Spaces:
Runtime error
Runtime error
File size: 15,957 Bytes
806c931 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 |
from flask import Flask, request, jsonify, render_template, send_from_directory
from transformers import (
AutoModelForSequenceClassification,
AutoTokenizer,
TFCLIPModel,
CLIPProcessor,
pipeline,
BertTokenizer,
BertForSequenceClassification
)
import cv2
import os
import subprocess
import torch
from PIL import Image
import numpy as np
import base64
import uuid
from ultralytics import YOLO
import tensorflow as tf
import logging
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
app = Flask(__name__)
# Create directories
os.makedirs('save', exist_ok=True)
os.makedirs('temp', exist_ok=True)
os.makedirs('unsafe_frames', exist_ok=True)
os.makedirs('audio', exist_ok=True)
os.makedirs('logs', exist_ok=True)
os.makedirs('text_output', exist_ok=True)
print("Loading models...")
try:
# Load models
nudity_model = YOLO("Models/nudenet/320n.pt")
bert_tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
bert_model = BertForSequenceClassification.from_pretrained('bert-base-uncased')
profanity_model = AutoModelForSequenceClassification.from_pretrained("unitary/toxic-bert")
profanity_tokenizer = AutoTokenizer.from_pretrained("unitary/toxic-bert")
hate_speech_model = AutoModelForSequenceClassification.from_pretrained("Hate-speech-CNERG/dehatebert-mono-english")
hate_speech_tokenizer = AutoTokenizer.from_pretrained("Hate-speech-CNERG/dehatebert-mono-english")
clip_model = TFCLIPModel.from_pretrained("openai/clip-vit-base-patch32")
clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
whisper_model = pipeline("automatic-speech-recognition", model="openai/whisper-tiny")
print("All models loaded successfully")
except Exception as e:
logger.error(f"Error loading models: {str(e)}")
raise
@app.route("/")
def home():
return render_template('index.html')
@app.route("/extract_text", methods=["POST"])
def extract_text():
try:
audio_file = request.form.get('audio_file')
if not audio_file:
return jsonify({"error": "No audio file specified"}), 400
audio_path = os.path.join('audio', audio_file)
if not os.path.exists(audio_path):
return jsonify({"error": "Audio file not found"}), 404
# Process audio and get text
audio_result = process_audio(audio_path)
if not audio_result['success']:
return jsonify({"error": audio_result['error']}), 500
# Save extracted text
text_filename = f"text_{uuid.uuid4().hex}.txt"
text_path = os.path.join('text_output', text_filename)
with open(text_path, 'w', encoding='utf-8') as f:
f.write(audio_result['text'])
# Analyze text content
text_analysis = analyze_text_content(audio_result['text'])
return jsonify({
"success": True,
"text": audio_result['text'],
"text_file": text_filename,
"confidence": audio_result['confidence'],
"analysis": text_analysis
})
except Exception as e:
logger.error(f"Error extracting text: {str(e)}")
return jsonify({"error": str(e)}), 500
@app.route('/audio/<path:filename>')
def serve_audio(filename):
return send_from_directory('audio', filename)
@app.route("/upload", methods=["POST"])
def upload_file():
try:
if 'file' not in request.files:
return jsonify({"error": "No file uploaded"}), 400
video = request.files['file']
if video.filename == '':
return jsonify({"error": "No file selected"}), 400
video_path = os.path.join('save', video.filename)
video.save(video_path)
try:
frames = extract_frames(video_path)
results = []
audio_filename = f"audio_{uuid.uuid4().hex}.wav"
audio_path = os.path.join('audio', audio_filename)
audio_result = extract_audio(video_path, audio_path)
if audio_result:
audio_text = process_audio(audio_path)
text_content = audio_text.get('text', '')
# Save extracted text
if text_content:
text_filename = f"text_{uuid.uuid4().hex}.txt"
text_path = os.path.join('text_output', text_filename)
with open(text_path, 'w', encoding='utf-8') as f:
f.write(text_content)
text_analysis = analyze_text_content(text_content)
else:
text_filename = None
text_analysis = None
else:
text_content = ''
text_filename = None
text_analysis = None
