iwonachristop commited on
Commit
8ee1346
·
1 Parent(s): 3f602c8

Update tabs descriptions

Browse files
Files changed (1) hide show
  1. app.py +18 -38
app.py CHANGED
@@ -9,13 +9,14 @@ def restart_space():
9
  API.restart_space(repo_id=REPO_ID)
10
 
11
 
12
- demo = gr.Blocks(css=custom_css)
13
- with demo:
 
14
  # Init class Leaderboard
15
  leaderboard = Leaderboard()
16
 
17
  # Custom CSS styling for tab-item components
18
- demo.css = """
19
  .tab-item {
20
  font-size: 10px;
21
  padding: 10px 20px;
@@ -27,14 +28,13 @@ with demo:
27
  <style>
28
  @import url('https://fonts.googleapis.com/css2?family=Ubuntu:wght@400;700&display=swap');
29
  </style>
30
- <h1 style="text-align:center; font-family: 'Ubuntu', sans-serif; font-size: 48px; text-shadow: 2px 2px 4px rgba(0, 0, 0, 0.2);">
31
  Open Voice Cloning Leaderboard
32
  </h1>
33
- <p style="text-align:center; font-size: 17px; width: 85%; margin: 0 auto;">
34
- Welcome to the <strong>Open Voice Cloning Leaderboard</strong> an innovative platform for ranking voice cloning models,
35
- offering precise evaluations of their performance. This leaderboard stands out for its detailed analysis of key audio features,
36
- allowing users to not only assess the overall quality of a model but also gain a deeper understanding of how specific aspects of sound
37
- influence the final outcome.
38
  </p>
39
  """)
40
 
@@ -54,15 +54,8 @@ with demo:
54
  '''
55
  with gr.TabItem("Overall", elem_id="Overall", id=1, elem_classes="tab-item"):
56
  gr.Markdown(value="""
57
- ### Overall Leaderboard
58
-
59
- <div style="text-align: center;">
60
- This 'Overall' leaderboard presents WavLM metric values across all datasets.
61
- It includes an 'Average' column for the overall score and
62
- dedicated columns displaying WavLM values for each dataset individually.
63
- Additionally, the leaderboard includes the LibriSpeech Test Clean dataset,
64
- which was used to evaluate the quality of generative models like Voicebox.
65
- </div>
66
  """)
67
  # Create and display leaderboard table
68
  leaderboard_dataframe = leaderboard.create_leaderboard_data('All', 'wavlm', 'emotion')
@@ -78,15 +71,9 @@ with demo:
78
  '''
79
  with gr.TabItem("Emotions", elem_id="Emotions", id=2, elem_classes="tab-item"):
80
  gr.Markdown(value="""
81
- ### Emotions Leadreboard
82
-
83
- <div style="text-align: center;">
84
- This 'Emotions' leaderboard provides WavLM metric values with filtering options for both 'Emotion' and 'Dataset'.
85
- Selecting 'Emotion' generates a table with columns representing datasets,
86
- each showing the WavLM score for the chosen emotion. Alternatively,
87
- selecting 'Dataset' creates a table with columns representing emotions,
88
- displaying the WavLM score for each within the selected dataset.
89
- </div>
90
  """)
91
 
92
  # UI for selecting dataset and emotion options
@@ -129,16 +116,9 @@ with demo:
129
  '''
130
  with gr.TabItem("Features", elem_id="Features", id=3, elem_classes="tab-item"):
131
  gr.Markdown(value="""
132
- ### Features Leadreboard
133
-
134
- <div style="text-align: center;">
135
- This 'Features' leaderboard provides filtering options similar to the 'Emotions' tab,
136
- with additional flexibility through a 'Feature' filter. Users can select 'Emotion' to generate a table
137
- with columns representing datasets, each displaying scores for the chosen emotion,
138
- or 'Dataset' to view columns for emotions within the selected dataset.
139
- The 'Feature' filter lets users select a specific feature for display,
140
- focusing this leaderboard on metrics other than WavLM
141
- </div>
142
  """)
143
 
144
  # UI for selecting dataset, emotion, and feature options
@@ -233,4 +213,4 @@ with demo:
233
  scheduler = BackgroundScheduler()
234
  scheduler.add_job(restart_space, "interval", seconds=1800)
235
  scheduler.start()
236
- demo.queue(default_concurrency_limit=40).launch()
 
9
  API.restart_space(repo_id=REPO_ID)
10
 
11
 
12
+ app = gr.Blocks(css=custom_css)
13
+
14
+ with app:
15
  # Init class Leaderboard
16
  leaderboard = Leaderboard()
17
 
18
  # Custom CSS styling for tab-item components
19
+ app.css = """
20
  .tab-item {
21
  font-size: 10px;
22
  padding: 10px 20px;
 
28
  <style>
29
  @import url('https://fonts.googleapis.com/css2?family=Ubuntu:wght@400;700&display=swap');
30
  </style>
31
+ <h1 style="text-align: center; font-family: 'Ubuntu', sans-serif; font-size: 36px; color: #002d69;">
32
  Open Voice Cloning Leaderboard
33
  </h1>
34
+ <p style="text-align:center; font-size: 15px; width: 85%; margin: 0 auto;">
35
+ The <b>Open Voice Cloning Leaderboard</b> ranks and evaluates the voice cloning models across
36
+ diverse datasets, including emotional speech.<br>It also delivers an in-depth analysis of how
37
+ different acoustic features shape the final results.
 
38
  </p>
39
  """)
40
 
 
54
  '''
55
  with gr.TabItem("Overall", elem_id="Overall", id=1, elem_classes="tab-item"):
56
  gr.Markdown(value="""
57
+ The results represent the cosine similarity between the speaker embeddings
58
+ of the original and cloned samples, generated by the WavLM model.
 
 
 
 
 
 
 
59
  """)
60
  # Create and display leaderboard table
61
  leaderboard_dataframe = leaderboard.create_leaderboard_data('All', 'wavlm', 'emotion')
 
71
  '''
72
  with gr.TabItem("Emotions", elem_id="Emotions", id=2, elem_classes="tab-item"):
73
  gr.Markdown(value="""
74
+ The results represent the cosine similarity between the speaker embeddings
75
+ of the original and cloned samples, generated by the WavLM model. The values
76
+ can be filtered by dataset or emotional state.
 
 
 
 
 
 
77
  """)
78
 
79
  # UI for selecting dataset and emotion options
 
116
  '''
117
  with gr.TabItem("Features", elem_id="Features", id=3, elem_classes="tab-item"):
118
  gr.Markdown(value="""
119
+ The results represent the cosine similarity between the values of selected
120
+ acoustic features of the original and cloned samples. The values
121
+ can be filtered by dataset or emotional state.
 
 
 
 
 
 
 
122
  """)
123
 
124
  # UI for selecting dataset, emotion, and feature options
 
213
  scheduler = BackgroundScheduler()
214
  scheduler.add_job(restart_space, "interval", seconds=1800)
215
  scheduler.start()
216
+ app.queue(default_concurrency_limit=40).launch()