File size: 5,761 Bytes
7c34c28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
from typing import Dict, List, Optional

import torch
import torch.nn as nn
from transformers import Wav2Vec2FeatureExtractor, AutoModel

from multi_token.model_utils import MultiTaskType
from multi_token.data_tools import load_audio
from multi_token.modalities.base_modality import Modality
from multi_token.modalities.projectors import (
    build_mlp_vector_projector, build_mt_vector_projector, build_multi_layer_cnn_mlp_projector, MultiTaskModel
)

import json

OUTPUT_EMB_CHANNELS = 1024
OUTPUT_EMB_SIZE = 760
OUTPUT_FEATURE_LAYERS = 25

class MERTAudioModule(nn.Module):
    def __init__(self, model_name_or_path: str):
        super().__init__()
        self.model_name_or_path = model_name_or_path
        self.model = None
        self.processor = None

        self.load_model()

    def load_model(self):
        self.model = AutoModel.from_pretrained(self.model_name_or_path, trust_remote_code=True)
        self.processor = Wav2Vec2FeatureExtractor.from_pretrained(self.model_name_or_path,trust_remote_code=True)
        self.model.requires_grad_(False)

    @torch.no_grad()
    def forward(self, audios) -> torch.Tensor:
        embs = []
        for audio_features in audios:
            outputs = self.model(**audio_features.to(torch.float32), output_hidden_states=True)
            features = torch.stack(outputs.hidden_states).squeeze()
            embs.append(features)
        embs = torch.stack(embs)
        embs = embs.squeeze()
        padding_needed = OUTPUT_EMB_SIZE - embs.shape[1]
        embs = torch.nn.functional.pad(embs, (0, 0, 0, padding_needed, 0, 0))
        return embs

    @property
    def dtype(self):
        return self.model.dtype

    @property
    def device(self):
        return self.model.device


class MERTAudioModality(Modality):
    def __init__(
        self,
        model_name_or_path: str = "m-a-p/MERT-v1-330M",
        num_tokens_output: int = 10,
        hidden_dim: int = 32,
        num_conv_layers: int = 5,
        num_mlp_layers: int = 5,
        use_multi_task: MultiTaskType = MultiTaskType.NO_MULTI_TASK,
        tasks_config: str = None
    ):
        self.model_name_or_path = model_name_or_path
        self.module = MERTAudioModule(model_name_or_path=self.model_name_or_path)
        self.num_tokens_output = num_tokens_output
        self.hidden_dim = hidden_dim
        self.num_conv_layers = num_conv_layers
        self.num_mlp_layers = num_mlp_layers
        self.dtype = torch.float32
        self.use_multi_task = use_multi_task
        self.tasks = None
        if self.use_multi_task != MultiTaskType.NO_MULTI_TASK:            
            with open(tasks_config, 'r') as f:
                self.tasks = json.load(f)

        print("Tasks :", self.tasks)

    # all_layer_hidden_states = torch.stack(outputs.hidden_states).squeeze()
    # print(all_layer_hidden_states.shape) # [25 layer, Time steps, 1024 feature_dim]
    # time_reduced_hidden_states = all_layer_hidden_states.mean(-2)
    # print(time_reduced_hidden_states.shape) # [25, 1024]

    def build_projector(self, lm_hidden_size: int) -> nn.Module:
        if self.use_multi_task == MultiTaskType.PROJECTED_MULTI_TASK:
            projector = MultiTaskModel(OUTPUT_EMB_CHANNELS, OUTPUT_FEATURE_LAYERS, True, self.tasks)
            print("projector ", projector)
            return projector
        elif self.use_multi_task == MultiTaskType.SIMPLE_MULTI_TASK:
            return build_mt_vector_projector(
            # return build_mlp_vector_projector(
                input_hidden_size=OUTPUT_EMB_SIZE,
                lm_hidden_size=lm_hidden_size,
            #     num_layers=self.num_projector_layers,
            #     num_tokens=self.num_tokens_output,
            # )
                tasks = self.tasks
            )
            # )["llm_projector"]
        else:
            return build_multi_layer_cnn_mlp_projector(
                input_channels = OUTPUT_EMB_CHANNELS,
                input_size = OUTPUT_EMB_SIZE,
                num_feature_layers= OUTPUT_FEATURE_LAYERS,
                lm_hidden_size = lm_hidden_size,
                num_tokens = self.num_tokens_output,
                hidden_dim = self.hidden_dim,
                num_conv_layers = self.num_conv_layers,
                num_mlp_layers = self.num_mlp_layers
            )

    @property
    def name(self) -> str:
        return "audio_mert"

    @property
    def token(self) -> str:
        return "<sound>"

    @property
    def data_key(self) -> str:
        return "sounds"

    @property
    def token_width(self) -> int:
        return self.num_tokens_output

    def to(self, dtype: torch.dtype, device: torch.device) -> "MERTAudioModality":
        self.dtype = dtype
        self.module.to(device=device)
        return self

    def preprocess_rows(self, rows: List[Dict]) -> List[Optional[Dict]]:
        row_values = []
        for row in rows:
            audios = []
            for audio_dict in row[self.data_key]:
                audio_dict = load_audio(
                    audio_dict,
                    target_sampling_rate=self.module.processor.sampling_rate,
                )
                audio_processed = self.module.processor(
                    audio_dict["array"],
                    return_tensors="pt",
                    sampling_rate=audio_dict["sampling_rate"],
                )
                audios.append(audio_processed)
            row_values.append(audios)
        return row_values

    @torch.no_grad()
    def forward(self, encoded_values: List[torch.Tensor]) -> List[torch.Tensor]:
        audio_features = []
        for audio_batch in encoded_values:
            audio_features.append(self.module.forward(audio_batch).to(dtype=self.dtype))
        return audio_features