Spaces:
Runtime error
Runtime error
Commit
·
9811800
1
Parent(s):
a57c1e5
optimize app
Browse files- .gitignore +1 -1
- app.py +27 -113
- sentiment_clf_helper.py +3 -3
- zeroshot_clf_helper.py +4 -6
.gitignore
CHANGED
|
@@ -6,4 +6,4 @@ zeroshot_onnx_dir/
|
|
| 6 |
sent_clf_onnx_dir/
|
| 7 |
zs_onnx_dir/
|
| 8 |
sent_onnx_mdl_dir/
|
| 9 |
-
sent_mdl_dir/
|
|
|
|
| 6 |
sent_clf_onnx_dir/
|
| 7 |
zs_onnx_dir/
|
| 8 |
sent_onnx_mdl_dir/
|
| 9 |
+
sent_mdl_dir/
|
app.py
CHANGED
|
@@ -136,9 +136,9 @@ def sentiment_task_selected(task,
|
|
| 136 |
|
| 137 |
#create inference session
|
| 138 |
sentiment_session = ort.InferenceSession(f"{sent_onnx_mdl_dir}/{sent_onnx_mdl_name}")
|
| 139 |
-
sentiment_session_quant = ort.InferenceSession(f"{sent_onnx_mdl_dir}/{sent_onnx_quant_mdl_name}")
|
| 140 |
|
| 141 |
-
return model_sentiment,tokenizer_sentiment,sentiment_session
|
| 142 |
|
| 143 |
############## Pre-Download & instantiate objects for sentiment analysis ********************* END **********************************
|
| 144 |
|
|
@@ -167,35 +167,30 @@ def zs_task_selected(task,
|
|
| 167 |
|
| 168 |
#create inference session from onnx model
|
| 169 |
zs_session = ort.InferenceSession(f"{zs_onnx_mdl_dir}/{zs_onnx_mdl_name}")
|
| 170 |
-
zs_session_quant = ort.InferenceSession(f"{zs_onnx_mdl_dir}/{zs_onnx_quant_mdl_name}")
|
| 171 |
|
| 172 |
-
return tokenizer_zs,zs_session
|
| 173 |
|
| 174 |
############## Pre-Download & instantiate objects for Zero shot analysis ********************* END **********************************
|
| 175 |
|
| 176 |
|
| 177 |
if select_task == 'Detect Sentiment':
|
| 178 |
-
|
| 179 |
t1=time.time()
|
| 180 |
model_sentiment,tokenizer_sentiment,\
|
| 181 |
-
sentiment_session
|
| 182 |
t2 = time.time()
|
| 183 |
st.write(f"Total time to load Model is {(t2-t1)*1000:.1f} ms")
|
| 184 |
|
| 185 |
st.header("You are now performing Sentiment Analysis")
|
| 186 |
input_texts = st.text_input(label="Input texts separated by comma")
|
| 187 |
-
c1,c2,
|
| 188 |
|
| 189 |
with c1:
|
| 190 |
response1=st.button("Normal runtime")
|
| 191 |
with c2:
|
| 192 |
response2=st.button("ONNX runtime")
|
| 193 |
-
with c3:
|
| 194 |
-
response3=st.button("ONNX runtime with Quantization")
|
| 195 |
-
with c4:
|
| 196 |
-
response4 = st.button("Simulate 100 runs each runtime")
|
| 197 |
|
| 198 |
-
if any([response1,response2
|
| 199 |
if response1:
|
| 200 |
start=time.time()
|
| 201 |
sentiments = classify_sentiment(input_texts,
|
|
@@ -211,65 +206,6 @@ if select_task == 'Detect Sentiment':
|
|
| 211 |
_tokenizer=tokenizer_sentiment)
|
| 212 |
end = time.time()
|
| 213 |
st.write(f"Time taken for computation {(end - start) * 1000:.1f} ms")
|
| 214 |
-
elif response3:
|
| 215 |
-
start = time.time()
|
| 216 |
-
sentiments=classify_sentiment_onnx(input_texts,
|
| 217 |
-
_session=sentiment_session_quant,
|
| 218 |
-
_tokenizer=tokenizer_sentiment)
|
| 219 |
-
end = time.time()
|
| 220 |
-
st.write(f"Time taken for computation {(end - start) * 1000:.1f} ms")
