Spaces:
Running
Running
File size: 7,116 Bytes
f880d1c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
import importlib
import pandas as pd
import streamlit as st
from mlip_arena.models import REGISTRY as MODELS
from mlip_arena.tasks import REGISTRY as TASKS
# -----------------------------------------------------------------------------
# Build metadata table
# -----------------------------------------------------------------------------
metadata_table = pd.DataFrame(
columns=[
"Model",
"Prediction",
"NVT",
"NPT",
"Training Set",
"Code",
"Paper",
"Checkpoint",
"First Release",
"License",
]
)
for model, meta in MODELS.items():
new_row = {
"Model": model,
"Prediction": meta.get("prediction"),
"NVT": "✅" if meta.get("nvt", False) else "❌",
"NPT": "✅" if meta.get("npt", False) else "❌",
"Training Set": meta.get("datasets", []),
"Code": meta.get("github"),
"Paper": meta.get("doi"),
"Checkpoint": meta.get("checkpoint"),
"First Release": meta.get("date"),
"License": meta.get("license"),
}
metadata_table = pd.concat(
[metadata_table, pd.DataFrame([new_row])], ignore_index=True
)
metadata_table.set_index("Model", inplace=True)
# -----------------------------------------------------------------------------
# Collect per-task ranks and compute Arena Rank
# -----------------------------------------------------------------------------
task_ranks = []
for task, meta in TASKS.items():
rank_page = meta.get("rank-page")
if rank_page is None:
continue
try:
task_module = importlib.import_module(f"ranks.{rank_page}")
except ModuleNotFoundError:
continue
if hasattr(task_module, "table"):
t = task_module.table.copy()
if "Rank" in t.columns:
t = t[["Rank"]].rename(columns={"Rank": f"{task} Rank"})
task_ranks.append(t)
rank_df = pd.concat(task_ranks, axis=1) if task_ranks else pd.DataFrame()
leaderboard = metadata_table.join(rank_df, how="left")
# -----------------------------------------------------------------------------
# Compute Arena Rank explicitly without modifying original task ranks
# -----------------------------------------------------------------------------
if not rank_df.empty:
leaderboard = leaderboard.copy()
leaderboard["Meta Rank Agg"] = 0
for col in rank_df.columns:
leaderboard["Meta Rank Agg"] += leaderboard[col].rank(
method="min", ascending=True, na_option="bottom"
)
leaderboard[col] = leaderboard[col].astype("Int64")
# rename column to indicate rank
# leaderboard.rename(columns={col: col}, inplace=True)
# Final Arena Rank
leaderboard["Meta Rank Agg"] = leaderboard["Meta Rank Agg"].astype("Int64")
leaderboard["Arena Rank"] = (
leaderboard["Meta Rank Agg"]
.rank(method="min", ascending=True, na_option="bottom")
.astype("Int64")
)
# Reorder columns: Training Set → Arena Rank → task ranks → rest
rank_cols = [
c for c in leaderboard.columns if c.endswith("Rank") and c != "Arena Rank"
]
first_cols = ["Training Set", "Arena Rank", "Meta Rank Agg"] + rank_cols
other_cols = [
c for c in leaderboard.columns if c not in first_cols
] # and c != "Meta Rank Agg"]
leaderboard = leaderboard.reindex(columns=first_cols + other_cols)
# Optional: sort by Arena Rank
leaderboard.sort_values("Arena Rank", inplace=True)
# rename rank_cols to remove " Rank" suffix
rename_dict = {col: col.replace(" Rank", "") for col in rank_cols}
leaderboard.rename(columns=rename_dict, inplace=True)
# -----------------------------------------------------------------------------
# Styling and rendering
# -----------------------------------------------------------------------------
# style = leaderboard.drop(columns=["Meta Rank Agg"], errors="ignore").style
style = leaderboard.style
style = style.background_gradient(
cmap="inferno_r", subset=["Arena Rank", "Meta Rank Agg"]
)
style = style.background_gradient(cmap="cividis_r", subset=list(rename_dict.values()))
st.info(
"Contributions are welcome. For more information, visit https://github.com/atomind-ai/mlip-arena.",
icon="🤗",
)
st.markdown(
"""
<h1 style='text-align: center;'>⚔️ MLIP Arena Leaderboard ⚔️</h1>
<div align="center">
<a href="https://openreview.net/forum?id=ysKfIavYQE#discussion"><img alt="Static Badge" src="https://img.shields.io/badge/ICLR-AI4Mat-blue"></a>
<a href="https://huggingface.co/spaces/atomind/mlip-arena"><img src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Space-blue" alt="Hugging Face"></a>
<a href="https://github.com/atomind-ai/mlip-arena/actions"><img alt="GitHub Actions Workflow Status" src="https://img.shields.io/github/actions/workflow/status/atomind-ai/mlip-arena/test.yaml"></a>
<a href="https://pypi.org/project/mlip-arena/"><img alt="PyPI - Version" src="https://img.shields.io/pypi/v/mlip-arena"></a>
<a href="https://zenodo.org/doi/10.5281/zenodo.13704399"><img src="https://zenodo.org/badge/776930320.svg" alt="DOI"></a>
</a>
</div>
> MLIP Arena is a unified platform for evaluating foundation machine learning interatomic potentials (MLIPs) beyond conventional energy and force error metrics. It focuses on revealing the underlying physics and chemistry learned by these models. The platform's benchmarks are specifically designed to evaluate the readiness and reliability of open-source, open-weight models in accurately reproducing both qualitative and quantitative behaviors of atomic systems.
""",
unsafe_allow_html=True,
)
# st.subheader(":red[Supported Models + Arena Rank]")
st.dataframe(
style,
use_container_width=True,
column_config={
"Code": st.column_config.LinkColumn(width="medium", display_text="Link"),
"Paper": st.column_config.LinkColumn(width="medium", display_text="Link"),
},
)
st.info(
"Missing ranks indicate that the tasks have not been performed yet or the models are not applicable to those tasks. The models are ranked at the bottom for the missing tasks. If you are a model developer, contribution to missing tasks is very appreciated by running the evaluation scripts and submitting a pull request. See https://github.com/atomind-ai/mlip-arena/tree/main/benchmarks for detailed instructions for individual benchmarks.",
icon=":material/info:",
)
st.subheader(":red[Task Ranks]")
for task, meta in TASKS.items():
if meta["rank-page"] is None:
continue
st.subheader(task, divider=True)
task_module = importlib.import_module(f"ranks.{meta['rank-page']}")
if meta["task-page"] is not None:
st.page_link(
f"tasks/{meta['task-page']}.py",
label="Go to the associated task page",
icon=":material/link:",
)
if hasattr(task_module, "render"):
task_module.render()
else:
st.write(
"Rank metrics are not available yet but the task has been implemented."
)
|