from openrouter_llm import OpenRouterFreeAdapter, OpenRouterFreeChain from langchain.schema import Document as LangchainDocument from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.embeddings import HuggingFaceEmbeddings from langchain.vectorstores import FAISS import os import uuid import shutil import logging from typing import List, Optional, Dict, Any from pathlib import Path import fitz # PyMuPDF import markdown from fastapi import FastAPI, File, UploadFile, HTTPException, Form, Depends, BackgroundTasks from fastapi.middleware.cors import CORSMiddleware from fastapi.responses import JSONResponse from pydantic import BaseModel from dotenv import load_dotenv # Load environment variables load_dotenv() # Import LangChain components for embedding # Import our free-only OpenRouter adapter # Configure logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) # Initialize FastAPI app app = FastAPI(title="AskMyDocs API - Free LLM Edition") # Add CORS middleware for frontend integration app.add_middleware( CORSMiddleware, allow_origins=["*"], # Set to specific domain in production allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) # Configuration OPENROUTER_API_KEY = os.getenv("OPENROUTER_API_KEY", "") HF_MODEL_NAME = os.getenv( "HF_MODEL_NAME", "sentence-transformers/all-mpnet-base-v2") UPLOAD_DIR = os.getenv("UPLOAD_DIR", "./uploads") DB_DIR = os.getenv("DB_DIR", "./vectordb") print(HF_MODEL_NAME) # Ensure directories exist os.makedirs(UPLOAD_DIR, exist_ok=True) os.makedirs(DB_DIR, exist_ok=True) # Initialize OpenRouter adapter (singleton) openrouter_adapter = None # Pydantic models class QueryRequest(BaseModel): query: str collection_id: str class QueryResponse(BaseModel): answer: str sources: List[str] class Document(BaseModel): id: str filename: str content_type: str class DocumentList(BaseModel): documents: List[Document] class LLMInfo(BaseModel): model: str is_free: bool = True provider: str = "openrouter" class LLMModelsList(BaseModel): current_model: str free_models: List[Dict[str, Any]] # Global variable to store vector databases (in memory for simplicity) # In production, you would use persistent storage vector_dbs = {} # Helper functions def get_embeddings(): """Get HuggingFace embedding model.""" return HuggingFaceEmbeddings(model_name=HF_MODEL_NAME) def get_openrouter_adapter(): """Get or initialize the OpenRouter adapter for free models.""" global openrouter_adapter if openrouter_adapter is None: openrouter_adapter = OpenRouterFreeAdapter(api_key=OPENROUTER_API_KEY) return openrouter_adapter def extract_text_from_pdf(file_path): """Extract text content from PDF files.""" text = "" try: doc = fitz.open(file_path) for page in doc: text += page.get_text() return text except Exception as e: logger.error(f"Error extracting text from PDF: {e}") raise HTTPException( status_code=500, detail=f"Error processing PDF: {str(e)}") def extract_text_from_markdown(file_path): """Convert Markdown to plain text.""" try: with open(file_path, 'r', encoding='utf-8') as f: md_content = f.read() html = markdown.markdown(md_content) # Simple HTML to text conversion - in production use a more robust method text = html.replace('

', '\n\n').replace( '

', '').replace('
', '\n') text = text.replace('

', '\n\n# ').replace('

', '\n') text = text.replace('

', '\n\n## ').replace('

', '\n') text = text.replace('

', '\n\n### ').replace('

