Spaces:
Configuration error
Configuration error
# USAGE | |
# python detect_mask_video.py | |
# import the necessary packages | |
from tensorflow.keras.applications.mobilenet_v2 import preprocess_input | |
from tensorflow.keras.preprocessing.image import img_to_array | |
from tensorflow.keras.models import load_model | |
from imutils.video import VideoStream | |
import numpy as np | |
import argparse | |
import imutils | |
import time | |
import cv2 | |
import os | |
def detect_and_predict_mask(frame, faceNet, maskNet): | |
# grab the dimensions of the frame and then construct a blob | |
# from it | |
(h, w) = frame.shape[:2] | |
blob = cv2.dnn.blobFromImage(frame, 1.0, (300, 300), | |
(104.0, 177.0, 123.0)) | |
# pass the blob through the network and obtain the face detections | |
faceNet.setInput(blob) | |
detections = faceNet.forward() | |
# initialize our list of faces, their corresponding locations, | |
# and the list of predictions from our face mask network | |
faces = [] | |
locs = [] | |
preds = [] | |
# loop over the detections | |
for i in range(0, detections.shape[2]): | |
# extract the confidence (i.e., probability) associated with | |
# the detection | |
confidence = detections[0, 0, i, 2] | |
# filter out weak detections by ensuring the confidence is | |
# greater than the minimum confidence | |
if confidence > args["confidence"]: | |
# compute the (x, y)-coordinates of the bounding box for | |
# the object | |
box = detections[0, 0, i, 3:7] * np.array([w, h, w, h]) | |
(startX, startY, endX, endY) = box.astype("int") | |
# ensure the bounding boxes fall within the dimensions of | |
# the frame | |
(startX, startY) = (max(0, startX), max(0, startY)) | |
(endX, endY) = (min(w - 1, endX), min(h - 1, endY)) | |
# extract the face ROI, convert it from BGR to RGB channel | |
# ordering, resize it to 224x224, and preprocess it | |
face = frame[startY:endY, startX:endX] | |
if face.any(): | |
face = cv2.cvtColor(face, cv2.COLOR_BGR2RGB) | |
face = cv2.resize(face, (224, 224)) | |
face = img_to_array(face) | |
face = preprocess_input(face) | |
# add the face and bounding boxes to their respective | |
# lists | |
faces.append(face) | |
locs.append((startX, startY, endX, endY)) | |
# only make a predictions if at least one face was detected | |
if len(faces) > 0: | |
# for faster inference we'll make batch predictions on *all* | |
# faces at the same time rather than one-by-one predictions | |
# in the above `for` loop | |
faces = np.array(faces, dtype="float32") | |
preds = maskNet.predict(faces, batch_size=32) | |
# return a 2-tuple of the face locations and their corresponding | |
# locations | |
return (locs, preds) | |
# construct the argument parser and parse the arguments | |
ap = argparse.ArgumentParser() | |
ap.add_argument("-f", "--face", type=str, | |
default="face_detector", | |
help="path to face detector model directory") | |
ap.add_argument("-m", "--model", type=str, | |
default="mask_detector.model", | |
help="path to trained face mask detector model") | |
ap.add_argument("-c", "--confidence", type=float, default=0.5, | |
help="minimum probability to filter weak detections") | |
args = vars(ap.parse_args()) | |
# load our serialized face detector model from disk | |
print("[INFO] loading face detector model...") | |
prototxtPath = os.path.sep.join([args["face"], "deploy.prototxt"]) | |
weightsPath = os.path.sep.join([args["face"], | |
"res10_300x300_ssd_iter_140000.caffemodel"]) | |
faceNet = cv2.dnn.readNet(prototxtPath, weightsPath) | |
# load the face mask detector model from disk | |
print("[INFO] loading face mask detector model...") | |
maskNet = load_model(args["model"]) | |
# initialize the video stream and allow the camera sensor to warm up | |
print("[INFO] starting video stream...") | |
vs = VideoStream(src=0).start() | |
time.sleep(2.0) | |
# loop over the frames from the video stream | |
while True: | |
# grab the frame from the threaded video stream and resize it | |
# to have a maximum width of 400 pixels | |
frame = vs.read() | |
frame = imutils.resize(frame, width=400) | |
# detect faces in the frame and determine if they are wearing a | |
# face mask or not | |
(locs, preds) = detect_and_predict_mask(frame, faceNet, maskNet) | |
# loop over the detected face locations and their corresponding | |
# locations | |
for (box, pred) in zip(locs, preds): | |
# unpack the bounding box and predictions | |
(startX, startY, endX, endY) = box | |
(mask, withoutMask) = pred | |
# determine the class label and color we'll use to draw | |
# the bounding box and text | |
label = "Mask" if mask > withoutMask else "No Mask" | |
color = (0, 255, 0) if label == "Mask" else (0, 0, 255) | |
# include the probability in the label | |
label = "{}: {:.2f}%".format(label, max(mask, withoutMask) * 100) | |
# display the label and bounding box rectangle on the output | |
# frame | |
cv2.putText(frame, label, (startX, startY - 10), | |
cv2.FONT_HERSHEY_SIMPLEX, 0.45, color, 2) | |
cv2.rectangle(frame, (startX, startY), (endX, endY), color, 2) | |
# show the output frame | |
cv2.imshow("Frame", frame) | |
key = cv2.waitKey(1) & 0xFF | |
# if the `q` key was pressed, break from the loop | |
if key == ord("q"): | |
break | |
# do a bit of cleanup | |
cv2.destroyAllWindows() | |
vs.stop() | |