import os import pandas as pd import fitz # PyMuPDF import openpyxl from openpyxl.utils.dataframe import dataframe_to_rows from openpyxl.styles import Font, PatternFill, Border, Side, Alignment from dataclasses import dataclass from typing import List, Dict, Any, Tuple, Optional import re from pathlib import Path import logging from datetime import datetime import numpy as np # Optional imports with graceful fallback try: import camelot # For advanced table extraction CAMELOT_AVAILABLE = True except ImportError: CAMELOT_AVAILABLE = False print("āš ļø Camelot not installed. Run: pip install camelot-py[cv]") try: import tabula # Alternative table extraction TABULA_AVAILABLE = True except ImportError: TABULA_AVAILABLE = False print("āš ļø Tabula not installed. Run: pip install tabula-py") # Set up logging logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') logger = logging.getLogger(__name__) @dataclass class TextBlock: text: str x: float y: float width: float height: float font_size: float font_name: str is_bold: bool = False is_italic: bool = False page_num: int = 1 block_id: str = "" @dataclass class TableData: data: List[List[str]] bbox: Tuple[float, float, float, float] page_num: int confidence: float = 0.0 has_header: bool = True class PDFToExcelConverter: """ Enhanced PDF to Excel converter with multiple extraction methods for better accuracy and handling of complex documents. """ def __init__(self): # Check available extraction methods available_methods = ['pymupdf'] # Always available if CAMELOT_AVAILABLE: available_methods.append('camelot') if TABULA_AVAILABLE: available_methods.append('tabula') self.extraction_methods = available_methods self.output_formats = { 'separate_sheets': 'Each table and text section on separate sheets', 'combined': 'All content combined logically', 'structured': 'Maintain document structure with proper formatting' } # Log available methods logger.info(f"Available extraction methods: {', '.join(available_methods)}") def extract_text_blocks_advanced(self, page, page_num: int) -> List[TextBlock]: """ Advanced text extraction with better formatting detection """ text_blocks = [] try: # Method 1: Dictionary-based extraction (most detailed) page_dict = page.get_text("dict") for block_idx, block in enumerate(page_dict.get("blocks", [])): if block.get("type", 1) != 0: # Skip non-text blocks continue for line_idx, line in enumerate(block.get("lines", [])): for span_idx, span in enumerate(line.get("spans", [])): text_content = span.get("text", "").strip() if not text_content: continue bbox = span["bbox"] flags = span.get("flags", 0) # Enhanced font detection font_name = span.get("font", "Arial") font_size = span.get("size", 12) is_bold = bool(flags & 16) or "bold" in font_name.lower() is_italic = bool(flags & 2) or "italic" in font_name.lower() text_block = TextBlock( text=text_content, x=bbox[0], y=bbox[1], width=bbox[2] - bbox[0], height=bbox[3] - bbox[1], font_size=font_size, font_name=font_name, is_bold=is_bold, is_italic=is_italic, page_num=page_num, block_id=f"p{page_num}_b{block_idx}_l{line_idx}_s{span_idx}" ) text_blocks.append(text_block) except Exception as e: logger.warning(f"Advanced text extraction failed for page {page_num}: {e}") # Fallback to simple extraction text_blocks = self._extract_text_simple_fallback(page, page_num) return text_blocks def _extract_text_simple_fallback(self, page, page_num: int) -> List[TextBlock]: """ Fallback text extraction method """ text_blocks = [] try: text = page.get_text() if text.strip(): # Create a single text block for the entire page content rect = page.rect text_block = TextBlock( text=text.strip(), x=0, y=0, width=rect.width, height=rect.height, font_size=12, font_name="Arial", page_num=page_num, block_id=f"p{page_num}_fallback" ) text_blocks.append(text_block) except Exception as e: logger.error(f"Fallback text extraction failed for page {page_num}: {e}") return text_blocks def extract_tables_multiple_methods(self, pdf_path: str, page_num: int) -> List[TableData]: """ Extract tables using multiple methods and combine results """ all_tables = [] # Method 1: PyMuPDF built-in table detection tables_pymupdf = self._extract_tables_pymupdf(pdf_path, page_num) all_tables.extend(tables_pymupdf) # Method 2: Camelot (if available) if CAMELOT_AVAILABLE: try: tables_camelot = self._extract_tables_camelot(pdf_path, page_num) all_tables.extend(tables_camelot) except Exception as e: logger.warning(f"Camelot extraction failed: {e}") # Method 3: Tabula (if available) if TABULA_AVAILABLE: try: tables_tabula = self._extract_tables_tabula(pdf_path, page_num) all_tables.extend(tables_tabula) except Exception as e: logger.warning(f"Tabula extraction failed: {e}") # Remove duplicates