File size: 8,366 Bytes
7c34c28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236

from typing import List, Optional, Tuple, Union

import torch
import torch.nn as nn
from torch.nn import CrossEntropyLoss

from transformers import (
    AutoConfig,
    AutoModelForCausalLM,
    MistralConfig,
    MistralModel,
    MistralForCausalLM,
)

from transformers.modeling_outputs import CausalLMOutputWithPast

from multi_token.language_models.base_model import (
    LMMMetaModel,
    LMMMetaForCausalLM,
)


class MistralLMMConfig(MistralConfig):
    model_type = "mistral-lmm"


class MistralLMMModel(LMMMetaModel, MistralModel):
    config_class = MistralLMMConfig

    def __init__(self, config: MistralLMMConfig):
        super(MistralLMMModel, self).__init__(config)


class MistralLMMForCausalLM(MistralForCausalLM, LMMMetaForCausalLM):
    config_class = MistralLMMConfig

    def __init__(self, config):
        super(MistralForCausalLM, self).__init__(config)
        self.model = MistralLMMModel(config)

        self.vocab_size = config.vocab_size
        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
        self.modalities = None

        # Initialize weights and apply final processing
        self.post_init()

    def get_model(self) -> "MistralLMMForCausalLM":
        return self.model

    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[List] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        **kwargs
    ) -> Union[Tuple, CausalLMOutputWithPast]:
        #print("Past keys ",past_key_values)
        output_attentions = (
            output_attentions
            if output_attentions is not None
            else self.config.output_attentions
        )
        output_hidden_states = (
            output_hidden_states
            if output_hidden_states is not None
            else self.config.output_hidden_states
        )
        return_dict = (
            return_dict if return_dict is not None else self.config.use_return_dict
        )

        if labels != None:
            labels_inp = labels[0]
        else:
            labels_inp = labels
        (
            input_ids,
            attention_mask,
            past_key_values,
            inputs_embeds,
            lmm_labels,
            task_values
        ) = self.prepare_inputs_labels_for_multimodal(
            input_ids, attention_mask, past_key_values, labels_inp, **kwargs
        )

        # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
        outputs = self.model(
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        hidden_states = outputs[0]
        logits = self.lm_head(hidden_states)
        logits = logits.float()

        # print("Labels 1 size ", len(labels[1]))
        # print("labels 1 element size ", len(labels[1][0]))
        # print("labels 1 element 1 task size ", labels[1][0][0].shape)
        # print("labels 1 element 2 task size ", labels[1][0][1].shape)
        # print("labels 1 element 3 task size ", labels[1][0][2].shape)
        # print("task vals size ", len(task_values))
        # for task in task_values.keys():
        #     print(" task ", task, len(task_values[task]))
        #     print(" task element", task, task_values[task][0].shape)


        if labels != None:
            task_pairs = {}
            task_list = list(task_values.keys())
            for task_id in range(len(task_list)):
                _task_labels = []
                _task_outputs = []

                _task = task_list[task_id]
                for inst in range(len(task_values[_task])):
                    # print("task output shape ", _task, task_values[_task][inst].shape)
                    _task_outputs.append(task_values[_task][inst].unsqueeze(0))
                    _task_labels.append(torch.stack([labels[1][inst][task_id]]))

                task_pairs[_task] = [_task_labels, _task_outputs]
                # print("TASK ", _task)
                # print(" LABELS LEN ", len(task_pairs[_task][0]))
                # print(" LABELS ELEM shape ", task_pairs[_task][0][0].shape)
                # print(" VALUES LEN ", len(task_pairs[_task][1]))
                # print(" VALUES ELEM shape ", task_pairs[_task][1][0].shape)

        loss = None
        if lmm_labels is not None:
            # Shift so that tokens < n predict n
            shift_logits = logits[..., :-1, :].contiguous()
            shift_labels = lmm_labels[..., 1:].contiguous()
            # Flatten the tokens
            loss_fct = CrossEntropyLoss()
            shift_logits = shift_logits.view(-1, self.config.vocab_size)
            shift_labels = shift_labels.view(-1)
            # Enable model parallelism
            shift_labels = shift_labels.to(shift_logits.device)
            loss = loss_fct(shift_logits, shift_labels)

        # print("loss ", loss)


        if labels != None:
            task_loss = {}
            for task in task_list:
                preds = torch.cat(task_pairs[task][1], dim=0)
                labs = torch.cat(task_pairs[task][0], dim=0)
                preds_flat = preds.view(-1, preds.size(-1))  # Reshape to (batch_size * sequence_length, num_classes)
                labs_flat = labs.view(-1)  # Reshape to (batch_size * sequence_length)

                #print("task ", task)
                #print("preds shape ", preds.shape)
                #print("labs shape ", labs.shape)
                if task == "lmm_projector":
                    task_loss[task] = CrossEntropyLoss()(preds,labs)
                else:
                    task_loss[task] = nn.BCEWithLogitsLoss()(preds, labs)
        # print("task losses ", task_loss)

        total_loss = None
        if labels != None:
            total_task_loss = None
            for task in task_list:
                if self.modalities[0].tasks["task_heads"][task]["weight"] != 0.0:
                    if total_task_loss != None:
                        total_task_loss += self.modalities[0].tasks["task_heads"][task]["weight"]*task_loss[task]
                    else:
                        total_task_loss = self.modalities[0].tasks["task_heads"][task]["weight"]*task_loss[task]

            if total_task_loss != None:
                total_loss = self.modalities[0].tasks["task_heads"]["lmm_projector"]["weight"]*loss + total_task_loss
            else:
                total_loss = loss

        if not return_dict:
            output = (logits,) + outputs[1:]
            return (total_loss,) + output if total_loss is not None else output

        return CausalLMOutputWithPast(
            loss=total_loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )

    def prepare_inputs_for_generation(
        self,
        input_ids,
        past_key_values=None,
        attention_mask=None,
        inputs_embeds=None,
        modality_inputs=None,
        **kwargs
    ):
        #print("hoooo", past_key_values)

        #past_key_values = None
        if past_key_values:
            input_ids = input_ids[:, -1:]

        if inputs_embeds is not None:
            raise ValueError("inputs_embeds not supported")

        model_inputs = {
            "input_ids": input_ids,
            "position_ids": None,
            "past_key_values": past_key_values,
            "use_cache": kwargs.get("use_cache"),
            "attention_mask": attention_mask,
            **(modality_inputs or {}),
        }

        return model_inputs


AutoConfig.register("mistral-lmm", MistralLMMConfig)
AutoModelForCausalLM.register(MistralLMMConfig, MistralLMMForCausalLM)