Spaces:
Configuration error
Configuration error
Update src/streamlit_app.py
Browse files- src/streamlit_app.py +118 -38
src/streamlit_app.py
CHANGED
@@ -1,40 +1,120 @@
|
|
1 |
-
import altair as alt
|
2 |
-
import numpy as np
|
3 |
-
import pandas as pd
|
4 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
If you have any questions, checkout our [documentation](https://docs.streamlit.io) and [community
|
11 |
-
forums](https://discuss.streamlit.io).
|
12 |
-
|
13 |
-
In the meantime, below is an example of what you can do with just a few lines of code:
|
14 |
-
"""
|
15 |
-
|
16 |
-
num_points = st.slider("Number of points in spiral", 1, 10000, 1100)
|
17 |
-
num_turns = st.slider("Number of turns in spiral", 1, 300, 31)
|
18 |
-
|
19 |
-
indices = np.linspace(0, 1, num_points)
|
20 |
-
theta = 2 * np.pi * num_turns * indices
|
21 |
-
radius = indices
|
22 |
-
|
23 |
-
x = radius * np.cos(theta)
|
24 |
-
y = radius * np.sin(theta)
|
25 |
-
|
26 |
-
df = pd.DataFrame({
|
27 |
-
"x": x,
|
28 |
-
"y": y,
|
29 |
-
"idx": indices,
|
30 |
-
"rand": np.random.randn(num_points),
|
31 |
-
})
|
32 |
-
|
33 |
-
st.altair_chart(alt.Chart(df, height=700, width=700)
|
34 |
-
.mark_point(filled=True)
|
35 |
-
.encode(
|
36 |
-
x=alt.X("x", axis=None),
|
37 |
-
y=alt.Y("y", axis=None),
|
38 |
-
color=alt.Color("idx", legend=None, scale=alt.Scale()),
|
39 |
-
size=alt.Size("rand", legend=None, scale=alt.Scale(range=[1, 150])),
|
40 |
-
))
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
from PIL import Image, ImageEnhance
|
3 |
+
import numpy as np
|
4 |
+
import cv2
|
5 |
+
import os
|
6 |
+
from tensorflow.keras.applications.mobilenet_v2 import preprocess_input
|
7 |
+
from tensorflow.keras.preprocessing.image import img_to_array
|
8 |
+
from tensorflow.keras.models import load_model
|
9 |
+
import detect_mask_image
|
10 |
+
|
11 |
+
# Setting custom Page Title and Icon with changed layout and sidebar state
|
12 |
+
st.set_page_config(page_title='Face Mask Detector', page_icon='😷', layout='centered', initial_sidebar_state='expanded')
|
13 |
+
|
14 |
+
|
15 |
+
def local_css(file_name):
|
16 |
+
""" Method for reading styles.css and applying necessary changes to HTML"""
|
17 |
+
with open(file_name) as f:
|
18 |
+
st.markdown(f'<style>{f.read()}</style>', unsafe_allow_html=True)
|
19 |
+
|
20 |
+
|
21 |
+
def mask_image():
|
22 |
+
global RGB_img
|
23 |
+
# load our serialized face detector model from disk
|
24 |
+
print("[INFO] loading face detector model...")
|
25 |
+
prototxtPath = os.path.sep.join(["face_detector", "deploy.prototxt"])
|
26 |
+
weightsPath = os.path.sep.join(["face_detector",
|
27 |
+
"res10_300x300_ssd_iter_140000.caffemodel"])
|
28 |
+
net = cv2.dnn.readNet(prototxtPath, weightsPath)
|
29 |
+
|
30 |
+
# load the face mask detector model from disk
|
31 |
+
print("[INFO] loading face mask detector model...")
|
32 |
+
model = load_model("mask_detector.h5")
|
33 |
+
|
34 |
+
|
35 |
+
# load the input image from disk and grab the image spatial
|
36 |
+
# dimensions
|
37 |
+
image = cv2.imread("./images/out.jpg")
|
38 |
+
(h, w) = image.shape[:2]
|
39 |
+
|
40 |
+
# construct a blob from the image
|
41 |
+
blob = cv2.dnn.blobFromImage(image, 1.0, (300, 300),
|
42 |
+
(104.0, 177.0, 123.0))
|
43 |
+
|
44 |
+
# pass the blob through the network and obtain the face detections
|
45 |
+
print("[INFO] computing face detections...")
