import streamlit as st from PIL import Image, ImageEnhance import numpy as np import cv2 import os from tensorflow.keras.applications.mobilenet_v2 import preprocess_input from tensorflow.keras.preprocessing.image import img_to_array from tensorflow.keras.models import load_model import detect_mask_image # Setting custom Page Title and Icon with changed layout and sidebar state st.set_page_config(page_title='Face Mask Detector', page_icon='😷', layout='centered', initial_sidebar_state='expanded') def local_css(file_name): """ Method for reading styles.css and applying necessary changes to HTML""" with open(file_name) as f: st.markdown(f'', unsafe_allow_html=True) def mask_image(): global RGB_img # load our serialized face detector model from disk print("[INFO] loading face detector model...") prototxtPath = os.path.sep.join(["face_detector", "deploy.prototxt"]) weightsPath = os.path.sep.join(["face_detector", "res10_300x300_ssd_iter_140000.caffemodel"]) net = cv2.dnn.readNet(prototxtPath, weightsPath) # load the face mask detector model from disk print("[INFO] loading face mask detector model...") model = load_model("mask_detector.h5") # load the input image from disk and grab the image spatial # dimensions image = cv2.imread("./images/out.jpg") (h, w) = image.shape[:2] # construct a blob from the image blob = cv2.dnn.blobFromImage(image, 1.0, (300, 300), (104.0, 177.0, 123.0)) # pass the blob through the network and obtain the face detections print("[INFO] computing face detections...") net.setInput(blob) detections = net.forward() # loop over the detections for i in range(0, detections.shape[2]): # extract the confidence (i.e., probability) associated with # the detection confidence = detections[0, 0, i, 2] # filter out weak detections by ensuring the confidence is # greater than the minimum confidence if confidence > 0.5: # compute the (x, y)-coordinates of the bounding box for # the object box = detections[0, 0, i, 3:7] * np.array([w, h, w, h]) (startX, startY, endX, endY) = box.astype("int") # ensure the bounding boxes fall within the dimensions of # the frame (startX, startY) = (max(0, startX), max(0, startY)) (endX, endY) = (min(w - 1, endX), min(h - 1, endY)) # extract the face ROI, convert it from BGR to RGB channel # ordering, resize it to 224x224, and preprocess it face = image[startY:endY, startX:endX] face = cv2.cvtColor(face, cv2.COLOR_BGR2RGB) face = cv2.resize(face, (224, 224)) face = img_to_array(face) face = preprocess_input(face) face = np.expand_dims(face, axis=0) # pass the face through the model to determine if the face # has a mask or not (mask, withoutMask) = model.predict(face)[0] # determine the class label and color we'll use to draw # the bounding box and text label = "Mask" if mask > withoutMask else "No Mask" color = (0, 255, 0) if label == "Mask" else (0, 0, 255) # include the probability in the label label = "{}: {:.2f}%".format(label, max(mask, withoutMask) * 100) # display the label and bounding box rectangle on the output # frame cv2.putText(image, label, (startX, startY - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.45, color, 2) cv2.rectangle(image, (startX, startY), (endX, endY), color, 2) RGB_img = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) mask_image() def mask_detection(): local_css("css/styles.css") st.markdown('