Spaces:
Runtime error
Runtime error
+app.py v1, +reqs
Browse files- app.py +74 -0
- requirements.txt +4 -0
app.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
+
import torch
|
4 |
+
|
5 |
+
|
6 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
7 |
+
|
8 |
+
|
9 |
+
base_model_id = "mistralai/Mistral-7B-v0.1"
|
10 |
+
ft_model_id = "asusevski/mistraloo-sft"
|
11 |
+
|
12 |
+
|
13 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
14 |
+
base_model_id,
|
15 |
+
add_bos_token=True,
|
16 |
+
)
|
17 |
+
|
18 |
+
model = AutoModelForCausalLM.from_pretrained(ft_model_id).to(device)
|
19 |
+
model.eval()
|
20 |
+
|
21 |
+
|
22 |
+
def uwaterloo_output(post_title, post_text):
|
23 |
+
prompt = f"""
|
24 |
+
Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
|
25 |
+
|
26 |
+
### Instruction:
|
27 |
+
Respond to the reddit post in the style of a University of Waterloo student.
|
28 |
+
|
29 |
+
### Input:
|
30 |
+
{post_title}
|
31 |
+
{post_text}
|
32 |
+
|
33 |
+
### Response:
|
34 |
+
"""
|
35 |
+
model_input = tokenizer(prompt, return_tensors="pt").to(device)
|
36 |
+
with torch.no_grad():
|
37 |
+
model_output = model.generate(**model_input, max_new_tokens=256, repetition_penalty=1.15)[0]
|
38 |
+
output = tokenizer.decode(model_output, skip_special_tokens=True)
|
39 |
+
return output.split('### Response:\n')[-1]
|
40 |
+
|
41 |
+
|
42 |
+
iface = gr.Interface(
|
43 |
+
fn=uwaterloo_output,
|
44 |
+
inputs=[
|
45 |
+
gr.Textbox("", label="Post Title"),
|
46 |
+
gr.Textbox("", label="Post Text"),
|
47 |
+
],
|
48 |
+
outputs=gr.Textbox("", label="Mistraloo-SFT")
|
49 |
+
)
|
50 |
+
|
51 |
+
iface.launch()
|
52 |
+
|
53 |
+
|
54 |
+
|
55 |
+
|
56 |
+
# base_model_id = "mistralai/Mistral-7B-v0.1"
|
57 |
+
# bnb_config = BitsAndBytesConfig(
|
58 |
+
# load_in_4bit=True,
|
59 |
+
# bnb_4bit_use_double_quant=True,
|
60 |
+
# bnb_4bit_quant_type="nf4",
|
61 |
+
# bnb_4bit_compute_dtype=torch.bfloat16
|
62 |
+
# )
|
63 |
+
|
64 |
+
|
65 |
+
# base_model = AutoModelForCausalLM.from_pretrained(
|
66 |
+
# base_model_id, # Mistral, same as before
|
67 |
+
# quantization_config=bnb_config, # Same quantization config as before
|
68 |
+
# device_map="auto",
|
69 |
+
# trust_remote_code=True,
|
70 |
+
# use_auth_token=True
|
71 |
+
# )
|
72 |
+
|
73 |
+
|
74 |
+
# ft_model = PeftModel.from_pretrained(base_model, "mistral-mistraloo/checkpoint-500")
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
transformers
|
2 |
+
gradio
|
3 |
+
torch
|
4 |
+
s
|