Spaces:
Runtime error
Runtime error
File size: 31,891 Bytes
7bd8456 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 |
# -*- coding: utf-8 -*-
from .recognition import get_recognizer, get_text
from .utils import group_text_box, get_image_list, calculate_md5, get_paragraph,\
download_and_unzip, printProgressBar, diff, reformat_input,\
make_rotated_img_list, set_result_with_confidence,\
reformat_input_batched, merge_to_free
from .config import *
from bidi import get_display
import numpy as np
import cv2
import torch
import os
import sys
from PIL import Image
from logging import getLogger
import yaml
import json
if sys.version_info[0] == 2:
from io import open
from six.moves.urllib.request import urlretrieve
from pathlib2 import Path
else:
from urllib.request import urlretrieve
from pathlib import Path
LOGGER = getLogger(__name__)
class Reader(object):
def __init__(self, lang_list, gpu=True, model_storage_directory=None,
user_network_directory=None, detect_network="craft",
recog_network='standard', download_enabled=True,
detector=True, recognizer=True, verbose=True,
quantize=True, cudnn_benchmark=False):
"""Create an EasyOCR Reader
Parameters:
lang_list (list): Language codes (ISO 639) for languages to be recognized during analysis.
gpu (bool): Enable GPU support (default)
model_storage_directory (string): Path to directory for model data. If not specified,
models will be read from a directory as defined by the environment variable
EASYOCR_MODULE_PATH (preferred), MODULE_PATH (if defined), or ~/.EasyOCR/.
user_network_directory (string): Path to directory for custom network architecture.
If not specified, it is as defined by the environment variable
EASYOCR_MODULE_PATH (preferred), MODULE_PATH (if defined), or ~/.EasyOCR/.
download_enabled (bool): Enabled downloading of model data via HTTP (default).
"""
self.verbose = verbose
self.download_enabled = download_enabled
self.model_storage_directory = MODULE_PATH + '/model'
if model_storage_directory:
self.model_storage_directory = model_storage_directory
Path(self.model_storage_directory).mkdir(parents=True, exist_ok=True)
self.user_network_directory = MODULE_PATH + '/user_network'
if user_network_directory:
self.user_network_directory = user_network_directory
Path(self.user_network_directory).mkdir(parents=True, exist_ok=True)
sys.path.append(self.user_network_directory)
if gpu is False:
self.device = 'cpu'
if verbose:
LOGGER.warning('Using CPU. Note: This module is much faster with a GPU.')
elif gpu is True:
if torch.cuda.is_available():
self.device = 'cuda'
elif torch.backends.mps.is_available():
self.device = 'mps'
else:
self.device = 'cpu'
if verbose:
LOGGER.warning('Neither CUDA nor MPS are available - defaulting to CPU. Note: This module is much faster with a GPU.')
else:
self.device = gpu
self.detection_models = detection_models
self.recognition_models = recognition_models
# check and download detection model
self.support_detection_network = ['craft', 'dbnet18']
self.quantize=quantize,
self.cudnn_benchmark=cudnn_benchmark
if detector:
detector_path = self.getDetectorPath(detect_network)
# recognition model
separator_list = {}
if recog_network in ['standard'] + [model for model in recognition_models['gen1']] + [model for model in recognition_models['gen2']]:
if recog_network in [model for model in recognition_models['gen1']]:
model = recognition_models['gen1'][recog_network]
recog_network = 'generation1'
self.model_lang = model['model_script']
elif recog_network in [model for model in recognition_models['gen2']]:
model = recognition_models['gen2'][recog_network]
recog_network = 'generation2'
self.model_lang = model['model_script']
else: # auto-detect
unknown_lang = set(lang_list) - set(all_lang_list)
