import os
import gradio as gr
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
# initialize the model
model_name = 'anugrahap/gpt2-indo-textgen'
# define the tokenization method
tokenizer = AutoTokenizer.from_pretrained(model_name,
model_max_length=1e30,
padding_side='right',
return_tensors='pt')
# add the EOS token as PAD token to avoid warnings
model = AutoModelForCausalLM.from_pretrained(model_name, pad_token_id=tokenizer.eos_token_id)
generator = pipeline('text-generation', model=model, tokenizer=tokenizer)
# create the decoder parameter to generate the text
def single_generation(text,min_length,max_length,temperature,top_k,top_p,num_beams,repetition_penalty,do_sample):
# create local variable for error parameter
error_rep=ValueError(f"ERROR: repetition penalty cannot be lower than one! Given rep penalty = {repetition_penalty}")
error_temp=ValueError(f"ERROR: temperature cannot be zero or lower! Given temperature = {temperature}")
error_minmax=ValueError(f"ERROR: min length must be lower than or equal to max length! Given min length = {min_length}")
error_numbeams_type=TypeError(f"ERROR: number of beams must be an integer not {type(num_beams)}")
error_topk_type=TypeError(f"ERROR: top k must be an integer not {type(top_k)}")
error_minmax_type=TypeError(f"ERROR: min length and max length must be an integer not {type(min_length)} and {type(max_length)}")
error_empty=ValueError("ERROR: Input Text cannot be empty!")
error_unknown=TypeError("Unknown Error.")
if text != '':
if type(min_length) == int and type(max_length) == int:
if type(top_k) == int:
if type(num_beams) == int:
if min_length <= max_length:
if temperature > 0:
if repetition_penalty >= 1:
result = generator(text,
min_length=min_length,
max_length=max_length,
temperature=temperature,
top_k=top_k,
top_p=top_p,
num_beams=num_beams,
repetition_penalty=repetition_penalty,
do_sample=do_sample,
no_repeat_ngram_size=2,
num_return_sequences=1)
return result[0]["generated_text"]
elif repetition_penalty < 1:
return error_rep
elif temperature <= 0:
return error_temp
elif min_length > max_length:
return error_minmax
elif type(num_beams) != int:
return error_numbeams_type
elif type(top_k) != int:
return error_topk_type
elif type(min_length) != int or type(max_length) != int:
return error_minmax_type
elif text == '':
return error_empty
else:
return error_unknown
# create the decoder parameter to generate the text
def multiple_generation(text,min_length,max_length,temperature,top_k,top_p,num_beams,repetition_penalty,do_sample):
# create local variable for error parameter
error_rep=ValueError(f"ERROR: repetition penalty cannot be lower than one! Given rep penalty = {repetition_penalty}")
error_temp=ValueError(f"ERROR: temperature cannot be zero or lower! Given temperature = {temperature}")
error_minmax=ValueError(f"ERROR: min length must be lower than or equal to max length! Given min length = {min_length}")
error_numbeams_type=TypeError(f"ERROR: number of beams must be an integer not {type(num_beams)}")
error_topk_type=TypeError(f"ERROR: top k must be an integer not {type(top_k)}")
error_minmax_type=TypeError(f"ERROR: min length and max length must be an integer not {type(min_length)} and {type(max_length)}")
error_empty=ValueError("ERROR: Input Text cannot be empty!")
error_unknown=TypeError("Unknown Error.")