|
| 221 |
-
elif response4:
|
| 222 |
-
normal_runtime=[]
|
| 223 |
-
for i in range(100):
|
| 224 |
-
start=time.time()
|
| 225 |
-
sentiments = classify_sentiment(input_texts,
|
| 226 |
-
model=model_sentiment,
|
| 227 |
-
tokenizer=tokenizer_sentiment)
|
| 228 |
-
end=time.time()
|
| 229 |
-
t = (end - start) * 1000
|
| 230 |
-
normal_runtime.append(t)
|
| 231 |
-
normal_runtime=np.clip(normal_runtime,10,60)
|
| 232 |
-
|
| 233 |
-
onnx_runtime=[]
|
| 234 |
-
for i in range(100):
|
| 235 |
-
start=time.time()
|
| 236 |
-
sentiments = classify_sentiment_onnx(input_texts,
|
| 237 |
-
_session=sentiment_session,
|
| 238 |
-
_tokenizer=tokenizer_sentiment)
|
| 239 |
-
end=time.time()
|
| 240 |
-
t=(end-start)*1000
|
| 241 |
-
onnx_runtime.append(t)
|
| 242 |
-
onnx_runtime = np.clip(onnx_runtime, 0, 20)
|
| 243 |
-
|
| 244 |
-
onnx_runtime_quant=[]
|
| 245 |
-
for i in range(100):
|
| 246 |
-
start=time.time()
|
| 247 |
-
sentiments = classify_sentiment_onnx(input_texts,
|
| 248 |
-
_session=sentiment_session_quant,
|
| 249 |
-
_tokenizer=tokenizer_sentiment)
|
| 250 |
-
end=time.time()
|
| 251 |
-
|
| 252 |
-
t=(end-start)*1000
|
| 253 |
-
onnx_runtime_quant.append(t)
|
| 254 |
-
onnx_runtime_quant = np.clip(onnx_runtime_quant, 0, 20)
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
temp_df=pd.DataFrame({'Normal Runtime (ms)':normal_runtime,
|
| 258 |
-
'ONNX Runtime (ms)':onnx_runtime,
|
| 259 |
-
'ONNX Quant Runtime (ms)':onnx_runtime_quant})
|
| 260 |
-
|
| 261 |
-
from plotly.subplots import make_subplots
|
| 262 |
-
fig = make_subplots(rows=1, cols=3, start_cell="bottom-left",
|
| 263 |
-
subplot_titles=['Normal Runtime','ONNX Runtime','ONNX Runtime with Quantization'])
|
| 264 |
-
|
| 265 |
-
fig.add_trace(go.Histogram(x=temp_df['Normal Runtime (ms)']),row=1,col=1)
|
| 266 |
-
fig.add_trace(go.Histogram(x=temp_df['ONNX Runtime (ms)']),row=1,col=2)
|
| 267 |
-
fig.add_trace(go.Histogram(x=temp_df['ONNX Quant Runtime (ms)']),row=1,col=3)
|
| 268 |
-
fig.update_layout(height=400, width=1000,
|
| 269 |
-
title_text="100 Simulations of different Runtimes",
|
| 270 |
-
showlegend=False)
|
| 271 |
-
st.plotly_chart(fig,config=_plotly_config )
|
| 272 |
-
|
| 273 |
else:
|
| 274 |
pass
|
| 275 |
for i,t in enumerate(input_texts.split(',')):
|
|
@@ -281,9 +217,8 @@ if select_task == 'Detect Sentiment':
|
|
| 281 |
color_background='rgb(233, 116, 81)',key=t)
|
| 282 |
|
| 283 |
if select_task=='Zero Shot Classification':
|
| 284 |
-
|
| 285 |
t1=time.time()
|
| 286 |
-
tokenizer_zs,zs_session
|
| 287 |
t2 = time.time()
|
| 288 |
st.write(f"Total time to load Model is {(t2-t1)*1000:.1f} ms")
|
| 289 |
|
|
@@ -291,46 +226,25 @@ if select_task=='Zero Shot Classification':
|
|
| 291 |
input_texts = st.text_input(label="Input text to classify into topics")
|
| 292 |
input_lables = st.text_input(label="Enter labels separated by commas")
|
| 293 |
|
| 294 |
-
c1,
|
| 295 |
|
| 296 |
with c1:
|
| 297 |
-
response1=st.button("ONNX runtime")
