Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,750 Bytes
7c34c28 3a8e6af 7c34c28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 |
from typing import Optional, List
from dataclasses import field, dataclass
import logging
import subprocess
import pathlib
import torch
import shutil
import glob
import os
import json
import transformers
from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR
from transformers import Trainer
from multi_token.training_data import (
DataArguments,
LMMDataset,
DataCollatorForSupervisedLMMDataset,
)
from multi_token.model_utils import (
make_model_lora,
get_peft_state,
get_peft_state_non_lora,
fix_tokenizer,
MultiTaskType
)
from multi_token.modalities.base_modality import Modality
README_TEMPLATE = """
---
license: apache-2.0
base_model: {base_model}
dataset: {dataset}
tags:
- finetuned
- multimodal
inference: false
---
These are weights for a version of `{base_model}` finetuned for multimodal applications.
### Modalities
{modalities}
### Usage
GitHub: https://github.com/sshh12/multi_token (includes training scripts and basic inference server)
### Dataset
{dataset} ({num_examples} examples)
```
{dataset_example}
```
### Training Device(s)
```
{training_devices_dump}
```
### Model
```
{repr_model}
```
"""
@dataclass
class TrainingArguments(transformers.TrainingArguments):
cache_dir: Optional[str] = field(default=None)
remove_unused_columns: bool = field(default=False)
optim: str = field(default="adamw_torch")
model_max_length: int = field(
default=512,
metadata={
"help": "Maximum sequence length. Sequences will be right padded (and possibly truncated)."
},
)
double_quant: bool = field(
default=True,
metadata={
"help": "Compress the quantization statistics through double quantization."
},
)
quant_type: str = field(
default="nf4",
metadata={
"help": "Quantization data type to use. Should be one of `fp4` or `nf4`."
},
)
pretrain_projectors: bool = field(default=False)
pretrained_projectors_path: Optional[str] = field(default=None)
pretrained_projectors_config: Optional[str] = field(default=None)
bits: int = field(default=16, metadata={"help": "How many bits to use."})
lora_enable: bool = False
lora_r: int = 64
lora_alpha: int = 16
lora_dropout: float = 0.05
lora_weight_path: str = ""
lora_bias: str = "none"
@dataclass
class ModelArguments:
model_name_or_path: str = field(default="mistralai/Mistral-7B-Instruct-v0.1")
model_cls: str = field(default="MistralLMMForCausalLM")
modality_builder: str = field(default="vision_clip")
use_multi_task: int = field(default=MultiTaskType.PROJECTED_MULTI_TASK)
tasks_config: str = field(default="src/sonicverse/configs/tasks.json")
model_lora_path: Optional[str] = field(default="amaai-lab/SonicVerse")
class LMMTrainer(Trainer):
def _save_checkpoint(self, model, trial, metrics=None):
checkpoint_folder = f"{PREFIX_CHECKPOINT_DIR}-{self.state.global_step}"
run_dir = self._get_output_dir(trial=trial)
output_dir = os.path.join(run_dir, checkpoint_folder)
self._save_extras(output_dir)
super(LMMTrainer, self)._save_checkpoint(model, trial, metrics)
def _save(self, output_dir: Optional[str] = None, state_dict=None):
self._save_extras(output_dir)
super(LMMTrainer, self)._save(output_dir, state_dict)
for unused_dir in glob.iglob(os.path.join(output_dir, "global_step*")):
shutil.rmtree(unused_dir)
def _save_extras(self, output_dir: Optional[str] = None):
self.model.config.save_pretrained(output_dir)
task_names = []
for m in self.model.modalities:
task_names += m.tasks["task_heads"].keys()
non_lora_state_dict = get_peft_state_non_lora(self.model.named_parameters(), task_names)
torch.save(
non_lora_state_dict,
os.path.join(output_dir, "non_lora_trainables.bin"),
)
def _get_training_devices_dump() -> str:
out = subprocess.check_output(
["nvidia-smi", "--query-gpu=gpu_name,gpu_bus_id,vbios_version", "--format=csv"]
)
return out.decode("utf-8").strip()
def train_for_modalities(
model_cls,
training_args: TrainingArguments,
model_args: ModelArguments,
train_data_args: DataArguments,
evaluation_data_args: DataArguments,
modalities: List[Modality],
):
for m in modalities:
m.to(
dtype=torch.bfloat16 if training_args.bf16 else torch.float16,
device=training_args.device,
)
tokenizer = transformers.AutoTokenizer.from_pretrained(
model_args.model_name_or_path,
cache_dir=training_args.cache_dir,
model_max_length=training_args.model_max_length,
padding_side="right",
use_fast=False,
)
fix_tokenizer(tokenizer)
train_dataset = LMMDataset(train_data_args, tokenizer, modalities)
evaluation_dataset = LMMDataset(evaluation_data_args, tokenizer, modalities)
collator = DataCollatorForSupervisedLMMDataset(tokenizer, modalities)
model = model_cls.from_pretrained(
model_args.model_name_or_path,
cache_dir=training_args.cache_dir,
)
model.to(
dtype=torch.bfloat16 if training_args.bf16 else torch.float16,
device=training_args.device,
)
model.modalities = modalities
model.config.use_cache = False
model.config.model_cls = model_cls.__name__
model.config.modality_builder = model_args.modality_builder
if training_args.gradient_checkpointing:
if hasattr(model, "enable_input_require_grads"):
model.enable_input_require_grads()
else:
def make_inputs_require_grad(module, input, output):
output.requires_grad_(True)
model.get_input_embeddings().register_forward_hook(make_inputs_require_grad)
if model_args.model_lora_path:
raise ValueError(
"LoRA path not supported for training -- set the output path to an existing model to resume training"
)
if training_args.lora_enable:
logging.info("Adding LoRA adapters...")
