Spaces:
Running
Running
Upload 3 files
Browse filesZmiany - Bielik
- Dockerfile.txt +20 -0
- app/main.py +80 -0
- requirements.txt +5 -6
Dockerfile.txt
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# U偶yj oficjalnego obrazu Pythona jako bazy
|
2 |
+
FROM python:3.9-slim-buster
|
3 |
+
|
4 |
+
# Ustaw katalog roboczy wewn膮trz kontenera
|
5 |
+
WORKDIR /app
|
6 |
+
|
7 |
+
# Skopiuj pliki requirements.txt i zainstaluj zale偶no艣ci
|
8 |
+
COPY requirements.txt .
|
9 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
10 |
+
|
11 |
+
# Skopiuj pozosta艂e pliki aplikacji
|
12 |
+
COPY app/ ./app/
|
13 |
+
|
14 |
+
# Ustaw zmienn膮 艣rodowiskow膮 PORT, kt贸ra b臋dzie u偶ywana przez FastAPI/Uvicorn
|
15 |
+
# Hugging Face Spaces cz臋sto udost臋pnia port 7860 lub 80
|
16 |
+
ENV PORT 7860
|
17 |
+
|
18 |
+
# Uruchom aplikacj臋 Uvicorn, gdy kontener zostanie uruchomiony
|
19 |
+
# --host 0.0.0.0 jest kluczowe, aby serwer nas艂uchiwa艂 na wszystkich interfejsach
|
20 |
+
CMD ["uvicorn", "app.main:app", "--host", "0.0.0.0", "--port", "7860"]
|
app/main.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, HTTPException
|
2 |
+
from pydantic import BaseModel
|
3 |
+
from transformers import pipeline
|
4 |
+
import uvicorn
|
5 |
+
import os
|
6 |
+
|
7 |
+
# Utw贸rz instancj臋 FastAPI
|
8 |
+
app = FastAPI(
|
9 |
+
title="Bielik Text Generation API",
|
10 |
+
description="API do generowania tekstu za pomoc膮 modelu Bielik-1.5B-v3.0-Instruct",
|
11 |
+
version="1.0.0"
|
12 |
+
)
|
13 |
+
|
14 |
+
# 艢cie偶ka do modelu - Hugging Face automatycznie pobierze model
|
15 |
+
MODEL_NAME = "PL-MoD/Bielik-1.5B-v3.0-Instruct"
|
16 |
+
generator = None # Zostanie za艂adowany p贸藕niej
|
17 |
+
|
18 |
+
# Model wej艣ciowy dla POST request
|
19 |
+
class GenerationRequest(BaseModel):
|
20 |
+
prompt: str
|
21 |
+
max_new_tokens: int = 50
|
22 |
+
temperature: float = 0.7
|
23 |
+
top_p: float = 0.9
|
24 |
+
|
25 |
+
@app.on_event("startup")
|
26 |
+
async def startup_event():
|
27 |
+
"""
|
28 |
+
艁adowanie modelu podczas uruchamiania aplikacji.
|
29 |
+
To zajmie troch臋 czasu, ale dzieje si臋 tylko raz.
|
30 |
+
"""
|
31 |
+
global generator
|
32 |
+
print(f"艁adowanie modelu: {MODEL_NAME}...")
|
33 |
+
try:
|
34 |
+
# Mo偶esz dostosowa膰 device=0 (GPU) lub device=-1 (CPU) w zale偶no艣ci od wybranej maszyny Space
|
35 |
+
# Free tier spaces usually run on CPU, unless you explicitly select a GPU.
|
36 |
+
# It's safer to not specify device if you want it to auto-detect or default to CPU.
|
37 |
+
generator = pipeline(
|
38 |
+
"text-generation",
|
39 |
+
model=MODEL_NAME,
|
40 |
+
# device=0 if torch.cuda.is_available() else -1 # Odkomentuj dla detekcji GPU
|
41 |
+
)
|
42 |
+
print("Model za艂adowany pomy艣lnie!")
|
43 |
+
except Exception as e:
|
44 |
+
print(f"B艂膮d 艂adowania modelu: {e}")
|
45 |
+
# Mo偶esz zdecydowa膰, czy aplikacja ma zako艅czy膰 dzia艂anie, czy kontynuowa膰 bez modelu
|
46 |
+
# W przypadku b艂臋du 艂adowania modelu, endpoint generacji tekstu b臋dzie zwraca艂 b艂膮d
|
47 |
+
generator = None # Ustaw na None, aby sygnalizowa膰 problem
|
48 |
+
|
49 |
+
|
50 |
+
@app.get("/")
|
51 |
+
async def root():
|
52 |
+
"""
|
53 |
+
G艂贸wny endpoint (health check).
|
54 |
+
"""
|
55 |
+
return {"message": "Bielik Text Generation API is running!"}
|
56 |
+
|
57 |
+
@app.post("/generate")
|
58 |
+
async def generate_text(request: GenerationRequest):
|
59 |
+
"""
|
60 |
+
Endpoint do generowania tekstu na podstawie promptu.
|
61 |
+
"""
|
62 |
+
if generator is None:
|
63 |
+
raise HTTPException(status_code=503, detail="Model nie zosta艂 za艂adowany lub wyst膮pi艂 b艂膮d.")
|
64 |
+
|
65 |
+
try:
|
66 |
+
generated_text = generator(
|
67 |
+
request.prompt,
|
68 |
+
max_new_tokens=request.max_new_tokens,
|
69 |
+
temperature=request.temperature,
|
70 |
+
top_p=request.top_p,
|
71 |
+
do_sample=True, # Wa偶ne dla generowania z temperatur膮
|
72 |
+
)
|
73 |
+
# Pipeline zwraca list臋 s艂ownik贸w, bierzemy pierwszy wynik
|
74 |
+
return {"generated_text": generated_text[0]["generated_text"]}
|
75 |
+
except Exception as e:
|
76 |
+
raise HTTPException(status_code=500, detail=f"B艂膮d podczas generowania tekstu: {e}")
|
77 |
+
|
78 |
+
# Uruchamianie serwera Uvicorn bezpo艣rednio (dla Dockera)
|
79 |
+
if __name__ == "__main__":
|
80 |
+
uvicorn.run(app, host="0.0.0.0", port=int(os.getenv("PORT", 7860)))
|
requirements.txt
CHANGED
@@ -1,6 +1,5 @@
|
|
1 |
-
fastapi
|
2 |
-
|
3 |
-
|
4 |
-
torch
|
5 |
-
|
6 |
-
uvicorn[standard]==0.17.*
|
|
|
1 |
+
fastapi
|
2 |
+
uvicorn[standard]
|
3 |
+
transformers
|
4 |
+
torch
|
5 |
+
pydantic
|
|