Spaces:
Sleeping
Sleeping
File size: 2,495 Bytes
6e1d7c3 6fa23b0 c4ae7c9 c0bb1b2 c01ebaa c4ae7c9 6fa23b0 c01ebaa c0bb1b2 d1fe52d c0bb1b2 897f151 c4ae7c9 7439a65 6fa23b0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import streamlit as st
import os
from trainer import train
from tester import test
import transformers
from transformers import TFAutoModelForCausalLM, AutoTokenizer
def main():
st.subheader("Generating Insights of the DRL-Training")
model_name = "tiiuae/falcon-7b-instruct"
model = TFAutoModelForCausalLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
pipeline = transformers.pipeline("text-generation", model=model, tokenizer=tokenizer, max_length=100,
temperature=0.7)
text = pipeline("Discuss this topic: Integrating LLMs to DRL-based anti-jamming.")
st.write(text)
# st.title("Beyond the Anti-Jam: Integration of DRL with LLM")
#
# st.sidebar.header("Make Your Environment Configuration")
# mode = st.sidebar.radio("Choose Mode", ["Auto", "Manual"])
#
# if mode == "Auto":
# jammer_type = "dynamic"
# channel_switching_cost = 0.1
# else:
# jammer_type = st.sidebar.selectbox("Select Jammer Type", ["constant", "sweeping", "random", "dynamic"])
# channel_switching_cost = st.sidebar.selectbox("Select Channel Switching Cost", [0, 0.05, 0.1, 0.15, 0.2])
#
# st.sidebar.subheader("Configuration:")
# st.sidebar.write(f"Jammer Type: {jammer_type}")
# st.sidebar.write(f"Channel Switching Cost: {channel_switching_cost}")
#
# start_button = st.sidebar.button('Start')
#
# if start_button:
# agent = perform_training(jammer_type, channel_switching_cost)
# st.subheader("Generating Insights of the DRL-Training")
# model_name = "tiiuae/falcon-7b-instruct"
# model = TFAutoModelForCausalLM.from_pretrained(model_name)
# tokenizer = AutoTokenizer.from_pretrained(model_name)
# pipeline = transformers.pipeline("text-generation", model=model, tokenizer=tokenizer, max_length=100,
# temperature=0.7)
# text = pipeline("Discuss this topic: Integrating LLMs to DRL-based anti-jamming.")
# st.write(text)
# test(agent, jammer_type, channel_switching_cost)
def perform_training(jammer_type, channel_switching_cost):
agent = train(jammer_type, channel_switching_cost)
return agent
def perform_testing(agent, jammer_type, channel_switching_cost):
test(agent, jammer_type, channel_switching_cost)
if __name__ == "__main__":
main()
|