File size: 7,967 Bytes
7c34c28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
from typing import List, Dict
from abc import ABC, abstractmethod

from torch.nn.functional import conv1d
import torch
import logging

from multi_token.modalities.base_modality import Modality
from multi_token.model_utils import MultiTaskType

from torchviz import make_dot

class LMMMetaModel:
    def __init__(self, config):
        super(LMMMetaModel, self).__init__(config)

    def _load_projector_weights(self, weights: Dict):
        weights = {
            (k[23:] if k.startswith("base_model.model.model.") else k): v
            for k, v in weights.items()
        }
        logging.info(f"Loading pretrained weights: {list(weights.keys())}")
        load_result = self.load_state_dict(weights, strict=False)
        assert (
            len(load_result.unexpected_keys) == 0
        ), "Unexpected weights, is this the right model?"

    def initialize_pretrained_modules(self, modalities: List[Modality], weights: Dict):
        for m in modalities:
            # projector = m.build_projector(self.config.hidden_size)
            # setattr(self, m.name + "_lmm_projector", projector)
            projector = m.build_projector(self.config.hidden_size)
            if m.use_multi_task == MultiTaskType.SIMPLE_MULTI_TASK:
                for task_name in m.tasks["task_heads"].keys():
                    task_model = projector[task_name]
                    setattr(self, m.name + "_" + task_name, task_model)
            else:
                setattr(self, m.name + "_lmm_projector", projector)

        self._load_projector_weights(weights)

    def initialize_modules(self, modalities: List[Modality], weights: Dict):
        names = [m.name for m in modalities]

        self.config.modalities = names

        for m in modalities:
            # projector = m.build_projector(self.config.hidden_size)
            # setattr(self, m.name + "_lmm_projector", projector)
            projector = m.build_projector(self.config.hidden_size)
            if m.use_multi_task == MultiTaskType.SIMPLE_MULTI_TASK:
                for task_name in m.tasks["task_heads"].keys():
                    task_model = projector[task_name]
                    setattr(self, m.name + "_" + task_name, task_model)
            else:
                setattr(self, m.name + "_lmm_projector", projector)

        self._load_projector_weights(weights)


class LMMMetaForCausalLM(ABC):
    @abstractmethod
    def get_model(self) -> "LMMMetaForCausalLM":
        pass

    def prepare_inputs_labels_for_multimodal(
        self, input_ids, attention_mask, past_key_values, labels, **kwargs
    ):
        model = self.get_model()

        batch_size, seq_len = input_ids.shape

        # batch_size x seq_len x embedding_hidden_size
        inputs_embeds = torch.zeros(
            (batch_size, seq_len, self.config.hidden_size),
            dtype=self.dtype,
            device=self.device,
        )

        # modality x batch_size x instance_idx x modality_token_width x embedding_hidden_size
        projected_tensors = []
        # assuming that if caching is enabled, we'll never have past_key_values AND need to encode the instruction modality values
        task_vals = {}

        #print("here past_key_values", past_key_values)
        #past_key_values == None
        if past_key_values is None:
            for m in self.modalities:
                m_vals = m.forward(kwargs.get(m.name))
                mp_vals = []
                if m.use_multi_task == MultiTaskType.SIMPLE_MULTI_TASK:
                    proj = {}
                    for task_name in m.tasks["task_heads"].keys():
                        proj[task_name] = getattr(model, m.name + "_" + task_name)
                else:
                    proj = getattr(model, m.name + "_lmm_projector")

                # project each batch into language model token space
                for m_val in m_vals:
                    if m.use_multi_task == MultiTaskType.SIMPLE_MULTI_TASK:
                        for task_name in m.tasks["task_heads"].keys():
                            if task_name == "lmm_projector":
                                mp_vals.append(proj[task_name](m_val))
                                # make_dot(mp_vals[-1], params=dict(list(model.named_parameters()))).render(task_name, format="png")
                            else:
                                if task_name not in task_vals:
                                    task_vals[task_name] = [proj[task_name](m_val)]
                                else:
                                    task_vals[task_name].append(proj[task_name](m_val))
                                # make_dot(task_vals[task_name], params=dict(list(model.named_parameters()))).render(task_name, format="png")

                    elif m.use_multi_task == MultiTaskType.PROJECTED_MULTI_TASK:
                        task_outputs = proj(m_val)
                        mp_vals.append(task_outputs.pop("projectors"))
                        for task_name in task_outputs.keys():
                            if not task_name in task_vals:
                                task_vals[task_name] = [task_outputs[task_name]]
                            else:
                                task_vals[task_name].append(task_outputs[task_name])
                    else:
                        mp_vals.append(proj(m_val))

                assert all(
                    mp_val.shape[1:] == (m.token_width, self.config.hidden_size)
                    for mp_val in mp_vals
                ), (
                    "Modality tensors have incorrect shape, check your projector implementation "
                    + str([mp_val.shape[1:] for mp_val in mp_vals])
                    + " vs expected "
                    + str((m.token_width, self.config.hidden_size))
                )
                projected_tensors.append(mp_vals)

        indices = None
        for i, input_ids_sample in enumerate(input_ids):
            is_text_mask = input_ids_sample >= 0

            # fill in all the LLM-based text embeddings
            inputs_embeds[i, is_text_mask] = model.embed_tokens(
                input_ids_sample[is_text_mask]
            )

            # skip if all tokens are text tokens
            if is_text_mask.sum() == seq_len:
                continue
            assert (
                past_key_values is None
            ), "We shouldn't have cached keys if this is the first instruction pass"

            #past_key_values = None

            for mi, m in enumerate(self.modalities):
                # locate the group of tokens for this modality
                m_mask = (input_ids_sample == m.token_idx).float()
                m_kernel = torch.tensor(
                    [-1] * m.token_width, dtype=m_mask.dtype, device=m_mask.device
                )
                m_conv = conv1d(
                    m_mask.unsqueeze(0).unsqueeze(0),
                    m_kernel.unsqueeze(0).unsqueeze(0),
                )

                # where do we see `token_width`-tokens in a row?
                indices = (m_conv[0, 0] == -m.token_width).nonzero(as_tuple=True)[0]

                # fill these embeddings with the projected modality tensor
                last_covered_idx = -1
                k = 0
                for possible_token_idx in indices:
                    if possible_token_idx <= last_covered_idx:
                        # make sure we don't overwrite an instance we've already covered
                        # handles bug caused by back-to-back tokens
                        continue
                    batch_modality_tensor = projected_tensors[mi][i][k]
                    inputs_embeds[
                        i, possible_token_idx : possible_token_idx + m.token_width
                    ] = batch_modality_tensor
                    last_covered_idx = possible_token_idx + m.token_width - 1
                    k += 1

        return None, attention_mask, past_key_values, inputs_embeds, labels, task_vals