if unknown_lang != set():
raise ValueError(unknown_lang, 'is not supported')
# choose recognition model
if lang_list == ['en']:
self.setModelLanguage('english', lang_list, ['en'], '["en"]')
model = recognition_models['gen2']['english_g2']
recog_network = 'generation2'
elif 'th' in lang_list:
self.setModelLanguage('thai', lang_list, ['th','en'], '["th","en"]')
model = recognition_models['gen1']['thai_g1']
recog_network = 'generation1'
elif 'ch_tra' in lang_list:
self.setModelLanguage('chinese_tra', lang_list, ['ch_tra','en'], '["ch_tra","en"]')
model = recognition_models['gen1']['zh_tra_g1']
recog_network = 'generation1'
elif 'ch_sim' in lang_list:
self.setModelLanguage('chinese_sim', lang_list, ['ch_sim','en'], '["ch_sim","en"]')
model = recognition_models['gen2']['zh_sim_g2']
recog_network = 'generation2'
elif 'ja' in lang_list:
self.setModelLanguage('japanese', lang_list, ['ja','en'], '["ja","en"]')
model = recognition_models['gen2']['japanese_g2']
recog_network = 'generation2'
elif 'ko' in lang_list:
self.setModelLanguage('korean', lang_list, ['ko','en'], '["ko","en"]')
model = recognition_models['gen2']['korean_g2']
recog_network = 'generation2'
elif 'ta' in lang_list:
self.setModelLanguage('tamil', lang_list, ['ta','en'], '["ta","en"]')
model = recognition_models['gen1']['tamil_g1']
recog_network = 'generation1'
elif 'te' in lang_list:
self.setModelLanguage('telugu', lang_list, ['te','en'], '["te","en"]')
model = recognition_models['gen2']['telugu_g2']
recog_network = 'generation2'
elif 'kn' in lang_list:
self.setModelLanguage('kannada', lang_list, ['kn','en'], '["kn","en"]')
model = recognition_models['gen2']['kannada_g2']
recog_network = 'generation2'
elif set(lang_list) & set(bengali_lang_list):
self.setModelLanguage('bengali', lang_list, bengali_lang_list+['en'], '["bn","as","en"]')
model = recognition_models['gen1']['bengali_g1']
recog_network = 'generation1'
elif set(lang_list) & set(arabic_lang_list):
self.setModelLanguage('arabic', lang_list, arabic_lang_list+['en'], '["ar","fa","ur","ug","en"]')
model = recognition_models['gen1']['arabic_g1']
recog_network = 'generation1'
elif set(lang_list) & set(devanagari_lang_list):
self.setModelLanguage('devanagari', lang_list, devanagari_lang_list+['en'], '["hi","mr","ne","en"]')
model = recognition_models['gen1']['devanagari_g1']
recog_network = 'generation1'
elif set(lang_list) & set(cyrillic_lang_list):
self.setModelLanguage('cyrillic', lang_list, cyrillic_lang_list+['en'],
'["ru","rs_cyrillic","be","bg","uk","mn","en"]')
model = recognition_models['gen2']['cyrillic_g2']
recog_network = 'generation2'
else:
self.model_lang = 'latin'
model = recognition_models['gen2']['latin_g2']
recog_network = 'generation2'
self.character = model['characters']
model_path = os.path.join(self.model_storage_directory, model['filename'])
# check recognition model file
if recognizer:
if os.path.isfile(model_path) == False:
if not self.download_enabled:
raise FileNotFoundError("Missing %s and downloads disabled" % model_path)
LOGGER.warning('Downloading recognition model, please wait. '
'This may take several minutes depending upon your network connection.')
download_and_unzip(model['url'], model['filename'], self.model_storage_directory, verbose)
assert calculate_md5(model_path) == model['md5sum'], corrupt_msg
LOGGER.info('Download complete.')
elif calculate_md5(model_path) != model['md5sum']:
if not self.download_enabled:
raise FileNotFoundError("MD5 mismatch for %s and downloads disabled" % model_path)
LOGGER.warning(corrupt_msg)
os.remove(model_path)
LOGGER.warning('Re-downloading the recognition model, please wait. '
'This may take several minutes depending upon your network connection.')
