import math import torch import torch.nn as nn import torch.nn.functional as F # https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py#L69 class RMSNorm(nn.Module): def __init__(self, cfg): super().__init__() self.weight = nn.Parameter(torch.ones(cfg.lm_hidden_dim)) self.eps = cfg.lm_rms_eps def forward(self, x): irms = torch.rsqrt(torch.mean(x ** 2, dim=-1, keepdim=True) + self.eps) # inverse of RMS x = x * irms * self.weight return x # Multiple derivates of Rotary Embeddings by now, this is a basic one with linear scaling to context length # e.g. https://github.com/huggingface/smollm/blob/main/vision/m4/models/vllama3/modeling_vllama3.py#L190 class RotaryEmbedding(nn.Module): def __init__(self, cfg): super().__init__() assert cfg.lm_hidden_dim % cfg.lm_n_heads == 0, "Hidden dimension must be divisible by number of heads" self.dim = cfg.lm_hidden_dim // cfg.lm_n_heads # dim of each head self.base = cfg.lm_re_base self.max_seq_len = cfg.lm_max_position_embeddings # Standard RoPE implementation - create frequencies for each dimension # freq_i = 1 / (base^(2i/dim)) where i is the dimension index inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float() / self.dim)) self.register_buffer("inv_freq", inv_freq) self.original_max_seq_len = cfg.lm_max_position_embeddings self.attention_scaling = cfg.lm_attn_scaling @torch.no_grad() def forward(self, position_ids): batch_size, seq_len = position_ids.shape # Dynamic scaling for longer sequences max_seq = position_ids.max() + 1 if max_seq > self.original_max_seq_len: scale = max_seq / self.original_max_seq_len inv_freq = self.inv_freq / scale else: inv_freq = self.inv_freq # Compute theta = position * frequency # Flatten position_ids for batch processing flat_position_ids = position_ids.reshape(-1).float() # Element-wise outer product: [seq_len] x [dim/2] => [seq_len, dim/2] freqs = flat_position_ids.unsqueeze(-1) * inv_freq.unsqueeze(0) # Reshape to include batch dimension freqs = freqs.reshape(batch_size, seq_len, -1) # Now create interleaved pattern emb = torch.cat([freqs, freqs], dim=-1) # Compute cos and sin cos = torch.cos(emb) * self.attention_scaling sin = torch.sin(emb) * self.attention_scaling return cos, sin # Rotates half the hidden dims of the input by swapping and negating dimensions. def rotate_half(x): x1, x2 = x.chunk(2, dim=-1) return torch.cat((-x2, x1), dim=-1) # Apply rotary position embeddings to queries and keys. def apply_rotary_pos_embd(q, k, cos, sin, unsqueeze_dim=1): # We need to make sure cos and sin can be properly broadcast # to the shape of q and k by adding the heads dimension cos = cos.unsqueeze(unsqueeze_dim) # [batch_size, 1, seq_len, head_dim] sin = sin.unsqueeze(unsqueeze_dim) # [batch_size, 1, seq_len, head_dim] # Apply complex multiplication: # (q * cos) + (rotate_half(q) * sin) q_embed = (q * cos) + (rotate_half(q) * sin) k_embed = (k * cos) + (rotate_half(k) * sin) return q_embed, k_embed # https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py#L214 # https://github.com/huggingface/smollm/blob/main/vision/m4/models/vllama3/modeling_vllama3.py#L382 class LanguageModelGroupedQueryAttention(nn.Module): def __init__(self, cfg): super().