 0.01267 Uiso 1.00
+C18 C 0.03890 0.52690 0.52690 0.01267 Uiso 1.00
+C19 C 0.90730 0.52690 0.52690 0.01267 Uiso 1.00
+C20 C 0.52690 0.03890 0.90730 0.01267 Uiso 1.00
+C21 C 0.03890 0.90730 0.52690 0.01267 Uiso 1.00
+C22 C 0.52690 0.52690 0.90730 0.01267 Uiso 1.00
+C23 C 0.52690 0.52690 0.03890 0.01267 Uiso 1.00
+C24 C 0.90730 0.03890 0.52690 0.01267 Uiso 1.00
+C25 C 0.11130 0.38870 0.38870 0.01267 Uiso 1.00
+C26 C 0.05380 0.44620 0.44620 0.01267 Uiso 1.00
+C27 C 0.38870 0.11130 0.11130 0.01267 Uiso 1.00
+C28 C 0.44620 0.05380 0.05380 0.01267 Uiso 1.00
+C29 C 0.11130 0.38870 0.11130 0.01267 Uiso 1.00
+C30 C 0.05380 0.44620 0.05380 0.01267 Uiso 1.00
+C31 C 0.38870 0.11130 0.38870 0.01267 Uiso 1.00
+C32 C 0.44620 0.05380 0.44620 0.01267 Uiso 1.00
+C33 C 0.11130 0.11130 0.38870 0.01267 Uiso 1.00
+C34 C 0.05380 0.05380 0.44620 0.01267 Uiso 1.00
+C35 C 0.38870 0.38870 0.11130 0.01267 Uiso 1.00
+C36 C 0.44620 0.44620 0.05380 0.01267 Uiso 1.00
+C37 C 0.61130 0.88870 0.61130 0.01267 Uiso 1.00
+C38 C 0.55380 0.94620 0.55380 0.01267 Uiso 1.00
+C39 C 0.88870 0.61130 0.88870 0.01267 Uiso 1.00
+C40 C 0.94620 0.55380 0.94620 0.01267 Uiso 1.00
+C41 C 0.61130 0.88870 0.88870 0.01267 Uiso 1.00
+C42 C 0.55380 0.94620 0.94620 0.01267 Uiso 1.00
+C43 C 0.88870 0.61130 0.61130 0.01267 Uiso 1.00
+C44 C 0.94620 0.55380 0.55380 0.01267 Uiso 1.00
+C45 C 0.88870 0.88870 0.61130 0.01267 Uiso 1.00
+C46 C 0.94620 0.94620 0.55380 0.01267 Uiso 1.00
+C47 C 0.61130 0.61130 0.88870 0.01267 Uiso 1.00
+C48 C 0.55380 0.55380 0.94620 0.01267 Uiso 1.00
+O1 O 0.25000 0.25000 0.25000 0.01267 Uiso 1.00
+O2 O 0.75000 0.75000 0.75000 0.01267 Uiso 1.00
+O3 O 0.19777 0.36600 0.36600 0.01267 Uiso 1.00
+O4 O 0.36600 0.19777 0.07023 0.01267 Uiso 1.00
+O5 O 0.36600 0.07023 0.19777 0.01267 Uiso 1.00
+O6 O 0.07023 0.36600 0.36600 0.01267 Uiso 1.00
+O7 O 0.19777 0.36600 0.07023 0.01267 Uiso 1.00
+O8 O 0.36600 0.07023 0.36600 0.01267 Uiso 1.00
+O9 O 0.36600 0.19777 0.36600 0.01267 Uiso 1.00
+O10 O 0.07023 0.36600 0.19777 0.01267 Uiso 1.00
+O11 O 0.19777 0.07023 0.36600 0.01267 Uiso 1.00
+O12 O 0.36600 0.36600 0.19777 0.01267 Uiso 1.00
+O13 O 0.36600 0.36600 0.07023 0.01267 Uiso 1.00
+O14 O 0.07023 0.19777 0.36600 0.01267 Uiso 1.00
+O15 O 0.63400 0.80223 0.63400 0.01267 Uiso 1.00
+O16 O 0.80223 0.63400 0.92977 0.01267 Uiso 1.00
+O17 O 0.92977 0.63400 0.80223 0.01267 Uiso 1.00
+O18 O 0.63400 0.92977 0.63400 0.01267 Uiso 1.00
+O19 O 0.63400 0.80223 0.92977 0.01267 Uiso 1.00
+O20 O 0.92977 0.63400 0.63400 0.01267 Uiso 1.00
+O21 O 0.80223 0.63400 0.63400 0.01267 Uiso 1.00
+O22 O 0.63400 0.92977 0.80223 0.01267 Uiso 1.00
+O23 O 0.92977 0.80223 0.63400 0.01267 Uiso 1.00
+O24 O 0.63400 0.63400 0.80223 0.01267 Uiso 1.00
+O25 O 0.63400 0.63400 0.92977 0.01267 Uiso 1.00
+O26 O 0.80223 0.92977 0.63400 0.01267 Uiso 1.00
diff --git a/benchmarks/mof/structures/general/UiO-66.cif b/benchmarks/mof/structures/general/UiO-66.cif
new file mode 100644
index 0000000000000000000000000000000000000000..60010d7dc80d744953041eb301c315922eab83e4
--- /dev/null
+++ b/benchmarks/mof/structures/general/UiO-66.cif
@@ -0,0 +1,138 @@
+data_RUBTAK02_clean_h\(2)
+_audit_creation_date 2015-05-11
+_audit_creation_method 'Materials Studio'
+_symmetry_space_group_name_H-M 'P1'
+_symmetry_Int_Tables_number 1
+_symmetry_cell_setting triclinic
+loop_
+_symmetry_equiv_pos_as_xyz
+ x,y,z
+_cell_length_a 14.6675
+_cell_length_b 14.6675
+_cell_length_c 14.6675
+_cell_angle_alpha 60.0000
+_cell_angle_beta 60.0000
+_cell_angle_gamma 60.0000
+loop_
+_atom_site_label
+_atom_site_type_symbol
+_atom_site_fract_x
+_atom_site_fract_y
+_atom_site_fract_z
+_atom_site_U_iso_or_equiv
+_atom_site_adp_type
+_atom_site_occupancy
+C1 C 0.91980 0.08020 0.44840 0.01267 Uiso 1.00
+O2 O 0.92340 0.07660 0.26860 0.01267 Uiso 1.00
+H3 H 0.85249 0.14751 0.40954 0.01267 Uiso 1.00
+C4 C 0.08020 0.91980 0.55160 0.01267 Uiso 1.00
+O5 O 0.07660 0.92340 0.73140 0.01267 Uiso 1.00
+H6 H 0.14751 0.85249 0.59046 0.01267 Uiso 1.00
+C7 C 0.44840 0.55160 0.91980 0.01267 Uiso 1.00
+O8 O 0.26860 0.73140 0.92340 0.01267 Uiso 1.00
+H9 H 0.40954 0.59046 0.85249 0.01267 Uiso 1.00
+C10 C 0.55160 0.44840 0.08020 0.01267 Uiso 1.00
+O11 O 0.73140 0.26860 0.07660 0.01267 Uiso 1.00
+H12 H 0.59046 0.40954 0.14751 0.01267 Uiso 1.00
+C13 C 0.44840 0.91980 0.08020 0.01267 Uiso 1.00
+O14 O 0.26860 0.92340 0.07660 0.01267 Uiso 1.00
+H15 H 0.40954 0.85249 0.14751 0.01267 Uiso 1.00
+C16 C 0.55160 0.08020 0.91980 0.01267 Uiso 1.00
+O17 O 0.73140 0.07660 0.92340 0.01267 Uiso 1.00
+H18 H 0.59046 0.14751 0.85249 0.01267 Uiso 1.00
+C19 C 0.91980 0.44840 0.55160 0.01267 Uiso 1.00
+O20 O 0.92340 0.26860 0.73140 0.01267 Uiso 1.00
+H21 H 0.85249 0.40954 0.59046 0.01267 Uiso 1.00
+C22 C 0.08020 0.55160 0.44840 0.01267 Uiso 1.00
+O23 O 0.07660 0.73140 0.26860 0.01267 Uiso 1.00
+H24 H 0.14751 0.59046 0.40954 0.01267 Uiso 1.00
+C25 C 0.08020 0.44840 0.91980 0.01267 Uiso 1.00
+O26 O 0.07660 0.26860 0.92340 0.01267 Uiso 1.00
+H27 H 0.14751 0.40954 0.85249 0.01267 Uiso 1.00
+C28 C 0.91980 0.55160 0.08020 0.01267 Uiso 1.00
+O29 O 0.92340 0.73140 0.07660 0.01267 Uiso 1.00
+H30 H 0.85249 0.59046 0.14751 0.01267 Uiso 1.00
+C31 C 0.55160 0.91980 0.44840 0.01267 Uiso 1.00
+O32 O 0.73140 0.92340 0.26860 0.01267 Uiso 1.00
+H33 H 0.59046 0.85249 0.40954 0.01267 Uiso 1.00
+C34 C 0.44840 0.08020 0.55160 0.01267 Uiso 1.00
+O35 O 0.26860 0.07660 0.73140 0.01267 Uiso 1.00
+H36 H 0.40954 0.14751 0.59046 0.01267 Uiso 1.00
+C37 C 0.08020 0.91980 0.44840 0.01267 Uiso 1.00
+O38 O 0.07660 0.92340 0.26860 0.01267 Uiso 1.00
+H39 H 0.14751 0.85249 0.40954 0.01267 Uiso 1.00
+C40 C 0.91980 0.08020 0.55160 0.01267 Uiso 1.00
+O41 O 0.92340 0.07660 0.73140 0.01267 Uiso 1.00
+H42 H 0.85249 0.14751 0.59046 0.01267 Uiso 1.00
+C43 C 0.55160 0.44840 0.91980 0.01267 Uiso 1.00
+O44 O 0.73140 0.26860 0.92340 0.01267 Uiso 1.00
+H45 H 0.59046 0.40954 0.85249 0.01267 Uiso 1.00
+C46 C 0.44840 0.55160 0.08020 0.01267 Uiso 1.00
+O47 O 0.26860 0.73140 0.07660 0.01267 Uiso 1.00
+H48 H 0.40954 0.59046 0.14751 0.01267 Uiso 1.00
+C49 C 0.91980 0.44840 0.08020 0.01267 Uiso 1.00
+O50 O 0.92340 0.26860 0.07660 0.01267 Uiso 1.00
+H51 H 0.85249 0.40954 0.14751 0.01267 Uiso 1.00
+C52 C 0.08020 0.55160 0.91980 0.01267 Uiso 1.00
+O53 O 0.07660 0.73140 0.92340 0.01267 Uiso 1.00
+H54 H 0.14751 0.59046 0.85249 0.01267 Uiso 1.00
+C55 C 0.44840 0.91980 0.55160 0.01267 Uiso 1.00
+O56 O 0.26860 0.92340 0.73140 0.01267 Uiso 1.00
+H57 H 0.40954 0.85249 0.59046 0.01267 Uiso 1.00
+C58 C 0.55160 0.08020 0.44840 0.01267 Uiso 1.00
+O59 O 0.73140 0.07660 0.26860 0.01267 Uiso 1.00
+H60 H 0.59046 0.14751 0.40954 0.01267 Uiso 1.00
+C61 C 0.44840 0.08020 0.91980 0.01267 Uiso 1.00
+O62 O 0.26860 0.07660 0.92340 0.01267 Uiso 1.00
+H63 H 0.40954 0.14751 0.85249 0.01267 Uiso 1.00
+C64 C 0.55160 0.91980 0.08020 0.01267 Uiso 1.00
+O65 O 0.73140 0.92340 0.07660 0.01267 Uiso 1.00
+H66 H 0.59046 0.85249 0.14751 0.01267 Uiso 1.00
+C67 C 0.91980 0.55160 0.44840 0.01267 Uiso 1.00
+O68 O 0.92340 0.73140 0.26860 0.01267 Uiso 1.00
+H69 H 0.85249 0.59046 0.40954 0.01267 Uiso 1.00
+C70 C 0.08020 0.44840 0.55160 0.01267 Uiso 1.00
+O71 O 0.07660 0.26860 0.73140 0.01267 Uiso 1.00
+H72 H 0.14751 0.40954 0.59046 0.01267 Uiso 1.00
+Zr73 Zr 0.87960 0.12040 0.12040 0.01267 Uiso 1.00
+Zr74 Zr 0.12040 0.87960 0.87960 0.01267 Uiso 1.00
+Zr75 Zr 0.12040 0.87960 0.12040 0.01267 Uiso 1.00
+Zr76 Zr 0.87960 0.12040 0.87960 0.01267 Uiso 1.00
+Zr77 Zr 0.12040 0.12040 0.87960 0.01267 Uiso 1.00
+Zr78 Zr 0.87960 0.87960 0.12040 0.01267 Uiso 1.00
+C79 C -0.00000 0.00000 0.29460 0.01267 Uiso 1.00
+C80 C -0.00000 0.00000 0.40380 0.01267 Uiso 1.00
+C81 C 0.00000 -0.00000 0.70540 0.01267 Uiso 1.00
+C82 C 0.00000 -0.00000 0.59620 0.01267 Uiso 1.00
+C83 C 0.29460 0.70540 -0.00000 0.01267 Uiso 1.00
+C84 C 0.40380 0.59620 -0.00000 0.01267 Uiso 1.00
+C85 C 0.70540 0.29460 0.00000 0.01267 Uiso 1.00
+C86 C 0.59620 0.40380 0.00000 0.01267 Uiso 1.00
+C87 C 0.29460 -0.00000 0.00000 0.01267 Uiso 1.00
+C88 C 0.40380 -0.00000 -0.00000 0.01267 Uiso 1.00
+C89 C 0.70540 0.00000 -0.00000 0.01267 Uiso 1.00
+C90 C 0.59620 0.00000 -0.00000 0.01267 Uiso 1.00
+C91 C -0.00000 0.29460 0.70540 0.01267 Uiso 1.00
+C92 C -0.00000 0.40380 0.59620 0.01267 Uiso 1.00
+C93 C -0.00000 0.70540 0.29460 0.01267 Uiso 1.00
+C94 C -0.00000 0.59620 0.40380 0.01267 Uiso 1.00
+C95 C -0.00000 0.29460 -0.00000 0.01267 Uiso 1.00
+C96 C -0.00000 0.40380 -0.00000 0.01267 Uiso 1.00
+C97 C -0.00000 0.70540 -0.00000 0.01267 Uiso 1.00
+C98 C -0.00000 0.59620 -0.00000 0.01267 Uiso 1.00
+C99 C 0.70540 -0.00000 0.29460 0.01267 Uiso 1.00
+C100 C 0.59620 -0.00000 0.40380 0.01267 Uiso 1.00
+C101 C 0.29460 -0.00000 0.70540 0.01267 Uiso 1.00
+C102 C 0.40380 -0.00000 0.59620 0.01267 Uiso 1.00
+O103 O 0.94390 0.16830 0.94390 0.01267 Uiso 1.00
+O104 O 0.05610 0.83170 0.05610 0.01267 Uiso 1.00
+O105 O 0.16830 0.94390 0.94390 0.01267 Uiso 1.00
+O106 O 0.83170 0.05610 0.05610 0.01267 Uiso 1.00
+O107 O 0.94390 0.94390 0.94390 0.01267 Uiso 1.00
+O108 O 0.05610 0.05610 0.05610 0.01267 Uiso 1.00
+O109 O 0.94390 0.94390 0.16830 0.01267 Uiso 1.00
+O110 O 0.05610 0.05610 0.83170 0.01267 Uiso 1.00
+H111 H 0.09200 0.09200 0.09200 0.00000 Uiso 1.00
+H112 H 0.09200 0.09200 0.72400 0.00000 Uiso 1.00
+H113 H 0.09200 0.72400 0.09200 0.00000 Uiso 1.00
+H114 H 0.72400 0.09200 0.09200 0.00000 Uiso 1.00
diff --git a/benchmarks/mof/structures/general/ZIF-8.cif b/benchmarks/mof/structures/general/ZIF-8.cif
new file mode 100644
index 0000000000000000000000000000000000000000..40827d68c164e2d0a42d3bab95593837ad0d53fc
--- /dev/null
+++ b/benchmarks/mof/structures/general/ZIF-8.cif
@@ -0,0 +1,162 @@
+data_OFERUN_clean
+_audit_creation_date 2014-07-02
+_audit_creation_method 'Materials Studio'
+_symmetry_space_group_name_H-M 'P1'
+_symmetry_Int_Tables_number 1
+_symmetry_cell_setting triclinic
+loop_
+_symmetry_equiv_pos_as_xyz
+ x,y,z
+_cell_length_a 14.7138
+_cell_length_b 14.7138
+_cell_length_c 14.7138
+_cell_angle_alpha 109.4710
+_cell_angle_beta 109.4710
+_cell_angle_gamma 109.4710
+loop_
+_atom_site_label
+_atom_site_type_symbol
+_atom_site_fract_x
+_atom_site_fract_y
+_atom_site_fract_z
+_atom_site_U_iso_or_equiv
+_atom_site_adp_type
+_atom_site_occupancy
+Zn1 Zn 0.25000 0.75000 0.50000 0.01267 Uiso 1.00
+Zn2 Zn 0.75000 0.25000 0.50000 0.01267 Uiso 1.00
+Zn3 Zn 0.50000 0.75000 0.25000 0.01267 Uiso 1.00
+Zn4 Zn 0.50000 0.25000 0.75000 0.01267 Uiso 1.00
+Zn5 Zn 0.75000 0.50000 0.25000 0.01267 Uiso 1.00
+Zn6 Zn 0.25000 0.50000 0.75000 0.01267 Uiso 1.00
+H1 H 0.42240 0.65640 0.53660 0.01267 Uiso 1.00
+H2 H 0.31040 0.79410 0.24430 0.01267 Uiso 1.00
+H3 H 0.11980 0.88580 0.46340 0.01267 Uiso 1.00
+H4 H 0.54980 0.06610 0.75570 0.01267 Uiso 1.00
+H5 H 0.88020 0.34360 0.76600 0.01267 Uiso 1.00
+H6 H 0.45020 0.20590 0.51630 0.01267 Uiso 1.00
+H7 H 0.57760 0.11420 0.23400 0.01267 Uiso 1.00
+H8 H 0.68960 0.93390 0.48370 0.01267 Uiso 1.00
+H9 H 0.76600 0.88020 0.34360 0.01267 Uiso 1.00
+H10 H 0.51630 0.45020 0.20590 0.01267 Uiso 1.00
+H11 H 0.23400 0.57760 0.11420 0.01267 Uiso 1.00
+H12 H 0.48370 0.68960 0.93390 0.01267 Uiso 1.00
+H13 H 0.53660 0.42240 0.65640 0.01267 Uiso 1.00
+H14 H 0.24430 0.31040 0.79410 0.01267 Uiso 1.00
+H15 H 0.46340 0.11980 0.88580 0.01267 Uiso 1.00
+H16 H 0.75570 0.54980 0.06610 0.01267 Uiso 1.00
+H17 H 0.88580 0.46340 0.11980 0.01267 Uiso 1.00
+H18 H 0.06610 0.75570 0.54980 0.01267 Uiso 1.00
+H19 H 0.65640 0.53660 0.42240 0.01267 Uiso 1.00
+H20 H 0.79410 0.24430 0.31040 0.01267 Uiso 1.00
+H21 H 0.11420 0.23400 0.57760 0.01267 Uiso 1.00
+H22 H 0.93390 0.48370 0.68960 0.01267 Uiso 1.00
+H23 H 0.34360 0.76600 0.88020 0.01267 Uiso 1.00
+H24 H 0.20590 0.51630 0.45020 0.01267 Uiso 1.00
+H25 H 0.88580 0.11980 0.46340 0.01267 Uiso 1.00
+H26 H 0.06610 0.54980 0.75570 0.01267 Uiso 1.00
+H27 H 0.65640 0.42240 0.53660 0.01267 Uiso 1.00
+H28 H 0.79410 0.31040 0.24430 0.01267 Uiso 1.00
+H29 H 0.11420 0.57760 0.23400 0.01267 Uiso 1.00
+H30 H 0.93390 0.68960 0.48370 0.01267 Uiso 1.00
+H31 H 0.34360 0.88020 0.76600 0.01267 Uiso 1.00
+H32 H 0.20590 0.45020 0.51630 0.01267 Uiso 1.00
+H33 H 0.42240 0.53660 0.65640 0.01267 Uiso 1.00
+H34 H 0.31040 0.24430 0.79410 0.01267 Uiso 1.00
+H35 H 0.11980 0.46340 0.88580 0.01267 Uiso 1.00
+H36 H 0.54980 0.75570 0.06610 0.01267 Uiso 1.00
+H37 H 0.88020 0.76600 0.34360 0.01267 Uiso 1.00
+H38 H 0.45020 0.51630 0.20590 0.01267 Uiso 1.00
+H39 H 0.57760 0.23400 0.11420 0.01267 Uiso 1.00
+H40 H 0.68960 0.48370 0.93390 0.01267 Uiso 1.00
+H41 H 0.76600 0.34360 0.88020 0.01267 Uiso 1.00
+H42 H 0.51630 0.20590 0.45020 0.01267 Uiso 1.00
+H43 H 0.23400 0.11420 0.57760 0.01267 Uiso 1.00
+H44 H 0.48370 0.93390 0.68960 0.01267 Uiso 1.00
+H45 H 0.53660 0.65640 0.42240 0.01267 Uiso 1.00
+H46 H 0.24430 0.79410 0.31040 0.01267 Uiso 1.00
+H47 H 0.46340 0.88580 0.11980 0.01267 Uiso 1.00
+H48 H 0.75570 0.06610 0.54980 0.01267 Uiso 1.00
+H49 H 0.37010 0.88180 0.37010 0.01267 Uiso 1.00
+H50 H 0.51170 0.00000 0.62990 0.01267 Uiso 1.00
+H51 H 0.48830 0.11820 0.48830 0.01267 Uiso 1.00
+H52 H 0.62990 0.00000 0.51170 0.01267 Uiso 1.00
+H53 H 0.48830 0.48830 0.11820 0.01267 Uiso 1.00
+H54 H 0.51170 0.62990 -0.00000 0.01267 Uiso 1.00
+H55 H 0.37010 0.37010 0.88180 0.01267 Uiso 1.00
+H56 H 0.62990 0.51170 -0.00000 0.01267 Uiso 1.00
+H57 H 0.00000 0.62990 0.51170 0.01267 Uiso 1.00
+H58 H 0.88180 0.37010 0.37010 0.01267 Uiso 1.00
+H59 H 0.00000 0.51170 0.62990 0.01267 Uiso 1.00
+H60 H 0.11820 0.48830 0.48830 0.01267 Uiso 1.00
+C1 C 0.41456 0.68356 0.47280 0.01267 Uiso 1.00
+C2 C 0.21076 0.94176 0.52720 0.01267 Uiso 1.00
+C3 C 0.78924 0.31644 0.73100 0.01267 Uiso 1.00
+C4 C 0.58544 0.05824 0.26900 0.01267 Uiso 1.00
+C5 C 0.73100 0.78924 0.31644 0.01267 Uiso 1.00
+C6 C 0.26900 0.58544 0.05824 0.01267 Uiso 1.00
+C7 C 0.47280 0.41456 0.68356 0.01267 Uiso 1.00
+C8 C 0.52720 0.21076 0.94176 0.01267 Uiso 1.00
+C9 C 0.94176 0.52720 0.21076 0.01267 Uiso 1.00
+C10 C 0.68356 0.47280 0.41456 0.01267 Uiso 1.00
+C11 C 0.05824 0.26900 0.58544 0.01267 Uiso 1.00
+C12 C 0.31644 0.73100 0.78924 0.01267 Uiso 1.00
+C13 C 0.94176 0.21076 0.52720 0.01267 Uiso 1.00
+C14 C 0.68356 0.41456 0.47280 0.01267 Uiso 1.00
+C15 C 0.05824 0.58544 0.26900 0.01267 Uiso 1.00
+C16 C 0.31644 0.78924 0.73100 0.01267 Uiso 1.00
+C17 C 0.41456 0.47280 0.68356 0.01267 Uiso 1.00
+C18 C 0.21076 0.52720 0.94176 0.01267 Uiso 1.00
+C19 C 0.78924 0.73100 0.31644 0.01267 Uiso 1.00
+C20 C 0.58544 0.26900 0.05824 0.01267 Uiso 1.00
+C21 C 0.73100 0.31644 0.78924 0.01267 Uiso 1.00
+C22 C 0.26900 0.05824 0.58544 0.01267 Uiso 1.00
+C23 C 0.47280 0.68356 0.41456 0.01267 Uiso 1.00
+C24 C 0.52720 0.94176 0.21076 0.01267 Uiso 1.00
+C25 C 0.37300 0.75680 0.37300 0.01267 Uiso 1.00
+C26 C 0.31950 0.80580 0.31950 0.01267 Uiso 1.00
+C27 C 0.38380 1.00000 0.62700 0.01267 Uiso 1.00
+C28 C 0.48630 1.00000 0.68050 0.01267 Uiso 1.00
+C29 C 0.61620 0.24320 0.61620 0.01267 Uiso 1.00
+C30 C 0.51370 0.19420 0.51370 0.01267 Uiso 1.00
+C31 C 0.62700 -0.00000 0.38380 0.01267 Uiso 1.00
+C32 C 0.68050 0.00000 0.48630 0.01267 Uiso 1.00
+C33 C 0.61620 0.61620 0.24320 0.01267 Uiso 1.00
+C34 C 0.51370 0.51370 0.19420 0.01267 Uiso 1.00
+C35 C 0.38380 0.62700 -0.00000 0.01267 Uiso 1.00
+C36 C 0.48630 0.68050 -0.00000 0.01267 Uiso 1.00
+C37 C 0.37300 0.37300 0.75680 0.01267 Uiso 1.00
+C38 C 0.31950 0.31950 0.80580 0.01267 Uiso 1.00
+C39 C 0.62700 0.38380 -0.00000 0.01267 Uiso 1.00
+C40 C 0.68050 0.48630 -0.00000 0.01267 Uiso 1.00
+C41 C 0.00000 0.62700 0.38380 0.01267 Uiso 1.00
+C42 C 0.00000 0.68050 0.48630 0.01267 Uiso 1.00
+C43 C 0.75680 0.37300 0.37300 0.01267 Uiso 1.00
+C44 C 0.80580 0.31950 0.31950 0.01267 Uiso 1.00
+C45 C 0.00000 0.38380 0.62700 0.01267 Uiso 1.00
+C46 C 0.00000 0.48630 0.68050 0.01267 Uiso 1.00
+C47 C 0.24320 0.61620 0.61620 0.01267 Uiso 1.00
+C48 C 0.19420 0.51370 0.51370 0.01267 Uiso 1.00
+N1 N 0.35145 0.72798 0.44533 0.01267 Uiso 1.00
+N2 N 0.28265 0.90612 0.55467 0.01267 Uiso 1.00
+N3 N 0.71735 0.27202 0.62347 0.01267 Uiso 1.00
+N4 N 0.64855 0.09388 0.37653 0.01267 Uiso 1.00
+N5 N 0.62347 0.71735 0.27202 0.01267 Uiso 1.00
+N6 N 0.37653 0.64855 0.09388 0.01267 Uiso 1.00
+N7 N 0.44533 0.35145 0.72798 0.01267 Uiso 1.00
+N8 N 0.55467 0.28265 0.90612 0.01267 Uiso 1.00
+N9 N 0.90612 0.55467 0.28265 0.01267 Uiso 1.00
+N10 N 0.72798 0.44533 0.35145 0.01267 Uiso 1.00
+N11 N 0.09388 0.37653 0.64855 0.01267 Uiso 1.00
+N12 N 0.27202 0.62347 0.71735 0.01267 Uiso 1.00
+N13 N 0.90612 0.28265 0.55467 0.01267 Uiso 1.00
+N14 N 0.72798 0.35145 0.44533 0.01267 Uiso 1.00
+N15 N 0.09388 0.64855 0.37653 0.01267 Uiso 1.00
+N16 N 0.27202 0.71735 0.62347 0.01267 Uiso 1.00
+N17 N 0.35145 0.44533 0.72798 0.01267 Uiso 1.00
+N18 N 0.28265 0.55467 0.90612 0.01267 Uiso 1.00
+N19 N 0.71735 0.62347 0.27202 0.01267 Uiso 1.00
+N20 N 0.64855 0.37653 0.09388 0.01267 Uiso 1.00
+N21 N 0.62347 0.27202 0.71735 0.01267 Uiso 1.00
+N22 N 0.37653 0.09388 0.64855 0.01267 Uiso 1.00
+N23 N 0.44533 0.72798 0.35145 0.01267 Uiso 1.00
+N24 N 0.55467 0.90612 0.28265 0.01267 Uiso 1.00
diff --git a/benchmarks/stability/README.md b/benchmarks/stability/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..fff8c4148de4594b028856aa5fc36eb3b612f0ed
--- /dev/null
+++ b/benchmarks/stability/README.md
@@ -0,0 +1,11 @@
+# MD Stability under heating and compression (2.2)
+
+## Run
+
+Two notebooks [temperature.ipynb](temperature.ipynb) and [pressure.ipynb](pressure.ipynb) are provided to run multiple MD simulations in parallel using Prefect workflow.
+
+To run the benchmark, please modify the SLURM cluster setting (or change to desired job queing systems following [dask-jobqueuue documentation](https://jobqueue.dask.org/en/latest/))
+
+## Analysis
+
+To analyze the results, run [plot.ipynb](plot.ipynb) notebook.
\ No newline at end of file
diff --git a/benchmarks/stability/plot.ipynb b/benchmarks/stability/plot.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..08585df0760ef9c14cc65cb48d183f5d8c5aaaa9
--- /dev/null
+++ b/benchmarks/stability/plot.ipynb
@@ -0,0 +1,765 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import glob\n",
+ "from pathlib import Path\n",
+ "\n",
+ "from tqdm.auto import tqdm\n",
+ "\n",
+ "from mlip_arena.models import REGISTRY\n",
+ "from mlip_arena.tasks.stability.input import get_atoms_from_db\n",
+ "\n",
+ "RUN_DIR = Path(\".\").resolve()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "compositions = []\n",
+ "sizes = []\n",
+ "for atoms in tqdm(get_atoms_from_db(\"random-mixture.db\")):\n",
+ " if len(atoms) == 0:\n",
+ " continue\n",
+ " compositions.append(atoms.get_chemical_formula())"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import pymatviz as pmv\n",
+ "from matplotlib import pyplot as plt\n",
+ "\n",
+ "%matplotlib inline\n",
+ "\n",
+ "fig = pmv.ptable_heatmap(\n",
+ " pmv.count_elements(compositions[:1000]),\n",
+ " colormap=\"GnBu\",\n",
+ " log=True,\n",
+ " return_type=\"figure\",\n",
+ ")\n",
+ "\n",
+ "plt.savefig(\"../figures/stability-element-counts.pdf\")\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import numpy as np\n",
+ "import pandas as pd\n",
+ "from ase import Atoms\n",
+ "\n",
+ "\n",
+ "def get_runtime_stats(traj: list[Atoms], atoms0: Atoms):\n",
+ " restarts = []\n",
+ " steps, times = [], []\n",
+ " Ts, Ps, Es, KEs = [], [], [], []\n",
+ " timesteps = []\n",
+ " com_drifts = []\n",
+ "\n",
+ " for atoms in tqdm(traj):\n",
+ " assert isinstance(atoms, Atoms)\n",
+ " try:\n",
+ " energy = atoms.get_potential_energy()\n",
+ " assert np.isfinite(energy), f\"invalid energy: {energy}\"\n",
+ " # assert np.all(~np.isnan(atoms.get_forces())), f\"invalid forces: {atoms.get_forces()}\"\n",
+ " # assert np.all(~np.isnan(atoms.get_stress())), f\"invalid stress: {atoms.get_stress()}\"\n",
+ " except Exception:\n",
+ " continue\n",
+ "\n",
+ " restarts.append(atoms.info[\"restart\"])\n",
+ " times.append(atoms.info[\"datetime\"])\n",
+ " steps.append(atoms.info[\"step\"])\n",
+ " Es.append(energy)\n",
+ " KEs.append(atoms.get_kinetic_energy())\n",
+ " Ts.append(atoms.get_temperature())\n",
+ " try:\n",
+ " Ps.append(atoms.get_stress()[:3].mean())\n",
+ " except:\n",
+ " pass\n",
+ " com_drifts.append(\n",
+ " (atoms.get_center_of_mass() - atoms0.get_center_of_mass()).tolist()\n",
+ " )\n",
+ "\n",
+ " restarts = np.array(restarts)\n",
+ " times = np.array(times)\n",
+ " steps = np.array(steps)\n",
+ "\n",
+ " # Identify unique blocks\n",
+ " unique_restarts = np.unique(restarts)\n",
+ "\n",
+ " total_time_seconds = 0\n",
+ " total_steps = 0\n",
+ "\n",
+ " # Iterate over unique blocks to calculate averages\n",
+ " for block in unique_restarts:\n",
+ " # Get the indices corresponding to the current block\n",
+ " # indices = np.where(restarts == block)[0]\n",
+ " indices = restarts == block\n",
+ " # Extract the corresponding data values\n",
+ " block_time = times[indices][-1] - times[indices][0]\n",
+ " total_time_seconds += block_time.total_seconds()\n",
+ " total_steps += steps[indices][-1] - steps[indices][0]\n",
+ "\n",
+ " target_steps = traj[0].info[\"target_steps\"]\n",
+ " natoms = len(traj[0])\n",
+ "\n",
+ " return {\n",
+ " \"natoms\": natoms,\n",
+ " \"total_time_seconds\": total_time_seconds,\n",
+ " \"total_steps\": total_steps,\n",
+ " \"steps_per_second\": total_steps / total_time_seconds\n",
+ " if total_time_seconds != 0\n",
+ " else 0,\n",
+ " \"seconds_per_step\": total_time_seconds / total_steps\n",
+ " if total_steps != 0\n",
+ " else float(\"inf\"),\n",
+ " \"seconds_per_step_per_atom\": total_time_seconds / total_steps / natoms\n",
+ " if total_steps != 0\n",
+ " else float(\"inf\"),\n",
+ " \"energies\": Es,\n",
+ " \"kinetic_energies\": KEs,\n",
+ " \"temperatures\": Ts,\n",
+ " \"pressures\": Ps,\n",
+ " \"target_steps\": target_steps,\n",
+ " \"final_step\": steps[-1] if len(steps) != 0 else 0,\n",
+ " \"timestep\": steps,\n",
+ " \"com_drifts\": com_drifts,\n",
+ " }\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import plotly.colors as pcolors\n",
+ "\n",
+ "mlip_methods = [\n",
+ " model\n",
+ " for model, metadata in REGISTRY.items()\n",
+ " if \"stability\" in metadata.get(\"gpu-tasks\", [])\n",
+ "]\n",
+ "\n",
+ "all_attributes = dir(pcolors.qualitative)\n",
+ "color_palettes = {\n",
+ " attr: getattr(pcolors.qualitative, attr)\n",
+ " for attr in all_attributes\n",
+ " if isinstance(getattr(pcolors.qualitative, attr), list)\n",
+ "}\n",
+ "color_palettes.pop(\"__all__\", None)\n",
+ "\n",
+ "palette_names = list(color_palettes.keys())\n",
+ "palette_colors = list(color_palettes.values())\n",
+ "palette_name = \"T10\" # \"Plotly\"\n",
+ "color_sequence = color_palettes[palette_name] # type: ignore\n",
+ "\n",
+ "method_color_mapping = {\n",
+ " method: color_sequence[i % len(color_sequence)]\n",
+ " for i, method in enumerate(mlip_methods)\n",
+ "}"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# NPT"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "scrolled": true
+ },
+ "outputs": [],
+ "source": [
+ "# from huggingface_hub import HfApi\n",
+ "import seaborn as sns\n",
+ "from ase import units\n",
+ "from ase.io import read\n",
+ "from matplotlib import pyplot as plt\n",
+ "\n",
+ "df = pd.DataFrame()\n",
+ "\n",
+ "for model in mlip_methods:\n",
+ " # if \"stability\" not in REGISTRY[model]['gpu-tasks']:\n",
+ " # continue\n",
+ "\n",
+ " files = glob.glob(str(RUN_DIR / REGISTRY[model][\"family\"] / f\"{model}_*npt.traj\"))\n",
+ "\n",
+ " for i, file in enumerate(files):\n",
+ " try:\n",
+ " traj = read(file, index=\":\")\n",
+ " except Exception as e:\n",
+ " print(f\"Error reading {file}: {e}\")\n",
+ " continue\n",
+ "\n",
+ " try:\n",
+ " stats = get_runtime_stats(traj, atoms0=traj[0])\n",
+ " except Exception as e:\n",
+ " print(f\"Error processing {file}: {e}\")\n",
+ " continue\n",
+ "\n",
+ " df = pd.concat(\n",
+ " [\n",
+ " df,\n",
+ " pd.DataFrame(\n",
+ " {\n",
+ " \"model\": model,\n",
+ " \"formula\": traj[0].get_chemical_formula(),\n",
+ " \"normalized_timestep\": stats[\"timestep\"]\n",
+ " / stats[\"target_steps\"],\n",
+ " \"normalized_final_step\": stats[\"final_step\"]\n",
+ " / stats[\"target_steps\"],\n",
+ " \"pressure\": np.array(stats[\"pressures\"]) / units.GPa,\n",
+ " }\n",
+ " | stats\n",
+ " ),\n",
+ " ],\n",
+ " ignore_index=True,\n",
+ " )\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "%matplotlib inline\n",
+ "\n",
+ "# import scipy.optimize as opt\n",
+ "import matplotlib.pyplot as plt\n",
+ "import numpy as np\n",
+ "from scipy.optimize import curve_fit\n",
+ "\n",
+ "\n",
+ "# Define the power-law fitting function\n",
+ "def power_law(x, a, n):\n",
+ " return a * np.power(x, n)\n",
+ "\n",
+ "\n",
+ "df.rename(\n",
+ " columns={\n",
+ " \"final_step\": \"Total steps\",\n",
+ " \"model\": \"Model\",\n",
+ " },\n",
+ " inplace=True,\n",
+ ")\n",
+ "\n",
+ "with plt.style.context(\"default\"):\n",
+ "\n",
+ " SMALL_SIZE = 8\n",
+ "\n",
+ " fig, axes = plt.subplot_mosaic(\n",
+ " \"\"\"\n",
+ " ao\n",
+ " \"\"\",\n",
+ " constrained_layout=True,\n",
+ " figsize=(6, 3),\n",
+ " width_ratios=[1, 3],\n",
+ " )\n",
+ "\n",
+ " iax = \"o\"\n",
+ " ax = axes.pop(iax)\n",
+ "\n",
+ " sns.scatterplot(\n",
+ " data=df,\n",
+ " x=\"natoms\",\n",
+ " y=\"steps_per_second\",\n",
+ " size=\"Total steps\",\n",
+ " hue=\"Model\",\n",
+ " ax=ax,\n",
+ " palette=method_color_mapping,\n",
+ " sizes=(1, 50),\n",
+ " # alpha=0.5\n",
+ " )\n",
+ "\n",
+ " # Fit and plot power-law regression for each model\n",
+ " for model, data in df.groupby(\"Model\"):\n",
+ " data.dropna(subset=[\"steps_per_second\"], inplace=True)\n",
+ "\n",
+ " popt, pcov = curve_fit(power_law, data[\"natoms\"], data[\"steps_per_second\"])\n",
+ "\n",
+ " # Generate smooth curve\n",
+ "\n",
+ " x = np.linspace(data[\"natoms\"].min(), data[\"natoms\"].max(), 100)\n",
+ "\n",
+ " # Plot regression line\n",
+ " ax.plot(\n",
+ " x,\n",
+ " power_law(x, *popt),\n",
+ " c=method_color_mapping[model],\n",
+ " # label=f\"{model} (y={a_fit:.2e}x^{n_fit:.2f})\",\n",
+ " linestyle=\"-\",\n",
+ " )\n",
+ "\n",
+ " ax.set(\n",
+ " xlabel=\"Number of atoms\",\n",
+ " xscale=\"log\",\n",
+ " ylabel=\"Steps per second\",\n",
+ " yscale=\"log\",\n",
+ " )\n",
+ " ax.spines[\"right\"].set_visible(False)\n",
+ " ax.spines[\"top\"].set_visible(False)\n",
+ " ax.grid(alpha=0.25)\n",
+ " ax.legend(\n",
+ " loc=\"upper left\", bbox_to_anchor=(1.0, 1.0), fontsize=\"x-small\", frameon=False\n",
+ " )\n",
+ "\n",
+ " fisrt = 80\n",
+ "\n",
+ " for k, df_model in df.groupby(\"Model\"):\n",
+ " ax = axes[\"a\"]\n",
+ "\n",
+ " df_model.drop_duplicates([\"formula\"], inplace=True)\n",
+ " df_model = df_model[df_model[\"formula\"].isin(compositions[:fisrt])].copy()\n",
+ " print(k, len(df_model))\n",
+ "\n",
+ " # Compute histogram\n",
+ " bins = np.linspace(0, 1, 50) # 50 bins from 0 to 1\n",
+ " hist, bin_edges = np.histogram(\n",
+ " df_model[\"normalized_final_step\"], bins=bins, density=False\n",
+ " )\n",
+ "\n",
+ " # Compute cumulative population\n",
+ " cumulative_population = np.cumsum(hist)\n",
+ "\n",
+ " # Midpoints for binning\n",
+ " bin_centers = (bin_edges[:-1] + bin_edges[1:]) / 2\n",
+ "\n",
+ " sns.lineplot(\n",
+ " x=bin_centers[:-1],\n",
+ " y=(cumulative_population[-1] - cumulative_population[:-1]) / first * 100,\n",
+ " ax=axes[\"a\"],\n",
+ " # label=k,\n",
+ " color=method_color_mapping[k],\n",
+ " # palette=method_color_mapping\n",
+ " )\n",
+ "\n",
+ " ax_main = axes[\"a\"]\n",
+ " ax_main.spines[\"right\"].set_visible(False)\n",
+ " ax_temp = ax_main.twiny()\n",
+ " ax_pressure = ax_main.twiny()\n",
+ "\n",
+ " # === Plot styling and range ===\n",
+ " ax_main.set_xlim(0, 1)\n",
+ " ax_main.set_ylim(0, 100)\n",
+ " # ax_main.set_yticks(range(0, 81, 20))\n",
+ " ax_main.set_ylabel(\"valid runs (%)\")\n",
+ "\n",
+ "\n",
+ " # === Set top x-axis: Time (ps) ===\n",
+ " ax_main.set_xticks([0, 1])\n",
+ " ax_main.set_xticklabels([0, 10])\n",
+ " ax_main.set_xlabel(\"Time (ps)\")\n",
+ " ax_main.xaxis.set_label_position(\"top\")\n",
+ " ax_main.xaxis.tick_top()\n",
+ " ax_main.spines[\"top\"].set_position((\"outward\", 5)) # Keep just below plot\n",
+ " # ax_main.tick_params(axis=\"x\", top=True, labeltop=True, bottom=False, labelbottom=False)\n",
+ "\n",
+ " # === Bottom axis: Temperature ===\n",
+ " ax_temp.set_xlim(ax_main.get_xlim())\n",
+ " ax_temp.set_xticks([0, 1])\n",
+ " ax_temp.set_xticklabels([\"300 K\", \"3000 K\"])\n",
+ " # ax_temp.set_xlabel(\"Temperature (K)\")\n",
+ " ax_temp.xaxis.set_ticks_position(\"bottom\")\n",
+ " ax_temp.xaxis.set_label_position(\"bottom\")\n",
+ " ax_temp.spines[\"right\"].set_visible(False)\n",
+ " ax_temp.spines[\"top\"].set_visible(False)\n",
+ " ax_temp.spines[\"bottom\"].set_position((\"outward\", 5)) # Keep just below plot\n",
+ "\n",
+ " # === Lower bottom axis: Pressure ===\n",
+ " ax_pressure.set_xlim(ax_main.get_xlim())\n",
+ " ax_pressure.set_xticks([0, 1])\n",
+ " ax_pressure.set_xticklabels([\"0 GPa\", \"500 GPa\"])\n",
+ " # ax_pressure.set_xlabel(\"Pressure (GPa)\")\n",
+ " ax_pressure.xaxis.set_ticks_position(\"bottom\")\n",
+ " ax_pressure.xaxis.set_label_position(\"bottom\")\n",
+ " ax_pressure.spines[\"right\"].set_visible(False)\n",
+ " ax_pressure.spines[\"top\"].set_visible(False)\n",
+ " ax_pressure.spines[\"bottom\"].set_position((\"outward\", 25)) # Push further down\n",
+ "\n",
+ " # # === Clean up main axis ===\n",
+ " ax_main.legend_ = None\n",
+ "\n",
+ " plt.savefig(\"stability-and-speed-npt-loglog.pdf\", bbox_inches=\"tight\")\n",
+ " plt.savefig(\n",
+ " \"stability-and-speed-npt-loglog.png\", bbox_inches=\"tight\", dpi=330\n",
+ " )\n",
+ "\n",
+ " # plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# NVT"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "scrolled": true
+ },
+ "outputs": [],
+ "source": [
+ "import pandas as pd\n",
+ "\n",
+ "# from huggingface_hub import HfApi\n",
+ "import seaborn as sns\n",
+ "from ase import units\n",
+ "from ase.io import read\n",
+ "from matplotlib import pyplot as plt\n",
+ "\n",
+ "df = pd.DataFrame()\n",
+ "\n",
+ "for model in mlip_methods:\n",
+ " # if \"stability\" not in REGISTRY[model]['gpu-tasks']:\n",
+ " # continue\n",
+ "\n",
+ " files = glob.glob(str(RUN_DIR / REGISTRY[model][\"family\"] / f\"{model}_*nvt.traj\"))\n",
+ "\n",
+ " for i, file in enumerate(files):\n",
+ " try:\n",
+ " traj = read(file, index=\":\")\n",
+ " except Exception as e:\n",
+ " print(f\"Error reading {file}: {e}\")\n",
+ " continue\n",
+ "\n",
+ " try:\n",
+ " stats = get_runtime_stats(traj, atoms0=traj[0])\n",
+ " except Exception as e:\n",
+ " print(f\"Error processing {file}: {e}\")\n",
+ " continue\n",
+ "\n",
+ " df = pd.concat(\n",
+ " [\n",
+ " df,\n",
+ " pd.DataFrame(\n",
+ " {\n",
+ " \"model\": model,\n",
+ " \"formula\": traj[0].get_chemical_formula(),\n",
+ " \"normalized_timestep\": stats[\"timestep\"]\n",
+ " / stats[\"target_steps\"],\n",
+ " \"normalized_final_step\": stats[\"final_step\"]\n",
+ " / stats[\"target_steps\"],\n",
+ " \"pressure\": np.array(stats[\"pressures\"]) / units.GPa,\n",
+ " }\n",
+ " | stats\n",
+ " ),\n",
+ " ],\n",
+ " ignore_index=True,\n",
+ " )\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "%matplotlib inline\n",
+ "\n",
+ "import matplotlib.pyplot as plt\n",
+ "import numpy as np\n",
+ "\n",
+ "# import scipy.optimize as opt\n",
+ "import seaborn as sns\n",
+ "from scipy.optimize import curve_fit\n",
+ "\n",
+ "\n",
+ "# Define the power-law fitting function\n",
+ "def power_law(x, a, n):\n",
+ " return a * np.power(x, n)\n",
+ "\n",
+ "\n",
+ "df.rename(\n",
+ " columns={\n",
+ " \"final_step\": \"Total steps\",\n",
+ " \"model\": \"Model\",\n",
+ " },\n",
+ " inplace=True,\n",
+ ")\n",
+ "\n",
+ "with plt.style.context(\"default\"):\n",
+ " fig, axes = plt.subplot_mosaic(\n",
+ " \"\"\"\n",
+ " ao\n",
+ " \"\"\",\n",
+ " constrained_layout=True,\n",
+ " figsize=(6, 3),\n",
+ " width_ratios=[1, 3],\n",
+ " )\n",
+ "\n",
+ " iax = \"o\"\n",
+ " ax = axes.pop(iax)\n",
+ "\n",
+ " sns.scatterplot(\n",
+ " data=df,\n",
+ " x=\"natoms\",\n",
+ " y=\"steps_per_second\",\n",
+ " size=\"Total steps\",\n",
+ " hue=\"Model\",\n",
+ " ax=ax,\n",
+ " palette=method_color_mapping,\n",
+ " sizes=(1, 50),\n",
+ " # alpha=0.5\n",
+ " )\n",
+ "\n",
+ " # Fit and plot power-law regression for each model\n",
+ " for model, data in df.groupby(\"Model\"):\n",
+ " data.dropna(subset=[\"steps_per_second\"], inplace=True)\n",
+ "\n",
+ " popt, pcov = curve_fit(power_law, data[\"natoms\"], data[\"steps_per_second\"])\n",
+ "\n",
+ " x = np.linspace(data[\"natoms\"].min(), data[\"natoms\"].max(), 100)\n",
+ "\n",
+ " # Plot regression line\n",
+ " ax.plot(\n",
+ " x,\n",
+ " power_law(x, *popt),\n",
+ " c=method_color_mapping[model],\n",
+ " # label=f\"{model} (y={a_fit:.2e}x^{n_fit:.2f})\",\n",
+ " linestyle=\"-\",\n",
+ " )\n",
+ "\n",
+ " ax.set(\n",
+ " xlabel=\"Number of atoms\",\n",
+ " xscale=\"log\",\n",
+ " ylabel=\"Steps per second\",\n",
+ " yscale=\"log\",\n",
+ " )\n",
+ " ax.spines[\"right\"].set_visible(False)\n",
+ " ax.spines[\"top\"].set_visible(False)\n",
+ " ax.grid(alpha=0.25)\n",
+ " ax.legend(\n",
+ " loc=\"upper left\", bbox_to_anchor=(1.0, 1.0), fontsize=\"x-small\", frameon=False\n",
+ " )\n",
+ "\n",
+ " fisrt = 120\n",
+ "\n",
+ " for k, df_model in df.groupby(\"Model\"):\n",
+ " ax = axes[\"a\"]\n",
+ "\n",
+ " df_model.drop_duplicates([\"formula\"], inplace=True)\n",
+ " df_model = df_model[df_model[\"formula\"].isin(compositions[:fisrt])].copy()\n",
+ "\n",
+ " # Compute histogram\n",
+ " bins = np.linspace(0, 1, 50) # 50 bins from 0 to 1\n",
+ " hist, bin_edges = np.histogram(\n",
+ " df_model[\"normalized_final_step\"], bins=bins, density=False\n",
+ " )\n",
+ "\n",
+ " # Compute cumulative population\n",
+ " cumulative_population = np.cumsum(hist)\n",
+ "\n",
+ " # Midpoints for binning\n",
+ " bin_centers = (bin_edges[:-1] + bin_edges[1:]) / 2\n",
+ "\n",
+ " sns.lineplot(\n",
+ " x=bin_centers[:-1],\n",
+ " y=(cumulative_population[-1] - cumulative_population[:-1]) / fisrt * 100,\n",
+ " ax=axes[\"a\"],\n",
+ " # label=k,\n",
+ " color=method_color_mapping[k],\n",
+ " # palette=method_color_mapping\n",
+ " )\n",
+ "\n",
+ " ax_main = axes[\"a\"]\n",
+ " ax_main.spines[\"right\"].set_visible(False)\n",
+ " ax_temp = ax_main.twiny()\n",
+ " # ax_pressure = ax_main.twiny()\n",
+ "\n",
+ " # === Plot styling and range ===\n",
+ " ax_main.set_xlim(0, 1)\n",
+ " # ax_main.set_ylim(0, 100)\n",
+ " # ax_main.set_yticks(range(0, 81, 20))\n",
+ " ax_main.set_ylabel(\"valid runs (%)\")\n",
+ "\n",
+ "\n",
+ " # === Set top x-axis: Time (ps) ===\n",
+ " ax_main.set_xticks([0, 1])\n",
+ " ax_main.set_xticklabels([0, 10])\n",
+ " ax_main.set_xlabel(\"Time (ps)\")\n",
+ " ax_main.xaxis.set_label_position(\"top\")\n",
+ " ax_main.xaxis.tick_top()\n",
+ " ax_main.spines[\"top\"].set_position((\"outward\", 5)) # Keep just below plot\n",
+ " # ax_main.tick_params(axis=\"x\", top=True, labeltop=True, bottom=False, labelbottom=False)\n",
+ "\n",
+ " # === Bottom axis: Temperature ===\n",
+ " ax_temp.set_xlim(ax_main.get_xlim())\n",
+ " ax_temp.set_xticks([0, 1])\n",
+ " ax_temp.set_xticklabels([\"300 K\", \"3000 K\"])\n",
+ " # ax_temp.set_xlabel(\"Temperature (K)\")\n",
+ " ax_temp.xaxis.set_ticks_position(\"bottom\")\n",
+ " ax_temp.xaxis.set_label_position(\"bottom\")\n",
+ " ax_temp.spines[\"right\"].set_visible(False)\n",
+ " ax_temp.spines[\"top\"].set_visible(False)\n",
+ " ax_temp.spines[\"bottom\"].set_position((\"outward\", 5)) # Keep just below plot\n",
+ "\n",
+ " # # === Clean up main axis ===\n",
+ " ax_main.legend_ = None\n",
+ "\n",
+ " plt.savefig(\"stability-and-speed-nvt-loglog.pdf\", bbox_inches=\"tight\")\n",
+ " plt.savefig(\n",
+ " \"stability-and-speed-nvt-loglog.png\", bbox_inches=\"tight\", dpi=330\n",
+ " )\n",
+ " # plt.show()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.11.10"
+ },
+ "widgets": {
+ "application/vnd.jupyter.widget-state+json": {
+ "state": {
+ "06905b5dd49e47fb9ca98d2e3a9babb8": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "layout": "IPY_MODEL_b3a1e313f7334fa78392cec0476b2a30",
+ "style": "IPY_MODEL_9e078e2ba27e449e86ecc1fe59f681ec"
+ }
+ },
+ "0ef76231108146649bcbdceba016aac5": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "description_width": ""
+ }
+ },
+ "51ec40d026074e34a1168f5240228ca8": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {}
+ },
+ "7f2b420195284e4b972e6762dfb960eb": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "width": "20px"
+ }
+ },
+ "9e078e2ba27e449e86ecc1fe59f681ec": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLStyleModel",
+ "state": {
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ },
+ "b3a1e313f7334fa78392cec0476b2a30": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {}
+ },
+ "ce30697246e6491baaa7b1fa21a20f8a": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "2.0.0",
+ "model_name": "LayoutModel",
+ "state": {}
+ },
+ "cf29764478a34059a68c87b6c46e2972": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "bar_style": "success",
+ "layout": "IPY_MODEL_7f2b420195284e4b972e6762dfb960eb",
+ "max": 1,
+ "style": "IPY_MODEL_0ef76231108146649bcbdceba016aac5",
+ "value": 1
+ }
+ },
+ "e02fd4d9b9d04c87887a3903274c794a": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "layout": "IPY_MODEL_ce30697246e6491baaa7b1fa21a20f8a",
+ "style": "IPY_MODEL_f40f4df44b3f4b658fa4f7204624f9cf",
+ "value": "โ1764/?โ[00:01<00:00,โ1759.99it/s]"
+ }
+ },
+ "f088c4da133d406694657239bcefbbe0": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "children": [
+ "IPY_MODEL_06905b5dd49e47fb9ca98d2e3a9babb8",
+ "IPY_MODEL_cf29764478a34059a68c87b6c46e2972",
+ "IPY_MODEL_e02fd4d9b9d04c87887a3903274c794a"
+ ],
+ "layout": "IPY_MODEL_51ec40d026074e34a1168f5240228ca8"
+ }
+ },
+ "f40f4df44b3f4b658fa4f7204624f9cf": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "2.0.0",
+ "model_name": "HTMLStyleModel",
+ "state": {
+ "description_width": "",
+ "font_size": null,
+ "text_color": null
+ }
+ }
+ },
+ "version_major": 2,
+ "version_minor": 0
+ }
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}
diff --git a/benchmarks/stability/pressure.ipynb b/benchmarks/stability/pressure.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..3d4714cfda9054c0c90f77a154938d9339e50d9b
--- /dev/null
+++ b/benchmarks/stability/pressure.ipynb
@@ -0,0 +1,194 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import os\n",
+ "\n",
+ "from ase import units\n",
+ "from dask.distributed import Client\n",
+ "from dask_jobqueue import SLURMCluster\n",
+ "from dotenv import load_dotenv\n",
+ "from prefect import flow, task\n",
+ "from prefect_dask import DaskTaskRunner\n",
+ "\n",
+ "from mlip_arena.models import REGISTRY, MLIPEnum\n",
+ "from mlip_arena.tasks.md import run as MD\n",
+ "from mlip_arena.tasks.stability.input import get_atoms_from_db\n",
+ "\n",
+ "load_dotenv()\n",
+ "\n",
+ "HF_TOKEN = os.environ.get(\"HF_TOKEN\", None)\n",
+ "MP_API_KEY = os.environ.get(\"MP_API_KEY\", None)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "scrolled": true
+ },
+ "outputs": [],
+ "source": [
+ "nodes_per_alloc = 1\n",
+ "gpus_per_alloc = 4\n",
+ "ntasks = 1\n",
+ "\n",
+ "cluster_kwargs = dict(\n",
+ " cores=1,\n",
+ " memory=\"64 GB\",\n",
+ " processes=1,\n",
+ " shebang=\"#!/bin/bash\",\n",
+ " account=\"matgen\",\n",
+ " walltime=\"03:00:00\",\n",
+ " # job_cpu=128,\n",
+ " job_mem=\"0\",\n",
+ " job_script_prologue=[\n",
+ " \"source ~/.bashrc\",\n",
+ " \"module load python\",\n",
+ " \"source activate /pscratch/sd/c/cyrusyc/.conda/mlip-arena\",\n",
+ " ],\n",
+ " job_directives_skip=[\"-n\", \"--cpus-per-task\", \"-J\"],\n",
+ " job_extra_directives=[\n",
+ " \"-J stability-npt\",\n",
+ " \"-q preempt\",\n",
+ " \"--time-min=00:30:00\",\n",
+ " \"--comment=12:00:00\",\n",
+ " f\"-N {nodes_per_alloc}\",\n",
+ " \"-C gpu\",\n",
+ " f\"-G {gpus_per_alloc}\",\n",
+ " ],\n",
+ ")\n",
+ "\n",
+ "cluster = SLURMCluster(**cluster_kwargs)\n",
+ "print(cluster.job_script())\n",
+ "cluster.adapt(minimum_jobs=5, maximum_jobs=10)\n",
+ "client = Client(cluster)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from mlip_arena.tasks.utils import get_calculator\n",
+ "\n",
+ "selected_models = [\n",
+ " \"MACE-MP(M)\",\n",
+ " \"CHGNet\",\n",
+ " \"M3GNet\",\n",
+ " \"MatterSim\",\n",
+ " \"eqV2(OMat)\",\n",
+ " \"MACE-MPA\",\n",
+ " \"ORBv2\",\n",
+ " \"SevenNet\",\n",
+ " \"ALIGNN\",\n",
+ "]\n",
+ "\n",
+ "\n",
+ "@task\n",
+ "def run_one(\n",
+ " atoms,\n",
+ " model,\n",
+ "):\n",
+ " result = MD.with_options(\n",
+ " timeout_seconds=600,\n",
+ " retries=2,\n",
+ " refresh_cache=True\n",
+ " )(\n",
+ " atoms=atoms,\n",
+ " calculator=get_calculator(\n",
+ " model.name,\n",
+ " calculator_kwargs=None,\n",
+ " ),\n",
+ " ensemble=\"npt\",\n",
+ " dynamics=\"nose-hoover\",\n",
+ " time_step=None,\n",
+ " dynamics_kwargs=dict(\n",
+ " ttime=25 * units.fs, pfactor=((75 * units.fs) ** 2) * 1e2 * units.GPa\n",
+ " ),\n",
+ " total_time=1e4, # 5e4, # fs\n",
+ " temperature=[300, 3000],\n",
+ " pressure=[0, 5e2 * units.GPa], # 500 GPa / 10 ps = 50 GPa / 1 ps\n",
+ " traj_file=f\"{REGISTRY[model.name]['family']}/{model.name}_{atoms.info.get('material_id', 'random')}_{atoms.get_chemical_formula()}_npt.traj\",\n",
+ " traj_interval=10,\n",
+ " )\n",
+ "\n",
+ " return result\n",
+ "\n",
+ "\n",
+ "@flow\n",
+ "def compress():\n",
+ " futures = []\n",
+ " # To download the database automatically, `huggingface_hub login` or provide HF_TOKEN\n",
+ " for atoms in get_atoms_from_db(\"random-mixture.db\", force_download=False):\n",
+ " for model in MLIPEnum:\n",
+ " if model.name not in selected_models:\n",
+ " continue\n",
+ "\n",
+ " if \"stability\" not in REGISTRY[model.name][\"gpu-tasks\"]:\n",
+ " continue\n",
+ "\n",
+ " try:\n",
+ " future = run_one.with_options(\n",
+ " timeout_seconds=600, retries=2, refresh_cache=False\n",
+ " ).submit(atoms.copy(), model)\n",
+ " futures.append(future)\n",
+ " except:\n",
+ " continue\n",
+ "\n",
+ " return [future.result(raise_on_failure=False) for future in futures]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "compress.with_options(\n",
+ " task_runner=DaskTaskRunner(address=client.scheduler.address), log_prints=True\n",
+ ")()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "NERSC Python",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.11.7"
+ },
+ "widgets": {
+ "application/vnd.jupyter.widget-state+json": {
+ "state": {},
+ "version_major": 2,
+ "version_minor": 0
+ }
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}
diff --git a/benchmarks/stability/stability-and-speed-npt-loglog.pdf b/benchmarks/stability/stability-and-speed-npt-loglog.pdf
new file mode 100644
index 0000000000000000000000000000000000000000..a9a50a1de1e7f6c639ca3ce348546e920f2d5ae0
--- /dev/null
+++ b/benchmarks/stability/stability-and-speed-npt-loglog.pdf
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:5ddeedb81aa8828af91347e54a63ea0c41b5947a429e3fe9cd79892889d77a94
+size 516662
diff --git a/benchmarks/stability/stability-and-speed-nvt-loglog.pdf b/benchmarks/stability/stability-and-speed-nvt-loglog.pdf
new file mode 100644
index 0000000000000000000000000000000000000000..031c02165f72d47f9b86bc2246b3d6d454dab60d
--- /dev/null
+++ b/benchmarks/stability/stability-and-speed-nvt-loglog.pdf
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:c27340ca8523bd4766561e00361cffaf6810baedd492b6f7a199832d42a70c65
+size 1247826
diff --git a/benchmarks/stability/temperature.ipynb b/benchmarks/stability/temperature.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..456a661d9bc375ca42c1a14f510401d1be7520db
--- /dev/null
+++ b/benchmarks/stability/temperature.ipynb
@@ -0,0 +1,202 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import os\n",
+ "\n",
+ "from ase import units\n",
+ "from dask.distributed import Client\n",
+ "from dask_jobqueue import SLURMCluster\n",
+ "from dotenv import load_dotenv\n",
+ "from prefect import flow, task\n",
+ "from prefect_dask import DaskTaskRunner\n",
+ "\n",
+ "from mlip_arena.models import REGISTRY, MLIPEnum\n",
+ "from mlip_arena.tasks.md import run as MD\n",
+ "from mlip_arena.tasks.stability.input import get_atoms_from_db\n",
+ "\n",
+ "load_dotenv()\n",
+ "\n",
+ "HF_TOKEN = os.environ.get(\"HF_TOKEN\", None)\n",
+ "MP_API_KEY = os.environ.get(\"MP_API_KEY\", None)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "scrolled": true
+ },
+ "outputs": [],
+ "source": [
+ "nodes_per_alloc = 1\n",
+ "gpus_per_alloc = 4\n",
+ "ntasks = 1\n",
+ "\n",
+ "cluster_kwargs = dict(\n",
+ " cores=1,\n",
+ " memory=\"64 GB\",\n",
+ " processes=1,\n",
+ " shebang=\"#!/bin/bash\",\n",
+ " account=\"matgen\",\n",
+ " walltime=\"04:00:00\",\n",
+ " # job_cpu=128,\n",
+ " job_mem=\"0\",\n",
+ " job_script_prologue=[\n",
+ " \"source ~/.bashrc\",\n",
+ " \"module load python\",\n",
+ " \"source activate /pscratch/sd/c/cyrusyc/.conda/mlip-arena\",\n",
+ " ],\n",
+ " job_directives_skip=[\"-n\", \"--cpus-per-task\", \"-J\"],\n",
+ " job_extra_directives=[\n",
+ " \"-J stability-nvt\",\n",
+ " \"-q preempt\",\n",
+ " \"--time-min=00:30:00\",\n",
+ " \"--comment=12:00:00\",\n",
+ " f\"-N {nodes_per_alloc}\",\n",
+ " \"-C gpu\",\n",
+ " f\"-G {gpus_per_alloc}\",\n",
+ " ],\n",
+ ")\n",
+ "\n",
+ "cluster = SLURMCluster(**cluster_kwargs)\n",
+ "print(cluster.job_script())\n",
+ "cluster.adapt(minimum_jobs=10, maximum_jobs=50)\n",
+ "client = Client(cluster)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from prefect.cache_policies import INPUTS, TASK_SOURCE\n",
+ "from prefect.futures import wait\n",
+ "\n",
+ "from mlip_arena.tasks.utils import get_calculator\n",
+ "\n",
+ "selected_models = [\n",
+ " \"MACE-MP(M)\",\n",
+ " \"CHGNet\",\n",
+ " \"M3GNet\",\n",
+ " \"MatterSim\",\n",
+ " \"eqV2(OMat)\",\n",
+ " \"MACE-MPA\",\n",
+ " \"ORBv2\",\n",
+ " \"SevenNet\",\n",
+ " \"ALIGNN\",\n",
+ "]\n",
+ "\n",
+ "\n",
+ "@task(cache_policy=TASK_SOURCE + INPUTS)\n",
+ "def run_one(\n",
+ " atoms,\n",
+ " model,\n",
+ "):\n",
+ " try:\n",
+ " result = MD.with_options(\n",
+ " # timeout_seconds=600,\n",
+ " # retries=1,\n",
+ " refresh_cache=True\n",
+ " )(\n",
+ " atoms=atoms,\n",
+ " calculator=get_calculator(\n",
+ " model.name,\n",
+ " calculator_kwargs=None,\n",
+ " ),\n",
+ " ensemble=\"nvt\",\n",
+ " dynamics=\"nose-hoover\",\n",
+ " time_step=None,\n",
+ " dynamics_kwargs=dict(\n",
+ " ttime=25 * units.fs,\n",
+ " # pfactor=((75 * units.fs) ** 2) * 1e2 * units.GPa\n",
+ " ),\n",
+ " total_time=1e4, # 5e4, # fs\n",
+ " temperature=[300, 3000],\n",
+ " pressure=None,\n",
+ " traj_file=f\"{REGISTRY[model.name]['family']}/{model.name}_{atoms.info.get('material_id', 'random')}_{atoms.get_chemical_formula()}_nvt.traj\",\n",
+ " traj_interval=10,\n",
+ " )\n",
+ " except Exception as e:\n",
+ " print(e)\n",
+ " return e\n",
+ "\n",
+ " return result\n",
+ "\n",
+ "\n",
+ "@flow\n",
+ "def heat():\n",
+ " futures = []\n",
+ " # To download the database automatically, `huggingface_hub login` or provide HF_TOKEN\n",
+ " for atoms in get_atoms_from_db(\"random-mixture.db\", force_download=False):\n",
+ " for model in MLIPEnum:\n",
+ " if model.name not in selected_models:\n",
+ " continue\n",
+ "\n",
+ " future = run_one.with_options(\n",
+ " timeout_seconds=600, retries=2, refresh_cache=False\n",
+ " ).submit(atoms.copy(), model)\n",
+ " futures.append(future)\n",
+ "\n",
+ " wait(futures)\n",
+ "\n",
+ " return [\n",
+ " f.result(timeout=None, raise_on_failure=False)\n",
+ " for f in futures\n",
+ " if f.state.is_completed()\n",
+ " ]\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "heat.with_options(\n",
+ " task_runner=DaskTaskRunner(address=client.scheduler.address), log_prints=True\n",
+ ")()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "mlip-arena",
+ "language": "python",
+ "name": "mlip-arena"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.11.8"
+ },
+ "widgets": {
+ "application/vnd.jupyter.widget-state+json": {
+ "state": {},
+ "version_major": 2,
+ "version_minor": 0
+ }
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}
diff --git a/benchmarks/vacancy_migration/README.md b/benchmarks/vacancy_migration/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..7f6942ed8a83eedb4f4c7b4280726b58b29bde1d
--- /dev/null
+++ b/benchmarks/vacancy_migration/README.md
@@ -0,0 +1,15 @@
+# Vacancy migration (2.4)
+
+## Run
+
+Two Prefect flow `run_fcc()` and `run_hcp()` are provided in [run.py](run.py). To run the benchmark, execute `python run.py` in terminal or directly call the functions in a notebook.
