File size: 11,750 Bytes
7c34c28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a8e6af
7c34c28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
from typing import Optional, List
from dataclasses import field, dataclass
import logging
import subprocess
import pathlib
import torch
import shutil
import glob
import os
import json

import transformers
from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR
from transformers import Trainer

from multi_token.training_data import (
    DataArguments,
    LMMDataset,
    DataCollatorForSupervisedLMMDataset,
)
from multi_token.model_utils import (
    make_model_lora,
    get_peft_state,
    get_peft_state_non_lora,
    fix_tokenizer,
    MultiTaskType
)
from multi_token.modalities.base_modality import Modality


README_TEMPLATE = """
---
license: apache-2.0
base_model: {base_model}
dataset: {dataset}
tags:
  - finetuned
  - multimodal
inference: false
---

These are weights for a version of `{base_model}` finetuned for multimodal applications. 

### Modalities

{modalities}

### Usage

GitHub: https://github.com/sshh12/multi_token (includes training scripts and basic inference server)

### Dataset

{dataset} ({num_examples} examples)

```
{dataset_example}
```

### Training Device(s)

```
{training_devices_dump}
```


### Model

```
{repr_model}
```

"""


@dataclass
class TrainingArguments(transformers.TrainingArguments):
    cache_dir: Optional[str] = field(default=None)
    remove_unused_columns: bool = field(default=False)
    optim: str = field(default="adamw_torch")
    model_max_length: int = field(
        default=512,
        metadata={
            "help": "Maximum sequence length. Sequences will be right padded (and possibly truncated)."
        },
    )
    double_quant: bool = field(
        default=True,
        metadata={
            "help": "Compress the quantization statistics through double quantization."
        },
    )
    quant_type: str = field(
        default="nf4",
        metadata={
            "help": "Quantization data type to use. Should be one of `fp4` or `nf4`."
        },
    )
    pretrain_projectors: bool = field(default=False)
    pretrained_projectors_path: Optional[str] = field(default=None)
    pretrained_projectors_config: Optional[str] = field(default=None)
    bits: int = field(default=16, metadata={"help": "How many bits to use."})
    lora_enable: bool = False
    lora_r: int = 64
    lora_alpha: int = 16
    lora_dropout: float = 0.05
    lora_weight_path: str = ""
    lora_bias: str = "none"


@dataclass
class ModelArguments:
    model_name_or_path: str = field(default="mistralai/Mistral-7B-Instruct-v0.1")
    model_cls: str = field(default="MistralLMMForCausalLM")
    modality_builder: str = field(default="vision_clip")
    use_multi_task: int = field(default=MultiTaskType.PROJECTED_MULTI_TASK)
    tasks_config: str = field(default="src/sonicverse/configs/tasks.json")
    model_lora_path: Optional[str] = field(default="amaai-lab/SonicVerse")


class LMMTrainer(Trainer):
    def _save_checkpoint(self, model, trial, metrics=None):
        checkpoint_folder = f"{PREFIX_CHECKPOINT_DIR}-{self.state.global_step}"

        run_dir = self._get_output_dir(trial=trial)
        output_dir = os.path.join(run_dir, checkpoint_folder)
        self._save_extras(output_dir)

        super(LMMTrainer, self)._save_checkpoint(model, trial, metrics)

    def _save(self, output_dir: Optional[str] = None, state_dict=None):
        self._save_extras(output_dir)
        super(LMMTrainer, self)._save(output_dir, state_dict)
        for unused_dir in glob.iglob(os.path.join(output_dir, "global_step*")):
            shutil.rmtree(unused_dir)

    def _save_extras(self, output_dir: Optional[str] = None):
        self.model.config.save_pretrained(output_dir)

        task_names = []
        for m in self.model.modalities:
            task_names += m.tasks["task_heads"].keys()

        non_lora_state_dict = get_peft_state_non_lora(self.model.named_parameters(), task_names)
        torch.save(
            non_lora_state_dict,
            os.path.join(output_dir, "non_lora_trainables.bin"),
        )


def _get_training_devices_dump() -> str:
    out = subprocess.check_output(
        ["nvidia-smi", "--query-gpu=gpu_name,gpu_bus_id,vbios_version", "--format=csv"]
    )
    return out.decode("utf-8").strip()


def train_for_modalities(
    model_cls,
    training_args: TrainingArguments,
    model_args: ModelArguments,
    train_data_args: DataArguments,
    evaluation_data_args: DataArguments,
    modalities: List[Modality],
):
    for m in modalities:
        m.to(
            dtype=torch.bfloat16 if training_args.bf16 else torch.float16,
            device=training_args.device,
        )

    tokenizer = transformers.AutoTokenizer.from_pretrained(
        model_args.model_name_or_path,
        cache_dir=training_args.cache_dir,
        model_max_length=training_args.model_max_length,
        padding_side="right",
        use_fast=False,
    )
    fix_tokenizer(tokenizer)

    train_dataset = LMMDataset(train_data_args, tokenizer, modalities)
    evaluation_dataset = LMMDataset(evaluation_data_args, tokenizer, modalities)
    collator = DataCollatorForSupervisedLMMDataset(tokenizer, modalities)

    model = model_cls.from_pretrained(
        model_args.model_name_or_path,
        cache_dir=training_args.cache_dir,
    )
    model.to(
            dtype=torch.bfloat16 if training_args.bf16 else torch.float16,
            device=training_args.device,
        )
    model.modalities = modalities
    model.config.use_cache = False
    model.config.model_cls = model_cls.__name__
    model.config.modality_builder = model_args.modality_builder

