Spaces:
Running
Running
Yuan (Cyrus) Chiang
Elizabeth Weaver
commited on
Add force equivariance benchmark (#65)
Browse files* add equivariance testing
* mv to benchmarks folder; ruff
* deterministic discovery of pytest
---------
Co-authored-by: Elizabeth Weaver <e.j.weaver64@gmail.com>
- benchmarks/force_equivariance/run.py +307 -0
- pytest.ini +3 -0
benchmarks/force_equivariance/run.py
ADDED
@@ -0,0 +1,307 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Define equivariance testing task.
|
3 |
+
"""
|
4 |
+
|
5 |
+
from __future__ import annotations
|
6 |
+
|
7 |
+
from collections.abc import Sequence
|
8 |
+
from pathlib import Path
|
9 |
+
|
10 |
+
import numpy as np
|
11 |
+
from ase import Atoms
|
12 |
+
from prefect import task
|
13 |
+
from scipy.spatial.transform import Rotation as R
|
14 |
+
from tqdm import tqdm
|
15 |
+
|
16 |
+
|
17 |
+
def generate_random_unit_vector():
|
18 |
+
"""Generate a random unit vector."""
|
19 |
+
vec = np.random.normal(0, 1, 3)
|
20 |
+
return vec / np.linalg.norm(vec)
|
21 |
+
|
22 |
+
|
23 |
+
def rotate_molecule_arbitrary(
|
24 |
+
atoms: Atoms, angle: float, axis: np.ndarray
|
25 |
+
) -> tuple[Atoms, np.ndarray]:
|
26 |
+
"""Rotate molecule around arbitrary axis."""
|
27 |
+
rotated_atoms = atoms.copy()
|
28 |
+
positions = rotated_atoms.get_positions()
|
29 |
+
rot = R.from_rotvec(np.radians(angle) * axis)
|
30 |
+
rotation_mat = rot.as_matrix()
|
31 |
+
rotated_positions = rot.apply(positions)
|
32 |
+
rotated_atoms.set_positions(rotated_positions)
|
33 |
+
cell = atoms.get_cell()
|
34 |
+
rotated_cell = rot.apply(cell)
|
35 |
+
rotated_atoms.set_cell(rotated_cell)
|
36 |
+
return rotated_atoms, rotation_mat
|
37 |
+
|
38 |
+
|
39 |
+
def compare_forces(
|
40 |
+
original_forces: np.ndarray,
|
41 |
+
rotated_forces: np.ndarray,
|
42 |
+
rotation_mat: np.ndarray,
|
43 |
+
zero_threshold: float = 1e-10,
|
44 |
+
) -> tuple[float, np.ndarray, np.ndarray, np.ndarray]:
|
45 |
+
"""
|
46 |
+
Compare forces before and after rotation, with handling of 0 force case.
|
47 |
+
|
48 |
+
Args:
|
49 |
+
original_forces: Forces before rotation (N x 3 array)
|
50 |
+
rotated_forces: Forces after rotation (N x 3 array)
|
51 |
+
rotation_mat: 3 x 3 rotation matrix
|
52 |
+
zero_threshold: Threshold below which forces are considered zero
|
53 |
+
|
54 |
+
Returns:
|
55 |
+
tuple containing:
|
56 |
+
- mae: Mean absolute error between forces
|
57 |
+
- cosine_similarity: Cosine similarity between force vectors
|
58 |
+
"""
|
59 |
+
rotated_original_forces = np.dot(original_forces, rotation_mat.T)
|
60 |
+
force_diff = rotated_original_forces - rotated_forces
|
61 |
+
mae = np.mean(np.abs(force_diff))
|
62 |
+
|
63 |
+
original_magnitudes = np.linalg.norm(rotated_original_forces, axis=1)
|
64 |
+
rotated_magnitudes = np.linalg.norm(rotated_forces, axis=1)
|
65 |
+
|
66 |
+
zero_original = original_magnitudes < zero_threshold
|
67 |
+
zero_rotated = rotated_magnitudes < zero_threshold
|
68 |
+
both_zero = zero_original & zero_rotated
|
69 |
+
either_zero = zero_original | zero_rotated
|
70 |
+
one_zero = either_zero & ~both_zero
|
71 |
+
|
72 |
+
cosine_similarity = np.zeros(len(original_forces))
|
73 |
+
|
74 |
+
valid_forces = ~either_zero
|
75 |
+
if np.any(valid_forces):
|
76 |
+
norms_product = np.linalg.norm(
|
77 |
+
rotated_original_forces[valid_forces], axis=1
|
78 |
+
) * np.linalg.norm(rotated_forces[valid_forces], axis=1)
|
79 |
+
dot_products = np.sum(
|
80 |
+
rotated_original_forces[valid_forces] * rotated_forces[valid_forces], axis=1
|
81 |
+
)