+
+
+The reference PBE data [^1] is provided in [Table-A1-fcc.csv](./Table-A1-fcc.csv) and [Table-A2-hcp.csv](./Table-A2-hcp.csv)
+
+
+[^1]: Angsten, Thomas, et al. "Elemental vacancy diffusion database from high-throughput first-principles calculations for fcc and hcp structures." New Journal of Physics 16.1 (2014): 015018.
+
+## Analysis
+
+Run `python analysis.py` to analyze the results and generate the plots.
\ No newline at end of file
diff --git a/benchmarks/vacancy_migration/Table-A1-fcc.csv b/benchmarks/vacancy_migration/Table-A1-fcc.csv
new file mode 100644
index 0000000000000000000000000000000000000000..a08d6b18ebaaa66c64a012158df33f3498e91133
--- /dev/null
+++ b/benchmarks/vacancy_migration/Table-A1-fcc.csv
@@ -0,0 +1,58 @@
+symbol,cohesive_energy,K,K',volume_per_atom,e_vacform,e_vacmig
+Ac,3.70,21.63,2.03,45.37,1.26,0.45
+Ag,2.49,84.11,5.15,17.87,0.68,0.70
+Al,3.43,76.90,4.23,16.47,0.61,0.58
+Ar,0.02,1.60,3.45,45.00,0.01,0.06
+Au,2.99,136.19,7.45,18.07,0.40,0.53
+Ba,1.87,8.01,2.81,64.13,1.09,0.36
+Be,3.64,116.96,3.90,7.88,-0.06,0.75
+Ca,1.91,16.82,1.70,42.17,1.13,0.47
+Cd,0.74,41.66,5.71,22.60,0.30,0.23
+Ce,4.58,37.65,4.10,26.10,1.30,0.54
+Co,4.92,251.54,5.17,10.30,1.84,1.45
+Co_mag,5.11,209.89,5.07,10.90,1.79,1.01
+Cs,0.70,2.40,2.36,116.46,0.34,0.13
+Cu,3.48,136.99,5.86,11.97,1.07,0.72
+Dy,4.23,,,31.37,1.72,
+Er,1.55,16.02,2.66,40.96,1.02,0.47
+Fe,4.69,283.59,4.89,10.22,2.32,1.38
+Ga,2.61,29.64,6.02,18.91,-0.04,0.18
+Ge,3.40,,,19.51,0.10,
+He,0.01,1.60,3.36,16.54,0.00,0.02
+Hf,6.41,107.35,3.59,22.26,2.09,0.81
+Ho,4.20,40.86,4.04,30.88,1.74,0.73
+In,2.31,33.65,4.53,27.33,0.28,0.23
+Ir,7.23,345.27,5.44,14.53,1.55,2.54
+K,0.86,3.20,6.19,73.60,0.34,0.16
+Kr,0.02,0.80,7.90,57.44,0.00,0.07
+La,4.22,24.83,3.36,37.10,1.44,0.21
+Li,1.61,13.62,3.75,20.22,0.60,0.13
+Mg,1.49,36.05,4.04,23.03,0.82,0.41
+Mn,3.76,276.38,5.42,10.73,2.38,0.65
+Mn_mag,3.76,275.57,5.58,10.72,2.36,0.69
+Na,1.11,9.61,3.08,35.08,0.38,0.14
+Ni,4.77,197.87,5.29,10.85,1.39,0.94
+Ni_mag,4.83,193.06,5.45,10.90,1.43,1.08
+Os,8.17,398.14,4.99,14.29,2.75,2.73
+Pa,6.86,96.13,4.16,25.21,1.54,0.77
+Pb,2.94,39.25,4.07,31.69,0.45,0.54
+Pd,3.71,165.83,6.62,15.37,1.16,0.95
+Pr,3.58,,,23.79,0.76,
+Pt,5.45,246.74,6.10,15.67,0.61,1.24
+Rb,0.76,2.40,7.13,90.81,0.30,0.14
+Re,7.73,366.10,4.73,14.94,2.94,1.81
+Rh,5.63,250.74,5.86,14.13,1.57,1.79
+Ru,6.56,314.03,4.81,13.88,2.51,1.85
+Sc,4.09,54.47,4.07,24.43,2.07,0.60
+Sn,3.11,46.46,6.10,27.82,0.26,0.38
+Sr,1.61,11.22,3.72,54.74,0.95,0.45
+Ta,8.09,198.67,3.86,18.63,2.23,
+Tb,4.26,38.45,4.55,31.88,1.75,0.71
+Tc,6.84,298.81,4.91,14.50,2.62,1.17
+Th,6.34,55.28,3.50,32.07,1.92,1.25
+Ti,5.43,102.54,2.89,17.25,1.95,0.45
+Tl,1.99,27.24,5.55,30.50,0.37,0.10
+W,7.98,,,16.25,1.67,
+Xe,0.03,0.80,2.22,80.21,0.01,0.09
+Y,4.14,38.45,4.10,32.35,1.72,0.67
+Zr,6.21,90.52,4.42,23.26,2.02,0.50
\ No newline at end of file
diff --git a/benchmarks/vacancy_migration/Table-A2-hcp.csv b/benchmarks/vacancy_migration/Table-A2-hcp.csv
new file mode 100644
index 0000000000000000000000000000000000000000..408dd62e938b50f68ac7d735f7684d3d73d1cddd
--- /dev/null
+++ b/benchmarks/vacancy_migration/Table-A2-hcp.csv
@@ -0,0 +1,58 @@
+symbol,cohesive_energy,K,K',volume_per_atom,e_vacform,e_vacmig_v,e_vacmig
+Ag,2.49,82.51,5.15,17.93,0.76,0.50,0.60
+Al,3.40,74.50,4.70,16.63,0.62,0.41,0.46
+Ar,0.02,0.88,7.43,46.11,0.01,0.06,
+Au,2.98,130.58,7.58,18.10,0.40,0.49,0.57
+Ba,1.87,8.01,3.38,63.55,1.11,0.34,0.37
+Be,3.72,122.57,3.57,7.92,1.04,0.74,0.87
+Bi,2.38,,,31.44,0.00,,
+Ca,1.91,17.62,3.44,42.39,1.06,0.38,0.42
+Cd,0.74,43.26,6.04,22.60,0.25,0.23,0.16
+Ce,4.49,,,26.43,1.23,,
+Co,4.90,248.34,3.29,10.33,1.67,1.02,1.19
+Co_mag,5.12,214.69,4.91,10.85,1.93,0.81,0.78
+Cr,3.63,,,11.77,1.77,,
+Cs,0.70,1.60,7.60,116.42,0.31,0.12,0.13
+Cu,3.47,134.58,5.61,12.00,1.04,0.57,0.69
+Fe,4.77,288.39,5.60,10.16,2.43,1.52,1.51
+Ga,2.60,44.06,4.37,18.92,0.21,0.12,0.16
+Ge,3.40,,,19.25,0.26,,
+He,0.01,1.60,3.46,16.54,0.00,0.02,0.01
+Hf,6.48,112.95,3.59,22.26,2.26,0.89,1.00
+In,2.31,32.84,4.68,27.40,0.31,0.20,0.21
+Ir,7.16,339.66,3.32,14.60,1.25,1.57,1.95
+K,0.86,3.20,5.95,73.72,0.35,0.12,0.14
+Kr,0.02,0.80,6.73,58.10,0.00,0.07,0.07
+La,4.20,,,37.42,1.45,,
+Li,1.61,13.62,3.82,20.24,0.63,0.10,0.12
+Mg,1.50,36.05,4.31,22.85,0.78,0.40,0.42
+Mn,3.82,190.66,11.04,10.63,2.51,0.43,0.11
+Mo,5.91,,,15.95,1.96,,
+Nb,6.71,,,18.61,2.08,,
+Ne,0.01,6.41,1.65,19.15,-0.01,0.04,0.04
+Ni,4.74,134.58,12.07,10.87,1.35,0.69,0.79
+Ni_mag,4.81,192.26,5.34,10.94,1.37,0.77,0.89
+Os,8.31,406.15,5.04,14.23,3.03,3.03,3.22
+Pa,3.09,90.52,3.96,15.12,0.28,0.38,
+Pb,2.92,37.65,4.49,31.51,0.41,0.44,0.41
+Pd,3.67,163.42,6.50,15.45,1.10,0.68,0.73
+Pt,5.39,241.13,6.22,15.77,0.70,0.70,
+Rb,0.76,2.40,6.45,91.19,0.32,0.13,0.12
+Re,7.79,370.10,4.67,14.89,3.42,1.79,1.17
+Rh,5.59,250.74,5.76,14.18,1.53,1.25,1.47
+Ru,6.68,311.62,5.16,13.81,2.68,2.17,2.18
+Sc,4.14,52.87,4.82,24.48,1.87,0.74,0.69
+Si,4.04,85.72,4.88,14.35,0.08,0.04,0.26
+Sn,3.11,47.26,5.92,27.55,0.40,0.31,0.33
+Sr,1.61,11.22,3.77,55.16,0.98,0.36,0.40
+Ta,8.05,,,18.55,2.35,,
+Tc,6.91,302.01,4.90,14.44,2.85,1.21,0.63
+Te,2.23,48.87,5.03,31.47,0.25,,
+Ti,5.49,109.75,5.07,17.29,2.06,0.49,0.59
+Tl,2.01,25.63,5.47,30.97,0.40,0.23,0.16
+V,5.15,,,13.75,1.84,,
+W,7.96,,,16.32,2.44,,
+Xe,0.03,0.80,2.32,79.60,0.01,0.07,0.08
+Y,4.16,40.05,3.72,32.82,1.87,0.69,0.67
+Zn,1.10,73.70,6.02,15.23,0.47,0.34,0.20
+Zr,6.25,93.73,4.34,23.44,2.03,0.57,0.70
\ No newline at end of file
diff --git a/benchmarks/vacancy_migration/analysis.py b/benchmarks/vacancy_migration/analysis.py
new file mode 100644
index 0000000000000000000000000000000000000000..b3c250d139d71c9c48d03116e1457de1d7b6256b
--- /dev/null
+++ b/benchmarks/vacancy_migration/analysis.py
@@ -0,0 +1,284 @@
+import glob
+import pickle
+from pathlib import Path
+
+import numpy as np
+import pandas as pd
+from matplotlib import pyplot as plt
+from pymatgen.core import Element
+
+from mlip_arena.models import REGISTRY
+
+DATA_DIR = Path(__file__).parent
+
+mlip_models = ["MACE-MP(M)", "MatterSim", "ORBv2", "M3GNet", "CHGNet", "SevenNet"]
+
+fcc_pbe = pd.read_csv(DATA_DIR / "Table-A1-fcc.csv")
+hcp_pbe = pd.read_csv(DATA_DIR / "Table-A2-hcp.csv")
+
+# fcc
+
+# Initialize an empty DataFrame
+results_df = pd.DataFrame(columns=["symbol", "model", "fit_path", "fit_energies"])
+
+for model in mlip_models:
+ out_dir = Path(REGISTRY[model]["family"])
+
+ for index, row in fcc_pbe.iterrows():
+ symbol = row["symbol"]
+
+ if Element(symbol.split("_")[0]).is_noble_gas:
+ continue
+
+ files = glob.glob(str(out_dir / f"{model}-fcc-{symbol.split('_')[0]}108.pkl"))
+ if len(files) == 0:
+ print("skip", model, symbol)
+ # Add missing data to the DataFrame
+ # if symbol not in results_df['symbol'].values:
+ # Create a new row if the symbol is not yet in the DataFrame
+ new_row = {
+ "symbol": symbol,
+ "model": model,
+ "pbe_e_vacmig": row["e_vacmig"],
+ "fit_path": [],
+ "fit_energies": [],
+ }
+ results_df = pd.concat(
+ [results_df, pd.DataFrame([new_row])], ignore_index=True
+ )
+ continue
+ file = files[0]
+ with open(file, "rb") as f:
+ result = pickle.load(f)
+
+ # Add data to the DataFrame
+ # if symbol not in results_df['symbol'].values:
+ # Create a new row if the symbol is not yet in the DataFrame
+ forcefit = result["neb"]["forcefit"]
+ new_row = {
+ "symbol": symbol,
+ "model": model,
+ "pbe_e_vacmig": row["e_vacmig"],
+ "fit_path": forcefit.fit_path,
+ "fit_energies": forcefit.fit_energies,
+ }
+ results_df = pd.concat([results_df, pd.DataFrame([new_row])], ignore_index=True)
+
+
+nrows = 2
+ncols = len(mlip_models) // nrows
+
+fig, axes = plt.subplots(
+ nrows=nrows,
+ ncols=ncols,
+ figsize=(6, 4),
+ sharex=True,
+ sharey=True,
+ constrained_layout=True,
+ dpi=300,
+)
+
+for i, (ax, model) in enumerate(zip(axes.ravel(), mlip_models, strict=False)):
+ filtered_df = results_df[results_df["model"] == model]
+
+ asymmetries = []
+ middle_deviations = []
+
+ for index, row in filtered_df.iterrows():
+ if len(row["fit_path"]) == 0 or pd.isna(row["pbe_e_vacmig"]):
+ continue
+
+ x = row["fit_path"] / max(row["fit_path"])
+ y = row["fit_energies"] / row["pbe_e_vacmig"]
+
+ # middle_idx = np.argmin(np.abs(x - 0.5))
+
+ left_side = y[x <= 0.5]
+ right_side = y[x >= 0.5][::-1]
+ min_len = min(len(left_side), len(right_side))
+ left_side = left_side[:min_len]
+ right_side = right_side[:min_len]
+
+ asymmetry = np.abs(left_side - right_side).mean()
+ # middle = (left_side[-1] + right_side[-1]) / 2
+ middle = max(y)
+
+ if np.abs(np.array(y)).max() > 10:
+ continue
+
+ asymmetries.append(asymmetry)
+ middle_deviations.append(middle - 1)
+
+ ax.plot(
+ x,
+ y,
+ alpha=0.5,
+ color=method_color_mapping[model],
+ label=model,
+ )
+
+ asymmetries = np.array(asymmetries)
+ middle_deviations = np.array(middle_deviations)
+
+ ax.text(
+ 0.05,
+ 0.95,
+ "\n".join(
+ [
+ f"Miss: {len(filtered_df) - len(asymmetries) - filtered_df['pbe_e_vacmig'].isna().sum()}",
+ f"Asym: {asymmetries.mean():.3f}",
+ f"MAPE@max: {np.abs(middle_deviations).mean() * 100:.1f}",
+ ]
+ ),
+ transform=ax.transAxes,
+ ha="left",
+ va="top",
+ fontsize="small",
+ # fontsize=6,
+ )
+
+ ax.set(
+ title=model,
+ xlabel="Normalized path" if i >= len(models) - ncols else None,
+ ylabel="Normalized energy" if i % ncols == 0 else None,
+ ylim=(-0.1, 2),
+ )
+
+with open(DATA_DIR / "fcc.pkl", "wb") as f:
+ pickle.dump(fig, f)
+
+# hcp
+
+# Initialize an empty DataFrame
+results_df = pd.DataFrame(columns=["symbol", "model", "fit_path", "fit_energies"])
+
+for model in mlip_models:
+ out_dir = Path(REGISTRY[model]["family"])
+
+ for index, row in hcp_pbe.iterrows():
+ symbol = row["symbol"]
+
+ if Element(symbol.split("_")[0]).is_noble_gas:
+ continue
+
+ files = glob.glob(str(out_dir / f"{model}-hcp-{symbol.split('_')[0]}36.pkl"))
+ if len(files) == 0:
+ print("skip", model, symbol)
+ # Add missing data to the DataFrame
+ # if symbol not in results_df['symbol'].values:
+ # Create a new row if the symbol is not yet in the DataFrame
+ new_row = {
+ "symbol": symbol,
+ "model": model,
+ "pbe_e_vacmig": row["e_vacmig"],
+ "fit_path": [],
+ "fit_energies": [],
+ }
+ results_df = pd.concat(
+ [results_df, pd.DataFrame([new_row])], ignore_index=True
+ )
+ # else:
+ # # Update the existing row with the model's prediction
+ # results_df.loc[results_df['symbol'] == symbol, model] = pd.NA
+ continue
+ file = files[0]
+ with open(file, "rb") as f:
+ result = pickle.load(f)
+
+ # Add data to the DataFrame
+ # if symbol not in results_df['symbol'].values:
+ # Create a new row if the symbol is not yet in the DataFrame
+ forcefit = result["neb"]["forcefit"]
+ new_row = {
+ "symbol": symbol,
+ "model": model,
+ "pbe_e_vacmig": row["e_vacmig"],
+ "fit_path": forcefit.fit_path,
+ "fit_energies": forcefit.fit_energies,
+ }
+ results_df = pd.concat([results_df, pd.DataFrame([new_row])], ignore_index=True)
+
+
+
+nrows = 2
+ncols = len(mlip_models) // nrows
+
+threshold = 0.10
+
+fig, axes = plt.subplots(
+ nrows=nrows,
+ ncols=ncols,
+ figsize=(6, 4),
+ sharex=True,
+ sharey=True,
+ constrained_layout=True,
+ dpi=300,
+)
+
+for i, (ax, model) in enumerate(zip(axes.ravel(), mlip_models, strict=False)):
+ filtered_df = results_df[results_df["model"] == model]
+
+ asymmetries = []
+ middle_deviations = []
+
+ for index, row in filtered_df.iterrows():
+ if len(row["fit_path"]) == 0 or pd.isna(row["pbe_e_vacmig"]):
+ continue
+
+ x = row["fit_path"] / max(row["fit_path"])
+ y = row["fit_energies"] / row["pbe_e_vacmig"]
+
+ # middle_idx = np.argmin(np.abs(x - 0.5))
+
+ left_side = y[x <= 0.5]
+ right_side = y[x >= 0.5][::-1]
+ min_len = min(len(left_side), len(right_side))
+ left_side = left_side[:min_len]
+ right_side = right_side[:min_len]
+
+ asymmetry = np.abs(left_side - right_side).mean()
+ # middle = (left_side[-1] + right_side[-1]) / 2
+ middle = max(y)
+
+ if np.abs(np.array(y)).max() > 10:
+ continue
+
+ asymmetries.append(asymmetry)
+ middle_deviations.append(middle - 1)
+
+ ax.plot(
+ x,
+ y,
+ alpha=0.5,
+ color=method_color_mapping[model],
+ label=model,
+ )
+
+ asymmetries = np.array(asymmetries)
+ middle_deviations = np.array(middle_deviations)
+
+ ax.text(
+ 0.05,
+ 0.95,
+ "\n".join(
+ [
+ f"Miss: {len(filtered_df) - len(asymmetries) - filtered_df['pbe_e_vacmig'].isna().sum()}",
+ f"Asym: {asymmetries.mean():.3f}",
+ f"MAPE@max: {np.abs(middle_deviations).mean() * 100:.1f}",
+ ]
+ ),
+ transform=ax.transAxes,
+ ha="left",
+ va="top",
+ fontsize="small",
+ )
+
+ ax.set(
+ title=model,
+ xlabel="Normalized path" if i >= len(mlip_models) - ncols else None,
+ ylabel="Normalized energy" if i % ncols == 0 else None,
+ ylim=(-0.1, 2),
+ )
+
+with open(DATA_DIR / "hcp.pkl", "wb") as f:
+ pickle.dump(fig, f)
diff --git a/benchmarks/vacancy_migration/run.py b/benchmarks/vacancy_migration/run.py
new file mode 100644
index 0000000000000000000000000000000000000000..0ada47fbb39f293903cb4df6682ddf333dcf3594
--- /dev/null
+++ b/benchmarks/vacancy_migration/run.py
@@ -0,0 +1,171 @@
+import pickle
+from functools import partial
+from pathlib import Path
+
+from ase import Atoms
+from prefect import Task, flow, task
+from prefect.client.schemas.objects import TaskRun
+from prefect.results import ResultRecord
+from prefect.states import State
+
+from mlip_arena.models import REGISTRY, MLIPEnum
+from mlip_arena.tasks.eos import run as EOS
+from mlip_arena.tasks.neb import run_from_endpoints as NEB
+from mlip_arena.tasks.vacancy_migration.input import get_fcc_pristine, get_hcp_pristine
+
+MP_API_KEY = None
+
+test_models = ["MACE-MP(M)", "MatterSim", "ORBv2", "CHGNet", "M3GNet", "SevenNet"]
+
+
+def save_to_pickle(
+ tsk: Task, run: TaskRun, state: State, crystal: str
+):
+ result = run.state.result(raise_on_failure=False)
+
+ pristine = result["pristine"]
+ calculator_name = result["calculator_name"]
+ calculator_name = calculator_name.name if isinstance(calculator_name, MLIPEnum) else calculator_name
+
+ family_path = Path(REGISTRY[calculator_name]["family"])
+ family_path.mkdir(parents=True, exist_ok=True)
+
+ with open(family_path / f"{calculator_name}-{crystal}-{pristine.get_chemical_formula()}.pkl", "wb") as f:
+ pickle.dump(result, f)
+
+ # with open(family_path / f"{crystal}-{pristine.get_chemical_formula()}.json", 'w') as f:
+ # json.dump(result, f)
+
+@task
+def calculate_vacancy_migration(
+ pristine: Atoms,
+ istart: int,
+ iend: int,
+ calculator_name: MLIPEnum | str,
+ optimizer: str,
+ criterion: dict = {}
+):
+
+ eos = EOS.with_options(refresh_cache=True, persist_result=True)(
+ atoms=pristine,
+ calculator_name=calculator_name,
+ optimizer=optimizer,
+ criterion=criterion,
+ concurrent=False,
+ )
+
+ if isinstance(eos, ResultRecord):
+ eos = eos.result
+
+ if isinstance(eos, dict):
+ pristine = eos["atoms"]
+ else:
+ return eos
+
+ atoms = pristine.copy()
+ del atoms[istart]
+ start = atoms.copy()
+
+ atoms = pristine.copy()
+ del atoms[iend]
+ end = atoms.copy()
+
+
+ neb = NEB.with_options(refresh_cache=True, persist_result=True)(
+ start, end, n_images=7,
+ calculator_name=calculator_name,
+ optimizer=optimizer,
+ criterion=criterion,
+ relax_end_points=True
+ )
+
+ e_defect = 0.5 * (neb["images"][0].get_potential_energy() + neb["images"][-1].get_potential_energy())
+ e_pristine = pristine.get_potential_energy()
+
+ e_vacform = e_defect - (len(neb["images"][0]) / len(pristine)) * e_pristine
+
+ e_vacmig = neb["barrier"][0]
+ asymmetry = abs(neb["barrier"][1] / e_vacmig)
+
+ # TODO: temporary solution to pickling problem of mattersim
+ pristine.calc = None
+ for image in neb["images"]:
+ image.calc = None
+ eos["atoms"].calc = None
+
+ return {
+ "pristine": pristine,
+ "calculator_name": calculator_name,
+ "e_vacform": e_vacform,
+ "e_vacmig": e_vacmig,
+ "asymmetry": asymmetry,
+ "neb": neb,
+ "eos": eos
+ }
+
+@flow(persist_result=True, result_serializer="pickle")
+def run_fcc():
+
+ futures = []
+ for atoms in get_fcc_pristine(MP_API_KEY):
+ for model in MLIPEnum:
+ if model.name not in test_models:
+ continue
+ try:
+ result = calculate_vacancy_migration.with_options(
+ refresh_cache=True, persist_result=True,
+ on_completion=[partial(save_to_pickle, crystal="fcc")]
+ )(
+ pristine=atoms,
+ istart=0,
+ iend=1,
+ calculator_name=model,
+ optimizer="BFGS",
+ criterion=dict(fmax=0.05, steps=500),
+ )
+ except Exception:
+ continue
+ futures.append(result)
+
+ return futures
+ # wait(futures)
+ # return [f.result(raise_on_failure=False) for f in futures if f.state.is_completed()]
+
+@flow(persist_result=True, result_serializer="pickle")
+def run_hcp():
+ futures = []
+ for i, atoms in enumerate(get_hcp_pristine(MP_API_KEY)):
+ if i <= 30:
+ continue
+ for model in MLIPEnum:
+ if model.name not in test_models:
+ continue
+ try:
+ result = calculate_vacancy_migration.with_options(
+ refresh_cache=True, persist_result=True,
+ on_completion=[partial(save_to_pickle, crystal="hcp")]
+ )(
+ pristine=atoms,
+ istart=0,
+ iend=1,
+ calculator_name=model,
+ optimizer="BFGS",
+ criterion=dict(fmax=0.05, steps=500),
+ )
+ # calculator_name = model.name if isinstance(model, MLIPEnum) else model
+
+ # family_path = Path(REGISTRY[calculator_name]['family'])
+ # family_path.mkdir(parents=True, exist_ok=True)
+ # with open(family_path / f"{'hcp'}-{atoms.get_chemical_formula()}.pkl", 'wb') as f:
+ # pickle.dump(result, f)
+ except Exception:
+ continue
+ futures.append(result)
+
+ return futures
+ # wait(futures)
+ # return [f.result(raise_on_failure=False) for f in futures if f.state.is_completed()]
+
+if __name__ == "__main__":
+ run_fcc()
+ run_hcp()
\ No newline at end of file
diff --git a/benchmarks/wbm_ev/ALIGNN.parquet b/benchmarks/wbm_ev/ALIGNN.parquet
new file mode 100644
index 0000000000000000000000000000000000000000..34cbb20eed3a2d47dd00221e4490019419962768
--- /dev/null
+++ b/benchmarks/wbm_ev/ALIGNN.parquet
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:9b84592b56c667f49e510f382c07f2dd4105df71468c2198c3958b2d0066202b
+size 425244
diff --git a/benchmarks/wbm_ev/ALIGNN_processed.parquet b/benchmarks/wbm_ev/ALIGNN_processed.parquet
new file mode 100644
index 0000000000000000000000000000000000000000..869ce9da430e8bae54d8f87774b5ec9a65cef4e2
--- /dev/null
+++ b/benchmarks/wbm_ev/ALIGNN_processed.parquet
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:875ed54dbc8766f4cfcdfd5e6d628fca9d1a8866b1b29cd1a32be8bb966303ef
+size 368670
diff --git a/benchmarks/wbm_ev/CHGNet.parquet b/benchmarks/wbm_ev/CHGNet.parquet
new file mode 100644
index 0000000000000000000000000000000000000000..9437015c0dc08d2b508481c8ec170a6759dc9f1c
--- /dev/null
+++ b/benchmarks/wbm_ev/CHGNet.parquet
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:06342370be572819441a9c706f3e70555c6ac0bf75d0fdaa35f2f574c9f600cd
+size 424462
diff --git a/benchmarks/wbm_ev/CHGNet_processed.parquet b/benchmarks/wbm_ev/CHGNet_processed.parquet
new file mode 100644
index 0000000000000000000000000000000000000000..80b7548f9916569072be59ce659435b39bb1592e
--- /dev/null
+++ b/benchmarks/wbm_ev/CHGNet_processed.parquet
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:62fc23bf5bc94ba30c32581a8c57131a9125993a3f0e380cb3800220b197b666
+size 357806
diff --git a/benchmarks/wbm_ev/M3GNet.parquet b/benchmarks/wbm_ev/M3GNet.parquet
new file mode 100644
index 0000000000000000000000000000000000000000..27f064dc4d9be72439dc73e462c7a7d56f59d6f1
--- /dev/null
+++ b/benchmarks/wbm_ev/M3GNet.parquet
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:841aaa082db265939b3a3ada6f0d6901e65cb942277b074ca55cbdd7730dde75
+size 411741
diff --git a/benchmarks/wbm_ev/M3GNet_processed.parquet b/benchmarks/wbm_ev/M3GNet_processed.parquet
new file mode 100644
index 0000000000000000000000000000000000000000..39037579f59af990128b9f909b60a99ad45fef8f
--- /dev/null
+++ b/benchmarks/wbm_ev/M3GNet_processed.parquet
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:fd34bfe4650c2be26e7cfd75d747885ca265cbbc7fb769222d1f7e304fbd6de3
+size 357909
diff --git a/benchmarks/wbm_ev/MACE-MP(M).parquet b/benchmarks/wbm_ev/MACE-MP(M).parquet
new file mode 100644
index 0000000000000000000000000000000000000000..64273d7e076572a111355f3b18b5a0b28486bcb4
--- /dev/null
+++ b/benchmarks/wbm_ev/MACE-MP(M).parquet
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:1551823daef888914de951f2610ee6ffdfd2b0d6f33e1e293614534cdd217196
+size 409083
diff --git a/benchmarks/wbm_ev/MACE-MP(M)_processed.parquet b/benchmarks/wbm_ev/MACE-MP(M)_processed.parquet
new file mode 100644
index 0000000000000000000000000000000000000000..a54fbc66b9001d9db38ddbd072ee9d8525962365
--- /dev/null
+++ b/benchmarks/wbm_ev/MACE-MP(M)_processed.parquet
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:2f54e1c2b7ec686c2a353f8092633b13e66fac8410642027ef3481aedf350b0b
+size 359889
diff --git a/benchmarks/wbm_ev/MACE-MPA.parquet b/benchmarks/wbm_ev/MACE-MPA.parquet
new file mode 100644
index 0000000000000000000000000000000000000000..59e4bf3153fc1f86534d7f999f6921b6ae4b571a
--- /dev/null
+++ b/benchmarks/wbm_ev/MACE-MPA.parquet
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:eedf48b2478811a1dca46eb50d607004dca99f54c81909f331c550317f14cd19
+size 407912
diff --git a/benchmarks/wbm_ev/MACE-MPA_processed.parquet b/benchmarks/wbm_ev/MACE-MPA_processed.parquet
new file mode 100644
index 0000000000000000000000000000000000000000..55cd68a68cba1748ff917d6572514682e8973b5c
--- /dev/null
+++ b/benchmarks/wbm_ev/MACE-MPA_processed.parquet
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:249e8f0283dda9c87ec787ea0945a92e8ba0d4bf7b00bf823a4850283f06cfde
+size 356765
diff --git a/benchmarks/wbm_ev/MatterSim.parquet b/benchmarks/wbm_ev/MatterSim.parquet
new file mode 100644
index 0000000000000000000000000000000000000000..c8852d9e741a98f59f3bef04a4f6e020d90ebd08
--- /dev/null
+++ b/benchmarks/wbm_ev/MatterSim.parquet
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:b3d587fd71a817968a513b727a174c353c97552bc7674e5d3a4108e2b6233556
+size 408998
diff --git a/benchmarks/wbm_ev/MatterSim_processed.parquet b/benchmarks/wbm_ev/MatterSim_processed.parquet
new file mode 100644
index 0000000000000000000000000000000000000000..063ceaf3480760d1d8a6b0b14869ed4ecaf7122c
--- /dev/null
+++ b/benchmarks/wbm_ev/MatterSim_processed.parquet
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:1cea2cf80561a7d5f6696fccd45754df9d417bd0310f06827b9c02fc7414f278
+size 356416
diff --git a/benchmarks/wbm_ev/ORBv2.parquet b/benchmarks/wbm_ev/ORBv2.parquet
new file mode 100644
index 0000000000000000000000000000000000000000..a7c753891453cb6a880ebce6d267c0d2d5c14984
--- /dev/null
+++ b/benchmarks/wbm_ev/ORBv2.parquet
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:5ee9f2322096fbeb103a85b0735ed0d547f93e34f1c113af3619baf35c7acbc3
+size 415496
diff --git a/benchmarks/wbm_ev/ORBv2_processed.parquet b/benchmarks/wbm_ev/ORBv2_processed.parquet
new file mode 100644
index 0000000000000000000000000000000000000000..42735cc0523daf4b1f354ae6014f81dc70cf6115
--- /dev/null
+++ b/benchmarks/wbm_ev/ORBv2_processed.parquet
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:8e92484ae9dc84cf35ce7c4780c9a28d27fb29779fd31c3d494ac95acf54c3e8
+size 358072
diff --git a/benchmarks/wbm_ev/SevenNet.parquet b/benchmarks/wbm_ev/SevenNet.parquet
new file mode 100644
index 0000000000000000000000000000000000000000..b053a0e5f2cc8d69480b94d6a47762f252029f2e
--- /dev/null
+++ b/benchmarks/wbm_ev/SevenNet.parquet
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:6850c333c0b754b942efcfac11739ae199a9f3c816da4e0e6b26bc9a037a0524
+size 410197
diff --git a/benchmarks/wbm_ev/SevenNet_processed.parquet b/benchmarks/wbm_ev/SevenNet_processed.parquet
new file mode 100644
index 0000000000000000000000000000000000000000..b1b812b5f2315d85fe3e606555a15a320468e966
--- /dev/null
+++ b/benchmarks/wbm_ev/SevenNet_processed.parquet
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:4d19ee80d1f6c13765ad134d1356a029c175b7c885035fb68380b2dd559645ad
+size 358468
diff --git a/benchmarks/wbm_ev/analyze.py b/benchmarks/wbm_ev/analyze.py
new file mode 100644
index 0000000000000000000000000000000000000000..ebc5bef0ea0b85eb3a74dbfefe90e7058ef6231d
--- /dev/null
+++ b/benchmarks/wbm_ev/analyze.py
@@ -0,0 +1,210 @@
+from pathlib import Path
+
+import numpy as np
+import pandas as pd
+from ase.db import connect
+from scipy import stats
+
+from mlip_arena.models import REGISTRY, MLIPEnum
+
+DATA_DIR = Path(__file__).parent.absolute()
+
+
+def load_wbm_structures():
+ """
+ Load the WBM structures from a ASE DB file.
+ """
+ with connect(DATA_DIR.parent / "wbm_structures.db") as db:
+ for row in db.select():
+ yield row.toatoms(add_additional_information=True)
+
+def gather_results():
+ for model in MLIPEnum:
+ if "wbm_ev" not in REGISTRY[model.name].get("gpu-tasks", []):
+ continue
+
+ if (DATA_DIR / f"{model.name}.parquet").exists():
+ continue
+
+ all_data = []
+
+ for atoms in load_wbm_structures():
+ fpath = Path(model.name) / f"{atoms.info['key_value_pairs']['wbm_id']}.json"
+ if not fpath.exists():
+ continue
+
+ all_data.append(pd.read_json(fpath))
+
+ df = pd.concat(all_data, ignore_index=True)
+ df.to_parquet(DATA_DIR / f"{model.name}.parquet")
+
+
+def summarize():
+ summary_table = pd.DataFrame(
+ columns=[
+ "model",
+ "energy-diff-flip-times",
+ "tortuosity",
+ "spearman-compression-energy",
+ "spearman-compression-derivative",
+ "spearman-tension-energy",
+ "missing",
+ ]
+ )
+
+
+ for model in MLIPEnum:
+ fpath = DATA_DIR / f"{model.name}.parquet"
+ if not fpath.exists():
+ continue
+ df_raw_results = pd.read_parquet(fpath)
+
+ df_analyzed = pd.DataFrame(
+ columns=[
+ "model",
+ "structure",
+ "formula",
+ "volume-ratio",
+ "energy-delta-per-atom",
+ "energy-diff-flip-times",
+ "tortuosity",
+ "spearman-compression-energy",
+ "spearman-compression-derivative",
+ "spearman-tension-energy",
+ "missing",
+ ]
+ )
+
+ for wbm_struct in load_wbm_structures():
+ structure_id = wbm_struct.info["key_value_pairs"]["wbm_id"]
+
+ try:
+ results = df_raw_results.loc[df_raw_results["id"] == structure_id]
+ results = results["eos"].values[0]
+ es = np.array(results["energies"])
+ vols = np.array(results["volumes"])
+ vol0 = wbm_struct.get_volume()
+
+ indices = np.argsort(vols)
+ vols = vols[indices]
+ es = es[indices]
+
+ imine = len(es) // 2
+ # min_center_val = np.min(es[imid - 1 : imid + 2])
+ # imine = np.where(es == min_center_val)[0][0]
+ emin = es[imine]
+
+ interpolated_volumes = [
+ (vols[i] + vols[i + 1]) / 2 for i in range(len(vols) - 1)
+ ]
+ ediff = np.diff(es)
+ ediff_sign = np.sign(ediff)
+ mask = ediff_sign != 0
+ ediff = ediff[mask]
+ ediff_sign = ediff_sign[mask]
+ ediff_flip = np.diff(ediff_sign) != 0
+
+ etv = np.sum(np.abs(np.diff(es)))
+
+ data = {
+ "model": model.name,
+ "structure": structure_id,
+ "formula": wbm_struct.get_chemical_formula(),
+ "missing": False,
+ "volume-ratio": vols / vol0,
+ "energy-delta-per-atom": (es - emin) / len(wbm_struct),
+ "energy-diff-flip-times": np.sum(ediff_flip).astype(int),
+ "tortuosity": etv / (abs(es[0] - emin) + abs(es[-1] - emin)),
+ "spearman-compression-energy": stats.spearmanr(
+ vols[:imine], es[:imine]
+ ).statistic,
+ "spearman-compression-derivative": stats.spearmanr(
+ interpolated_volumes[:imine], ediff[:imine]
+ ).statistic,
+ "spearman-tension-energy": stats.spearmanr(
+ vols[imine:], es[imine:]
+ ).statistic,
+ }
+
+ except Exception:
+ data = {
+ "model": model.name,
+ "structure": structure_id,
+ "formula": wbm_struct.get_chemical_formula(),
+ "missing": True,
+ "volume-ratio": None,
+ "energy-delta-per-atom": None,
+ "energy-diff-flip-times": None,
+ "tortuosity": None,
+ "spearman-compression-energy": None,
+ "spearman-compression-derivative": None,
+ "spearman-tension-energy": None,
+ }
+
+ df_analyzed = pd.concat([df_analyzed, pd.DataFrame([data])], ignore_index=True)
+
+ df_analyzed.to_parquet(DATA_DIR / f"{model.name}_processed.parquet")
+ # json_fpath = DATA_DIR / f"EV_scan_analyzed_{model.name}.json"
+
+ # df_analyzed.to_json(json_fpath, orient="records")
+
+ valid_results = df_analyzed[df_analyzed["missing"] == False]
+
+ analysis_summary = {
+ "model": model.name,
+ "energy-diff-flip-times": valid_results["energy-diff-flip-times"].mean(),
+ "tortuosity": valid_results["tortuosity"].mean(),
+ "spearman-compression-energy": valid_results[
+ "spearman-compression-energy"
+ ].mean(),
+ "spearman-compression-derivative": valid_results[
+ "spearman-compression-derivative"
+ ].mean(),
+ "spearman-tension-energy": valid_results["spearman-tension-energy"].mean(),
+ "missing": len(df_analyzed[df_analyzed["missing"] == True]),
+ }
+ summary_table = pd.concat(
+ [summary_table, pd.DataFrame([analysis_summary])], ignore_index=True
+ )
+
+
+ flip_rank = (
+ (summary_table["energy-diff-flip-times"] - 1)
+ .abs()
+ .rank(ascending=True, method="min")
+ )
+ tortuosity_rank = summary_table["tortuosity"].rank(ascending=True, method="min")
+ spearman_compression_energy_rank = summary_table["spearman-compression-energy"].rank(
+ method="min"
+ )
+ spearman_compression_derivative_rank = summary_table[
+ "spearman-compression-derivative"
+ ].rank(ascending=False, method="min")
+ spearman_tension_energy_rank = summary_table["spearman-tension-energy"].rank(
+ ascending=False, method="min"
+ )
+ missing_rank = summary_table["missing"].rank(ascending=True, method="min")
+
+ rank_aggr = (
+ flip_rank
+ + tortuosity_rank
+ + spearman_compression_energy_rank
+ + spearman_compression_derivative_rank
+ + spearman_tension_energy_rank
+ + missing_rank
+ )
+ rank = rank_aggr.rank(method="min")
+
+ summary_table.insert(1, "rank", rank.astype(int))
+ summary_table.insert(2, "rank-aggregation", rank_aggr.astype(int))
+ summary_table = summary_table.sort_values(by="rank", ascending=True)
+ summary_table = summary_table.reset_index(drop=True)
+
+ summary_table.to_csv(DATA_DIR / "summary.csv", index=False)
+ summary_table.to_latex(DATA_DIR / "summary.tex", index=False)
+
+ return summary_table
+
+if __name__ == "__main__":
+ gather_results()
+ summarize()
diff --git a/benchmarks/wbm_ev/eSEN.parquet b/benchmarks/wbm_ev/eSEN.parquet
new file mode 100644
index 0000000000000000000000000000000000000000..f81adce9b39dbdc5da9b4d46a439a8576fbf3254
--- /dev/null
+++ b/benchmarks/wbm_ev/eSEN.parquet
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:841febd80ec1024fa186ab05e5f9d7c96a0605d90c4840415ecf41ac89132aee
+size 410695
diff --git a/benchmarks/wbm_ev/eSEN_processed.parquet b/benchmarks/wbm_ev/eSEN_processed.parquet
new file mode 100644
index 0000000000000000000000000000000000000000..3f8c01831c998910ecb82c532ff9e5b45b635656
--- /dev/null
+++ b/benchmarks/wbm_ev/eSEN_processed.parquet
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:1602624f625a7c258f76604718fec7998fa6f88400c33ca2d5116681a5e8dd9d
+size 356216
diff --git a/benchmarks/wbm_ev/eqV2(OMat).parquet b/benchmarks/wbm_ev/eqV2(OMat).parquet
new file mode 100644
index 0000000000000000000000000000000000000000..9c77ac538e8078edd73e6deca2498da8e41e236c
--- /dev/null
+++ b/benchmarks/wbm_ev/eqV2(OMat).parquet
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:7521597cd3189c0a3cea18ae98d9310bfc6becd50fca5e6f2c97af5e69b2596d
+size 414251
diff --git a/benchmarks/wbm_ev/eqV2(OMat)_processed.parquet b/benchmarks/wbm_ev/eqV2(OMat)_processed.parquet
new file mode 100644
index 0000000000000000000000000000000000000000..8d9e3bda9c3d016535c3abd382a6605ccd7bf362
--- /dev/null
+++ b/benchmarks/wbm_ev/eqV2(OMat)_processed.parquet
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:cd43459abbcb6bf33b3dfecf131a6116d799f06aeb2b9e0a6c66e5d5db2ebdd6
+size 356817
diff --git a/benchmarks/wbm_ev/run.py b/benchmarks/wbm_ev/run.py
new file mode 100644
index 0000000000000000000000000000000000000000..36baa25e3d84888227d71a87a895e7a29b8d69e9
--- /dev/null
+++ b/benchmarks/wbm_ev/run.py
@@ -0,0 +1,163 @@
+from pathlib import Path
+
+import numpy as np
+import pandas as pd
+from ase.db import connect
+from dask.distributed import Client
+from dask_jobqueue import SLURMCluster
+from prefect import flow, task
+from prefect.runtime import task_run
+from prefect_dask import DaskTaskRunner
+from prefect.cache_policies import INPUTS, TASK_SOURCE
+
+from mlip_arena.models import REGISTRY, MLIPEnum
+from mlip_arena.tasks.utils import get_calculator
+
+
+@task
+def load_wbm_structures():
+ """
+ Load the WBM structures from an ASE database file.
+
+ Reads structures from 'wbm_structures.db' and yields them as ASE Atoms objects
+ with additional metadata preserved from the database.
+
+ Yields:
+ ase.Atoms: Individual atomic structures from the WBM database with preserved
+ metadata in the .info dictionary.
+ """
+ with connect("../wbm_structures.db") as db:
+ for row in db.select():
+ yield row.toatoms(add_additional_information=True)
+
+@task(
+ name="E-V Scan",
+ task_run_name=lambda: f"{task_run.task_name}: {task_run.parameters['atoms'].get_chemical_formula()} - {task_run.parameters['model'].name}",
+ cache_policy=TASK_SOURCE + INPUTS,
+)
+def ev_scan(atoms, model):
+ """
+ Perform an energy-volume scan for a given model and atomic structure.
+
+ This function applies uniaxial strain to the structure in all three dimensions,
+ maintaining the fractional coordinates of atoms, and computes the energy at each
+ deformation point using the specified model.
+
+ Args:
+ atoms: ASE atoms object containing the structure to analyze.
+ model: MLIPEnum model to use for the energy calculations.
+
+ Returns:
+ dict: Results dictionary containing:
+ - method (str): The name of the model used
+ - id (str): The WBM ID of the structure
+ - eos (dict): Energy of state data with:
+ - volumes (list): Volume of the unit cell at each strain point
+ - energies (list): Computed potential energy at each strain point
+
+ Note:
+ The strain range is fixed at ยฑ20% with 21 evenly spaced points.
+ Results are also saved as a JSON file in a directory named after the model.
+ """
+ calculator = get_calculator(
+ model
+ ) # avoid sending entire model over prefect and select freer GPU
+
+ wbm_id = atoms.info["key_value_pairs"]["wbm_id"]
+
+ c0 = atoms.get_cell()
+ max_abs_strain = 0.2
+ npoints = 21
+ volumes = []
+ energies = []
+ for uniaxial_strain in np.linspace(-max_abs_strain, max_abs_strain, npoints):
+ cloned = atoms.copy()
+ scale_factor = uniaxial_strain + 1
+ cloned.set_cell(c0 * scale_factor, scale_atoms=True)
+ cloned.calc = calculator
+ volumes.append(cloned.get_volume())
+ energies.append(cloned.get_potential_energy())
+
+ data = {
+ "method": model.name,
+ "id": wbm_id,
+ "eos": {
+ "volumes": volumes, "energies": energies
+ }
+ }
+
+ fpath = Path(f"{model.name}") / f"{wbm_id}.json"
+ fpath.parent.mkdir(exist_ok=True)
+
+ df = pd.DataFrame([data])
+ df.to_json(fpath)
+
+ return df
+
+
+@flow
+def submit_tasks():
+ """
+ Create and submit energy-volume scan tasks for subsampled WBM structures and applicable models.