', '\n') # Remove other HTML tags import re text = re.sub('<[^<]+?>', '', text) return text except Exception as e: logger.error(f"Error processing Markdown: {e}") raise HTTPException( status_code=500, detail=f"Error processing Markdown: {str(e)}") def extract_text_from_file(file_path, content_type): """Extract text based on file type.""" if content_type == "application/pdf": return extract_text_from_pdf(file_path) elif content_type == "text/markdown": return extract_text_from_markdown(file_path) elif content_type == "text/plain": with open(file_path, 'r', encoding='utf-8') as f: return f.read() else: raise HTTPException( status_code=400, detail=f"Unsupported file type: {content_type}") def process_documents(collection_id: str, file_paths: List[tuple]): """Process documents and create vector store.""" try: # Create text splitter text_splitter = RecursiveCharacterTextSplitter( chunk_size=1000, chunk_overlap=100, length_function=len, ) all_docs = [] for file_path, content_type, filename in file_paths: text_content = extract_text_from_file(file_path, content_type) chunks = text_splitter.split_text(text_content) # Create Document objects with metadata docs = [ LangchainDocument( page_content=chunk, metadata={"source": filename, "chunk": i} ) for i, chunk in enumerate(chunks) ] all_docs.extend(docs) # Create vector store embeddings = get_embeddings() vector_db = FAISS.from_documents(all_docs, embeddings) # Save vector store collection_path = os.path.join(DB_DIR, collection_id) os.makedirs(collection_path, exist_ok=True) vector_db.save_local(collection_path) # Store in memory (would be replaced by database lookup in production) vector_dbs[collection_id] = vector_db logger.info( f"Successfully processed {len(all_docs)} chunks from {len(file_paths)} documents") except Exception as e: logger.error(f"Error processing documents: {e}") raise HTTPException( status_code=500, detail=f"Error processing documents: {str(e)}") @app.get("/") async def index(): return {"message": "Welcome to ask my doc"} @app.get("/health") async def health_check(): return {"status": "healthy"} @app.post("/upload", response_model=Document) async def upload_file( background_tasks: BackgroundTasks, collection_id: str = Form(...), file: UploadFile = File(...), ): """Upload a document and process it for querying.""" try: # Generate a unique ID for the document doc_id = str(uuid.uuid4()) # Create collection directory if it doesn't exist collection_dir = os.path.join(UPLOAD_DIR, collection_id) os.makedirs(collection_dir, exist_ok=True) # Define the file path file_path = os.path.join(collection_dir, file.filename) # Determine content type content_type = file.content_type if not content_type: if file.filename.endswith('.pdf'): content_type = "application/pdf" elif file.filename.endswith('.md'): content_type = "text/markdown" elif file.filename.endswith('.txt'): content_type = "text/plain" else: raise HTTPException( status_code=400, detail="Unsupported file type") # Save the file with open(file_path, "wb") as f: shutil.copyfileobj(file.file, f) # Process the document in the background background_tasks.add_task( process_documents, collection_id, [(file_path, content_type, file.filename)] ) return Document( id=doc_id, filename=file.filename, content_type=content_type ) except Exception as e: logger.error(f"Error uploading file: {e}") raise HTTPException( status_code=500, detail=f"Error uploading file: {str(e)}") @app.get("/collections/{collection_id}/documents", response_model=DocumentList) async def list_documents(collection_id: str): """List all documents in a collection.""" try: collection_dir = os.path.join(UPLOAD_DIR, collection_id) if not os.path.exists(collection_dir): return DocumentList(documents=[]) documents = [] for filename in os.listdir(collection_dir): file_path = os.path.join(collection_dir, filename) if os.path.isfile(file_path): content_type = "application/octet-stream" if filename.endswith('.pdf'): content_type = "application/pdf" elif filename.endswith('.md'): content_type = "text/markdown" elif filename.endswith('.txt'): content_type = "text/plain" documents.append(Document( # In production, store and retrieve actual IDs id=str(uuid.uuid4()), filename=filename, content_type=content_type )) return DocumentList(documents=documents) except Exception as e: logger.error(f"Error listing