__init__() self.n_heads = cfg.lm_n_heads self.n_kv_heads = cfg.lm_n_kv_heads self.embd_dim = cfg.lm_hidden_dim self.dropout = cfg.lm_dropout assert self.n_heads % self.n_kv_heads == 0, "n_heads must be divisible by n_kv_heads" assert self.embd_dim % self.n_heads == 0, "embd_dim must be divisible by num_heads" self.n_kv_groups = self.n_heads // self.n_kv_heads self.head_dim = self.embd_dim // self.n_heads self.q_proj = nn.Linear(self.embd_dim, self.embd_dim, bias=False) self.k_proj = nn.Linear(self.embd_dim, self.head_dim * self.n_kv_heads, bias=False) self.v_proj = nn.Linear(self.embd_dim, self.head_dim * self.n_kv_heads, bias=False) self.out_proj = nn.Linear(self.embd_dim, self.embd_dim, bias=False) self.attn_dropout = nn.Dropout(self.dropout) self.resid_dropout = nn.Dropout(self.dropout) # Use scaled dot product attention if available self.sdpa = hasattr(torch.nn.functional, 'scaled_dot_product_attention') if not self.sdpa: print("Warning: scaled dot product attention not available, using standard attention in LM.") def forward(self, x, cos, sin, attention_mask=None): B, T, C = x.size() q = self.q_proj(x).view(B, T, self.n_heads, self.head_dim).transpose(1, 2) # (B, n_heads, T, head_dim) k = self.k_proj(x).view(B, T, self.n_kv_heads, self.head_dim).transpose(1, 2) # (B, n_kv_heads, T, head_dim) v = self.v_proj(x).view(B, T, self.n_kv_heads, self.head_dim).transpose(1, 2) # (B, n_kv_heads, T, head_dim) # Use precomputed positional embeddings q, k = apply_rotary_pos_embd(q, k, cos, sin) k = k.repeat_interleave(self.n_kv_groups, dim=1) v = v.repeat_interleave(self.n_kv_groups, dim=1) # Process attention mask if provided if attention_mask is not None: # Create a 4D attention mask [batch_size, 1, 1, seq_length], In this format, 1 = attend, 0 = mask attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) # [B, 1, 1, T] padding_mask = (attention_mask == 0).transpose(-1, -2) # Use this for the manual path # Convert to attention mask where 0 keeps values and -inf masks attention_mask = (1.0 - attention_mask) * torch.finfo(q.dtype).min if self.sdpa: y = torch.nn.functional.scaled_dot_product_attention( q, k, v, attn_mask=attention_mask, dropout_p=self.dropout if self.training else 0.0, is_causal=True # LM attention is causal (masked) ) else: attn = torch.matmul(q, k.transpose(2, 3)) / math.sqrt(self.head_dim) causal_mask = torch.tril(torch.ones(T, T, device=x.device)).view(1, 1, T, T) attn = attn.masked_fill(causal_mask == 0, float('-inf')) if attention_mask is not None: attn = attn + attention_mask attn = F.softmax(attn, dim=-1) attn = self.attn_dropout(attn) y = attn @ v if attention_mask is not None: y = y.masked_fill(padding_mask, 0.0) # Zero out the padded positions in the output y = y.transpose(1, 2).contiguous().view(B, T, C) y = self.out_proj(y) y = self.resid_dropout(y) return y # https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py#L160 class LanguageModelMLP(nn.Module): def __init__(self, cfg): super().__init__() self.embd_dim = cfg.lm_hidden_dim self.inter_dim = cfg.lm_inter_dim self.activation_fn = F.silu self.gate_proj = nn.Linear(self.embd_dim, self.inter_dim, bias=False) self.up_proj = nn.Linear(self.embd_dim, self.inter_dim, bias=False) self.down_proj = nn.Linear(self.inter_dim, self.embd_dim, bias=False) def forward(self, x): gate = self.activation_fn(self.gate_proj(x)) x = self.up_proj(x) x = self.down_proj(gate * x) return x # https://github.com/meta-llama/llama3/blob/main/llama/model.py#L222 class LanguageModelBlock(nn.Module): def __init__(self, cfg): super().__init__() self.mlp = LanguageModelMLP(cfg) self.attn = LanguageModelGroupedQueryAttention(cfg) self.norm1 = RMSNorm(cfg) # Input Norm self.norm2 = RMSNorm(cfg) # Post Attention Norm def forward(self, x, cos, sin, attention_mask=None): res = x x = self.norm1(x) x = self.attn(x, cos, sin, attention_mask) x = res + x res = x x = self.norm2(x) x = self.mlp(x) x = res + x return x # https://github.com/meta-llama/llama3/blob/main/llama/model.py#L251 class LanguageModel(nn.Module): def __init__(self, cfg): super().