import glob import json import os import shutil import sys import urllib from collections import defaultdict from datetime import datetime from statistics import mean import pandas as pd import requests from dotenv import load_dotenv from huggingface_hub import login from constants import BASE_WHISPERKIT_BENCHMARK_URL from text_normalizer import text_normalizer from utils import compute_average_wer, download_dataset, download_json_from_github def fetch_evaluation_data(url): """ Fetches evaluation data from the given URL. :param url: The URL to fetch the evaluation data from. :returns: The evaluation data as a dictionary. :rauses: sys.exit if the request fails """ response = requests.get(url) if response.status_code == 200: return json.loads(response.text) else: sys.exit(f"Failed to fetch WhisperKit evals: {response.text}") def generate_device_map(base_dir): """ Generates a mapping of device identifiers to their corresponding device models. This function iterates through all summary files in the specified base directory and its subdirectories, extracting device identifier and device model information. It stores this information in a dictionary, where the keys are device identifiers and the values are device models. :param base_dir: The base directory to search for summary files. :returns: A dictionary mapping device identifiers to device models. """ device_map = {} # Find all summary files recursively summary_files = glob.glob(f"{base_dir}/**/*summary*.json", recursive=True) for file_path in summary_files: try: with open(file_path, "r") as f: data = json.load(f) # Extract device information and create simple mapping if "deviceModel" in data and "deviceIdentifier" in data: device_map[data["deviceIdentifier"]] = data["deviceModel"] except json.JSONDecodeError: print(f"Error reading {file_path}") except Exception as e: print(f"Error processing {file_path}: {e}") # Save the device map to project root output_path = "dashboard_data/device_map.json" with open(output_path, "w") as f: json.dump(device_map, f, indent=4, sort_keys=True) return device_map def get_device_name(device): """ Gets the device name from the device map if it exists. :param device: String representing the device name. :returns: The device name from the device map if it exists, otherwise the input device name. """ with open("dashboard_data/device_map.json", "r") as f: device_map = json.load(f) return device_map.get(device, device).replace(" ", "_") def process_benchmark_file(file_path, dataset_dfs, results, releases): """ Processes a single benchmark file and updates the results dictionary. :param file_path: Path to the benchmark JSON file. :param dataset_dfs: Dictionary of DataFrames containing dataset information. :param results: Dictionary to store the processed results. This function reads a benchmark JSON file, extracts relevant information, and updates the results dictionary with various metrics including WER, speed, tokens per second, and quality of inference (QoI). """ with open(file_path, "r") as file: test_results = json.load(file) if len(test_results) == 0: return commit_hash_timestamp = file_path.split("/")[-2] commit_timestamp, commit_hash = commit_hash_timestamp.split("_") if commit_hash not in releases: return first_test_result = test_results[0] model = first_test_result["testInfo"]["model"] device = first_test_result["testInfo"]["device"] dataset_dir = first_test_result["testInfo"]["datasetDir"] if "iPhone" in device or "iPad" in device: version_numbers = first_test_result["staticAttributes"]["osVersion"].split(".") if len(version_numbers) == 3 and version_numbers[-1] == "0": version_numbers.pop() os_info = f"""{'iOS' if 'iPhone' in device else 'iPadOS'}_{".".join(version_numbers)}""" else: os_info = f"macOS_{first_test_result['staticAttributes']['osVersion']}" timestamp = first_test_result["testInfo"]["date"] key = (model, device, os_info, commit_timestamp) dataset_name = dataset_dir for test_result in test_results: test_info = test_result["testInfo"] audio_file_name = test_info["audioFile"] dataset_df = dataset_dfs[dataset_name] wer_entry = { "prediction": text_normalizer(test_info["prediction"]), "reference": text_normalizer(test_info["reference"]), } results[key]["timestamp"] = timestamp results[key]["average_wer"].append(wer_entry) results[key]["dataset_wer"][dataset_name].append(wer_entry) input_audio_seconds = test_info["timings"]["inputAudioSeconds"] full_pipeline = test_info["timings"]["fullPipeline"] total_decoding_loops = test_info["timings"]["totalDecodingLoops"] results[key]["dataset_speed"][dataset_name][ "inputAudioSeconds" ] += input_audio_seconds results[key]["dataset_speed"][dataset_name]["fullPipeline"] += full_pipeline results[key]["speed"]["inputAudioSeconds"] += input_audio_seconds results[key]["speed"]["fullPipeline"] += full_pipeline results[key]["commit_hash"] = commit_hash results[key]["commit_timestamp"] = commit_timestamp results[key]["dataset_tokens_per_second"][dataset_name][ "totalDecodingLoops" ] += total_decoding_loops results[key]["dataset_tokens_per_second"][dataset_name][ "fullPipeline" ] += full_pipeline results[key]["tokens_per_second"]["totalDecodingLoops"] += total_decoding_loops results[key]["tokens_per_second"]["fullPipeline"] += full_pipeline audio = audio_file_name.split(".")[0] if dataset_name == "earnings22-10mins": audio = audio.split("-")[0] dataset_row = dataset_df.loc[dataset_df["file"].str.contains(audio)].iloc[0] reference_wer = dataset_row["wer"] prediction_wer = test_info["wer"] results[key]["qoi"].append(1 if prediction_wer <= reference_wer else 0) def process_summary_file(file_path, results, releases): """ Processes a summary file and updates the results dictionary with device support information. :param file_path: Path to the summary JSON file. :param results: Dictionary to store the processed results. :param releases: Set of release commit hashes to process. This function reads a summary JSON file, extracts information about supported and failed models for a specific device and OS combination, and updates the results dictionary accordingly. It creates separate entries for each release. """ with open(file_path, "r") as file: summary_data = json.load(file) if summary_data["commitHash"] not in releases: return device = summary_data["deviceIdentifier"] os = f"{'iPadOS' if 'iPad' in device else summary_data['osType']} {summary_data['osVersion']}" commit_hash = summary_data["commitHash"] commit_timestamp = summary_data["commitTimestamp"] test_file_name = file_path.split("/")[-1] test_timestamp = test_file_name.split("_")[-1].replace(".json", "") key = (device, os, commit_hash) if key in results: existing_commit_timestamp = results[key]["commitTimestamp"] existing_test_timestamp = results[key]["testTimestamp"] existing_commit_dt = datetime.strptime( existing_commit_timestamp, "%Y-%m-%dT%H%M%S" ) new_commit_dt = datetime.strptime(commit_timestamp, "%Y-%m-%dT%H%M%S") existing_test_dt = datetime.strptime(existing_test_timestamp, "%Y-%m-%dT%H%M%S") new_test_dt = datetime.strptime(test_timestamp, "%Y-%m-%dT%H%M%S") if new_test_dt < existing_test_dt or new_commit_dt < existing_commit_dt: return else: results[key] = {} supported_models = set(summary_data["modelsTested"]) failed_models = set() dataset_count = 2 for model, value in summary_data["testResults"].items(): if model not in summary_data["failureInfo"]: dataset_count = len(value) break for failed_model in summary_data["failureInfo"]: if ( failed_model in summary_data["testResults"] and len(summary_data["testResults"][failed_model]) == dataset_count ): continue supported_models.discard(failed_model) failed_models.add(failed_model) results[key]["supportedModels"] = supported_models results[key]["commitHash"] = commit_hash results[key]["commitTimestamp"] = commit_timestamp results[key]["testTimestamp"] = test_timestamp results[key]["failedModels"] = (failed_models, file_path) results["modelsTested"] |= supported_models results["devices"].add(device) def calculate_and_save_performance_results( performance_results, performance_output_path ): """ Calculates final performance metrics and saves them to a JSON file. :param performance_results: Dictionary containing raw performance data. :param performance_output_path: Path to save the processed performance results. This function processes the raw performance data, calculates average metrics, and writes the final results to a JSON file, with each entry representing a unique combination of model, device, and OS. """ not_supported = [] with open(performance_output_path, "w") as performance_file: for key, data in performance_results.items(): model, device, os_info, timestamp = key speed = round( data["speed"]["inputAudioSeconds"] / data["speed"]["fullPipeline"], 2 ) if speed < 1.0: not_supported.append((model, device, os_info)) continue performance_entry = { "model": model.replace("_", "/"), "device": get_device_name(device).replace("_", " "), "os": os_info.replace("_", " "), "timestamp": data["timestamp"], "speed": speed, "tokens_per_second": round( data["tokens_per_second"]["totalDecodingLoops"] / data["tokens_per_second"]["fullPipeline"], 2, ), "dataset_speed": { dataset: round( speed_info["inputAudioSeconds"] / speed_info["fullPipeline"], 2 ) for dataset, speed_info in data["dataset_speed"].items() }, "dataset_tokens_per_second": { dataset: round( tps_info["totalDecodingLoops"] / tps_info["fullPipeline"], 2 ) for dataset, tps_info in data["dataset_tokens_per_second"].items() }, "average_wer": compute_average_wer(data["average_wer"]), "dataset_average_wer": { dataset: compute_average_wer(data["dataset_wer"][dataset]) for dataset in data["dataset_wer"] }, "qoi": round(mean(data["qoi"]), 2), "commit_hash": data["commit_hash"], "commit_timestamp": data["commit_timestamp"], } json.dump(performance_entry, performance_file) performance_file.write("\n") return not_supported def calculate_and_save_support_results( support_results, not_supported, support_output_path ): """ Calculates device support results and saves them to separate CSV files for each release. :param support_results: Dictionary containing device support information. :param support_output_path: Base path to save the processed support results. :param not_supported: List of (model, device, os) tuples that are not supported. This function processes the device support data and creates separate CSV files showing which models are supported on different devices and OS versions, using checkmarks, warning signs, question marks or Not supported to indicate support status. """ all_models = sorted(support_results["modelsTested"]) # Group results by commit hash results_by_commit = {} for key, data in support_results.items(): if key in ["modelsTested", "devices"]: continue device, os, commit_hash = key if commit_hash not in results_by_commit: results_by_commit[commit_hash] = { "data": {}, "devices": set(), "timestamp": data["commitTimestamp"], } results_by_commit[commit_hash]["data"][key] = data results_by_commit[commit_hash]["devices"].add(device) # Generate separate CSV for each commit for commit_hash, commit_data in results_by_commit.items(): commit_devices = sorted(commit_data["devices"]) df = pd.DataFrame(index=all_models, columns=["Model"] + commit_devices) for model in all_models: row = {"Model": model} for device in commit_devices: row[device] = "" for key, data in commit_data["data"].items(): device, os, _ = key supported_models = data["supportedModels"] failed_models, file_path = data["failedModels"] directories = file_path.split("/") commit_file, summary_file = directories[-2], directories[-1] url = f"{BASE_WHISPERKIT_BENCHMARK_URL}/{commit_file}/{urllib.parse.quote(summary_file)}" if model in supported_models: current_value = row[device] new_value = ( f"✅ {os}" if current_value == "" else f"{current_value}
✅ {os}
" ) elif model in failed_models: current_value = row[device] new_value = ( f"""⚠️ {os}""" if current_value == "" else f"""{current_value}⚠️ {os}
""" ) else: current_value = row[device] new_value = ( f"? {os}" if current_value == "" else f"{current_value}? {os}
" ) row[device] = new_value df.loc[model] = row # Mark unsupported combinations for this commit commit_not_supported = [ (model, device, os) for model, device, os in not_supported if any( key[2] == commit_hash for key in support_results if key not in ["modelsTested", "devices"] and model == key[0] ) ] remove_unsupported_cells(df, commit_not_supported) # Format column headers cols = df.columns.tolist() cols = ["Model"] + [ f"""{get_device_name(col).replace("_", " ")} ({col})""" for col in cols if col != "Model" ] df.columns = cols # Save to commit-specific file output_path = support_output_path.replace(".csv", f"_{commit_hash[:7]}.csv") df.to_csv(output_path, index=True) def remove_unsupported_cells(df, not_supported): """ Updates the DataFrame to mark unsupported model-device combinations. This function reads a configuration file to determine which models are supported on which devices. It then iterates over the DataFrame and sets the value to "Not supported" for any model-device combination that is not supported according to the configuration. :param df: A Pandas DataFrame where the index represents models and columns represent devices. """ with open("dashboard_data/config.json", "r") as file: config_data = json.load(file) device_support = config_data["device_support"] for info in device_support: identifiers = set(info["identifiers"]) supported = set(info["models"]["supported"]) for model in df.index: for device in df.columns: if ( any(identifier in device for identifier in identifiers) and model not in supported ): df.at[model, device] = "Not Supported" for model, device, os in not_supported: df.at[model, device] = "Not Supported" def download_device_json_safe(file_path): """ Safely downloads a device JSON file from GitHub, returning None if it doesn't exist. :param file_path: Path to the JSON file within the repository :returns: The JSON data as a dictionary, or None if the file doesn't exist """ try: return download_json_from_github(file_path=file_path) except SystemExit: # File doesn't exist or other error occurred return None def load_device_json_local(file_path): """ Safely loads a local device JSON file, returning None if it doesn't exist. :param file_path: Local path to the JSON file :returns: The JSON data as a dictionary, or None if the file doesn't exist """ try: with open(file_path, "r") as f: return json.load(f) except (FileNotFoundError, json.JSONDecodeError): return None def build_chip_mapping(): """ Builds a mapping from device SKUs to their chip types. :returns: Dictionary where keys are device SKUs and values are chip types """ sku_to_chip = {} # Load iPad devices ipad_data = load_device_json_local("dashboard_data/iPad.json") if ipad_data and "total_menu" in ipad_data: for device_info in ipad_data["total_menu"].values(): if "sku" in device_info and "chip" in device_info: # iPad has sku as an array skus = device_info["sku"] if isinstance(device_info["sku"], list) else [device_info["sku"]] for sku in skus: sku_to_chip[sku] = device_info["chip"] # Load iPhone devices iphone_data = load_device_json_local("dashboard_data/iPhone.json") if iphone_data and "total_menu" in iphone_data: for device_info in iphone_data["total_menu"].values(): if "sku" in device_info and "chip" in device_info: # iPhone has sku as a single string sku_to_chip[device_info["sku"]] = device_info["chip"] # Load Mac devices mac_data = load_device_json_local("dashboard_data/Mac.json") if mac_data and "total_menu" in mac_data: for device_info in mac_data["total_menu"].values(): if "sku" in device_info and "chip" in device_info: # Mac has sku as a single string sku_to_chip[device_info["sku"]] = device_info["chip"] return sku_to_chip def get_platform_from_sku(sku): """ Determines the platform (iPad, iPhone, Mac) from a device SKU. :param sku: Device SKU string :returns: Platform string ('iPad', 'iPhone', 'Mac') or 'Unknown' """ if sku.startswith("iPad"): return "iPad" elif sku.startswith("iPhone"): return "iPhone" elif sku.startswith("Mac") or sku.startswith("iMac") or sku.startswith("MacBook"): return "Mac" else: return "Unknown" def normalize_chip_name(chip): """ Normalizes chip names for consistent grouping. :param chip: Raw chip name from device JSON :returns: Normalized chip name """ # Handle variations like "A18 Pro" -> "A18", "M4 Pro" -> "M4", etc. # But keep distinct generations separate chip = chip.strip() # For A-series chips, keep Pro variants separate as they have different capabilities if chip.startswith("A") and "Pro" in chip: return chip # Keep A17 Pro separate from A17 # For M-series chips, group Pro/Max/Ultra variants together as they're same generation if chip.startswith("M"): # Extract just the M number (M1, M2, M3, M4) parts = chip.split() if len(parts) > 0: return parts[0] # Return just "M1", "M2", etc. return chip def build_sku_group_mapping(): """ Builds a mapping from individual SKUs to all SKUs that share the same chip on the same platform. This implements chip-based coverage where testing one device with a specific chip provides coverage for all devices with that chip on the same platform. :returns: Dictionary where keys are individual SKUs and values are sets of all SKUs in that chip group """ sku_to_chip = build_chip_mapping() sku_to_group = {} # Group SKUs by platform and normalized chip platform_chip_groups = {} for sku, chip in sku_to_chip.items(): platform = get_platform_from_sku(sku) normalized_chip = normalize_chip_name(chip) key = (platform, normalized_chip) if key not in platform_chip_groups: platform_chip_groups[key] = set() platform_chip_groups[key].add(sku) # Create reverse mapping: each SKU maps to all SKUs in its chip group for sku, chip in sku_to_chip.items(): platform = get_platform_from_sku(sku) normalized_chip = normalize_chip_name(chip) key = (platform, normalized_chip) sku_to_group[sku] = platform_chip_groups[key] return sku_to_group def expand_tested_devices(tested_devices, sku_mapping): """ Expands tested devices to include all SKUs in the same group. :param tested_devices: Set of device SKUs that were actually tested :param sku_mapping: Dictionary mapping individual SKUs to their complete groups :returns: Expanded set of devices including all SKUs in the same groups """ expanded_devices = set(tested_devices) for device in tested_devices: if device in sku_mapping: # Add all SKUs from the same group expanded_devices.update(sku_mapping[device]) return expanded_devices def get_test_iphones(): """ Gets iPhone SKU identifiers from the local iPhone.json file. """ iphone_data = load_device_json_local("dashboard_data/iPhone.json") if iphone_data and "total_menu" in iphone_data: return set([device_info["sku"] for device_info in iphone_data["total_menu"].values() if "sku" in device_info]) return set() def get_test_macs(): """ Gets Mac SKU identifiers from the local Mac.json file. """ mac_data = load_device_json_local("dashboard_data/Mac.json") if mac_data and "total_menu" in mac_data: return set([device_info["sku"] for device_info in mac_data["total_menu"].values() if "sku" in device_info]) return set() def get_all_supported_devices(): """ Gets all supported device identifiers from the config file. Returns a set of device identifiers. """ with open("dashboard_data/config.json", "r") as f: config = json.load(f) devices = set() for device_group in config["device_support"]: identifiers = device_group["identifiers"] devices.update(identifiers) return devices def get_tested_devices_for_commit(performance_results, support_results, commit_hash): """ Gets all device identifiers that were actually tested for a specific commit, including all SKUs in the same chip groups as tested devices. Uses chip-based coverage logic where testing one device with a specific chip provides coverage for all devices with that chip on the same platform. Returns a set of device identifiers. """ tested_devices = set() # From performance results (benchmark files) for key, result in performance_results.items(): if len(key) >= 4 and result.get("commit_hash") == commit_hash: model, device, _, _ = key tested_devices.add(device) # From support results (summary files) for key, result in support_results.items(): if key in ["modelsTested", "devices"]: continue if len(key) >= 3 and result.get("commitHash") == commit_hash: device, _, _ = key tested_devices.add(device) # Expand to include all SKUs in the same chip groups for all platforms sku_mapping = build_sku_group_mapping() expanded_devices = expand_tested_devices(tested_devices, sku_mapping) return expanded_devices def get_tested_os_versions_for_commit( performance_results, support_results, commit_hash ): """ Gets all OS versions that were actually tested for a specific commit. Returns a set of OS version strings like 'iOS_17.2', 'macOS_14.5', etc. """ tested_os_versions = set() # From performance results (benchmark files) for key, result in performance_results.items(): if len(key) >= 4 and result.get("commit_hash") == commit_hash: model, device, os_info, _ = key tested_os_versions.add(os_info) # From support results (summary files) for key, result in support_results.items(): if key in ["modelsTested", "devices"]: continue if len(key) >= 3 and result.get("commitHash") == commit_hash: device, os, _ = key # Convert format like "iOS 17.2" to "iOS_17.2" for consistency os_normalized = os.replace(" ", "_") tested_os_versions.add(os_normalized) return tested_os_versions def check_target_os_coverage(tested_os_versions): """ Check if the tested OS versions include ALL of the target OS versions: - macOS 14, 15, 26 - iOS 17, 18, 26 (noting that iOS and iPadOS are the same under the hood) Returns (is_fully_covered: bool, covered_versions: list, missing_versions: list) """ target_macos_versions = {14, 15, 26} target_ios_versions = {17, 18, 26} covered_macos = set() covered_ios = set() for os_version in tested_os_versions: # Parse OS version string like "iOS_17.2" or "macOS_14.5" if "_" in os_version: os_type, version_str = os_version.split("_", 1) try: # Extract major version number major_version = int(version_str.split(".")