+
+ This flow function:
+ 1. Loads all structures from the WBM database
+ 2. Iterates through available models in MLIPEnum
+ 3. Filters models based on their capability to handle the 'wbm_ev' GPU task
+ 4. Submits parallel ev_scan tasks for all valid (structure, model) combinations
+ 5. Collects and returns results from all tasks
+
+ Returns:
+ list: Results from all executed tasks (successful or failed)
+ """
+ futures = []
+ for atoms in load_wbm_structures():
+ for model in MLIPEnum:
+ if "wbm_ev" not in REGISTRY[model.name].get("gpu-tasks", []):
+ continue
+ try:
+ result = ev_scan.submit(atoms, model)
+ except Exception as e:
+ print(f"Failed to submit task for {model.name}: {e}")
+ continue
+ futures.append(result)
+ return [f.result(raise_on_failure=False) for f in futures]
+
+if __name__ == "__main__":
+ nodes_per_alloc = 1
+ gpus_per_alloc = 1
+ ntasks = 1
+
+ cluster_kwargs = dict(
+ cores=1,
+ memory="64 GB",
+ processes=1,
+ shebang="#!/bin/bash",
+ account="m3828",
+ walltime="00:30:00",
+ # job_mem="0",
+ job_script_prologue=[
+ "source ~/.bashrc",
+ "module load python",
+ "source activate /pscratch/sd/c/cyrusyc/.conda/mlip-arena",
+ ],
+ job_directives_skip=["-n", "--cpus-per-task", "-J"],
+ job_extra_directives=[
+ "-J wbm_ev",
+ "-q debug",
+ f"-N {nodes_per_alloc}",
+ "-C gpu",
+ f"-G {gpus_per_alloc}",
+ "--exclusive",
+ ],
+ )
+
+ cluster = SLURMCluster(**cluster_kwargs)
+ print(cluster.job_script())
+ cluster.adapt(minimum_jobs=2, maximum_jobs=2)
+ client = Client(cluster)
+
+ submit_tasks.with_options(
+ task_runner=DaskTaskRunner(address=client.scheduler.address),
+ log_prints=True,
+ )()
diff --git a/benchmarks/wbm_ev/summary.csv b/benchmarks/wbm_ev/summary.csv
new file mode 100644
index 0000000000000000000000000000000000000000..b71404c6d29423eef5b1932e81e6095929343b5c
--- /dev/null
+++ b/benchmarks/wbm_ev/summary.csv
@@ -0,0 +1,11 @@
+model,rank,rank-aggregation,energy-diff-flip-times,tortuosity,spearman-compression-energy,spearman-compression-derivative,spearman-tension-energy,missing
+eSEN,1,7,1.0,1.000402711291021,-0.9983393939393939,0.9999999999999999,0.9990454545454545,0
+MACE-MPA,2,14,1.0,1.000675741122765,-0.9983393939393939,0.9993090909090908,0.9987181818181818,0
+CHGNet,3,17,1.0,1.0006287770651048,-0.9982787878787878,0.9439636363636364,0.999090909090909,0
+MatterSim,4,24,1.009,1.000567338639546,-0.9980969696969696,0.9997090909090908,0.9937541835359507,0
+eqV2(OMat),5,27,1.035,1.0008346292192054,-0.9982060606060604,0.9972242424242423,0.9986454545454545,0
+M3GNet,6,29,1.002,1.0020010929112253,-0.9975878787878787,0.997442424242424,0.9964676571137886,0
+ORBv2,7,34,1.058,1.004064906459821,-0.9977696969696969,0.970751515151515,0.9976,0
+SevenNet,8,38,1.034,1.0100246177550205,-0.9951636363636364,0.9465575757575757,0.9947048195608054,0
+MACE-MP(M),9,40,1.121,1.0807128149289842,-0.9438060606060605,0.9011878787878788,0.9987454545454546,0
+ALIGNN,10,51,3.909,1.3756517739089669,-0.8892069391323368,0.7602706775644651,0.862085379002138,0
diff --git a/benchmarks/wbm_ev/summary.tex b/benchmarks/wbm_ev/summary.tex
new file mode 100644
index 0000000000000000000000000000000000000000..319047d96259572b129c9b0b9d2094231164dc65
--- /dev/null
+++ b/benchmarks/wbm_ev/summary.tex
@@ -0,0 +1,16 @@
+\begin{tabular}{lrrrrrrrl}
+\toprule
+model & rank & rank-aggregation & energy-diff-flip-times & tortuosity & spearman-compression-energy & spearman-compression-derivative & spearman-tension-energy & missing \\
+\midrule
+eSEN & 1 & 7 & 1.000000 & 1.000403 & -0.998339 & 1.000000 & 0.999045 & 0 \\
+MACE-MPA & 2 & 14 & 1.000000 & 1.000676 & -0.998339 & 0.999309 & 0.998718 & 0 \\
+CHGNet & 3 & 17 & 1.000000 & 1.000629 & -0.998279 & 0.943964 & 0.999091 & 0 \\
+MatterSim & 4 & 24 & 1.009000 & 1.000567 & -0.998097 & 0.999709 & 0.993754 & 0 \\
+eqV2(OMat) & 5 & 27 & 1.035000 & 1.000835 & -0.998206 & 0.997224 & 0.998645 & 0 \\
+M3GNet & 6 & 29 & 1.002000 & 1.002001 & -0.997588 & 0.997442 & 0.996468 & 0 \\
+ORBv2 & 7 & 34 & 1.058000 & 1.004065 & -0.997770 & 0.970752 & 0.997600 & 0 \\
+SevenNet & 8 & 38 & 1.034000 & 1.010025 & -0.995164 & 0.946558 & 0.994705 & 0 \\
+MACE-MP(M) & 9 & 40 & 1.121000 & 1.080713 & -0.943806 & 0.901188 & 0.998745 & 0 \\
+ALIGNN & 10 & 51 & 3.909000 & 1.375652 & -0.889207 & 0.760271 & 0.862085 & 0 \\
+\bottomrule
+\end{tabular}
diff --git a/benchmarks/wbm_structures.db b/benchmarks/wbm_structures.db
new file mode 100644
index 0000000000000000000000000000000000000000..e1f15c8aa5b8d8fd27b2a9b9ce833deed609f476
--- /dev/null
+++ b/benchmarks/wbm_structures.db
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:cc387c7787c21e7ff2ab80d5428c60b9e817c9b37f53e03c0f5e5e72dc44fe88
+size 782336
diff --git a/mlip_arena/__init__.py b/mlip_arena/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..4f4ccde16b3b106b00f8e7824bc351b81314c603
--- /dev/null
+++ b/mlip_arena/__init__.py
@@ -0,0 +1,3 @@
+from pathlib import Path
+
+PKG_DIR = Path(__file__).parent
diff --git a/mlip_arena/data/__init__.py b/mlip_arena/data/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/mlip_arena/data/collate.py b/mlip_arena/data/collate.py
new file mode 100644
index 0000000000000000000000000000000000000000..484cbacd79ce599170f4b5bfff96dc53f8c1dd92
--- /dev/null
+++ b/mlip_arena/data/collate.py
@@ -0,0 +1,201 @@
+import numpy as np
+import torch
+
+# TODO: consider using vesin
+from matscipy.neighbours import neighbour_list
+from torch_geometric.data import Data
+
+from ase import Atoms
+from ase.calculators.singlepoint import SinglePointCalculator
+
+
+def get_neighbor(
+ atoms: Atoms, cutoff: float, self_interaction: bool = False
+):
+ pbc = atoms.pbc
+ cell = atoms.cell.array
+
+ i, j, S = neighbour_list(
+ quantities="ijS",
+ pbc=pbc,
+ cell=cell,
+ positions=atoms.positions,
+ cutoff=cutoff
+ )
+
+ if not self_interaction:
+ # Eliminate self-edges that don't cross periodic boundaries
+ true_self_edge = i == j
+ true_self_edge &= np.all(S == 0, axis=1)
+ keep_edge = ~true_self_edge
+
+ i = i[keep_edge]
+ j = j[keep_edge]
+ S = S[keep_edge]
+
+ edge_index = np.stack((i, j)).astype(np.int64)
+ edge_shift = np.dot(S, cell)
+
+ return edge_index, edge_shift
+
+
+
+def collate_fn(batch: list[Atoms], cutoff: float) -> Data:
+ """Collate a list of Atoms objects into a single batched Atoms object."""
+
+ # Offset the edge indices for each graph to ensure they remain disconnected
+ offset = 0
+
+ node_batch = []
+
+ numbers_batch = []
+ positions_batch = []
+ # ec_batch = []
+
+ forces_batch = []
+ charges_batch = []
+ magmoms_batch = []
+ dipoles_batch = []
+
+ edge_index_batch = []
+ edge_shift_batch = []
+
+ cell_batch = []
+ natoms_batch = []
+
+ energy_batch = []
+ stress_batch = []
+
+ for i, atoms in enumerate(batch):
+
+ edge_index, edge_shift = get_neighbor(atoms, cutoff=cutoff, self_interaction=False)
+
+ edge_index[0] += offset
+ edge_index[1] += offset
+ edge_index_batch.append(torch.tensor(edge_index))
+ edge_shift_batch.append(torch.tensor(edge_shift))
+
+ natoms = len(atoms)
+ offset += natoms
+ node_batch.append(torch.ones(natoms, dtype=torch.long) * i)
+ natoms_batch.append(natoms)
+
+ cell_batch.append(torch.tensor(atoms.cell.array))
+ numbers_batch.append(torch.tensor(atoms.numbers))
+ positions_batch.append(torch.tensor(atoms.positions))
+
+ # ec_batch.append([Atom(int(a)).elecronic_encoding for a in atoms.numbers])
+
+ charges_batch.append(
+ atoms.get_initial_charges()
+ if atoms.get_initial_charges().any()
+ else torch.full((natoms,), torch.nan)
+ )
+ magmoms_batch.append(
+ atoms.get_initial_magnetic_moments()
+ if atoms.get_initial_magnetic_moments().any()
+ else torch.full((natoms,), torch.nan)
+ )
+
+ # Create the new 'arrays' data for the batch
+
+ cell_batch = torch.stack(cell_batch, dim=0)
+ node_batch = torch.cat(node_batch, dim=0)
+ positions_batch = torch.cat(positions_batch, dim=0)
+ numbers_batch = torch.cat(numbers_batch, dim=0)
+ natoms_batch = torch.tensor(natoms_batch, dtype=torch.long)
+
+ charges_batch = torch.cat(charges_batch, dim=0) if charges_batch else None
+ magmoms_batch = torch.cat(magmoms_batch, dim=0) if magmoms_batch else None
+
+ # ec_batch = list(map(lambda a: Atom(int(a)).elecronic_encoding, numbers_batch))
+ # ec_batch = torch.stack(ec_batch, dim=0)
+
+ edge_index_batch = torch.cat(edge_index_batch, dim=1)
+ edge_shift_batch = torch.cat(edge_shift_batch, dim=0)
+
+ arrays_batch_concatenated = {
+ "cell": cell_batch,
+ "positions": positions_batch,
+ "edge_index": edge_index_batch,
+ "edge_shift": edge_shift_batch,
+ "numbers": numbers_batch,
+ "num_nodes": offset,
+ "batch": node_batch,
+ "charges": charges_batch,
+ "magmoms": magmoms_batch,
+ # "ec": ec_batch,
+ "natoms": natoms_batch,
+ "cutoff": torch.tensor(cutoff),
+ }
+
+ # TODO: custom fields
+
+ # Create a new Data object with the concatenated arrays data
+ batch_data = Data.from_dict(arrays_batch_concatenated)
+
+ return batch_data
+
+
+def decollate_fn(batch_data: Data) -> list[Atoms]:
+ """Decollate a batched Data object into a list of individual Atoms objects."""
+
+ # FIXME: this function is not working properly when the batch_data is on GPU.
+ # TODO: create a new Cell class using torch tensor to handle device placement.
+ # As a temporary fix, detach the batch_data from the GPU and move it to CPU.
+ batch_data = batch_data.detach().cpu()
+
+ # Initialize empty lists to store individual data entries
+ individual_entries = []
+
+ # Split the 'batch' attribute to identify data entries
+ unique_batches = batch_data.batch.unique(sorted=True)
+
+ for i in unique_batches:
+ # Identify the indices corresponding to the current data entry
+ entry_indices = (batch_data.batch == i).nonzero(as_tuple=True)[0]
+
+ # Extract the attributes for the current data entry
+ cell = batch_data.cell[i]
+ numbers = batch_data.numbers[entry_indices]
+ positions = batch_data.positions[entry_indices]
+ # edge_index = batch_data.edge_index[:, entry_indices]
+ # edge_shift = batch_data.edge_shift[entry_indices]
+ # batch_data.ec[entry_indices] if batch_data.ec is not None else None
+
+ # Optional fields
+ energy = batch_data.energy[i] if "energy" in batch_data else None
+ forces = batch_data.forces[entry_indices] if "forces" in batch_data else None
+ stress = batch_data.stress[i] if "stress" in batch_data else None
+
+ # charges = batch_data.charges[entry_indices] if "charges" in batch_data else None
+ # magmoms = batch_data.magmoms[entry_indices] if "magmoms" in batch_data else None
+ # dipoles = batch_data.dipoles[entry_indices] if "dipoles" in batch_data else None
+
+ # TODO: cumstom fields
+
+ # Create an 'Atoms' object for the current data entry
+ atoms = Atoms(
+ cell=cell,
+ positions=positions,
+ numbers=numbers,
+ # forces=None if torch.any(torch.isnan(forces)) else forces,
+ # charges=None if torch.any(torch.isnan(charges)) else charges,
+ # magmoms=None if torch.any(torch.isnan(magmoms)) else magmoms,
+ # dipoles=None if torch.any(torch.isnan(dipoles)) else dipoles,
+ # energy=None if torch.isnan(energy) else energy,
+ # stress=None if torch.any(torch.isnan(stress)) else stress,
+ )
+
+ atoms.calc = SinglePointCalculator(
+ energy=energy,
+ forces=forces,
+ stress=stress,
+ # charges=charges,
+ # magmoms=magmoms,
+ ) # type: ignore
+
+ # Append the individual data entry to the list
+ individual_entries.append(atoms)
+
+ return individual_entries
diff --git a/mlip_arena/data/local.py b/mlip_arena/data/local.py
new file mode 100644
index 0000000000000000000000000000000000000000..9d890e43541bbac154477aa7d61fe7e2784dcdb0
--- /dev/null
+++ b/mlip_arena/data/local.py
@@ -0,0 +1,25 @@
+import os
+import time
+
+from pandas import HDFStore
+
+# https://stackoverflow.com/questions/22522551/pandas-hdf5-as-a-database/29014295#29014295
+
+
+class SafeHDFStore(HDFStore):
+ def __init__(self, *args, **kwargs):
+ probe_interval = kwargs.pop("probe_interval", 1)
+ self._lock = "%s.lock" % args[0]
+ while True:
+ try:
+ self._flock = os.open(self._lock, os.O_CREAT | os.O_EXCL | os.O_WRONLY)
+ break
+ except FileExistsError:
+ time.sleep(probe_interval)
+
+ HDFStore.__init__(self, *args, **kwargs)
+
+ def __exit__(self, *args, **kwargs):
+ HDFStore.__exit__(self, *args, **kwargs)
+ os.close(self._flock)
+ os.remove(self._lock)
diff --git a/mlip_arena/jobs/__init__.py b/mlip_arena/jobs/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..09d56bd40f161ce2e9bf651a77eebf5581766210
--- /dev/null
+++ b/mlip_arena/jobs/__init__.py
@@ -0,0 +1,38 @@
+
+import enum
+
+from mlip_arena.models import MLIP
+from mlip_arena.tasks import Task
+
+
+class Machine(enum.Enum):
+ """Enum class for machine"""
+ HFCPU = "Hugging Face CPU Basic"
+ PERLCPU = "NERSC Perlmutter CPU"
+ PERLA100 = "NERSC Perlmutter A100 40GB"
+ PERLA100L = "NERSC Perlmutter A100 80GB"
+
+class Job:
+ def __init__(self, model: MLIP, task: Task, machine: Machine, **kwargs):
+ self.calculator = model
+ self.task = task
+ self.machine = machine
+ self.kwargs = kwargs
+
+ def __str__(self):
+ return f"Job: {self.task.name} on {self.machine.value}"
+
+ def run(self):
+ if self.machine == Machine.HFCPU:
+ print(f"Running {self.name} on {self.machine.value}")
+ "run the task on Hugging Face CPU Basic"
+ raise NotImplementedError
+ elif self.machine == Machine.PERLCPU:
+ print(f"Running {self.name} on {self.machine.value}")
+ "send the task to NERSC Perlmutter CPU node and listen for the results"
+ raise NotImplementedError
+ elif self.machine == Machine.PERLA100:
+ print(f"Running {self.name} on {self.machine.value}")
+ "send the task to NERSC Perlmutter GPU node and listen for the results"
+ raise NotImplementedError
+
\ No newline at end of file
diff --git a/mlip_arena/jobs/run.py b/mlip_arena/jobs/run.py
new file mode 100644
index 0000000000000000000000000000000000000000..6cf3c4600ba55b1f46e7e7e7d9fd5f46cd2bd07b
--- /dev/null
+++ b/mlip_arena/jobs/run.py
@@ -0,0 +1,13 @@
+import importlib
+
+from mlip_arena.models import REGISTRY as MODEL_REGISTRY
+from mlip_arena.tasks import REGISTRY as TASK_REGISTRY
+
+print(MODEL_REGISTRY)
+print(TASK_REGISTRY)
+
+for task, metadata in TASK_REGISTRY.items():
+
+ print(f"mlip_arena.tasks.{task}")
+ module = importlib.import_module(f"mlip_arena.tasks.{task}")
+ module.whoami()
\ No newline at end of file
diff --git a/mlip_arena/models/README.md b/mlip_arena/models/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..a338026c81874fd524da2908e064b616ff88c722
--- /dev/null
+++ b/mlip_arena/models/README.md
@@ -0,0 +1,9 @@
+
+
+## Note on model registration
+
+1. Use `ast` to parse model classes from the uploaded script.
+2. Add the classes and their supported tasks to the model registry file `registry.yaml`.
+3. Run tests on HF Space to ensure the model is working as expected.
+4. [Push files to the Hub](https://huggingface.co/docs/huggingface_hub/guides/upload) and sync with github repository.
+5. Use [HF webhook](https://huggingface.co/docs/hub/en/webhooks) to check the status of benchmark tasks (pass, fail, null), run unfinisehd tasks and visualize the results on leaderboard. [[guide]](https://huggingface.co/docs/hub/en/webhooks-guide-metadata-review)
\ No newline at end of file
diff --git a/mlip_arena/models/__init__.py b/mlip_arena/models/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..775899e98efcb12efe99a0163f358d2acdb0c7dd
--- /dev/null
+++ b/mlip_arena/models/__init__.py
@@ -0,0 +1,171 @@
+from __future__ import annotations
+
+import importlib
+from enum import Enum
+from pathlib import Path
+from typing import Dict, Optional, Type, TypeVar, Union
+
+T = TypeVar("T", bound="MLIP")
+
+import torch
+import yaml
+from ase import Atoms
+from ase.calculators.calculator import Calculator, all_changes
+from huggingface_hub import PyTorchModelHubMixin
+from torch import nn
+from typing_extensions import Self
+
+try:
+ from mlip_arena.data.collate import collate_fn
+except ImportError:
+ # Fallback to a dummy function if the import fails
+ def collate_fn(batch: list[Atoms], cutoff: float) -> None:
+ raise ImportError(
+ "collate_fn import failed. Please install the required dependencies."
+ )
+
+try:
+ from prefect.logging import get_run_logger
+
+ logger = get_run_logger()
+except (ImportError, RuntimeError):
+ from loguru import logger
+
+with open(Path(__file__).parent / "registry.yaml", encoding="utf-8") as f:
+ REGISTRY = yaml.safe_load(f)
+
+MLIPMap = {}
+
+for model, metadata in REGISTRY.items():
+ try:
+ module = importlib.import_module(
+ f"{__package__}.{metadata['module']}.{metadata['family']}"
+ )
+ MLIPMap[model] = getattr(module, metadata["class"])
+ except (ModuleNotFoundError, AttributeError, ValueError, ImportError, Exception) as e:
+ logger.warning(e)
+ continue
+
+MLIPEnum = Enum("MLIPEnum", MLIPMap)
+
+
+class MLIP(
+ nn.Module,
+ PyTorchModelHubMixin,
+ tags=["atomistic-simulation", "MLIP"],
+):
+ def __init__(self, model: nn.Module) -> None:
+ super().__init__()
+ # https://github.com/pytorch/pytorch/blob/3cbc8c54fd37eb590e2a9206aecf3ab568b3e63c/torch/_dynamo/config.py#L534
+ # torch._dynamo.config.compiled_autograd = True
+ # self.model = torch.compile(model)
+ self.model = model
+
+ def _save_pretrained(self, save_directory: Path) -> None:
+ return super()._save_pretrained(save_directory)
+
+ @classmethod
+ def from_pretrained(
+ cls,
+ pretrained_model_name_or_path: str | Path,
+ *,
+ force_download: bool = False,
+ resume_download: bool | None = None,
+ proxies: dict | None = None,
+ token: str | bool | None = None,
+ cache_dir: str | Path | None = None,
+ local_files_only: bool = False,
+ revision: str | None = None,
+ **model_kwargs,
+ ) -> Self:
+ return super().from_pretrained(
+ pretrained_model_name_or_path,
+ force_download=force_download,
+ resume_download=resume_download,
+ proxies=proxies,
+ token=token,
+ cache_dir=cache_dir,
+ local_files_only=local_files_only,
+ revision=revision,
+ **model_kwargs,
+ )
+
+ def forward(self, x):
+ return self.model(x)
+
+
+class MLIPCalculator(MLIP, Calculator):
+ name: str
+ implemented_properties: list[str] = ["energy", "forces", "stress"]
+
+ def __init__(
+ self,
+ model: nn.Module,
+ device: torch.device | None = None,
+ cutoff: float = 6.0,
+ # ASE Calculator
+ restart=None,
+ atoms=None,
+ directory=".",
+ calculator_kwargs: dict = {},
+ ):
+ MLIP.__init__(self, model=model) # Initialize MLIP part
+ Calculator.__init__(
+ self, restart=restart, atoms=atoms, directory=directory, **calculator_kwargs
+ ) # Initialize ASE Calculator part
+ # Additional initialization if needed
+ # self.name: str = self.__class__.__name__
+ from mlip_arena.models.utils import get_freer_device
+
+ self.device = device or get_freer_device()
+ self.cutoff = cutoff
+ self.model.to(self.device)
+ # self.device = device or torch.device(
+ # "cuda" if torch.cuda.is_available() else "cpu"
+ # )
+ # self.model: MLIP = MLIP.from_pretrained(model_path, map_location=self.device)
+ # self.implemented_properties = ["energy", "forces", "stress"]
+
+ # def __getstate__(self):
+ # state = self.__dict__.copy()
+ # state["_modules"]["model"] = state["_modules"]["model"]._orig_mod
+ # return state
+
+ # def __setstate__(self, state):
+ # self.__dict__.update(state)
+ # self.model = torch.compile(state["_modules"]["model"])
+
+ def calculate(
+ self,
+ atoms: Atoms,
+ properties: list[str],
+ system_changes: list = all_changes,
+ ):
+ """Calculate energies and forces for the given Atoms object"""
+ super().calculate(atoms, properties, system_changes)
+
+ # TODO: move collate_fn to here in MLIPCalculator
+ data = collate_fn([atoms], cutoff=self.cutoff).to(self.device)
+ output = self.forward(data)
+
+ # TODO: decollate_fn
+
+ self.results = {}
+ if "energy" in properties:
+ self.results["energy"] = output["energy"].squeeze().item()
+ if "forces" in properties:
+ self.results["forces"] = output["forces"].squeeze().cpu().detach().numpy()
+ if "stress" in properties:
+ self.results["stress"] = output["stress"].squeeze().cpu().detach().numpy()
+
+ # def forward(self, x: Atoms) -> dict[str, torch.Tensor]:
+ # """Implement data conversion, graph creation, and model forward pass
+
+ # Example implementation:
+ # 1. Use `ase.neighborlist.NeighborList` to get neighbor list
+ # 2. Create `torch_geometric.data.Data` object and copy the data
+ # 3. Pass the `Data` object to the model and return the output
+
+ # """
+
+ # raise NotImplementedError
diff --git a/mlip_arena/models/classicals/__init__.py b/mlip_arena/models/classicals/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/mlip_arena/models/classicals/zbl.py b/mlip_arena/models/classicals/zbl.py
new file mode 100644
index 0000000000000000000000000000000000000000..5821539f1565fa0506957fe7b9fb2351954d9d0a
--- /dev/null
+++ b/mlip_arena/models/classicals/zbl.py
@@ -0,0 +1,214 @@
+import torch
+import torch.linalg as LA
+import torch.nn as nn
+import torch_scatter
+from torch_geometric.data import Data
+
+from ase.data import covalent_radii
+from ase.units import _e, _eps0, m, pi
+from e3nn.util.jit import compile_mode # TODO: e3nn allows autograd in compiled model
+
+
+@compile_mode("script")
+class ZBL(nn.Module):
+ """Ziegler-Biersack-Littmark (ZBL) screened nuclear repulsion"""
+
+ def __init__(
+ self,
+ trianable: bool = False,
+ **kwargs,
+ ) -> None:
+ nn.Module.__init__(self, **kwargs)
+
+ torch.set_default_dtype(torch.double)
+
+ self.a = torch.nn.parameter.Parameter(
+ torch.tensor(
+ [0.18175, 0.50986, 0.28022, 0.02817], dtype=torch.get_default_dtype()
+ ),
+ requires_grad=trianable,
+ )
+ self.b = torch.nn.parameter.Parameter(
+ torch.tensor(
+ [-3.19980, -0.94229, -0.40290, -0.20162],
+ dtype=torch.get_default_dtype(),
+ ),
+ requires_grad=trianable,
+ )
+
+ self.a0 = torch.nn.parameter.Parameter(
+ torch.tensor(0.46850, dtype=torch.get_default_dtype()),
+ requires_grad=trianable,
+ )
+
+ self.p = torch.nn.parameter.Parameter(
+ torch.tensor(0.23, dtype=torch.get_default_dtype()), requires_grad=trianable
+ )
+
+ self.register_buffer(
+ "covalent_radii",
+ torch.tensor(
+ covalent_radii,
+ dtype=torch.get_default_dtype(),
+ ),
+ )
+
+ def phi(self, x):
+ return torch.einsum("i,ij->j", self.a, torch.exp(torch.outer(self.b, x)))
+
+ def d_phi(self, x):
+ return torch.einsum(
+ "i,ij->j", self.a * self.b, torch.exp(torch.outer(self.b, x))
+ )
+
+ def dd_phi(self, x):
+ return torch.einsum(
+ "i,ij->j", self.a * self.b**2, torch.exp(torch.outer(self.b, x))
+ )
+
+ def eij(
+ self, zi: torch.Tensor, zj: torch.Tensor, rij: torch.Tensor
+ ) -> torch.Tensor: # [eV]
+ return _e * m / (4 * pi * _eps0) * torch.div(torch.mul(zi, zj), rij)
+
+ def d_eij(
+ self, zi: torch.Tensor, zj: torch.Tensor, rij: torch.Tensor
+ ) -> torch.Tensor: # [eV / A]
+ return -_e * m / (4 * pi * _eps0) * torch.div(torch.mul(zi, zj), rij**2)
+
+ def dd_eij(
+ self, zi: torch.Tensor, zj: torch.Tensor, rij: torch.Tensor
+ ) -> torch.Tensor: # [eV / A^2]
+ return _e * m / (2 * pi * _eps0) * torch.div(torch.mul(zi, zj), rij**3)
+
+ def switch_fn(
+ self,
+ zi: torch.Tensor,
+ zj: torch.Tensor,
+ rij: torch.Tensor,
+ aij: torch.Tensor,
+ router: torch.Tensor,
+ rinner: torch.Tensor,
+ ) -> torch.Tensor: # [eV]
+ # aij = self.a0 / (torch.pow(zi, self.p) + torch.pow(zj, self.p))
+
+ xrouter = router / aij
+
+ energy = self.eij(zi, zj, router) * self.phi(xrouter)
+
+ grad1 = self.d_eij(zi, zj, router) * self.phi(xrouter) + self.eij(
+ zi, zj, router
+ ) * self.d_phi(xrouter)
+
+ grad2 = (
+ self.dd_eij(zi, zj, router) * self.phi(xrouter)
+ + self.d_eij(zi, zj, router) * self.d_phi(xrouter)
+ + self.d_eij(zi, zj, router) * self.d_phi(xrouter)
+ + self.eij(zi, zj, router) * self.dd_phi(xrouter)
+ )
+
+ A = (-3 * grad1 + (router - rinner) * grad2) / (router - rinner) ** 2
+ B = (2 * grad1 - (router - rinner) * grad2) / (router - rinner) ** 3
+ C = (
+ -energy
+ + 1.0 / 2.0 * (router - rinner) * grad1
+ - 1.0 / 12.0 * (router - rinner) ** 2 * grad2
+ )
+
+ switching = torch.where(
+ rij < rinner,
+ C,
+ A / 3.0 * (rij - rinner) ** 3 + B / 4.0 * (rij - rinner) ** 4 + C,
+ )
+
+ return switching
+
+ def envelope(self, r: torch.Tensor, rc: torch.Tensor, p: int = 6):
+ x = r / rc
+ y = (
+ 1.0
+ - ((p + 1.0) * (p + 2.0) / 2.0) * torch.pow(x, p)
+ + p * (p + 2.0) * torch.pow(x, p + 1)
+ - (p * (p + 1.0) / 2) * torch.pow(x, p + 2)
+ ) * (x < 1)
+ return y
+
+ def _get_derivatives(self, energy: torch.Tensor, data: Data):
+ egradi, egradij = torch.autograd.grad(
+ outputs=[energy], # TODO: generalized derivatives
+ inputs=[data.positions, data.vij], # TODO: generalized derivatives
+ grad_outputs=[torch.ones_like(energy)],
+ retain_graph=True,
+ create_graph=True,
+ allow_unused=True,
+ )
+
+ volume = torch.det(data.cell) # (batch,)
+ rfaxy = torch.einsum("ax,ay->axy", data.vij, -egradij)
+
+ edge_batch = data.batch[data.edge_index[0]]
+
+ stress = (
+ -0.5
+ * torch_scatter.scatter_sum(rfaxy, edge_batch, dim=0)
+ / volume.view(-1, 1)
+ )
+
+ return -egradi, stress
+
+ def forward(
+ self,
+ data: Data,
+ ) -> dict[str, torch.Tensor]:
+ # TODO: generalized derivatives
+ data.positions.requires_grad_(True)
+
+ numbers = data.numbers # (sum(N), )
+ positions = data.positions # (sum(N), 3)
+ edge_index = data.edge_index # (2, sum(E))
+ edge_shift = data.edge_shift # (sum(E), 3)
+ batch = data.batch # (sum(N), )
+
+ edge_src, edge_dst = edge_index[0], edge_index[1]
+
+ if "rij" not in data or "vij" not in data:
+ data.vij = positions[edge_dst] - positions[edge_src] + edge_shift
+ data.rij = LA.norm(data.vij, dim=-1)
+
+ rbond = (
+ self.covalent_radii[numbers[edge_src]]
+ + self.covalent_radii[numbers[edge_dst]]
+ )
+
+ rij = data.rij
+ zi = numbers[edge_src] # (sum(E), )
+ zj = numbers[edge_dst] # (sum(E), )
+
+ aij = self.a0 / (torch.pow(zi, self.p) + torch.pow(zj, self.p)) # (sum(E), )
+
+ energy_pairs = (
+ self.eij(zi, zj, rij)
+ * self.phi(rij / aij.to(rij))
+ * self.envelope(rij, torch.min(data.cutoff, rbond))
+ )
+
+ energy_nodes = 0.5 * torch_scatter.scatter_add(
+ src=energy_pairs,
+ index=edge_dst,
+ dim=0,
+ ) # (sum(N), )
+
+ energies = torch_scatter.scatter_add(
+ src=energy_nodes,
+ index=batch,
+ dim=0,
+ ) # (B, )
+
+ # TODO: generalized derivatives
+ forces, stress = self._get_derivatives(energies, data)
+
+ return {
+ "energy": energies,
+ "forces": forces,
+ "stress": stress,
+ }
diff --git a/mlip_arena/models/externals/__init__.py b/mlip_arena/models/externals/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/mlip_arena/models/externals/alignn.py b/mlip_arena/models/externals/alignn.py
new file mode 100644
index 0000000000000000000000000000000000000000..5741587d043a00de668b69d4980dff5a1b0d41f1
--- /dev/null
+++ b/mlip_arena/models/externals/alignn.py
@@ -0,0 +1,15 @@
+from __future__ import annotations
+
+from alignn.ff.ff import AlignnAtomwiseCalculator, default_path
+
+from mlip_arena.models.utils import get_freer_device
+
+
+class ALIGNN(AlignnAtomwiseCalculator):
+ def __init__(self, device=None, **kwargs) -> None:
+ # TODO: cannot control version
+ # _ = get_figshare_model_ff(dir_path=dir_path)
+ model_path = default_path()
+
+ device = device or get_freer_device()
+ super().__init__(path=model_path, device=device, **kwargs)
diff --git a/mlip_arena/models/externals/ani.py b/mlip_arena/models/externals/ani.py
new file mode 100644
index 0000000000000000000000000000000000000000..31da73c17214daa395c9ff67f186353c031adbc3
--- /dev/null
+++ b/mlip_arena/models/externals/ani.py
@@ -0,0 +1,39 @@
+from __future__ import annotations
+
+import yaml
+from pathlib import Path
+
+from ase.calculators.calculator import all_changes
+from torchani.ase import Calculator as ANICalculator
+from torchani.models import BuiltinEnsemble
+
+from mlip_arena.models.utils import get_freer_device
+
+
+
+with open(Path(__file__).parents[1] / "registry.yaml", encoding="utf-8") as f:
+ REGISTRY = yaml.safe_load(f)
+
+
+class ANI2x(ANICalculator):
+ def __init__(
+ self,
+ checkpoint=REGISTRY["ANI2x"]["checkpoint"],
+ device: str | None = None,
+ periodic_table_index=False,
+ **kwargs,
+ ):
+ self.device = device or str(get_freer_device())
+
+ ensemble = BuiltinEnsemble._from_neurochem_resources(
+ checkpoint, periodic_table_index
+ )
+ # TODO: ANICalculator does not offer API to change device
+ # ensemble.species.device = self.device
+ super().__init__(ensemble.species, ensemble, **kwargs)
+
+
+ def calculate(
+ self, atoms=None, properties=['energy', 'forces', 'stress'], system_changes=all_changes
+ ):
+ super().calculate(atoms, properties, system_changes)
diff --git a/mlip_arena/models/externals/chgnet.py b/mlip_arena/models/externals/chgnet.py
new file mode 100644
index 0000000000000000000000000000000000000000..dac62185718c32de0a32b5184f882d19c8419b99
--- /dev/null
+++ b/mlip_arena/models/externals/chgnet.py
@@ -0,0 +1,39 @@
+from __future__ import annotations
+
+from typing import Literal
+
+from ase import Atoms
+from chgnet.model.dynamics import CHGNetCalculator
+from chgnet.model.model import CHGNet as CHGNetModel
+
+from mlip_arena.models.utils import get_freer_device
+
+
+class CHGNet(CHGNetCalculator):
+ def __init__(
+ self,
+ checkpoint: CHGNetModel | None = None, # TODO: specifiy version
+ device: str | None = None,
+ stress_weight: float | None = 1 / 160.21766208,
+ on_isolated_atoms: Literal["ignore", "warn", "error"] = "warn",
+ **kwargs,
+ ) -> None:
+ use_device = str(device or get_freer_device())
+ super().__init__(
+ model=checkpoint,
+ use_device=use_device,
+ stress_weight=stress_weight,
+ on_isolated_atoms=on_isolated_atoms,
+ **kwargs,
+ )
+
+ def calculate(
+ self,
+ atoms: Atoms | None = None,
+ properties: list | None = None,
+ system_changes: list | None = None,
+ ) -> None:
+ super().calculate(atoms, properties, system_changes)
+
+ # for ase.io.write compatibility
+ self.results.pop("crystal_fea", None)
diff --git a/mlip_arena/models/externals/deepmd.py b/mlip_arena/models/externals/deepmd.py
new file mode 100644
index 0000000000000000000000000000000000000000..5c5a4e4d96807ec7f09a48db8033ec5fd69bc6c8
--- /dev/null
+++ b/mlip_arena/models/externals/deepmd.py
@@ -0,0 +1,47 @@
+from __future__ import annotations
+
+from pathlib import Path
+
+import yaml
+import requests
+from deepmd.calculator import DP as DPCalculator
+
+from mlip_arena.models.utils import get_freer_device
+
+with open(Path(__file__).parents[1] / "registry.yaml", encoding="utf-8") as f:
+ REGISTRY = yaml.safe_load(f)
+
+class DeepMD(DPCalculator):
+ def __init__(
+ self,
+ checkpoint=REGISTRY["DeepMD"]["checkpoint"],
+ device=None,
+ **kwargs,
+ ):
+ device = device or get_freer_device()
+
+ cache_dir = Path.home() / ".cache" / "deepmd"
+ cache_dir.mkdir(parents=True, exist_ok=True)
+ model_path = cache_dir / checkpoint
+
+ url = "https://bohrium-api.dp.tech/ds-dl/mlip-arena-tfpk-v1.zip"
+
+ if not model_path.exists():
+ import zipfile
+
+ print(f"Downloading DeepMD model from {url} to {model_path}...")
+ try:
+ response = requests.get(url, stream=True, timeout=120)
+ response.raise_for_status()
+ with open(cache_dir/"temp.zip", "wb") as f:
+ for chunk in response.iter_content(chunk_size=8192):
+ f.write(chunk)
+ print("Download completed.")
+ with zipfile.ZipFile(cache_dir/"temp.zip", "r") as zip_ref:
+ zip_ref.extractall(cache_dir)
+ print("Unzip completed.")
+ except requests.exceptions.RequestException as e:
+ raise RuntimeError("Failed to download DeepMD model.") from e
+
+
+ super().__init__(model_path, device=device, **kwargs)
\ No newline at end of file
diff --git a/mlip_arena/models/externals/equiformer.py b/mlip_arena/models/externals/equiformer.py
new file mode 100644
index 0000000000000000000000000000000000000000..c023b9f278bd66741e6683014944248e5861a190
--- /dev/null
+++ b/mlip_arena/models/externals/equiformer.py
@@ -0,0 +1,56 @@
+from __future__ import annotations
+
+from pathlib import Path
+
+import yaml
+from ase import Atoms
+from fairchem.core import OCPCalculator
+
+with open(Path(__file__).parents[1] / "registry.yaml", encoding="utf-8") as f:
+ REGISTRY = yaml.safe_load(f)
+
+
+class EquiformerV2(OCPCalculator):
+ def __init__(
+ self,
+ checkpoint=REGISTRY["EquiformerV2(OC22)"]["checkpoint"],
+ # TODO: cannot assign device
+ local_cache="/tmp/ocp/",
+ cpu=False,
+ seed=0,
+ **kwargs,
+ ) -> None:
+ kwargs.pop("device", None)
+ super().__init__(
+ model_name=checkpoint,
+ local_cache=local_cache,
+ cpu=cpu,
+ seed=seed,
+ **kwargs,
+ )
+
+ def calculate(self, atoms: Atoms, properties, system_changes) -> None:
+ super().calculate(atoms, properties, system_changes)
+
+ self.results.update(
+ force=atoms.get_forces(),
+ )
+
+
+class EquiformerV2OC20(OCPCalculator):
+ def __init__(
+ self,
+ checkpoint=REGISTRY["EquiformerV2(OC22)"]["checkpoint"],
+ # TODO: cannot assign device
+ local_cache="/tmp/ocp/",
+ cpu=False,
+ seed=0,
+ **kwargs,
+ ) -> None:
+ super().__init__(
+ model_name=checkpoint,
+ local_cache=local_cache,
+ cpu=cpu,
+ seed=seed,
+ **kwargs,
+ )
\ No newline at end of file
diff --git a/mlip_arena/models/externals/escn.py b/mlip_arena/models/externals/escn.py
new file mode 100644
index 0000000000000000000000000000000000000000..7aa8390f90c126078b48b12dc9437a02d75285b7
--- /dev/null
+++ b/mlip_arena/models/externals/escn.py
@@ -0,0 +1,36 @@
+from __future__ import annotations
+
+from pathlib import Path
+
+import yaml
+from ase import Atoms
+from fairchem.core import OCPCalculator
+
+with open(Path(__file__).parents[1] / "registry.yaml", encoding="utf-8") as f:
+ REGISTRY = yaml.safe_load(f)
+
+class eSCN(OCPCalculator):
+ def __init__(
+ self,
+ checkpoint=REGISTRY["eSCN(OC20)"]["checkpoint"], # "eSCN-L6-M3-Lay20-S2EF-OC20-All+MD"
+ # TODO: cannot assign device
+ local_cache="/tmp/ocp/",
+ cpu=False,
+ seed=0,
+ **kwargs,
+ ) -> None:
+ kwargs.pop("device", None)
+ super().__init__(
+ model_name=checkpoint,
+ local_cache=local_cache,
+ cpu=cpu,
+ seed=seed,
+ **kwargs,
+ )
+
+ def calculate(self, atoms: Atoms, properties, system_changes) -> None:
+ super().calculate(atoms, properties, system_changes)
+
+ self.results.update(
+ force=atoms.get_forces(),
+ )
diff --git a/mlip_arena/models/externals/fairchem.py b/mlip_arena/models/externals/fairchem.py
new file mode 100644
index 0000000000000000000000000000000000000000..403a8b4e5f2f7063c0a4b15fc7ae5b365bc2398b
--- /dev/null
+++ b/mlip_arena/models/externals/fairchem.py
@@ -0,0 +1,155 @@
+from __future__ import annotations
+
+from pathlib import Path
+
+import yaml
+from ase import Atoms
+from fairchem.core import OCPCalculator
+from huggingface_hub import hf_hub_download
+
+with open(Path(__file__).parents[1] / "registry.yaml", encoding="utf-8") as f:
+ REGISTRY = yaml.safe_load(f)
+
+
+class eSEN(OCPCalculator):
+ def __init__(
+ self,
+ checkpoint=REGISTRY["eSEN"]["checkpoint"],
+ cache_dir=None,
+ cpu=False, # TODO: cannot assign device
+ seed=0,
+ **kwargs,
+ ) -> None:
+
+ # https://huggingface.co/facebook/OMAT24/resolve/main/esen_30m_oam.pt
+
+ checkpoint_path = hf_hub_download(
+ "fairchem/OMAT24",
+ filename=checkpoint,
+ revision="13ab5b8d71af67bd1c83fbbf53250c82cd87f506",
+ cache_dir=cache_dir
+ )
+ kwargs.pop("device", None)
+ super().__init__(
+ checkpoint_path=checkpoint_path,
+ cpu=cpu,
+ seed=seed,
+ **kwargs,
+ )
+
+class eqV2(OCPCalculator):
+ def __init__(
+ self,
+ checkpoint=REGISTRY["eqV2(OMat)"]["checkpoint"],
+ cache_dir=None,
+ cpu=False, # TODO: cannot assign device
+ seed=0,
+ **kwargs,
+ ) -> None:
+ """
+ Initialize an eqV2 calculator.
+
+ Parameters
+ ----------
+ checkpoint : str, default="eqV2_86M_omat_mp_salex.pt"
+ The name of the eqV2 checkpoint to use.
+ local_cache : str, default="/tmp/ocp/"
+ The directory to store the downloaded checkpoint.
+ cpu : bool, default=False
+ Whether to run the model on CPU or GPU.
+ seed : int, default=0
+ The random seed for the model.
+
+ Other Parameters
+ ----------------
+ **kwargs
+ Any additional keyword arguments are passed to the superclass.
+ """
+
+ # https://huggingface.co/fairchem/OMAT24/resolve/main/eqV2_86M_omat_mp_salex.pt
+
+ checkpoint_path = hf_hub_download(
+ "fairchem/OMAT24",
+ filename=checkpoint,
+ revision="bf92f9671cb9d5b5c77ecb4aa8b317ff10b882ce",
+ cache_dir=cache_dir
+ )
+ kwargs.pop("device", None)
+ super().__init__(
+ checkpoint_path=checkpoint_path,
+ cpu=cpu,
+ seed=seed,
+ **kwargs,
+ )
+
+class EquiformerV2(OCPCalculator):
+ def __init__(
+ self,
+ checkpoint=REGISTRY["EquiformerV2(OC22)"]["checkpoint"],
+ # TODO: cannot assign device
+ local_cache="~/.cache/ocp/",
+ cpu=False,
+ seed=0,
+ **kwargs,
+ ) -> None:
+ kwargs.pop("device", None)
+ super().__init__(
+ model_name=checkpoint,
+ local_cache=local_cache,
+ cpu=cpu,
+ seed=seed,
+ **kwargs,
+ )
+
+ def calculate(self, atoms: Atoms, properties, system_changes) -> None:
+ super().calculate(atoms, properties, system_changes)
+
+ self.results.update(
+ force=atoms.get_forces(),
+ )
+
+
+class EquiformerV2OC20(OCPCalculator):
+ def __init__(
+ self,
+ checkpoint=REGISTRY["EquiformerV2(OC22)"]["checkpoint"],
+ # TODO: cannot assign device
+ local_cache="~/.cache/ocp/",
+ cpu=False,
+ seed=0,
+ **kwargs,
+ ) -> None:
+ kwargs.pop("device", None)
+ super().__init__(
+ model_name=checkpoint,
+ local_cache=local_cache,
+ cpu=cpu,
+ seed=seed,
+ **kwargs,
+ )
+
+class eSCN(OCPCalculator):
+ def __init__(
+ self,
+ checkpoint="eSCN-L6-M3-Lay20-S2EF-OC20-All+MD", # TODO: import from registry
+ # TODO: cannot assign device
+ local_cache="~/.cache/ocp/",
+ cpu=False,
+ seed=0,
+ **kwargs,
+ ) -> None:
+ kwargs.pop("device", None)
+ super().__init__(
+ model_name=checkpoint,
+ local_cache=local_cache,
+ cpu=cpu,
+ seed=seed,
+ **kwargs,
+ )
+
+ def calculate(self, atoms: Atoms, properties, system_changes) -> None:
+ super().calculate(atoms, properties, system_changes)
+
+ self.results.update(
+ force=atoms.get_forces(),
+ )
diff --git a/mlip_arena/models/externals/mace-mp.py b/mlip_arena/models/externals/mace-mp.py
new file mode 100644
index 0000000000000000000000000000000000000000..1015c7c4aadd329904cd49d28cffa8fabf1de777
--- /dev/null
+++ b/mlip_arena/models/externals/mace-mp.py
@@ -0,0 +1,69 @@
+from __future__ import annotations
+
+import os
+from pathlib import Path
+
+from mace.calculators import MACECalculator
+
+from mlip_arena.models.utils import get_freer_device
+
+
+class MACE_MP_Medium(MACECalculator):
+ def __init__(
+ self,
+ checkpoint="https://github.com/ACEsuit/mace-mp/releases/download/mace_mp_0/2023-12-03-mace-128-L1_epoch-199.model",
+ device: str | None = None,
+ default_dtype="float32",
+ **kwargs,
+ ):
+ cache_dir = Path.home() / ".cache" / "mace"
+ checkpoint_url_name = "".join(
+ c for c in os.path.basename(checkpoint) if c.isalnum() or c in "_"
+ )
+ cached_model_path = f"{cache_dir}/{checkpoint_url_name}"
+ if not os.path.isfile(cached_model_path):
+ import urllib
+
+ os.makedirs(cache_dir, exist_ok=True)
+ _, http_msg = urllib.request.urlretrieve(checkpoint, cached_model_path)
+ if "Content-Type: text/html" in http_msg:
+ raise RuntimeError(
+ f"Model download failed, please check the URL {checkpoint}"
+ )
+ model = cached_model_path
+
+ device = device or str(get_freer_device())
+
+ super().__init__(
+ model_paths=model, device=device, default_dtype=default_dtype, **kwargs
+ )
+
+class MACE_MPA(MACECalculator):
+ def __init__(
+ self,
+ checkpoint="https://github.com/ACEsuit/mace-mp/releases/download/mace_mpa_0/mace-mpa-0-medium.model",
+ device: str | None = None,
+ default_dtype="float32",
+ **kwargs,
+ ):
+ cache_dir = Path.home() / ".cache" / "mace"
+ checkpoint_url_name = "".join(
+ c for c in os.path.basename(checkpoint) if c.isalnum() or c in "_"
+ )
+ cached_model_path = f"{cache_dir}/{checkpoint_url_name}"
+ if not os.path.isfile(cached_model_path):
+ import urllib
+
+ os.makedirs(cache_dir, exist_ok=True)
+ _, http_msg = urllib.request.urlretrieve(checkpoint, cached_model_path)
+ if "Content-Type: text/html" in http_msg:
+ raise RuntimeError(
+ f"Model download failed, please check the URL {checkpoint}"
+ )
+ model = cached_model_path
+
+ device = device or str(get_freer_device())
+
+ super().__init__(
+ model_paths=model, device=device, default_dtype=default_dtype, **kwargs
+ )
\ No newline at end of file
diff --git a/mlip_arena/models/externals/mace-off.py b/mlip_arena/models/externals/mace-off.py
new file mode 100644
index 0000000000000000000000000000000000000000..712ddeb235834d1f25fcba8dac0f7a3a044d61aa
--- /dev/null
+++ b/mlip_arena/models/externals/mace-off.py
@@ -0,0 +1,39 @@
+from __future__ import annotations
+
+import os
+from pathlib import Path
+
+from mace.calculators import MACECalculator
+
+from mlip_arena.models.utils import get_freer_device
+
+
+class MACE_OFF_Medium(MACECalculator):
+ def __init__(
+ self,
+ checkpoint="https://github.com/ACEsuit/mace-off/raw/main/mace_off23/MACE-OFF23_medium.model?raw=true",
+ device: str | None = None,
+ default_dtype="float32",
+ **kwargs,
+ ):
+ cache_dir = Path.home() / ".cache" / "mace"
+ checkpoint_url_name = "".join(
+ c for c in os.path.basename(checkpoint) if c.isalnum() or c in "_"
+ )
+ cached_model_path = f"{cache_dir}/{checkpoint_url_name}"
+ if not os.path.isfile(cached_model_path):
+ import urllib
+
+ os.makedirs(cache_dir, exist_ok=True)
+ _, http_msg = urllib.request.urlretrieve(checkpoint, cached_model_path)
+ if "Content-Type: text/html" in http_msg:
+ raise RuntimeError(
+ f"Model download failed, please check the URL {checkpoint}"
+ )
+ model = cached_model_path
+
+ device = device or str(get_freer_device())
+
+ super().__init__(
+ model_paths=model, device=device, default_dtype=default_dtype, **kwargs
+ )
\ No newline at end of file
diff --git a/mlip_arena/models/externals/matgl.py b/mlip_arena/models/externals/matgl.py
new file mode 100644
index 0000000000000000000000000000000000000000..6c7d70ac3cb64e82197c1cbe9a1ff4c5f53ba556
--- /dev/null
+++ b/mlip_arena/models/externals/matgl.py
@@ -0,0 +1,21 @@
+from __future__ import annotations
+
+import matgl
+import torch
+from matgl.ext.ase import PESCalculator
+from typing import Literal
+
+
+class M3GNet(PESCalculator):
+ def __init__(
+ self,
+ checkpoint="M3GNet-MP-2021.2.8-PES",
+ # TODO: cannot assign device
+ state_attr: torch.Tensor | None = None,
+ stress_unit: Literal["eV/A3", "GPa"] = "GPa",
+ stress_weight: float = 1.0,
+ use_voigt: bool = False,
+ **kwargs,
+ ) -> None:
+ potential = matgl.load_model(checkpoint)
+ super().__init__(potential, state_attr, stress_unit, stress_weight, use_voigt, **kwargs)
diff --git a/mlip_arena/models/externals/mattersim.py b/mlip_arena/models/externals/mattersim.py
new file mode 100644
index 0000000000000000000000000000000000000000..28b78a23164720dc149b3b5a10fec854b9f47bc5
--- /dev/null
+++ b/mlip_arena/models/externals/mattersim.py
@@ -0,0 +1,53 @@
+from __future__ import annotations
+
+from pathlib import Path
+
+import yaml
+from mattersim.forcefield import MatterSimCalculator
+
+from mlip_arena.models.utils import get_freer_device
+
+with open(Path(__file__).parents[1] / "registry.yaml", encoding="utf-8") as f:
+ REGISTRY = yaml.safe_load(f)
+
+
+class MatterSim(MatterSimCalculator):
+ def __init__(
+ self,
+ checkpoint=REGISTRY["MatterSim"]["checkpoint"],
+ device=None,
+ **kwargs,
+ ):
+ super().__init__(
+ load_path=checkpoint, device=str(device or get_freer_device()), **kwargs
+ )
+
+ def get_potential_energy(self, atoms=None, force_consistent=False):
+ return float(
+ super().get_potential_energy(
+ atoms=atoms,
+ force_consistent=force_consistent,
+ )
+ ) # mattersim return numpy float instead of python float
+
+ def __getstate__(self):
+ state = self.__dict__.copy()
+
+ # BUG: remove unpicklizable potential
+ state.pop("potential", None)
+
+ return state
+
+ # def calculate(
+ # self,
+ # atoms: Atoms | None = None,
+ # properties: list | None = None,
+ # system_changes: list | None = None,
+ # ):
+ # super().calculate(atoms, properties, system_changes)
+
+ # # convert unpicklizable atoms back to picklizable atoms to avoid prefect pickling error
+ # if isinstance(self.atoms, MSONAtoms):
+ # atoms = self.atoms.copy()
+ # strucutre = AseAtomsAdaptor().get_structure(atoms)
+ # self.atoms = AseAtomsAdaptor().get_atoms(strucutre, msonable=False)
diff --git a/mlip_arena/models/externals/orb.py b/mlip_arena/models/externals/orb.py
new file mode 100644
index 0000000000000000000000000000000000000000..f02a00512aee9fa6b80479ef78e3f08ac99ab649
--- /dev/null
+++ b/mlip_arena/models/externals/orb.py
@@ -0,0 +1,74 @@
+from __future__ import annotations
+
+from pathlib import Path
+
+import yaml
+import requests
+from orb_models.forcefield import pretrained
+from orb_models.forcefield.calculator import ORBCalculator
+
+from mlip_arena.models.utils import get_freer_device
+
+with open(Path(__file__).parents[1] / "registry.yaml", encoding="utf-8") as f:
+ REGISTRY = yaml.safe_load(f)
+
+class ORB(ORBCalculator):
+ def __init__(
+ self,
+ checkpoint=REGISTRY["ORB"]["checkpoint"],
+ device=None,
+ **kwargs,
+ ):
+ device = device or get_freer_device()
+
+ cache_dir = Path.home() / ".cache" / "orb"
+ cache_dir.mkdir(parents=True, exist_ok=True)
+ ckpt_path = cache_dir / checkpoint
+
+ url = f"https://storage.googleapis.com/orbitalmaterials-public-models/forcefields/{checkpoint}"
+
+ if not ckpt_path.exists():
+ print(f"Downloading ORB model from {url} to {ckpt_path}...")
+ try:
+ response = requests.get(url, stream=True, timeout=120)
+ response.raise_for_status()
+ with open(ckpt_path, "wb") as f:
+ for chunk in response.iter_content(chunk_size=8192):
+ f.write(chunk)
+ print("Download completed.")
+ except requests.exceptions.RequestException as e:
+ raise RuntimeError("Failed to download ORB model.") from e
+
+ orbff = pretrained.orb_v1(weights_path=ckpt_path, device=device)
+ super().__init__(orbff, device=device, **kwargs)
+
+class ORBv2(ORBCalculator):
+ def __init__(
+ self,
+ checkpoint=REGISTRY["ORBv2"]["checkpoint"],
+ device=None,
+ **kwargs,
+ ):
+ device = device or get_freer_device()
+
+ cache_dir = Path.home() / ".cache" / "orb"
+ cache_dir.mkdir(parents=True, exist_ok=True)
+ ckpt_path = cache_dir / checkpoint
+
+ # url = f"https://storage.googleapis.com/orbitalmaterials-public-models/forcefields/{checkpoint}"
+ url = f"https://orbitalmaterials-public-models.s3.us-west-1.amazonaws.com/forcefields/{checkpoint}"
+
+ if not ckpt_path.exists():
+ print(f"Downloading ORB model from {url} to {ckpt_path}...")
+ try:
+ response = requests.get(url, stream=True, timeout=120)
+ response.raise_for_status()
+ with open(ckpt_path, "wb") as f:
+ for chunk in response.iter_content(chunk_size=8192):
+ f.write(chunk)
+ print("Download completed.")