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
text='Probability',
|
| 316 |
-
data_frame=df_output,
|
| 317 |
-
title='Zero Shot Normalized Probabilities')
|
| 318 |
-
|
| 319 |
-
st.plotly_chart(fig,config=_plotly_config)
|
| 320 |
-
elif response2:
|
| 321 |
-
start = time.time()
|
| 322 |
-
df_output = zero_shot_classification_onnx(premise=input_texts, labels=input_lables, _session=zs_session_quant,
|
| 323 |
-
_tokenizer=tokenizer_zs)
|
| 324 |
-
end = time.time()
|
| 325 |
-
st.write("")
|
| 326 |
-
st.write(f"Time taken for computation {(end-start)*1000:.1f} ms")
|
| 327 |
-
fig = px.bar(x='Probability',
|
| 328 |
-
y='labels',
|
| 329 |
-
text='Probability',
|
| 330 |
-
data_frame=df_output,
|
| 331 |
-
title='Zero Shot Normalized Probabilities')
|
| 332 |
-
|
| 333 |
-
st.plotly_chart(fig, config=_plotly_config)
|
| 334 |
-
else:
|
| 335 |
-
pass
|
| 336 |
|
|
|
|
| 136 |
|
| 137 |
#create inference session
|
| 138 |
sentiment_session = ort.InferenceSession(f"{sent_onnx_mdl_dir}/{sent_onnx_mdl_name}")
|
| 139 |
+
# sentiment_session_quant = ort.InferenceSession(f"{sent_onnx_mdl_dir}/{sent_onnx_quant_mdl_name}")
|
| 140 |
|
| 141 |
+
return model_sentiment,tokenizer_sentiment,sentiment_session
|
| 142 |
|
| 143 |
############## Pre-Download & instantiate objects for sentiment analysis ********************* END **********************************
|
| 144 |
|
|
|
|
| 167 |
|
| 168 |
#create inference session from onnx model
|
| 169 |
zs_session = ort.InferenceSession(f"{zs_onnx_mdl_dir}/{zs_onnx_mdl_name}")
|
| 170 |
+
# zs_session_quant = ort.InferenceSession(f"{zs_onnx_mdl_dir}/{zs_onnx_quant_mdl_name}")
|
| 171 |
|
| 172 |
+
return tokenizer_zs,zs_session
|
| 173 |
|
| 174 |
############## Pre-Download & instantiate objects for Zero shot analysis ********************* END **********************************
|
| 175 |
|
| 176 |
|
| 177 |
if select_task == 'Detect Sentiment':
|
|
|
|
| 178 |
t1=time.time()
|
| 179 |
model_sentiment,tokenizer_sentiment,\
|
| 180 |
+
sentiment_session = sentiment_task_selected(task=select_task)
|
| 181 |
t2 = time.time()
|
| 182 |
st.write(f"Total time to load Model is {(t2-t1)*1000:.1f} ms")
|
| 183 |
|
| 184 |
st.header("You are now performing Sentiment Analysis")
|
| 185 |
input_texts = st.text_input(label="Input texts separated by comma")
|
| 186 |
+
c1,c2,_,_=st.columns(4)
|
| 187 |
|
| 188 |
with c1:
|
| 189 |
response1=st.button("Normal runtime")
|
| 190 |
with c2:
|
| 191 |
response2=st.button("ONNX runtime")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 192 |
|
| 193 |
+
if any([response1,response2]):
|
| 194 |
if response1:
|
| 195 |
start=time.time()
|
| 196 |
sentiments = classify_sentiment(input_texts,
|
|
|
|
| 206 |
_tokenizer=tokenizer_sentiment)
|
| 207 |
end = time.time()
|
| 208 |
st.write(f"Time taken for computation {(end - start) * 1000:.1f} ms")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 209 |
else:
|
| 210 |
pass
|
| 211 |
for i,t in enumerate(input_texts.split(',')):
