tiny-chat / app.py
amusktweewt's picture
Update app.py
2471f2f verified
raw
history blame
4.05 kB
import gradio as gr
from huggingface_hub import InferenceClient
# -- 1) DEFINE YOUR MODELS HERE --
models = [
{
"name": "Tiny Model",
"description": "A small chat model.",
"id": "amusktweewt/tiny-model-500M-chat-v2",
"enabled": True
},
{
"name": "Another Model",
"description": "A bigger chat model (disabled).",
"id": "another-model",
"enabled": False
}
]
# Build the custom HTML for a disabled-capable <select>.
dropdown_options = ""
for model in models:
label = f"{model['name']}: {model['description']}"
disabled_attr = "disabled" if not model["enabled"] else ""
if not model["enabled"]:
# Mark label visually so the user sees it's disabled
label = f"{model['name']} (Disabled): {model['description']}"
dropdown_options += f'<option value="{model["id"]}" {disabled_attr}>{label}</option>\n'
# Updated CSS to follow system theme and enlarge chat area.
custom_css = """
<style>
/* Style for the custom dropdown, using inherited colors */
.custom-select {
background-color: transparent; /* Inherit system background */
color: inherit; /* Inherit system text color */
border: 1px solid var(--border-color, #ccc);
padding: 8px;
border-radius: 4px;
font-size: 1rem;
width: 100%;
box-sizing: border-box;
margin-bottom: 1rem;
}
/* Increase the minimum height of the chat area */
#chat_interface .chatbox {
min-height: 500px;
}
</style>
"""
dropdown_html = f"""
{custom_css}
<label for="model_select"><strong>Select Model:</strong></label>
<select id="model_select" class="custom-select"
onchange="document.getElementById('hidden_model').value = this.value;">
{dropdown_options}
</select>
"""
def respond(message, history: list[tuple[str, str]], model_id, system_message, max_tokens, temperature, top_p):
"""
Build a chat prompt and stream the response token-by-token from the model.
"""
client = InferenceClient(model_id)
messages = []
if system_message:
messages.append({"role": "system", "content": system_message})
if history:
for user_msg, bot_msg in history:
messages.append({"role": "user", "content": user_msg})
messages.append({"role": "assistant", "content": bot_msg})
messages.append({"role": "user", "content": message})
messages.append({"role": "assistant", "content": ""})
response_text = ""
for resp in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = resp.choices[0].delta.content
response_text += token
yield response_text
# -- 3) BUILD THE UI IN A BLOCKS CONTEXT --
with gr.Blocks() as demo:
# Custom HTML dropdown for model selection.
gr.HTML(value=dropdown_html)
# Hidden textbox to store the current model ID.
hidden_model = gr.Textbox(
value=models[0]["id"], # Default to the first model
visible=False,
elem_id="hidden_model"
)
# ChatInterface with an element ID for styling.
chat = gr.ChatInterface(
respond,
additional_inputs=[
hidden_model,
gr.Textbox(
value="You are a friendly Chatbot.",
label="System message"
),
gr.Slider(
minimum=1,
maximum=2048,
value=512,
step=1,
label="Max new tokens"
),
gr.Slider(
minimum=0.1,
maximum=4.0,
value=0.7,
step=0.1,
label="Temperature"
),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)"
),
],
elem_id="chat_interface"
)
if __name__ == "__main__":
demo.launch()