+ except requests.exceptions.RequestException as e:
+ raise RuntimeError("Failed to download ORB model.") from e
+
+ orbff = pretrained.orb_v2(weights_path=ckpt_path, device=device)
+ super().__init__(orbff, device=device, **kwargs)
diff --git a/mlip_arena/models/externals/sevennet.py b/mlip_arena/models/externals/sevennet.py
new file mode 100644
index 0000000000000000000000000000000000000000..af8d13c86aaedf49e8e5c61e961d88b37db90ddf
--- /dev/null
+++ b/mlip_arena/models/externals/sevennet.py
@@ -0,0 +1,16 @@
+from __future__ import annotations
+
+from sevenn.sevennet_calculator import SevenNetCalculator
+
+from mlip_arena.models.utils import get_freer_device
+
+
+class SevenNet(SevenNetCalculator):
+ def __init__(
+ self,
+ checkpoint="7net-0", # TODO: import from registry
+ device=None,
+ **kwargs,
+ ):
+ device = device or get_freer_device()
+ super().__init__(checkpoint, device=device, **kwargs)
diff --git a/mlip_arena/models/mace.py b/mlip_arena/models/mace.py
new file mode 100644
index 0000000000000000000000000000000000000000..382e80a73a33e97e3afefb1d9030bfdcb68facb7
--- /dev/null
+++ b/mlip_arena/models/mace.py
@@ -0,0 +1,58 @@
+import torch
+from ase import Atoms
+from ase.calculators.calculator import all_changes
+from huggingface_hub import hf_hub_download
+from torch_geometric.data import Data
+
+from mlip_arena.models import MLIPCalculator
+
+
+class MACE_MP_Medium(MLIPCalculator):
+ def __init__(
+ self,
+ device: torch.device | None = None,
+ restart=None,
+ atoms=None,
+ directory=".",
+ **kwargs,
+ ):
+ self.device = device or torch.device(
+ "cuda" if torch.cuda.is_available() else "cpu"
+ )
+
+ fpath = hf_hub_download(
+ repo_id="cyrusyc/mace-universal",
+ subfolder="pretrained",
+ filename="2023-12-12-mace-128-L1_epoch-199.model",
+ revision="main",
+ )
+
+ model = torch.load(fpath, map_location=self.device)
+
+ super().__init__(
+ model=model, restart=restart, atoms=atoms, directory=directory, **kwargs
+ )
+
+ self.name: str = self.__class__.__name__
+ self.implemented_properties = ["energy", "forces", "stress"]
+
+ def calculate(
+ self, atoms: Atoms, properties: list[str], system_changes: list = all_changes
+ ):
+ """Calculate energies and forces for the given Atoms object"""
+ super().calculate(atoms, properties, system_changes)
+
+ output = self.forward(atoms)
+
+ self.results = {}
+ if "energy" in properties:
+ self.results["energy"] = output["energy"].item()
+ if "forces" in properties:
+ self.results["forces"] = output["forces"].cpu().detach().numpy()
+ if "stress" in properties:
+ self.results["stress"] = output["stress"].cpu().detach().numpy()
+
+ def forward(self, x: Data | Atoms) -> dict[str, torch.Tensor]:
+ """Implement data conversion, graph creation, and model forward pass"""
+ # TODO
+ raise NotImplementedError
diff --git a/mlip_arena/models/registry.yaml b/mlip_arena/models/registry.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..50d70407e273bd6a096604db5a36ed7f5189988b
--- /dev/null
+++ b/mlip_arena/models/registry.yaml
@@ -0,0 +1,407 @@
+MACE-MP(M):
+ module: externals
+ class: MACE_MP_Medium
+ family: mace-mp
+ package: mace-torch==0.3.9
+ checkpoint: 2023-12-03-mace-128-L1_epoch-199.model
+ username: cyrusyc
+ last-update: 2024-03-25T14:30:00
+ datetime: 2024-03-25T14:30:00 # TODO: Fake datetime
+ datasets:
+ - MPTrj # TODO: fake HF dataset repo
+ cpu-tasks:
+ - eos_alloy
+ gpu-tasks:
+ - homonuclear-diatomics
+ - stability
+ - combustion
+ - eos_bulk
+ - wbm_ev
+ github: https://github.com/ACEsuit/mace
+ doi: https://arxiv.org/abs/2401.00096
+ date: 2023-12-29
+ prediction: EFS
+ nvt: true
+ npt: true
+ license: MIT
+
+CHGNet:
+ module: externals
+ class: CHGNet
+ family: chgnet
+ package: chgnet==0.3.8
+ checkpoint: v0.3.0
+ username: cyrusyc
+ last-update: 2024-07-08T00:00:00
+ datetime: 2024-07-08T00:00:00
+ datasets:
+ - MPTrj
+ gpu-tasks:
+ - homonuclear-diatomics
+ - stability
+ - combustion
+ - eos_bulk
+ - wbm_ev
+ github: https://github.com/CederGroupHub/chgnet
+ doi: https://doi.org/10.1038/s42256-023-00716-3
+ date: 2023-02-28
+ prediction: EFSM
+ nvt: true
+ npt: true
+ license: BSD-3-Clause
+
+M3GNet:
+ module: externals
+ class: M3GNet
+ family: matgl
+ package: matgl==1.1.2
+ checkpoint: M3GNet-MP-2021.2.8-PES
+ username: cyrusyc
+ last-update: 2024-07-08T00:00:00
+ datetime: 2024-07-08T00:00:00
+ datasets:
+ - MPF
+ gpu-tasks:
+ - homonuclear-diatomics
+ - combustion
+ - stability
+ - eos_bulk
+ - wbm_ev
+ github: https://github.com/materialsvirtuallab/matgl
+ doi: https://doi.org/10.1038/s43588-022-00349-3
+ date: 2022-02-05
+ prediction: EFS
+ nvt: true
+ npt: true
+ license: BSD-3-Clause
+
+MatterSim:
+ module: externals
+ class: MatterSim
+ family: mattersim
+ package: mattersim==1.0.0rc9
+ checkpoint: MatterSim-v1.0.0-5M.pth
+ username:
+ last-update: 2024-10-29T00:00:00
+ datetime: 2024-10-29T00:00:00 # TODO: Fake datetime
+ datasets:
+ - MPTrj
+ - Alexandria
+ cpu-tasks:
+ - eos_alloy
+ gpu-tasks:
+ - homonuclear-diatomics
+ - stability
+ - combustion
+ - eos_bulk
+ - wbm_ev
+ github: https://github.com/microsoft/mattersim
+ doi: https://arxiv.org/abs/2405.04967
+ date: 2024-12-05
+ prediction: EFS
+ nvt: true
+ npt: true
+ license: MIT
+
+ORBv2:
+ module: externals
+ class: ORBv2
+ family: orb
+ package: orb-models==0.4.0
+ checkpoint: orb-v2-20241011.ckpt
+ username:
+ last-update: 2024-10-29T00:00:00
+ datetime: 2024-10-29T00:00:00 # TODO: Fake datetime
+ datasets:
+ - MPTrj
+ - Alexandria
+ cpu-tasks:
+ - eos_alloy
+ gpu-tasks:
+ - homonuclear-diatomics
+ - combustion
+ - stability
+ - eos_bulk
+ - wbm_ev
+ github: https://github.com/orbital-materials/orb-models
+ doi: https://arxiv.org/abs/2410.22570
+ date: 2024-10-15
+ prediction: EFS
+ nvt: true
+ npt: true
+ license: Apache-2.0
+
+SevenNet:
+ module: externals
+ class: SevenNet
+ family: sevennet
+ package: sevenn==0.9.4
+ checkpoint: 7net-0
+ username: cyrusyc
+ last-update: 2024-03-25T14:30:00
+ datetime: 2024-03-25T14:30:00 # TODO: Fake datetime
+ datasets:
+ - MPTrj # TODO: fake HF dataset repo
+ gpu-tasks:
+ - homonuclear-diatomics
+ - stability
+ - combustion
+ - eos_bulk
+ - wbm_ev
+ github: https://github.com/MDIL-SNU/SevenNet
+ doi: https://doi.org/10.1021/acs.jctc.4c00190
+ date: 2024-07-11
+ prediction: EFS
+ nvt: true
+ npt: true
+ license: GPL-3.0-only
+
+eqV2(OMat):
+ module: externals
+ class: eqV2
+ family: fairchem
+ package: fairchem-core==1.2.0
+ checkpoint: eqV2_86M_omat_mp_salex.pt
+ username: fairchem # HF handle
+ last-update: 2024-10-18T00:00:00
+ datetime: 2024-10-18T00:00:00
+ datasets:
+ - OMat
+ - MPTrj
+ - Alexandria
+ cpu-tasks:
+ - eos_alloy
+ gpu-tasks:
+ - homonuclear-diatomics
+ - wbm_ev
+ prediction: EFS
+ nvt: true
+ npt: false # https://github.com/FAIR-Chem/fairchem/issues/888, https://github.com/atomind-ai/mlip-arena/issues/17
+ date: 2024-10-18
+ github: https://github.com/FAIR-Chem/fairchem
+ doi: https://arxiv.org/abs/2410.12771
+ license: Modified Apache-2.0 (Meta)
+
+MACE-MPA:
+ module: externals
+ class: MACE_MPA
+ family: mace-mp
+ package: mace-torch==0.3.9
+ checkpoint: mace-mpa-0-medium.model
+ username:
+ last-update: 2025-11-19T00:00:00
+ datetime: 2024-12-09T00:00:00 # TODO: Fake datetime
+ datasets:
+ - MPTrj # TODO: fake HF dataset repo
+ - Alexandria
+ gpu-tasks:
+ - homonuclear-diatomics
+ - stability
+ - eos_bulk
+ - wbm_ev
+ github: https://github.com/ACEsuit/mace
+ doi: https://arxiv.org/abs/2401.00096
+ date: 2024-12-09
+ prediction: EFS
+ nvt: true
+ npt: true
+ license: MIT
+
+eSEN:
+ module: externals
+ class: eSEN
+ family: fairchem
+ package: fairchem-core==1.10.0
+ checkpoint: esen_30m_oam.pt
+ username: fairchem # HF handle
+ last-update: 2025-04-21
+ datetime: 2025-04-21
+ datasets:
+ - OMat
+ - MPTrj
+ - Alexandria
+ gpu-tasks:
+ - homonuclear-diatomics
+ - wbm_ev
+ - eos_bulk
+ prediction: EFS
+ nvt: true
+ npt: true
+ date: 2025-04-14
+ github: https://github.com/FAIR-Chem/fairchem
+ doi: https://arxiv.org/abs/2502.12147
+ license: Modified Apache-2.0 (Meta)
+
+EquiformerV2(OC22):
+ module: externals
+ class: EquiformerV2
+ family: equiformer
+ package: fairchem-core==1.2.0
+ checkpoint: EquiformerV2-lE4-lF100-S2EFS-OC22
+ username: cyrusyc
+ last-update: 2024-07-08T00:00:00
+ datetime: 2024-07-08T00:00:00
+ datasets:
+ - OC22
+ gpu-tasks:
+ - homonuclear-diatomics
+ - combustion
+ github: https://github.com/FAIR-Chem/fairchem
+ doi: https://arxiv.org/abs/2306.12059
+ date: 2023-06-21
+ prediction: EF
+ nvt: true
+ npt: false
+ license:
+
+EquiformerV2(OC20):
+ module: externals
+ class: EquiformerV2OC20
+ family: equiformer
+ package: fairchem-core==1.2.0
+ checkpoint: EquiformerV2-31M-S2EF-OC20-All+MD
+ username: cyrusyc
+ last-update: 2024-07-08T00:00:00
+ datetime: 2024-07-08T00:00:00
+ datasets:
+ - OC20
+ gpu-tasks:
+ - homonuclear-diatomics
+ - combustion
+ github: https://github.com/FAIR-Chem/fairchem
+ doi: https://arxiv.org/abs/2306.12059
+ date: 2023-06-21
+ prediction: EF
+ nvt: true
+ npt: false
+
+eSCN(OC20):
+ module: externals
+ class: eSCN
+ family: escn
+ package: fairchem-core==1.2.0
+ checkpoint: eSCN-L6-M3-Lay20-S2EF-OC20-All+MD
+ username: cyrusyc
+ last-update: 2024-07-08T00:00:00
+ datetime: 2024-07-08T00:00:00
+ datasets:
+ - OC20
+ gpu-tasks:
+ - homonuclear-diatomics
+ - combustion
+ github: https://github.com/FAIR-Chem/fairchem
+ doi: https://arxiv.org/abs/2302.03655
+ date: 2023-02-07
+ prediction: EF
+ nvt: true
+ npt: false
+ license:
+
+MACE-OFF(M):
+ module: externals
+ class: MACE_OFF_Medium
+ family: mace-off
+ package: mace-torch==0.3.9
+ checkpoint: MACE-OFF23_medium.model
+ username: cyrusyc
+ last-update: 2024-03-25T14:30:00
+ datetime: 2024-03-25T14:30:00 # TODO: Fake datetime
+ datasets:
+ - SPICE # TODO: fake HF dataset repo
+ gpu-tasks:
+ - homonuclear-diatomics
+ github: https://github.com/ACEsuit/mace
+ doi: https://arxiv.org/abs/2312.15211
+ date: 2023-12-23
+ prediction: EFS
+ nvt: true
+ npt: true
+ license: ASL
+
+ANI2x:
+ module: externals
+ class: ANI2x
+ family: ani
+ package: torchani==2.2.4
+ checkpoint: ani-2x_8x.info
+ username: cyrusyc
+ last-update: 2024-12-11T16:00:00
+ datetime: 2024-12-11T16:00:00 # TODO: Fake datetime
+ datasets:
+ cpu-tasks:
+ gpu-tasks:
+ - homonuclear-diatomics
+ github: https://github.com/aiqm/torchani
+ doi: https://www.nature.com/articles/s41598-024-62242-5
+ date: 2024-05-23
+ prediction: EFS
+ nvt: true
+ npt: true
+ license: MIT
+
+ALIGNN:
+ module: externals
+ class: ALIGNN
+ family: alignn
+ package: alignn==2024.5.27
+ checkpoint: 2024.5.27
+ username: cyrusyc
+ last-update: 2024-07-08T00:00:00
+ datetime: 2024-07-08T00:00:00
+ datasets:
+ - MP22
+ gpu-tasks:
+ - homonuclear-diatomics
+ - stability
+ - wbm_ev
+ # - combustion
+ prediction: EFS
+ nvt: true
+ npt: true
+ github: https://github.com/usnistgov/alignn
+ doi: https://doi.org/10.1038/s41524-021-00650-1
+ date: 2021-11-15
+ license:
+
+DeepMD:
+ module: externals
+ class: DeepMD
+ family: deepmd
+ package: deepmd-kit==v3.0.0b4
+ checkpoint: dp0808c_v024mixu.pth
+ username:
+ last-update: 2024-10-09T00:00:00
+ datetime: 2024-03-25T14:30:00 # TODO: Fake datetime
+ datasets:
+ - MPTrj # TODO: fake HF dataset repo
+ github: https://github.com/deepmodeling/deepmd-kit/
+ doi: https://arxiv.org/abs/2312.15492
+ date: 2024-10-09
+ prediction: EFS
+ nvt: true
+ npt: true
+ license:
+
+ORB:
+ module: externals
+ class: ORB
+ family: orb
+ package: orb-models==0.3.1
+ checkpoint: orbff-v1-20240827.ckpt
+ username: cyrusyc
+ last-update: 2024-03-25T14:30:00
+ datetime: 2024-03-25T14:30:00 # TODO: Fake datetime
+ datasets:
+ - MPTrj # TODO: fake HF dataset repo
+ - Alexandria
+ gpu-tasks:
+ - homonuclear-diatomics
+ - combustion
+ - stability
+ github: https://github.com/orbital-materials/orb-models
+ doi:
+ date: 2024-09-03
+ prediction: EFS
+ nvt: true
+ npt: true
+ license: Apache-2.0
\ No newline at end of file
diff --git a/mlip_arena/models/utils.py b/mlip_arena/models/utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..40d7aa9085e3d90b698ceb78801e9dea9c83a384
--- /dev/null
+++ b/mlip_arena/models/utils.py
@@ -0,0 +1,44 @@
+"""Utility functions for MLIP models."""
+
+import torch
+
+try:
+ from prefect.logging import get_run_logger
+
+ logger = get_run_logger()
+except (ImportError, RuntimeError):
+ from loguru import logger
+
+
+def get_freer_device() -> torch.device:
+ """Get the GPU with the most free memory, or use MPS if available.
+
+ Returns:
+ torch.device: The selected GPU device or MPS.
+
+ Raises:
+ ValueError: If no GPU or MPS is available.
+ """
+ device_count = torch.cuda.device_count()
+ if device_count > 0:
+ # If CUDA GPUs are available, select the one with the most free memory
+ mem_free = [
+ torch.cuda.get_device_properties(i).total_memory
+ - torch.cuda.memory_allocated(i)
+ for i in range(device_count)
+ ]
+ free_gpu_index = mem_free.index(max(mem_free))
+ device = torch.device(f"cuda:{free_gpu_index}")
+ logger.info(
+ f"Selected GPU {device} with {mem_free[free_gpu_index] / 1024**2:.2f} MB free memory from {device_count} GPUs"
+ )
+ elif torch.backends.mps.is_available():
+ # If no CUDA GPUs are available but MPS is, use MPS
+ logger.info("No GPU available. Using MPS.")
+ device = torch.device("mps")
+ else:
+ # Fallback to CPU if neither CUDA GPUs nor MPS are available
+ logger.info("No GPU or MPS available. Using CPU.")
+ device = torch.device("cpu")
+
+ return device
diff --git a/mlip_arena/tasks/README.md b/mlip_arena/tasks/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..b2be171a46e3596709631a323bef18f53c61069d
--- /dev/null
+++ b/mlip_arena/tasks/README.md
@@ -0,0 +1,26 @@
+
+
+## Task
+
+In the language of Prefect workflow manager, we define a task as *one operation on one input structure* that generates result for **one sample**. For example, [Structure optimization (OPT)](optimize.py) initiates one structure optimization on one structure and return the relaxed structure.
+
+It is possible to chain multiple subtasks into a single, complex task. For example, [Equation of states (EOS)](eos.py) first performs one full relaxed [OPT](optimize.py) task and parallelizes/serializes multiple constrained [OPT](optimize.py) tasks in one call, and returns the equation of state and bulk modulus of the structure.
+
+There are some general tasks that can be reused:
+- [Structure optimization (OPT)](optimize.py)
+- [Molecular dynamics (MD)](md.py)
+- [Equation of states (EOS)](eos.py)
+
+## Flow
+
+Flow is meant to be used to parallize multiple tasks and be orchestrated for production at scale on high-throughput cluster.
+
+
+
\ No newline at end of file
diff --git a/mlip_arena/tasks/__init__.py b/mlip_arena/tasks/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..a7c0819d3f6a00477b24be3f9855c99715052e5c
--- /dev/null
+++ b/mlip_arena/tasks/__init__.py
@@ -0,0 +1,73 @@
+from pathlib import Path
+
+import yaml
+from huggingface_hub import HfApi, HfFileSystem, hf_hub_download
+
+# from mlip_arena.models import MLIP
+# from mlip_arena.models import REGISTRY as MODEL_REGISTRY
+
+try:
+ from prefect.logging import get_run_logger
+
+ logger = get_run_logger()
+except (ImportError, RuntimeError):
+ from loguru import logger
+
+try:
+ from .elasticity import run as ELASTICITY
+ from .eos import run as EOS
+ from .md import run as MD
+ from .neb import run as NEB
+ from .neb import run_from_endpoints as NEB_FROM_ENDPOINTS
+ from .optimize import run as OPT
+ from .phonon import run as PHONON
+
+ __all__ = ["OPT", "EOS", "MD", "NEB", "NEB_FROM_ENDPOINTS", "ELASTICITY", "PHONON"]
+except (ImportError, TypeError, NameError) as e:
+ logger.warning(e)
+
+
+with open(Path(__file__).parent / "registry.yaml", encoding="utf-8") as f:
+ REGISTRY = yaml.safe_load(f)
+
+
+# class Task:
+# def __init__(self):
+# self.name: str = self.__class__.__name__ # display name on the leaderboard
+
+# def run_local(self, model: MLIP):
+# """Run the task using the given model and return the results."""
+# raise NotImplementedError
+
+# def run_hf(self, model: MLIP):
+# """Run the task using the given model and return the results."""
+# raise NotImplementedError
+
+# # Calcualte evaluation metrics and postprocessed data
+# api = HfApi()
+# api.upload_file(
+# path_or_fileobj="results.json",
+# path_in_repo=f"{self.__class__.__name__}/{model.__class__.__name__}/results.json", # Upload to a specific folder
+# repo_id="atomind/mlip-arena",
+# repo_type="dataset",
+# )
+
+# def run_nersc(self, model: MLIP):
+# """Run the task using the given model and return the results."""
+# raise NotImplementedError
+
+# def get_results(self):
+# """Get the results from the task."""
+# # fs = HfFileSystem()
+# # files = fs.glob(f"datasets/atomind/mlip-arena/{self.__class__.__name__}/*/*.json")
+
+# for model, metadata in MODEL_REGISTRY.items():
+# results = hf_hub_download(
+# repo_id="atomind/mlip-arena",
+# filename="results.json",
+# subfolder=f"{self.__class__.__name__}/{model}",
+# repo_type="dataset",
+# revision=None,
+# )
+
+# return results
diff --git a/mlip_arena/tasks/combustion/H256O128.extxyz b/mlip_arena/tasks/combustion/H256O128.extxyz
new file mode 100644
index 0000000000000000000000000000000000000000..59fcd94cbba957e18f9626b2755866d01dfaac1b
--- /dev/null
+++ b/mlip_arena/tasks/combustion/H256O128.extxyz
@@ -0,0 +1,386 @@
+384
+Lattice="30.0 0.0 0.0 0.0 30.0 0.0 0.0 0.0 30.0" Properties=species:S:1:pos:R:3 Built=T with=T Packmol=T pbc="T T T"
+H 16.87897000 14.36340900 5.78639500
+H 17.43576500 14.42974000 6.26492700
+H 3.55483600 6.05817200 17.69903100
+H 3.93076700 5.56617900 17.29899100
+H 9.49657700 24.94365100 23.70565700
+H 8.79155100 24.79399100 23.55088300
+H 23.86076500 25.42809100 5.93695500
+H 24.14102300 25.10486100 6.53728200
+H 3.01569800 26.19656300 15.08020000
+H 2.75520000 25.98067600 14.42525900
+H 9.67788700 17.96928400 5.86481000
+H 10.22656200 18.46063200 5.83403500
+H 12.57870500 16.09171300 25.13668100
+H 12.52257400 16.32590900 24.43996300
+H 12.70913000 6.58341200 15.79997200
+H 13.14484100 6.28817300 16.31611500
+H 21.57221500 26.22007700 8.20775100
+H 21.49858000 25.76305400 7.63406000
+H 5.23150000 2.79202900 17.94668200
+H 5.34160000 2.30038000 17.40856200
+H 3.20140800 24.30032700 16.20596600
+H 3.01866600 23.59120400 16.29060400
+H 24.14000600 28.98000500 16.44843000
+H 24.06795800 28.97179200 15.71483900
+H 5.06521500 20.71716800 5.13534300
+H 4.35233500 20.56737200 5.02230400
+H 20.35575900 22.80574000 20.92112100
+H 20.33775300 22.82449400 20.18441300
+H 9.44001100 14.49775500 28.22965700
+H 8.79780000 14.40101700 27.88091500
+H 9.85111200 22.18687800 5.65961300
+H 10.23873200 22.52486700 5.13147700
+H 2.43073100 14.23882800 9.88843100
+H 2.41513200 14.74593300 10.42323500
+H 24.12085900 18.37439500 13.96560000
+H 24.11116500 17.72761900 14.31915600
+H 8.20116600 27.96832200 10.13677000
+H 7.93113800 28.48718300 10.58541500
+H 9.12140400 26.33764100 3.10957700
+H 9.77423300 26.15812100 3.40112700
+H 4.61212100 6.00445300 4.16492600
+H 4.64955500 6.71113500 4.37135300
+H 11.25926100 17.21528300 14.18800300
+H 11.45743100 17.84358800 14.51872400
+H 8.30883000 10.16305200 12.29874000
+H 7.72273600 10.57641900 12.12834100
+H 27.50695500 17.01494000 3.57254600
+H 26.93803700 16.58868000 3.76760800
+H 5.77076100 2.49322200 14.46871700
+H 5.62762700 2.75411500 15.14315000
+H 6.51732300 25.84318300 26.82939800
+H 6.55807500 25.12027600 26.69098100
+H 12.12323800 24.13458100 24.41591800
+H 12.45973600 24.45908800 23.84593700
+H 5.17331100 23.16438400 16.63650900
+H 4.88027500 22.87390600 17.24738200
+H 8.10959100 21.29987000 4.46261500
+H 7.63531700 20.73605600 4.43829600
+H 22.74497200 17.55560800 1.89494000
+H 22.79182400 17.39285800 2.61238800
+H 10.18128000 19.85571100 21.25732700
+H 10.60903100 20.45053300 21.17590400
+H 7.36765600 22.32656800 11.62091000
+H 7.36366200 22.32242700 12.35805300
+H 22.11051700 17.35754100 10.70421900
+H 21.63342400 16.93939000 10.32879200
+H 17.11800800 14.46985000 18.41272300
+H 17.76175400 14.14922200 18.57459600
+H 23.88598700 25.00383500 10.24699000
+H 24.23686000 25.54091700 9.88388500
+H 23.07268800 28.13033100 13.42606000
+H 22.86236700 28.70230100 13.84082400
+H 19.71929900 26.69691800 16.96391200
+H 19.77256100 26.69242100 16.22868700
+H 10.20897000 5.12509300 26.31992400
+H 10.27351800 5.67934800 25.83820900
+H 7.74945200 21.75294300 26.96569600
+H 7.85650000 21.94562800 26.26225700
+H 28.99846900 5.82412900 4.51948000
+H 28.84661100 5.17571900 4.20338400
+H 14.00669600 21.28067600 10.51077400
+H 14.02815700 20.57927500 10.28496600
+H 24.56688200 8.44802400 10.18169000
+H 24.87884700 8.74970200 10.77757700
+H 19.82097000 6.71060100 21.14119900
+H 20.20300600 6.57543700 20.52541300
+H 12.50680000 16.29448300 21.20002800
+H 12.58574100 16.94571300 21.53630400
+H 2.88750900 6.48194900 12.41992700
+H 2.63814400 5.97929100 11.94184100
+H 18.31924100 27.95926100 11.93343800
+H 18.08127600 28.28411700 12.55089700
+H 8.80421900 21.80835300 22.53574400
+H 8.19015200 22.18697500 22.38414900
+H 16.51146900 26.58804000 12.13737900
+H 16.51397100 26.60180800 11.40034500
+H 3.01154500 1.61542600 13.17298500
+H 2.31442300 1.37599500 13.16260300
+H 14.38141000 16.74073800 22.79765000
+H 14.54283900 16.49896600 23.47507200
+H 27.32062300 13.13890000 3.91277400
+H 27.68551200 13.68559000 4.24654100
+H 14.17603100 27.61355700 6.47229000
+H 14.22488300 28.10975000 5.92931700
+H 9.46812300 7.70071300 3.45368100
+H 9.61903800 8.06415600 4.07701700
+H 2.18384900 3.88122900 12.55886400
+H 2.16274500 3.79907900 11.82659400
+H 8.39628800 28.36448200 27.01582200
+H 7.83759500 27.92933600 26.81106900
+H 12.15799700 14.43608700 11.46881200
+H 11.91985600 14.40143500 10.77203200
+H 13.07421100 20.72377800 27.23797600
+H 12.38307500 20.94338900 27.37032300
+H 5.74890500 20.92045300 10.67404300
+H 6.07702100 21.30697500 10.13892200
+H 1.20101800 3.91867000 5.21703800
+H 1.33343400 3.87199400 5.94071000
+H 15.87910900 3.60421600 17.51325200
+H 16.55088000 3.81033800 17.29042700
+H 12.77118400 24.89708700 14.04640100
+H 12.93989800 25.26872400 13.43253200
+H 9.17302000 6.59818400 6.60346000
+H 9.20243000 6.69949200 7.33303900
+H 3.82873400 21.34798500 18.48337600
+H 4.44631900 21.08569500 18.78867100
+H 6.64065400 26.32535100 2.13715800
+H 7.07217200 25.92015200 1.69781700
+H 23.61875500 28.68096800 2.12527200
+H 24.20152800 28.50119700 1.71118000
+H 28.97955000 28.31110000 20.77510000
+H 28.51757300 27.79654500 21.03049100
+H 5.03608000 8.09600900 15.70374700
+H 5.01029200 8.77247600 15.41195800
+H 6.38181200 23.23894300 14.67726800
+H 6.72455700 23.67837800 15.15980100
+H 4.17225800 15.87846200 26.32328700
+H 3.60033300 16.10995900 25.91989500
+H 9.98548800 27.03736900 11.34257400
+H 9.89827200 26.31071900 11.43082100
+H 11.08624000 3.40906900 27.43653900
+H 11.03887400 3.46845400 28.16978100
+H 18.17462600 26.60855300 18.64341900
+H 17.84284900 27.25533700 18.76592900
+H 24.56041800 23.73132300 15.45710400
+H 24.15216800 23.55566200 16.04522700
+H 12.42149000 8.51852900 26.92738800
+H 12.85187200 8.54739800 26.32959800
+H 12.58494400 23.66894000 26.51841800
+H 11.87423100 23.85271600 26.58569800
+H 25.66776400 11.38987800 3.60979300
+H 25.04312400 11.04530700 3.79556200
+H 26.02410100 25.69683300 2.37428800
+H 26.49306900 25.51267100 1.83617300
+H 1.17207300 13.56847700 17.81787500
+H 1.09749900 13.56957200 17.08449200
+H 16.34427300 15.52582100 25.01154500
+H 16.21113800 15.84954200 25.66030800
+H 8.34844300 4.44909300 22.93722500
+H 7.86249000 4.49217500 23.48986100
+H 24.87485300 5.31864800 1.40835600
+H 25.19256300 5.84446800 1.00094100
+H 3.42570400 18.20815000 27.19415500
+H 2.77521600 18.34972600 26.87755500
+H 26.13269700 10.18845100 14.93319100
+H 25.85987900 9.71045000 14.44278400
+H 16.37800300 2.82461800 14.94014800
+H 16.88769100 2.31071600 14.80037500
+H 2.68461500 21.47767100 25.65109500
+H 2.86206000 21.90699200 25.07872200
+H 12.04855900 6.95917200 11.68418900
+H 12.39801200 7.51168600 11.34356500
+H 17.65835900 17.90689000 21.24729900
+H 17.57119400 17.94728700 20.51642000
+H 19.13123000 3.51526100 22.77599000
+H 18.50245100 3.89609300 22.72106000
+H 17.59014300 22.68251700 7.89677900
+H 17.94157500 23.30906000 7.73138900
+H 17.80517200 27.73224100 26.14671300
+H 17.17556300 27.67636700 25.76739200
+H 1.23383900 16.30952500 11.48348600
+H 1.21410800 16.78863900 10.92359800
+H 5.14106900 3.12858300 22.32613900
+H 4.84773300 3.33214200 22.97106700
+H 1.54627400 27.32284900 21.64647900
+H 1.89536100 27.35916600 22.29473300
+H 23.61494100 4.81278600 28.82197500
+H 23.15278300 4.71015800 28.25691600
+H 16.55009200 9.41232000 9.23163100
+H 16.39011400 8.95635500 9.78833300
+H 9.24672000 17.04310600 22.97075500
+H 9.69788100 16.57902500 23.32359500
+H 5.92999000 6.70344600 12.54324900
+H 6.12013700 6.02943400 12.77339200
+H 20.55806500 20.91865300 27.16038800
+H 20.17869900 21.08398200 27.77043800
+H 6.86904800 16.04280700 13.61109400
+H 7.39742300 16.55244000 13.54396000
+H 2.56041500 20.50409800 7.85659000
+H 1.94972600 20.22580200 8.16158900
+H 10.30946400 26.76199200 22.35478000
+H 9.74930900 26.93466800 22.80179500
+H 9.37796100 7.80951200 12.91974400
+H 8.83394300 8.02560600 12.47167900
+H 8.87347500 15.06285800 6.33146400
+H 8.47422200 14.92537200 6.93570600
+H 7.76353600 8.45873000 15.11360900
+H 7.75143800 8.55689900 14.38310900
+H 3.37293300 18.43420600 23.45136000
+H 3.96942500 18.08124700 23.70242100
+H 26.76422700 16.17472200 17.31888500
+H 26.40881800 16.38505300 17.92950700
+H 23.72340800 16.16827600 17.16088600
+H 23.54079100 15.74444300 16.58605400
+H 9.04422200 24.03668900 13.69386900
+H 8.77587200 23.93037800 14.37217600
+H 26.63067400 17.02388700 6.06368500
+H 26.82086300 16.77080800 6.72941200
+H 11.89740000 7.80260100 21.08513000
+H 12.35463200 8.38081400 21.08994900
+H 18.88034700 13.04076800 4.44410900
+H 18.99432900 13.09305500 5.17053000
+H 12.33984600 11.69259200 22.86388500
+H 12.74815800 11.21413800 23.24830300
+H 5.80287000 16.81823400 16.93960100
+H 5.49624100 17.28191100 17.42374600
+H 28.49793800 7.81327600 23.13893400
+H 28.47600900 7.97048500 22.41906000
+H 12.83557500 11.24373500 25.45085300
+H 12.41881800 11.24066000 26.05889700
+H 8.27635600 24.04023300 1.68334600
+H 7.96194000 23.42057200 1.43722300
+H 19.77199600 11.69701700 8.46538200
+H 19.78074500 11.70307100 9.20247100
+H 11.31673000 12.37398400 14.55721300
+H 10.84297500 12.47166100 14.00094900
+H 10.79125000 20.69161200 3.40245000
+H 11.27250900 20.38956300 3.87209900
+H 12.69025500 11.48337700 5.00482800
+H 11.98627900 11.67412000 4.89783200
+H 26.72371500 1.50329200 2.91105000
+H 26.51636700 2.14519300 3.20834400
+H 9.52738300 16.34429400 15.41539000
+H 8.94769200 16.45923000 15.85602700
+H 22.92343200 13.91655100 28.55448400
+H 22.91144200 13.99598900 27.82170900
+H 19.42780900 1.69485400 3.41368800
+H 18.91557000 1.36746900 3.83063400
+H 7.19465000 19.03417100 20.30585200
+H 6.81579600 18.83473100 20.90594100
+H 5.76403400 2.66353000 26.49024900
+H 6.17055300 2.09977300 26.24461900
+H 22.76304500 7.37905700 21.38041300
+H 22.27422500 7.45776800 21.92655800
+H 20.87103900 4.95557800 21.95393100
+H 20.54276300 4.55466100 21.42960800
+O 2.79836800 3.68628500 15.85501600
+O 2.81086000 3.61004300 17.09857400
+O 16.47940800 2.53818900 22.88295600
+O 16.11951200 2.71624200 24.06243800
+O 16.11955600 27.75767800 21.06500300
+O 16.53710300 26.62354600 21.36799700
+O 2.28922000 5.17821400 26.49769500
+O 2.38796000 5.21061100 25.25608000
+O 23.35821600 23.78530000 2.30561500
+O 22.62749600 23.99025500 3.29376900
+O 8.01645400 1.87918100 22.34390100
+O 7.71565300 1.00097600 23.17497300
+O 24.09262600 23.80245300 18.50597300
+O 25.13119000 23.75358600 19.19256200
+O 23.43919000 8.32924800 7.70010800
+O 22.65907800 8.89107400 8.49268800
+O 23.97254400 22.00311700 5.43698700
+O 23.89487400 22.49778100 6.57789900
+O 27.56254300 8.43488800 7.35581200
+O 27.43055900 8.25837300 6.12950500
+O 20.87006100 27.63986300 11.38162200
+O 20.86380900 27.63798600 12.62756100
+O 1.73533900 16.60794700 2.29549200
+O 1.55322100 16.46304200 1.07146500
+O 2.03508400 26.37263200 7.32515600
+O 1.51280300 27.39855300 7.80172200
+O 9.85776800 20.59545000 27.48500700
+O 9.78700000 20.58172200 26.24113800
+O 6.50961300 12.26791300 10.82158600
+O 6.77142400 11.85977400 9.67385600
+O 27.41406500 13.33114600 25.89152900
+O 27.64803100 14.38606200 25.27119400
+O 10.65841500 26.52178800 25.03188900
+O 11.32208500 27.05107500 25.94392100
+O 19.37531500 27.41779100 27.77152100
+O 19.50655800 28.65269600 27.87247500
+O 15.16713800 28.62232100 25.08493400
+O 15.07154300 28.26860400 26.27579700
+O 17.00751400 16.63266600 17.58492000
+O 17.59502600 16.71087600 16.48896400
+O 11.43827100 14.97615400 3.72092700
+O 10.81544400 15.61953100 4.58727500
+O 15.49533900 18.92456600 3.73508000
+O 15.41648300 19.38131500 2.57854700
+O 24.31615500 8.87176200 3.90336400
+O 24.24717100 8.63758100 2.68155900
+O 7.28827800 12.82799800 18.71906300
+O 6.55542500 13.39545800 19.55172300
+O 11.08744900 6.55884500 22.72049900
+O 12.06607400 6.27858300 23.43893700
+O 6.38492100 21.01048900 22.84221300
+O 6.12927500 19.99335000 23.51488000
+O 24.06443800 6.57624000 5.98481500
+O 24.52114300 5.76588200 6.81375800
+O 10.04719800 9.05734900 6.05599500
+O 10.94084300 9.28468500 6.89392400
+O 14.96821700 27.18796600 18.05445400
+O 15.07988500 27.85573600 17.00850000
+O 3.86508500 1.34322900 24.91310100
+O 3.95599400 1.18703300 26.14588000
+O 20.55715100 20.45753800 21.54897500
+O 19.73819000 20.46822400 22.48790900
+O 15.54716700 11.17956000 10.54123500
+O 15.52405700 11.70380700 11.67129500
+O 27.57196100 18.81697000 18.10230200
+O 28.42915400 18.07345000 18.61689400
+O 13.08594500 21.54734200 24.54405200
+O 14.11395800 21.16325000 25.13402600
+O 26.73666800 18.41630100 23.76197500
+O 26.39312500 17.34817200 24.30371700
+O 3.75150300 18.39675300 7.29152900
+O 3.53600500 18.86067200 6.15541900
+O 17.47592700 22.97389700 14.10462800
+O 17.52163900 23.02279100 15.34878500
+O 18.26366400 1.00092300 19.49677400
+O 18.47839600 1.21883800 20.70458600
+O 13.79429800 11.31045500 17.14879000
+O 14.75715400 11.10528500 16.38510100
+O 23.04461100 15.79867400 21.94317000
+O 24.21186100 16.06476100 22.28832400
+O 18.39899300 20.45438100 6.25233500
+O 18.17334100 19.38368000 5.65644400
+O 12.45708500 28.00076400 22.87959600
+O 12.89052700 26.91111300 23.30054100
+O 26.92707100 5.06905500 5.23373400
+O 25.77848800 5.33532200 4.83091500
+O 21.42684100 24.25676000 11.83089700
+O 21.61828400 25.40374200 11.38347100
+O 5.87933600 27.53672900 16.61577900
+O 4.73532800 27.38741900 17.08626700
+O 24.28470500 3.34526900 2.03178600
+O 24.76461000 2.73333800 1.05832000
+O 28.95365000 2.62596100 13.80868600
+O 28.43270400 3.61259000 13.25408200
+O 4.22171400 14.80081000 20.83480200
+O 4.21389800 14.77292800 19.58918200
+O 22.63711100 1.37775300 19.58937200
+O 23.87485500 1.47510200 19.48488400
+O 24.56301300 18.58751900 21.22319300
+O 23.67458500 19.30549400 20.72558500
+O 8.94762000 14.49730700 12.31189400
+O 9.38425200 15.14940800 13.27963600
+O 16.95516300 6.13080300 19.32331700
+O 16.15902300 5.87750900 18.39897300
+O 8.63504700 19.77961300 8.44117000
+O 9.68469700 20.38220800 8.73700800
+O 11.31282500 2.46998800 2.58334500
+O 11.07470700 1.38104200 2.02665600
+O 27.39479700 24.64841500 9.77024200
+O 26.71049700 25.67139800 9.57621600
+O 2.05963700 8.45476400 16.28023600
+O 2.01230900 8.30200000 17.51588500
+O 9.59314000 26.93822800 8.47063300
+O 10.09094600 25.91018600 7.97291300
+O 25.13932300 4.62957000 8.63843500
+O 25.91372600 5.60386200 8.57958800
+O 21.90534500 3.90912800 17.80877300
+O 21.81900900 3.92307100 19.05165600
+O 19.73746700 6.78254100 2.45368300
+O 19.39816400 6.01988000 3.37868500
+O 6.15237600 26.10484900 18.61638000
+O 4.93823500 25.98411400 18.86874900
+O 7.89451900 2.41931000 18.51611600
+O 7.61766700 2.45592400 17.30185900
+O 24.96184600 3.83646000 17.86831300
+O 24.40660700 3.89389800 16.75439300
+O 19.23185100 4.23752100 5.63971900
+O 20.27904100 4.39660700 4.98360000
diff --git a/mlip_arena/tasks/combustion/alignn/hydrogen.json b/mlip_arena/tasks/combustion/alignn/hydrogen.json
new file mode 100644
index 0000000000000000000000000000000000000000..e0550f75183d83cd9cccae4cca343920b6c508a1
--- /dev/null
+++ b/mlip_arena/tasks/combustion/alignn/hydrogen.json
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:575dcb76e8cceccadaef2ff40ffbd68351db45e2d9d19e7a13d992bf8a1a1cbc
+size 519
diff --git a/mlip_arena/tasks/combustion/chgnet/hydrogen.json b/mlip_arena/tasks/combustion/chgnet/hydrogen.json
new file mode 100644
index 0000000000000000000000000000000000000000..6ee50507b95e671dcd58a0c794e29334d20559f4
--- /dev/null
+++ b/mlip_arena/tasks/combustion/chgnet/hydrogen.json
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:3ab2f6bd802d8f9491e03dcc15e1fe179f593921d1038101d588cd0bee22d54a
+size 58345
diff --git a/mlip_arena/tasks/combustion/equiformer/hydrogen.json b/mlip_arena/tasks/combustion/equiformer/hydrogen.json
new file mode 100644
index 0000000000000000000000000000000000000000..96c31c2955ffd7975f46f5c05e3a831169b3c687
--- /dev/null
+++ b/mlip_arena/tasks/combustion/equiformer/hydrogen.json
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:7b99da993c15df5700e06781eb85e46541557f33df40f6b8984d89add4b24cce
+size 67780
diff --git a/mlip_arena/tasks/combustion/escn/hydrogen.json b/mlip_arena/tasks/combustion/escn/hydrogen.json
new file mode 100644
index 0000000000000000000000000000000000000000..d2c961328eab249fb940cd7aa789e7bc1537dbd8
--- /dev/null
+++ b/mlip_arena/tasks/combustion/escn/hydrogen.json
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:ab10167bece4688dbb6ca867bc443219333f8dfef678eee891d535d5e5ceaa30
+size 138692
diff --git a/mlip_arena/tasks/combustion/mace-mp/hydrogen.json b/mlip_arena/tasks/combustion/mace-mp/hydrogen.json
new file mode 100644
index 0000000000000000000000000000000000000000..4b8979ed8023fc3cfd5d64930685f680b0b5f748
--- /dev/null
+++ b/mlip_arena/tasks/combustion/mace-mp/hydrogen.json
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:2fee4011f63fe132bb65c9dfdad1c0e13f9db937675bc49f077c4fba1ffeb874
+size 229391
diff --git a/mlip_arena/tasks/combustion/matgl/hydrogen.json b/mlip_arena/tasks/combustion/matgl/hydrogen.json
new file mode 100644
index 0000000000000000000000000000000000000000..57f7038aa0c8c29dbc86334353c92de31a75f94e
--- /dev/null
+++ b/mlip_arena/tasks/combustion/matgl/hydrogen.json
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:430d50172964ae7e03b4d0879e1d09daefea8d413e5169b9c7dd3271907e3196
+size 50493
diff --git a/mlip_arena/tasks/combustion/mattersim/hydrogen.json b/mlip_arena/tasks/combustion/mattersim/hydrogen.json
new file mode 100644
index 0000000000000000000000000000000000000000..ce3dcade0260979f4addf85f8be6fe1f582ede2d
--- /dev/null
+++ b/mlip_arena/tasks/combustion/mattersim/hydrogen.json
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:00c0c38af5321151ff4a3fc64935df168689030ba31cad0be2589379360b333b
+size 226556
diff --git a/mlip_arena/tasks/combustion/orb/hydrogen.json b/mlip_arena/tasks/combustion/orb/hydrogen.json
new file mode 100644
index 0000000000000000000000000000000000000000..7d78008a04b83c63e97146ba2ebbef7e2d9ef07a
--- /dev/null
+++ b/mlip_arena/tasks/combustion/orb/hydrogen.json
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:f46a474a9d9419fbb3ee297b918cb1992d540f311c6942980c5986149d142d91
+size 465101
diff --git a/mlip_arena/tasks/combustion/sevennet/hydrogen.json b/mlip_arena/tasks/combustion/sevennet/hydrogen.json
new file mode 100644
index 0000000000000000000000000000000000000000..567e45a1c0777ab4d1fb5627922967a354678ba0
--- /dev/null
+++ b/mlip_arena/tasks/combustion/sevennet/hydrogen.json
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:fc465c2bb3212f9fb71f4d8d76b4b9db86bef4553f3434a52ca792cca6e4d3d7
+size 225986
diff --git a/mlip_arena/tasks/combustion/water.ipynb b/mlip_arena/tasks/combustion/water.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..18ea30955cac7a96cb7caab2c9415a74641109ae
--- /dev/null
+++ b/mlip_arena/tasks/combustion/water.ipynb
@@ -0,0 +1,299 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from pathlib import Path\n",
+ "\n",
+ "from dask.distributed import Client\n",
+ "from dask_jobqueue import SLURMCluster\n",
+ "from mlip_arena.models import REGISTRY, MLIPEnum\n",
+ "from mlip_arena.tasks.md import run as MD\n",
+ "from mlip_arena.tasks.utils import get_calculator\n",
+ "from prefect import flow\n",
+ "from prefect_dask import DaskTaskRunner\n",
+ "\n",
+ "from ase import Atoms, units\n",
+ "from ase.build import molecule\n",
+ "from ase.io import read, write\n",
+ "from pymatgen.core import Molecule\n",
+ "from pymatgen.io.packmol import PackmolBoxGen"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "jp-MarkdownHeadingCollapsed": true,
+ "tags": []
+ },
+ "source": [
+ "## Intial configuration"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "h2 = molecule(\"H2\")\n",
+ "o2 = molecule(\"O2\")\n",
+ "h2o = molecule(\"H2O\")\n",
+ "\n",
+ "write(\"h2.xyz\", h2)\n",
+ "write(\"o2.xyz\", o2)\n",
+ "write(\"h2o.xyz\", h2o)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "h2 = Molecule.from_file(\"h2.xyz\")\n",
+ "o2 = Molecule.from_file(\"o2.xyz\")\n",
+ "h2o = Molecule.from_file(\"h2o.xyz\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "molecules = []\n",
+ "\n",
+ "for m, number in zip([h2, o2], [128, 64]):\n",
+ " molecules.append(\n",
+ " {\n",
+ " \"name\": m.composition.to_pretty_string(),\n",
+ " \"number\": number,\n",
+ " \"coords\": m,\n",
+ " }\n",
+ " )"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "tolerance = 2.0\n",
+ "input_gen = PackmolBoxGen(\n",
+ " tolerance=tolerance,\n",
+ " seed=1,\n",
+ ")\n",
+ "margin = 0.5 * tolerance\n",
+ "\n",
+ "a = 30\n",
+ "\n",
+ "packmol_set = input_gen.get_input_set(\n",
+ " molecules=molecules,\n",
+ " box=[margin, margin, margin, a - margin, a - margin, a - margin],\n",
+ ")\n",
+ "packmol_set.write_input(\".\")\n",
+ "packmol_set.run(\".\")\n",
+ "\n",
+ "atoms = read(\"packmol_out.xyz\")\n",
+ "atoms.cell = [a, a, a]\n",
+ "atoms.pbc = True\n",
+ "\n",
+ "print(atoms)\n",
+ "\n",
+ "write(f\"{atoms.get_chemical_formula()}.extxyz\", atoms)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Run workflow"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "tags": []
+ },
+ "outputs": [],
+ "source": [
+ "atoms = read(\"H256O128.extxyz\")\n",
+ "print(atoms)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "nodes_per_alloc = 1\n",
+ "gpus_per_alloc = 4\n",
+ "ntasks = 1\n",
+ "\n",
+ "cluster_kwargs = dict(\n",
+ " cores=1,\n",
+ " memory=\"64 GB\",\n",
+ " shebang=\"#!/bin/bash\",\n",
+ " account=\"m4282\",\n",
+ " walltime=\"00:30:00\",\n",
+ " job_mem=\"0\",\n",
+ " job_script_prologue=[\n",
+ " \"source ~/.bashrc\",\n",
+ " \"module load python\",\n",
+ " \"source activate /pscratch/sd/c/cyrusyc/.conda/mlip-arena\",\n",
+ " ],\n",
+ " job_directives_skip=[\"-n\", \"--cpus-per-task\", \"-J\"],\n",
+ " job_extra_directives=[\n",
+ " \"-J combustion-water\",\n",
+ " \"-q debug\",\n",
+ " f\"-N {nodes_per_alloc}\",\n",
+ " \"-C gpu\",\n",
+ " f\"-G {gpus_per_alloc}\",\n",
+ " \"--exclusive\",\n",
+ " ],\n",
+ " death_timeout=86400,\n",
+ ")\n",
+ "\n",
+ "cluster = SLURMCluster(**cluster_kwargs)\n",
+ "\n",
+ "\n",
+ "print(cluster.job_script())\n",
+ "cluster.adapt(minimum_jobs=1, maximum_jobs=1)\n",
+ "client = Client(cluster)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "@flow(task_runner=DaskTaskRunner(address=client.scheduler.address), log_prints=True)\n",
+ "def combustion(atoms: Atoms):\n",
+ " futures = []\n",
+ "\n",
+ " for model in MLIPEnum:\n",
+ " if model.name != \"MatterSim\":\n",
+ " continue\n",
+ "\n",
+ " future = MD.submit(\n",
+ " atoms=atoms,\n",
+ " calculator=get_calculator(\n",
+ " calculator_name=model,\n",
+ " calculator_kwargs=None,\n",
+ " ),\n",
+ " ensemble=\"nvt\",\n",
+ " dynamics=\"nose-hoover\",\n",
+ " time_step=None,\n",
+ " dynamics_kwargs=dict(ttime=25 * units.fs, pfactor=None),\n",
+ " total_time=1000_000,\n",
+ " temperature=[300, 3000, 3000, 300],\n",
+ " pressure=None,\n",
+ " velocity_seed=0,\n",
+ " traj_file=Path(REGISTRY[model.name][\"family\"])\n",
+ " / f\"{model.name}_{atoms.get_chemical_formula()}.traj\",\n",
+ " traj_interval=1000,\n",
+ " restart=True,\n",
+ " )\n",
+ "\n",
+ " futures.append(future)\n",
+ "\n",
+ " return [future.result() for future in futures]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "tags": []
+ },
+ "outputs": [],
+ "source": [
+ "results = combustion(atoms)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def combustion(atoms: Atoms):\n",
+ " futures = []\n",
+ "\n",
+ " for model in MLIPEnum:\n",
+ " if model.name != \"MatterSim\":\n",
+ " continue\n",
+ "\n",
+ " future = MD(\n",
+ " atoms=atoms,\n",
+ " calculator=get_calculator(\n",
+ " calculator_name=model,\n",
+ " calculator_kwargs=None,\n",
+ " ),\n",
+ " ensemble=\"nvt\",\n",
+ " dynamics=\"nose-hoover\",\n",
+ " time_step=None,\n",
+ " dynamics_kwargs=dict(ttime=25 * units.fs, pfactor=None),\n",
+ " total_time=1000_000,\n",
+ " temperature=[300, 3000, 3000, 300],\n",
+ " pressure=None,\n",
+ " velocity_seed=0,\n",
+ " traj_file=Path(REGISTRY[model.name][\"family\"])\n",
+ " / f\"{model.name}_{atoms.get_chemical_formula()}.traj\",\n",
+ " traj_interval=1000,\n",
+ " restart=True,\n",
+ " )\n",
+ "\n",
+ " futures.append(future)\n",
+ "\n",
+ " return [future.result() for future in futures]\n",
+ "\n",
+ "\n",
+ "results = combustion(atoms)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "mlip-arena",
+ "language": "python",
+ "name": "mlip-arena"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.11.8"
+ },
+ "widgets": {
+ "application/vnd.jupyter.widget-state+json": {
+ "state": {},
+ "version_major": 2,
+ "version_minor": 0
+ }
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}
diff --git a/mlip_arena/tasks/diatomics/__init__.py b/mlip_arena/tasks/diatomics/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/mlip_arena/tasks/diatomics/alignn/homonuclear-diatomics.json b/mlip_arena/tasks/diatomics/alignn/homonuclear-diatomics.json
new file mode 100644
index 0000000000000000000000000000000000000000..dbb99fb1da19c5ceeb2b4de01587b239950cfcb4
--- /dev/null
+++ b/mlip_arena/tasks/diatomics/alignn/homonuclear-diatomics.json
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:325979c740279016c3652f570b742d0ed28065156e553ae6c878a775951c344b
+size 2383784
diff --git a/mlip_arena/tasks/diatomics/analysis.py b/mlip_arena/tasks/diatomics/analysis.py
new file mode 100644
index 0000000000000000000000000000000000000000..b2f84ff9302cec37b8e92c6feede0038f93c66c9
--- /dev/null
+++ b/mlip_arena/tasks/diatomics/analysis.py
@@ -0,0 +1,198 @@
+from pathlib import Path
+
+import numpy as np
+import pandas as pd
+from ase.data import chemical_symbols
+from ase.io import read
+from scipy import stats
+from scipy.interpolate import UnivariateSpline
+from tqdm.auto import tqdm
+
+from mlip_arena.models import REGISTRY, MLIPEnum
+
+for model in MLIPEnum:
+
+ df = pd.DataFrame(
+ columns=[
+ "name",
+ "method",
+ "R",
+ "E",
+ "F",
+ "S^2",
+ "force-flip-times",
+ "force-total-variation",
+ "force-jump",
+ "energy-diff-flip-times",
+ "energy-grad-norm-max",
+ "energy-jump",
+ "energy-total-variation",
+ "tortuosity",
+ "conservation-deviation",
+ "spearman-descending-force",
+ "spearman-ascending-force",
+ "spearman-repulsion-energy",
+ "spearman-attraction-energy",
+ "pbe-energy-mae",
+ "pbe-force-mae",
+ ]
+ )
+
+ for symbol in tqdm(chemical_symbols[1:]):
+ da = symbol + symbol
+
+ out_dir = Path(model.name)
+
+ traj_fpath = out_dir / f"{str(da)}.extxyz"
+
+ if traj_fpath.exists():
+ traj = read(traj_fpath, index=":")
+ else:
+ continue
+
+ Rs, Es, Fs, S2s = [], [], [], []
+ for atoms in traj:
+ vec = atoms.positions[1] - atoms.positions[0]
+ r = np.linalg.norm(vec)
+ e = atoms.get_potential_energy()
+ f = np.inner(vec / r, atoms.get_forces()[1])
+ # s2 = np.mean(np.power(atoms.get_magnetic_moments(), 2))
+
+ Rs.append(r)
+ Es.append(e)
+ Fs.append(f)
+ # S2s.append(s2)
+
+ rs = np.array(Rs)
+ es = np.array(Es)
+ fs = np.array(Fs)
+
+ # sort interatomic distances and align to zero at far field
+ indices = np.argsort(rs)[::-1]
+ rs = rs[indices]
+ es = es[indices]
+ eshift = es[0]
+ es -= eshift
+ fs = fs[indices]
+
+ iminf = np.argmin(fs)
+ imine = np.argmin(es)
+
+ de_dr = np.gradient(es, rs)
+ d2e_dr2 = np.gradient(de_dr, rs)
+
+ # avoid numerical sensitity close to zero
+ rounded_fs = np.copy(fs)
+ rounded_fs[np.abs(rounded_fs) < 1e-2] = 0 # 10meV/A
+ fs_sign = np.sign(rounded_fs)
+ mask = fs_sign != 0
+ rounded_fs = rounded_fs[mask]
+ fs_sign = fs_sign[mask]
+ f_flip = np.diff(fs_sign) != 0
+
+ fdiff = np.diff(fs)
+ fdiff_sign = np.sign(fdiff)
+ mask = fdiff_sign != 0
+ fdiff = fdiff[mask]
+ fdiff_sign = fdiff_sign[mask]
+ fdiff_flip = np.diff(fdiff_sign) != 0
+ fjump = (
+ np.abs(fdiff[:-1][fdiff_flip]).sum() + np.abs(fdiff[1:][fdiff_flip]).sum()
+ )
+
+ ediff = np.diff(es)
+ ediff[np.abs(ediff) < 1e-3] = 0 # 1meV
+ ediff_sign = np.sign(ediff)
+ mask = ediff_sign != 0
+ ediff = ediff[mask]
+ ediff_sign = ediff_sign[mask]
+ ediff_flip = np.diff(ediff_sign) != 0
+ ejump = (
+ np.abs(ediff[:-1][ediff_flip]).sum() + np.abs(ediff[1:][ediff_flip]).sum()
+ )
+
+ try:
+ pbe_traj = read(f"./vasp/{da}/PBE.extxyz", index=":")
+
+ pbe_rs, pbe_es, pbe_fs = [], [], []
+
+ for atoms in pbe_traj:
+ vec = atoms.positions[1] - atoms.positions[0]
+ r = np.linalg.norm(vec)
+ pbe_rs.append(r)
+ pbe_es.append(atoms.get_potential_energy())
+ pbe_fs.append(np.inner(vec / r, atoms.get_forces()[1]))
+
+ pbe_rs = np.array(pbe_rs)
+ pbe_es = np.array(pbe_es)
+ pbe_fs = np.array(pbe_fs)
+
+ indices = np.argsort(pbe_rs)
+ pbe_rs = pbe_rs[indices]
+ pbe_es = pbe_es[indices]
+ pbe_fs = pbe_fs[indices]
+
+ pbe_es -= pbe_es[-1]
+
+ xs = np.linspace(pbe_rs.min(), pbe_rs.max(), int(1e3))
+
+ cs = UnivariateSpline(pbe_rs, pbe_es, s=0)
+ pbe_energy_mae = np.mean(np.abs(es - cs(rs)))
+
+ cs = UnivariateSpline(pbe_rs, pbe_fs, s=0)
+ pbe_force_mae = np.mean(np.abs(fs - cs(rs)))
+ except Exception as e:
+ print(e)
+ pbe_energy_mae = None
+ pbe_force_mae = None
+
+ conservation_deviation = np.mean(np.abs(fs + de_dr))
+
+ etv = np.sum(np.abs(np.diff(es)))
+
+ data = {
+ "name": da,
+ "method": model.name,
+ "R": rs,
+ "E": es + eshift,
+ "F": fs,
+ "S^2": S2s,
+ "force-flip-times": np.sum(f_flip),
+ "force-total-variation": np.sum(np.abs(np.diff(fs))),
+ "force-jump": fjump,
+ "energy-diff-flip-times": np.sum(ediff_flip),
+ "energy-grad-norm-max": np.max(np.abs(de_dr)),
+ "energy-jump": ejump,
+ # "energy-grad-norm-mean": np.mean(de_dr_abs),
+ "energy-total-variation": etv,
+ "tortuosity": etv / (abs(es[0] - es.min()) + (es[-1] - es.min())),
+ "conservation-deviation": conservation_deviation,
+ "spearman-descending-force": stats.spearmanr(
+ rs[iminf:], fs[iminf:]
+ ).statistic,
+ "spearman-ascending-force": stats.spearmanr(
+ rs[:iminf], fs[:iminf]
+ ).statistic,
+ "spearman-repulsion-energy": stats.spearmanr(
+ rs[imine:], es[imine:]
+ ).statistic,
+ "spearman-attraction-energy": stats.spearmanr(
+ rs[:imine], es[:imine]
+ ).statistic,