if text != '':
if type(min_length) == int and type(max_length) == int:
if type(top_k) == int:
if type(num_beams) == int:
if min_length <= max_length:
if temperature > 0:
if repetition_penalty >= 1:
result = generator(text,
min_length=min_length,
max_length=max_length,
temperature=temperature,
top_k=top_k,
top_p=top_p,
num_beams=num_beams,
repetition_penalty=repetition_penalty,
do_sample=do_sample,
no_repeat_ngram_size=2,
num_return_sequences=3)
return result[0]["generated_text"], result[1]["generated_text"], result[2]["generated_text"],
elif repetition_penalty < 1:
return error_rep,error_rep,error_rep
elif temperature <= 0:
return error_temp,error_temp,error_temp
elif min_length > max_length:
return error_minmax,error_minmax,error_minmax
elif type(num_beams) != int:
return error_numbeams_type,error_numbeams_type,error_numbeams_type
elif type(top_k) != int:
return error_topk_type,error_topk_type,error_topk_type
elif type(min_length) != int or type(max_length) != int:
return error_minmax_type,error_minmax_type,error_minmax_type
elif text == '':
return error_empty,error_empty,error_empty
else:
return error_unknown,error_unknown,error_unknown
# create the baseline examples
examples = [
["Indonesia adalah negara kepulauan", 10, 30, 1.0, 25, 0.92, 5, 2.0, True],
["Indonesia adalah negara kepulauan", 10, 30, 1.0, 25, 0.92, 5, 1.0, False],
["Skripsi merupakan tugas akhir mahasiswa", 20, 40, 1.0, 50, 0.92, 1, 2.0, True],
["Skripsi merupakan tugas akhir mahasiswa", 20, 40, 1.0, 50, 0.92, 1, 1.0, False],
["Pemandangan di pantai kuta Bali sangatlah indah.", 30, 50, 0.5, 40, 0.98, 10, 1.0, True],
["Pemandangan di pantai kuta Bali sangatlah indah.", 10, 30, 1.5, 30, 0.93, 5, 2.0, True]]
HF_TOKEN = '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'
callback = gr.HuggingFaceDatasetSaver(HF_TOKEN, "output-gpt2-indo-textgen")
# using gradio block to create the interface
with gr.Blocks(title="GPT-2 Indonesian Text Generation Playground", theme='Default') as app:
gr.Markdown("""
This project is a part of thesis requirement of Anugrah Akbar Praramadhan
") with gr.Tabs(): #single generation with gr.TabItem("Single Generation"): with gr.Row(): with gr.Column(): input1=[gr.Textbox(lines=5, label="Input Text"), gr.Slider(label="Min Length", minimum=10, maximum=50, value=10, step=5), gr.Slider(label="Max Length", minimum=10, maximum=100, value=30, step=10), gr.Number(label="Temperature Sampling", value=1.5), gr.Slider(label="Top K Sampling", minimum=0, maximum=100, value=30, step=5), gr.Slider(label="Top P Sampling", minimum=0.01, maximum=1, value=0.93), gr.Slider(label="Number of Beams", minimum=1, maximum=10, value=5, step=1), gr.Number(label="Rep Penalty", value=2.0), gr.Dropdown(label="Do Sample?", choices=[True,False], value=True, multiselect=False)] with gr.Column(): output1=gr.Textbox(lines=5, max_lines=50, label="Generated Text with Greedy/Beam Search Decoding") button1=gr.Button("Run the model") button1.click(fn=single_generation, inputs=input1, outputs=output1, show_progress=True) flag_btn = gr.Button("Flag") callback.setup([input1,output1],"Flagged Data Points") flag_btn.click(lambda *args: callback.flag(args), input1, output1, preprocess=False) gr.Examples(examples, inputs=input1) #multiple generation with gr.TabItem("Multiple Generation"): with gr.Row(): with gr.Column(): input2=[gr.Textbox(lines=5, label="Input Text"), gr.Slider(label="Min Length", minimum=10, maximum=50, value=10, step=5), gr.Slider(label="Max Length", minimum=10, maximum=100, value=30, step=10), gr.Number(label="Temperature Sampling", value=1.5), gr.Slider(label="Top K Sampling", minimum=0, maximum=100, value=30, step=5), gr.Slider(label="Top P Sampling", minimum=0.01, maximum=1, value=0.93), gr.Slider(label="Number of Beams", minimum=1, maximum=10, value=5, step=1), gr.Number(label="Rep Penalty", value=2.0), gr.Dropdown(label="Do Sample?", choices=[True,False], value=True, multiselect=False)] with gr.Column(): output2=[gr.Textbox(lines=5, max_lines=50, label="#1 Generated Text with Greedy/Beam Search Decoding"), gr.Textbox(lines=5, max_lines=50, label="#2 Generated Text with Greedy/Beam Search Decoding"), gr.Textbox(lines=5, max_lines=50, label="#3 Generated Text with Greedy/Beam Search Decoding")] button2=gr.Button("Run the model") button2.click(fn=multiple_generation, inputs=input2, outputs=output2, show_progress=True) flag_btn = gr.Button("Flag") callback.setup([input2,output2],"Flagged Data Points") flag_btn.click(lambda *args: callback.flag(args), input2, output2, preprocess=False) gr.Examples(examples, inputs=input2) gr.Markdown("""Copyright Anugrah Akbar Praramadhan 2023
Trained on Indo4B Benchmark Dataset of Indonesian language Wikipedia with a Causal Language Modeling (CLM) objective
Link to the Project Repository
Original Paper """) if __name__=='__main__': app.launch()