download_and_unzip(model['url'], model['filename'], self.model_storage_directory, verbose)
assert calculate_md5(model_path) == model['md5sum'], corrupt_msg
LOGGER.info('Download complete')
self.setLanguageList(lang_list, model)
else: # user-defined model
with open(os.path.join(self.user_network_directory, recog_network+ '.yaml'), encoding='utf8') as file:
recog_config = yaml.load(file, Loader=yaml.FullLoader)
global imgH # if custom model, save this variable. (from *.yaml)
if recog_config['imgH']:
imgH = recog_config['imgH']
available_lang = recog_config['lang_list']
self.setModelLanguage(recog_network, lang_list, available_lang, str(available_lang))
#char_file = os.path.join(self.user_network_directory, recog_network+ '.txt')
self.character = recog_config['character_list']
model_file = recog_network+ '.pth'
model_path = os.path.join(self.model_storage_directory, model_file)
self.setLanguageList(lang_list, recog_config)
dict_list = {}
for lang in lang_list:
dict_list[lang] = os.path.join(BASE_PATH, 'dict', lang + ".txt")
if detector:
self.detector = self.initDetector(detector_path)
if recognizer:
if recog_network == 'generation1':
network_params = {
'input_channel': 1,
'output_channel': 512,
'hidden_size': 512
}
elif recog_network == 'generation2':
network_params = {
'input_channel': 1,
'output_channel': 256,
'hidden_size': 256
}
else:
network_params = recog_config['network_params']
self.recognizer, self.converter = get_recognizer(recog_network, network_params,\
self.character, separator_list,\
dict_list, model_path, device = self.device, quantize=quantize)
def getDetectorPath(self, detect_network):
if detect_network in self.support_detection_network:
self.detect_network = detect_network
if self.detect_network == 'craft':
from .detection import get_detector, get_textbox
elif self.detect_network in ['dbnet18']:
from .detection_db import get_detector, get_textbox
else:
raise RuntimeError("Unsupport detector network. Support networks are craft and dbnet18.")
self.get_textbox = get_textbox
self.get_detector = get_detector
corrupt_msg = 'MD5 hash mismatch, possible file corruption'
detector_path = os.path.join(self.model_storage_directory, self.detection_models[self.detect_network]['filename'])
if os.path.isfile(detector_path) == False:
if not self.download_enabled:
raise FileNotFoundError("Missing %s and downloads disabled" % detector_path)
LOGGER.warning('Downloading detection model, please wait. '
'This may take several minutes depending upon your network connection.')
download_and_unzip(self.detection_models[self.detect_network]['url'], self.detection_models[self.detect_network]['filename'], self.model_storage_directory, self.verbose)
assert calculate_md5(detector_path) == self.detection_models[self.detect_network]['md5sum'], corrupt_msg
LOGGER.info('Download complete')
elif calculate_md5(detector_path) != self.detection_models[self.detect_network]['md5sum']:
if not self.download_enabled:
raise FileNotFoundError("MD5 mismatch for %s and downloads disabled" % detector_path)
LOGGER.warning(corrupt_msg)
os.remove(detector_path)
LOGGER.warning('Re-downloading the detection model, please wait. '
'This may take several minutes depending upon your network connection.')
download_and_unzip(self.detection_models[self.detect_network]['url'], self.detection_models[self.detect_network]['filename'], self.model_storage_directory, self.verbose)
assert calculate_md5(detector_path) == self.detection_models[self.detect_network]['md5sum'], corrupt_msg
else:
raise RuntimeError("Unsupport detector network. Support networks are {}.".format(', '.join(self.support_detection_network)))
return detector_path
def initDetector(self, detector_path):
return self.get_detector(detector_path,
device = self.device,
quantize = self.quantize,
cudnn_benchmark = self.cudnn_benchmark
)
def setDetector(self, detect_network):
detector_path = self.getDetectorPath(detect_network)