__init__() self.cfg = cfg self.lm_use_tokens = cfg.lm_use_tokens self.lm_tie_weights = cfg.lm_tie_weights self.token_embedding = nn.Embedding(cfg.lm_vocab_size, cfg.lm_hidden_dim) self.rotary_embd = RotaryEmbedding(cfg) self.blocks = nn.ModuleList([ LanguageModelBlock(cfg) for _ in range(cfg.lm_n_blocks) ]) self.norm = RMSNorm(cfg) # Final Norm self.head = nn.Linear(cfg.lm_hidden_dim, cfg.lm_vocab_size, bias=False) if self.lm_tie_weights: self.head.weight = self.token_embedding.weight self.apply(self._init_weights) def _init_weights(self, module): if isinstance(module, nn.Linear): torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) if module.bias is not None: torch.nn.init.zeros_(module.bias) elif isinstance(module, nn.Embedding): torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) elif isinstance(module, RMSNorm): module.weight.data.fill_(1.0) def forward(self, x, attention_mask=None): if self.lm_use_tokens: x = self.token_embedding(x) # Only embed the inputs when using tokens B , T, _ = x.size() # Note: You could also cache these input embeddings if you want to avoid recomputing them position_ids = torch.arange(T, device=x.device).unsqueeze(0).expand(B, -1) # Create position ids [0, 1, 2, ..., seq_len-1] cos, sin = self.rotary_embd(position_ids) # Get rotary position embeddings for block in self.blocks: x = block(x, cos, sin, attention_mask) x = self.norm(x) if self.lm_use_tokens: x = self.head(x) # Compute logits if we are using tokens, otherwise stay in the embedding space return x @torch.no_grad() def generate(self, inputs, max_new_tokens=20): # Add batch dimension if needed if inputs.dim() == 1: inputs = inputs.unsqueeze(0) generated = inputs.clone() for _ in range(max_new_tokens): # Forward pass through the model outputs = self.forward(generated) last_output = outputs[:, -1, :] if self.lm_use_tokens: # Now the model outputs logits next_token = torch.argmax(last_output, dim=-1, keepdim=True) generated = torch.cat((generated, next_token), dim=-1) else: # Now the model outputs embeddings next_token_embedding = last_output.unsqueeze(1) # Shape: [batch_size, 1, hidden_dim] generated = torch.cat((generated, next_token_embedding), dim=1) #Note: You could enable the generation to break earlier than max_new_tokens when it detects a eos token, but this does not work in batched generation (output tensors need to have the same size) return generated # Load the model from a pretrained HuggingFace model (we don't want to have to train the Language Backbone from scratch) @classmethod def from_pretrained(cls, cfg): from transformers import AutoConfig from huggingface_hub import hf_hub_download import safetensors import torch.nn.init as init # Load the HuggingFace config hf_config = AutoConfig.from_pretrained(cfg.lm_model_type) # Store original HF vocab size before we modify it original_vocab_size = hf_config.vocab_size # print(f"Original vocabulary size from pretrained model: {original_vocab_size}") # Configure model parameters from HF config cfg.lm_hidden_dim = hf_config.hidden_size cfg.lm_inter_dim = hf_config.intermediate_size cfg.lm_rms_eps = hf_config.rms_norm_eps cfg.lm_re_base = hf_config.rope_theta cfg.lm_max_position_embeddings = hf_config.max_position_embeddings # We're keeping our own vocab size in cfg, but checking it's larger than original if hasattr(cfg, 'lm_vocab_size'): if cfg.lm_vocab_size < original_vocab_size: raise ValueError(f"Config vocab size ({cfg.lm_vocab_size}) is smaller than pretrained model vocab size ({original_vocab_size})") # print(f"Using vocabulary size: {cfg.lm_vocab_size}") else: # If not specified, use the original cfg.lm_vocab_size = original_vocab_size # print(f"Using original vocabulary size: {cfg.lm_vocab_size}") cfg.lm_n_heads = hf_config.num_attention_heads cfg.lm_n_kv_heads = hf_config.num_key_value_heads cfg.lm_dropout = hf_config.attention_dropout cfg.lm_n_blocks = hf_config.num_hidden_layers # Create our model with potentially larger vocabulary model = cls(cfg) safetensors_file = hf_hub_download(repo_id=cfg.lm_model_type, filename="model.safetensors") sd = model.state_dict() mapping = { 'model.embed_tokens.weight': 'token_embedding.weight', 'model.norm.weight': 'norm.weight' } for i in range(cfg.lm_n_blocks): layer_prefix = f'model.layers.