batch_size = 15
for i in range(0, len(frames), batch_size):
batch_frames = frames[i:i + batch_size]
result = analyze_batch(batch_frames, text_content)
if result is None:
continue
results.extend(result)
# Cleanup frames
for frame_data in batch_frames:
if frame_data.get('is_inappropriate', False) or frame_data.get('is_harmful', False):
unique_filename = f'unsafe_{uuid.uuid4().hex}.png'
unsafe_frame_path = os.path.join('unsafe_frames', unique_filename)
os.rename(frame_data['frame'], unsafe_frame_path)
else:
os.remove(frame_data['frame'])
os.remove(frame_data['thumbnail'])
if os.path.exists(video_path):
os.remove(video_path)
if results:
total_meta_score = sum(r['meta_standards']['score'] for r in results) / len(results)
overall_assessment = {
"total_score": total_meta_score,
"risk_level": "High" if total_meta_score > 35 else "Medium" if total_meta_score > 30 else "Low",
"recommendation": get_recommendation(total_meta_score)
}
else:
overall_assessment = {
"total_score": 0,
"risk_level": "Low",
"recommendation": "No issues detected"
}
return jsonify({
"success": True,
"results": results,
"audio_path": audio_filename,
"audio_text": text_content,
"text_file": text_filename,
"text_analysis": text_analysis,
"overall_assessment": overall_assessment
})
except Exception as e:
if os.path.exists(video_path):
os.remove(video_path)
logger.error(f"Error in content analysis: {str(e)}")
return jsonify({"error": str(e)}), 500
except Exception as e:
logger.error(f"Error in upload: {str(e)}")
return jsonify({"error": str(e)}), 500
def extract_frames(video_path):
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
raise Exception("Error opening video file")
frames = []
frame_count = 0
fps = int(cap.get(cv2.CAP_PROP_FPS))
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
if frame_count % fps == 0:
frame_path = os.path.join('temp', f'frame_{frame_count}.jpg')
thumbnail_path = os.path.join('temp', f'thumb_{frame_count}.jpg')
cv2.imwrite(frame_path, frame)
thumbnail = cv2.resize(frame, (648, 648))
cv2.imwrite(thumbnail_path, thumbnail)
frames.append({
'frame': frame_path,
'thumbnail': thumbnail_path,
'timestamp': frame_count // fps
})
frame_count += 1
cap.release()
return frames
def extract_audio(video_path, output_path):
try:
command = [
'ffmpeg',
'-i', video_path,
'-vn',
'-acodec', 'pcm_s16le',
'-ar', '16000',
'-ac', '1',
'-y',
output_path
]
result = subprocess.run(
command,
check=True,
stderr=subprocess.PIPE,
stdout=subprocess.PIPE
)
if os.path.exists(output_path) and os.path.getsize(output_path) > 0:
logger.info(f"Audio extracted successfully: {output_path}")
return output_path
else:
raise Exception("Audio extraction failed - empty or missing file")
except Exception as e:
logger.error(f"Audio extraction error: {str(e)}")
return None
def process_audio(audio_path):
try:
if not os.path.exists(audio_path):
logger.error(f"Audio file not found: {audio_path}")
return {
'success': False,
'text': "Audio file not found",
'error': "File not found"
}
logger.info(f"Processing audio file: {audio_path}")
# First pass with Whisper
whisper_result = whisper_model(audio_path)
logger.info(f"Whisper result: {whisper_result}")
if not whisper_result.get('text'):
logger.error("Whisper failed to extract text")
return {
'success': False,
'text': "Whisper failed to extract text",
'error': "No text found in Whisper output"
}
text = whisper_result['text']
# Second pass with BERT
chunks = [text[i:i+512] for i in range(0, len(text), 512)]
processed_chunks = []
for chunk in chunks:
inputs = bert_tokenizer(chunk, return_tensors="pt", truncation=True, max_length=512)
with torch.no_grad():
outputs = bert_model(**inputs)
processed_chunk = bert_tokenizer.decode(
inputs['input_ids'][0],
skip_special_tokens=True
)
processed_chunks.append(processed_chunk)
final_text = " ".join(processed_chunks)
return {
'success': True,
'text': final_text,
'confidence': whisper_result.get('confidence', 0)
}
except Exception as e:
logger.error(f"Audio processing error: {str(e)}")
return {
'success': False,
'text': "Audio processing failed",
