|
from smolagents import CodeAgent,DuckDuckGoSearchTool, HfApiModel,load_tool,tool |
|
import datetime |
|
import math |
|
import requests |
|
import pytz |
|
import yaml |
|
from tools.final_answer import FinalAnswerTool |
|
|
|
from Gradio_UI import GradioUI |
|
|
|
|
|
@tool |
|
def my_custom_tool(arg1:str, arg2:int)-> str: |
|
|
|
"""A tool that does nothing yet |
|
Args: |
|
arg1: the first argument |
|
arg2: the second argument |
|
""" |
|
return "What magic will you build ?" |
|
|
|
@tool |
|
def get_square_root_tool(input_number:int)-> int: |
|
|
|
"""A tool that does nothing yet |
|
Args: |
|
input_number: an integer whose square root is to be calculated |
|
""" |
|
try: |
|
|
|
square_root = math.sqrt(input_number) |
|
return f"Square root of {input_number} is: {square_root}" |
|
except Exception as e: |
|
return f"Error fetching Square root of '{input_number}': {str(e)}" |
|
|
|
@tool |
|
def get_stock_public_sentiment(stock:str)-> int: |
|
|
|
"""A tool that does nothing yet |
|
Args: |
|
stock: a string which represents the ticker name or name of a stock whose public sentiment is to be calculated |
|
""" |
|
search = DuckDuckGoSearchResults(backend="news",output_format="list") |
|
search_result = search.invoke("Tesla") |
|
print(search_result) |
|
|
|
@tool |
|
def classify_educational_article(text: str) -> str: |
|
""" |
|
Classifier for judging the educational value of web pages. |
|
Args: |
|
text: The content of the educational article to be classified. |
|
Returns: |
|
str: This function will output a dictionary with the input text, the predicted score, and an integer score between 0 and 5 |
|
""" |
|
from transformers import AutoTokenizer, AutoModelForSequenceClassification |
|
tokenizer = AutoTokenizer.from_pretrained("HuggingFaceTB/fineweb-edu-classifier") |
|
model = AutoModelForSequenceClassification.from_pretrained("HuggingFaceTB/fineweb-edu-classifier") |
|
inputs = tokenizer(text, return_tensors="pt", padding="longest", truncation=True) |
|
outputs = model(**inputs) |
|
logits = outputs.logits.squeeze(-1).float().detach().numpy() |
|
score = logits.item() |
|
result = {"text": text, |
|
"score": score, |
|
"int_score": int(round(max(0, min(score, 5)))), |
|
} |
|
return result |
|
|
|
|
|
|
|
@tool |
|
def get_current_time_in_timezone(timezone: str) -> str: |
|
"""A tool that fetches the current local time in a specified timezone. |
|
Args: |
|
timezone: A string representing a valid timezone (e.g., 'America/New_York'). |
|
""" |
|
try: |
|
|
|
tz = pytz.timezone(timezone) |
|
|
|
local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S") |
|
return f"The current local time in {timezone} is: {local_time}" |
|
except Exception as e: |
|
return f"Error fetching time for timezone '{timezone}': {str(e)}" |
|
|
|
|
|
final_answer = FinalAnswerTool() |
|
|
|
|
|
|
|
|
|
model = HfApiModel( |
|
max_tokens=2096, |
|
temperature=0.5, |
|
model_id='Qwen/Qwen2.5-Coder-32B-Instruct', |
|
custom_role_conversions=None, |
|
) |
|
|
|
|
|
|
|
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True) |
|
|
|
with open("prompts.yaml", 'r') as stream: |
|
prompt_templates = yaml.safe_load(stream) |
|
|
|
agent = CodeAgent( |
|
model=model, |
|
tools=[final_answer,image_generation_tool,get_square_root_tool,classify_educational_article], |
|
max_steps=6, |
|
verbosity_level=1, |
|
grammar=None, |
|
planning_interval=None, |
|
name=None, |
|
description=None, |
|
prompt_templates=prompt_templates |
|
) |
|
|
|
|
|
GradioUI(agent).launch() |