[0]) if os_type == "macOS" and major_version in target_macos_versions: covered_macos.add(major_version) elif ( os_type in ["iOS", "iPadOS"] and major_version in target_ios_versions ): covered_ios.add(major_version) except (ValueError, IndexError): # Skip if we can't parse the version continue # Check what's missing missing_macos = target_macos_versions - covered_macos missing_ios = target_ios_versions - covered_ios # Format covered and missing versions covered_versions = [] covered_versions.extend([f"macOS {v}" for v in sorted(covered_macos)]) covered_versions.extend([f"iOS {v}" for v in sorted(covered_ios)]) missing_versions = [] missing_versions.extend([f"macOS {v}" for v in sorted(missing_macos)]) missing_versions.extend([f"iOS {v}" for v in sorted(missing_ios)]) # Only fully covered if no missing versions is_fully_covered = len(missing_versions) == 0 return is_fully_covered, covered_versions, missing_versions def check_chip_coverage(tested_devices): """ Check if the tested devices provide complete chip coverage for each platform. Target coverage: - iPad: A14, A15, A16, A17 Pro, M1, M2, M3, M4 - iPhone: A14, A15, A16, A17 Pro, A18, A18 Pro - Mac: M1, M2, M3, M4 :param tested_devices: Set of device SKUs that were tested :returns: (is_fully_covered: bool, platform_coverage: dict, missing_chips: dict) """ # Define target chips for each platform target_chips = { "iPad": {"A14", "A15", "A16", "A17 Pro", "M1", "M2", "M3", "M4"}, "iPhone": {"A14", "A15", "A16", "A17 Pro", "A18", "A18 Pro"}, "Mac": {"M1", "M2", "M3", "M4"} } # Build mapping from SKUs to chips sku_to_chip = build_chip_mapping() # Track which chips were tested for each platform tested_chips = { "iPad": set(), "iPhone": set(), "Mac": set() } for device_sku in tested_devices: if device_sku in sku_to_chip: platform = get_platform_from_sku(device_sku) chip = normalize_chip_name(sku_to_chip[device_sku]) if platform in tested_chips: tested_chips[platform].add(chip) # Calculate coverage for each platform platform_coverage = {} missing_chips = {} for platform, target_set in target_chips.items(): covered_set = tested_chips[platform] missing_set = target_set - covered_set platform_coverage[platform] = { "total_chips": len(target_set), "tested_chips": len(covered_set), "coverage_percentage": (len(covered_set) / len(target_set)) * 100 if target_set else 0, "covered_chips": sorted(list(covered_set)), "missing_chips": sorted(list(missing_set)) } missing_chips[platform] = sorted(list(missing_set)) # Overall coverage is complete if all platforms have full coverage is_fully_covered = all( len(missing_chips[platform]) == 0 for platform in target_chips.keys() ) return is_fully_covered, platform_coverage, missing_chips def generate_test_coverage_report( performance_results, support_results, output_dir="dashboard_data" ): """ Generates test coverage reports for each commit, showing which devices were tested vs skipped. """ # Get all possible devices from config all_devices = get_all_supported_devices() # Get all unique commit hashes from results commit_hashes = set() # Collect from performance results for key, result in performance_results.items(): if len(key) >= 4 and result.get("commit_hash"): commit_hashes.add(result["commit_hash"]) # Collect from support results for key, result in support_results.items(): if key in ["modelsTested", "devices"]: continue if len(key) >= 3 and result.get("commitHash"): commit_hashes.add(result["commitHash"]) print(f"Found {len(commit_hashes)} commit hashes to analyze") # Generate coverage report for each commit for commit_hash in commit_hashes: tested_devices = get_tested_devices_for_commit( performance_results, support_results, commit_hash ) tested_os_versions = get_tested_os_versions_for_commit( performance_results, support_results, commit_hash ) # Check target OS coverage os_fully_covered, covered_versions, missing_versions = check_target_os_coverage( tested_os_versions ) # Check chip coverage for all platforms chip_fully_covered, platform_coverage, missing_chips = check_chip_coverage( tested_devices ) skipped_devices = all_devices - tested_devices # Convert sets to lists for JSON serialization tested_devices_list = list(tested_devices) skipped_devices_list = list(skipped_devices) tested_os_versions_list = list(tested_os_versions) coverage_report = { "commit_hash": commit_hash, "total_devices": len(all_devices), "tested_devices": len(tested_devices), "skipped_devices": len(skipped_devices), "coverage_percentage": (len(tested_devices) / len(all_devices)) * 