anugrahap commited on
Commit
628ad1b
·
1 Parent(s): ed08507

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -202
app.py DELETED
@@ -1,202 +0,0 @@
1
- import os
2
- import gradio as gr
3
- from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
4
-
5
- # initialize the model
6
- model_name = 'anugrahap/gpt2-indo-textgen'
7
-
8
- # define the tokenization method
9
- tokenizer = AutoTokenizer.from_pretrained(model_name,
10
- model_max_length=1e30,
11
- padding_side='right',
12
- return_tensors='pt')
13
-
14
- # add the EOS token as PAD token to avoid warnings
15
- model = AutoModelForCausalLM.from_pretrained(model_name, pad_token_id=tokenizer.eos_token_id)
16
-
17
- generator = pipeline('text-generation', model=model, tokenizer=tokenizer)
18
-
19
- # create the decoder parameter to generate the text
20
- def single_generation(text,min_length,max_length,temperature,top_k,top_p,num_beams,repetition_penalty,do_sample):
21
- # create local variable for error parameter
22
- error_rep=ValueError(f"ERROR: repetition penalty cannot be lower than one! Given rep penalty = {repetition_penalty}")
23
- error_temp=ValueError(f"ERROR: temperature cannot be zero or lower! Given temperature = {temperature}")
24
- error_minmax=ValueError(f"ERROR: min length must be lower than or equal to max length! Given min length = {min_length}")
25
- error_numbeams_type=TypeError(f"ERROR: number of beams must be an integer not {type(num_beams)}")
26
- error_topk_type=TypeError(f"ERROR: top k must be an integer not {type(top_k)}")
27
- error_minmax_type=TypeError(f"ERROR: min length and max length must be an integer not {type(min_length)} and {type(max_length)}")
28
- error_empty=ValueError("ERROR: Input Text cannot be empty!")
29
- error_unknown=TypeError("Unknown Error.")
30
-
31
- if text != '':
32
- if type(min_length) == int and type(max_length) == int:
33
- if type(top_k) == int:
34
- if type(num_beams) == int:
35
- if min_length <= max_length:
36
- if temperature > 0:
37
- if repetition_penalty >= 1:
38
- result = generator(text,
39
- min_length=min_length,
40
- max_length=max_length,
41
- temperature=temperature,
42
- top_k=top_k,
43
- top_p=top_p,
44
- num_beams=num_beams,
45
- repetition_penalty=repetition_penalty,
46
- do_sample=do_sample,
47
- no_repeat_ngram_size=2,
48
- num_return_sequences=1)
49
- return result[0]["generated_text"]
50
- elif repetition_penalty < 1:
51
- return error_rep
52
- elif temperature <= 0:
53
- return error_temp
54
- elif min_length > max_length:
55
- return error_minmax
56
- elif type(num_beams) != int:
57
- return error_numbeams_type
58
- elif type(top_k) != int:
59
- return error_topk_type
60
- elif type(min_length) != int or type(max_length) != int:
61
- return error_minmax_type
62
- elif text == '':
63
- return error_empty
64
- else:
65
- return error_unknown
66
-
67
- # create the decoder parameter to generate the text
68
- def multiple_generation(text,min_length,max_length,temperature,top_k,top_p,num_beams,repetition_penalty,do_sample):
69
- # create local variable for error parameter
70
- error_rep=ValueError(f"ERROR: repetition penalty cannot be lower than one! Given rep penalty = {repetition_penalty}")
71
- error_temp=ValueError(f"ERROR: temperature cannot be zero or lower! Given temperature = {temperature}")
72
- error_minmax=ValueError(f"ERROR: min length must be lower than or equal to max length! Given min length = {min_length}")
73
- error_numbeams_type=TypeError(f"ERROR: number of beams must be an integer not {type(num_beams)}")
74
- error_topk_type=TypeError(f"ERROR: top k must be an integer not {type(top_k)}")
75
- error_minmax_type=TypeError(f"ERROR: min length and max length must be an integer not {type(min_length)} and {type(max_length)}")
76
- error_empty=ValueError("ERROR: Input Text cannot be empty!")
77
- error_unknown=TypeError("Unknown Error.")