|
82 |
+
cosine_similarity[valid_forces] = dot_products / norms_product
|
83 |
+
|
84 |
+
# If both forces are 0, cosine similarity should be 1. If one is 0, we take the conservative -1.
|
85 |
+
cosine_similarity[both_zero] = 1.0
|
86 |
+
cosine_similarity[one_zero] = -1.0
|
87 |
+
|
88 |
+
return mae, cosine_similarity
|
89 |
+
|
90 |
+
|
91 |
+
def save_molecule_results(
|
92 |
+
aggregate_results: dict, idx_list: np.ndarray, save_path: str | Path
|
93 |
+
) -> None:
|
94 |
+
"""
|
95 |
+
Save all molecule results from equivariance testing to .npy files.
|
96 |
+
Save the index list of the atoms for further analysis.
|
97 |
+
|
98 |
+
Args:
|
99 |
+
aggregate_results: Dictionary containing the aggregated results from run()
|
100 |
+
idx_list: List of the indices of the atoms in the original dataset
|
101 |
+
save_path: Path to save the .npy files
|
102 |
+
"""
|
103 |
+
save_path = Path(save_path)
|
104 |
+
save_path.parent.mkdir(parents=True, exist_ok=True)
|
105 |
+
|
106 |
+
all_molecule_results = aggregate_results["molecule_results"]
|
107 |
+
rotation_angles = list(all_molecule_results[0]["results_by_angle"].keys())
|
108 |
+
|
109 |
+
num_molecules = len(all_molecule_results)
|
110 |
+
num_angles = len(rotation_angles)
|
111 |
+
num_random_axes = len(
|
112 |
+
all_molecule_results[0]["results_by_angle"][rotation_angles[0]]["maes"]
|
113 |
+
)
|
114 |
+
num_atoms = len(
|
115 |
+
all_molecule_results[0]["results_by_angle"][rotation_angles[0]][
|
116 |
+
"cosine_similarities"
|
117 |
+
][0]
|
118 |
+
)
|
119 |
+
|
120 |
+
maes = np.zeros((num_molecules, num_angles, num_random_axes))
|
121 |
+
cosine_similarities = np.zeros((num_molecules, num_angles, num_random_axes))
|
122 |
+
|
123 |
+
for mol_idx, molecule in enumerate(all_molecule_results):
|
124 |
+
for angle_idx, angle in enumerate(rotation_angles):
|
125 |
+
angle_results = molecule["results_by_angle"][angle]
|
126 |
+
maes[mol_idx, angle_idx, :] = angle_results["maes"]
|
127 |
+
cosine_similarities[mol_idx, angle_idx, :] = np.mean(
|
128 |
+
angle_results["cosine_similarities"], axis=-1
|
129 |
+
)
|
130 |
+
|
131 |
+
np.save(save_path.with_name(f"{save_path.stem}_maes.npy"), maes)
|
132 |
+
np.save(
|
133 |
+
save_path.with_name(f"{save_path.stem}_cosine_similarities.npy"),
|
134 |
+
cosine_similarities,
|
135 |
+
)
|
136 |
+
np.save(save_path.with_name(f"{save_path.stem}_idx_list.npy"), idx_list)
|
137 |
+
|
138 |
+
|
139 |
+
@task(
|
140 |
+
name="Equivariance testing",
|
141 |
+
task_run_name=_generate_task_run_name,
|
142 |
+
cache_policy=TASK_SOURCE + INPUTS,
|
143 |
+
)
|
144 |
+
def run(
|
145 |
+
atoms_list: Sequence[Atoms],
|
146 |
+
idx_list: np.ndarray,
|
147 |
+
calculator: BaseCalculator,
|
148 |
+
save_path: str | Path | None = None,
|
149 |
+
rotation_angles: list[float] | np.ndarray = None,
|
150 |
+
num_random_axes: int = 100,
|
151 |
+
threshold: float = 1e-3,
|
152 |
+
seed: int | None = None,
|
153 |
+
) -> dict:
|
154 |
+
"""
|
155 |
+
Test equivariance of force predictions under rotations for multiple structures.
