from ultralytics import YOLO #base model model = YOLO("yolov8m.pt") #for better accuracy model.train( data="data.yaml", epochs=45, # increased to allow better convergence patience=20, # early stopping if no val improvement imgsz=640, # image size FOR ACCURACY batch=8, conf=0.25, # initial THRESHOLD name="detector", augment=True, # enables data augmentation auto_augment='randaugment',# advanced augmentation lr0=0.001, # initial learning rate cos_lr=True, # cosine learning rate schedule (smoother training) save=True, save_period=10, # save weights every 10 epochs )