78
-
79
- if text != '':
80
- if type(min_length) == int and type(max_length) == int:
81
- if type(top_k) == int:
82
- if type(num_beams) == int:
83
- if min_length <= max_length:
84
- if temperature > 0:
85
- if repetition_penalty >= 1:
86
- result = generator(text,
87
- min_length=min_length,
88
- max_length=max_length,
89
- temperature=temperature,
90
- top_k=top_k,
91
- top_p=top_p,
92
- num_beams=num_beams,
93
- repetition_penalty=repetition_penalty,
94
- do_sample=do_sample,
95
- no_repeat_ngram_size=2,
96
- num_return_sequences=3)
97
- return result[0]["generated_text"], result[1]["generated_text"], result[2]["generated_text"],
98
- elif repetition_penalty < 1:
99
- return error_rep,error_rep,error_rep
100
- elif temperature <= 0:
101
- return error_temp,error_temp,error_temp
102
- elif min_length > max_length:
103
- return error_minmax,error_minmax,error_minmax
104
- elif type(num_beams) != int:
105
- return error_numbeams_type,error_numbeams_type,error_numbeams_type
106
- elif type(top_k) != int:
107
- return error_topk_type,error_topk_type,error_topk_type
108
- elif type(min_length) != int or type(max_length) != int:
109
- return error_minmax_type,error_minmax_type,error_minmax_type
110
- elif text == '':
111
- return error_empty,error_empty,error_empty
112
- else:
113
- return error_unknown,error_unknown,error_unknown
114
-
115
-
116
- # create the baseline examples
117
- examples = [
118
- ["Indonesia adalah negara kepulauan", 10, 30, 1.0, 25, 0.92, 5, 2.0, True],
119
- ["Indonesia adalah negara kepulauan", 10, 30, 1.0, 25, 0.92, 5, 1.0, False],
120
- ["Skripsi merupakan tugas akhir mahasiswa", 20, 40, 1.0, 50, 0.92, 1, 2.0, True],
121
- ["Skripsi merupakan tugas akhir mahasiswa", 20, 40, 1.0, 50, 0.92, 1, 1.0, False],
122
- ["Pemandangan di pantai kuta Bali sangatlah indah.", 30, 50, 0.5, 40, 0.98, 10, 1.0, True],
123
- ["Pemandangan di pantai kuta Bali sangatlah indah.", 10, 30, 1.5, 30, 0.93, 5, 2.0, True]]
124
-
125
- # using gradio block to create the interface
126
- with gr.Blocks(title="GPT-2 Indonesian Text Generation Playground", theme='Default') as app:
127
- gr.Markdown("""
128
- <style>
129
- .center {
130
- display: block;
131
- margin-top: 20px;
132
- margin-down: 0px;
133
- margin-left: auto;
134
- margin-right: auto;
135
- }
136
- </style>
137
- <style>
138
- h1 {
139
- text-align: center;
140
- margin-top: 0px;
141
- }
142
- </style>
143
- <img src="https://iili.io/HayCG44.md.png"
144
- alt="Q-GEN Logo"
145
- border="0"
146
- class="center"
147
- style="height: 100px; width: 100px;"/>
148
- <h1>GPT-2 Indonesian Text Generation Playground</h1>""")
149
-
150
- gr.Markdown("<p><i>This project is a part of thesis requirement of Anugrah Akbar Praramadhan</i></p>")
151
-
152
- with gr.Tabs():
153
- #single generation
154
- with gr.TabItem("Single Generation"):
155
- with gr.Row():
156
- with gr.Column():
157
- input1=[gr.Textbox(lines=5, label="Input Text"),
158
- gr.Slider(label="Min Length", minimum=10, maximum=50, value=10, step=5),
159
- gr.Slider(label="Max Length", minimum=10, maximum=100, value=30, step=10),
160
- gr.Number(label="Temperature Sampling", value=1.5),
161
- gr.Slider(label="Top K Sampling", minimum=0, maximum=100, value=30, step=5),
162
- gr.Slider(label="Top P Sampling", minimum=0.01, maximum=1, value=0.93),
163
- gr.Slider(label="Number of Beams", minimum=1, maximum=10, value=5, step=1),
164
- gr.Number(label="Rep Penalty", value=2.0),
165
- gr.Dropdown(label="Do Sample?", choices=[True,False], value=True, multiselect=False)]
166
-
167
- with gr.Column():
168
- output1=gr.Textbox(lines=5, max_lines=50, label="Generated Text with Greedy/Beam Search Decoding")
169
- button1=gr.Button("Run the model")
170
- button1.click(fn=single_generation, inputs=input1, outputs=output1, show_progress=True)
171
- gr.Examples(examples, inputs=input1)
172
-
173
- #multiple generation
174
- with gr.TabItem("Multiple Generation"):
175
- with gr.Row():
176
- with gr.Column():
177
- input2=[gr.Textbox(lines=5, label="Input Text"),
178
- gr.Slider(label="Min Length", minimum=10, maximum=50, value=10, step=5),
179
- gr.Slider(label="Max Length", minimum=10, maximum=100, value=30, step=10),
180
- gr.Number(label="Temperature Sampling", value=1.5),
181
- gr.Slider(label="Top K Sampling", minimum=0, maximum=100, value=30, step=5),
182
- gr.Slider(label="Top P Sampling", minimum=0.01, maximum=1, value=0.93),
183
- gr.Slider(label="Number of Beams", minimum=1, maximum=10, value=5, step=1),
184
- gr.Number(label="Rep Penalty", value=2.0),
185
- gr.Dropdown(label="Do Sample?", choices=[True,False], value=True, multiselect=False)]
186
- with gr.Column():
187
- output2=[gr.Textbox(lines=5, max_lines=50, label="#1 Generated Text with Greedy/Beam Search Decoding"),
188
- gr.Textbox(lines=5, max_lines=50, label="#2 Generated Text with Greedy/Beam Search Decoding"),
189
- gr.Textbox(lines=5, max_lines=50, label="#3 Generated Text with Greedy/Beam Search Decoding")]
190
- button2=gr.Button("Run the model")
191
- button2.click(fn=multiple_generation, inputs=input2, outputs=output2, show_progress=True)
192
- gr.Examples(examples, inputs=input2)
193
-
194
- gr.Markdown("""<p style='text-align: center'>Copyright Anugrah Akbar Praramadhan 2023 <br>
195
- <p style='text-align: center'> Trained on Indo4B Benchmark Dataset of Indonesian language Wikipedia with a Causal Language Modeling (CLM) objective <br>
196
- <p style='text-align: center'><a href='https://huggingface.co/anugrahap/gpt2-indo-textgen' target='_blank'>Link to the Trained Model</a><br>
197
- <p style='text-align: center'><a href='https://huggingface.co/spaces/anugrahap/gpt2-indo-textgen/tree/main' target='_blank'>Link to the Project Repository</a><br>
198
- <p style='text-align: center'><a href='https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf' target='_blank'>Original Paper</a>
199
- """)
200
-
201
- if __name__=='__main__':
202
- app.launch()