+ "pbe-energy-mae": pbe_energy_mae,
+ "pbe-force-mae": pbe_force_mae,
+ }
+
+ df = pd.concat([df, pd.DataFrame([data])], ignore_index=True)
+
+ json_fpath = Path(REGISTRY[model.name]["family"]) / "homonuclear-diatomics.json"
+
+ if json_fpath.exists():
+ df0 = pd.read_json(json_fpath)
+ df = pd.concat([df0, df], ignore_index=True)
+ df.drop_duplicates(inplace=True, subset=["name", "method"], keep="last")
+
+ df.to_json(json_fpath, orient="records")
+
+ json_fpath = Path(model.name) / "homonuclear-diatomics.json"
+ df.to_json(json_fpath, orient="records")
diff --git a/mlip_arena/tasks/diatomics/ani/homonuclear-diatomics.json b/mlip_arena/tasks/diatomics/ani/homonuclear-diatomics.json
new file mode 100644
index 0000000000000000000000000000000000000000..cf9b77bd754b058572d651f92e42b9f73a2379c3
--- /dev/null
+++ b/mlip_arena/tasks/diatomics/ani/homonuclear-diatomics.json
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:f622fde1f33128568baa2beb374e33e112557581a2a5dc675ce8b6273a840a17
+size 121195
diff --git a/mlip_arena/tasks/diatomics/chgnet/homonuclear-diatomics.json b/mlip_arena/tasks/diatomics/chgnet/homonuclear-diatomics.json
new file mode 100644
index 0000000000000000000000000000000000000000..642f0114f02c71cfeff92448138c11e659be01f5
--- /dev/null
+++ b/mlip_arena/tasks/diatomics/chgnet/homonuclear-diatomics.json
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:5f3595e1ae02dbc7c30a8ff39227b2a2e46ea940be17e482200f8b3d518cda01
+size 2003404
diff --git a/mlip_arena/tasks/diatomics/equiformer/homonuclear-diatomics.json b/mlip_arena/tasks/diatomics/equiformer/homonuclear-diatomics.json
new file mode 100644
index 0000000000000000000000000000000000000000..08515e2c31e5897b922c1b50b2ac07c554f79c50
--- /dev/null
+++ b/mlip_arena/tasks/diatomics/equiformer/homonuclear-diatomics.json
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:d278cac9a2d7ce073735dcf6e2df6637510efcb8d89289706b54e8b540c942ec
+size 3764511
diff --git a/mlip_arena/tasks/diatomics/escn/homonuclear-diatomics.json b/mlip_arena/tasks/diatomics/escn/homonuclear-diatomics.json
new file mode 100644
index 0000000000000000000000000000000000000000..b2730f46fb45d186de89b5d9e101f4732f76bb3a
--- /dev/null
+++ b/mlip_arena/tasks/diatomics/escn/homonuclear-diatomics.json
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:2bfb8f0a5424259c9e9686e3e8778adb36e9b08937296e2a127d6007a1adf3bf
+size 1960063
diff --git a/mlip_arena/tasks/diatomics/fairchem/homonuclear-diatomics.json b/mlip_arena/tasks/diatomics/fairchem/homonuclear-diatomics.json
new file mode 100644
index 0000000000000000000000000000000000000000..f8ad414702846dd5ac901d92ba99f09d8065dd39
--- /dev/null
+++ b/mlip_arena/tasks/diatomics/fairchem/homonuclear-diatomics.json
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:5f955a5e08dbb9be3d0a04f06bd4cf93ac63a6a401132a7e74e971365133472a
+size 4286019
diff --git a/mlip_arena/tasks/diatomics/homonuclear-diatomics.tex b/mlip_arena/tasks/diatomics/homonuclear-diatomics.tex
new file mode 100644
index 0000000000000000000000000000000000000000..1ab4f94f01f882a9a591574e286473b07c7ac614
--- /dev/null
+++ b/mlip_arena/tasks/diatomics/homonuclear-diatomics.tex
@@ -0,0 +1,23 @@
+\begin{tabular}{lrrrrrrrrrrr}
+\toprule
+ & Rank & Rank aggr. & Conservation deviation [eV/โซ] & Spearman's coeff. (E: repulsion) & Spearman's coeff. (F: descending) & Energy jump [eV] & Force flips & Tortuosity \\
+Model & & & & & & & & \\
+\midrule
+MACE-MPA & 1 & 13 & 0.077 & -0.997 & -0.975 & 0.010 & 1.371 & 1.006 \\
+MACE-MP(M) & 2 & 15 & 0.070 & -0.997 & -0.980 & 0.038 & 1.449 & 1.161 \\
+MatterSim & 3 & 20 & 0.013 & -0.980 & -0.972 & 0.008 & 2.766 & 1.021 \\
+M3GNet & 4 & 24 & 0.026 & -0.991 & -0.947 & 0.029 & 3.528 & 1.016 \\
+ORBv2 & 5 & 30 & 9.751 & -0.883 & -0.988 & 0.991 & 0.991 & 1.287 \\
+eSCN(OC20) & 6 & 32 & 2.045 & -0.939 & -0.984 & 0.806 & 0.640 & 5.335 \\
+CHGNet & 7 & 35 & 1.066 & -0.992 & -0.925 & 0.291 & 2.255 & 2.279 \\
+ORB & 8 & 39 & 10.220 & -0.881 & -0.954 & 1.019 & 1.026 & 1.798 \\
+SevenNet & 9 & 41 & 34.005 & -0.986 & -0.928 & 0.392 & 2.112 & 1.292 \\
+eqV2(OMat) & 10 & 51 & 15.477 & -0.880 & -0.976 & 4.118 & 3.126 & 2.515 \\
+eSEN & 11 & 55 & 1.170 & -0.692 & -0.919 & 5.562 & 4.000 & 1.838 \\
+ALIGNN & 12 & 59 & 5.164 & -0.913 & -0.310 & 9.876 & 30.669 & 1.818 \\
+EquiformerV2(OC20) & 13 & 71 & 21.385 & -0.680 & -0.891 & 38.282 & 22.775 & 8.669 \\
+EquiformerV2(OC22) & 14 & 75 & 27.687 & -0.415 & -0.855 & 64.837 & 21.674 & 15.880 \\
+MACE-OFF(M) & 15 & 85 & NaN & NaN & NaN & NaN & NaN & NaN \\
+ANI2x & 16 & 91 & NaN & NaN & NaN & NaN & NaN & NaN \\
+\bottomrule
+\end{tabular}
diff --git a/mlip_arena/tasks/diatomics/m3gnet/homonuclear-diatomics.json b/mlip_arena/tasks/diatomics/m3gnet/homonuclear-diatomics.json
new file mode 100644
index 0000000000000000000000000000000000000000..b2dbc565ffc676875303f2360f403e54c7c774ba
--- /dev/null
+++ b/mlip_arena/tasks/diatomics/m3gnet/homonuclear-diatomics.json
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:c257248d2f62bfd09eb334c49405287bf5bc3bf14cfc6ad0a5890425f559f91c
+size 1854330
diff --git a/mlip_arena/tasks/diatomics/mace-mp/homonuclear-diatomics.json b/mlip_arena/tasks/diatomics/mace-mp/homonuclear-diatomics.json
new file mode 100644
index 0000000000000000000000000000000000000000..0201fe283dc93059954f57951d880dde582549dd
--- /dev/null
+++ b/mlip_arena/tasks/diatomics/mace-mp/homonuclear-diatomics.json
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:9ad34875760232ee25a34b7d6e8a54d75e3b8ddd38efaf5de3aa7a3d6e19474d
+size 3837066
diff --git a/mlip_arena/tasks/diatomics/mace-off/homonuclear-diatomics.json b/mlip_arena/tasks/diatomics/mace-off/homonuclear-diatomics.json
new file mode 100644
index 0000000000000000000000000000000000000000..af4c0429c938b63bda2bd39a644c303beef804f7
--- /dev/null
+++ b/mlip_arena/tasks/diatomics/mace-off/homonuclear-diatomics.json
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:010d9215f9c1765fd2d807c0ef57a95b14832b6bda841e25948c6ee342232579
+size 173998
diff --git a/mlip_arena/tasks/diatomics/matgl/homonuclear-diatomics.json b/mlip_arena/tasks/diatomics/matgl/homonuclear-diatomics.json
new file mode 100644
index 0000000000000000000000000000000000000000..ec1a9f68de96b98b29893f3fec035483afe88a1d
--- /dev/null
+++ b/mlip_arena/tasks/diatomics/matgl/homonuclear-diatomics.json
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:32a7001f8635327e166f7747942ab8fdf4bfb20e68fc632b24005d2017daf5f4
+size 1858414
diff --git a/mlip_arena/tasks/diatomics/mattersim/homonuclear-diatomics.json b/mlip_arena/tasks/diatomics/mattersim/homonuclear-diatomics.json
new file mode 100644
index 0000000000000000000000000000000000000000..9bebe3e201c05870616f3bdc5d34de20c713f3d5
--- /dev/null
+++ b/mlip_arena/tasks/diatomics/mattersim/homonuclear-diatomics.json
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:0181c4173a7ec6cd0ddb469817bc6ff1befec5b9a4a122b5876622ad5006fd49
+size 1929036
diff --git a/mlip_arena/tasks/diatomics/orb/homonuclear-diatomics.json b/mlip_arena/tasks/diatomics/orb/homonuclear-diatomics.json
new file mode 100644
index 0000000000000000000000000000000000000000..347b6b0777f99535f22a114ce7907306eebab557
--- /dev/null
+++ b/mlip_arena/tasks/diatomics/orb/homonuclear-diatomics.json
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:6799123dc798c713ccd100cec528a71b3e3ec4633de8f92c37c0c2d61b5c7801
+size 5197473
diff --git a/mlip_arena/tasks/diatomics/run.ipynb b/mlip_arena/tasks/diatomics/run.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..6029edac048ca96131a2d0eb419b8e857458e5f5
--- /dev/null
+++ b/mlip_arena/tasks/diatomics/run.ipynb
@@ -0,0 +1,381 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "3200850a-b8fb-4f50-9815-16ae8da0f942",
+ "metadata": {
+ "tags": []
+ },
+ "outputs": [],
+ "source": [
+ "import os\n",
+ "from pathlib import Path\n",
+ "\n",
+ "import numpy as np\n",
+ "import pandas as pd\n",
+ "from scipy import stats\n",
+ "from scipy.interpolate import UnivariateSpline\n",
+ "from tqdm.auto import tqdm\n",
+ "\n",
+ "from ase import Atom, Atoms\n",
+ "from ase.data import chemical_symbols, covalent_radii, vdw_alvarez\n",
+ "from ase.io import read, write\n",
+ "from mlip_arena.models import REGISTRY, MLIPEnum\n",
+ "from pymatgen.core import Element"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "02ff9cf9-49a2-4cec-80d3-56c6661a513b",
+ "metadata": {
+ "tags": []
+ },
+ "source": [
+ "# Compute MLIP homonuclear diatomics"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "90887faa-1601-4c4c-9c44-d16731471d7f",
+ "metadata": {
+ "scrolled": true,
+ "tags": []
+ },
+ "outputs": [],
+ "source": [
+ "for model in MLIPEnum:\n",
+ " model_name = model.name\n",
+ "\n",
+ " if model_name != \"MACE-MPA\":\n",
+ " continue\n",
+ "\n",
+ " print(f\"========== {model_name} ==========\")\n",
+ "\n",
+ " calc = MLIPEnum[model_name].value()\n",
+ "\n",
+ " for symbol in tqdm(chemical_symbols[1:]):\n",
+ " s = set([symbol])\n",
+ "\n",
+ " if \"X\" in s:\n",
+ " continue\n",
+ "\n",
+ " try:\n",
+ " atom = Atom(symbol)\n",
+ " rmin = 0.9 * covalent_radii[atom.number]\n",
+ " rvdw = (\n",
+ " vdw_alvarez.vdw_radii[atom.number]\n",
+ " if atom.number < len(vdw_alvarez.vdw_radii)\n",
+ " else np.nan\n",
+ " )\n",
+ " rmax = 3.1 * rvdw if not np.isnan(rvdw) else 6\n",
+ " rstep = 0.01\n",
+ " npts = int((rmax - rmin) / rstep)\n",
+ "\n",
+ " rs = np.linspace(rmin, rmax, npts)\n",
+ " es = np.zeros_like(rs)\n",
+ "\n",
+ " da = symbol + symbol\n",
+ "\n",
+ " out_dir = Path(REGISTRY[model_name][\"family\"]) / str(da)\n",
+ " os.makedirs(out_dir, exist_ok=True)\n",
+ "\n",
+ " skip = 0\n",
+ "\n",
+ " element = Element(symbol)\n",
+ "\n",
+ " try:\n",
+ " m = element.valence[1]\n",
+ " if element.valence == (0, 2):\n",
+ " m = 0\n",
+ " except Exception:\n",
+ " m = 0\n",
+ "\n",
+ " a = 2 * rmax\n",
+ " r = rs[0]\n",
+ "\n",
+ " positions = [\n",
+ " [a / 2 - r / 2, a / 2, a / 2],\n",
+ " [a / 2 + r / 2, a / 2, a / 2],\n",
+ " ]\n",
+ "\n",
+ " traj_fpath = out_dir / f\"{model_name}.extxyz\"\n",
+ "\n",
+ " if traj_fpath.exists():\n",
+ " traj = read(traj_fpath, index=\":\")\n",
+ " skip = len(traj)\n",
+ " atoms = traj[-1]\n",
+ " else:\n",
+ " # Create the unit cell with two atoms\n",
+ " atoms = Atoms(\n",
+ " da,\n",
+ " positions=positions,\n",
+ " # magmoms=magmoms,\n",
+ " cell=[a, a + 0.001, a + 0.002],\n",
+ " pbc=True,\n",
+ " )\n",
+ "\n",
+ " print(atoms)\n",
+ "\n",
+ " atoms.calc = calc\n",
+ "\n",
+ " for i, r in enumerate(tqdm(rs)):\n",
+ " if i < skip:\n",
+ " continue\n",
+ "\n",
+ " positions = [\n",
+ " [a / 2 - r / 2, a / 2, a / 2],\n",
+ " [a / 2 + r / 2, a / 2, a / 2],\n",
+ " ]\n",
+ "\n",
+ " # atoms.set_initial_magnetic_moments(magmoms)\n",
+ "\n",
+ " atoms.set_positions(positions)\n",
+ "\n",
+ " es[i] = atoms.get_potential_energy()\n",
+ "\n",
+ " write(traj_fpath, atoms, append=\"a\")\n",
+ " except Exception as e:\n",
+ " print(e)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "f1bbfae1-790d-4586-9d7d-79c1ba658dcb",
+ "metadata": {},
+ "source": [
+ "# Analysis and output"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "a0ac2c09-370b-4fdd-bf74-ea5c4ade0215",
+ "metadata": {
+ "scrolled": true,
+ "tags": []
+ },
+ "outputs": [],
+ "source": [
+ "for model in MLIPEnum:\n",
+ " model_name = model.name\n",
+ "\n",
+ " # if model_name != \"MatterSim\":\n",
+ " # continue\n",
+ "\n",
+ " print(f\"========== {model_name} ==========\")\n",
+ "\n",
+ " df = pd.DataFrame(\n",
+ " columns=[\n",
+ " \"name\",\n",
+ " \"method\",\n",
+ " \"R\",\n",
+ " \"E\",\n",
+ " \"F\",\n",
+ " \"S^2\",\n",
+ " \"force-flip-times\",\n",
+ " \"force-total-variation\",\n",
+ " \"force-jump\",\n",
+ " \"energy-diff-flip-times\",\n",
+ " \"energy-grad-norm-max\",\n",
+ " \"energy-jump\",\n",
+ " \"energy-total-variation\",\n",
+ " \"tortuosity\",\n",
+ " \"conservation-deviation\",\n",
+ " \"spearman-descending-force\",\n",
+ " \"spearman-ascending-force\",\n",
+ " \"spearman-repulsion-energy\",\n",
+ " \"spearman-attraction-energy\",\n",
+ " \"pbe-energy-mae\",\n",
+ " \"pbe-force-mae\",\n",
+ " ]\n",
+ " )\n",
+ "\n",
+ " for symbol in tqdm(chemical_symbols[1:]):\n",
+ " da = symbol + symbol\n",
+ "\n",
+ " out_dir = Path(REGISTRY[model_name][\"family\"]) / da\n",
+ "\n",
+ " traj_fpath = out_dir / f\"{model_name}.extxyz\"\n",
+ "\n",
+ " if traj_fpath.exists():\n",
+ " traj = read(traj_fpath, index=\":\")\n",
+ " else:\n",
+ " continue\n",
+ "\n",
+ " Rs, Es, Fs, S2s = [], [], [], []\n",
+ " for atoms in traj:\n",
+ " vec = atoms.positions[1] - atoms.positions[0]\n",
+ " r = np.linalg.norm(vec)\n",
+ " e = atoms.get_potential_energy()\n",
+ " f = np.inner(vec / r, atoms.get_forces()[1])\n",
+ " # s2 = np.mean(np.power(atoms.get_magnetic_moments(), 2))\n",
+ "\n",
+ " Rs.append(r)\n",
+ " Es.append(e)\n",
+ " Fs.append(f)\n",
+ " # S2s.append(s2)\n",
+ "\n",
+ " rs = np.array(Rs)\n",
+ " es = np.array(Es)\n",
+ " fs = np.array(Fs)\n",
+ "\n",
+ " # sort interatomic distances and align to zero at far field\n",
+ " indices = np.argsort(rs)[::-1]\n",
+ " rs = rs[indices]\n",
+ " es = es[indices]\n",
+ " eshift = es[0]\n",
+ " es -= eshift\n",
+ " fs = fs[indices]\n",
+ "\n",
+ " iminf = np.argmin(fs)\n",
+ " imine = np.argmin(es)\n",
+ "\n",
+ " de_dr = np.gradient(es, rs)\n",
+ " d2e_dr2 = np.gradient(de_dr, rs)\n",
+ "\n",
+ " # avoid numerical sensitity close to zero\n",
+ " rounded_fs = np.copy(fs)\n",
+ " rounded_fs[np.abs(rounded_fs) < 1e-2] = 0 # 10meV/A\n",
+ " fs_sign = np.sign(rounded_fs)\n",
+ " mask = fs_sign != 0\n",
+ " rounded_fs = rounded_fs[mask]\n",
+ " fs_sign = fs_sign[mask]\n",
+ " f_flip = np.diff(fs_sign) != 0\n",
+ "\n",
+ " fdiff = np.diff(fs)\n",
+ " fdiff_sign = np.sign(fdiff)\n",
+ " mask = fdiff_sign != 0\n",
+ " fdiff = fdiff[mask]\n",
+ " fdiff_sign = fdiff_sign[mask]\n",
+ " fdiff_flip = np.diff(fdiff_sign) != 0\n",
+ " fjump = (\n",
+ " np.abs(fdiff[:-1][fdiff_flip]).sum() + np.abs(fdiff[1:][fdiff_flip]).sum()\n",
+ " )\n",
+ "\n",
+ " ediff = np.diff(es)\n",
+ " ediff[np.abs(ediff) < 1e-3] = 0 # 1meV\n",
+ " ediff_sign = np.sign(ediff)\n",
+ " mask = ediff_sign != 0\n",
+ " ediff = ediff[mask]\n",
+ " ediff_sign = ediff_sign[mask]\n",
+ " ediff_flip = np.diff(ediff_sign) != 0\n",
+ " ejump = (\n",
+ " np.abs(ediff[:-1][ediff_flip]).sum() + np.abs(ediff[1:][ediff_flip]).sum()\n",
+ " )\n",
+ "\n",
+ " try:\n",
+ " pbe_traj = read(f\"./vasp/{da}/PBE.extxyz\", index=\":\")\n",
+ "\n",
+ " pbe_rs, pbe_es, pbe_fs = [], [], []\n",
+ "\n",
+ " for atoms in pbe_traj:\n",
+ " vec = atoms.positions[1] - atoms.positions[0]\n",
+ " r = np.linalg.norm(vec)\n",
+ " pbe_rs.append(r)\n",
+ " pbe_es.append(atoms.get_potential_energy())\n",
+ " pbe_fs.append(np.inner(vec / r, atoms.get_forces()[1]))\n",
+ "\n",
+ " pbe_rs = np.array(pbe_rs)\n",
+ " pbe_es = np.array(pbe_es)\n",
+ " pbe_fs = np.array(pbe_fs)\n",
+ "\n",
+ " indices = np.argsort(pbe_rs)\n",
+ " pbe_rs = pbe_rs[indices]\n",
+ " pbe_es = pbe_es[indices]\n",
+ " pbe_fs = pbe_fs[indices]\n",
+ "\n",
+ " pbe_es -= pbe_es[-1]\n",
+ "\n",
+ " xs = np.linspace(pbe_rs.min(), pbe_rs.max(), int(1e3))\n",
+ "\n",
+ " cs = UnivariateSpline(pbe_rs, pbe_es, s=0)\n",
+ " pbe_energy_mae = np.mean(np.abs(es - cs(rs)))\n",
+ "\n",
+ " cs = UnivariateSpline(pbe_rs, pbe_fs, s=0)\n",
+ " pbe_force_mae = np.mean(np.abs(fs - cs(rs)))\n",
+ " except Exception as e:\n",
+ " print(e)\n",
+ " pbe_energy_mae = None\n",
+ " pbe_force_mae = None\n",
+ "\n",
+ " conservation_deviation = np.mean(np.abs(fs + de_dr))\n",
+ "\n",
+ " etv = np.sum(np.abs(np.diff(es)))\n",
+ "\n",
+ " data = {\n",
+ " \"name\": da,\n",
+ " \"method\": model_name,\n",
+ " \"R\": rs,\n",
+ " \"E\": es + eshift,\n",
+ " \"F\": fs,\n",
+ " \"S^2\": S2s,\n",
+ " \"force-flip-times\": np.sum(f_flip),\n",
+ " \"force-total-variation\": np.sum(np.abs(np.diff(fs))),\n",
+ " \"force-jump\": fjump,\n",
+ " \"energy-diff-flip-times\": np.sum(ediff_flip),\n",
+ " \"energy-grad-norm-max\": np.max(np.abs(de_dr)),\n",
+ " \"energy-jump\": ejump,\n",
+ " # \"energy-grad-norm-mean\": np.mean(de_dr_abs),\n",
+ " \"energy-total-variation\": etv,\n",
+ " \"tortuosity\": etv / (abs(es[0] - es.min()) + (es[-1] - es.min())),\n",
+ " \"conservation-deviation\": conservation_deviation,\n",
+ " \"spearman-descending-force\": stats.spearmanr(\n",
+ " rs[iminf:], fs[iminf:]\n",
+ " ).statistic,\n",
+ " \"spearman-ascending-force\": stats.spearmanr(\n",
+ " rs[:iminf], fs[:iminf]\n",
+ " ).statistic,\n",
+ " \"spearman-repulsion-energy\": stats.spearmanr(\n",
+ " rs[imine:], es[imine:]\n",
+ " ).statistic,\n",
+ " \"spearman-attraction-energy\": stats.spearmanr(\n",
+ " rs[:imine], es[:imine]\n",
+ " ).statistic,\n",
+ " \"pbe-energy-mae\": pbe_energy_mae,\n",
+ " \"pbe-force-mae\": pbe_force_mae,\n",
+ " }\n",
+ "\n",
+ " df = pd.concat([df, pd.DataFrame([data])], ignore_index=True)\n",
+ "\n",
+ " json_fpath = Path(REGISTRY[model_name][\"family\"]) / \"homonuclear-diatomics.json\"\n",
+ "\n",
+ " if json_fpath.exists():\n",
+ " df0 = pd.read_json(json_fpath)\n",
+ " df = pd.concat([df0, df], ignore_index=True)\n",
+ " df.drop_duplicates(inplace=True, subset=[\"name\", \"method\"], keep=\"last\")\n",
+ "\n",
+ " df.to_json(json_fpath, orient=\"records\")"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.11.8"
+ },
+ "widgets": {
+ "application/vnd.jupyter.widget-state+json": {
+ "state": {},
+ "version_major": 2,
+ "version_minor": 0
+ }
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/mlip_arena/tasks/diatomics/run.py b/mlip_arena/tasks/diatomics/run.py
new file mode 100644
index 0000000000000000000000000000000000000000..2564173045360431b16e9eaca53d32eda9df5d45
--- /dev/null
+++ b/mlip_arena/tasks/diatomics/run.py
@@ -0,0 +1,131 @@
+import itertools
+from pathlib import Path
+
+import numpy as np
+from ase import Atom, Atoms
+from ase.calculators.calculator import BaseCalculator
+from ase.data import chemical_symbols, covalent_radii, vdw_alvarez
+from ase.io import read, write
+from prefect import flow, task
+from tqdm.auto import tqdm
+
+from mlip_arena.models import REGISTRY, MLIPEnum
+from mlip_arena.tasks.utils import get_calculator
+
+
+@task
+def homonuclear_diatomics(symbol: str, calculator: BaseCalculator, out_dir: Path):
+ """
+ Calculate potential energy curves for homonuclear diatomic molecules.
+
+ This function computes the potential energy of a diatomic molecule (two atoms of
+ the same element) across a range of interatomic distances. The distance range is
+ automatically determined from the covalent and van der Waals radii of the element.
+
+ Args:
+ symbol: Chemical symbol of the atom (e.g., 'H', 'O', 'Fe')
+ calculator: ASE calculator object used to compute the potential energies. Could be VASP, MLIP, etc.
+
+ Returns:
+ None: Results are saved as trajectory files in a directory structure:
+ /{model_family}/{element_pair}/{model_name}.extxyz
+
+ Note:
+ - Minimum distance is set to 0.9ร the covalent radius
+ - Maximum distance is set to 3.1ร the van der Waals radius (or 6 ร if unknown)
+ - Distance step size is fixed at 0.01 ร
+ - If an existing trajectory file is found, the calculation will resume from where it left off
+ - The atoms are placed in a periodic box large enough to avoid self-interaction
+ """
+
+ atom = Atom(symbol)
+ rmin = 0.9 * covalent_radii[atom.number]
+ rvdw = (
+ vdw_alvarez.vdw_radii[atom.number]
+ if atom.number < len(vdw_alvarez.vdw_radii)
+ else np.nan
+ )
+ rmax = 3.1 * rvdw if not np.isnan(rvdw) else 6
+ rstep = 0.01
+ npts = int((rmax - rmin) / rstep)
+
+ rs = np.linspace(rmin, rmax, npts)
+ es = np.zeros_like(rs)
+
+ da = symbol + symbol
+
+ out_dir.mkdir(parents=True, exist_ok=True)
+
+ skip = 0
+
+ a = 5 * rmax
+ r = rs[0]
+
+ positions = [
+ [a / 2 - r / 2, a / 2, a / 2],
+ [a / 2 + r / 2, a / 2, a / 2],
+ ]
+
+ traj_fpath = out_dir / f"{da!s}.extxyz"
+
+ if traj_fpath.exists():
+ traj = read(traj_fpath, index=":")
+ skip = len(traj)
+ atoms = traj[-1]
+ else:
+ # Create the unit cell with two atoms
+ atoms = Atoms(
+ da,
+ positions=positions,
+ # magmoms=magmoms,
+ cell=[a, a + 0.001, a + 0.002],
+ pbc=False,
+ )
+
+ atoms.calc = calculator
+
+ for i, r in enumerate(tqdm(rs)):
+ if i < skip:
+ continue
+
+ positions = [
+ [a / 2 - r / 2, a / 2, a / 2],
+ [a / 2 + r / 2, a / 2, a / 2],
+ ]
+
+ # atoms.set_initial_magnetic_moments(magmoms)
+ atoms.set_positions(positions)
+ es[i] = atoms.get_potential_energy()
+ write(traj_fpath, atoms, append="a")
+
+
+@flow
+def submit_homonuclear_diatomics():
+ futures = []
+ for symbol, model in itertools.product(
+ chemical_symbols[1:],
+ MLIPEnum,
+ ):
+ if "homonuclear-diatomics" not in REGISTRY[model.name].get("gpu-tasks", []):
+ continue
+
+ out_dir = Path(__file__).parent / model.name
+
+ calculator = get_calculator(model)
+
+ # if not (out_dir / "homonuclear-diatomics.json").exists():
+ future = homonuclear_diatomics.submit(
+ symbol,
+ calculator,
+ out_dir=out_dir,
+ )
+ futures.append(future)
+
+ return [f.result(raise_on_failure=False) for f in futures]
+
+
+if __name__ == "__main__":
+ submit_homonuclear_diatomics.with_options(
+ # task_runner=DaskTaskRunner(address=client.scheduler.address),
+ log_prints=True,
+ )()
diff --git a/mlip_arena/tasks/diatomics/sevennet/homonuclear-diatomics.json b/mlip_arena/tasks/diatomics/sevennet/homonuclear-diatomics.json
new file mode 100644
index 0000000000000000000000000000000000000000..0c9b1e0aeb7444568f34e8327d8f71bcb73d094c
--- /dev/null
+++ b/mlip_arena/tasks/diatomics/sevennet/homonuclear-diatomics.json
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:1cb205f2c271f1799a03ff33ff23e9a1acd9a2d8162d232ba7d3aa59f0a1b30e
+size 1859865
diff --git a/mlip_arena/tasks/diatomics/vasp/homonuclear-diatomics.json b/mlip_arena/tasks/diatomics/vasp/homonuclear-diatomics.json
new file mode 100644
index 0000000000000000000000000000000000000000..f711533d9a4dd8029396d88156b055dd6dd31ac1
--- /dev/null
+++ b/mlip_arena/tasks/diatomics/vasp/homonuclear-diatomics.json
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:26fc88d6d1777e6861bd2d5e5045a932a5ad8fe0a75e8e8848dca481c48cc617
+size 16606
diff --git a/mlip_arena/tasks/elasticity.py b/mlip_arena/tasks/elasticity.py
new file mode 100644
index 0000000000000000000000000000000000000000..3a34e7de6ab250db70e69df40c42e81e3cee4be1
--- /dev/null
+++ b/mlip_arena/tasks/elasticity.py
@@ -0,0 +1,216 @@
+"""
+Defines the tasks for computing the elastic tensor.
+
+This module has been modified from MatCalc
+https://github.com/materialsvirtuallab/matcalc/blob/main/src/matcalc/elasticity.py
+
+https://github.com/materialsvirtuallab/matcalc/blob/main/LICENSE
+
+BSD 3-Clause License
+
+Copyright (c) 2023, Materials Virtual Lab
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+1. Redistributions of source code must retain the above copyright notice, this
+ list of conditions and the following disclaimer.
+
+2. Redistributions in binary form must reproduce the above copyright notice,
+ this list of conditions and the following disclaimer in the documentation
+ and/or other materials provided with the distribution.
+
+3. Neither the name of the copyright holder nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
+FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
+OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+"""
+
+from __future__ import annotations
+
+from typing import TYPE_CHECKING, Any
+
+import numpy as np
+from ase import Atoms
+from ase.calculators.calculator import BaseCalculator
+from ase.optimize.optimize import Optimizer
+from numpy.typing import ArrayLike
+from prefect import task
+from prefect.cache_policies import INPUTS, TASK_SOURCE
+from prefect.runtime import task_run
+from prefect.states import State
+
+from mlip_arena.tasks.optimize import run as OPT
+from pymatgen.analysis.elasticity import DeformedStructureSet, ElasticTensor, Strain
+from pymatgen.analysis.elasticity.elastic import get_strain_state_dict
+from pymatgen.io.ase import AseAtomsAdaptor
+
+if TYPE_CHECKING:
+ from ase.filters import Filter
+
+
+def _generate_task_run_name():
+ task_name = task_run.task_name
+ parameters = task_run.parameters
+
+ atoms = parameters["atoms"]
+ calculator_name = parameters["calculator"]
+
+ return f"{task_name}: {atoms.get_chemical_formula()} - {calculator_name}"
+
+
+@task(
+ name="Elasticity",
+ task_run_name=_generate_task_run_name,
+ cache_policy=TASK_SOURCE + INPUTS,
+ # cache_key_fn=task_input_hash,
+)
+def run(
+ atoms: Atoms,
+ calculator: BaseCalculator,
+ optimizer: Optimizer | str = "BFGSLineSearch", # type: ignore
+ optimizer_kwargs: dict | None = None,
+ filter: Filter | str | None = "FrechetCell", # type: ignore
+ filter_kwargs: dict | None = None,
+ criterion: dict | None = None,
+ normal_strains: list[float] | np.ndarray | None = np.linspace(-0.01, 0.01, 4),
+ shear_strains: list[float] | np.ndarray | None = np.linspace(-0.06, 0.06, 4),
+ persist_opt: bool = True,
+ cache_opt: bool = False,
+) -> dict[str, Any] | State:
+ """
+ Compute the elastic tensor for the given structure and calculator.
+
+ Args:
+ atoms (Atoms): The input structure.
+ calculator (BaseCalculator): The calculator.
+ optimizer (Optimizer | str, optional): The optimizer. Defaults to "BFGSLineSearch".
+ optimizer_kwargs (dict, optional): The optimizer kwargs. Defaults to None.
+ filter (Filter | str, optional): The filter. Defaults to "FrechetCell".
+ filter_kwargs (dict, optional): The filter kwargs. Defaults to None.
+ criterion (dict, optional): The criterion. Defaults to None.
+ normal_strains (list[float] | np.ndarray, optional): The normal strains. Defaults to np.linspace(-0.01, 0.01, 4).
+ shear_strains (list[float] | np.ndarray, optional): The shear strains. Defaults to np.linspace(-0.06, 0.06, 4).
+ concurrent (bool, optional): Whether to run concurrently. Defaults to True.
+ persist_opt (bool, optional): Whether to persist the optimizer results. Defaults to True.
+ cache_opt (bool, optional): Whether to cache the optimizer results. Defaults to True.
+
+ Returns:
+ dict[str, Any] | State: The elastic tensor.
+ """
+
+ atoms = atoms.copy()
+
+ OPT_ = OPT.with_options(
+ refresh_cache=not cache_opt,
+ persist_result=persist_opt,
+ )
+
+ first_relax = OPT_(
+ atoms=atoms,
+ calculator=calculator,
+ optimizer=optimizer,
+ optimizer_kwargs=optimizer_kwargs,
+ filter=filter,
+ filter_kwargs=filter_kwargs,
+ criterion=criterion,
+ return_state=True,
+ )
+
+ if first_relax.is_failed():
+ return first_relax
+
+ result = first_relax.result(raise_on_failure=False)
+
+ assert isinstance(result, dict)
+ relaxed = result["atoms"]
+
+ if isinstance(normal_strains, np.ndarray):
+ normal_strains = normal_strains.tolist()
+ if isinstance(shear_strains, np.ndarray):
+ shear_strains = shear_strains.tolist()
+
+ assert isinstance(relaxed, Atoms)
+ assert isinstance(normal_strains, list)
+ assert isinstance(shear_strains, list)
+
+ structure = AseAtomsAdaptor.get_structure(relaxed) # type: ignore
+
+ deformed_structure_set = DeformedStructureSet(
+ structure,
+ normal_strains,
+ shear_strains,
+ )
+
+ stresses = []
+ for deformed_structure in deformed_structure_set:
+ atoms = deformed_structure.to_ase_atoms()
+ atoms.calc = relaxed.calc
+ stresses.append(atoms.get_stress(voigt=False))
+
+ strains = [
+ Strain.from_deformation(deformation)
+ for deformation in deformed_structure_set.deformations
+ ]
+
+ fit = fit_elastic_tensor(
+ strains, stresses, eq_stress=relaxed.get_stress(voigt=False)
+ )
+
+ return {
+ "elastic_tensor": fit["elastic_tensor"],
+ "residuals_sum": fit["residuals_sum"],
+ }
+
+
+@task
+def fit_elastic_tensor(
+ strains: ArrayLike,
+ stresses: ArrayLike,
+ eq_stress: ArrayLike | None = None,
+ tolerance: float = 1e-7,
+):
+ """
+ Compute the elastic tensor from the given strains and stresses.
+
+ Args:
+ strains (ArrayLike): The strains.
+ stresses (ArrayLike): The stresses.
+ tolerance (float, optional): The tolerance. Defaults to 1e-7.
+
+ Returns:
+ ElasticTensor: The elastic tensor.
+ """
+
+ strain_states = [tuple(ss) for ss in np.eye(6)]
+ ss_dict = get_strain_state_dict(
+ strains,
+ stresses,
+ eq_stress=eq_stress,
+ add_eq=True if eq_stress is not None else False,
+ )
+ c_ij = np.zeros((6, 6))
+ residuals_sum = 0.0
+ for ii in range(6):
+ strain = ss_dict[strain_states[ii]]["strains"]
+ stress = ss_dict[strain_states[ii]]["stresses"]
+ for jj in range(6):
+ fit = np.polyfit(strain[:, ii], stress[:, jj], 1, full=True)
+ c_ij[ii, jj] = fit[0][0]
+ residuals_sum += fit[1][0] if len(fit[1]) > 0 else 0.0
+ elastic_tensor = ElasticTensor.from_voigt(c_ij)
+
+ return {
+ "elastic_tensor": elastic_tensor.zeroed(tolerance),
+ "residuals_sum": residuals_sum,
+ }
diff --git a/mlip_arena/tasks/eos.py b/mlip_arena/tasks/eos.py
new file mode 100644
index 0000000000000000000000000000000000000000..64d53fda005783ebf2effa64329b85ef366ebcb9
--- /dev/null
+++ b/mlip_arena/tasks/eos.py
@@ -0,0 +1,179 @@
+"""
+Define equation of state task.
+
+https://github.com/materialsvirtuallab/matcalc/blob/main/matcalc/eos.py
+"""
+
+from __future__ import annotations
+
+from typing import TYPE_CHECKING, Any
+
+import numpy as np
+from ase import Atoms
+from ase.calculators.calculator import BaseCalculator
+from ase.optimize.optimize import Optimizer
+from prefect import task
+from prefect.cache_policies import INPUTS, TASK_SOURCE
+from prefect.futures import wait
+from prefect.results import ResultRecord
+from prefect.runtime import task_run
+from prefect.states import State
+
+from mlip_arena.tasks.optimize import run as OPT
+from pymatgen.analysis.eos import BirchMurnaghan
+
+if TYPE_CHECKING:
+ from ase.filters import Filter
+
+
+def _generate_task_run_name():
+ task_name = task_run.task_name
+ parameters = task_run.parameters
+
+ atoms = parameters["atoms"]
+ calculator_name = parameters["calculator"]
+
+ return f"{task_name}: {atoms.get_chemical_formula()} - {calculator_name}"
+
+
+@task(
+ name="EOS", task_run_name=_generate_task_run_name, cache_policy=TASK_SOURCE + INPUTS
+)
+def run(
+ atoms: Atoms,
+ calculator: BaseCalculator,
+ optimizer: Optimizer | str = "BFGSLineSearch", # type: ignore
+ optimizer_kwargs: dict | None = None,
+ filter: Filter | str | None = "FrechetCell", # type: ignore
+ filter_kwargs: dict | None = None,
+ criterion: dict | None = None,
+ max_abs_strain: float = 0.1,
+ npoints: int = 11,
+ concurrent: bool = True,
+ cache_opt: bool = False,
+) -> dict[str, Any] | State:
+ """
+ Compute the equation of state (EOS) for the given atoms and calculator.
+
+ Args:
+ atoms: The input atoms.
+ calculator_name: The name of the calculator to use.
+ calculator_kwargs: Additional kwargs to pass to the calculator.
+ device: The device to use.
+ optimizer: The optimizer to use.
+ optimizer_kwargs: Additional kwargs to pass to the optimizer.
+ filter: The filter to use.
+ filter_kwargs: Additional kwargs to pass to the filter.
+ criterion: The criterion to use.
+ max_abs_strain: The maximum absolute strain to use.
+ npoints: The number of points to sample.
+ concurrent: Whether to relax multiple structures concurrently.
+ persist_opt: Whether to persist the optimization results.
+ cache_opt: Whether to cache the intermediate optimization results.
+
+ Returns:
+ A dictionary containing the EOS data, bulk modulus, equilibrium volume, and equilibrium energy if successful. Otherwise, a prefect state object.
+ """
+
+ atoms = atoms.copy()
+
+ OPT_ = OPT.with_options(
+ refresh_cache=not cache_opt,
+ persist_result=cache_opt,
+ )
+
+ state = OPT_(
+ atoms=atoms,
+ calculator=calculator,
+ optimizer=optimizer,
+ optimizer_kwargs=optimizer_kwargs,
+ filter=filter,
+ filter_kwargs=filter_kwargs,
+ criterion=criterion,
+ return_state=True,
+ )
+
+ if state.is_failed():
+ return state
+
+ first_relax = state.result(raise_on_failure=False)
+
+ if isinstance(first_relax, ResultRecord):
+ relaxed = first_relax.result["atoms"]
+ else:
+ relaxed = first_relax["atoms"]
+
+ # p0 = relaxed.get_positions()
+ c0 = relaxed.get_cell()
+
+ factors = np.linspace(1 - max_abs_strain, 1 + max_abs_strain, npoints) ** (1 / 3)
+
+ if concurrent:
+ futures = []
+ for f in factors:
+ atoms = relaxed.copy()
+ atoms.set_cell(c0 * f, scale_atoms=True)
+
+ future = OPT_.submit(
+ atoms=atoms,
+ calculator=calculator,
+ optimizer=optimizer,
+ optimizer_kwargs=optimizer_kwargs,
+ filter=None,
+ filter_kwargs=None,
+ criterion=criterion,
+ )
+ futures.append(future)
+
+ wait(futures)
+
+ results = [
+ f.result(raise_on_failure=False)
+ for f in futures
+ if future.state.is_completed()
+ ]
+ else:
+ states = []
+ for f in factors:
+ atoms = relaxed.copy()
+ atoms.set_cell(c0 * f, scale_atoms=True)
+
+ state = OPT_(
+ atoms=atoms,
+ calculator=calculator,
+ optimizer=optimizer,
+ optimizer_kwargs=optimizer_kwargs,
+ filter=None,
+ filter_kwargs=None,
+ criterion=criterion,
+ return_state=True,
+ )
+ states.append(state)
+
+ results = [s.result(raise_on_failure=False) for s in states if s.is_completed()]
+
+ results = [r.result if isinstance(r, ResultRecord) else r for r in results]
+
+ volumes = [r["atoms"].get_volume() for r in results]
+ energies = [r["atoms"].get_potential_energy() for r in results]
+
+ volumes, energies = map(
+ list,
+ zip(
+ *sorted(zip(volumes, energies, strict=True), key=lambda i: i[0]),
+ strict=True,
+ ),
+ )
+
+ bm = BirchMurnaghan(volumes=volumes, energies=energies)
+ bm.fit()
+
+ return {
+ "atoms": relaxed,
+ "eos": {"volumes": volumes, "energies": energies},
+ "K": bm.b0_GPa,
+ "b0": bm.b0,
+ "b1": bm.b1,
+ "e0": bm.e0,
+ "v0": bm.v0,
+ }
diff --git a/mlip_arena/tasks/eos_alloy/__init__.py b/mlip_arena/tasks/eos_alloy/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..65ce79a9418728dc6ca9d92372643ca5d1d35486
--- /dev/null
+++ b/mlip_arena/tasks/eos_alloy/__init__.py
@@ -0,0 +1,12 @@
+from pathlib import Path
+
+from loguru import logger
+
+license_path = Path(__file__).parent / "LICENSE"
+
+logger.info(f"""
+This module {__name__} is kindly shared by @jan-janssen . If you use this module, you agree to cite the reference
+
+- Alvi, S. M. A. A., Janssen, J., Khatamsaz, D., Perez, D., Allaire, D., & Arroyave, R. (2024). Hierarchical Gaussian Process-Based Bayesian Optimization for Materials Discovery in High Entropy Alloy Spaces. *arXiv preprint arXiv:2410.04314*.
+- Gehringer, D., Friรกk, M., & Holec, D. (2023). Models of configurationally-complex alloys made simple. *Computer Physics Communications, 286*, 108664.
+""")
\ No newline at end of file
diff --git a/mlip_arena/tasks/eos_alloy/flow.py b/mlip_arena/tasks/eos_alloy/flow.py
new file mode 100644
index 0000000000000000000000000000000000000000..2b26373ea979a037499152d0b04cb361795ff19e
--- /dev/null
+++ b/mlip_arena/tasks/eos_alloy/flow.py
@@ -0,0 +1,145 @@
+from functools import partial
+from pathlib import Path
+
+import pandas as pd
+from huggingface_hub import hf_hub_download
+from prefect import Task, flow, task
+from prefect.client.schemas.objects import TaskRun
+from prefect.futures import wait
+from prefect.states import State
+
+from ase.db import connect
+from mlip_arena.data.local import SafeHDFStore
+from mlip_arena.models import REGISTRY, MLIPEnum
+from mlip_arena.tasks.eos import run as EOS
+
+
+@task
+def get_atoms_from_db(db_path: Path | str):
+ db_path = Path(db_path)
+ if not db_path.exists():
+ db_path = hf_hub_download(
+ repo_id="atomind/mlip-arena",
+ repo_type="dataset",
+ subfolder=f"{Path(__file__).parent.name}",
+ filename=str(db_path),
+ )
+ with connect(db_path) as db:
+ for row in db.select():
+ yield row.toatoms()
+
+
+def save_to_hdf(
+ tsk: Task, run: TaskRun, state: State, fpath: Path | str, table_name: str
+):
+ """
+ Define a hook on completion of EOS task to save results to HDF5 file.
+ """
+
+ if run.state.is_failed():
+ return
+
+ result = run.state.result(raise_on_failure=False)
+
+ if not isinstance(result, dict):
+ return
+
+ try:
+ atoms = result["atoms"]
+ calculator_name = (
+ run.task_inputs["calculator_name"] or result["calculator_name"]
+ )
+
+ energies = [float(e) for e in result["eos"]["energies"]]
+
+ formula = atoms.get_chemical_formula()
+
+ df = pd.DataFrame(
+ {
+ "method": calculator_name,
+ "formula": formula,
+ "total_run_time": run.total_run_time,
+ "v0": result["v0"],
+ "e0": result["e0"],
+ "b0": result["b0"],
+ "b1": result["b1"],
+ "volume": result["eos"]["volumes"],
+ "energy": energies,
+ }
+ )
+
+ fpath = Path(fpath)
+ fpath = fpath.with_stem(fpath.stem + f"_{calculator_name}")
+
+ family_path = Path(__file__).parent / REGISTRY[calculator_name]["family"]
+ family_path.mkdir(parents=True, exist_ok=True)
+
+ df.to_json(family_path / f"{calculator_name}_{formula}.json", indent=2)
+
+ with SafeHDFStore(fpath, mode="a") as store:
+ store.append(
+ table_name,
+ df,
+ format="table",
+ data_columns=True,
+ min_itemsize={"formula": 50, "method": 20},
+ )
+ except Exception as e:
+ print(e)
+
+
+@flow(
+ name="EOS Alloy"
+)
+def run(
+ db_path: Path | str,
+ out_path: Path | str,
+ table_name: str,
+ optimizer="FIRE",
+ optimizer_kwargs=None,
+ filter="FrechetCell",
+ filter_kwargs=None,
+ criterion=dict(fmax=0.1, steps=1000),
+ max_abs_strain=0.20,
+ concurrent=False,
+ cache=True,
+):
+ EOS_ = EOS.with_options(
+ on_completion=[partial(save_to_hdf, fpath=out_path, table_name=table_name)],
+ refresh_cache=not cache,
+ )
+
+ futures = []
+ for atoms in get_atoms_from_db(db_path):
+ for mlip in MLIPEnum:
+ if not REGISTRY[mlip.name]["npt"]:
+ continue
+ if Path(__file__).parent.name not in (
+ REGISTRY[mlip.name].get("cpu-tasks", [])
+ + REGISTRY[mlip.name].get("gpu-tasks", [])
+ ):
+ continue
+ future = EOS_.submit(
+ atoms=atoms,
+ calculator_name=mlip.name,
+ calculator_kwargs=dict(),
+ optimizer=optimizer,
+ optimizer_kwargs=optimizer_kwargs,
+ filter=filter,
+ filter_kwargs=filter_kwargs,
+ criterion=criterion,
+ max_abs_strain=max_abs_strain,
+ concurrent=concurrent,
+ persist_opt=cache,
+ cache_opt=cache,
+ # return_state=True
+ )
+ futures.append(future)
+
+ wait(futures)
+
+ return [
+ f.result(timeout=None, raise_on_failure=False)
+ for f in futures
+ if f.state.is_completed()
+ ]
diff --git a/mlip_arena/tasks/eos_alloy/input.py b/mlip_arena/tasks/eos_alloy/input.py
new file mode 100644
index 0000000000000000000000000000000000000000..2c120fd5086986c1f47fe69709e2e2445faf29ba
--- /dev/null
+++ b/mlip_arena/tasks/eos_alloy/input.py
@@ -0,0 +1,179 @@
+"""
+Generates a database of special quasi-random structures (SQS) from a template structure.
+
+This script utilizes the `structuretoolkit `_
+to call `sqsgenerator `_ to generate
+SQS structures. The generated structures are saved to an ASE database file and optionally uploaded
+to the Hugging Face Hub.
+
+References
+~~~~~~~~~~
+- Alvi, S. M. A. A., Janssen, J., Khatamsaz, D., Perez, D., Allaire, D., & Arroyave, R. (2024).
+ Hierarchical Gaussian Process-Based Bayesian Optimization for Materials Discovery in High
+ Entropy Alloy Spaces. *arXiv preprint arXiv:2410.04314*.
+- Gehringer, D., Friรกk, M., & Holec, D. (2023). Models of configurationally-complex alloys made
+ simple. *Computer Physics Communications, 286*, 108664.
+
+Authors
+~~~~~~~
+- Jan Janssen (`@jan-janssen `_)
+- Yuan Chiang (`@chiang-yuan `_)
+"""
+
+import os
+from pathlib import Path
+from typing import Generator, Iterable
+
+import numpy as np
+from huggingface_hub import HfApi, hf_hub_download
+from prefect import task
+from tqdm.auto import tqdm
+
+from ase import Atoms
+from ase.db import connect
+
+
+def save_to_db(
+ atoms_list: list[Atoms] | Iterable[Atoms] | Atoms,
+ db_path: Path | str,
+ upload: bool = True,
+ hf_token: str | None = os.getenv("HF_TOKEN", None),
+ repo_id: str = "atomind/mlip-arena",
+ repo_type: str = "dataset",
+ subfolder: str = Path(__file__).parent.name,
+):
+ """Save ASE Atoms objects to an ASE database and optionally upload to Hugging Face Hub."""
+
+ if upload and hf_token is None:
+ raise ValueError("HF_TOKEN is required to upload the database.")
+
+ db_path = Path(db_path)
+
+ if isinstance(atoms_list, Atoms):
+ atoms_list = [atoms_list]
+
+ with connect(db_path) as db:
+ for atoms in atoms_list:
+ if not isinstance(atoms, Atoms):
+ raise ValueError("atoms_list must contain ASE Atoms objects.")
+ db.write(atoms)
+
+ if upload:
+ api = HfApi(token=hf_token)
+ api.upload_file(
+ path_or_fileobj=db_path,
+ path_in_repo=f"{subfolder}/{db_path.name}",
+ repo_id=repo_id,
+ repo_type=repo_type,
+ )
+ print(f"{db_path.name} uploaded to {repo_id}/{subfolder}")
+
+ return db_path
+
+@task
+def get_atoms_from_db(
+ db_path: Path | str,
+ repo_id: str = "atomind/mlip-arena",
+ repo_type: str = "dataset",
+ subfolder: str = Path(__file__).parent.name,
+) -> Generator[Atoms, None, None]:
+ """Retrieve ASE Atoms objects from an ASE database."""
+ db_path = Path(db_path)
+ if not db_path.exists():
+ db_path = hf_hub_download(
+ repo_id=repo_id,
+ repo_type=repo_type,
+ subfolder=subfolder,
+ filename=str(db_path),
+ )
+ with connect(db_path) as db:
+ for row in db.select():
+ yield row.toatoms()
+
+
+def body_order(n=32, b=5):
+ """
+ Generate all possible combinations of atomic counts for `b` species
+ that sum to `n`.
+ """
+ if b == 2:
+ return [[i, n - i] for i in range(n + 1)]
+ return [[i] + j for i in range(n + 1) for j in body_order(n=n - i, b=b - 1)]
+
+
+def generate_sqs(structure_template, elements, counts):
+ """
+ Generate a special quasi-random structure (SQS) based on mole fractions.
+ """
+ import structuretoolkit as stk
+
+ mole_fractions = {
+ el: c / len(structure_template) for el, c in zip(elements, counts)
+ }
+ return stk.build.sqs_structures(
+ structure=structure_template,
+ mole_fractions=mole_fractions,
+ )[0]
+
+
+def get_endmember(structure, conc_lst, elements):
+ """
+ Assign a single element to all atoms in the structure to create an endmember.
+ """
+ structure.symbols[:] = np.array(elements)[conc_lst != 0][0]
+ return structure
+
+
+def generate_alloy_db(
+ structure_template: Atoms,
+ elements: list[str],
+ db_path: Path | str,
+ upload: bool = True,
+ hf_token: str | None = os.getenv("HF_TOKEN", None),
+ repo_id: str = "atomind/mlip-arena",
+ repo_type: str = "dataset",
+) -> Path:
+
+ if upload and hf_token is None:
+ raise ValueError("HF_TOKEN is required to upload the database.")
+
+ num_atoms = len(structure_template)
+ num_species = len(elements)
+
+ # Generate all possible atomic configurations
+ configurations = np.array(body_order(n=num_atoms, b=num_species))
+
+ # Prepare the database
+ db_path = (
+ Path(db_path) or Path(__file__).resolve().parent / f"sqs_{'-'.join(elements)}.db"
+ )
+ db_path.unlink(missing_ok=True)
+
+ atoms_list = []
+ for i, composition in tqdm(
+ enumerate(configurations), total=len(configurations)
+ ):
+ # Skip trivial cases where only one element is present
+ if sum(composition == 0) != len(elements) - 1:
+ atoms = generate_sqs(
+ structure_template=structure_template,
+ elements=np.array(elements)[composition != 0],
+ counts=composition[composition != 0],
+ )
+ else:
+ atoms = get_endmember(
+ structure=structure_template.copy(),
+ conc_lst=composition,
+ elements=elements,
+ )
+ atoms_list.append(atoms)
+
+
+ return save_to_db(
+ atoms_list=atoms_list,
+ db_path=db_path,
+ upload=upload,
+ hf_token=hf_token,
+ repo_id=repo_id,
+ repo_type=repo_type,
+ )
diff --git a/mlip_arena/tasks/md.py b/mlip_arena/tasks/md.py
new file mode 100644
index 0000000000000000000000000000000000000000..b23a8958d1da1c6708c8b1e7f94a0dba890045dc
--- /dev/null
+++ b/mlip_arena/tasks/md.py
@@ -0,0 +1,390 @@
+"""
+Define molecular dynamics task.
+
+This script has been adapted from Atomate2 MLFF MD workflow written by Aaron Kaplan and Yuan Chiang
+https://github.com/materialsproject/atomate2/blob/main/src/atomate2/forcefields/md.py
+
+atomate2 Copyright (c) 2015, The Regents of the University of
+California, through Lawrence Berkeley National Laboratory (subject
+to receipt of any required approvals from the U.S. Dept. of Energy).
+All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions
+are met:
+
+(1) Redistributions of source code must retain the above copyright
+notice, this list of conditions and the following disclaimer.
+
+(2) Redistributions in binary form must reproduce the above
+copyright notice, this list of conditions and the following
+disclaimer in the documentation and/or other materials provided with
+the distribution.
+
+(3) Neither the name of the University of California, Lawrence
+Berkeley National Laboratory, U.S. Dept. of Energy nor the names of
+its contributors may be used to endorse or promote products derived
+from this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
+FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
+COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
+INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
+BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
+LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
+ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+
+You are under no obligation whatsoever to provide any bug fixes,
+patches, or upgrades to the features, functionality or performance
+of the source code ("Enhancements") to anyone; however, if you
+choose to make your Enhancements available either publicly, or
+directly to Lawrence Berkeley National Laboratory or its
+contributors, without imposing a separate written license agreement
+for such Enhancements, then you hereby grant the following license:
+a non-exclusive, royalty-free perpetual license to install, use,
+modify, prepare derivative works, incorporate into other computer
+software, distribute, and sublicense such enhancements or derivative
+works thereof, in binary and source code form.
+"""
+
+from __future__ import annotations
+
+from collections.abc import Sequence
+from datetime import datetime
+from pathlib import Path
+from typing import Literal
+
+import numpy as np
+from ase import Atoms, units
+from ase.calculators.calculator import BaseCalculator
+from ase.io import read
+from ase.io.trajectory import Trajectory
+from ase.md.andersen import Andersen
+from ase.md.langevin import Langevin
+from ase.md.md import MolecularDynamics
+from ase.md.npt import NPT
+from ase.md.nptberendsen import NPTBerendsen
+from ase.md.nvtberendsen import NVTBerendsen
+from ase.md.velocitydistribution import (
+ MaxwellBoltzmannDistribution,
+ Stationary,
+ ZeroRotation,
+)
+from ase.md.verlet import VelocityVerlet
+from prefect import task
+from prefect.cache_policies import INPUTS, TASK_SOURCE
+from prefect.runtime import task_run
+from scipy.interpolate import interp1d
+from scipy.linalg import schur
+from tqdm.auto import tqdm
+
+_valid_dynamics: dict[str, tuple[str, ...]] = {
+ "nve": ("velocityverlet",),
+ "nvt": ("nose-hoover", "langevin", "andersen", "berendsen"),
+ "npt": ("nose-hoover", "berendsen"),
+}
+
+_preset_dynamics: dict = {
+ "nve_velocityverlet": VelocityVerlet,
+ "nvt_andersen": Andersen,
+ "nvt_berendsen": NVTBerendsen,
+ "nvt_langevin": Langevin,
+ "nvt_nose-hoover": NPT,
+ "npt_berendsen": NPTBerendsen,
+ "npt_nose-hoover": NPT,
+}
+
+
+def _interpolate_quantity(values: Sequence | np.ndarray, n_pts: int) -> np.ndarray:
+ """Interpolate temperature / pressure on a schedule."""