|
46 |
+
net.setInput(blob)
|
47 |
+
detections = net.forward()
|
48 |
+
|
49 |
+
# loop over the detections
|
50 |
+
for i in range(0, detections.shape[2]):
|
51 |
+
# extract the confidence (i.e., probability) associated with
|
52 |
+
# the detection
|
53 |
+
confidence = detections[0, 0, i, 2]
|
54 |
+
|
55 |
+
# filter out weak detections by ensuring the confidence is
|
56 |
+
# greater than the minimum confidence
|
57 |
+
if confidence > 0.5:
|
58 |
+
# compute the (x, y)-coordinates of the bounding box for
|
59 |
+
# the object
|
60 |
+
box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
|
61 |
+
(startX, startY, endX, endY) = box.astype("int")
|
62 |
+
|
63 |
+
# ensure the bounding boxes fall within the dimensions of
|
64 |
+
# the frame
|
65 |
+
(startX, startY) = (max(0, startX), max(0, startY))
|
66 |
+
(endX, endY) = (min(w - 1, endX), min(h - 1, endY))
|
67 |
+
|
68 |
+
# extract the face ROI, convert it from BGR to RGB channel
|
69 |
+
# ordering, resize it to 224x224, and preprocess it
|
70 |
+
face = image[startY:endY, startX:endX]
|
71 |
+
face = cv2.cvtColor(face, cv2.COLOR_BGR2RGB)
|
72 |
+
face = cv2.resize(face, (224, 224))
|
73 |
+
face = img_to_array(face)
|
74 |
+
face = preprocess_input(face)
|
75 |
+
face = np.expand_dims(face, axis=0)
|
76 |
+
|
77 |
+
# pass the face through the model to determine if the face
|
78 |
+
# has a mask or not
|
79 |
+
(mask, withoutMask) = model.predict(face)[0]
|
80 |
+
|
81 |
+
# determine the class label and color we'll use to draw
|
82 |
+
# the bounding box and text
|
83 |
+
label = "Mask" if mask > withoutMask else "No Mask"
|
84 |
+
color = (0, 255, 0) if label == "Mask" else (0, 0, 255)
|
85 |
+
|
86 |
+
# include the probability in the label
|
87 |
+
label = "{}: {:.2f}%".format(label, max(mask, withoutMask) * 100)
|
88 |
+
|
89 |
+
# display the label and bounding box rectangle on the output
|
90 |
+
# frame
|
91 |
+
cv2.putText(image, label, (startX, startY - 10),
|
92 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.45, color, 2)
|
93 |
+
cv2.rectangle(image, (startX, startY), (endX, endY), color, 2)
|
94 |
+
RGB_img = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
95 |
+
mask_image()
|
96 |
+
|
97 |
+
def mask_detection():
|
98 |
+
local_css("css/styles.css")
|
99 |
+
st.markdown('<h1 align="center">😷 Face Mask Detection</h1>', unsafe_allow_html=True)
|
100 |
+
activities = ["Image", "Webcam"]
|
101 |
+
#st.set_option('deprecation.showfileUploaderEncoding', False)
|
102 |
+
st.sidebar.markdown("# Mask Detection on?")
|
103 |
+
choice = st.sidebar.selectbox("Choose among the given options:", activities)
|
104 |
+
|
105 |
+
if choice == 'Image':
|
106 |
+
st.markdown('<h2 align="center">Detection on Image</h2>', unsafe_allow_html=True)
|
107 |
+
st.markdown("### Upload your image here ⬇")
|
108 |
+
image_file = st.file_uploader("", type=['jpg']) # upload image
|
109 |
+
if image_file is not None:
|
110 |
+
our_image = Image.open(image_file) # making compatible to PIL
|
111 |
+
im = our_image.save('./images/out.jpg')
|
112 |
+
saved_image = st.image(image_file, caption='', use_column_width=True)
|
113 |
+
st.markdown('<h3 align="center">Image uploaded successfully!</h3>', unsafe_allow_html=True)
|
114 |
+
if st.button('Process'):
|
115 |
+
st.image(RGB_img, use_column_width=True)
|
116 |
|
117 |
+
if choice == 'Webcam':
|
118 |
+
st.markdown('<h2 align="center">Detection on Webcam</h2>', unsafe_allow_html=True)
|
119 |
+
st.markdown('<h3 align="center">This feature will be available soon!</h3>', unsafe_allow_html=True)
|
120 |
+
mask_detection()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|