Spaces:
Runtime error
Runtime error
import re | |
import gradio as gr | |
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM | |
model_name = 'anugrahap/gpt2-indo-textgen' | |
tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side='left') | |
model = AutoModelForCausalLM.from_pretrained(model_name, pad_token_id=tokenizer.eos_token_id) | |
generator = pipeline('text-generation', model=model, tokenizer=tokenizer) | |
def generate(text,min_length,max_length,temperature): | |
if min_length<=max_length: | |
result = generator(text, min_length=min_length, max_length=max_length, temperature=temperature, num_return_sequences=1) | |
return result[0]["generated_text"] | |
else: | |
return "Max Length must be greater or equals to Min Length!" | |
examples = [ | |
["Skripsi merupakan tugas akhir mahasiswa", 10, 30, 1.0], | |
["Nama aku budi, aku adalah seorang", 20, 40, 2.0], | |
["Indonesia adalah negara kepulauan", 30, 50, 5.0], | |
] | |
title = "GPT-2 Indonesian Text Generation" | |
description = "This project is a part of thesis requirement of Anugrah Akbar Praramadhan" | |
article = """<p style='text-align: center'> Copyright Anugrah Akbar Praramadhan 2023 <br> | |
<p style='text-align: center'> Trained on Indo4B Benchmark Dataset of Indonesian language Wikipedia with a Causal Language Modeling (CLM) objective <br> | |
<p style='text-align: center'><a href='https://huggingface.co/anugrahap/gpt2-indo-textgen' target='_blank'>Link to Trained Model</a><br> | |
<p style='text-align: center'><a href='https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf' target='_blank'>Original Paper</a> | |
""" | |
demo = gr.Interface( | |
fn=generate, | |
inputs=[gr.inputs.Textbox(lines=5, label="Input Text"), | |
gr.Slider(label="Min Length", minimum=10, maximum=50, value=10, step=5), | |
gr.Slider(label="Max Length", minimum=20, maximum=100, value=30, step=10), | |
gr.Number(label="Temperature/Randomness (ideally 1-10)", value=1.0)], | |
outputs=gr.outputs.Textbox(label="Generated Text"), | |
examples=examples, | |
title=title, | |
description=description, | |
article=article) | |
if __name__ == "__main__": | |
demo.launch() |