+ n_vals = len(values)
+ return np.interp(
+ np.linspace(0, n_vals - 1, n_pts + 1),
+ np.linspace(0, n_vals - 1, n_vals),
+ values,
+ )
+
+
+def _get_ensemble_schedule(
+ ensemble: Literal["nve", "nvt", "npt"] = "nvt",
+ n_steps: int = 1000,
+ temperature: float | Sequence | np.ndarray | None = 300.0,
+ pressure: float | Sequence | np.ndarray | None = None,
+) -> tuple[np.ndarray, np.ndarray]:
+ if ensemble == "nve":
+ # Disable thermostat and barostat
+ temperature = np.nan
+ pressure = np.nan
+ t_schedule = np.full(n_steps + 1, temperature)
+ p_schedule = np.full(n_steps + 1, pressure)
+ return t_schedule, p_schedule
+
+ if isinstance(temperature, Sequence) or (
+ isinstance(temperature, np.ndarray) and temperature.ndim == 1
+ ):
+ t_schedule = _interpolate_quantity(temperature, n_steps)
+ # NOTE: In ASE Langevin dynamics, the temperature are normally
+ # scalars, but in principle one quantity per atom could be specified by giving
+ # an array. This is not implemented yet here.
+ else:
+ t_schedule = np.full(n_steps + 1, temperature)
+
+ if ensemble == "nvt":
+ pressure = np.nan
+ p_schedule = np.full(n_steps + 1, pressure)
+ return t_schedule, p_schedule
+
+ if isinstance(pressure, Sequence) or (
+ isinstance(pressure, np.ndarray) and pressure.ndim == 1
+ ):
+ p_schedule = _interpolate_quantity(pressure, n_steps)
+ elif isinstance(pressure, np.ndarray) and pressure.ndim == 3:
+ p_schedule = interp1d(np.arange(n_steps + 1), pressure, kind="linear")
+ assert isinstance(p_schedule, np.ndarray)
+ else:
+ p_schedule = np.full(n_steps + 1, pressure)
+
+ return t_schedule, p_schedule
+
+
+def _get_ensemble_defaults(
+ ensemble: Literal["nve", "nvt", "npt"],
+ dynamics: str | MolecularDynamics,
+ t_schedule: np.ndarray,
+ p_schedule: np.ndarray,
+ dynamics_kwargs: dict | None = None,
+) -> dict:
+ """Update ASE MD kwargs"""
+ dynamics_kwargs = dynamics_kwargs or {}
+
+ if ensemble == "nve":
+ dynamics_kwargs.pop("temperature", None)
+ dynamics_kwargs.pop("temperature_K", None)
+ dynamics_kwargs.pop("externalstress", None)
+ elif ensemble == "nvt":
+ dynamics_kwargs["temperature_K"] = t_schedule[0]
+ dynamics_kwargs.pop("externalstress", None)
+ elif ensemble == "npt":
+ dynamics_kwargs["temperature_K"] = t_schedule[0]
+ dynamics_kwargs["externalstress"] = p_schedule[0] # * 1e3 * units.bar
+
+ if isinstance(dynamics, str) and dynamics.lower() == "langevin":
+ dynamics_kwargs["friction"] = dynamics_kwargs.get(
+ "friction",
+ 10.0 * 1e-3 / units.fs, # Same default as in VASP: 10 ps^-1
+ )
+
+ return dynamics_kwargs
+
+
+def _generate_task_run_name():
+ task_name = task_run.task_name
+ parameters = task_run.parameters
+
+ atoms = parameters["atoms"]
+ calculator = parameters["calculator"]
+
+ return f"{task_name}: {atoms.get_chemical_formula()} - {calculator}"
+
+
+@task(
+ name="MD", task_run_name=_generate_task_run_name, cache_policy=TASK_SOURCE + INPUTS
+)
+def run(
+ atoms: Atoms,
+ calculator: BaseCalculator,
+ ensemble: Literal["nve", "nvt", "npt"] = "nvt",
+ dynamics: str | MolecularDynamics = "langevin",
+ time_step: float | None = None, # fs
+ total_time: float = 1000, # fs
+ temperature: float | Sequence | np.ndarray | None = 300.0, # K
+ pressure: float | Sequence | np.ndarray | None = None, # eV/A^3
+ dynamics_kwargs: dict | None = None,
+ velocity_seed: int | None = None,
+ zero_linear_momentum: bool = True,
+ zero_angular_momentum: bool = True,
+ traj_file: str | Path | None = None,
+ traj_interval: int = 1,
+ restart: bool = True,
+):
+ """
+ Run a molecular dynamics (MD) simulation using ASE.
+
+ Parameters:
+ atoms (Atoms): The atomic structure to simulate.
+ calculator (BaseCalculator): The calculator to use for energy and force calculations.
+ ensemble (Literal["nve", "nvt", "npt"], optional): The MD ensemble to use. Defaults to "nvt".
+ dynamics (str | MolecularDynamics, optional): The dynamics method to use. Defaults to "langevin".
+ time_step (float | None, optional): The time step for the simulation in femtoseconds.
+ Defaults to 0.5 fs if hydrogen isotopes are present, otherwise 2.0 fs.
+ total_time (float, optional): The total simulation time in femtoseconds. Defaults to 1000 fs.
+ temperature (float | Sequence | np.ndarray | None, optional): The temperature schedule in Kelvin.
+ Can be a scalar or a sequence. Defaults to 300 K.
+ pressure (float | Sequence | np.ndarray | None, optional): The pressure schedule in eV/ร ยณ.
+ Can be a scalar or a sequence. Defaults to None.
+ dynamics_kwargs (dict | None, optional): Additional keyword arguments for the dynamics method. Defaults to None.
+ velocity_seed (int | None, optional): Seed for random number generation for initial velocities. Defaults to None.
+ zero_linear_momentum (bool, optional): Whether to remove linear momentum from the system. Defaults to True.
+ zero_angular_momentum (bool, optional): Whether to remove angular momentum from the system. Defaults to True.
+ traj_file (str | Path | None, optional): Path to the trajectory file for saving simulation results. Defaults to None.
+ traj_interval (int, optional): Interval for saving trajectory frames. Defaults to 1.
+ restart (bool, optional): Whether to restart the simulation from an existing trajectory file. Defaults to True.
+
+ Returns:
+ dict: A dictionary containing the following keys:
+ - "atoms" (Atoms): The final atomic structure after the simulation.
+ - "runtime" (timedelta): The runtime of the simulation.
+ - "n_steps" (int): The number of steps performed in the simulation.
+
+ Raises:
+ ValueError: If an invalid dynamics method is specified or if the dynamics method is incompatible with the ensemble.
+
+ Notes:
+ - The function supports restarting from an existing trajectory file if `restart` is True.
+ - For NPT dynamics, the atomic cell is transformed to an upper triangular form to meet ASE's requirements.
+ - Temperature and pressure schedules can be specified as sequences or arrays for time-dependent control.
+ """
+
+ atoms = atoms.copy()
+
+ atoms.calc = calculator
+
+ if time_step is None:
+ # If a structure contains an isotope of hydrogen, set default `time_step`
+ # to 0.5 fs, and 2 fs otherwise.
+ has_h_isotope = "H" in atoms.get_chemical_symbols()
+ time_step = 0.5 if has_h_isotope else 2.0
+
+ n_steps = int(total_time / time_step)
+ target_steps = n_steps
+
+ t_schedule, p_schedule = _get_ensemble_schedule(
+ ensemble=ensemble,
+ n_steps=n_steps,
+ temperature=temperature,
+ pressure=pressure,
+ )
+
+ dynamics_kwargs = _get_ensemble_defaults(
+ ensemble=ensemble,
+ dynamics=dynamics,
+ t_schedule=t_schedule,
+ p_schedule=p_schedule,
+ dynamics_kwargs=dynamics_kwargs,
+ )
+
+ if isinstance(dynamics, str):
+ # Use known dynamics if `self.dynamics` is a str
+ dynamics = dynamics.lower()
+ if dynamics not in _valid_dynamics[ensemble]:
+ raise ValueError(
+ f"{dynamics} thermostat not available for {ensemble}."
+ f"Available {ensemble} thermostats are:"
+ " ".join(_valid_dynamics[ensemble])
+ )
+ if ensemble == "nve":
+ dynamics = "velocityverlet"
+ md_class = _preset_dynamics[f"{ensemble}_{dynamics}"]
+ elif dynamics is MolecularDynamics:
+ md_class = dynamics
+ else:
+ raise ValueError(f"Invalid dynamics: {dynamics}")
+
+ if md_class is NPT:
+ # Note that until md_func is instantiated, isinstance(md_func,NPT) is False
+ # ASE NPT implementation requires upper triangular cell
+ u, _ = schur(atoms.get_cell(complete=True), output="complex")
+ atoms.set_cell(u.real, scale_atoms=True)
+
+ last_step = 0
+
+ if traj_file is not None:
+ traj_file = Path(traj_file)
+ traj_file.parent.mkdir(parents=True, exist_ok=True)
+
+ if restart and traj_file.exists():
+ try:
+ last_atoms = read(traj_file, index="-1")
+ assert isinstance(last_atoms, Atoms)
+ last_step = last_atoms.info.get("step")
+ n_steps -= last_step
+ traj = Trajectory(traj_file, "a", atoms)
+ atoms.set_positions(last_atoms.get_positions())
+ atoms.set_momenta(last_atoms.get_momenta())
+ except Exception:
+ traj = Trajectory(traj_file, "w", atoms)
+
+ if not np.isnan(t_schedule).any():
+ MaxwellBoltzmannDistribution(
+ atoms=atoms,
+ temperature_K=t_schedule[last_step],
+ rng=np.random.default_rng(seed=velocity_seed),
+ )
+
+ if zero_linear_momentum:
+ Stationary(atoms)
+ if zero_angular_momentum:
+ ZeroRotation(atoms)
+ else:
+ traj = Trajectory(traj_file, "w", atoms)
+
+ if not np.isnan(t_schedule).any():
+ MaxwellBoltzmannDistribution(
+ atoms=atoms,
+ temperature_K=t_schedule[last_step],
+ rng=np.random.default_rng(seed=velocity_seed),
+ )
+
+ if zero_linear_momentum:
+ Stationary(atoms)
+ if zero_angular_momentum:
+ ZeroRotation(atoms)
+
+ fraction_traceless = dynamics_kwargs.pop("fraction_traceless", 1.0)
+
+ md_runner = md_class(
+ atoms=atoms,
+ timestep=time_step * units.fs,
+ **dynamics_kwargs,
+ )
+ if md_class is NPT:
+ md_runner.set_fraction_traceless(fraction_traceless)
+
+ if traj_file is not None:
+ md_runner.attach(traj.write, interval=traj_interval)
+
+ with tqdm(total=n_steps) as pbar:
+
+ def _callback(dyn: MolecularDynamics = md_runner) -> None:
+ step = last_step + dyn.nsteps
+ dyn.atoms.info["restart"] = last_step
+ dyn.atoms.info["datetime"] = datetime.now()
+ dyn.atoms.info["step"] = step
+ dyn.atoms.info["target_steps"] = target_steps
+ if ensemble == "nve":
+ return
+ dyn.set_temperature(temperature_K=t_schedule[step])
+ if ensemble == "nvt":
+ return
+ dyn.set_stress(p_schedule[step])
+ pbar.update()
+
+ md_runner.attach(_callback, interval=1)
+
+ start_time = datetime.now()
+ md_runner.run(steps=n_steps)
+ end_time = datetime.now()
+
+ if traj_file is not None:
+ traj.close()
+
+ return {
+ "atoms": atoms,
+ "runtime": end_time - start_time,
+ "n_steps": n_steps,
+ }
diff --git a/mlip_arena/tasks/mof/LICENSE b/mlip_arena/tasks/mof/LICENSE
new file mode 100644
index 0000000000000000000000000000000000000000..9bec9ea1dce149f68680f79422395ef547b5ce4e
--- /dev/null
+++ b/mlip_arena/tasks/mof/LICENSE
@@ -0,0 +1,21 @@
+MIT License
+
+Copyright (c) 2024 Hyunsoo Park
+
+Permission is hereby granted, free of charge, to any person obtaining a copy
+of this software and associated documentation files (the "Software"), to deal
+in the Software without restriction, including without limitation the rights
+to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+copies of the Software, and to permit persons to whom the Software is
+furnished to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice shall be included in all
+copies or substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+SOFTWARE.
\ No newline at end of file
diff --git a/mlip_arena/tasks/mof/__init__.py b/mlip_arena/tasks/mof/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..4e5966491b03815c17a1dcba6f30a3ebb937dcdd
--- /dev/null
+++ b/mlip_arena/tasks/mof/__init__.py
@@ -0,0 +1,17 @@
+from pathlib import Path
+from loguru import logger
+
+license_path = Path(__file__).parent / "LICENSE"
+
+logger.info(f"""
+The module '{__name__}' is adapted from the repository: https://github.com/hspark1212/DAC-SIM.
+By using this module, you agree to the terms and conditions specified in the following license:
+
+https://github.com/hspark1212/DAC-SIM/blob/main/LICENSE
+
+Additionally, please ensure proper attribution by citing the reference:
+
+Lim, Y., Park, H., Walsh, A., & Kim, J. (2024). Accelerating COโ Direct Air Capture Screening for Metal-Organic Frameworks with a Transferable Machine Learning Force Field.
+
+A local copy of the LICENSE file can be found at: {license_path}.
+""")
diff --git a/mlip_arena/tasks/mof/flow.py b/mlip_arena/tasks/mof/flow.py
new file mode 100644
index 0000000000000000000000000000000000000000..c2f39e8b22b3628cd9a2c844aecc5cc6fe2fbf7d
--- /dev/null
+++ b/mlip_arena/tasks/mof/flow.py
@@ -0,0 +1,360 @@
+"""
+Widom insertion workflow to calculate Henry coefficient and heat of adsorption for a given MOF structure and gas molecule.
+
+
+This script is heavily adapted from the `DAC-SIM `_ package. Please cite the original work if you use this script.
+
+References
+~~~~~~~~~~~
+- Lim, Y., Park, H., Walsh, A., & Kim, J. (2024). Accelerating COโ Direct Air Capture Screening for Metal-Organic Frameworks with a Transferable Machine Learning Force Field.
+"""
+
+from collections import defaultdict
+from pathlib import Path
+from typing import IO, Any
+
+import numpy as np
+from prefect import flow, task
+from prefect.cache_policies import INPUTS, TASK_SOURCE
+from prefect.futures import wait
+from prefect.logging import get_run_logger
+from prefect.runtime import task_run
+from prefect.states import State
+from tqdm.auto import tqdm
+
+from ase import Atoms, units
+from ase.atoms import Atoms
+from ase.build import molecule
+from ase.filters import Filter
+from ase.io.trajectory import Trajectory, TrajectoryWriter
+from ase.optimize.optimize import Optimizer
+from ase.calculators.calculator import BaseCalculator
+from mlip_arena.models import MLIPEnum
+from mlip_arena.tasks.optimize import run as OPT
+from mlip_arena.tasks.utils import get_calculator, logger
+
+from .grid import get_accessible_positions
+from .input import get_atoms_from_db
+
+
+def add_molecule(gas: Atoms, rotate: bool = True, translate: tuple = None) -> Atoms:
+ """
+ Add a molecule to the simulation cell
+
+ Parameters
+ ----------
+ gas : Atoms
+ The gas molecule to add
+ rotate : bool, optional
+ If True, rotate the molecule randomly, by default True
+ translate : tuple, optional
+ The translation of the molecule, by default None
+
+ Returns
+ -------
+ Atoms
+ The gas molecule added to the simulation cell
+
+ Raises
+ ------
+ ValueError
+ If the translate is not a 3-tuple, raise an error
+
+ Examples
+ --------
+ >>> from ml_mc.utils import molecule, add_gas
+ >>> gas = molecule('H2O')
+ >>> gas = add_gas(gas, rotate=True, translate=(0, 0, 0))
+ """
+ gas = gas.copy()
+ if rotate:
+ angle = np.random.rand() * 360
+ axis = np.random.rand(3)
+ gas.rotate(v=axis, a=angle)
+ if translate is not None:
+ if len(translate) != 3:
+ raise ValueError("translate must be a 3-tuple")
+ gas.translate(translate)
+ return gas
+
+
+def get_atomic_density(atoms: Atoms) -> float:
+ """
+ Calculate atomic density of the atoms.
+
+ Parameters
+ ----------
+ atoms : Atoms
+ The Atoms object to operate on.
+
+ Returns
+ -------
+ float
+ Atomic density of the atoms in kg/mยณ.
+ """
+ volume = atoms.get_volume() * 1e-30 # Convert ร ยณ to mยณ
+ total_mass = sum(atoms.get_masses()) * units._amu # Convert amu to kg
+ return total_mass / volume
+
+
+def _generate_task_run_name():
+ task_name = task_run.task_name
+ parameters = task_run.parameters
+
+ structure = parameters["structure"]
+ gas = parameters["gas"]
+ calculator = parameters["calculator"]
+
+ return f"{task_name}: {structure.get_chemical_formula()} + {gas.get_chemical_formula()} - {calculator}"
+
+
+@task(
+ name="Widom Insertion",
+ task_run_name=_generate_task_run_name,
+ cache_policy=TASK_SOURCE + INPUTS,
+)
+def widom_insertion(
+ # init
+ structure: Atoms,
+ gas: Atoms,
+ calculator: BaseCalculator,
+ optimizer: Optimizer | str = "FIRE",
+ optimizer_kwargs: dict | None = None,
+ filter: Filter | str | None = "FrechetCell",
+ filter_kwargs: dict | None = None,
+ criterion: dict | None = dict(fmax=0.05, steps=50),
+ temperature: float = 300,
+ init_structure_optimize_loops: int = 10,
+ init_gas_optimize: bool = True,
+ traj_file: str | Path | None = None,
+ # run
+ num_insertions: int = 5000,
+ grid_spacing: float = 0.15,
+ cutoff_distance: float = 1.50,
+ min_interplanar_distance: float = 6.0,
+ fold: int = 3,
+ random_seed: int | None = None,
+) -> dict[str, Any] | State:
+ """
+ Run the Widom insertion algorithm to calculate the Henry coefficient and heat of adsorption.
+
+ Parameters
+ ----------
+ num_insertions : int, default=5000
+ Number of random insertions of the gas molecule during simulation.
+ grid_spacing : float, default=0.15
+ Spacing of the grid for possible gas insertion points, in angstroms.
+ cutoff_distance : float, default=1.50
+ When the distance between framework atoms and the gas molecule is less than this value, the insertion is rejected. In angstroms.
+ min_interplanar_distance : float, default=6.0
+ When the interplanar distance of the framework is less than this value, a supercell is constructed. In angstroms.
+ fold : int, default=3
+ Number of repetitions of Widom insertion to improve statistics.
+ random_seed : int, optional
+ Seed for the random number generator for reproducibility.
+
+ Returns
+ -------
+ Dict[str, Any]
+ Dictionary containing the calculated Henry coefficient (mol/kg Pa), averaged interaction energy (eV), and heat of adsorption (kJ/mol) over the number of folds.
+ """
+
+ structure = structure.copy()
+ gas = gas.copy()
+
+ # Optimize structure and gas molecule
+ while init_structure_optimize_loops > 0:
+ logger.info("Optimizing cell")
+ state = OPT(
+ atoms=structure,
+ calculator=calculator,
+ optimizer=optimizer,
+ optimizer_kwargs=optimizer_kwargs,
+ filter=filter,
+ filter_kwargs=filter_kwargs,
+ criterion=criterion,
+ return_state=True,
+ )
+
+ if state.is_failed():
+ return state
+
+ result = state.result(raise_on_failure=False)
+ structure = result["atoms"]
+ if result["converged"]:
+ break
+
+ logger.info("Optimizing atoms with fixed cell")
+ state = OPT(
+ atoms=structure,
+ calculator=calculator,
+ optimizer=optimizer,
+ optimizer_kwargs=optimizer_kwargs,
+ filter=None,
+ filter_kwargs=None,
+ criterion=criterion,
+ return_state=True,
+ )
+
+ if state.is_failed():
+ return state
+
+ result = state.result(raise_on_failure=False)
+ structure = result["atoms"]
+ if result["converged"]:
+ break
+
+ init_structure_optimize_loops -= 1
+
+ if init_gas_optimize:
+ logger.info("Optimizing gas molecule")
+ state = OPT(
+ atoms=gas,
+ calculator=calculator,
+ optimizer=optimizer,
+ optimizer_kwargs=optimizer_kwargs,
+ filter=None,
+ criterion=criterion,
+ return_state=True,
+ )
+
+ if state.is_failed():
+ return state
+
+ gas = state.result(raise_on_failure=False)["atoms"]
+
+ # Calculate accessible positions
+ ret = get_accessible_positions(
+ structure=structure,
+ grid_spacing=grid_spacing,
+ cutoff_distance=cutoff_distance,
+ min_interplanar_distance=min_interplanar_distance,
+ )
+ pos_grid = ret["pos_grid"]
+ idx_accessible_pos = ret["idx_accessible_pos"]
+ structure = ret["structure"] # supercell structure if necessary
+
+ logger.info(
+ f"Number of accessible positions: {len(idx_accessible_pos)} out of total {len(pos_grid)}"
+ )
+
+ calc = calculator
+ # Calculate energies for structure and gas
+ energy_structure = calc.get_potential_energy(structure)
+ energy_gas = calc.get_potential_energy(gas)
+
+ # Set random seed if provided
+ if random_seed is not None:
+ np.random.seed(random_seed)
+ logger.info(f"Setting random seed: {random_seed}")
+
+ if traj_file is not None:
+ traj_file = Path(traj_file)
+ traj_file.parent.mkdir(parents=True, exist_ok=True)
+ # TODO: checkpoint and restart
+ traj = Trajectory(traj_file, "a")
+ else:
+ traj = None
+
+ # Run Widom insertion algorithm
+
+ results = defaultdict(list)
+ for ifold in range(fold):
+
+ nsteps = 0
+
+ np.random.shuffle(idx_accessible_pos)
+ interaction_energies = np.zeros(num_insertions)
+
+ pbar = tqdm(total=num_insertions, desc=f"Fold {ifold + 1}/{fold}")
+ for rand_idx in idx_accessible_pos:
+ # assert rand_idx in idx_accessible_pos
+
+ if nsteps >= num_insertions:
+ break
+
+ # Add gas molecule to the accessible position
+ pos = pos_grid[rand_idx]
+ added_gas = add_molecule(gas, rotate=True, translate=pos)
+ structure_with_gas = structure + added_gas
+ structure_with_gas.wrap() # wrap atoms to unit cell
+
+ # Calculate interaction energy
+ structure_with_gas.calc = calc
+ total_energy = structure_with_gas.get_potential_energy() # [eV]
+ interaction_energy = total_energy - energy_structure - energy_gas # [eV]
+
+ boltzmann_factor = np.exp(
+ -interaction_energy / (temperature * units._k / units._e)
+ )
+
+ # Handle exponential overflow that can cause numerical instability
+
+ max_exp_arg = 700 # np.exp(700) is close to the max float64
+ if boltzmann_factor > np.exp(max_exp_arg):
+ logger.warning(
+ f"Exponential overflow detected. Rejecting this step and retrying."
+ )
+ continue
+
+ interaction_energies[nsteps] = interaction_energy
+ nsteps += 1
+ pbar.update(1)
+
+ # Write trajectory
+ if isinstance(traj, TrajectoryWriter):
+ traj.write(structure_with_gas)
+
+ pbar.close()
+
+ assert nsteps == num_insertions, "Cannot reach the number of insertions due to too many invalid steps."
+
+ # Calculate ensemble averages properties
+ # units._e [J/eV], units._k [J/K], units._k / units._e # [eV/K]
+ boltzmann_factors = np.exp(
+ -interaction_energies / (temperature * units._k / units._e)
+ )
+
+ # KH = / (R * T)
+ atomic_density = get_atomic_density(structure) # [kg / m^3]
+ kh = (
+ boltzmann_factors.sum()
+ / num_insertions
+ / (units._k * units._Nav) # R = [J / mol K] = [Pa m^3 / mol K]
+ / temperature # T = [K] -> [mol/ m^3 Pa]
+ / atomic_density # = [kg / m^3] -> [mol / kg Pa]
+ ) # [mol/kg Pa]
+
+ # U = < E * exp(-E/RT) > / # [eV]
+ u = (interaction_energies * boltzmann_factors).sum() / boltzmann_factors.sum()
+
+ # Qst = U - RT # [kJ/mol]
+ qst = (u * units._e - units._k * temperature) * units._Nav * 1e-3
+
+ results["henry_coefficient"].append(kh)
+ results["averaged_interaction_energy"].append(u)
+ results["heat_of_adsorption"].append(qst)
+
+ return results
+
+
+@flow
+def run(
+ db_path: Path | str = "mofs.db",
+):
+ states = []
+ for model in MLIPEnum:
+ for atoms in tqdm(get_atoms_from_db(db_path)):
+ state = widom_insertion.submit(
+ atoms,
+ molecule("CO2"),
+ calculator=get_calculator(
+ model,
+ dispersion=True,
+ ),
+ return_state=True,
+ )
+ states.append(state)
+
+ wait(states)
+ return [s.result(raise_on_failture=False) for s in states if s.is_completed()]
diff --git a/mlip_arena/tasks/mof/grid.py b/mlip_arena/tasks/mof/grid.py
new file mode 100644
index 0000000000000000000000000000000000000000..152f622004faf2572623f109c9eb1b3756f9308b
--- /dev/null
+++ b/mlip_arena/tasks/mof/grid.py
@@ -0,0 +1,60 @@
+"""
+Grid search for accessible positions
+
+
+This script is heavily adapted from the `DAC-SIM `_ package. Please cite the original work if you use this script.
+
+References
+~~~~~~~~~~~
+- Lim, Y., Park, H., Walsh, A., & Kim, J. (2024). Accelerating COโ Direct Air Capture Screening for Metal-Organic Frameworks with a Transferable Machine Learning Force Field.
+"""
+
+import MDAnalysis as mda
+import numpy as np
+
+from ase import Atoms
+
+
+def get_accessible_positions(
+ structure: Atoms,
+ grid_spacing: float = 0.5,
+ cutoff_distance: float = 10.0,
+ min_interplanar_distance: float = 2.0,
+) -> dict:
+ # get the supercell structure
+ cell_volume = structure.get_volume()
+ cell_vectors = np.array(structure.cell)
+ dist_a = cell_volume / np.linalg.norm(np.cross(cell_vectors[1], cell_vectors[2]))
+ dist_b = cell_volume / np.linalg.norm(np.cross(cell_vectors[2], cell_vectors[0]))
+ dist_c = cell_volume / np.linalg.norm(np.cross(cell_vectors[0], cell_vectors[1]))
+ plane_distances = np.array([dist_a, dist_b, dist_c])
+ supercell = np.ceil(min_interplanar_distance / plane_distances).astype(int)
+ if np.any(supercell > 1):
+ print(
+ f"Making supercell: {supercell} to prevent interplanar distance < {min_interplanar_distance}"
+ )
+ structure = structure.repeat(supercell)
+ # get position for grid
+ grid_size = np.ceil(np.array(structure.cell.cellpar()[:3]) / grid_spacing).astype(
+ int
+ )
+ indices = np.indices(grid_size).reshape(3, -1).T # (G, 3)
+ pos_grid = indices.dot(cell_vectors / grid_size) # (G, 3)
+ # get positions for atoms
+ pos_atoms = structure.get_positions() # (N, 3)
+ # distance matrix
+ dist_matrix = mda.lib.distances.distance_array(
+ pos_grid, pos_atoms, box=structure.cell.cellpar()
+ ) # (G, N) # TODO: check if we could use other packages instead of mda
+
+ # calculate the accessible positions
+ min_dist = np.min(dist_matrix, axis=1) # (G,)
+ idx_accessible_pos = np.where(min_dist > cutoff_distance)[0]
+
+ # result
+ return {
+ "pos_grid": pos_grid,
+ "idx_accessible_pos": idx_accessible_pos,
+ "accessible_pos": pos_grid[idx_accessible_pos],
+ "structure": structure,
+ }
diff --git a/mlip_arena/tasks/mof/input.py b/mlip_arena/tasks/mof/input.py
new file mode 100644
index 0000000000000000000000000000000000000000..89ef833f2dc31d7976c6829bf03db2a91aa80145
--- /dev/null
+++ b/mlip_arena/tasks/mof/input.py
@@ -0,0 +1,69 @@
+import os
+from pathlib import Path
+from typing import Generator, Iterable
+from loguru import logger
+from huggingface_hub import HfApi, hf_hub_download
+from prefect import task
+
+from ase import Atoms
+from ase.db import connect
+
+
+def save_to_db(
+ atoms_list: list[Atoms] | Iterable[Atoms] | Atoms,
+ db_path: Path | str,
+ upload: bool = True,
+ hf_token: str | None = os.getenv("HF_TOKEN", None),
+ repo_id: str = "atomind/mlip-arena",
+ repo_type: str = "dataset",
+ subfolder: str = Path(__file__).parent.name,
+):
+ """Save ASE Atoms objects to an ASE database and optionally upload to Hugging Face Hub."""
+
+ if upload and hf_token is None:
+ raise ValueError("HF_TOKEN is required to upload the database.")
+
+ db_path = Path(db_path)
+
+ if isinstance(atoms_list, Atoms):
+ atoms_list = [atoms_list]
+
+ with connect(db_path) as db:
+ for atoms in atoms_list:
+ if not isinstance(atoms, Atoms):
+ raise ValueError("atoms_list must contain ASE Atoms objects.")
+ db.write(atoms)
+
+ if upload:
+ api = HfApi(token=hf_token)
+ api.upload_file(
+ path_or_fileobj=db_path,
+ path_in_repo=f"{subfolder}/{db_path.name}",
+ repo_id=repo_id,
+ repo_type=repo_type,
+ )
+ logger.info(f"{db_path.name} uploaded to {repo_id}/{subfolder}")
+
+ return db_path
+
+@task
+def get_atoms_from_db(
+ db_path: Path | str,
+ hf_token: str | None = os.getenv("HF_TOKEN", None),
+ repo_id: str = "atomind/mlip-arena",
+ repo_type: str = "dataset",
+ subfolder: str = Path(__file__).parent.name,
+) -> Generator[Atoms, None, None]:
+ """Retrieve ASE Atoms objects from an ASE database."""
+ db_path = Path(db_path)
+ if not db_path.exists():
+ db_path = hf_hub_download(
+ repo_id=repo_id,
+ repo_type=repo_type,
+ subfolder=subfolder,
+ filename=str(db_path),
+ token=hf_token,
+ )
+ with connect(db_path) as db:
+ for row in db.select():
+ yield row.toatoms()
diff --git a/mlip_arena/tasks/neb.py b/mlip_arena/tasks/neb.py
new file mode 100644
index 0000000000000000000000000000000000000000..523e17f0d72cb0e40e6e4248e5b1821ca5b3db75
--- /dev/null
+++ b/mlip_arena/tasks/neb.py
@@ -0,0 +1,248 @@
+"""
+Defines nudged elastic band (NEB) task
+
+This module has been modified from MatCalc
+https://github.com/materialsvirtuallab/matcalc/blob/main/src/matcalc/neb.py
+
+https://github.com/materialsvirtuallab/matcalc/blob/main/LICENSE
+
+BSD 3-Clause License
+
+Copyright (c) 2023, Materials Virtual Lab
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+1. Redistributions of source code must retain the above copyright notice, this
+ list of conditions and the following disclaimer.
+
+2. Redistributions in binary form must reproduce the above copyright notice,
+ this list of conditions and the following disclaimer in the documentation
+ and/or other materials provided with the distribution.
+
+3. Neither the name of the copyright holder nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
+FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
+OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+"""
+
+from __future__ import annotations
+
+from pathlib import Path
+from typing import Any, Literal
+
+from ase import Atoms
+from ase.calculators.calculator import BaseCalculator
+from ase.filters import * # type: ignore
+from ase.mep.neb import NEB, NEBTools
+from ase.optimize import * # type: ignore
+from ase.optimize.optimize import Optimizer
+from ase.utils.forcecurve import fit_images
+from prefect import task
+from prefect.cache_policies import INPUTS, TASK_SOURCE
+from prefect.runtime import task_run
+from prefect.states import State
+
+from mlip_arena.tasks.optimize import run as OPT
+from mlip_arena.tasks.utils import logger, pformat
+from pymatgen.io.ase import AseAtomsAdaptor
+
+_valid_optimizers: dict[str, Optimizer] = {
+ "MDMin": MDMin,
+ "FIRE": FIRE,
+ "FIRE2": FIRE2,
+ "LBFGS": LBFGS,
+ "LBFGSLineSearch": LBFGSLineSearch,
+ "BFGS": BFGS,
+ # "BFGSLineSearch": BFGSLineSearch, # NEB does not support BFGSLineSearch
+ "QuasiNewton": QuasiNewton,
+ "GPMin": GPMin,
+ "CellAwareBFGS": CellAwareBFGS,
+ "ODE12r": ODE12r,
+} # type: ignore
+
+
+def _generate_task_run_name():
+ task_name = task_run.task_name
+ parameters = task_run.parameters
+
+ if "images" in parameters:
+ atoms = parameters["images"][0]
+ elif "start" in parameters:
+ atoms = parameters["start"]
+ else:
+ raise ValueError("No images or start atoms found in parameters")
+
+ calculator_name = parameters["calculator"]
+
+ return f"{task_name}: {atoms.get_chemical_formula()} - {calculator_name}"
+
+
+@task(
+ name="NEB from images",
+ task_run_name=_generate_task_run_name,
+ cache_policy=TASK_SOURCE + INPUTS,
+)
+def run(
+ images: list[Atoms],
+ calculator: BaseCalculator,
+ optimizer: Optimizer | str = "MDMin", # type: ignore
+ optimizer_kwargs: dict | None = None,
+ criterion: dict | None = None,
+ interpolation: Literal["linear", "idpp"] = "idpp",
+ climb: bool = True,
+ traj_file: str | Path | None = None,
+) -> dict[str, Any] | State:
+ """Run the nudged elastic band (NEB) calculation.
+
+ Args:
+ images (list[Atoms]): The images.
+ calculator_name (str | MLIPEnum): The calculator name.
+ calculator_kwargs (dict, optional): The calculator kwargs. Defaults to None.
+ dispersion (str, optional): The dispersion. Defaults to None.
+ dispersion_kwargs (dict, optional): The dispersion kwargs. Defaults to None.
+ device (str, optional): The device. Defaults to None.
+ optimizer (Optimizer | str, optional): The optimizer. Defaults to "BFGSLineSearch".
+ optimizer_kwargs (dict, optional): The optimizer kwargs. Defaults to None.
+ criterion (dict, optional): The criterion. Defaults to None.
+ interpolation (Literal['linear', 'idpp'], optional): The interpolation method. Defaults to "idpp".
+ climb (bool, optional): Whether to use the climbing image. Defaults to True.
+ traj_file (str | Path, optional): The trajectory file. Defaults to None.
+
+ Returns:
+ dict[str, Any] | State: The energy barrier.
+ """
+
+ images = [image.copy() for image in images]
+
+ for image in images:
+ assert isinstance(image, Atoms)
+ image.calc = calculator
+
+ neb = NEB(images, climb=climb, allow_shared_calculator=True)
+
+ neb.interpolate(method=interpolation)
+
+ if isinstance(optimizer, str):
+ if optimizer not in _valid_optimizers:
+ raise ValueError(f"Invalid optimizer: {optimizer}")
+ optimizer = _valid_optimizers[optimizer]
+
+ optimizer_kwargs = optimizer_kwargs or {}
+ criterion = criterion or {}
+
+ optimizer_instance = optimizer(neb, trajectory=traj_file, **optimizer_kwargs) # type: ignore
+ logger.info(f"Using optimizer: {optimizer_instance}")
+ logger.info(pformat(optimizer_kwargs))
+ logger.info(f"Criterion: {pformat(criterion)}")
+ optimizer_instance.run(**criterion)
+
+ neb_tool = NEBTools(neb.images)
+
+ return {
+ "barrier": neb_tool.get_barrier(),
+ "images": neb.images,
+ "forcefit": fit_images(neb.images),
+ }
+
+
+@task(
+ name="NEB from endpoints",
+ task_run_name=_generate_task_run_name,
+ cache_policy=TASK_SOURCE + INPUTS,
+)
+def run_from_endpoints(
+ start: Atoms,
+ end: Atoms,
+ n_images: int,
+ calculator: BaseCalculator,
+ optimizer: Optimizer | str = "BFGS", # type: ignore
+ optimizer_kwargs: dict | None = None,
+ criterion: dict | None = None,
+ relax_end_points: bool = True,
+ interpolation: Literal["linear", "idpp"] = "idpp",
+ climb: bool = True,
+ traj_file: str | Path | None = None,
+ cache_subtasks: bool = False,
+) -> dict[str, Any] | State:
+ """Run the nudged elastic band (NEB) calculation from end points.
+
+ Args:
+ start (Atoms): The start image.
+ end (Atoms): The end image.
+ n_images (int): The number of images.
+ calculator_name (str | MLIPEnum): The calculator name.
+ calculator_kwargs (dict, optional): The calculator kwargs. Defaults to None.
+ dispersion (str, optional): The dispersion. Defaults to None.
+ dispersion_kwargs (dict, optional): The dispersion kwargs. Defaults to None.
+ device (str, optional): The device. Defaults to None.
+ optimizer (Optimizer | str, optional): The optimizer. Defaults to "BFGSLineSearch".
+ optimizer_kwargs (dict, optional): The optimizer kwargs. Defaults to None.
+ criterion (dict, optional): The criterion. Defaults to None.
+ interpolation (Literal['linear', 'idpp'], optional): The interpolation method. Defaults to "idpp".
+ climb (bool, optional): Whether to use the climbing image. Defaults to True.
+ traj_file (str | Path, optional): The trajectory file. Defaults to None.
+
+ Returns:
+ dict[str, Any] | State: The energy barrier.
+ """
+
+ if relax_end_points:
+ relax = OPT.with_options(
+ refresh_cache=not cache_subtasks,
+ )(
+ atoms=start.copy(),
+ calculator=calculator,
+ optimizer=optimizer,
+ optimizer_kwargs=optimizer_kwargs,
+ criterion=criterion,
+ )
+ start = relax["atoms"]
+
+ relax = OPT.with_options(
+ refresh_cache=not cache_subtasks,
+ )(
+ atoms=end.copy(),
+ calculator=calculator,
+ optimizer=optimizer,
+ optimizer_kwargs=optimizer_kwargs,
+ criterion=criterion,
+ )
+ end = relax["atoms"]
+
+ path = (
+ AseAtomsAdaptor()
+ .get_structure(start)
+ .interpolate(
+ AseAtomsAdaptor().get_structure(end),
+ nimages=n_images - 1,
+ interpolate_lattices=False,
+ pbc=False,
+ autosort_tol=0.5,
+ )
+ )
+
+ images = [s.to_ase_atoms(msonable=False) for s in path]
+
+ return run.with_options(
+ refresh_cache=not cache_subtasks,
+ )(
+ images,
+ calculator=calculator,
+ optimizer=optimizer,
+ optimizer_kwargs=optimizer_kwargs,
+ criterion=criterion,
+ interpolation=interpolation,
+ climb=climb,
+ traj_file=traj_file,
+ )
diff --git a/mlip_arena/tasks/optimize.py b/mlip_arena/tasks/optimize.py
new file mode 100644
index 0000000000000000000000000000000000000000..c0d5f478b0b055e3ae8598460000e24ad52ce127
--- /dev/null
+++ b/mlip_arena/tasks/optimize.py
@@ -0,0 +1,109 @@
+"""
+Define structure optimization tasks.
+"""
+
+from __future__ import annotations
+
+from ase import Atoms
+from ase.calculators.calculator import BaseCalculator
+from ase.constraints import FixSymmetry
+from ase.filters import * # type: ignore
+from ase.filters import Filter
+from ase.optimize import * # type: ignore
+from ase.optimize.optimize import Optimizer
+from prefect import task
+from prefect.cache_policies import INPUTS, TASK_SOURCE
+from prefect.runtime import task_run
+
+from mlip_arena.tasks.utils import logger, pformat
+
+_valid_filters: dict[str, Filter] = {
+ "Filter": Filter,
+ "UnitCell": UnitCellFilter,
+ "ExpCell": ExpCellFilter,
+ "Strain": StrainFilter,
+ "FrechetCell": FrechetCellFilter,
+} # type: ignore
+
+_valid_optimizers: dict[str, Optimizer] = {
+ "MDMin": MDMin,
+ "FIRE": FIRE,
+ "FIRE2": FIRE2,
+ "LBFGS": LBFGS,
+ "LBFGSLineSearch": LBFGSLineSearch,
+ "BFGS": BFGS,
+ "BFGSLineSearch": BFGSLineSearch,
+ "QuasiNewton": QuasiNewton,
+ "GPMin": GPMin,
+ "CellAwareBFGS": CellAwareBFGS,
+ "ODE12r": ODE12r,
+} # type: ignore
+
+
+def _generate_task_run_name():
+ task_name = task_run.task_name
+ parameters = task_run.parameters
+
+ atoms = parameters["atoms"]
+ calculator_name = parameters["calculator"]
+
+ return f"{task_name}: {atoms.get_chemical_formula()} - {calculator_name}"
+
+
+@task(
+ name="OPT", task_run_name=_generate_task_run_name, cache_policy=TASK_SOURCE + INPUTS
+)
+def run(
+ atoms: Atoms,
+ calculator: BaseCalculator,
+ optimizer: Optimizer | str = BFGSLineSearch,
+ optimizer_kwargs: dict | None = None,
+ filter: Filter | str | None = None,
+ filter_kwargs: dict | None = None,
+ criterion: dict | None = None,
+ symmetry: bool = False,
+):
+ atoms = atoms.copy()
+ atoms.calc = calculator
+
+ if isinstance(filter, str):
+ if filter not in _valid_filters:
+ raise ValueError(f"Invalid filter: {filter}")
+ filter = _valid_filters[filter]
+
+ if isinstance(optimizer, str):
+ if optimizer not in _valid_optimizers:
+ raise ValueError(f"Invalid optimizer: {optimizer}")
+ optimizer = _valid_optimizers[optimizer]
+
+ filter_kwargs = filter_kwargs or {}
+ optimizer_kwargs = optimizer_kwargs or {}
+ criterion = criterion or dict(steps=1000)
+
+ if symmetry:
+ atoms.set_constraint(FixSymmetry(atoms))
+
+ if isinstance(filter, type) and issubclass(filter, Filter):
+ filter_instance = filter(atoms, **filter_kwargs)
+ logger.info(f"Using filter: {filter_instance}")
+ logger.info(pformat(filter_kwargs))
+
+ optimizer_instance = optimizer(filter_instance, **optimizer_kwargs)
+ logger.info(f"Using optimizer: {optimizer_instance}")
+ logger.info(pformat(optimizer_kwargs))
+ logger.info(f"Criterion: {pformat(criterion)}")
+
+ optimizer_instance.run(**criterion)
+ elif filter is None:
+ optimizer_instance = optimizer(atoms, **optimizer_kwargs)
+ logger.info(f"Using optimizer: {optimizer_instance}")
+ logger.info(pformat(optimizer_kwargs))
+ logger.info(f"Criterion: {pformat(criterion)}")
+ optimizer_instance.run(**criterion)
+
+
+ return {
+ "atoms": atoms,
+ "steps": optimizer_instance.nsteps,
+ "converged": optimizer_instance.converged(),
+ }
diff --git a/mlip_arena/tasks/phonon.py b/mlip_arena/tasks/phonon.py
new file mode 100644
index 0000000000000000000000000000000000000000..22b2638db5ae9c2dd5f740b3477a9e8e1fa8508e
--- /dev/null
+++ b/mlip_arena/tasks/phonon.py
@@ -0,0 +1,166 @@
+"""
+This module has been adapted from Quacc (https://github.com/Quantum-Accelerators/quacc). By using this software, you agree to the Quacc license agreement: https://github.com/Quantum-Accelerators/quacc/blob/main/LICENSE.md
+
+
+BSD 3-Clause License
+
+Copyright (c) 2025, Andrew S. Rosen.
+All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+- Redistributions of source code must retain the above copyright notice, this
+ list of conditions and the following disclaimer.
+
+- Redistributions in binary form must reproduce the above copyright notice,
+ this list of conditions and the following disclaimer in the documentation
+ and/or other materials provided with the distribution.
+
+- Neither the name of the copyright holder nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
+FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
+OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+"""
+
+from pathlib import Path
+
+import numpy as np
+from ase import Atoms
+from ase.calculators.calculator import BaseCalculator
+from prefect import task
+from prefect.cache_policies import INPUTS, TASK_SOURCE
+from prefect.runtime import task_run
+
+from mlip_arena.tasks.utils import logger
+
+try:
+ from phonopy import Phonopy
+ from phonopy.structure.atoms import PhonopyAtoms
+except ImportError as e:
+ logger.warning(e)
+ logger.warning(
+ "Phonopy is not installed. Please install it following the instructions at https://phonopy.github.io/phonopy/install.html to use this module."
+ )
+
+
+@task(cache_policy=TASK_SOURCE + INPUTS)
+def get_phonopy(
+ atoms: Atoms,
+ supercell_matrix: list[int] | None = None,
+ min_lengths: float | tuple[float, float, float] | None = None,
+ symprec: float = 1e-5,
+ distance: float = 0.01,
+ phonopy_kwargs: dict = {},
+) -> Phonopy:
+ if supercell_matrix is None and min_lengths is not None:
+ supercell_matrix = np.diag(
+ np.round(np.ceil(min_lengths / atoms.cell.lengths()))
+ )
+
+ phonon = Phonopy(
+ PhonopyAtoms(
+ symbols=atoms.get_chemical_symbols(),
+ cell=atoms.get_cell(),
+ scaled_positions=atoms.get_scaled_positions(wrap=True),
+ masses=atoms.get_masses(),
+ ),
+ symprec=symprec,
+ supercell_matrix=supercell_matrix,
+ **phonopy_kwargs,
+ )
+ phonon.generate_displacements(distance=distance)
+
+ return phonon
+
+
+def _get_forces(
+ phononpy_atoms: PhonopyAtoms,
+ calculator: BaseCalculator,
+) -> np.ndarray:
+ atoms = Atoms(
+ symbols=phononpy_atoms.symbols,
+ cell=phononpy_atoms.cell,
+ scaled_positions=phononpy_atoms.scaled_positions,
+ pbc=True,
+ )
+
+ atoms.calc = calculator
+
+ return atoms.get_forces()
+
+
+def _generate_task_run_name():
+ task_name = task_run.task_name
+ parameters = task_run.parameters
+
+ atoms = parameters["atoms"]
+ calculator_name = parameters["calculator"]
+
+ return f"{task_name}: {atoms.get_chemical_formula()} - {calculator_name}"
+
+
+@task(
+ name="PHONON",
+ task_run_name=_generate_task_run_name,
+ cache_policy=TASK_SOURCE + INPUTS,
+)
+def run(
+ atoms: Atoms,
+ calculator: BaseCalculator,
+ supercell_matrix: list[int] | None = None,
+ min_lengths: float | tuple[float, float, float] | None = None,
+ symprec: float = 1e-5,
+ distance: float = 0.01,
+ phonopy_kwargs: dict = {},
+ symmetry: bool = False,
+ t_min: float = 0.0,
+ t_max: float = 1000.0,
+ t_step: float = 10.0,
+ outdir: str | None = None,
+):
+ phonon = get_phonopy(
+ atoms=atoms.copy(),
+ supercell_matrix=supercell_matrix,
+ min_lengths=min_lengths,
+ symprec=symprec,
+ distance=distance,
+ phonopy_kwargs=phonopy_kwargs,
+ )
+
+ supercells_with_displacements = phonon.supercells_with_displacements
+
+ phonon.forces = [
+ _get_forces(supercell, calculator)
+ for supercell in supercells_with_displacements
+ if supercell is not None
+ ]
+ phonon.produce_force_constants()
+
+ if symmetry:
+ phonon.symmetrize_force_constants()
+ phonon.symmetrize_force_constants_by_space_group()
+
+ phonon.run_mesh(with_eigenvectors=True)
+ phonon.run_total_dos()
+ phonon.run_thermal_properties(t_step=t_step, t_max=t_max, t_min=t_min) # type: ignore
+ phonon.auto_band_structure(
+ write_yaml=True if outdir is not None else False,
+ filename=Path(outdir, "band.yaml") if outdir is not None else "band.yaml",
+ )
+ if outdir:
+ phonon.save(Path(outdir, "phonopy.yaml"), settings={"force_constants": True})
+
+ return {
+ "phonon": phonon,
+ }
diff --git a/mlip_arena/tasks/registry.yaml b/mlip_arena/tasks/registry.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..64f711e9d4cb915e9477248c82e987f7d02e6ca9
--- /dev/null
+++ b/mlip_arena/tasks/registry.yaml
@@ -0,0 +1,38 @@
+Homonuclear diatomics:
+ category: Fundamentals
+ task-page: homonuclear-diatomics
+ task-layout: wide
+ rank-page: homonuclear-diatomics
+ last-update: 2024-09-19
+Energy-volume scans:
+ category: Fundamentals
+ task-page: wbm_ev
+ task-layout: wide
+ rank-page: wbm_ev
+ last-update: 2025-04-29
+Equation of state:
+ category: Fundamentals
+ task-page: eos_bulk
+ task-layout: wide
+ rank-page: eos_bulk
+ last-update: 2025-04-29
+Combustion:
+ category: Molecular Dynamics
+ task-page: combustion
+ task-layout: centered
+ rank-page: combustion
+High pressure stability:
+ category: Molecular Dynamics
+ task-page: stability
+ task-layout: centered
+ rank-page:
+Lattice thermal conductivity:
+ category: Properties and Physical Behaviors
+ task-page: thermal-conductivity
+ task-layout: centered
+ rank-page: thermal-conductivity
+# 2D materials:
+# category: Properties and Physical Behaviors
+# task-page: c2db
+# task-layout: centered
+# rank-page:
diff --git a/mlip_arena/tasks/stability/__init__.py b/mlip_arena/tasks/stability/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/mlip_arena/tasks/stability/chgnet/chloride-salts.json b/mlip_arena/tasks/stability/chgnet/chloride-salts.json
new file mode 100644
index 0000000000000000000000000000000000000000..4af31c3ed97e9463b52c541fec25cd5a9958f8bc
--- /dev/null
+++ b/mlip_arena/tasks/stability/chgnet/chloride-salts.json
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:c29313314759696c662a7019bf9d18816e7370e3e8630fd2df2923e967b98868
+size 62991
diff --git a/mlip_arena/tasks/stability/input.py b/mlip_arena/tasks/stability/input.py
new file mode 100644
index 0000000000000000000000000000000000000000..11c47aced0c28b2b265924cbb6db460b8ee9fc22
--- /dev/null
+++ b/mlip_arena/tasks/stability/input.py
@@ -0,0 +1,74 @@
+import os
+from pathlib import Path
+from typing import Generator, Iterable
+
+from huggingface_hub import HfApi, hf_hub_download
+from prefect import task
+
+from ase import Atoms
+from ase.db import connect
+from mlip_arena.tasks.utils import logger
+
+
+def save_to_db(
+ atoms_list: list[Atoms] | Iterable[Atoms] | Atoms,
+ db_path: Path | str,
+ upload: bool = True,
+ hf_token: str | None = os.getenv("HF_TOKEN", None),
+ repo_id: str = "atomind/mlip-arena",
+ repo_type: str = "dataset",
+ subfolder: str = Path(__file__).parent.name,
+):
+ """Save ASE Atoms objects to an ASE database and optionally upload to Hugging Face Hub."""
+
+ if upload and hf_token is None:
+ raise ValueError("HF_TOKEN is required to upload the database.")
+
+ db_path = Path(db_path)
+
+ if isinstance(atoms_list, Atoms):
+ atoms_list = [atoms_list]
+
+ with connect(db_path) as db:
+ for atoms in atoms_list:
+ if not isinstance(atoms, Atoms):
+ raise ValueError("atoms_list must contain ASE Atoms objects.")
+ db.write(atoms)
+
+ if upload:
+ api = HfApi(token=hf_token)
+ api.upload_file(
+ path_or_fileobj=db_path,
+ path_in_repo=f"{subfolder}/{db_path.name}",
+ repo_id=repo_id,
+ repo_type=repo_type,
+ )
+ logger.info(f"{db_path.name} uploaded to {repo_id}/{subfolder}")
+
+ return db_path
+
+
+@task
+def get_atoms_from_db(
+ db_path: Path | str,
+ hf_token: str | None = os.getenv("HF_TOKEN", None),
+ repo_id: str = "atomind/mlip-arena",
+ repo_type: str = "dataset",
+ subfolder: str = Path(__file__).parent.name,
+ force_download: bool = False,
+) -> Generator[Atoms, None, None]:
+ """Retrieve ASE Atoms objects from an ASE database."""
+ db_path = Path(db_path)
+ if not db_path.exists():
+ db_path = hf_hub_download(
+ repo_id=repo_id,
+ repo_type=repo_type,
+ subfolder=subfolder,
+ # local_dir=db_path.parent,
+ filename=db_path.name,
+ token=hf_token,
+ force_download=force_download,
+ )
+ with connect(db_path) as db:
+ for row in db.select():
+ yield row.toatoms()
diff --git a/mlip_arena/tasks/stability/mace-mp/chloride-salts.json b/mlip_arena/tasks/stability/mace-mp/chloride-salts.json
new file mode 100644
index 0000000000000000000000000000000000000000..d798ea26d7c44e2852cc28a9007e50ba82f1d087
--- /dev/null
+++ b/mlip_arena/tasks/stability/mace-mp/chloride-salts.json
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:1788007f0728bd177466349a67812073a7d5e54b4fd45184aa53e5237ee5536f
+size 166882641
diff --git a/mlip_arena/tasks/stability/orb/chloride-salts.json b/mlip_arena/tasks/stability/orb/chloride-salts.json
new file mode 100644
index 0000000000000000000000000000000000000000..4fcdd5f86d0d4320a3fc835d9b83fdbf6ec48387
--- /dev/null
+++ b/mlip_arena/tasks/stability/orb/chloride-salts.json
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:e0a63ab2e52e104194dea43ffa456377bd355ef82b7b4a111456b81aeb054019
+size 12239582
diff --git a/mlip_arena/tasks/stability/sevennet/chloride-salts.json b/mlip_arena/tasks/stability/sevennet/chloride-salts.json
new file mode 100644
index 0000000000000000000000000000000000000000..ba8848c0237f98d6b982c1ea9571de9a195c4ed1
--- /dev/null
+++ b/mlip_arena/tasks/stability/sevennet/chloride-salts.json
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:77e18217178cb40cfd8ba75cf4e32ec5586d8766fe7dc5268e665d5f51d6d4f4
+size 274466898
diff --git a/mlip_arena/tasks/thermal-conductivity/wte.csv b/mlip_arena/tasks/thermal-conductivity/wte.csv
new file mode 100644
index 0000000000000000000000000000000000000000..ba74ba57b89772505916a0ab29f66ec55b985bc6
--- /dev/null
+++ b/mlip_arena/tasks/thermal-conductivity/wte.csv
@@ -0,0 +1,8 @@
+method,srme
+M3GNet,1.142
+CHGNet,1.717
+MACE-MP(M),0.647
+SevenNet,0.767
+ORBv2,1.732
+ORBv2(MPTrj),1.725
+eqV2(OMat-S),1.772
diff --git a/mlip_arena/tasks/utils.py b/mlip_arena/tasks/utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..7368b9ab63ba82a3a9f6b45aa25479871cce45b3
--- /dev/null
+++ b/mlip_arena/tasks/utils.py
@@ -0,0 +1,122 @@
+"""Utility functions for MLIP models."""
+
+from __future__ import annotations
+
+from pprint import pformat
+
+import torch
+from ase import units
+from ase.calculators.calculator import BaseCalculator
+from ase.calculators.mixing import SumCalculator
+
+from mlip_arena.models import MLIPEnum
+
+try:
+ from prefect.logging import get_run_logger
+
+ logger = get_run_logger()
+except (ImportError, RuntimeError):
+ from loguru import logger
+
+
+def get_freer_device() -> torch.device:
+ """Get the GPU with the most free memory, or use MPS if available.
+ s
+ Returns:
+ torch.device: The selected GPU device or MPS.
+
+ Raises:
+ ValueError: If no GPU or MPS is available.
+ """
+ device_count = torch.cuda.device_count()
+ if device_count > 0:
+ # If CUDA GPUs are available, select the one with the most free memory
+ mem_free = [
+ torch.cuda.get_device_properties(i).total_memory
+ - torch.cuda.memory_allocated(i)
+ for i in range(device_count)
+ ]
+ free_gpu_index = mem_free.index(max(mem_free))
+ device = torch.device(f"cuda:{free_gpu_index}")
+ logger.info(
+ f"Selected GPU {device} with {mem_free[free_gpu_index] / 1024**2:.2f} MB free memory from {device_count} GPUs"
+ )
+ elif torch.backends.mps.is_available():
+ # If no CUDA GPUs are available but MPS is, use MPS
+ logger.info("No GPU available. Using MPS.")
+ device = torch.device("mps")
+ else:
+ # Fallback to CPU if neither CUDA GPUs nor MPS are available
+ logger.info("No GPU or MPS available. Using CPU.")
+ device = torch.device("cpu")
+
+ return device
+
+
+def get_calculator(
+ calculator_name: str | MLIPEnum | BaseCalculator,
+ calculator_kwargs: dict | None = None,
+ dispersion: bool = False,
+ dispersion_kwargs: dict | None = None,
+ device: str | None = None,
+) -> BaseCalculator:
+ """Get a calculator with optional dispersion correction."""