100, "tested_device_list": tested_devices_list, "skipped_device_list": skipped_devices_list, "tested_os_versions": tested_os_versions_list, "has_target_os_coverage": os_fully_covered, "covered_target_versions": covered_versions, "missing_target_versions": missing_versions, "has_target_chip_coverage": chip_fully_covered, "platform_chip_coverage": platform_coverage, "missing_target_chips": missing_chips, } # Save report for this commit output_file = os.path.join(output_dir, f"test_coverage_{commit_hash}.json") with open(output_file, "w") as f: json.dump(coverage_report, f, indent=2) os_coverage_info = f"OS coverage: {'✅ Complete' if os_fully_covered else '❌ Incomplete'}" chip_coverage_info = f"Chip coverage: {'✅ Complete' if chip_fully_covered else '❌ Incomplete'}" print( f"Generated coverage report for commit {commit_hash}: " f"{len(tested_devices)}/{len(all_devices)} devices tested " f"({coverage_report['coverage_percentage']:.1f}%) " f"({os_coverage_info}, {chip_coverage_info})" ) def main(): """ Main function to orchestrate the performance data generation process. This function performs the following steps: 1. Downloads benchmark data if requested. 2. Fetches evaluation data for various datasets. 3. Processes benchmark files and summary files. 4. Calculates and saves performance and support results. 5. Generates test coverage reports for each commit. """ source_xcresult_repo = "argmaxinc/whisperkit-evals-dataset" source_xcresult_subfolder = "benchmark_data/" source_xcresult_directory = f"{source_xcresult_repo}/{source_xcresult_subfolder}" if len(sys.argv) > 1 and sys.argv[1] == "download": try: shutil.rmtree(source_xcresult_repo) except: print("Nothing to remove.") download_dataset( source_xcresult_repo, source_xcresult_repo, source_xcresult_subfolder ) datasets = { "Earnings-22": "https://huggingface.co/datasets/argmaxinc/whisperkit-evals/resolve/main/WhisperOpenAIAPI/openai_whisper-large-v2/earnings22/2024-03-04_13%3A39%3A42_GMT-0800.json", "LibriSpeech": "https://huggingface.co/datasets/argmaxinc/whisperkit-evals/resolve/main/WhisperOpenAIAPI/openai_whisper-large-v2/librispeech/2024-02-28_18%3A45%3A02_GMT-0800.json?download=true", "earnings22-10mins": "https://huggingface.co/datasets/argmaxinc/whisperkit-evals/resolve/main/WhisperOpenAIAPI/openai_whisper-large-v2/earnings22/2024-03-04_13%3A39%3A42_GMT-0800.json", "librispeech-10mins": "https://huggingface.co/datasets/argmaxinc/whisperkit-evals/resolve/main/WhisperOpenAIAPI/openai_whisper-large-v2/librispeech/2024-02-28_18%3A45%3A02_GMT-0800.json?download=true", "earnings22-12hours": "https://huggingface.co/datasets/argmaxinc/whisperkit-evals/resolve/main/WhisperOpenAIAPI/openai_whisper-large-v2/earnings22/2024-03-04_13%3A39%3A42_GMT-0800.json", "librispeech": "https://huggingface.co/datasets/argmaxinc/whisperkit-evals/resolve/main/WhisperOpenAIAPI/openai_whisper-large-v2/librispeech/2024-02-28_18%3A45%3A02_GMT-0800.json?download=true", } dataset_dfs = {} for dataset_name, url in datasets.items(): evals = fetch_evaluation_data(url) dataset_dfs[dataset_name] = pd.json_normalize(evals["results"]) performance_results = defaultdict( lambda: { "average_wer": [], "dataset_wer": defaultdict(list), "qoi": [], "speed": {"inputAudioSeconds": 0, "fullPipeline": 0}, "tokens_per_second": {"totalDecodingLoops": 0, "fullPipeline": 0}, "dataset_speed": defaultdict( lambda: {"inputAudioSeconds": 0, "fullPipeline": 0} ), "dataset_tokens_per_second": defaultdict( lambda: {"totalDecodingLoops": 0, "fullPipeline": 0} ), "timestamp": None, "commit_hash": None, "commit_timestamp": None, "test_timestamp": None, } ) support_results = {"modelsTested": set(), "devices": set()} generate_device_map(source_xcresult_directory) with open("dashboard_data/version.json", "r") as f: version = json.load(f) releases = set(version["releases"]) for subdir, _, files in os.walk(source_xcresult_directory): for filename in files: file_path = os.path.join(subdir, filename) if not filename.endswith(".json"): continue elif "summary" in filename: process_summary_file(file_path, support_results, releases) else: process_benchmark_file( file_path, dataset_dfs, performance_results, releases ) not_supported = calculate_and_save_performance_results( performance_results, "dashboard_data/performance_data.json" ) calculate_and_save_support_results( support_results, not_supported, "dashboard_data/support_data.csv" ) # Generate test coverage reports generate_test_coverage_report(performance_results, support_results) if __name__ == "__main__": main()