Spaces:
Sleeping
Sleeping
File size: 11,210 Bytes
0b6b733 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 |
{
"cells": [
{
"cell_type": "markdown",
"id": "80f816c1-0839-41cb-847b-c79a62ca1465",
"metadata": {},
"source": [
"### Load all required modules for loading data, model setup, training, and metric evaluation"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "2554d05b-f08a-4c21-953f-4f507407e426",
"metadata": {},
"outputs": [],
"source": [
"import sys\n",
"import os\n",
"sys.path.append(os.path.abspath(os.path.join(os.getcwd(), \"..\", \"src\")))\n",
"from data_loader import load_and_prepare_data \n",
"from model import get_model, get_tokenizer \n",
"from train import get_training_args, train_model \n",
"from evaluate import compute_metrics \n",
"from torch.utils.data import Dataset \n",
"import torch"
]
},
{
"cell_type": "markdown",
"id": "3bfbb706-4b0b-43de-a95a-884d46343668",
"metadata": {},
"source": [
"### Define a class that wraps tokenized data and labels for Hugging Face’s Trainer to use"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "c814c354-7962-4a2d-b7bd-5c498f1d004e",
"metadata": {},
"outputs": [],
"source": [
"class EmotionDataset(Dataset):\n",
" def __init__(self, encodings, labels):\n",
" self.encodings = encodings # BERT tokenized inputs (input_ids, attention_mask)\n",
" self.labels = labels # Encoded labels (integers)\n",
"\n",
" def __len__(self):\n",
" return len(self.labels) # Total number of samples\n",
"\n",
" def __getitem__(self, idx):\n",
" # Return dictionary of input tensors + label tensor for a single sample\n",
" return {\n",
" key: torch.tensor(val[idx]) for key, val in self.encodings.items()\n",
" } | {\"labels\": torch.tensor(self.labels[idx])}"
]
},
{
"cell_type": "markdown",
"id": "f9b87257-f0c0-4532-9eee-939d8747ef79",
"metadata": {},
"source": [
"### Load the dataset from Hugging Face, clean and encode it, then tokenize it using the BERT tokenizer."
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "18e312be-5863-4e24-900a-843e42e145cc",
"metadata": {},
"outputs": [],
"source": [
"# Load train/test splits and label encoder\n",
"train_texts, test_texts, train_labels, test_labels, label_encoder = load_and_prepare_data()\n",
"\n",
"# Load BERT tokenizer\n",
"tokenizer = get_tokenizer()\n",
"\n",
"# Tokenize training and testing texts with truncation and padding\n",
"train_encodings = tokenizer(train_texts, truncation=True, padding=True, max_length=128)\n",
"test_encodings = tokenizer(test_texts, truncation=True, padding=True, max_length=128)\n",
"\n",
"# Wrap the tokenized data into EmotionDataset objects\n",
"train_dataset = EmotionDataset(train_encodings, train_labels)\n",
"test_dataset = EmotionDataset(test_encodings, test_labels)"
]
},
{
"cell_type": "markdown",
"id": "66b99b4e-5297-4bc0-8cfb-20dbe22526c0",
"metadata": {},
"source": [
"### Samples from the dataset"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "35db4426-db21-4438-ba0e-ebb51d52edfb",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Sample 1\n",
"Text: i'd just feel less out of place, i guess. my sa makes me feel like i'm so behind my peers in terms of a social life\n",
"Label (encoded): 9\n",
"\n",
"Sample 2\n",
"Text: i love the lady in the green jacket chasing after the second car looking back at the first car like \"look what you did\"\n",
"Label (encoded): 18\n",
"\n",
"Sample 3\n",
"Text: man. really bad last possession there. bummer.\n",
"Label (encoded): 10\n",
"\n",
"Sample 4\n",
"Text: never would’ve guessed that one.\n",
"Label (encoded): 20\n",
"\n",
"Sample 5\n",
"Text: i wasn’t even expecting the reply that’s why i’m literally bamboozled.\n",
"Label (encoded): 27\n",
"\n"
]
}
],
"source": [
"for i in range(5):\n",
" print(f\"Sample {i+1}\")\n",
" print(f\"Text: {train_texts[i]}\")\n",
" print(f\"Label (encoded): {train_labels[i]}\")\n",
" print()"
]
},
{
"cell_type": "markdown",
"id": "0883760a-a449-42ca-ba69-fa01d874e50b",
"metadata": {},
"source": [
"### Set up the BERT model for sequence classification and define training parameters."