+
+ device = device or str(get_freer_device())
+
+ calculator_kwargs = calculator_kwargs or {}
+ calculator_kwargs.update({"device": device})
+
+ logger.info(f"Using device: {device}")
+
+ if isinstance(calculator_name, MLIPEnum) and calculator_name in MLIPEnum:
+ calc = calculator_name.value(**calculator_kwargs)
+ calc.__str__ = lambda: calculator_name.name
+ elif isinstance(calculator_name, str) and hasattr(MLIPEnum, calculator_name):
+ calc = MLIPEnum[calculator_name].value(**calculator_kwargs)
+ calc.__str__ = lambda: calculator_name
+ elif isinstance(calculator_name, type) and issubclass(
+ calculator_name, BaseCalculator
+ ):
+ logger.warning(f"Using custom calculator class: {calculator_name}")
+ calc = calculator_name(**calculator_kwargs)
+ calc.__str__ = lambda: f"{calc.__class__.__name__}"
+ elif isinstance(calculator_name, BaseCalculator):
+ logger.warning(
+ f"Using custom calculator object (kwargs are ignored): {calculator_name}"
+ )
+ calc = calculator_name
+ calc.__str__ = lambda: f"{calc.__class__.__name__}"
+ else:
+ raise ValueError(f"Invalid calculator: {calculator_name}")
+
+ logger.info(f"Using calculator: {calc}")
+ if calculator_kwargs:
+ logger.info(pformat(calculator_kwargs))
+
+ dispersion_kwargs = dispersion_kwargs or dict(
+ damping="bj", xc="pbe", cutoff=40.0 * units.Bohr
+ )
+
+ dispersion_kwargs.update({"device": device})
+
+ if dispersion:
+ try:
+ from torch_dftd.torch_dftd3_calculator import TorchDFTD3Calculator
+ except ImportError as e:
+ raise ImportError(
+ "torch_dftd is required for dispersion but is not installed."
+ ) from e
+
+ disp_calc = TorchDFTD3Calculator(
+ **dispersion_kwargs,
+ )
+ calc = SumCalculator([calc, disp_calc])
+ # TODO: rename the SumCalculator
+
+ logger.info(f"Using dispersion: {disp_calc}")
+ if dispersion_kwargs:
+ logger.info(pformat(dispersion_kwargs))
+
+ assert isinstance(calc, BaseCalculator)
+ return calc
diff --git a/mlip_arena/tasks/vacancy_migration/__init__.py b/mlip_arena/tasks/vacancy_migration/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/mlip_arena/tasks/vacancy_migration/input.py b/mlip_arena/tasks/vacancy_migration/input.py
new file mode 100644
index 0000000000000000000000000000000000000000..211bf8960c58d1d1af8ec48d9fbf7c7e92f01ed6
--- /dev/null
+++ b/mlip_arena/tasks/vacancy_migration/input.py
@@ -0,0 +1,192 @@
+from mp_api.client import MPRester
+
+from ase import Atom
+from ase.data import covalent_radii
+from ase.spacegroup import crystal
+
+fcc_elements = [
+ "Ac",
+ "Ag",
+ "Al",
+ "Ar",
+ "Au",
+ "Ba",
+ "Be",
+ "Ca",
+ "Cd",
+ "Ce",
+ "Co",
+ "Cs",
+ "Cu",
+ "Dy",
+ "Er",
+ "Fe",
+ "Ga",
+ "Ge",
+ "He",
+ "Hf",
+ "Ho",
+ "In",
+ "Ir",
+ "K",
+ "Kr",
+ "La",
+ "Li",
+ "Mg",
+ "Mn",
+ "Na",
+ "Ni",
+ "Os",
+ "Pa",
+ "Pb",
+ "Pd",
+ "Pr",
+ "Pt",
+ "Rb",
+ "Re",
+ "Rh",
+ "Ru",
+ "Sc",
+ "Sn",
+ "Sr",
+ "Ta",
+ "Tb",
+ "Tc",
+ "Th",
+ "Ti",
+ "Tl",
+ "W",
+ "Xe",
+ "Y",
+ "Zr"
+]
+
+def get_fcc_pristine(mp_api_key = None):
+ for element in fcc_elements:
+ with MPRester(mp_api_key) as mpr:
+ docs = mpr.materials.summary.search(
+ formula=element, spacegroup_number=225, fields=["structure", "energy_above_hull"]
+ )
+
+ docs = sorted(docs, key=lambda x: x.energy_above_hull)
+
+ if len(docs) != 0:
+ pristine = docs[0].structure.to_conventional().to_ase_atoms(msonable=False) * (3, 3, 3)
+
+ if len(pristine) != 108:
+ v = pristine.get_volume() / len(pristine)
+ r = v**(1/3)
+ a = 2*(2**0.5)*r
+
+ pristine = crystal(
+ symbols=[element]*4,
+ basis=[(0, 0, 0), (0.5, 0.5, 0), (0.5, 0, 0.5), (0, 0.5, 0.5)],
+ spacegroup=225,
+ cellpar=[a, a, a, 90, 90, 90],
+ ) * (3, 3, 3)
+ else:
+ r = covalent_radii[Atom(element).number] or 4
+ a = 2*(2**0.5)*r
+ pristine = crystal(
+ symbols=[element]*4,
+ basis=[(0, 0, 0), (0.5, 0.5, 0), (0.5, 0, 0.5), (0, 0.5, 0.5)],
+ spacegroup=225,
+ cellpar=[a, a, a, 90, 90, 90],
+ ) * (3, 3, 3)
+ yield pristine
+
+hcp_elements = [
+ "Ag",
+ "Al",
+ "Ar",
+ "Au",
+ "Ba",
+ "Be",
+ "Ca",
+ "Cd",
+ "Ce",
+ "Co",
+ "Cr",
+ "Cs",
+ "Cu",
+ "Fe",
+ "Ga",
+ "Ge",
+ "He",
+ "Hf",
+ "Ho",
+ "In",
+ "Ir",
+ "K",
+ "Kr",
+ "La",
+ "Li",
+ "Mg",
+ "Mn",
+ "Mo",
+ "Nb",
+ "Ne",
+ "Ni",
+ "Os",
+ "P",
+ "Pb",
+ "Pd",
+ "Pt",
+ "Rb",
+ "Re",
+ "Rh",
+ "Ru",
+ "Sc",
+ "Si",
+ "Sn",
+ "Sr",
+ "Ta",
+ "Tc",
+ "Te",
+ "Th",
+ "Ti",
+ "Tl",
+ "V",
+ "W",
+ "Xe",
+ "Y",
+ "Zn",
+ "Zr"
+]
+
+def get_hcp_pristine(mp_api_key = None):
+ for element in hcp_elements:
+ with MPRester(mp_api_key) as mpr:
+ docs = mpr.materials.summary.search(
+ formula=element, spacegroup_number=194, fields=["structure", "energy_above_hull"]
+ )
+
+ docs = sorted(docs, key=lambda x: x.energy_above_hull)
+
+ if len(docs) != 0:
+ pristine = docs[0].structure.to_conventional().to_ase_atoms(msonable=False) * (3, 3, 1)
+
+ if len(pristine) != 36:
+ v = pristine.get_volume() / len(pristine)
+ r = v**(1/3)
+ a = 2*r
+ c = 4 * ((2/3) ** 0.5) * r
+
+ pristine = crystal(
+ [element],
+ [(1.0 / 3.0, 2.0 / 3.0, 3.0 / 4.0)],
+ spacegroup=194,
+ cellpar=[a, a, c, 90, 90, 120],
+ ) * (3, 3, 2)
+ else:
+ r = covalent_radii[Atom(element).number] or 4
+ a = 2*r
+ c = 4 * ((2/3) ** 0.5) * r
+
+ pristine = crystal(
+ [element],
+ [(1.0 / 3.0, 2.0 / 3.0, 3.0 / 4.0)],
+ spacegroup=194,
+ cellpar=[a, a, c, 90, 90, 120],
+ ) * (3, 3, 2)
+ yield pristine
\ No newline at end of file
diff --git a/pyproject.toml b/pyproject.toml
new file mode 100644
index 0000000000000000000000000000000000000000..f1aa30552a3b467329053e75a6c9b72e99d02322
--- /dev/null
+++ b/pyproject.toml
@@ -0,0 +1,178 @@
+[build-system]
+requires=["flit_core >=3.2,<4"]
+build-backend="flit_core.buildapi"
+
+[project]
+name="mlip-arena"
+version="0.1.2"
+authors=[
+ {name="Yuan Chiang", email="cyrusyc@lbl.gov"},
+]
+description="Fair and transparent benchmark of machine learning interatomic potentials (MLIPs), beyond error-based regression metrics"
+readme=".github/README.md"
+requires-python=">=3.9"
+keywords=[
+ "pytorch",
+ "machine-learning-interatomic-potentials",
+ "huggingface",
+ "deep-learning",
+ "graph-neural-networks",
+]
+classifiers=[
+ "Development Status :: 1 - Planning",
+ "Programming Language :: Python",
+ "Programming Language :: Python :: 3.10",
+ "Programming Language :: Python :: 3.11",
+ "Programming Language :: Python :: 3.12",
+ "Programming Language :: Python :: 3 :: Only",
+]
+dependencies=[
+ "loguru",
+ "ase",
+ "pymatgen",
+ "torch",
+ "huggingface_hub",
+ "datasets",
+ "safetensors",
+ "prefect>3.2.0",
+ "prefect-dask",
+ "dask",
+ "dask_jobqueue",
+ "tables",
+ "MDAnalysis", # mof
+]
+
+[project.optional-dependencies]
+app = [
+ "streamlit==1.43.2",
+ "plotly",
+]
+test = [
+ "torch==2.4.0",
+ "torch_dftd==0.4.0",
+ "e3nn==0.5.0",
+ "dgl",
+ "chgnet==0.3.8",
+ "sevenn==0.9.3.post1",
+ "alignn==2024.5.27",
+ "mattersim==1.1.2",
+ "torchani==2.2.4",
+ "pytest",
+ "pytest-xdist",
+ "prefect==3.2.13",
+ "pymatgen>=2025.1.9",
+ "MDAnalysis", # mof,
+ "streamlit==1.43.2"
+]
+mace = [
+ "mace-torch==0.3.12",
+]
+matgl = [
+ "matgl==1.2.6",
+]
+fairchem = [
+ "hydra-core",
+ "fairchem-core==1.10.0",
+]
+orb = [
+ "orb-models==0.4.0",
+ "pynanoflann@git+https://github.com/dwastberg/pynanoflann#egg=af434039ae14bedcbb838a7808924d6689274168",
+]
+deepmd = [
+ "torch==2.2.0",
+ "deepmd-kit@git+https://github.com/deepmodeling/deepmd-kit.git@v3.0.0b4"
+]
+
+[project.urls]
+Homepage = "https://github.com/atomind-ai/mlip-arena"
+Issues = "https://github.com/atomind-ai/mlip-arena/issues"
+
+[tool.ruff]
+# Exclude a variety of commonly ignored directories.
+extend-include = ["*.ipynb"]
+exclude = [
+ ".bzr",
+ ".direnv",
+ ".eggs",
+ ".git",
+ ".git-rewrite",
+ ".hg",
+ ".ipynb_checkpoints",
+ ".mypy_cache",
+ ".nox",
+ ".pants.d",
+ ".pyenv",
+ ".pytest_cache",
+ ".pytype",
+ ".ruff_cache",
+ ".svn",
+ ".tox",
+ ".venv",
+ ".vscode",
+ "__pypackages__",
+ "_build",
+ "buck-out",
+ "build",
+ "dist",
+ "node_modules",
+ "site-packages",
+ "venv",
+]
+
+# Same as Black.
+line-length = 88
+indent-width = 4
+
+[tool.ruff.lint]
+select = [
+ "B", # flake8-bugbear
+ "C4", # flake8-comprehensions
+ "E", # pycodestyle error
+ "EXE", # flake8-executable
+ "F", # pyflakes
+ "FA", # flake8-future-annotations
+ "FBT003", # boolean-positional-value-in-call
+ "FLY", # flynt
+ "I", # isort
+ "ICN", # flake8-import-conventions
+ "PD", # pandas-vet
+ "PERF", # perflint
+ "PIE", # flake8-pie
+ "PL", # pylint
+ "PT", # flake8-pytest-style
+ "PYI", # flakes8-pyi
+ "Q", # flake8-quotes
+ "RET", # flake8-return
+ "RSE", # flake8-raise
+ "RUF", # Ruff-specific rules
+ "SIM", # flake8-simplify
+ "SLOT", # flake8-slots
+ "TCH", # flake8-type-checking
+ "TID", # tidy imports
+ "TID", # flake8-tidy-imports
+ "UP", # pyupgrade
+ "W", # pycodestyle warning
+ "YTT", # flake8-2020
+]
+ignore = [
+ "C408", # Unnecessary dict call
+ "PLR", # Design related pylint codes
+ "E501", # Line too long
+ "B028", # No explicit stacklevel
+ "EM101", # Exception must not use a string literal
+ "EM102", # Exception must not use an f-string literal
+ "G004", # f-string in Logging statement
+ "RUF015", # Prefer next(iter())
+ "RET505", # Unnecessary `elif` after `return`
+ "PT004", # Fixture does not return anthing
+ "B017", # pytest.raises
+ "PT011", # pytest.raises
+ "PT012", # pytest.raises"
+ "E741", # ambigous variable naming, i.e. one letter
+ "FBT003", # boolean positional variable in function call
+ "PERF203", # `try`-`except` within a loop incurs performance overhead (no overhead in Py 3.11+)
+ "F405", # 'module' may be undefined, or defined from star imports
+ "PD901",
+]
+fixable = ["ALL"]
+pydocstyle.convention = "google"
diff --git a/pytest.ini b/pytest.ini
new file mode 100644
index 0000000000000000000000000000000000000000..27eec68ed708999a4b2ac00f8334a17f04c974cc
--- /dev/null
+++ b/pytest.ini
@@ -0,0 +1,3 @@
+[pytest]
+testpaths = tests
+python_files = test_*.py
diff --git a/requirements.txt b/requirements.txt
new file mode 100644
index 0000000000000000000000000000000000000000..b05420402e25f3a8588aa01a0981f0e5eb7ac496
--- /dev/null
+++ b/requirements.txt
@@ -0,0 +1,14 @@
+streamlit>=1.43.0
+plotly
+numpy
+scipy
+ase==3.23.0
+torch==2.2.0
+pymatgen>=2025.1.9
+bokeh
+bokeh_sampledata
+statsmodels==0.14.2
+prefect==3.2.13
+loguru==0.7.3
+# py3Dmol==2.0.0.post2
+# stmol==0.0.9
diff --git a/scripts/install-dgl.sh b/scripts/install-dgl.sh
new file mode 100644
index 0000000000000000000000000000000000000000..96a7449d2fb61a4c15a1f6f6d14828ff2a0c255a
--- /dev/null
+++ b/scripts/install-dgl.sh
@@ -0,0 +1,6 @@
+# DGL (M3GNet, ALIGNN)
+
+TORCH=2.2
+CUDA=cu121
+
+pip install dgl -f https://data.dgl.ai/wheels/torch-${TORCH}/${CUDA}/repo.html
\ No newline at end of file
diff --git a/scripts/install-linux.sh b/scripts/install-linux.sh
new file mode 100644
index 0000000000000000000000000000000000000000..c4fbd27e47c6d87cfd18bf5fd73e43fefcfa0981
--- /dev/null
+++ b/scripts/install-linux.sh
@@ -0,0 +1,10 @@
+TORCH=2.4
+CUDA=cu124
+uv pip install torch==${TORCH}.0
+uv pip install torch-scatter torch-sparse -f https://data.pyg.org/whl/torch-${TORCH}.0+${CUDA}.html
+uv pip install dgl -f https://data.dgl.ai/wheels/torch-${TORCH}/${CUDA}/repo.html
+uv pip install -e .[fairchem]
+uv pip install -e .[orb]
+uv pip install -e .[matgl]
+uv pip install -e .[test]
+uv pip install -e .[mace]
\ No newline at end of file
diff --git a/scripts/install-macosx.sh b/scripts/install-macosx.sh
new file mode 100644
index 0000000000000000000000000000000000000000..1c1b6c90741d13f46a2365c3394e819974277476
--- /dev/null
+++ b/scripts/install-macosx.sh
@@ -0,0 +1,21 @@
+
+
+# (Optional) Install uv
+# curl -LsSf https://astral.sh/uv/install.sh | sh
+# source $HOME/.local/bin/env
+
+TORCH=2.2.0
+
+uv pip install torch==${TORCH}
+uv pip install torch-scatter --no-build-isolation
+uv pip install torch-sparse --no-build-isolation
+
+uv pip install dgl -f https://data.dgl.ai/wheels/torch-${TORCH}/cpu/repo.html
+
+uv pip install mlip-arena[fairchem]
+uv pip install mlip-arena[orb]
+uv pip install mlip-arena[matgl]
+uv pip install mlip-arena[test]
+uv pip install mlip-arena[mace]
+
+
diff --git a/scripts/install-pyg.sh b/scripts/install-pyg.sh
new file mode 100755
index 0000000000000000000000000000000000000000..49b0ba1d6feee6e3d7a44a480ccb51a30ad6d594
--- /dev/null
+++ b/scripts/install-pyg.sh
@@ -0,0 +1,6 @@
+# PyTorch Geometric (OCP)
+TORCH=2.2.0
+CUDA=cu121
+
+pip install --verbose --no-cache torch-scatter -f https://data.pyg.org/whl/torch-${TORCH}+${CUDA}.html
+pip install --verbose --no-cache torch-sparse -f https://data.pyg.org/whl/torch-${TORCH}+${CUDA}.html
diff --git a/scripts/install.sh b/scripts/install.sh
new file mode 100644
index 0000000000000000000000000000000000000000..1ced2ff8dd2184e2b44d58afcd39f16df88e696a
--- /dev/null
+++ b/scripts/install.sh
@@ -0,0 +1,10 @@
+TORCH=2.4
+CUDA=cu124
+uv pip install torch==${TORCH}.0
+uv pip install torch-scatter torch-sparse -f https://data.pyg.org/whl/torch-${TORCH}.0+${CUDA}.html
+uv pip install dgl -f https://data.dgl.ai/wheels/torch-${TORCH}/${CUDA}/repo.html
+uv pip install mlip-arena[fairchem]
+uv pip install mlip-arena[orb]
+uv pip install mlip-arena[matgl]
+uv pip install mlip-arena[test]
+uv pip install mlip-arena[mace]
\ No newline at end of file
diff --git a/serve/README.md b/serve/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/serve/app.py b/serve/app.py
new file mode 100644
index 0000000000000000000000000000000000000000..d5d15c6cd209b25a543d607401da522c454ed2c6
--- /dev/null
+++ b/serve/app.py
@@ -0,0 +1,70 @@
+from collections import defaultdict
+
+import streamlit as st
+
+from mlip_arena.tasks import REGISTRY as TASKS
+
+
+leaderboard = st.Page(
+ "leaderboard.py", title="Leaderboard", icon=":material/trophy:", default=True
+)
+
+nav = defaultdict(list)
+nav[""].append(leaderboard)
+
+wide_pages, centered_pages = [], []
+
+for task in TASKS:
+ if TASKS[task]['task-page'] is None:
+ continue
+ page = st.Page(
+ f"tasks/{TASKS[task]['task-page']}.py", title=task, icon=":material/target:"
+ )
+ nav[TASKS[task]["category"]].append(page)
+ if TASKS[task]["task-layout"] == "wide":
+ wide_pages.append(page)
+ else:
+ centered_pages.append(page)
+
+pg = st.navigation(nav, expanded=True)
+
+if pg in centered_pages:
+ st.set_page_config(
+ layout="centered",
+ page_title="MLIP Arena",
+ page_icon=":shark:",
+ initial_sidebar_state="expanded",
+ menu_items={
+ "About": "https://github.com/atomind-ai/mlip-arena",
+ "Report a bug": "https://github.com/atomind-ai/mlip-arena/issues/new",
+ },
+ )
+else:
+ st.set_page_config(
+ layout="wide",
+ page_title="MLIP Arena",
+ page_icon=":shark:",
+ initial_sidebar_state="expanded",
+ menu_items={
+ "About": "https://github.com/atomind-ai/mlip-arena",
+ "Report a bug": "https://github.com/atomind-ai/mlip-arena/issues/new",
+ },
+ )
+
+st.sidebar.page_link(
+ "https://github.com/atomind-ai/mlip-arena", label="GitHub Repository", icon=":material/code:"
+)
+
+st.sidebar.markdown(
+"""
+Complementary Benchmarks
+"""
+)
+st.sidebar.page_link(
+ "https://matbench-discovery.materialsproject.org/", label="Matbench Discovery", icon=":material/link:"
+)
+st.sidebar.page_link(
+ "https://openkim.org/", label="OpenKIM", icon=":material/link:"
+)
+
+pg.run()
diff --git a/serve/assets/workflow.png b/serve/assets/workflow.png
new file mode 100644
index 0000000000000000000000000000000000000000..16f7a81c5281ebee8d810223dcb7cec920de8a9f
--- /dev/null
+++ b/serve/assets/workflow.png
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:292d62a95c5d14b39dbe38200ca9f2ee80b67debae011beb9398d6c4fcc101af
+size 320588
diff --git a/serve/leaderboard.py b/serve/leaderboard.py
new file mode 100644
index 0000000000000000000000000000000000000000..57b38948c2399e18ba0ef0197e50a179dca35472
--- /dev/null
+++ b/serve/leaderboard.py
@@ -0,0 +1,146 @@
+import importlib
+from pathlib import Path
+
+import pandas as pd
+import streamlit as st
+
+from mlip_arena import PKG_DIR
+from mlip_arena.models import REGISTRY as MODELS
+from mlip_arena.tasks import REGISTRY as TASKS
+
+# Read the data
+DATA_DIR = PKG_DIR / "tasks" /"diatomics"
+
+dfs = []
+for model in MODELS:
+ fpath = DATA_DIR / MODELS[model].get("family") / "homonuclear-diatomics.json"
+ if fpath.exists():
+ dfs.append(pd.read_json(fpath))
+df = pd.concat(dfs, ignore_index=True)
+
+# Create a table
+table = pd.DataFrame(
+ columns=[
+ "Model",
+ "Element Coverage",
+ "Prediction",
+ "NVT",
+ "NPT",
+ "Training Set",
+ "Code",
+ "Paper",
+ "Checkpoint",
+ "First Release",
+ "License",
+ ]
+)
+
+for model in MODELS:
+ rows = df[df["method"] == model]
+ metadata = MODELS.get(model, {})
+ new_row = {
+ "Model": model,
+ "Element Coverage": len(rows["name"].unique()),
+ "Prediction": metadata.get("prediction", None),
+ "NVT": "โ " if metadata.get("nvt", False) else "โ",
+ "NPT": "โ " if metadata.get("npt", False) else "โ",
+ "Training Set": metadata.get("datasets", []),
+ "Code": metadata.get("github", None) if metadata else None,
+ "Paper": metadata.get("doi", None) if metadata else None,
+ "Checkpoint": metadata.get("checkpoint", None),
+ "First Release": metadata.get("date", None),
+ "License": metadata.get("license", None),
+ }
+ table = pd.concat([table, pd.DataFrame([new_row])], ignore_index=True)
+
+table.set_index("Model", inplace=True)
+
+s = table.style.background_gradient(
+ cmap="PuRd", subset=["Element Coverage"], vmin=0, vmax=120
+)
+
+# st.warning(
+# "MLIP Arena is currently in **pre-alpha**. The results are not stable. Please interpret them with care.",
+# icon="โ ๏ธ",
+# )
+st.info(
+ "Contributions are welcome. For more information, visit https://github.com/atomind-ai/mlip-arena.",
+ icon="๐ค",
+)
+
+st.markdown(
+ """
+
โ๏ธ MLIP Arena Leaderboard โ๏ธ
+
+
+
+
+
+
+
+
+
+
+
+
+> MLIP Arena is a unified platform for evaluating foundation machine learning interatomic potentials (MLIPs) beyond conventional energy and force error metrics. It focuses on revealing the underlying physics and chemistry learned by these models. The platform's benchmarks are specifically designed to evaluate the readiness and reliability of open-source, open-weight models in accurately reproducing both qualitative and quantitative behaviors of atomic systems.
+
+### :red[Introduction]
+
+Foundation machine learning interatomic potentials (MLIPs), trained on extensive databases containing millions of density functional theory (DFT) calculations,have revolutionized molecular and materials modeling, but existing benchmarks suffer from data leakage, limited transferability, and an over-reliance on error-based metrics tied to specific density functional theory (DFT) references.
+
+We introduce MLIP Arena, a unified benchmark platform for evaluating foundation MLIP performance beyond conventional error metrics. It focuses on revealing the physical soundness learned by MLIPs and assessing their utilitarian performance agnostic to underlying model architecture and training dataset.
+
+***By moving beyond static DFT references and revealing the important failure modes*** of current foundation MLIPs in real-world settings, MLIP Arena provides a reproducible framework to guide the next-generation MLIP development toward improved predictive accuracy and runtime efficiency while maintaining physical consistency.
+
+""",
+ unsafe_allow_html=True,
+)
+
+
+st.subheader(":red[Supported Models]")
+st.dataframe(
+ s,
+ use_container_width=True,
+ column_config={
+ "Code": st.column_config.LinkColumn(
+ # validate="^https://[a-z]+\.streamlit\.app$",
+ width="medium",
+ display_text="Link",
+ ),
+ "Paper": st.column_config.LinkColumn(
+ # validate="^https://[a-z]+\.streamlit\.app$",
+ width="medium",
+ display_text="Link",
+ ),
+ },
+)
+
+# st.markdown("
๐ Task Ranks ๐
", unsafe_allow_html=True)
+
+st.subheader(":red[Task Ranks]")
+
+for task in TASKS:
+ if TASKS[task]["rank-page"] is None:
+ continue
+
+ st.subheader(task, divider=True)
+
+ task_module = importlib.import_module(f"ranks.{TASKS[task]['rank-page']}")
+
+ if TASKS[task]['task-page'] is not None:
+ st.page_link(
+ f"tasks/{TASKS[task]['task-page']}.py",
+ label="Go to the associated task page",
+ icon=":material/link:",
+ )
+
+ # Call the function from the imported module
+ if hasattr(task_module, "render"):
+ task_module.render()
+ # if st.button(f"Go to task page"):
+ # st.switch_page(f"tasks/{TASKS[task]['task-page']}.py")
+ else:
+ st.write(
+ "Rank metrics are not available yet but the task has been implemented. Please see the task page for more information."
+ )
diff --git a/serve/ranks/combustion.py b/serve/ranks/combustion.py
new file mode 100644
index 0000000000000000000000000000000000000000..dc42e659f85284c30b7edc689fd3c1239fa653b1
--- /dev/null
+++ b/serve/ranks/combustion.py
@@ -0,0 +1,150 @@
+from pathlib import Path
+
+import numpy as np
+import pandas as pd
+import streamlit as st
+
+from mlip_arena.models import REGISTRY as MODELS
+
+valid_models = [
+ model
+ for model, metadata in MODELS.items()
+ if Path(__file__).stem in metadata.get("gpu-tasks", [])
+]
+
+DATA_DIR = Path("mlip_arena/tasks/combustion")
+
+@st.cache_data
+def get_data(models):
+ families = [MODELS[str(model)]["family"] for model in models]
+ dfs = [
+ pd.read_json(DATA_DIR / family.lower() / "hydrogen.json") for family in families
+ ]
+ df = pd.concat(dfs, ignore_index=True)
+ df.drop_duplicates(inplace=True, subset=["formula", "method"])
+ return df
+
+df = get_data(valid_models)
+
+@st.cache_data
+def get_com_drifts(df):
+ df_exploded = df.explode(["timestep", "energies", "com_drifts"]).reset_index(drop=True)
+
+ # Convert the 'com_drifts' column (which are arrays) into separate columns for x, y, and z components
+ df_exploded[["com_drift_x", "com_drift_y", "com_drift_z"]] = pd.DataFrame(
+ df_exploded["com_drifts"].tolist(), index=df_exploded.index
+ )
+
+ # Drop the original 'com_drifts' column
+ df_flat = df_exploded.drop(columns=["com_drifts"])
+
+ df_flat["total_com_drift"] = np.sqrt(
+ df_flat["com_drift_x"] ** 2 + df_flat["com_drift_y"] ** 2 + df_flat["com_drift_z"] ** 2
+ )
+
+ df_flat = df_flat.drop(columns=["com_drift_x", "com_drift_y", "com_drift_z"])
+
+ return df_flat
+
+df_exploded = get_com_drifts(df)
+
+exp_ref = -68.3078 # kcal/mol
+
+for method, row in df_exploded.groupby("method"):
+# # row = df[df["method"] == method].iloc[0]
+ energies = np.array(row["energies"])
+ df_exploded.loc[df_exploded["method"] == method,"reaction_enthlapy_diff"] = ((energies[-1] - energies[0]) / 128 * 23.) - exp_ref
+ df_exploded.loc[df_exploded["method"] == method, "final_com_drift"] = np.array(row["total_com_drift"])[-1]
+
+
+df_exploded.drop(columns=["temperatures", "pressures", "total_steps", "energies", "kinetic_energies", "timestep", "nproducts", "total_com_drift", "target_steps", "reaction", "formula", "natoms", "seconds_per_step", "seconds_per_step_per_atom", "final_step", "total_time_seconds"], axis=1, inplace=True)
+
+df_exploded.drop_duplicates(inplace=True, subset=["method"])
+
+print(df_exploded.columns)
+
+df_exploded.set_index("method", inplace=True)
+
+df_exploded.rename(columns={
+ "method": "Model"
+}, inplace=True)
+
+
+table = pd.DataFrame()
+
+for index, row in df_exploded.iterrows():
+
+ new_row = {
+ "Model": index,
+ "Reaction enthalpy error [kcal/mol]": row["reaction_enthlapy_diff"],
+ "Final COM drift [โซ]": row["final_com_drift"],
+ "Steps per second": row["steps_per_second"],
+ "Yield [%]": row["yield"] * 100,
+ }
+
+ table = pd.concat([table, pd.DataFrame([new_row])], ignore_index=True)
+
+table.set_index("Model", inplace=True)
+
+table.sort_values("Reaction enthalpy error [kcal/mol]", ascending=True, inplace=True)
+table["Rank"] = np.argsort(np.abs(table["Reaction enthalpy error [kcal/mol]"].to_numpy()))
+
+table.sort_values("Final COM drift [โซ]", ascending=True, inplace=True)
+table["Rank"] += np.argsort(table["Final COM drift [โซ]"].to_numpy())
+
+table.sort_values("Steps per second", ascending=False, inplace=True)
+table["Rank"] += np.argsort(-table["Steps per second"].to_numpy())
+
+table.sort_values("Yield [%]", ascending=False, inplace=True)
+table["Rank"] += np.argsort(-table["Yield [%]"].to_numpy())
+
+table["Rank"] += 1
+
+table.sort_values(["Rank"], ascending=True, inplace=True)
+
+table["Rank aggr."] = table["Rank"]
+table["Rank"] = table["Rank aggr."].rank(method='min').astype(int)
+
+
+table = table.reindex(
+ columns=[
+ "Rank",
+ "Rank aggr.",
+ "Reaction enthalpy error [kcal/mol]",
+ "Final COM drift [โซ]",
+ "Steps per second",
+ "Yield [%]",
+ ]
+)
+
+s = (
+ table.style.background_gradient(
+ cmap="Oranges",
+ subset=["Reaction enthalpy error [kcal/mol]"],
+ )
+ .background_gradient(
+ cmap="Oranges",
+ subset=["Final COM drift [โซ]"],
+ gmap=np.log10(table["Final COM drift [โซ]"].to_numpy() + 1e-10),
+ )
+ .background_gradient(
+ cmap="Oranges_r",
+ subset=["Steps per second", "Yield [%]"]
+ )
+ .background_gradient(
+ cmap="Blues",
+ subset=["Rank", "Rank aggr."],
+ )
+ .format(
+ "{:.3e}",
+ subset=["Final COM drift [โซ]"],
+ )
+)
+
+
+def render():
+
+ st.dataframe(
+ s,
+ use_container_width=True,
+ )
diff --git a/serve/ranks/eos_bulk.py b/serve/ranks/eos_bulk.py
new file mode 100644
index 0000000000000000000000000000000000000000..c2ed1d9f1574afd4a9c8d8e07ee2d6bd51e21680
--- /dev/null
+++ b/serve/ranks/eos_bulk.py
@@ -0,0 +1,63 @@
+from pathlib import Path
+
+import pandas as pd
+import streamlit as st
+
+DATA_DIR = Path("benchmarks/eos_bulk")
+
+
+table = pd.read_csv(DATA_DIR / "summary.csv")
+
+
+
+table = table.rename(
+ columns={
+ "model": "Model",
+ "rank": "Rank",
+ "rank-aggregation": "Rank aggr.",
+ "energy-diff-flip-times": "Derivative flips",
+ "tortuosity": "Tortuosity",
+ "spearman-compression-energy": "Spearman's coeff. (compression)",
+ "spearman-tension-energy": "Spearman's coeff. (tension)",
+ "spearman-compression-derivative": "Spearman's coeff. (compression derivative)",
+ "missing": "Missing",
+ },
+)
+
+table.set_index("Model", inplace=True)
+
+s = (
+ table.style.background_gradient(
+ cmap="Blues",
+ subset=["Rank", "Rank aggr."],
+ ).background_gradient(
+ cmap="Reds",
+ subset=[
+ "Spearman's coeff. (compression)",
+ ],
+ ).background_gradient(
+ cmap="Reds_r",
+ subset=[
+ "Spearman's coeff. (tension)",
+ "Spearman's coeff. (compression derivative)",
+ ],
+ ).background_gradient(
+ cmap="RdPu",
+ subset=["Tortuosity", "Derivative flips"],
+ ).format(
+ "{:.5f}",
+ subset=[
+ "Spearman's coeff. (compression)",
+ "Spearman's coeff. (tension)",
+ "Spearman's coeff. (compression derivative)",
+ "Tortuosity",
+ "Derivative flips",
+ ],
+ )
+)
+
+def render():
+ st.dataframe(
+ s,
+ use_container_width=True,
+ )
diff --git a/serve/ranks/homonuclear-diatomics.py b/serve/ranks/homonuclear-diatomics.py
new file mode 100644
index 0000000000000000000000000000000000000000..f5d635e2b37b45eef6d5da9a93ded1c01e23129c
--- /dev/null
+++ b/serve/ranks/homonuclear-diatomics.py
@@ -0,0 +1,206 @@
+from pathlib import Path
+
+import numpy as np
+import pandas as pd
+import streamlit as st
+
+from mlip_arena.models import REGISTRY as MODELS
+
+valid_models = [
+ model
+ for model, metadata in MODELS.items()
+ if Path(__file__).stem in metadata.get("gpu-tasks", [])
+]
+
+DATA_DIR = Path("mlip_arena/tasks/diatomics")
+
+dfs = [
+ pd.read_json(DATA_DIR / MODELS[model].get("family") / "homonuclear-diatomics.json")
+ for model in valid_models
+]
+df = pd.concat(dfs, ignore_index=True)
+
+# df = df[df["method"].isin([
+# "SevenNet",
+# "ORBv2",
+# "ORB",
+# "MatterSim",
+# "MACE-MPA",
+# "MACE-MP(M)",
+# "M3GNet",
+# "eSEN",
+# "eSCN(OC20)",
+# "eqV2(OMat)",
+# "EquiformerV2(OC22)",
+# "EquiformerV2(OC20)",
+# "CHGNet",
+# "ALIGNN"
+# ]
+# )]
+
+table = pd.DataFrame()
+
+for model in valid_models:
+ rows = df[df["method"] == model]
+ metadata = MODELS.get(model, {})
+
+ new_row = {
+ "Model": model,
+ "Conservation deviation [eV/โซ]": rows["conservation-deviation"].mean(),
+ "Spearman's coeff. (E: repulsion)": rows["spearman-repulsion-energy"].mean(),
+ "Spearman's coeff. (F: descending)": rows["spearman-descending-force"].mean(),
+ "Tortuosity": rows["tortuosity"].mean(),
+ "Energy jump [eV]": rows["energy-jump"].mean(),
+ "Force flips": rows["force-flip-times"].mean(),
+ "Spearman's coeff. (E: attraction)": rows["spearman-attraction-energy"].mean(),
+ "Spearman's coeff. (F: ascending)": rows["spearman-ascending-force"].mean(),
+ "PBE energy MAE [eV]": rows["pbe-energy-mae"].mean(),
+ "PBE force MAE [eV/โซ]": rows["pbe-force-mae"].mean(),
+ }
+
+ table = pd.concat([table, pd.DataFrame([new_row])], ignore_index=True)
+
+table.set_index("Model", inplace=True)
+
+table.sort_values("Conservation deviation [eV/โซ]", ascending=True, inplace=True)
+table["Rank"] = np.argsort(table["Conservation deviation [eV/โซ]"].to_numpy())
+
+table.sort_values("Spearman's coeff. (E: repulsion)", ascending=True, inplace=True)
+table["Rank"] += np.argsort(table["Spearman's coeff. (E: repulsion)"].to_numpy())
+
+table.sort_values("Spearman's coeff. (F: descending)", ascending=True, inplace=True)
+table["Rank"] += np.argsort(table["Spearman's coeff. (F: descending)"].to_numpy())
+
+# NOTE: it's not fair to models trained on different level of theory
+# table.sort_values("PBE energy MAE [eV]", ascending=True, inplace=True)
+# table["Rank"] += np.argsort(table["PBE energy MAE [eV]"].to_numpy())
+
+# table.sort_values("PBE force MAE [eV/โซ]", ascending=True, inplace=True)
+# table["Rank"] += np.argsort(table["PBE force MAE [eV/โซ]"].to_numpy())
+
+table.sort_values("Tortuosity", ascending=True, inplace=True)
+table["Rank"] += np.argsort(table["Tortuosity"].to_numpy())
+
+table.sort_values("Energy jump [eV]", ascending=True, inplace=True)
+table["Rank"] += np.argsort(table["Energy jump [eV]"].to_numpy())
+
+table.sort_values("Force flips", ascending=True, inplace=True)
+table["Rank"] += np.argsort(np.abs(table["Force flips"].to_numpy() - 1))
+
+table["Rank"] += 1
+
+table.sort_values(
+ ["Rank", "Conservation deviation [eV/โซ]"], ascending=True, inplace=True
+)
+
+table["Rank aggr."] = table["Rank"]
+table["Rank"] = table["Rank aggr."].rank(method="min").astype(int)
+
+table = table.reindex(
+ columns=[
+ "Rank",
+ "Rank aggr.",
+ "Conservation deviation [eV/โซ]",
+ "Spearman's coeff. (E: repulsion)",
+ "Spearman's coeff. (F: descending)",
+ "Energy jump [eV]",
+ "Force flips",
+ "Tortuosity",
+ "PBE energy MAE [eV]",
+ "PBE force MAE [eV/โซ]",
+ "Spearman's coeff. (E: attraction)",
+ "Spearman's coeff. (F: ascending)",
+ ]
+)
+
+# cloned = table.copy()
+# cloned.drop(columns=[
+# "PBE energy MAE [eV]",
+# "PBE force MAE [eV/โซ]",
+# "Spearman's coeff. (E: attraction)",
+# "Spearman's coeff. (F: ascending)",],
+# inplace=True
+# )
+# cloned.to_latex(
+# DATA_DIR / "homonuclear-diatomics.tex",
+# float_format="%.3f",
+# index=True,
+# column_format="l" + "r" * (len(table.columns) - 1),
+# )
+
+s = (
+ table.style.background_gradient(
+ cmap="viridis_r",
+ subset=["Conservation deviation [eV/โซ]"],
+ gmap=np.log(table["Conservation deviation [eV/โซ]"].to_numpy()),
+ )
+ .background_gradient(
+ cmap="Reds",
+ subset=[
+ "Spearman's coeff. (E: repulsion)",
+ "Spearman's coeff. (F: descending)",
+ ],
+ # vmin=-1, vmax=-0.5
+ )
+ # .background_gradient(
+ # cmap="Greys",
+ # subset=[
+ # "PBE energy MAE [eV]",
+ # "PBE force MAE [eV/โซ]",
+ # ],
+ # )
+ .background_gradient(
+ cmap="RdPu",
+ subset=["Tortuosity", "Energy jump [eV]", "Force flips"],
+ )
+ .background_gradient(
+ cmap="Blues",
+ subset=["Rank", "Rank aggr."],
+ )
+ .format(
+ "{:.3f}",
+ subset=[
+ "Conservation deviation [eV/โซ]",
+ "Spearman's coeff. (E: repulsion)",
+ "Spearman's coeff. (F: descending)",
+ "Tortuosity",
+ "Energy jump [eV]",
+ "Force flips",
+ "Spearman's coeff. (E: attraction)",
+ "Spearman's coeff. (F: ascending)",
+ "PBE energy MAE [eV]",
+ "PBE force MAE [eV/โซ]",
+ ],
+ )
+)
+
+
+def render():
+ st.dataframe(
+ s,
+ use_container_width=True,
+ )
+ with st.expander("Explanation", icon=":material/info:"):
+ st.caption(
+ r"""
+ - **Conservation deviation**: The average deviation of force from negative energy gradient along the diatomic curves.
+
+ $$
+ \text{Conservation deviation} = \left\langle\left| \mathbf{F}(\mathbf{r})\cdot\frac{\mathbf{r}}{\|\mathbf{r}\|} + \nabla_rE\right|\right\rangle_{r = \|\mathbf{r}\|}
+ $$
+
+ - **Spearman's coeff. (E: repulsion)**: Spearman's correlation coefficient of energy prediction within equilibrium distance $r \in (r_{min}, r_o = \argmin_{r} E(r))$.
+ - **Spearman's coeff. (F: descending)**: Spearman's correlation coefficient of force prediction before maximum attraction $r \in (r_{min}, r_a = \argmin_{r} F(r))$.
+ - **Tortuosity**: The ratio between total variation in energy and sum of absolute energy differences between $r_{min}$, $r_o$, and $r_{max}$.
+ - **Energy jump**: The sum of energy discontinuity between sampled points.
+
+ $$
+ \text{Energy jump} = \sum_{r_i \in [r_\text{min}, r_\text{max}]} \left| \text{sign}{\left[ E(r_{i+1}) - E(r_i)\right]} - \text{sign}{\left[E(r_i) - E(r_{i-1})\right]}\right| \times \\ \left( \left|E(r_{i+1}) - E(r_i)\right| + \left|E(r_i) - E(r_{i-1})\right|\right)
+ $$
+ - **Force flips**: The number of force direction changes.
+ """
+ )
+ st.info(
+ "PBE energies and forces are provided __only__ for reference. Due to the known convergence issue of plane-wave DFT with diatomic molecules and different dataset the models might be trained on, comparing models with PBE is not rigorous and thus these metrics are excluded from rank aggregation.",
+ icon=":material/warning:",
+ )
diff --git a/serve/ranks/thermal-conductivity.py b/serve/ranks/thermal-conductivity.py
new file mode 100644
index 0000000000000000000000000000000000000000..38815e09f22673ededbbbe6c5298642328b80edd
--- /dev/null
+++ b/serve/ranks/thermal-conductivity.py
@@ -0,0 +1,60 @@
+
+import pandas as pd
+import streamlit as st
+
+from mlip_arena import PKG_DIR
+
+DATA_DIR = PKG_DIR / "tasks" / "thermal-conductivity"
+
+table = pd.read_csv(DATA_DIR / "wte.csv")
+
+table.rename(
+ columns={
+ "method": "Model",
+ "srme": "SRME[๐ ]",
+ },
+ inplace=True,
+)
+
+table.set_index("Model", inplace=True)
+
+table.sort_values(["SRME[๐ ]"], ascending=True, inplace=True)
+
+table["Rank"] = table["SRME[๐ ]"].rank(method='min').astype(int)
+
+table = table.reindex(
+ columns=[
+ "Rank",
+ "SRME[๐ ]",
+ ]
+)
+
+s = (
+ table.style.background_gradient(
+ cmap="Reds", subset=["SRME[๐ ]"]
+ )
+ .background_gradient(
+ cmap="Blues",
+ subset=["Rank"],
+ )
+ .format("{:.3f}", subset=["SRME[๐ ]"])
+)
+
+
+def render():
+
+ st.dataframe(
+ s,
+ use_container_width=True
+ )
+
+ with st.expander("Explanation", icon=":material/info:"):
+ st.caption(
+ """
+ - **SRME**: symmetric relative mean error of single-phonon conductivity:
+
+ $$
+ \\text{SRME}[\\left\lbrace\\mathcal{K}({\\mathbf{q},s)}\\right\\rbrace] = \\frac{2}{N_qV}\\frac{\\sum_{\\mathbf{q}s}|\\mathcal{K}_{\\text{MLIP}}(\\mathbf{q},s) - \\mathcal{K}_{\\text{DFT}}(\\mathbf{q},s)|}{\\kappa_{\\text{MLIP}} + \\kappa_{\\text{DFT}}}
+ $$
+ """
+ )
diff --git a/serve/ranks/wbm_ev.py b/serve/ranks/wbm_ev.py
new file mode 100644
index 0000000000000000000000000000000000000000..0e3a29606dd801cfe64ae096df5d285957ef0372
--- /dev/null
+++ b/serve/ranks/wbm_ev.py
@@ -0,0 +1,63 @@
+from pathlib import Path
+
+import pandas as pd
+import streamlit as st
+
+DATA_DIR = Path("benchmarks/wbm_ev")
+
+
+table = pd.read_csv(DATA_DIR / "summary.csv")
+
+
+
+table = table.rename(
+ columns={
+ "model": "Model",
+ "rank": "Rank",
+ "rank-aggregation": "Rank aggr.",
+ "energy-diff-flip-times": "Derivative flips",
+ "tortuosity": "Tortuosity",
+ "spearman-compression-energy": "Spearman's coeff. (compression)",
+ "spearman-tension-energy": "Spearman's coeff. (tension)",
+ "spearman-compression-derivative": "Spearman's coeff. (compression derivative)",
+ "missing": "Missing",
+ },
+)
+
+table.set_index("Model", inplace=True)
+
+s = (
+ table.style.background_gradient(
+ cmap="Blues",
+ subset=["Rank", "Rank aggr."],
+ ).background_gradient(
+ cmap="Reds",
+ subset=[
+ "Spearman's coeff. (compression)",
+ ],
+ ).background_gradient(
+ cmap="Reds_r",
+ subset=[
+ "Spearman's coeff. (tension)",
+ "Spearman's coeff. (compression derivative)",
+ ],
+ ).background_gradient(
+ cmap="RdPu",
+ subset=["Tortuosity", "Derivative flips"],
+ ).format(
+ "{:.5f}",
+ subset=[
+ "Spearman's coeff. (compression)",
+ "Spearman's coeff. (tension)",
+ "Spearman's coeff. (compression derivative)",
+ "Tortuosity",
+ "Derivative flips",
+ ],
+ )
+)
+
+def render():
+ st.dataframe(
+ s,
+ use_container_width=True,
+ )
diff --git a/serve/tasks/combustion.py b/serve/tasks/combustion.py
new file mode 100644
index 0000000000000000000000000000000000000000..6fcbbb58097b62b16e8fd9b201de7b04285a6e17
--- /dev/null
+++ b/serve/tasks/combustion.py
@@ -0,0 +1,540 @@
+from pathlib import Path
+
+import numpy as np
+import pandas as pd
+import plotly.colors as pcolors
+import plotly.express as px
+import plotly.graph_objects as go
+import streamlit as st
+from mlip_arena.models import REGISTRY as MODELS
+
+DATA_DIR = Path("mlip_arena/tasks/combustion")
+
+
+st.markdown("""
+# Combustion
+""")
+
+st.markdown("### Methods")
+container = st.container(border=True)
+valid_models = [
+ model
+ for model, metadata in MODELS.items()
+ if Path(__file__).stem in metadata.get("gpu-tasks", [])
+]
+
+models = container.multiselect(
+ "MLIPs",
+ valid_models,
+ [
+ "MACE-MP(M)",
+ "CHGNet",
+ "M3GNet",
+ "SevenNet",
+ "ORB",
+ "ORBv2",
+ "EquiformerV2(OC20)",
+ "eSCN(OC20)",
+ "MatterSim",
+ ],
+)
+
+st.markdown("### Settings")
+vis = st.container(border=True)
+# Get all attributes from pcolors.qualitative
+all_attributes = dir(pcolors.qualitative)
+color_palettes = {
+ attr: getattr(pcolors.qualitative, attr)
+ for attr in all_attributes
+ if isinstance(getattr(pcolors.qualitative, attr), list)
+}
+color_palettes.pop("__all__", None)
+
+palette_names = list(color_palettes.keys())
+palette_colors = list(color_palettes.values())
+palette_name = vis.selectbox("Color sequence", options=palette_names, index=22)
+
+color_sequence = color_palettes[palette_name]
+
+if not models:
+ st.stop()
+
+
+@st.cache_data
+def get_data(models):
+ # List comprehension for concise looping and filtering
+ dfs = [
+ pd.read_json(DATA_DIR / MODELS[str(model)]["family"].lower() / "hydrogen.json")[
+ lambda df: df["method"] == model
+ ]
+ for model in models
+ ]
+ # Concatenate all filtered DataFrames
+ return pd.concat(dfs, ignore_index=True)
+
+
+df = get_data(models)
+
+method_color_mapping = {
+ method: color_sequence[i % len(color_sequence)]
+ for i, method in enumerate(df["method"].unique())
+}
+
+###
+
+# Number of products
+fig = go.Figure()
+
+for method in df["method"].unique():
+ row = df[df["method"] == method].iloc[0]
+ fig.add_trace(
+ go.Scatter(
+ x=row["timestep"],
+ y=row["nproducts"],
+ mode="lines",
+ name=method,
+ line=dict(color=method_color_mapping[method]),
+ showlegend=True,
+ ),
+ )
+
+fig.add_vrect(
+ x0=512345.94,
+ x1=666667,
+ fillcolor="lightblue",
+ opacity=0.2,
+ layer="below",
+ line_width=0,
+ annotation_text="Flame Temp. [1]",
+ annotation_position="top",
+)
+
+fig.update_layout(
+ title="Hydrogen Combustion (2H2 + O2 -> 2H2O, 64 units)",
+ xaxis_title="Timestep",
+ yaxis_title="Number of water molecules",
+)
+
+st.plotly_chart(fig)
+
+# tempearture
+
+fig = go.Figure()
+
+for method in df["method"].unique():
+ row = df[df["method"] == method].iloc[0]
+ fig.add_trace(
+ go.Scatter(
+ x=row["timestep"],
+ y=row["temperatures"],
+ mode="markers",
+ name=method,
+ line=dict(
+ color=method_color_mapping[method],
+ # width=1
+ ),
+ marker=dict(color=method_color_mapping[method], size=3),
+ showlegend=True,
+ ),
+ )
+
+target_steps = df["target_steps"].iloc[0]
+fig.add_trace(
+ go.Line(
+ x=[0, target_steps / 3, target_steps / 3 * 2, target_steps],
+ y=[300, 3000, 3000, 300],
+ mode="lines",
+ name="Target",
+ line=dict(dash="dash", color="white"),
+ showlegend=True,
+ ),
+)
+
+fig.add_vrect(
+ x0=512345.94,
+ x1=666667,
+ fillcolor="lightblue",
+ opacity=0.2,
+ layer="below",
+ line_width=0,
+ annotation_text="Flame Temp.",
+ annotation_position="top",
+)
+
+fig.update_layout(
+ # title="Hydrogen Combustion (2H2 + O2 -> 2H2O, 64 units)",
+ xaxis_title="Timestep",
+ yaxis_title="Temperature (K)",
+ # yaxis2=dict(
+ # title="Product Percentage (%)",
+ # overlaying="y",
+ # side="right",
+ # range=[0, 100],
+ # tickmode="sync",
+ # ),
+ # template="plotly_dark",
+)
+
+st.plotly_chart(fig)
+
+# Energy
+
+exp_ref = -68.3078 # kcal/mol
+factor = 23.0609
+nh2os = 128
+
+fig = go.Figure()
+
+for method in df["method"].unique():
+ row = df[df["method"] == method].iloc[0]
+ fig.add_trace(
+ go.Scatter(
+ x=row["timestep"],
+ y=(np.array(row["energies"]) - row["energies"][0]) / nh2os * factor,
+ mode="lines",
+ name=method,
+ line=dict(
+ color=method_color_mapping[method],
+ # width=1
+ ),
+ marker=dict(color=method_color_mapping[method], size=3),
+ showlegend=True,
+ ),
+ )
+
+target_steps = df["target_steps"].iloc[0]
+
+fig.add_shape(
+ go.layout.Shape(
+ type="line",
+ x0=0,
+ x1=target_steps,
+ y0=exp_ref,
+ y1=exp_ref, # y-values for the horizontal line
+ line=dict(color="Red", width=2, dash="dash"),
+ layer="below",
+ )
+)
+
+fig.add_annotation(
+ go.layout.Annotation(
+ x=0.5,
+ xref="paper",
+ xanchor="center",
+ y=exp_ref,
+ yanchor="bottom",
+ text=f"Experiment: {exp_ref} kcal/mol [2]",
+ showarrow=False,
+ font=dict(
+ color="Red",
+ ),
+ )
+)
+
+fig.add_vrect(
+ x0=512345.94,
+ x1=666667,
+ fillcolor="lightblue",
+ opacity=0.2,
+ layer="below",
+ line_width=0,
+ annotation_text="Flame Temp.",
+ annotation_position="top",
+)
+
+
+fig.update_layout(
+ xaxis_title="Timestep [2] Lide, D. R. (Ed.). (2004). CRC handbook of chemistry and physics (Vol. 85). CRC press.",
+ yaxis_title="๐ซE (kcal/mol)",
+)
+
+st.plotly_chart(fig)
+
+# Reaction energy
+
+fig = go.Figure()
+
+
+df["reaction_energy"] = (
+ df["energies"].apply(lambda x: x[-1] - x[0]) / nh2os * factor
+) # kcal/mol
+
+df["reaction_energy_abs_err"] = np.abs(df["reaction_energy"] - exp_ref)
+
+df.sort_values("reaction_energy_abs_err", inplace=True)
+
+fig.add_traces(
+ [
+ go.Bar(
+ x=df["method"],
+ y=df["reaction_energy"],
+ marker=dict(
+ color=[method_color_mapping[method] for method in df["method"]]
+ ),
+ text=[f"{y:.2f}" for y in df["reaction_energy"]],
+ ),
+ ]
+)
+
+fig.add_shape(
+ go.layout.Shape(
+ type="line",
+ x0=-0.5,
+ x1=len(df["method"]) - 0.5, # range covering the bars
+ y0=exp_ref,
+ y1=exp_ref, # y-values for the horizontal line
+ line=dict(color="Red", width=2, dash="dash"),
+ layer="below",
+ )
+)
+
+fig.add_annotation(
+ go.layout.Annotation(
+ x=0.5,
+ xref="paper",
+ xanchor="center",
+ y=exp_ref,
+ yanchor="bottom",
+ text=f"Experiment: {exp_ref} kcal/mol [2]",
+ showarrow=False,
+ font=dict(
+ color="Red",
+ ),
+ )
+)
+
+fig.update_layout(
+ xaxis_title="Method [1] Lide, D. R. (Ed.). (2004). CRC handbook of chemistry and physics (Vol. 85). CRC press.",
+ yaxis_title="Reaction energy ๐ซH (kcal/mol)",
+)
+
+st.plotly_chart(fig)
+
+# Final reaction rate
+
+fig = go.Figure()
+
+df = df.sort_values("yield", ascending=True)
+
+fig.add_trace(
+ go.Bar(
+ x=df["yield"] * 100,
+ y=df["method"],
+ opacity=0.75,
+ orientation="h",
+ marker=dict(color=[method_color_mapping[method] for method in df["method"]]),
+ text=[f"{y:.2f} %" for y in df["yield"] * 100],
+ )
+)
+
+fig.update_layout(
+ title="Reaction yield (2H2 + O2 -> 2H2O, 64 units)",
+ xaxis_title="Yield (%)",
+ yaxis_title="Method",
+)
+
+st.plotly_chart(fig)
+
+# MD runtime speed
+
+fig = go.Figure()
+
+df = df.sort_values("steps_per_second", ascending=True)
+
+fig.add_trace(
+ go.Bar(
+ x=df["steps_per_second"],
+ y=df["method"],
+ opacity=0.75,
+ orientation="h",
+ marker=dict(color=[method_color_mapping[method] for method in df["method"]]),
+ text=df["steps_per_second"].round(1),
+ )
+)
+
+fig.update_layout(
+ title="MD runtime speed (on single A100 GPU)",
+ xaxis_title="Steps per second",
+ yaxis_title="Method",
+)
+
+st.plotly_chart(fig)
+
+# COM drift
+
+st.markdown("""### Center of mass drift
+
+The center of mass (COM) drift is a measure of the stability of the simulation. A well-behaved simulation should have a COM drift close to zero. The COM drift is calculated as the displacement of the COM of the system from the initial position.
