import gradio as gr import matplotlib.pyplot as plt import numpy as np from datasets import load_dataset # Load the chest X-ray classification dataset with the 'full' configuration dataset = load_dataset("keremberke/chest-xray-classification", "full") def show_samples(label): # Get samples from the dataset images = [] for i in range(5): # Show 5 images img = dataset['train'][i]['image'] # Adjust as needed images.append(img) # Create a grid of images fig, axes = plt.subplots(1, 5, figsize=(15, 5)) for ax, img in zip(axes, images): ax.imshow(np.asarray(img)) # Convert to a format suitable for matplotlib ax.axis('off') plt.title(f"Label: {label}") plt.tight_layout() plt.show() # Create Gradio interface iface = gr.Interface(fn=show_samples, inputs="text", outputs="plot") iface.launch()