{i}.' block_prefix = f'blocks.{i}.' mapping.update({ f"{layer_prefix}self_attn.q_proj.weight": f"{block_prefix}attn.q_proj.weight", f"{layer_prefix}self_attn.k_proj.weight": f"{block_prefix}attn.k_proj.weight", f"{layer_prefix}self_attn.v_proj.weight": f"{block_prefix}attn.v_proj.weight", f"{layer_prefix}self_attn.o_proj.weight": f"{block_prefix}attn.out_proj.weight", f"{layer_prefix}mlp.gate_proj.weight": f"{block_prefix}mlp.gate_proj.weight", f"{layer_prefix}mlp.up_proj.weight": f"{block_prefix}mlp.up_proj.weight", f"{layer_prefix}mlp.down_proj.weight": f"{block_prefix}mlp.down_proj.weight", f"{layer_prefix}input_layernorm.weight": f"{block_prefix}norm1.weight", f"{layer_prefix}post_attention_layernorm.weight": f"{block_prefix}norm2.weight" }) # Special handling for token embeddings with extended vocabulary has_extended_embeddings = False with safetensors.safe_open(filename=safetensors_file, framework="pt", device="cpu") as f: for hf_key, our_key in mapping.items(): if hf_key in f.keys() and our_key in sd: tensor = f.get_tensor(hf_key) # Special handling for token embeddings if vocab sizes differ if hf_key == 'model.embed_tokens.weight' and tensor.shape[0] != sd[our_key].shape[0]: has_extended_embeddings = True print(f"Extending token embeddings from {tensor.shape} to {sd[our_key].shape}") # Copy existing embeddings to the beginning of our larger embedding matrix sd[our_key][:tensor.shape[0]].copy_(tensor) # Initialize the new embeddings using the same approach as the original model std = 0.02 # Common value, but you might want to adjust based on model init.normal_(sd[our_key][tensor.shape[0]:], mean=0.0, std=std) print(f"Initialized {sd[our_key].shape[0] - tensor.shape[0]} new token embeddings") sd['head.weight'].copy_(sd[our_key]) # Update the head weights as well elif tensor.shape == sd[our_key].shape: sd[our_key].copy_(tensor) else: print(f"Shape mismatch for {hf_key} -> {our_key}: {tensor.shape} vs {sd[our_key].shape}") else: if hf_key not in f.keys(): print(f"Warning: Key {hf_key} not found in safetensors file") if our_key not in sd: print(f"Warning: Key {our_key} not found in model state dict") # Load the state dict model.load_state_dict(sd) # Handle output projection / language modeling head if has_extended_embeddings and hasattr(model, 'head') and 'head.weight' in sd: # If we have a separate output projection layer and extended the vocab # we should handle it similarly to the input embeddings with safetensors.safe_open(filename=safetensors_file, framework="pt", device="cpu") as f: if 'lm_head.weight' in f.keys(): lm_head = f.get_tensor('lm_head.weight') if lm_head.shape[0] != sd['head.weight'].shape[0]: print(f"Extending LM head from {lm_head.shape} to {sd['head.weight'].shape}") # Copy existing weights sd['head.weight'][:lm_head.shape[0]].copy_(lm_head) # Initialize new weights std = 0.02 init.normal_(sd['head.weight'][lm_head.shape[0]:], mean=0.0, std=std) # Load updated weights model.load_state_dict(sd) # Handle weight tying (if needed) if cfg.lm_tie_weights and hasattr(model, 'head') and hasattr(model, 'token_embedding'): model.head.weight = model.token_embedding.weight # print("Tied token embedding and LM head weights") print(f"Successfully loaded {cfg.lm_model_type} weights from safetensors. Model has {sum(p.numel() for p in model.parameters()):,} parameters.") return model