self.detector = self.initDetector(detector_path)
def setModelLanguage(self, language, lang_list, list_lang, list_lang_string):
self.model_lang = language
if set(lang_list) - set(list_lang) != set():
if language == 'ch_tra' or language == 'ch_sim':
language = 'chinese'
raise ValueError(language.capitalize() + ' is only compatible with English, try lang_list=' + list_lang_string)
def getChar(self, fileName):
char_file = os.path.join(BASE_PATH, 'character', fileName)
with open(char_file, "r", encoding="utf-8-sig") as input_file:
list = input_file.read().splitlines()
char = ''.join(list)
return char
def setLanguageList(self, lang_list, model):
self.lang_char = []
for lang in lang_list:
char_file = os.path.join(BASE_PATH, 'character', lang + "_char.txt")
with open(char_file, "r", encoding = "utf-8-sig") as input_file:
char_list = input_file.read().splitlines()
self.lang_char += char_list
if model.get('symbols'):
symbol = model['symbols']
elif model.get('character_list'):
symbol = model['character_list']
else:
symbol = '0123456789!"#$%&\'()*+,-./:;<=>?@[\\]^_`{|}~ '
self.lang_char = set(self.lang_char).union(set(symbol))
self.lang_char = ''.join(self.lang_char)
def detect(self, img, min_size = 20, text_threshold = 0.7, low_text = 0.4,\
link_threshold = 0.4,canvas_size = 2560, mag_ratio = 1.,\
slope_ths = 0.1, ycenter_ths = 0.5, height_ths = 0.5,\
width_ths = 0.5, add_margin = 0.1, reformat=True, optimal_num_chars=None,
threshold = 0.2, bbox_min_score = 0.2, bbox_min_size = 3, max_candidates = 0,
):
if reformat:
img, img_cv_grey = reformat_input(img)
text_box_list = self.get_textbox(self.detector,
img,
canvas_size = canvas_size,
mag_ratio = mag_ratio,
text_threshold = text_threshold,
link_threshold = link_threshold,
low_text = low_text,
poly = False,
device = self.device,
optimal_num_chars = optimal_num_chars,
threshold = threshold,
bbox_min_score = bbox_min_score,
bbox_min_size = bbox_min_size,
max_candidates = max_candidates,
)
horizontal_list_agg, free_list_agg = [], []
for text_box in text_box_list:
horizontal_list, free_list = group_text_box(text_box, slope_ths,
ycenter_ths, height_ths,
width_ths, add_margin,
(optimal_num_chars is None))
if min_size:
horizontal_list = [i for i in horizontal_list if max(
i[1] - i[0], i[3] - i[2]) > min_size]
free_list = [i for i in free_list if max(
diff([c[0] for c in i]), diff([c[1] for c in i])) > min_size]
horizontal_list_agg.append(horizontal_list)
free_list_agg.append(free_list)
return horizontal_list_agg, free_list_agg
def recognize(self, img_cv_grey, horizontal_list=None, free_list=None,\
decoder = 'greedy', beamWidth= 5, batch_size = 1,\
workers = 0, allowlist = None, blocklist = None, detail = 1,\
rotation_info = None,paragraph = False,\
contrast_ths = 0.1,adjust_contrast = 0.5, filter_ths = 0.003,\
y_ths = 0.5, x_ths = 1.0, reformat=True, output_format='standard'):
if reformat:
img, img_cv_grey = reformat_input(img_cv_grey)
if allowlist:
ignore_char = ''.join(set(self.character)-set(allowlist))
elif blocklist:
ignore_char = ''.join(set(blocklist))
else:
ignore_char = ''.join(set(self.character)-set(self.lang_char))
if self.model_lang in ['chinese_tra','chinese_sim']: decoder = 'greedy'
if (horizontal_list==None) and (free_list==None):
y_max, x_max = img_cv_grey.shape
horizontal_list = [[0, x_max, 0, y_max]]
free_list = []
# without gpu/parallelization, it is faster to process image one by one
if ((batch_size == 1) or (self.device == 'cpu')) and not rotation_info:
result = []
for bbox in horizontal_list:
h_list = [bbox]
f_list = []
image_list, max_width = get_image_list(h_list, f_list, img_cv_grey, model_height = imgH)
result0 = get_text(self.character, imgH, int(max_width), self.recognizer, self.converter, image_list,\
ignore_char, decoder, beamWidth, batch_size, contrast_ths, adjust_contrast, filter_ths,\
workers, self.device)
result += result0