|
|
|
|
| 217 |
color_background='rgb(233, 116, 81)',key=t)
|
| 218 |
|
| 219 |
if select_task=='Zero Shot Classification':
|
|
|
|
| 220 |
t1=time.time()
|
| 221 |
+
tokenizer_zs,zs_session = zs_task_selected(task=select_task)
|
| 222 |
t2 = time.time()
|
| 223 |
st.write(f"Total time to load Model is {(t2-t1)*1000:.1f} ms")
|
| 224 |
|
|
|
|
| 226 |
input_texts = st.text_input(label="Input text to classify into topics")
|
| 227 |
input_lables = st.text_input(label="Enter labels separated by commas")
|
| 228 |
|
| 229 |
+
c1,_,_,_=st.columns(4)
|
| 230 |
|
| 231 |
with c1:
|
| 232 |
+
response1=st.button("Compute with ONNX runtime")
|
| 233 |
+
|
| 234 |
+
if response1:
|
| 235 |
+
start = time.time()
|
| 236 |
+
df_output = zero_shot_classification_onnx(premise=input_texts, labels=input_lables, _session=zs_session,
|
| 237 |
+
_tokenizer=tokenizer_zs)
|
| 238 |
+
end = time.time()
|
| 239 |
+
st.write("")
|
| 240 |
+
st.write(f"Time taken for computation {(end-start)*1000:.1f} ms")
|
| 241 |
+
fig = px.bar(x='Probability',
|
| 242 |
+
y='labels',
|
| 243 |
+
text='Probability',
|
| 244 |
+
data_frame=df_output,
|
| 245 |
+
title='Zero Shot Normalized Probabilities')
|
| 246 |
+
|
| 247 |
+
st.plotly_chart(fig, config=_plotly_config)
|
| 248 |
+
else:
|
| 249 |
+
pass
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 250 |
|
sentiment_clf_helper.py
CHANGED
|
@@ -61,9 +61,9 @@ def create_onnx_model_sentiment(_model, _tokenizer,sent_onnx_mdl_dir=sent_onnx_m
|
|
| 61 |
use_external_format=False
|
| 62 |
)
|
| 63 |
|
| 64 |
-
quantize_dynamic(f"{sent_onnx_mdl_dir}/{sent_onnx_mdl_name}",
|
| 65 |
-
|
| 66 |
-
|
| 67 |
else:
|
| 68 |
pass
|
| 69 |
|
|
|
|
| 61 |
use_external_format=False
|
| 62 |
)
|
| 63 |
|
| 64 |
+
# quantize_dynamic(f"{sent_onnx_mdl_dir}/{sent_onnx_mdl_name}",
|
| 65 |
+
# f"{sent_onnx_mdl_dir}/{sent_onnx_quant_mdl_name}",
|
| 66 |
+
# weight_type=QuantType.QUInt8)
|
| 67 |
else:
|
| 68 |
pass
|
| 69 |
|
zeroshot_clf_helper.py
CHANGED
|
@@ -65,15 +65,13 @@ def create_onnx_model_zs(zs_onnx_mdl_dir=zs_onnx_mdl_dir):
|
|
| 65 |
except Exception as e:
|
| 66 |
print(e)
|
| 67 |
|
| 68 |
-
#create quanitzed model from vanila onnx
|
| 69 |
-
quantize_dynamic(f"{zs_onnx_mdl_dir}/{zs_onnx_mdl_name}",
|
| 70 |
-
|
| 71 |
-
|
| 72 |
else:
|
| 73 |
pass
|
| 74 |
|
| 75 |
-
create_onnx_model_zs(zs_onnx_mdl_dir=zs_onnx_mdl_dir)
|
| 76 |
-
|
| 77 |
def zero_shot_classification_onnx(premise,labels,_session,_tokenizer):
|
| 78 |
try:
|
| 79 |
labels=labels.split(',')
|
|
|
|
| 65 |
except Exception as e:
|
| 66 |
print(e)
|
| 67 |
|
| 68 |
+
# #create quanitzed model from vanila onnx
|
| 69 |
+
# quantize_dynamic(f"{zs_onnx_mdl_dir}/{zs_onnx_mdl_name}",
|
| 70 |
+
# f"{zs_onnx_mdl_dir}/{zs_onnx_quant_mdl_name}",
|
| 71 |
+
# weight_type=QuantType.QUInt8)
|
| 72 |
else:
|
| 73 |
pass
|
| 74 |
|
|
|
|
|
|
|
| 75 |
def zero_shot_classification_onnx(premise,labels,_session,_tokenizer):
|
| 76 |
try:
|
| 77 |
labels=labels.split(',')
|