ashish6318 commited on
Commit
f1e7926
·
verified ·
1 Parent(s): 698a251

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +119 -0
app.py ADDED
@@ -0,0 +1,119 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from PIL import Image, ImageEnhance
3
+ import numpy as np
4
+ import cv2
5
+ import os
6
+ from tensorflow.keras.applications.mobilenet_v2 import preprocess_input
7
+ from tensorflow.keras.preprocessing.image import img_to_array
8
+ from tensorflow.keras.models import load_model
9
+ import detect_mask_image
10
+
11
+ # Setting custom Page Title and Icon with changed layout and sidebar state
12
+ st.set_page_config(page_title='Face Mask Detector', page_icon='😷', layout='centered', initial_sidebar_state='expanded')
13
+
14
+
15
+ def local_css(file_name):
16
+ """ Method for reading styles.css and applying necessary changes to HTML"""
17
+ with open(file_name) as f:
18
+ st.markdown(f'<style>{f.read()}</style>', unsafe_allow_html=True)
19
+
20
+
21
+ def mask_image():
22
+ global RGB_img
23
+ # load our serialized face detector model from disk
24
+ print("[INFO] loading face detector model...")
25
+ prototxtPath = os.path.sep.join(["face_detector", "deploy.prototxt"])
26
+ weightsPath = os.path.sep.join(["face_detector",
27
+ "res10_300x300_ssd_iter_140000.caffemodel"])
28
+ net = cv2.dnn.readNet(prototxtPath, weightsPath)
29
+
30
+ # load the face mask detector model from disk
31
+ print("[INFO] loading face mask detector model...")
32
+ model = load_model("mask_detector.h5")
33
+
34
+ # load the input image from disk and grab the image spatial
35
+ # dimensions
36
+ image = cv2.imread("./images/out.jpg")
37
+ (h, w) = image.shape[:2]
38
+
39
+ # construct a blob from the image
40
+ blob = cv2.dnn.blobFromImage(image, 1.0, (300, 300),
41
+ (104.0, 177.0, 123.0))
42
+
43
+ # pass the blob through the network and obtain the face detections
44
+ print("[INFO] computing face detections...")
45
+ net.setInput(blob)
46
+ detections = net.forward()
47
+
48
+ # loop over the detections
49
+ for i in range(0, detections.shape[2]):
50
+ # extract the confidence (i.e., probability) associated with
51
+ # the detection
52
+ confidence = detections[0, 0, i, 2]
53
+
54
+ # filter out weak detections by ensuring the confidence is
55
+ # greater than the minimum confidence
56
+ if confidence > 0.5:
57
+ # compute the (x, y)-coordinates of the bounding box for
58
+ # the object
59
+ box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
60
+ (startX, startY, endX, endY) = box.astype("int")
61
+
62
+ # ensure the bounding boxes fall within the dimensions of
63
+ # the frame
64
+ (startX, startY) = (max(0, startX), max(0, startY))
65
+ (endX, endY) = (min(w - 1, endX), min(h - 1, endY))
66
+
67
+ # extract the face ROI, convert it from BGR to RGB channel
68
+ # ordering, resize it to 224x224, and preprocess it
69
+ face = image[startY:endY, startX:endX]
70
+ face = cv2.cvtColor(face, cv2.COLOR_BGR2RGB)
71
+ face = cv2.resize(face, (224, 224))
72
+ face = img_to_array(face)
73
+ face = preprocess_input(face)
74
+ face = np.expand_dims(face, axis=0)
75
+
76
+ # pass the face through the model to determine if the face
77
+ # has a mask or not
78
+ (mask, withoutMask) = model.predict(face)[0]
79
+
80
+ # determine the class label and color we'll use to draw
81
+ # the bounding box and text
82
+ label = "Mask" if mask > withoutMask else "No Mask"
83
+ color = (0, 255, 0) if label == "Mask" else (0, 0, 255)
84
+
85
+ # include the probability in the label
86
+ label = "{}: {:.2f}%".format(label, max(mask, withoutMask) * 100)
87
+
88
+ # display the label and bounding box rectangle on the output
89
+ # frame
90
+ cv2.putText(image, label, (startX, startY - 10),
91
+ cv2.FONT_HERSHEY_SIMPLEX, 0.45, color, 2)
92
+ cv2.rectangle(image, (startX, startY), (endX, endY), color, 2)
93
+ RGB_img = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
94
+ mask_image()
95
+
96
+ def mask_detection():
97
+ local_css("css/styles.css")
98
+ st.markdown('<h1 align="center">😷 Face Mask Detection</h1>', unsafe_allow_html=True)
99
+ activities = ["Image", "Webcam"]
100
+ #st.set_option('deprecation.showfileUploaderEncoding', False)
101
+ st.sidebar.markdown("# Mask Detection on?")
102
+ choice = st.sidebar.selectbox("Choose among the given options:", activities)
103
+
104
+ if choice == 'Image':
105
+ st.markdown('<h2 align="center">Detection on Image</h2>', unsafe_allow_html=True)
106
+ st.markdown("### Upload your image here ⬇")
107
+ image_file = st.file_uploader("", type=['jpg']) # upload image
108
+ if image_file is not None:
109
+ our_image = Image.open(image_file) # making compatible to PIL
110
+ im = our_image.save('./images/out.jpg')
111
+ saved_image = st.image(image_file, caption='', use_column_width=True)
112
+ st.markdown('<h3 align="center">Image uploaded successfully!</h3>', unsafe_allow_html=True)
113
+ if st.button('Process'):
114
+ st.image(RGB_img, use_column_width=True)
115
+
116
+ if choice == 'Webcam':
117
+ st.markdown('<h2 align="center">Detection on Webcam</h2>', unsafe_allow_html=True)
118
+ st.markdown('<h3 align="center">This feature will be available soon!</h3>', unsafe_allow_html=True)
119
+ mask_detection()