'error': str(e)
}
def analyze_text_content(text):
try:
# Analyze profanity
profanity_inputs = profanity_tokenizer(text, return_tensors="pt", padding=True, truncation=True)
with torch.no_grad():
profanity_outputs = profanity_model(**profanity_inputs)
profanity_scores = torch.nn.functional.softmax(profanity_outputs.logits, dim=-1)
# Analyze hate speech
hate_speech_inputs = hate_speech_tokenizer(text, return_tensors="pt", padding=True, truncation=True)
with torch.no_grad():
hate_speech_outputs = hate_speech_model(**hate_speech_inputs)
hate_speech_scores = torch.nn.functional.softmax(hate_speech_outputs.logits, dim=-1)
return {
"profanity": {
"score": float(profanity_scores[0][1]) * 100,
"is_offensive": float(profanity_scores[0][1]) > 0.5
},
"hate_speech": {
"score": float(hate_speech_scores[0][1]) * 100,
"is_hateful": float(hate_speech_scores[0][1]) > 0.5
}
}
except Exception as e:
logger.error(f"Error analyzing text: {str(e)}")
return None
def analyze_batch(batch_frames, text):
try:
results = []
images = []
timestamps = []
for frame_data in batch_frames:
image = Image.open(frame_data['frame'])
image = image.resize((128, 128))
images.append(image)
timestamps.append(frame_data['timestamp'])
# Prepare image data
image_arrays = np.array([np.array(img) / 255.0 for img in images])
image_tensors = torch.tensor(image_arrays).permute(0, 3, 1, 2).float()
# Run analyses
with torch.no_grad():
nudity_results = nudity_model(image_tensors)
nudity_predictions = [result.boxes for result in nudity_results]
if text:
profanity_inputs = profanity_tokenizer(text, return_tensors="pt", padding=True, truncation=True)
with torch.no_grad():
profanity_outputs = profanity_model(**profanity_inputs)
profanity_scores = torch.nn.functional.softmax(profanity_outputs.logits, dim=-1)
hate_speech_inputs = hate_speech_tokenizer(text, return_tensors="pt", padding=True, truncation=True)
with torch.no_grad():
hate_speech_outputs = hate_speech_model(**hate_speech_inputs)
hate_speech_scores = torch.nn.functional.softmax(hate_speech_outputs.logits, dim=-1)
else:
profanity_scores = torch.zeros(1, 2)
hate_speech_scores = torch.zeros(1, 2)
clip_inputs = clip_processor(text=[text if text else ""] * len(images), images=images, return_tensors="tf", padding=True)
clip_outputs = clip_model(**clip_inputs)
clip_scores = tf.nn.softmax(clip_outputs.logits_per_image, axis=-1).numpy()
for i in range(len(batch_frames)):
with open(batch_frames[i]['thumbnail'], 'rb') as img_file:
thumbnail_base64 = base64.b64encode(img_file.read()).decode('utf-8')
nudity_score = float(nudity_predictions[i].conf[0]) * 99 if nudity_predictions[i] else 0.0
profanity_score = float(profanity_scores[0][1]) * 99
hate_speech_score = float(hate_speech_scores[0][1]) * 99
harm_score = float(clip_scores[i][1]) * 99 if clip_scores[i].size > 1 else 0.0
meta_standards_score = (
(nudity_score * 0.6) +
(hate_speech_score * 0.1) +
(harm_score * 0.1) +
(profanity_score * 0.1)
)
results.append({
"nudity": {
"score": nudity_score,
"is_inappropriate": nudity_score > 65
},
"profanity": {
"score": profanity_score,
"is_offensive": profanity_score > 65
},
"hate_speech": {
"score": hate_speech_score,
"is_hateful": hate_speech_score > 40
},
"harm": {
"score": harm_score,
"is_harmful": harm_score > 40
},
"meta_standards": {
"score": meta_standards_score,
"is_violating": meta_standards_score > 30,
"risk_level": "High" if meta_standards_score > 60 else "Medium" if meta_standards_score > 25 else "Low",
"recommendation": get_recommendation(meta_standards_score)
},
"thumbnail": thumbnail_base64,
"timestamp": timestamps[i]
})
return results
except Exception as e:
logger.error(f"Error in batch analysis: {str(e)}")
return None
def get_recommendation(score):
if score > 70:
return "Content likely violates Meta Community Standards. Major modifications needed."
elif score > 30:
return "Content may need modifications to comply with Meta Community Standards."
else:
return "Content likely complies with Meta Community Standards."
if __name__ == "__main__":
app.run(host="0.0.0.0", port=5000, debug=True) |