Commit
·
8ee1346
1
Parent(s):
3f602c8
Update tabs descriptions
Browse files
app.py
CHANGED
@@ -9,13 +9,14 @@ def restart_space():
|
|
9 |
API.restart_space(repo_id=REPO_ID)
|
10 |
|
11 |
|
12 |
-
|
13 |
-
|
|
|
14 |
# Init class Leaderboard
|
15 |
leaderboard = Leaderboard()
|
16 |
|
17 |
# Custom CSS styling for tab-item components
|
18 |
-
|
19 |
.tab-item {
|
20 |
font-size: 10px;
|
21 |
padding: 10px 20px;
|
@@ -27,14 +28,13 @@ with demo:
|
|
27 |
<style>
|
28 |
@import url('https://fonts.googleapis.com/css2?family=Ubuntu:wght@400;700&display=swap');
|
29 |
</style>
|
30 |
-
<h1 style="text-align:center; font-family: 'Ubuntu', sans-serif; font-size:
|
31 |
Open Voice Cloning Leaderboard
|
32 |
</h1>
|
33 |
-
<p style="text-align:center; font-size:
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
influence the final outcome.
|
38 |
</p>
|
39 |
""")
|
40 |
|
@@ -54,15 +54,8 @@ with demo:
|
|
54 |
'''
|
55 |
with gr.TabItem("Overall", elem_id="Overall", id=1, elem_classes="tab-item"):
|
56 |
gr.Markdown(value="""
|
57 |
-
|
58 |
-
|
59 |
-
<div style="text-align: center;">
|
60 |
-
This 'Overall' leaderboard presents WavLM metric values across all datasets.
|
61 |
-
It includes an 'Average' column for the overall score and
|
62 |
-
dedicated columns displaying WavLM values for each dataset individually.
|
63 |
-
Additionally, the leaderboard includes the LibriSpeech Test Clean dataset,
|
64 |
-
which was used to evaluate the quality of generative models like Voicebox.
|
65 |
-
</div>
|
66 |
""")
|
67 |
# Create and display leaderboard table
|
68 |
leaderboard_dataframe = leaderboard.create_leaderboard_data('All', 'wavlm', 'emotion')
|
@@ -78,15 +71,9 @@ with demo:
|
|
78 |
'''
|
79 |
with gr.TabItem("Emotions", elem_id="Emotions", id=2, elem_classes="tab-item"):
|
80 |
gr.Markdown(value="""
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
This 'Emotions' leaderboard provides WavLM metric values with filtering options for both 'Emotion' and 'Dataset'.
|
85 |
-
Selecting 'Emotion' generates a table with columns representing datasets,
|
86 |
-
each showing the WavLM score for the chosen emotion. Alternatively,
|
87 |
-
selecting 'Dataset' creates a table with columns representing emotions,
|
88 |
-
displaying the WavLM score for each within the selected dataset.
|
89 |
-
</div>
|
90 |
""")
|
91 |
|
92 |
# UI for selecting dataset and emotion options
|
@@ -129,16 +116,9 @@ with demo:
|
|
129 |
'''
|
130 |
with gr.TabItem("Features", elem_id="Features", id=3, elem_classes="tab-item"):
|
131 |
gr.Markdown(value="""
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
This 'Features' leaderboard provides filtering options similar to the 'Emotions' tab,
|
136 |
-
with additional flexibility through a 'Feature' filter. Users can select 'Emotion' to generate a table
|
137 |
-
with columns representing datasets, each displaying scores for the chosen emotion,
|
138 |
-
or 'Dataset' to view columns for emotions within the selected dataset.
|
139 |
-
The 'Feature' filter lets users select a specific feature for display,
|
140 |
-
focusing this leaderboard on metrics other than WavLM
|
141 |
-
</div>
|
142 |
""")
|
143 |
|
144 |
# UI for selecting dataset, emotion, and feature options
|
@@ -233,4 +213,4 @@ with demo:
|
|
233 |
scheduler = BackgroundScheduler()
|
234 |
scheduler.add_job(restart_space, "interval", seconds=1800)
|
235 |
scheduler.start()
|
236 |
-
|
|
|
9 |
API.restart_space(repo_id=REPO_ID)
|
10 |
|
11 |
|
12 |
+
app = gr.Blocks(css=custom_css)
|
13 |
+
|
14 |
+
with app:
|
15 |
# Init class Leaderboard
|
16 |
leaderboard = Leaderboard()
|
17 |
|
18 |
# Custom CSS styling for tab-item components
|
19 |
+
app.css = """
|
20 |
.tab-item {
|
21 |
font-size: 10px;
|
22 |
padding: 10px 20px;
|
|
|
28 |
<style>
|
29 |
@import url('https://fonts.googleapis.com/css2?family=Ubuntu:wght@400;700&display=swap');
|
30 |
</style>
|
31 |
+
<h1 style="text-align: center; font-family: 'Ubuntu', sans-serif; font-size: 36px; color: #002d69;">
|
32 |
Open Voice Cloning Leaderboard
|
33 |
</h1>
|
34 |
+
<p style="text-align:center; font-size: 15px; width: 85%; margin: 0 auto;">
|
35 |
+
The <b>Open Voice Cloning Leaderboard</b> ranks and evaluates the voice cloning models across
|
36 |
+
diverse datasets, including emotional speech.<br>It also delivers an in-depth analysis of how
|
37 |
+
different acoustic features shape the final results.
|
|
|
38 |
</p>
|
39 |
""")
|
40 |
|
|
|
54 |
'''
|
55 |
with gr.TabItem("Overall", elem_id="Overall", id=1, elem_classes="tab-item"):
|
56 |
gr.Markdown(value="""
|
57 |
+
The results represent the cosine similarity between the speaker embeddings
|
58 |
+
of the original and cloned samples, generated by the WavLM model.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
""")
|
60 |
# Create and display leaderboard table
|
61 |
leaderboard_dataframe = leaderboard.create_leaderboard_data('All', 'wavlm', 'emotion')
|
|
|
71 |
'''
|
72 |
with gr.TabItem("Emotions", elem_id="Emotions", id=2, elem_classes="tab-item"):
|
73 |
gr.Markdown(value="""
|
74 |
+
The results represent the cosine similarity between the speaker embeddings
|
75 |
+
of the original and cloned samples, generated by the WavLM model. The values
|
76 |
+
can be filtered by dataset or emotional state.
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
""")
|
78 |
|
79 |
# UI for selecting dataset and emotion options
|
|
|
116 |
'''
|
117 |
with gr.TabItem("Features", elem_id="Features", id=3, elem_classes="tab-item"):
|
118 |
gr.Markdown(value="""
|
119 |
+
The results represent the cosine similarity between the values of selected
|
120 |
+
acoustic features of the original and cloned samples. The values
|
121 |
+
can be filtered by dataset or emotional state.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
""")
|
123 |
|
124 |
# UI for selecting dataset, emotion, and feature options
|
|
|
213 |
scheduler = BackgroundScheduler()
|
214 |
scheduler.add_job(restart_space, "interval", seconds=1800)
|
215 |
scheduler.start()
|
216 |
+
app.queue(default_concurrency_limit=40).launch()
|