    if training_args.gradient_checkpointing:
        if hasattr(model, "enable_input_require_grads"):
            model.enable_input_require_grads()
        else:

            def make_inputs_require_grad(module, input, output):
                output.requires_grad_(True)

            model.get_input_embeddings().register_forward_hook(make_inputs_require_grad)

    if model_args.model_lora_path:
        raise ValueError(
            "LoRA path not supported for training -- set the output path to an existing model to resume training"
        )

    if training_args.lora_enable:
        logging.info("Adding LoRA adapters...")
        model = make_model_lora(model, training_args)

    if training_args.pretrained_projectors_path:
        projector_weights_og = torch.load(
            training_args.pretrained_projectors_path, map_location="cpu"
        )
        if model_args.use_multi_task==MultiTaskType.SIMPLE_MULTI_TASK:
            projector_weights = {}
            for k, v in projector_weights_og.items():
                for m in modalities:
                    for task_name in m.tasks["task_heads"].keys():
                        if task_name in k:
                            projector_weights[k] = v
        else:
            projector_weights = {
                k: v for k, v in projector_weights_og.items() if "_lmm_projector" in k
            }

    elif training_args.pretrained_projectors_config:
        with open(training_args.pretrained_projectors_config, "r") as f:
            pretrained_weights_config = json.load(f)

        projector_weights = {}

        for pretrained_path_info in pretrained_weights_config["pretrained_paths"]:
            pretrained_path = pretrained_path_info["path"]
            components = pretrained_path_info["components"]
            use_prefix = pretrained_path_info["use_prefix"]
            prefix = pretrained_path_info["prefix"]
            
            pretrained_weights = torch.load(pretrained_path, map_location="cpu")
            
            for k, v in pretrained_weights.items():
                if any(component in k for component in components):
                    weight_key = k
                    if use_prefix:
                        weight_key = prefix + "." + k
                    projector_weights[weight_key] = v

    else:
        projector_weights = {}

    model.get_model().initialize_modules(modalities, projector_weights)

    task_names = []
    tasks = {}
    for m in model.modalities:
        if m.use_multi_task != MultiTaskType.NO_MULTI_TASK:
            tasks = m.tasks
            task_names += m.tasks["task_heads"].keys()

    if training_args.pretrain_projectors:
        model.requires_grad_(False)
        for m in modalities:
            if m.use_multi_task == MultiTaskType.SIMPLE_MULTI_TASK:
                for task_name in m.tasks["task_heads"].keys():
                    task_model = getattr(model.get_model(), m.name + "_" + task_name)
                    for p in task_model.parameters():
                        p.requires_grad = True
            elif m.use_multi_task == MultiTaskType.PROJECTED_MULTI_TASK:
                proj = getattr(model.get_model(), m.name + "_lmm_projector")
                
                if "backbone" in m.tasks.keys():
                    backbone = getattr(proj,  "backbone")
                    for backbone_param in backbone.parameters():
                        backbone_param.requires_grad = tasks["backbone"]["requires_grad"]

                for task in task_names:
                    task_head = getattr(proj, task)
                    for task_head_param in task_head.parameters():
                        task_head_param.requires_grad = tasks["task_heads"][task]["requires_grad"]
                    if task in tasks["task_projectors"]:
                        task_projector = getattr(proj, task + "_projector")
                        for task_projector_param in task_projector.parameters():
                            task_projector_param.requires_grad = tasks["task_projectors"][task]["requires_grad"]

            else:
                proj = getattr(model.get_model(), m.name + "_lmm_projector")
                for p in proj.parameters():
                    p.requires_grad = True

    os.makedirs(training_args.output_dir, exist_ok=True)
    with open(
        os.path.join(training_args.output_dir, "model_named_parameters.txt"), "w"
    ) as f:
        for name, param in model.named_parameters():
            f.write(f"{name} {param.shape} {param.requires_grad}\n")

    with open(os.path.join(training_args.output_dir, "README.md"), "w") as f:
        modalities_text = [
            f"* {m.__class__.__name__} (use `{m.token}` in text and provide `{m.data_key}`, encoded as {m.token_width} tokens)"
            for m in modalities
        ]
        readme_text = README_TEMPLATE.format(
            base_model=model_args.model_name_or_path,
            dataset=train_data_args.dataset_path,
            dataset_example=repr(train_dataset.get_example()),
            num_examples=len(train_dataset),
            modalities="\n".join(modalities_text),
            training_devices_dump=_get_training_devices_dump(),
            repr_model=f"{model_cls.__name__}.model =\n\n{repr(model)}",
        )
        f.write(readme_text)

    trainer = LMMTrainer(
        model=model,
        tokenizer=tokenizer,
        args=training_args,
        data_collator=collator,
        train_dataset=train_dataset,
        eval_dataset=evaluation_dataset,
    )

    if list(pathlib.Path(training_args.output_dir).glob(f"{PREFIX_CHECKPOINT_DIR}-*")):
        trainer.train(resume_from_checkpoint=True)
    else:
        trainer.train()

    trainer.save_state()

    model.config.use_cache = True
    model.config.save_pretrained(training_args.output_dir)
    state_dict = get_peft_state(model.named_parameters(), training_args.lora_bias)
    model.save_pretrained(training_args.output_dir, state_dict=state_dict)

    non_lora_state_dict = get_peft_state_non_lora(model.named_parameters(), task_names)
    torch.save(
        non_lora_state_dict,
        os.path.join(training_args.output_dir, "non_lora_trainables.bin"),
    )