|
156 |
+
|
157 |
+
Args:
|
158 |
+
atoms_list: List of input atomic structures
|
159 |
+
idx_list: List of the indices of the atoms in the original dataset
|
160 |
+
calculator: Calculator to use
|
161 |
+
num_rotations: Number of random rotations to test
|
162 |
+
rotation_angle: Angle of rotation in degrees
|
163 |
+
threshold: Threshold for considering forces equivariant
|
164 |
+
seed: Random seed
|
165 |
+
|
166 |
+
Returns:
|
167 |
+
Dictionary containing test results
|
168 |
+
"""
|
169 |
+
if seed is not None:
|
170 |
+
np.random.seed(seed)
|
171 |
+
|
172 |
+
if rotation_angles is None:
|
173 |
+
rotation_angles = np.arange(30, 361, 30)
|
174 |
+
rotation_angles = np.array(rotation_angles)
|
175 |
+
|
176 |
+
all_results = []
|
177 |
+
|
178 |
+
cross_molecule_cosine_sims = {angle: [] for angle in rotation_angles}
|
179 |
+
cross_molecule_mae = {angle: [] for angle in rotation_angles}
|
180 |
+
|
181 |
+
rotation_axes = [generate_random_unit_vector() for _ in range(num_random_axes)]
|
182 |
+
|
183 |
+
total_tests = len(atoms_list) * len(rotation_angles) * num_random_axes
|
184 |
+
pbar = tqdm(total=total_tests, desc="Testing rotations")
|
185 |
+
|
186 |
+
for atom_idx, atoms in enumerate(atoms_list):
|
187 |
+
atoms = atoms.copy()
|
188 |
+
atoms.calc = calculator
|
189 |
+
original_forces = atoms.get_forces()
|
190 |
+
|
191 |
+
results_by_angle = {
|
192 |
+
angle: {
|
193 |
+
"mae": [],
|
194 |
+
"cosine_similarities": [],
|
195 |
+
"passed_tests": 0,
|
196 |
+
"passed_mae": 0,
|
197 |
+
"passed_cosine_similarity": 0,
|
198 |
+
}
|
199 |
+
for angle in rotation_angles
|
200 |
+
}
|
201 |
+
# Test each angle with multiple random axes
|
202 |
+
for angle in rotation_angles:
|
203 |
+
for axis in rotation_axes:
|
204 |
+
rotated_atoms, rotation_mat = rotate_molecule_arbitrary(
|
205 |
+
atoms, angle, axis
|
206 |
+
)
|
207 |
+
rotated_atoms.calc = calculator
|
208 |
+
rotated_forces = rotated_atoms.get_forces()
|
209 |
+
mae, cosine_similarity = compare_forces(
|
210 |
+
original_forces, rotated_forces, rotation_mat
|
211 |
+
)
|
212 |
+
results_by_angle[angle]["mae"].append(mae)
|
213 |
+
results_by_angle[angle]["cosine_similarities"].append(cosine_similarity)
|
214 |
+
|
215 |
+
cross_molecule_cosine_sims[angle].append(
|
216 |
+
float(np.mean(cosine_similarity))
|
217 |
+
)
|
218 |
+
cross_molecule_mae[angle].append(float(np.mean(mae)))
|
219 |
+
|
220 |
+
mae_check = mae < threshold
|
221 |
+
cosine_check = all(cosine_similarity > (1 - threshold))
|
222 |
+
results_by_angle[angle]["passed_tests"] += int(
|
223 |
+
mae_check and cosine_check
|
224 |
+
)
|
225 |
+
results_by_angle[angle]["passed_mae"] += int(mae_check)
|
226 |
+
results_by_angle[angle]["passed_cosine_similarity"] += int(cosine_check)
|
227 |
+
|
228 |
+
pbar.update(1)
|
229 |
+
# Compute summary statistics
|
230 |
+
for angle in rotation_angles:
|
231 |
+
results = results_by_angle[angle]
|
232 |
+