for bbox in free_list:
h_list = []
f_list = [bbox]
image_list, max_width = get_image_list(h_list, f_list, img_cv_grey, model_height = imgH)
result0 = get_text(self.character, imgH, int(max_width), self.recognizer, self.converter, image_list,\
ignore_char, decoder, beamWidth, batch_size, contrast_ths, adjust_contrast, filter_ths,\
workers, self.device)
result += result0
# default mode will try to process multiple boxes at the same time
else:
image_list, max_width = get_image_list(horizontal_list, free_list, img_cv_grey, model_height = imgH)
image_len = len(image_list)
if rotation_info and image_list:
image_list = make_rotated_img_list(rotation_info, image_list)
max_width = max(max_width, imgH)
result = get_text(self.character, imgH, int(max_width), self.recognizer, self.converter, image_list,\
ignore_char, decoder, beamWidth, batch_size, contrast_ths, adjust_contrast, filter_ths,\
workers, self.device)
if rotation_info and (horizontal_list+free_list):
# Reshape result to be a list of lists, each row being for
# one of the rotations (first row being no rotation)
result = set_result_with_confidence(
[result[image_len*i:image_len*(i+1)] for i in range(len(rotation_info) + 1)])
if self.model_lang == 'arabic':
direction_mode = 'rtl'
result = [list(item) for item in result]
for item in result:
item[1] = get_display(item[1])
else:
direction_mode = 'ltr'
if paragraph:
result = get_paragraph(result, x_ths=x_ths, y_ths=y_ths, mode = direction_mode)
if detail == 0:
return [item[1] for item in result]
elif output_format == 'dict':
if paragraph:
return [ {'boxes':item[0],'text':item[1]} for item in result]
return [ {'boxes':item[0],'text':item[1],'confident':item[2]} for item in result]
elif output_format == 'json':
if paragraph:
return [json.dumps({'boxes':[list(map(int, lst)) for lst in item[0]],'text':item[1]}, ensure_ascii=False) for item in result]
return [json.dumps({'boxes':[list(map(int, lst)) for lst in item[0]],'text':item[1],'confident':item[2]}, ensure_ascii=False) for item in result]
elif output_format == 'free_merge':
return merge_to_free(result, free_list)
else:
return result
def readtext(self, image, decoder = 'greedy', beamWidth= 5, batch_size = 1,\
workers = 0, allowlist = None, blocklist = None, detail = 1,\
rotation_info = None, paragraph = False, min_size = 20,\
contrast_ths = 0.1,adjust_contrast = 0.5, filter_ths = 0.003,\
text_threshold = 0.7, low_text = 0.4, link_threshold = 0.4,\
canvas_size = 2560, mag_ratio = 1.,\
slope_ths = 0.1, ycenter_ths = 0.5, height_ths = 0.5,\
width_ths = 0.5, y_ths = 0.5, x_ths = 1.0, add_margin = 0.1,
threshold = 0.2, bbox_min_score = 0.2, bbox_min_size = 3, max_candidates = 0,
output_format='standard'):
'''
Parameters:
image: file path or numpy-array or a byte stream object
'''
img, img_cv_grey = reformat_input(image)
horizontal_list, free_list = self.detect(img,
min_size = min_size, text_threshold = text_threshold,\
low_text = low_text, link_threshold = link_threshold,\
canvas_size = canvas_size, mag_ratio = mag_ratio,\
slope_ths = slope_ths, ycenter_ths = ycenter_ths,\
height_ths = height_ths, width_ths= width_ths,\
add_margin = add_margin, reformat = False,\
threshold = threshold, bbox_min_score = bbox_min_score,\
bbox_min_size = bbox_min_size, max_candidates = max_candidates
)
# get the 1st result from hor & free list as self.detect returns a list of depth 3
horizontal_list, free_list = horizontal_list[0], free_list[0]
result = self.recognize(img_cv_grey, horizontal_list, free_list,\
decoder, beamWidth, batch_size,\
workers, allowlist, blocklist, detail, rotation_info,\
paragraph, contrast_ths, adjust_contrast,\
filter_ths, y_ths, x_ths, False, output_format)
return result
def readtextlang(self, image, decoder = 'greedy', beamWidth= 5, batch_size = 1,\
workers = 0, allowlist = None, blocklist = None, detail = 1,\
rotation_info = None, paragraph = False, min_size = 20,\