model = make_model_lora(model, training_args)
if training_args.pretrained_projectors_path:
projector_weights_og = torch.load(
training_args.pretrained_projectors_path, map_location="cpu"
)
if model_args.use_multi_task==MultiTaskType.SIMPLE_MULTI_TASK:
projector_weights = {}
for k, v in projector_weights_og.items():
for m in modalities:
for task_name in m.tasks["task_heads"].keys():
if task_name in k:
projector_weights[k] = v
else:
projector_weights = {
k: v for k, v in projector_weights_og.items() if "_lmm_projector" in k
}
elif training_args.pretrained_projectors_config:
with open(training_args.pretrained_projectors_config, "r") as f:
pretrained_weights_config = json.load(f)
projector_weights = {}
for pretrained_path_info in pretrained_weights_config["pretrained_paths"]:
pretrained_path = pretrained_path_info["path"]
components = pretrained_path_info["components"]
use_prefix = pretrained_path_info["use_prefix"]
prefix = pretrained_path_info["prefix"]
pretrained_weights = torch.load(pretrained_path, map_location="cpu")
for k, v in pretrained_weights.items():
if any(component in k for component in components):
weight_key = k
if use_prefix:
weight_key = prefix + "." + k
projector_weights[weight_key] = v
else:
projector_weights = {}
model.get_model().initialize_modules(modalities, projector_weights)
task_names = []
tasks = {}
for m in model.modalities:
if m.use_multi_task != MultiTaskType.NO_MULTI_TASK:
tasks = m.tasks
task_names += m.tasks["task_heads"].keys()
if training_args.pretrain_projectors:
model.requires_grad_(False)
for m in modalities:
if m.use_multi_task == MultiTaskType.SIMPLE_MULTI_TASK:
for task_name in m.tasks["task_heads"].keys():
task_model = getattr(model.get_model(), m.name + "_" + task_name)
for p in task_model.parameters():
p.requires_grad = True
elif m.use_multi_task == MultiTaskType.PROJECTED_MULTI_TASK:
proj = getattr(model.get_model(), m.name + "_lmm_projector")
if "backbone" in m.tasks.keys():
backbone = getattr(proj, "backbone")
for backbone_param in backbone.parameters():
backbone_param.requires_grad = tasks["backbone"]["requires_grad"]
for task in task_names:
task_head = getattr(proj, task)
for task_head_param in task_head.parameters():
task_head_param.requires_grad = tasks["task_heads"][task]["requires_grad"]
if task in tasks["task_projectors"]:
task_projector = getattr(proj, task + "_projector")
for task_projector_param in task_projector.parameters():
task_projector_param.requires_grad = tasks["task_projectors"][task]["requires_grad"]
else:
proj = getattr(model.get_model(), m.name + "_lmm_projector")
for p in proj.parameters():
p.requires_grad = True
os.makedirs(training_args.output_dir, exist_ok=True)
with open(
os.path.join(training_args.output_dir, "model_named_parameters.txt"), "w"
) as f:
for name, param in model.named_parameters():
f.write(f"{name} {param.shape} {param.requires_grad}\n")
with open(os.path.join(training_args.output_dir, "README.md"), "w") as f:
modalities_text = [
f"* {m.__class__.__name__} (use `{m.token}` in text and provide `{m.data_key}`, encoded as {m.token_width} tokens)"
for m in modalities
]
readme_text = README_TEMPLATE.format(
base_model=model_args.model_name_or_path,
dataset=train_data_args.dataset_path,
dataset_example=repr(train_dataset.get_example()),
num_examples=len(train_dataset),
modalities="\n".join(modalities_text),
training_devices_dump=_get_training_devices_dump(),
repr_model=f"{model_cls.__name__}.model =\n\n{repr(model)}",
)
f.write(readme_text)
trainer = LMMTrainer(
model=model,
tokenizer=tokenizer,
args=training_args,
data_collator=collator,
train_dataset=train_dataset,
eval_dataset=evaluation_dataset,
)
if list(pathlib.Path(training_args.output_dir).glob(f"{PREFIX_CHECKPOINT_DIR}-*")):
trainer.train(resume_from_checkpoint=True)
else:
trainer.train()
trainer.save_state()
model.config.use_cache = True
model.config.save_pretrained(training_args.output_dir)
state_dict = get_peft_state(model.named_parameters(), training_args.lora_bias)
model.save_pretrained(training_args.output_dir, state_dict=state_dict)
non_lora_state_dict = get_peft_state_non_lora(model.named_parameters(), task_names)
torch.save(
non_lora_state_dict,
os.path.join(training_args.output_dir, "non_lora_trainables.bin"),
)
|