results["mean_cosine_similarity"] = float(
|
233 |
+
np.mean(results["cosine_similarities"])
|
234 |
+
)
|
235 |
+
results["avg_mae"] = float(np.mean(results["mae"]))
|
236 |
+
results["equivariant_ratio"] = results["passed_tests"] / num_random_axes
|
237 |
+
results["mae_passed_ratio"] = results["passed_mae"] / num_random_axes
|
238 |
+
results["cosine_passed_ratio"] = (
|
239 |
+
results["passed_cosine_similarity"] / num_random_axes
|
240 |
+
)
|
241 |
+
results["passed"] = results["passed_tests"] == num_random_axes
|
242 |
+
results["passed_mae"] = results["passed_mae"] == num_random_axes
|
243 |
+
results["passed_cosine_similarity"] = (
|
244 |
+
results["passed_cosine_similarity"] == num_random_axes
|
245 |
+
)
|
246 |
+
results["maes"] = [float(x) for x in results["mae"]]
|
247 |
+
results["cosine_similarities"] = [
|
248 |
+
[float(y) for y in x] for x in results["cosine_similarities"]
|
249 |
+
]
|
250 |
+
|
251 |
+
molecule_results = {
|
252 |
+
"mol_idx": idx_list[atom_idx],
|
253 |
+
"results_by_angle": results_by_angle,
|
254 |
+
"all_passed": all(
|
255 |
+
results_by_angle[angle]["passed"] for angle in rotation_angles
|
256 |
+
),
|
257 |
+
"avg_cosine_similarity_by_molecule": float(
|
258 |
+
np.mean(
|
259 |
+
[
|
260 |
+
results_by_angle[angle]["mean_cosine_similarity"]
|
261 |
+
for angle in rotation_angles
|
262 |
+
]
|
263 |
+
)
|
264 |
+
),
|
265 |
+
"avg_mae_by_molecule": float(
|
266 |
+
np.mean(
|
267 |
+
[results_by_angle[angle]["avg_mae"] for angle in rotation_angles]
|
268 |
+
)
|
269 |
+
),
|
270 |
+
"overall_equivariant_ratio": float(
|
271 |
+
np.mean(
|
272 |
+
[
|
273 |
+
results_by_angle[angle]["equivariant_ratio"]
|
274 |
+
for angle in rotation_angles
|
275 |
+
]
|
276 |
+
)
|
277 |
+
),
|
278 |
+
}
|
279 |
+
|
280 |
+
all_results.append(molecule_results)
|
281 |
+
|
282 |
+
pbar.close()
|
283 |
+
|
284 |
+
aggregate_results = {
|
285 |
+
"num_molecules": len(atoms_list),
|
286 |
+
"all_molecules_passed": all(result["all_passed"] for result in all_results),
|
287 |
+
"average_equivariant_ratio": float(
|
288 |
+
np.mean([result["overall_equivariant_ratio"] for result in all_results])
|
289 |
+
),
|
290 |
+
"average_cosine_similarity_by_angle": {
|
291 |
+
angle: float(np.mean(sims))
|
292 |
+
for angle, sims in cross_molecule_cosine_sims.items()
|
293 |
+
},
|
294 |
+
"average_mae_by_angle": {
|
295 |
+
angle: float(np.mean(diffs)) for angle, diffs in cross_molecule_mae.items()
|
296 |
+
},
|
297 |
+
"molecule_results": all_results,
|
298 |
+
}
|
299 |
+
|
300 |
+
if save_path:
|
301 |
+
save_molecule_results(aggregate_results, idx_list, save_path)
|
302 |
+
np.save(
|
303 |
+
str(save_path.with_name(f"{save_path.stem}_molecule_results.npy")),
|
304 |
+
all_results,
|
305 |
+
)
|
306 |
+
|
307 |
+
return aggregate_results
|
pytest.ini
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
[pytest]
|
2 |
+
testpaths = tests
|
3 |
+
python_files = test_*.py
|