documents: {e}") raise HTTPException( status_code=500, detail=f"Error listing documents: {str(e)}") @app.post("/query", response_model=QueryResponse) async def query_documents(request: QueryRequest): """Query documents using natural language.""" try: collection_id = request.collection_id # Check if vector DB exists in memory if collection_id in vector_dbs: vector_db = vector_dbs[collection_id] else: # Load from disk collection_path = os.path.join(DB_DIR, collection_id) if not os.path.exists(collection_path): raise HTTPException( status_code=404, detail=f"Collection {collection_id} not found") embeddings = get_embeddings() vector_db = FAISS.load_local(collection_path, embeddings) vector_dbs[collection_id] = vector_db # Get the retriever retriever = vector_db.as_retriever(search_kwargs={"k": 3}) # Get relevant documents docs = retriever.get_relevant_documents(request.query) # Extract sources sources = [] for doc in docs: if doc.metadata.get("source") not in sources: sources.append(doc.metadata.get("source")) # Get context from documents context = [doc.page_content for doc in docs] # Get OpenRouter adapter for free LLMs adapter = get_openrouter_adapter() chain = OpenRouterFreeChain(adapter) # Generate answer answer = chain.run(request.query, context) return QueryResponse( answer=answer, sources=sources ) except Exception as e: logger.error(f"Error querying documents: {e}") raise HTTPException( status_code=500, detail=f"Error querying documents: {str(e)}") @app.delete("/collections/{collection_id}/documents/{filename}") async def delete_document(collection_id: str, filename: str): """Delete a document from a collection.""" try: file_path = os.path.join(UPLOAD_DIR, collection_id, filename) if not os.path.exists(file_path): raise HTTPException( status_code=404, detail=f"Document {filename} not found") os.remove(file_path) # Rebuild vector store if needed collection_path = os.path.join(DB_DIR, collection_id) if os.path.exists(collection_path): # In production, you would selectively remove documents rather than rebuilding shutil.rmtree(collection_path) # If there are still documents, rebuild the vector store collection_dir = os.path.join(UPLOAD_DIR, collection_id) if os.path.exists(collection_dir) and os.listdir(collection_dir): file_paths = [] for fname in os.listdir(collection_dir): fpath = os.path.join(collection_dir, fname) if os.path.isfile(fpath): content_type = "application/octet-stream" if fname.endswith('.pdf'): content_type = "application/pdf" elif fname.endswith('.md'): content_type = "text/markdown" elif fname.endswith('.txt'): content_type = "text/plain" file_paths.append((fpath, content_type, fname)) if file_paths: process_documents(collection_id, file_paths) # Remove from in-memory cache if collection_id in vector_dbs: del vector_dbs[collection_id] return JSONResponse(content={"message": f"Document {filename} deleted"}) except Exception as e: logger.error(f"Error deleting document: {e}") raise HTTPException( status_code=500, detail=f"Error deleting document: {str(e)}") @app.get("/llm/info", response_model=LLMInfo) async def get_llm_info(): """Get the current LLM information.""" adapter = get_openrouter_adapter() return LLMInfo( model=adapter.model, is_free=True, provider="openrouter" ) @app.get("/llm/models", response_model=LLMModelsList) async def list_free_models(): """List all available free models.""" adapter = get_openrouter_adapter() free_models = adapter.list_free_models() # Create a simplified list for the frontend model_list = [] for model in free_models: model_info = { "id": model.get("id"), "name": model.get("name", model.get("id")), "context_length": model.get("context_length", 4096), "provider": model.get("id").split("/")[0] if "/" in model.get("id") else "unknown" } model_list.append(model_info) return LLMModelsList( current_model=adapter.model, free_models=model_list ) @app.post("/llm/change-model") async def change_model(model_info: LLMInfo): """Change the LLM model (only to another free model).""" adapter = get_openrouter_adapter() # Make sure the model has the :free suffix if it doesn't already model_id = model_info.model if not model_id.endswith(":free") and ":free" not in model_id: model_id = f"{model_id}:free" # Set the new model adapter.model = model_id return JSONResponse(content={"message": f"Model changed to {model_id}"})