+""")
+
+
+@st.cache_data
+def get_com_drifts(df):
+ df_exploded = df.explode(["timestep", "com_drifts"]).reset_index(drop=True)
+
+ # Convert the 'com_drifts' column (which are arrays) into separate columns for x, y, and z components
+ df_exploded[["com_drift_x", "com_drift_y", "com_drift_z"]] = pd.DataFrame(
+ df_exploded["com_drifts"].tolist(), index=df_exploded.index
+ )
+
+ # Drop the original 'com_drifts' column
+ df_flat = df_exploded.drop(columns=["com_drifts"])
+
+ df_flat["total_com_drift"] = np.sqrt(
+ df_flat["com_drift_x"] ** 2
+ + df_flat["com_drift_y"] ** 2
+ + df_flat["com_drift_z"] ** 2
+ )
+
+ return df_flat
+
+
+df_exploded = get_com_drifts(df)
+
+fig = go.Figure()
+
+for method in df_exploded["method"].unique():
+ row = df_exploded[df_exploded["method"] == method]
+ fig.add_trace(
+ go.Scatter(
+ x=row["timestep"],
+ y=row["total_com_drift"],
+ mode="lines",
+ name=method,
+ line=dict(
+ color=method_color_mapping[method],
+ # width=1
+ ),
+ marker=dict(color=method_color_mapping[method], size=3),
+ showlegend=True,
+ ),
+ )
+
+fig.update_yaxes(type="log")
+fig.update_layout(
+ xaxis_title="Timestep",
+ yaxis_title="Total COM drift (โซ)",
+)
+
+st.plotly_chart(fig)
+
+if "play" not in st.session_state:
+ st.session_state.play = False
+
+
+def toggle_playing():
+ st.session_state.play = not st.session_state.play
+
+
+# st.button(
+# "Play" if not st.session_state.play else "Pause",
+# type="primary" if not st.session_state.play else "secondary",
+# on_click=toggle_playing,
+# )
+
+increment = df["target_steps"].max() // 200
+
+if "time_range" not in st.session_state:
+ st.session_state.time_range = (0, increment)
+
+
+# @st.experimental_fragment(run_every=1e-3 if st.session_state.play else None)
+@st.experimental_fragment()
+def draw_com_drifts_plot():
+ if st.session_state.play:
+ start, end = st.session_state.time_range
+
+ end += increment
+
+ if end > df["target_steps"].max():
+ start = 0
+ end = 0
+
+ st.session_state.time_range = (start, end)
+
+ start_timestep, end_timestep = st.slider(
+ "Timestep",
+ min_value=0,
+ max_value=df["target_steps"].max(),
+ value=st.session_state.time_range,
+ key="time_range",
+ # on_change=check_range,
+ )
+
+ mask = (df_exploded["timestep"] >= start_timestep) & (
+ df_exploded["timestep"] <= end_timestep
+ )
+ df_filtered = df_exploded[mask]
+ df_filtered.sort_values(["method", "timestep"], inplace=True)
+
+ fig = px.line_3d(
+ data_frame=df_filtered,
+ x="com_drift_x",
+ y="com_drift_y",
+ z="com_drift_z",
+ labels={
+ "com_drift_x": "๐ซx (โซ)",
+ "com_drift_y": "๐ซy (โซ)",
+ "com_drift_z": "๐ซz (โซ)",
+ },
+ category_orders={"method": df_exploded["method"].unique()},
+ color_discrete_sequence=[
+ method_color_mapping[method] for method in df_exploded["method"].unique()
+ ],
+ color="method",
+ width=800,
+ height=800,
+ )
+
+ fig.update_layout(
+ scene=dict(
+ aspectmode="cube",
+ ),
+ legend=dict(
+ orientation="v",
+ x=0.95,
+ xanchor="right",
+ y=1,
+ yanchor="top",
+ bgcolor="rgba(0, 0, 0, 0)",
+ ),
+ )
+ fig.add_traces(
+ [
+ go.Scatter3d(
+ x=[0],
+ y=[0],
+ z=[0],
+ mode="markers",
+ marker=dict(size=3, color="white"),
+ name="origin",
+ ),
+ # add last point of each method and annotate the total drift
+ go.Scatter3d(
+ # df_filtered.groupby("method")["com_drift_x"].last(),
+ x=df_filtered.groupby("method")["com_drift_x"].last(),
+ y=df_filtered.groupby("method")["com_drift_y"].last(),
+ z=df_filtered.groupby("method")["com_drift_z"].last(),
+ mode="markers+text",
+ marker=dict(size=3, color="white", opacity=0.5),
+ text=df_filtered.groupby("method")["total_com_drift"].last().round(3),
+ # size=5,
+ name="total drifts",
+ textposition="top center",
+ ),
+ ]
+ )
+
+ st.plotly_chart(fig)
+
+
+draw_com_drifts_plot()
+
+
+st.markdown("""
+### References
+
+[1] Hasche, A., Navid, A., Krause, H., & Eckart, S. (2023). Experimental and numerical assessment of the effects of hydrogen admixtures on premixed methane-oxygen flames. Fuel, 352, 128964.
+
+[2] Lide, D. R. (Ed.). (2004). CRC handbook of chemistry and physics (Vol. 85). CRC press.
+""")
diff --git a/serve/tasks/eos_bulk.py b/serve/tasks/eos_bulk.py
new file mode 100644
index 0000000000000000000000000000000000000000..1a9b8eb0b1a21c1aad3a4699bfccfc1940c958bd
--- /dev/null
+++ b/serve/tasks/eos_bulk.py
@@ -0,0 +1,248 @@
+from pathlib import Path
+
+import numpy as np
+import pandas as pd
+import plotly.colors as pcolors
+import plotly.graph_objects as go
+import streamlit as st
+from ase.db import connect
+from scipy import stats
+
+from mlip_arena.models import REGISTRY as MODELS
+
+DATA_DIR = Path("benchmarks/eos_bulk")
+
+st.markdown("""
+# Equation of state (EOS)
+""")
+
+# Control panels at the top
+st.markdown("### Methods")
+methods_container = st.container(border=True)
+
+valid_models = [
+ model
+ for model, metadata in MODELS.items()
+ if Path(__file__).stem in metadata.get("gpu-tasks", [])
+]
+
+# Model selection
+selected_models = methods_container.multiselect(
+ "Select Models",
+ options=valid_models,
+ default=valid_models
+)
+
+# Visualization settings
+st.markdown("### Visualization settings")
+vis = st.container(border=True)
+
+# Column settings
+ncols = vis.select_slider("Number of columns", options=[1, 2, 3, 4], value=2)
+
+# Color palette selection
+all_attributes = dir(pcolors.qualitative)
+color_palettes = {
+ attr: getattr(pcolors.qualitative, attr)
+ for attr in all_attributes
+ if isinstance(getattr(pcolors.qualitative, attr), list)
+}
+color_palettes.pop("__all__", None)
+
+palette_names = list(color_palettes.keys())
+palette_name = vis.selectbox("Color sequence", options=palette_names, index=22)
+color_sequence = color_palettes[palette_name]
+
+# Stop execution if no models selected
+if not selected_models:
+ st.warning("Please select at least one model to visualize.")
+ st.stop()
+
+
+def load_wbm_structures():
+ """
+ Load the WBM structures from a ASE DB file.
+ """
+ with connect(DATA_DIR.parent / "wbm_structures.db") as db:
+ for row in db.select():
+ yield row.toatoms(add_additional_information=True)
+
+
+@st.cache_data
+def generate_dataframe(model_name):
+ fpath = DATA_DIR / f"{model_name}.parquet"
+ if not fpath.exists():
+ return pd.DataFrame() # Return empty dataframe instead of using continue
+
+ df_raw_results = pd.read_parquet(fpath)
+
+ df_analyzed = pd.DataFrame(
+ columns=[
+ "model",
+ "structure",
+ "formula",
+ "volume-ratio",
+ "energy-delta-per-atom",
+ "energy-delta-per-volume-b0",
+ "energy-diff-flip-times",
+ "tortuosity",
+ "spearman-compression-energy",
+ "spearman-compression-derivative",
+ "spearman-tension-energy",
+ "missing",
+ ]
+ )
+
+ for wbm_struct in load_wbm_structures():
+ structure_id = wbm_struct.info["key_value_pairs"]["wbm_id"]
+
+ try:
+ results = df_raw_results.loc[df_raw_results["id"] == structure_id]
+ b0 = results["b0"].values[0]
+ # vol0 = results["v0"].values[0]
+ results = results["eos"].values[0]
+ es = np.array(results["energies"])
+ vols = np.array(results["volumes"])
+
+
+ indices = np.argsort(vols)
+ vols = vols[indices]
+ es = es[indices]
+
+ imine = len(es) // 2
+ # min_center_val = np.min(es[imid - 1 : imid + 2])
+ # imine = np.where(es == min_center_val)[0][0]
+ emin = es[imine]
+ vol0 = vols[imine]
+
+ interpolated_volumes = [
+ (vols[i] + vols[i + 1]) / 2 for i in range(len(vols) - 1)
+ ]
+ ediff = np.diff(es)
+ ediff_sign = np.sign(ediff)
+ mask = ediff_sign != 0
+ ediff = ediff[mask]
+ ediff_sign = ediff_sign[mask]
+ ediff_flip = np.diff(ediff_sign) != 0
+
+ etv = np.sum(np.abs(np.diff(es)))
+
+ data = {
+ "model": model_name,
+ "structure": structure_id,
+ "formula": wbm_struct.get_chemical_formula(),
+ "missing": False,
+ "volume-ratio": vols / vol0,
+ "energy-delta-per-atom": (es - emin) / len(wbm_struct),
+ "energy-diff-flip-times": np.sum(ediff_flip).astype(int),
+ "energy-delta-per-volume-b0": (es - emin) / (vol0 * b0),
+ "tortuosity": etv / (abs(es[0] - emin) + abs(es[-1] - emin)),
+ "spearman-compression-energy": stats.spearmanr(
+ vols[:imine], es[:imine]
+ ).statistic,
+ "spearman-compression-derivative": stats.spearmanr(
+ interpolated_volumes[:imine], ediff[:imine]
+ ).statistic,
+ "spearman-tension-energy": stats.spearmanr(
+ vols[imine:], es[imine:]
+ ).statistic,
+ }
+
+ except Exception:
+ data = {
+ "model": model_name,
+ "structure": structure_id,
+ "formula": wbm_struct.get_chemical_formula(),
+ "missing": True,
+ "volume-ratio": None,
+ "energy-delta-per-atom": None,
+ "energy-delta-per-volume-b0": None,
+ "energy-diff-flip-times": None,
+ "tortuosity": None,
+ "spearman-compression-energy": None,
+ "spearman-compression-derivative": None,
+ "spearman-tension-energy": None,
+ }
+
+ df_analyzed = pd.concat([df_analyzed, pd.DataFrame([data])], ignore_index=True)
+
+ return df_analyzed
+
+
+@st.cache_data
+def get_plots(selected_models):
+ """Generate one plot per model with all structures (legend disabled for each structure)."""
+ figs = []
+
+ for model_name in selected_models:
+
+ fpath = DATA_DIR / f"{model_name}_processed.parquet"
+ if not fpath.exists():
+ df = generate_dataframe(model_name)
+ else:
+ df = pd.read_parquet(fpath)
+
+ if len(df) == 0:
+ continue
+
+ fig = go.Figure()
+ valid_structures = []
+ for i, (_, row) in enumerate(df.iterrows()):
+ structure_id = row["structure"]
+ formula = row.get("formula", "")
+ if isinstance(row["volume-ratio"], list | np.ndarray) and isinstance(
+ row["energy-delta-per-volume-b0"], list | np.ndarray
+ ):
+ vol_strain = row["volume-ratio"]
+ energy_delta = row["energy-delta-per-volume-b0"]
+ color = color_sequence[i % len(color_sequence)]
+ fig.add_trace(
+ go.Scatter(
+ x=vol_strain,
+ y=energy_delta,
+ mode="lines",
+ name=f"{structure_id}",
+ showlegend=False,
+ line=dict(color=color),
+ hoverlabel=dict(bgcolor=color, font=dict(color="black")),
+ hovertemplate=(
+ structure_id + " "
+ "Formula: " + str(formula) + " "
+ "Volume ratio V/Vโ: %{x:.3f} "
+ "ฮE/(BVโ): %{y:.3f} eV/atom "
+ ""
+ ),
+
+ )
+ )
+ valid_structures.append(structure_id)
+
+ # if valid_structures:
+ fig.update_layout(
+ title=f"{model_name} ({len(valid_structures)} / {len(df)} structures)",
+ xaxis_title="Volume ratio V/Vโ",
+ yaxis_title="Relative energy ฮE/(BVโ)",
+ height=500,
+ showlegend=False, # Disable legend for the whole plot
+ yaxis=dict(range=[-0.02, 0.1]), # Set y-axis limits
+ )
+ fig.add_vline(x=1, line_dash="dash", line_color="gray", opacity=0.7)
+ figs.append((model_name, fig, valid_structures))
+
+ return figs
+
+
+# Generate all plots
+all_plots = get_plots(selected_models)
+
+# Display plots in the specified column layout
+if all_plots:
+ for i, (model_name, fig, structures) in enumerate(all_plots):
+ if i % ncols == 0:
+ cols = st.columns(ncols)
+ cols[i % ncols].plotly_chart(fig, use_container_width=True)
+
+ # Display number of structures in this plot
+ # cols[i % ncols].caption(f"{len(structures)} / 1000 structures")
+else:
+ st.warning("No data available for the selected models.")
diff --git a/serve/tasks/homonuclear-diatomics.py b/serve/tasks/homonuclear-diatomics.py
new file mode 100644
index 0000000000000000000000000000000000000000..e0058192dd51294797664005089633ae7fc862bb
--- /dev/null
+++ b/serve/tasks/homonuclear-diatomics.py
@@ -0,0 +1,285 @@
+from pathlib import Path
+
+import numpy as np
+import pandas as pd
+import plotly.colors as pcolors
+import plotly.graph_objects as go
+import streamlit as st
+from ase.data import chemical_symbols
+from plotly.subplots import make_subplots
+
+from mlip_arena.models import REGISTRY
+
+st.markdown(
+ """
+# Homonuclear Diatomics
+
+Homonuclear diatomics are molecules composed of two atoms of the same element.
+The potential energy curves of homonuclear diatomics are the most fundamental interactions between atoms in quantum chemistry.
+"""
+)
+
+st.markdown("### Methods")
+container = st.container(border=True)
+valid_models = [
+ model
+ for model, metadata in REGISTRY.items()
+ if Path(__file__).stem in metadata.get("gpu-tasks", [])
+]
+mlip_methods = container.multiselect(
+ "MLIPs",
+ valid_models,
+ ["MACE-MP(M)", "MatterSim", "SevenNet", "ORBv2", "eqV2(OMat)", "ANI2x", "eSEN"],
+)
+dft_methods = container.multiselect("DFT Methods", ["PBE"], ["PBE"])
+
+container.info(
+ "PBE energies and forces are provided __only__ for reference. Due to the known convergence issue of plane-wave DFT with diatomic molecules and different dataset the models might be trained on, comparing models with PBE is not rigorous and thus these metrics are excluded from rank aggregation.",
+ icon=":material/warning:",
+)
+
+st.markdown("### Settings")
+vis = st.container(border=True)
+energy_plot = vis.checkbox("Show energy curves", value=True)
+force_plot = vis.checkbox("Show force curves", value=False)
+ncols = vis.select_slider("Number of columns", options=[1, 2, 3, 4], value=2)
+
+# Get all attributes from pcolors.qualitative
+all_attributes = dir(pcolors.qualitative)
+color_palettes = {
+ attr: getattr(pcolors.qualitative, attr)
+ for attr in all_attributes
+ if isinstance(getattr(pcolors.qualitative, attr), list)
+}
+color_palettes.pop("__all__", None)
+
+palette_names = list(color_palettes.keys())
+palette_colors = list(color_palettes.values())
+
+palette_name = vis.selectbox("Color sequence", options=palette_names, index=22)
+
+color_sequence = color_palettes[palette_name] # type: ignore
+if not mlip_methods and not dft_methods:
+ st.stop()
+
+
+@st.cache_data
+def get_data(mlip_methods, dft_methods):
+ DATA_DIR = Path("mlip_arena/tasks/diatomics")
+
+ dfs = [
+ pd.read_json(
+ DATA_DIR / REGISTRY[method]["family"] / "homonuclear-diatomics.json"
+ )
+ for method in mlip_methods
+ ]
+ dfs.extend(
+ [
+ pd.read_json(DATA_DIR / "vasp" / "homonuclear-diatomics.json")
+ # for method in dft_methods
+ ]
+ )
+ df = pd.concat(dfs, ignore_index=True)
+ df.drop_duplicates(inplace=True, subset=["name", "method"])
+ return df
+
+
+df = get_data(mlip_methods, dft_methods)
+
+method_color_mapping = {
+ method: color_sequence[i % len(color_sequence)]
+ for i, method in enumerate(df["method"].unique())
+}
+
+
+@st.cache_data
+def get_plots(df, energy_plot: bool, force_plot: bool, method_color_mapping: dict):
+ figs = []
+
+ for i, symbol in enumerate(chemical_symbols[1:]):
+ rows = df[df["name"] == symbol + symbol]
+
+ if rows.empty:
+ continue
+
+ fig = make_subplots(specs=[[{"secondary_y": True}]])
+
+ elo, flo = float("inf"), float("inf")
+
+ for j, method in enumerate(rows["method"].unique()):
+ if method not in mlip_methods and method not in dft_methods:
+ continue
+ row = rows[rows["method"] == method].iloc[0]
+
+ rs = np.array(row["R"])
+ es = np.array(row["E"])
+ fs = np.array(row["F"])
+
+ rs = np.array(rs)
+ ind = np.argsort(rs)
+ es = np.array(es)
+ fs = np.array(fs)
+
+ rs = rs[ind]
+ es = es[ind]
+ fs = fs[ind]
+
+ # if method not in ["PBE"]:
+ es = es - es[-1]
+
+ # if method in ["PBE"]:
+ # xs = np.linspace(rs.min() * 0.99, rs.max() * 1.01, int(5e2))
+ # else:
+ xs = rs
+
+ if energy_plot:
+ # if "GPAW" in method:
+ # cs = CubicSpline(rs, es)
+ # ys = cs(xs)
+ # else:
+ ys = es
+
+ elo = min(elo, max(ys.min() * 1.2, -15), -1)
+
+ if method in ["PBE"]:
+ fig.add_trace(
+ go.Scatter(
+ x=xs,
+ y=ys,
+ mode="markers",
+ line=dict(
+ color=method_color_mapping[method],
+ width=3,
+ ),
+ name=method,
+ ),
+ secondary_y=False,
+ )
+ # xs = np.linspace(rs.min() * 0.99, rs.max() * 1.01, int(5e2))
+ # cs = CubicSpline(rs, es)
+ # ys = cs(xs)
+ # fig.add_trace(
+ # go.Scatter(
+ # x=xs,
+ # y=ys,
+ # mode="lines",
+ # line=dict(
+ # color=method_color_mapping[method],
+ # width=3,
+ # ),
+ # name=method,
+ # showlegend=False,
+ # ),
+ # secondary_y=False,
+ # )
+ else:
+ fig.add_trace(
+ go.Scatter(
+ x=xs,
+ y=ys,
+ mode="lines",
+ line=dict(
+ color=method_color_mapping[method],
+ width=3,
+ ),
+ name=method,
+ ),
+ secondary_y=False,
+ )
+
+ # if force_plot and method not in ["PBE"]:
+ if force_plot:
+ ys = fs
+
+ flo = min(flo, max(ys.min() * 1.2, -50))
+
+ if method in ["PBE"]:
+ fig.add_trace(
+ go.Scatter(
+ x=xs,
+ y=ys,
+ mode="lines+markers",
+ line=dict(
+ color=method_color_mapping[method],
+ width=2,
+ dash="dashdot",
+ ),
+ name=method,
+ showlegend=not energy_plot,
+ ),
+ secondary_y=True,
+ )
+ else:
+ fig.add_trace(
+ go.Scatter(
+ x=xs,
+ y=ys,
+ mode="lines",
+ line=dict(
+ color=method_color_mapping[method],
+ width=2,
+ dash="dashdot",
+ ),
+ name=method,
+ showlegend=not energy_plot,
+ ),
+ secondary_y=True,
+ )
+
+ name = f"{symbol}-{symbol}"
+
+ fig.update_layout(
+ showlegend=True,
+ legend=dict(
+ orientation="h",
+ x=1.0,
+ xanchor="right",
+ y=1,
+ yanchor="top",
+ bgcolor="rgba(0, 0, 0, 0)",
+ # traceorder='reversed',
+ entrywidth=0.4,
+ entrywidthmode="fraction",
+ ),
+ title_text=f"{name}",
+ title_x=0.5,
+ )
+
+ # Set x-axis title
+ fig.update_xaxes(title_text="Distance [ร ]")
+
+ # Set y-axes titles
+ if energy_plot:
+ fig.update_layout(
+ yaxis=dict(
+ title=dict(text="Energy [eV]"),
+ side="left",
+ range=[elo, 2.0 * (abs(elo))],
+ )
+ )
+
+ if force_plot:
+ fig.update_layout(
+ yaxis2=dict(
+ title=dict(text="Force [eV/ร ]"),
+ side="right",
+ range=[flo, 1.0 * abs(flo)],
+ overlaying="y",
+ tickmode="sync",
+ ),
+ )
+
+ # cols[i % ncols].plotly_chart(fig, use_container_width=True)
+
+ figs.append(fig)
+
+ return figs
+ # fig.write_image(format='svg', file=img_dir / f"{name}.svg")
+
+
+figs = get_plots(df, energy_plot, force_plot, method_color_mapping)
+
+for i, fig in enumerate(figs):
+ if i % ncols == 0:
+ cols = st.columns(ncols)
+ cols[i % ncols].plotly_chart(fig, use_container_width=True)
diff --git a/serve/tasks/stability.py b/serve/tasks/stability.py
new file mode 100644
index 0000000000000000000000000000000000000000..575dccca0961e42ea6cacbcc9adb05b6e4b62b98
--- /dev/null
+++ b/serve/tasks/stability.py
@@ -0,0 +1,228 @@
+from pathlib import Path
+
+import numpy as np
+import pandas as pd
+import plotly.colors as pcolors
+import plotly.express as px
+import plotly.graph_objects as go
+import streamlit as st
+from scipy.optimize import curve_fit
+
+from mlip_arena.models import REGISTRY
+
+DATA_DIR = Path("mlip_arena/tasks/stability")
+
+
+st.markdown("""
+# High Pressure Stability
+
+Stable and accurate molecular dynamics (MD) simulations are important for understanding the properties of matters.
+However, many MLIPs have unphysical potential energy surface (PES) at the short-range interatomic distances or under many-body effect. These are often manifested as softened repulsion and hole in the PES and can lead to incorrect and sampling of the phase space.
+
+Here, we analyze the stability of the MD simulations under high pressure conditions by gradually increasing the pressure from 0 to 1000 GPa at 300K until the system crashes or completes 100 ps trajectory. This benchmark also explores faster the far-from-equilibrium dynamics of the system and the durability of the MLIPs under extreme conditions.
+""")
+
+st.markdown("### Methods")
+container = st.container(border=True)
+valid_models = [
+ model
+ for model, metadata in REGISTRY.items()
+ if Path(__file__).stem in metadata.get("gpu-tasks", [])
+]
+
+models = container.multiselect(
+ "MLIPs", valid_models, ["MACE-MP(M)", "CHGNet", "ORB", "SevenNet"]
+)
+
+st.markdown("### Settings")
+vis = st.container(border=True)
+# Get all attributes from pcolors.qualitative
+all_attributes = dir(pcolors.qualitative)
+color_palettes = {
+ attr: getattr(pcolors.qualitative, attr)
+ for attr in all_attributes
+ if isinstance(getattr(pcolors.qualitative, attr), list)
+}
+color_palettes.pop("__all__", None)
+
+palette_names = list(color_palettes.keys())
+palette_colors = list(color_palettes.values())
+
+palette_name = vis.selectbox("Color sequence", options=palette_names, index=22)
+
+color_sequence = color_palettes[palette_name]
+
+if not models:
+ st.stop()
+
+
+@st.cache_data
+def get_data(models):
+ families = [REGISTRY[str(model)]["family"] for model in models]
+
+ dfs = [
+ pd.read_json(DATA_DIR / family.lower() / "chloride-salts.json")
+ for family in families
+ ]
+ df = pd.concat(dfs, ignore_index=True)
+ df.drop_duplicates(inplace=True, subset=["material_id", "formula", "method"])
+
+ return df
+
+
+df = get_data(models)
+
+method_color_mapping = {
+ method: color_sequence[i % len(color_sequence)]
+ for i, method in enumerate(df["method"].unique())
+}
+
+###
+
+# Determine the bin edges for the entire dataset to keep them consistent across groups
+
+max_steps = df["total_steps"].max()
+max_target_steps = df["target_steps"].max()
+
+bins = np.append(np.arange(0, max_steps + 1, max_steps // 10), max_target_steps)
+bin_labels = [f"{bins[i]}-{bins[i+1]}" for i in range(len(bins) - 1)]
+
+num_bins = len(bin_labels)
+colormap = px.colors.sequential.YlOrRd_r
+indices = np.linspace(0, len(colormap) - 1, num_bins, dtype=int)
+bin_colors = [colormap[i] for i in indices]
+
+# Initialize a dictionary to hold the counts for each method and bin range
+counts_per_method = {method: [0] * len(bin_labels) for method in df["method"].unique()}
+
+
+# Populate the dictionary with counts
+for method, group in df.groupby("method"):
+ counts, _ = np.histogram(group["total_steps"], bins=bins)
+ counts_per_method[method] = counts
+
+# Sort the dictionary by the percentage of the last bin
+counts_per_method = {
+ k: v
+ for k, v in sorted(
+ counts_per_method.items(), key=lambda item: item[1][-1] / sum(item[1])
+ )
+}
+
+
+count_or_percetange = st.toggle("show counts", False)
+
+
+@st.experimental_fragment()
+def plot_md_steps(counts_per_method, count_or_percetange):
+ """Plot the distribution of the total number of MD steps before crash or completion."""
+ # Create a figure
+ fig = go.Figure()
+
+ # Add a bar for each bin range across all methods
+ for i, bin_label in enumerate(bin_labels):
+ for method, counts in counts_per_method.items():
+ fig.add_trace(
+ go.Bar(
+ # name=method, # This will be the legend entry
+ x=[counts[i] / counts.sum() * 100]
+ if not count_or_percetange
+ else [counts[i]],
+ y=[method], # Method as the y-axis category
+ # name=bin_label,
+ orientation="h", # Horizontal bars
+ marker=dict(
+ color=bin_colors[i],
+ line=dict(color="rgb(248, 248, 249)", width=1),
+ ),
+ text=f"{bin_label}: {counts[i]/counts.sum()*100:.0f}%",
+ width=0.5,
+ )
+ )
+
+ # Update the layout to stack the bars
+ fig.update_layout(
+ barmode="stack", # Stack the bars
+ title="Total MD steps (before crash or completion)",
+ xaxis_title="Percentage (%)" if not count_or_percetange else "Count",
+ yaxis_title="Method",
+ showlegend=False,
+ )
+
+ st.plotly_chart(fig)
+
+
+plot_md_steps(counts_per_method, count_or_percetange)
+
+st.caption(
+"""
+The histogram shows the distribution of the total number of MD steps before the system crashes or completes the trajectory. :red[The color of the bins indicates the number of steps in the bin]. :blue[The height of the bars indicates the number or percentage of each bin among all the runs].
+"""
+)
+
+###
+
+st.markdown(
+"""
+## Inference speed
+
+The inference speed of the MLIPs is crucial for the high-throughput virutal screening. Under high pressure conditions, the atoms often move faster and closer to each other, which increases the size of neighbor list and local graph construction and hence slows down the inference speed.
+"""
+)
+
+
+def func(x, a, n):
+ return a * x ** (-n)
+
+
+@st.experimental_fragment()
+def plot_speed(df, method_color_mapping):
+ """Plot the inference speed as a function of the number of atoms."""
+ fig = px.scatter(
+ df,
+ x="natoms",
+ y="steps_per_second",
+ color="method",
+ size="total_steps",
+ hover_data=["material_id", "formula"],
+ color_discrete_map=method_color_mapping,
+ # trendline="ols",
+ # trendline_options=dict(log_x=True),
+ log_x=True,
+ # log_y=True,
+ # range_y=[1, 1e2],
+ range_x=[df["natoms"].min() * 0.9, df["natoms"].max() * 1.1],
+ # range_x=[1e3, 1e2],
+ title="Inference speed (on single A100 GPU)",
+ labels={"steps_per_second": "Steps per second", "natoms": "Number of atoms"},
+ )
+
+ x = np.linspace(df["natoms"].min(), df["natoms"].max(), 100)
+
+ for method, data in df.groupby("method"):
+ data.dropna(subset=["steps_per_second"], inplace=True)
+ popt, pcov = curve_fit(func, data["natoms"], data["steps_per_second"])
+
+ fig.add_trace(
+ go.Scatter(
+ x=x,
+ y=func(x, *popt),
+ mode="lines",
+ # name='Fit',
+ line=dict(color=method_color_mapping[method], width=3),
+ showlegend=False,
+ name=f"{popt[0]:.2f}N^{-popt[1]:.2f}",
+ hovertext=f"{popt[0]:.2f}N^{-popt[1]:.2f}",
+ )
+ )
+
+ st.plotly_chart(fig)
+
+
+plot_speed(df, method_color_mapping)
+
+st.caption(
+"""
+The plot shows the inference speed (steps per second) as a function of the number of atoms in the system. :red[The size of the points is proportional to the total number of steps in the MD trajectory before crash or completion (~49990)]. :blue[The lines show the fit of the data to the power law function $a N^{-n}$], where $N$ is the number of atoms and $a$ and $n$ are the fit parameters.
+"""
+)
diff --git a/serve/tasks/thermal-conductivity.py b/serve/tasks/thermal-conductivity.py
new file mode 100644
index 0000000000000000000000000000000000000000..3148be19ef3515e65efa4e3f6a8c1268406c9a33
--- /dev/null
+++ b/serve/tasks/thermal-conductivity.py
@@ -0,0 +1,48 @@
+
+import pandas as pd
+import streamlit as st
+
+from mlip_arena import PKG_DIR
+
+
+st.markdown(
+"""
+# Thermal Conductivity
+
+Compared to Pรณta, Ahlawat, Csรกnyi, and Simoncelli, [arXiv:2408.00755v4](https://arxiv.org/abs/2408.00755), the relaxation protocol has been updated and unified for all the models. The relaxation is a combination of sequential vc-relax (changes cell and atom positions) and relax (changes atom positions only). Each relaxation stage has a maximum number of 300 steps, and consist of a single FrechetCellFilter relaxation with force threshold =1e-4 eV/Ang. To preserve crystal symmetry, unit-cell angles are not allowed to change. This unified protocol gives the same SRME reported in [arXiv:2408.00755v4](https://arxiv.org/abs/2408.00755) for all the models but M3GNet. In M3GNet this updated relaxation protocol gives SRME = 1.412, slightly smaller than the value 1.469 that was obtained with the non-unified relaxation protocol in [arXiv:2408.00755v4](https://arxiv.org/abs/2408.00755).
+
+**SRME** is the Symmetric Relative Mean Error, defined as the mean of the absolute values of the relative errors of the predictions. Here, it is used to quantify the error on microscopic single-phonon conductivity:
+
+$$
+\\text{SRME}[\\left\lbrace\\mathcal{K}({\\mathbf{q},s)}\\right\\rbrace] = \\frac{2}{N_qV}\\frac{\\sum_{\\mathbf{q}s}|\\mathcal{K}_{\\text{MLIP}}(\\mathbf{q},s) - \\mathcal{K}_{\\text{DFT}}(\\mathbf{q},s)|}{\\kappa_{\\text{MLIP}} + \\kappa_{\\text{DFT}}}
+$$
+"""
+)
+
+DATA_DIR = PKG_DIR / "tasks" / "thermal-conductivity"
+
+table = pd.read_csv(DATA_DIR / "wte.csv")
+
+table.rename(
+ columns={
+ "method": "Model",
+ "srme": "SRME[๐ ]",
+ },
+ inplace=True,
+)
+
+table.set_index("Model", inplace=True)
+
+table.sort_values(["SRME[๐ ]"], ascending=True, inplace=True)
+
+s = (
+ table.style.background_gradient(
+ cmap="Reds", subset=["SRME[๐ ]"]
+ )
+ .format("{:.3f}", subset=["SRME[๐ ]"])
+)
+
+st.dataframe(
+ s,
+ use_container_width=True,
+)
\ No newline at end of file
diff --git a/serve/tasks/wbm_ev.py b/serve/tasks/wbm_ev.py
new file mode 100644
index 0000000000000000000000000000000000000000..c68b35b5a2f5281683571996053a94b924a7722b
--- /dev/null
+++ b/serve/tasks/wbm_ev.py
@@ -0,0 +1,243 @@
+from pathlib import Path
+
+import numpy as np
+import pandas as pd
+import plotly.colors as pcolors
+import plotly.graph_objects as go
+import streamlit as st
+from ase.db import connect
+from scipy import stats
+
+from mlip_arena.models import REGISTRY as MODELS
+
+DATA_DIR = Path("benchmarks/wbm_ev")
+
+st.markdown("""
+# Energy-volume scans
+""")
+
+# Control panels at the top
+st.markdown("### Methods")
+methods_container = st.container(border=True)
+
+# Get valid models that support wbm_ev
+valid_models = [
+ model
+ for model, metadata in MODELS.items()
+ if Path(__file__).stem in metadata.get("gpu-tasks", [])
+]
+
+# Model selection
+selected_models = methods_container.multiselect(
+ "Select Models",
+ options=valid_models,
+ default=valid_models
+)
+
+# Visualization settings
+st.markdown("### Visualization Settings")
+vis = st.container(border=True)
+
+# Column settings
+ncols = vis.select_slider("Number of columns", options=[1, 2, 3, 4], value=2)
+
+# Color palette selection
+all_attributes = dir(pcolors.qualitative)
+color_palettes = {
+ attr: getattr(pcolors.qualitative, attr)
+ for attr in all_attributes
+ if isinstance(getattr(pcolors.qualitative, attr), list)
+}
+color_palettes.pop("__all__", None)
+
+palette_names = list(color_palettes.keys())
+palette_name = vis.selectbox("Color sequence", options=palette_names, index=22)
+color_sequence = color_palettes[palette_name]
+
+# Stop execution if no models selected
+if not selected_models:
+ st.warning("Please select at least one model to visualize.")
+ st.stop()
+
+
+def load_wbm_structures():
+ """
+ Load the WBM structures from a ASE DB file.
+ """
+ with connect(DATA_DIR.parent / "wbm_structures.db") as db:
+ for row in db.select():
+ yield row.toatoms(add_additional_information=True)
+
+
+@st.cache_data
+def generate_dataframe(model_name):
+ fpath = DATA_DIR / f"{model_name}.parquet"
+ if not fpath.exists():
+ return pd.DataFrame() # Return empty dataframe instead of using continue
+
+ df_raw_results = pd.read_parquet(fpath)
+
+ df_analyzed = pd.DataFrame(
+ columns=[
+ "model",
+ "structure",
+ "formula",
+ "volume-ratio",
+ "energy-delta-per-atom",
+ "energy-diff-flip-times",
+ "tortuosity",
+ "spearman-compression-energy",
+ "spearman-compression-derivative",
+ "spearman-tension-energy",
+ "missing",
+ ]
+ )
+
+ for wbm_struct in load_wbm_structures():
+ structure_id = wbm_struct.info["key_value_pairs"]["wbm_id"]
+
+ try:
+ results = df_raw_results.loc[df_raw_results["id"] == structure_id]
+ results = results["eos"].values[0]
+ es = np.array(results["energies"])
+ vols = np.array(results["volumes"])
+ vol0 = wbm_struct.get_volume()
+
+ indices = np.argsort(vols)
+ vols = vols[indices]
+ es = es[indices]
+
+ imine = len(es) // 2
+ # min_center_val = np.min(es[imid - 1 : imid + 2])
+ # imine = np.where(es == min_center_val)[0][0]
+ emin = es[imine]
+
+ interpolated_volumes = [
+ (vols[i] + vols[i + 1]) / 2 for i in range(len(vols) - 1)
+ ]
+ ediff = np.diff(es)
+ ediff_sign = np.sign(ediff)
+ mask = ediff_sign != 0
+ ediff = ediff[mask]
+ ediff_sign = ediff_sign[mask]
+ ediff_flip = np.diff(ediff_sign) != 0
+
+ etv = np.sum(np.abs(np.diff(es)))
+
+ data = {
+ "model": model_name,
+ "structure": structure_id,
+ "formula": wbm_struct.get_chemical_formula(),
+ "missing": False,
+ "volume-ratio": vols / vol0,
+ "energy-delta-per-atom": (es - emin) / len(wbm_struct),
+ "energy-diff-flip-times": np.sum(ediff_flip).astype(int),
+ "tortuosity": etv / (abs(es[0] - emin) + abs(es[-1] - emin)),
+ "spearman-compression-energy": stats.spearmanr(
+ vols[:imine], es[:imine]
+ ).statistic,
+ "spearman-compression-derivative": stats.spearmanr(
+ interpolated_volumes[:imine], ediff[:imine]
+ ).statistic,
+ "spearman-tension-energy": stats.spearmanr(
+ vols[imine:], es[imine:]
+ ).statistic,
+ }
+
+ except Exception:
+ data = {
+ "model": model_name,
+ "structure": structure_id,
+ "formula": wbm_struct.get_chemical_formula(),
+ "missing": True,
+ "volume-ratio": None,
+ "energy-delta-per-atom": None,
+ "energy-diff-flip-times": None,
+ "tortuosity": None,
+ "spearman-compression-energy": None,
+ "spearman-compression-derivative": None,
+ "spearman-tension-energy": None,
+ }
+
+ df_analyzed = pd.concat([df_analyzed, pd.DataFrame([data])], ignore_index=True)
+
+ return df_analyzed
+
+
+@st.cache_data
+def get_plots(selected_models):
+ """Generate one plot per model with all structures (legend disabled for each structure)."""
+ figs = []
+
+ for model_name in selected_models:
+
+ fpath = DATA_DIR / f"{model_name}_processed.parquet"
+ if not fpath.exists():
+ df = generate_dataframe(model_name)
+ else:
+ df = pd.read_parquet(fpath)
+
+ if len(df) == 0:
+ continue
+
+ fig = go.Figure()
+ valid_structures = []
+ for i, (_, row) in enumerate(df.iterrows()):
+ structure_id = row["structure"]
+ formula = row.get("formula", "")
+ if isinstance(row["volume-ratio"], list | np.ndarray) and isinstance(
+ row["energy-delta-per-atom"], list | np.ndarray
+ ):
+ vol_strain = row["volume-ratio"]
+ energy_delta = row["energy-delta-per-atom"]
+ color = color_sequence[i % len(color_sequence)]
+ fig.add_trace(
+ go.Scatter(
+ x=vol_strain,
+ y=energy_delta,
+ mode="lines",
+ name=f"{structure_id}",
+ showlegend=False,
+ line=dict(color=color),
+ hoverlabel=dict(bgcolor=color, font=dict(color="black")),
+ hovertemplate=(
+ structure_id + " "
+ "Formula: " + str(formula) + " "
+ "Volume ratio V/Vโ: %{x:.3f} "
+ "ฮEnergy: %{y:.3f} eV/atom "
+ ""
+ ),
+
+ )
+ )
+ valid_structures.append(structure_id)
+
+ # if valid_structures:
+ fig.update_layout(
+ title=f"{model_name} ({len(valid_structures)} / {len(df)} structures)",
+ xaxis_title="Volume ratio V/Vโ",
+ yaxis_title="Relative energy E - Eโ (eV/atom)",
+ height=500,
+ showlegend=False, # Disable legend for the whole plot
+ yaxis=dict(range=[-1, 15]), # Set y-axis limits
+ )
+ fig.add_vline(x=1, line_dash="dash", line_color="gray", opacity=0.7)
+ figs.append((model_name, fig, valid_structures))
+
+ return figs
+
+
+# Generate all plots
+all_plots = get_plots(selected_models)
+
+# Display plots in the specified column layout
+if all_plots:
+ for i, (model_name, fig, structures) in enumerate(all_plots):
+ if i % ncols == 0:
+ cols = st.columns(ncols)
+ cols[i % ncols].plotly_chart(fig, use_container_width=True)
+
+ # Display number of structures in this plot
+ # cols[i % ncols].caption(f"{len(structures)} / 1000 structures")
+else:
+ st.warning("No data available for the selected models.")
diff --git a/serve/tools/ptable.py b/serve/tools/ptable.py
new file mode 100644
index 0000000000000000000000000000000000000000..e73dcf9ce02444271be0029597b1838d486fc6e5
--- /dev/null
+++ b/serve/tools/ptable.py
@@ -0,0 +1,158 @@
+
+
+# NOTE: https://stackoverflow.com/questions/77062368/streamlit-bokeh-event-callback-to-get-clicked-values
+# Taptool: https://docs.bokeh.org/en/2.4.2/docs/reference/models/tools.html#taptool
+
+import streamlit as st
+from bokeh.plotting import figure
+from bokeh.plotting import figure, show
+from bokeh.sampledata.periodic_table import elements
+from bokeh.transform import dodge, factor_cmap
+
+import streamlit as st
+from bokeh.plotting import figure
+from bokeh.models import ColumnDataSource, CustomJS, TapTool
+from bokeh.sampledata.periodic_table import elements
+from bokeh.transform import dodge, factor_cmap
+
+
+periods = ["I", "II", "III", "IV", "V", "VI", "VII"]
+groups = [str(x) for x in range(1, 19)]
+
+df = elements.copy()
+df["atomic mass"] = df["atomic mass"].astype(str)
+df["group"] = df["group"].astype(str)
+df["period"] = [periods[x-1] for x in df.period]
+df = df[df.group != "-"]
+df = df[df.symbol != "Lr"]
+df = df[df.symbol != "Lu"]
+
+cmap = {
+ "alkali metal" : "#a6cee3",
+ "alkaline earth metal" : "#1f78b4",
+ "metal" : "#d93b43",
+ "halogen" : "#999d9a",
+ "metalloid" : "#e08d49",
+ "noble gas" : "#eaeaea",
+ "nonmetal" : "#f1d4Af",
+ "transition metal" : "#599d7A",
+}
+
+TOOLTIPS = [
+ ("Name", "@name"),
+ ("Atomic number", "@{atomic number}"),
+ ("Atomic mass", "@{atomic mass}"),
+ ("Type", "@metal"),
+ ("CPK color", "$color[hex, swatch]:CPK"),
+ ("Electronic configuration", "@{electronic configuration}"),
+]
+
+p = figure(title="Periodic Table (omitting LA and AC Series)", width=1000, height=450,
+ x_range=groups, y_range=list(reversed(periods)),
+ tools="hover,tap", toolbar_location=None, tooltips=TOOLTIPS)
+
+# Convert DataFrame to ColumnDataSource
+df["selected"] = False
+source = ColumnDataSource(df)
+
+r = p.rect("group", "period", 0.95, 0.95, source=source, fill_alpha=0.6,
+ legend_field="metal",
+ color=factor_cmap('metal', palette=list(cmap.values()), factors=list(cmap.keys())),
+ selection_color="firebrick", selection_alpha=0.9)
+
+
+# r = p.rect("group", "period", 0.95, 0.95, source=df, fill_alpha=0.6, legend_field="metal",
+# color=factor_cmap('metal', palette=list(cmap.values()), factors=list(cmap.keys())))
+
+text_props = dict(source=df, text_align="left", text_baseline="middle")
+
+x = dodge("group", -0.4, range=p.x_range)
+
+p.text(x=x, y="period", text="symbol", text_font_style="bold", **text_props)
+
+p.text(x=x, y=dodge("period", 0.3, range=p.y_range), text="atomic number",
+ text_font_size="11px", **text_props)
+
+p.text(x=x, y=dodge("period", -0.35, range=p.y_range), text="name",
+ text_font_size="7px", **text_props)
+
+p.text(x=x, y=dodge("period", -0.2, range=p.y_range), text="atomic mass",
+ text_font_size="7px", **text_props)
+
+p.text(x=["3", "3"], y=["VI", "VII"], text=["LA", "AC"], text_align="center", text_baseline="middle")
+
+p.outline_line_color = None
+p.grid.grid_line_color = None
+p.axis.axis_line_color = None
+p.axis.major_tick_line_color = None
+p.axis.major_label_standoff = 0
+p.legend.orientation = "horizontal"
+p.legend.location ="top_center"
+p.hover.renderers = [r] # only hover element boxes
+
+print(source.dataspecs())
+
+# Create a CustomJS callback
+callback = CustomJS(args=dict(source=source), code="""
+ var data = source.data;
+ var selected_elements = [];
+ for (var i = 0; i < data.symbol.length; i++) {
+ if (data.selected[i]) { // Corrected if statement with braces
+ selected_elements.push(data.symbol[i]);
+ }
+ }
+ console.log('Selected elements:', selected_elements);
+ document.dispatchEvent(new CustomEvent("selection_event", {detail: JSON.stringify(selected_elements)}));
+ """)
+ # yield j
+ # st.rerun()
+
+
+
+# Add TapTool with the callback
+tap_tool = TapTool()
+p.add_tools(tap_tool)
+p.js_on_event('tap', callback)
+
+st.bokeh_chart(p, use_container_width=True)
+
+# show(p)
+
+selected_info = st.empty()
+
+# Use session state to store selected elements
+if 'selected_elements' not in st.session_state:
+ st.session_state.selected_elements = []
+
+st.markdown("""
+
+""", unsafe_allow_html=True)
+
+# Display selected elements
+if st.session_state.selected_elements:
+ st.write("Selected Elements:")
+ for element in st.session_state.selected_elements:
+ st.write(f"{element['symbol']} ({element['name']}):")
+ st.write(f" Atomic Number: {element['atomic_number']}")
+ st.write(f" Atomic Mass: {element['atomic_mass']}")
+ st.write(f" Type: {element['metal']}")
+ st.write("---")
+
+else:
+ st.write("No elements selected. Click on elements in the periodic table to select them.")
+ # st.rerun()
+
+# Add a button to clear selection
+if st.button("Clear Selection"):
+ st.session_state.selected_elements = []
+ st.rerun()
diff --git a/tests/test_app.py b/tests/test_app.py
new file mode 100644
index 0000000000000000000000000000000000000000..d8e62c58285f8555a53186be6f8d2a3c7be863cd
--- /dev/null
+++ b/tests/test_app.py
@@ -0,0 +1,27 @@
+import streamlit as st
+from streamlit.testing.v1 import AppTest
+import pytest
+from pathlib import Path
+
+path = Path(__file__).parents[1] / "serve"
+
+@pytest.fixture
+def home():
+ at = AppTest.from_file(str(path / "app.py"), default_timeout=60)
+ at.run()
+ assert not at.exception
+ return at
+
+def test_leaderboard(home):
+ # Test the leaderboard page by simulating navigation.
+ at = home.switch_page(str(path / "leaderboard.py"))
+ assert not at.exception
+
+def test_task_pages(home):
+ # Test each task page using the TASKS registry.
+ from mlip_arena.tasks import REGISTRY as TASKS
+
+ for task, details in TASKS.items():
+ page_path = str(path / f"tasks/{details['task-page']}.py")
+ at = home.switch_page(page_path)
+ assert not at.exception
diff --git a/tests/test_elasticity.py b/tests/test_elasticity.py
new file mode 100644
index 0000000000000000000000000000000000000000..e96d1d0c2e97994d8f2c84645251d3c21fdc33c0
--- /dev/null
+++ b/tests/test_elasticity.py
@@ -0,0 +1,40 @@
+import sys
+
+import numpy as np
+import pytest
+from mlip_arena.models import MLIPEnum
+from mlip_arena.tasks.elasticity import run as ELASTICITY
+from mlip_arena.tasks.utils import get_calculator
+from prefect.testing.utilities import prefect_test_harness
+
+from ase.build import bulk
+
+
+@pytest.mark.skipif(
+ sys.version_info[:2] != (3, 11),
+ reason="avoid prefect race condition on concurrent tasks",
+)
+@pytest.mark.parametrize("model", [MLIPEnum["MACE-MP(M)"]])
+def test_elasticity(model: MLIPEnum):
+ """
+ Test elasticity prefect workflow with a simple cubic lattice.
+ """
+
+ with prefect_test_harness():
+ result = ELASTICITY(
+ atoms=bulk("Cu", "fcc", a=3.6),
+ calculator=get_calculator(
+ calculator_name=model.name,
+ ),
+ optimizer="BFGSLineSearch",
+ optimizer_kwargs=None,
+ filter="FrechetCell",
+ filter_kwargs=None,
+ criterion=None,
+ persist_opt=False,
+ cache_opt=False,
+ )
+ assert isinstance(result, dict)
+ assert isinstance(result["elastic_tensor"], np.ndarray)
+ assert result["elastic_tensor"].shape == (3, 3, 3, 3)
+ assert isinstance(result["elastic_tensor"][0, 0, 0, 0], float)
diff --git a/tests/test_eos.py b/tests/test_eos.py
new file mode 100644
index 0000000000000000000000000000000000000000..ec7c84090abd972ddcaeaa8222921c156ffcda18
--- /dev/null
+++ b/tests/test_eos.py
@@ -0,0 +1,67 @@
+import sys
+
+import pytest
+from ase.build import bulk
+from prefect import flow
+from prefect.testing.utilities import prefect_test_harness
+
+from mlip_arena.models import MLIPEnum
+from mlip_arena.tasks.eos import run as EOS
+from mlip_arena.tasks.utils import get_calculator
+
+
+
+@flow(persist_result=True)
+def single_eos_flow(calculator_name, concurrent=True, cache=False):
+ atoms = bulk("Cu", "fcc", a=3.6)
+
+ return EOS.with_options(
+ refresh_cache=not cache,
+ )(
+ atoms=atoms,
+ calculator=get_calculator(
+ calculator_name=calculator_name,
+ ),
+ optimizer="BFGSLineSearch",
+ optimizer_kwargs=None,
+ filter="FrechetCell",
+ filter_kwargs=None,
+ criterion=dict(
+ fmax=0.1,
+ ),
+ max_abs_strain=0.1,
+ npoints=6,
+ concurrent=concurrent,
+ )
+
+
+@pytest.mark.skipif(
+ sys.version_info[:2] != (3, 11),
+ reason="avoid prefect race condition on concurrent tasks",
+)
+@pytest.mark.parametrize("concurrent", [False])
+@pytest.mark.parametrize("model", [MLIPEnum["MACE-MP(M)"]])
+def test_eos(model: MLIPEnum, concurrent: bool):
+ """
+ Test EOS prefect workflow with a simple cubic lattice.
+ """
+
+ with prefect_test_harness():
+ result = single_eos_flow(
+ calculator_name=model.name,
+ concurrent=concurrent,
+ cache=False,
+ )
+ assert isinstance(b0_scratch := result["b0"], float)
+
+ # @pytest.mark.dependency(depends=["test_eos"])
+ # @pytest.mark.parametrize("model", [MLIPEnum["MACE-MP(M)"]])
+ # def test_eos_cache(model: MLIPEnum):
+
+ result = single_eos_flow(
+ calculator_name=model.name,
+ concurrent=concurrent,
+ cache=True,
+ )
+ assert isinstance(b0_cache := result["b0"], float)
+ assert b0_scratch == pytest.approx(b0_cache, rel=1e-5)
diff --git a/tests/test_external_calculators.py b/tests/test_external_calculators.py
new file mode 100644
index 0000000000000000000000000000000000000000..e9194036ab6f99c68aea8b26dfeea4292ad9687a
--- /dev/null
+++ b/tests/test_external_calculators.py
@@ -0,0 +1,55 @@
+import pytest
+from ase import Atoms
+from ase.calculators.calculator import PropertyNotImplementedError
+import numpy as np
+
+from mlip_arena.models import MLIPEnum
+
+from requests import HTTPError
+from huggingface_hub.errors import LocalTokenNotFoundError
+
+@pytest.mark.parametrize("model", MLIPEnum)
+def test_calculate(model: MLIPEnum):
+
+ if model.name == "ALIGNN":
+ pytest.xfail("ALIGNN has poor file download mechanism")
+
+ if model.name == "ORB":
+ pytest.xfail("Orbital Materials deprecated the model a month after its premature release in favor of ORBv2")
+
+ if model.name == "M3GNet":
+ pytest.xfail("Cache sometimes fails")
+
+ try:
+ calc = MLIPEnum[model.name].value()
+ except (LocalTokenNotFoundError, HTTPError, FileNotFoundError) as e:
+ pytest.skip(str(e))
+
+ atoms = Atoms(
+ "OO",
+ positions=[[0, 0, 0], [1.5, 0, 0]],
+ cell=[10, 10 + 0.001, 10 + 0.002],
+ pbc=True,
+ )
+
+ atoms.calc = calc
+
+ energy = atoms.get_potential_energy()
+
+ assert isinstance(energy, (float, np.float64, np.float32))
+
+ forces = atoms.get_forces()
+ assert isinstance(forces, (np.ndarray, list))
+ assert len(forces) == len(atoms)
+
+ try:
+ stress = atoms.get_stress()
+ except PropertyNotImplementedError:
+ stress = None
+
+ if stress is None:
+ pytest.xfail("Stress calculation is not supported by the model")
+ else:
+ assert isinstance(stress, (np.ndarray, list))
+
+
diff --git a/tests/test_internal_calculators.py b/tests/test_internal_calculators.py
new file mode 100644
index 0000000000000000000000000000000000000000..d09489782f8157101779ed3e1f06b8803db84ce4
--- /dev/null
+++ b/tests/test_internal_calculators.py
@@ -0,0 +1,36 @@
+import numpy as np
+from mlip_arena.models import MLIPCalculator
+from mlip_arena.models.classicals.zbl import ZBL
+
+from ase.build import bulk
+
+
+def test_zbl():
+ calc = MLIPCalculator(model=ZBL(), cutoff=6.0)
+
+ energies = []
+ forces = []
+ stresses = []
+
+ lattice_constants = [1, 3, 5, 7]
+
+ for a in lattice_constants:
+ atoms = bulk("Cu", "fcc", a=a) * (2, 2, 2)
+ atoms.calc = calc
+
+ energies.append(atoms.get_potential_energy())
+ forces.append(atoms.get_forces())
+ stresses.append(atoms.get_stress(voigt=False))
+
+ # test energy monotonicity
+ assert all(np.diff(energies) <= 0), "Energy is not monotonically decreasing with increasing lattice constant"
+
+ # test force vectors are all zeros due to symmetry
+ for f in forces:
+ assert np.allclose(f, 0), "Forces should be zero due to symmetry"
+
+ # test trace of stress is monotonically increasing (less negative) and zero beyond cutoff
+ traces = [np.trace(s) for s in stresses]
+
+ assert all(np.diff(traces) >= 0), "Trace of stress is not monotonically increasing with increasing lattice constant"
+ assert np.allclose(stresses[-1], 0), "Stress should be zero beyond cutoff"
diff --git a/tests/test_md.py b/tests/test_md.py
new file mode 100644
index 0000000000000000000000000000000000000000..a540f37eeeabbb56a2f52c54eedd6d0392a20a8b
--- /dev/null
+++ b/tests/test_md.py
@@ -0,0 +1,29 @@
+
+import sys
+
+import pytest
+from ase.build import bulk
+
+from mlip_arena.models import MLIPEnum
+from mlip_arena.tasks.md import run as MD
+from mlip_arena.tasks.utils import get_calculator
+
+atoms = bulk("Cu", "fcc", a=3.6)
+
+@pytest.mark.skipif(sys.version_info[:2] != (3,11), reason="avoid prefect race condition on concurrent tasks")
+@pytest.mark.parametrize("model", [MLIPEnum["MACE-MP(M)"]])
+def test_nve(model: MLIPEnum):
+
+ result = MD.fn(
+ atoms,
+ calculator=get_calculator(
+ calculator_name=model.name,
+ ),
+ ensemble="nve",
+ dynamics="velocityverlet",
+ total_time=10,
+ time_step=2,
+ dynamics_kwargs={},
+ )
+
+ assert isinstance(result["atoms"].get_potential_energy(), float)
diff --git a/tests/test_mof.py b/tests/test_mof.py
new file mode 100644
index 0000000000000000000000000000000000000000..a5204f2611fbd61bcbc582888e672a9e15f8e508
--- /dev/null
+++ b/tests/test_mof.py
@@ -0,0 +1,43 @@
+import sys
+
+import pytest
+from ase.build import molecule
+from prefect.testing.utilities import prefect_test_harness
+
+from mlip_arena.models import MLIPEnum
+from mlip_arena.tasks.mof.flow import widom_insertion
+from mlip_arena.tasks.mof.input import get_atoms_from_db
+from mlip_arena.tasks.utils import get_calculator
+
+
+@pytest.fixture(autouse=True, scope="session")
+def prefect_test_fixture():
+ with prefect_test_harness():
+ yield
+
+
+@pytest.mark.skipif(
+ sys.version_info[:2] != (3, 11),
+ reason="avoid prefect race condition on concurrent tasks",
+)
+@pytest.mark.parametrize("model", [MLIPEnum["MACE-MP(M)"]])
+def test_widom_insertion(model: MLIPEnum):
+ # with prefect_test_harness():
+ for atoms in get_atoms_from_db("mofs.db"):
+ result = widom_insertion.with_options(
+ refresh_cache=True,
+ )(
+ structure=atoms,
+ gas=molecule("CO2"),
+ calculator=get_calculator(
+ model,
+ dispersion=True,
+ ),
+ num_insertions=10,
+ fold=2,
+ )
+ assert isinstance(result, dict)
+ assert isinstance(result["henry_coefficient"][0], float)
+ assert isinstance(result["averaged_interaction_energy"][0], float)
+ assert isinstance(result["heat_of_adsorption"][0], float)
+ break # only test one MOF
diff --git a/tests/test_neb.py b/tests/test_neb.py
new file mode 100644
index 0000000000000000000000000000000000000000..4f97fbda28a245066d5e73c8e3d63c8bf807a399
--- /dev/null
+++ b/tests/test_neb.py
@@ -0,0 +1,47 @@
+import sys
+
+import pytest
+from mlip_arena.models import MLIPEnum
+from mlip_arena.tasks import NEB_FROM_ENDPOINTS
+from mlip_arena.tasks.utils import get_calculator
+from prefect.testing.utilities import prefect_test_harness
+
+from ase.spacegroup import crystal
+
+pristine = crystal(
+ "Al", [(0, 0, 0)], spacegroup=225, cellpar=[4.05, 4.05, 4.05, 90, 90, 90]
+) * (3, 3, 3)
+
+atoms = pristine.copy()
+del atoms[0]
+start = atoms.copy()
+
+atoms = pristine.copy()
+del atoms[1]
+end = atoms.copy()
+
+
+@pytest.mark.skipif(
+ sys.version_info[:2] != (3, 11),
+ reason="avoid prefect race condition on concurrent tasks",
+)
+@pytest.mark.parametrize("model", [MLIPEnum["MACE-MP(M)"]])
+def test_neb(model: MLIPEnum):
+ """
+ Test NEB prefect workflow with a simple cubic lattice.
+ """
+
+ with prefect_test_harness():
+ result = NEB_FROM_ENDPOINTS(
+ start=start.copy(),
+ end=end.copy(),
+ n_images=5,
+ calculator=get_calculator(
+ calculator_name=model.name,
+ ),
+ optimizer="BFGS",
+ )
+
+ assert isinstance(result, dict)
+ assert isinstance(result["barrier"][0], float)
+ assert isinstance(result["barrier"][1], float)