Spaces:
Sleeping
Sleeping
File size: 5,776 Bytes
f4f6007 124cef3 f4f6007 124cef3 f4f6007 124cef3 f4f6007 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
import gradio as gr
import spaces
import torch
import numpy as np
from typing import Tuple, List
class EmotionalContext:
"""Implements Mem|8's emotional context structure"""
def __init__(self):
self.valence = torch.zeros(1).cuda() # -128 to 127: negative to positive
self.arousal = torch.zeros(1).cuda() # 0 to 255: intensity level
self.context = torch.zeros(1).cuda() # Contextual flags
def create_wave_pattern(size: int, frequency: float, amplitude: float) -> torch.Tensor:
"""Create a wave pattern as described in Mem|8 paper"""
t = torch.linspace(0, 2*np.pi, size).cuda()
x = torch.linspace(0, 2*np.pi, size).cuda()
T, X = torch.meshgrid(t, x, indexing='ij')
return amplitude * torch.sin(frequency * T + X)
@spaces.GPU(duration=30)
def quantum_memory_ops(input_size: int, operation: str, emotion_valence: float) -> Tuple[str, np.ndarray]:
"""Perform quantum-inspired memory operations using Mem|8 concepts."""
# Initialize emotional context
emotion = EmotionalContext()
emotion.valence = torch.tensor([emotion_valence]).cuda()
emotion.arousal = torch.abs(torch.tensor([emotion_valence * 2])).cuda()
results = []
visualization = None
if operation == "wave_memory":
# Create memory wave pattern (M = A·exp(iωt-kx)·D·E)
wave = create_wave_pattern(input_size, 2.0, 1.0)
emotional_mod = torch.exp(emotion.valence/128 * wave)
memory_state = wave * emotional_mod
results.append(f"Wave Memory Pattern Created:")
results.append(f"Shape: {memory_state.shape}")
results.append(f"Emotional Modulation: {emotional_mod.mean().item():.4f}")
results.append(f"Memory Coherence: {torch.linalg.norm(memory_state).item():.4f}")
visualization = memory_state.cpu().numpy()
elif operation == "interference":
# Create interference between two memory waves
wave1 = create_wave_pattern(input_size, 2.0, 1.0)
wave2 = create_wave_pattern(input_size, 3.0, 0.5)
interference = wave1 + wave2
emotional_weight = torch.sigmoid(emotion.valence/128) * interference
results.append(f"Memory Interference Pattern:")
results.append(f"Pattern Strength: {torch.max(emotional_weight).item():.4f}")
results.append(f"Emotional Weight: {emotion.valence.item()/128:.4f}")
visualization = emotional_weight.cpu().numpy()
elif operation == "resonance":
# Demonstrate emotional resonance patterns
base_wave = create_wave_pattern(input_size, 2.0, 1.0)
resonance_freq = 1.0 + torch.sigmoid(emotion.valence/128)
resonant_wave = create_wave_pattern(input_size, resonance_freq.item(), 1.0)
resonance = base_wave * resonant_wave
results.append(f"Emotional Resonance Pattern:")
results.append(f"Resonance Frequency: {resonance_freq.item():.4f}")
results.append(f"Pattern Energy: {torch.sum(resonance**2).item():.4f}")
visualization = resonance.cpu().numpy()
results.append(f"\nEmotional Context:")
results.append(f"Valence: {emotion.valence.item():.2f}")
results.append(f"Arousal: {emotion.arousal.item():.2f}")
results.append(f"Device: {wave.device}")
return "\n".join(results), visualization
# Create a beautiful interface inspired by Mem|8's wave concepts
with gr.Blocks(theme=gr.themes.Soft(primary_hue="purple", secondary_hue="blue")) as demo:
gr.Markdown("""
# 🌊 Mem|8 Wave Memory Explorer
Welcome to 8b.is's quantum memory demonstration! This showcase implements concepts from our Mem|8
wave-based memory architecture paper, visualizing how memories propagate and interact like waves
in an ocean of consciousness.
> "Memory is not a storage unit, but a living ocean of waves" - Mem|8 Paper
""")
with gr.Row():
with gr.Column():
size_input = gr.Slider(
minimum=16,
maximum=128,
value=32,
step=16,
label="Memory Grid Size"
)
operation_input = gr.Radio(
["wave_memory", "interference", "resonance"],
label="Memory Wave Operation",
value="wave_memory",
info="Select the type of wave-based memory operation to visualize"
)
emotion_input = gr.Slider(
minimum=-128,
maximum=127,
value=0,
step=1,
label="Emotional Valence",
info="Emotional context from negative to positive (-128 to 127)"
)
run_btn = gr.Button("Generate Memory Wave", variant="primary")
with gr.Column():
output_text = gr.Textbox(label="Wave Analysis", lines=8)
output_plot = gr.Plot(label="Wave Visualization")
run_btn.click(
quantum_memory_ops,
inputs=[size_input, operation_input, emotion_input],
outputs=[output_text, output_plot]
)
gr.Markdown("""
### 🧠 Understanding Wave Memory
This demo visualizes three key concepts from our Mem|8 paper:
1. **Wave Memory**: Memories as propagating waves with emotional modulation
2. **Interference**: How different memories interact and combine
3. **Resonance**: Emotional resonance patterns in memory formation
The visualization shows how emotional context (valence) affects memory wave patterns,
demonstrating the dynamic, interconnected nature of our quantum memory architecture.
All computations are accelerated using Hugging Face's Zero GPU technology!
""")
demo.launch()
|