contrast_ths = 0.1,adjust_contrast = 0.5, filter_ths = 0.003,\
text_threshold = 0.7, low_text = 0.4, link_threshold = 0.4,\
canvas_size = 2560, mag_ratio = 1.,\
slope_ths = 0.1, ycenter_ths = 0.5, height_ths = 0.5,\
width_ths = 0.5, y_ths = 0.5, x_ths = 1.0, add_margin = 0.1,
threshold = 0.2, bbox_min_score = 0.2, bbox_min_size = 3, max_candidates = 0,
output_format='standard'):
'''
Parameters:
image: file path or numpy-array or a byte stream object
'''
img, img_cv_grey = reformat_input(image)
horizontal_list, free_list = self.detect(img,
min_size = min_size, text_threshold = text_threshold,\
low_text = low_text, link_threshold = link_threshold,\
canvas_size = canvas_size, mag_ratio = mag_ratio,\
slope_ths = slope_ths, ycenter_ths = ycenter_ths,\
height_ths = height_ths, width_ths= width_ths,\
add_margin = add_margin, reformat = False,\
threshold = threshold, bbox_min_score = bbox_min_score,\
bbox_min_size = bbox_min_size, max_candidates = max_candidates
)
# get the 1st result from hor & free list as self.detect returns a list of depth 3
horizontal_list, free_list = horizontal_list[0], free_list[0]
result = self.recognize(img_cv_grey, horizontal_list, free_list,\
decoder, beamWidth, batch_size,\
workers, allowlist, blocklist, detail, rotation_info,\
paragraph, contrast_ths, adjust_contrast,\
filter_ths, y_ths, x_ths, False, output_format)
char = []
directory = 'characters/'
for i in range(len(result)):
char.append(result[i][1])
def search(arr,x):
g = False
for i in range(len(arr)):
if arr[i]==x:
g = True
return 1
if g == False:
return -1
def tupleadd(i):
a = result[i]
b = a + (filename[0:2],)
return b
for filename in os.listdir(directory):
if filename.endswith(".txt"):
with open ('characters/'+ filename,'rt',encoding="utf8") as myfile:
chartrs = str(myfile.read().splitlines()).replace('\n','')
for i in range(len(char)):
res = search(chartrs,char[i])
if res != -1:
if filename[0:2]=="en" or filename[0:2]=="ch":
print(tupleadd(i))
def readtext_batched(self, image, n_width=None, n_height=None,\
decoder = 'greedy', beamWidth= 5, batch_size = 1,\
workers = 0, allowlist = None, blocklist = None, detail = 1,\
rotation_info = None, paragraph = False, min_size = 20,\
contrast_ths = 0.1,adjust_contrast = 0.5, filter_ths = 0.003,\
text_threshold = 0.7, low_text = 0.4, link_threshold = 0.4,\
canvas_size = 2560, mag_ratio = 1.,\
slope_ths = 0.1, ycenter_ths = 0.5, height_ths = 0.5,\
width_ths = 0.5, y_ths = 0.5, x_ths = 1.0, add_margin = 0.1,
threshold = 0.2, bbox_min_score = 0.2, bbox_min_size = 3, max_candidates = 0,
output_format='standard'):
'''
Parameters:
image: file path or numpy-array or a byte stream object
When sending a list of images, they all must of the same size,
the following parameters will automatically resize if they are not None
n_width: int, new width
n_height: int, new height
'''
img, img_cv_grey = reformat_input_batched(image, n_width, n_height)
horizontal_list_agg, free_list_agg = self.detect(img,
min_size = min_size, text_threshold = text_threshold,\
low_text = low_text, link_threshold = link_threshold,\
canvas_size = canvas_size, mag_ratio = mag_ratio,\
slope_ths = slope_ths, ycenter_ths = ycenter_ths,\
height_ths = height_ths, width_ths= width_ths,\
add_margin = add_margin, reformat = False,\
threshold = threshold, bbox_min_score = bbox_min_score,\
bbox_min_size = bbox_min_size, max_candidates = max_candidates
)
result_agg = []
# put img_cv_grey in a list if its a single img
img_cv_grey = [img_cv_grey] if len(img_cv_grey.shape) == 2 else img_cv_grey
for grey_img, horizontal_list, free_list in zip(img_cv_grey, horizontal_list_agg, free_list_agg):
result_agg.append(self.recognize(grey_img, horizontal_list, free_list,\
decoder, beamWidth, batch_size,\
workers, allowlist, blocklist, detail, rotation_info,\
paragraph, contrast_ths, adjust_contrast,\
filter_ths, y_ths, x_ths, False, output_format))
return result_agg
|