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "3176ccf4-d20d-460c-b620-c73a1ab9cb6d",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Some weights of BertForSequenceClassification were not initialized from the model checkpoint at bert-base-uncased and are newly initialized: ['classifier.bias', 'classifier.weight']\n",
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n",
"/opt/anaconda3/lib/python3.12/site-packages/transformers/training_args.py:1545: FutureWarning: `evaluation_strategy` is deprecated and will be removed in version 4.46 of 🤗 Transformers. Use `eval_strategy` instead\n",
" warnings.warn(\n"
]
}
],
"source": [
"# Load pre-trained BERT model with classification head for number of emotion classes\n",
"model = get_model(num_labels=len(label_encoder.classes_))\n",
"\n",
"# Set training configuration: batch size, epochs, logging, saving, evaluation\n",
"training_args = get_training_args()"
]
},
{
"cell_type": "markdown",
"id": "874a4e6a-80dd-470d-9283-e1c88e731b8e",
"metadata": {},
"source": [
"### Train the Model "
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "4c312e56-52bf-417d-82c0-8a1f47b82670",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
" <div>\n",
" \n",
" <progress value='5448' max='5448' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
" [5448/5448 1:46:28, Epoch 3/3]\n",
" </div>\n",
" <table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: left;\">\n",
" <th>Epoch</th>\n",
" <th>Training Loss</th>\n",
" <th>Validation Loss</th>\n",
" <th>Accuracy</th>\n",
" <th>F1</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <td>1</td>\n",
" <td>1.358900</td>\n",
" <td>1.335635</td>\n",
" <td>0.613467</td>\n",
" <td>0.579882</td>\n",
" </tr>\n",
" <tr>\n",
" <td>2</td>\n",
" <td>0.947100</td>\n",
" <td>1.284574</td>\n",
" <td>0.615671</td>\n",
" <td>0.601428</td>\n",
" </tr>\n",
" <tr>\n",
" <td>3</td>\n",
" <td>0.970400</td>\n",
" <td>1.297894</td>\n",
" <td>0.617048</td>\n",
" <td>0.606042</td>\n",
" </tr>\n",
" </tbody>\n",
"</table><p>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"\n",
" <div>\n",
" \n",
" <progress value='5448' max='5448' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
" [5448/5448 1:35:20, Epoch 3/3]\n",
" </div>\n",
" <table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: left;\">\n",
" <th>Epoch</th>\n",
" <th>Training Loss</th>\n",
" <th>Validation Loss</th>\n",
" <th>Accuracy</th>\n",
" <th>F1</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <td>1</td>\n",
" <td>0.907200</td>\n",
" <td>1.365916</td>\n",
" <td>0.602313</td>\n",
" <td>0.595804</td>\n",
" </tr>\n",
" <tr>\n",
" <td>2</td>\n",
" <td>0.549100</td>\n",
" <td>1.488130</td>\n",
" <td>0.595566</td>\n",
" <td>0.591464</td>\n",
" </tr>\n",
" <tr>\n",
" <td>3</td>\n",
" <td>0.514400</td>\n",
" <td>1.593286</td>\n",
" <td>0.591297</td>\n",
" <td>0.589066</td>\n",
" </tr>\n",
" </tbody>\n",
"</table><p>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
"TrainOutput(global_step=5448, training_loss=0.7054264770818002, metrics={'train_runtime': 5721.3012, 'train_samples_per_second': 15.23, 'train_steps_per_second': 0.952, 'total_flos': 5733080823638016.0, 'train_loss': 0.7054264770818002, 'epoch': 3.0})"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"trainer = train_model(\n",
" model=model,\n",
" args=training_args,\n",
" train_dataset=train_dataset,\n",
" val_dataset=test_dataset,\n",
" compute_metrics=compute_metrics\n",
")\n",
"\n",
"# Begin training\n",
"trainer.train()"
]
},
{
"cell_type": "markdown",
"id": "020729b6-c545-42ba-bd2c-00ee5f9bbb80",
"metadata": {},
"source": [
"### Save both model weights and tokenizer files for future inference or deployment."
]
},
{
"cell_type": "code",
"execution_count": 23,
"id": "5f12aedb-b3f8-4a1b-8e1f-6a68eb29933f",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"('../outputs/model/tokenizer_config.json',\n",
" '../outputs/model/special_tokens_map.json',\n",
" '../outputs/model/vocab.txt',\n",
" '../outputs/model/added_tokens.json')"
]
},
"execution_count": 23,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from pathlib import Path\n",
"model_path = Path(\"..\") / \"outputs\" / \"model\"\n",
"model.save_pretrained(model_path)\n",
"tokenizer.save_pretrained(model_path)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.2"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|