and return best tables return self._deduplicate_tables(all_tables) def _extract_tables_pymupdf(self, pdf_path: str, page_num: int) -> List[TableData]: """ Extract tables using PyMuPDF """ tables = [] try: doc = fitz.open(pdf_path) page = doc[page_num - 1] # Convert to 0-based index detected_tables = page.find_tables() for i, table in enumerate(detected_tables): try: table_data = table.extract() if table_data and len(table_data) > 0: # Clean the table data cleaned_data = [] for row in table_data: cleaned_row = [] for cell in row: cell_text = str(cell).strip() if cell else "" cleaned_row.append(cell_text) if any(cleaned_row): # Only add non-empty rows cleaned_data.append(cleaned_row) if cleaned_data: tables.append(TableData( data=cleaned_data, bbox=table.bbox, page_num=page_num, confidence=0.8, # PyMuPDF generally reliable has_header=True )) except Exception as e: logger.warning(f"Error extracting PyMuPDF table {i}: {e}") doc.close() except Exception as e: logger.error(f"PyMuPDF table extraction failed: {e}") return tables def _extract_tables_camelot(self, pdf_path: str, page_num: int) -> List[TableData]: """ Extract tables using Camelot (only if available) """ if not CAMELOT_AVAILABLE: return [] tables = [] try: # Camelot works with page numbers (1-based) camelot_tables = camelot.read_pdf(pdf_path, pages=str(page_num), flavor='lattice') for i, table in enumerate(camelot_tables): df = table.df if not df.empty: # Convert DataFrame to list of lists table_data = df.values.tolist() # Add headers if they exist if not df.columns.empty: headers = df.columns.tolist() table_data.insert(0, headers) tables.append(TableData( data=table_data, bbox=(0, 0, 100, 100), # Camelot doesn't provide bbox page_num=page_num, confidence=table.accuracy / 100.0 if hasattr(table, 'accuracy') else 0.7, has_header=True )) except Exception as e: logger.warning(f"Camelot extraction failed: {e}") return tables def _extract_tables_tabula(self, pdf_path: str, page_num: int) -> List[TableData]: """ Extract tables using Tabula (only if available) """ if not TABULA_AVAILABLE: return [] tables = [] try: # Tabula works with page numbers (1-based) tabula_tables = tabula.read_pdf(pdf_path, pages=page_num, multiple_tables=True) for i, df in enumerate(tabula_tables): if not df.empty: # Convert DataFrame to list of lists table_data = df.fillna('').values.tolist() # Add headers headers = df.columns.tolist() table_data.insert(0, headers) tables.append(TableData( data=table_data, bbox=(0, 0, 100, 100), # Tabula doesn't provide bbox page_num=page_num, confidence=0.7, has_header=True )) except Exception as e: logger.warning(f"Tabula extraction failed: {e}") return tables def _deduplicate_tables(self, tables: List[TableData]) -> List[TableData]: """ Remove duplicate tables by comparing content """ if not tables: return tables unique_tables = [] for table in tables: is_duplicate = False for existing_table in unique_tables: if self._tables_are_similar(table, existing_table): # Keep the one with higher confidence if table.confidence > existing_table.confidence: unique_tables.remove(existing_table) unique_tables.append(table) is_duplicate = True break if not is_duplicate: unique_tables.append(table) return unique_tables def _tables_are_similar(self, table1: TableData, table2: TableData, threshold: float = 0.8) -> bool: """ Check if two tables are similar (likely duplicates) """ if len(table1.data) != len(table2.data): return False if not table1.data or not table2.data: return False # Compare dimensions if len(table1.data[0]) != len(table2.data[0]): return False # Compare content similarity matching_cells = 0 total_cells = len(table1.data) * len(table1.data[0]) for i, (row1, row2) in enumerate(zip(table1.data, table2.data)): for j, (cell1, cell2) in enumerate(zip(row1, row2)): if str(cell1).strip().lower() == str(cell2).strip().lower(): matching_cells += 1 similarity = matching_cells / total_cells if total_cells > 0 else 0 return similarity >= threshold def process_pdf_to_excel(self, pdf_path: str, output_path: str, format_type: str = 'structured') -> str: """ Convert PDF to Excel with enhanced processing """ logger.info(f"Starting PDF to Excel conversion: {pdf_path}") if not os.path.exists(pdf_path): raise FileNotFoundError(f"PDF file not found: {pdf_path}") # Extract content from PDF pdf_content = self._extract_comprehensive_content(pdf_path) # Create Excel workbook output_path = self._create_excel_workbook(pdf_content, output_path, format_type) logger.info(f"Successfully converted PDF to Excel: {output_path}") return output_path def _extract_comprehensive_content(self, pdf_path: str) -> Dict[str, Any]: """ Extract all content from PDF using multiple methods """ content = { 'pages': [], 'total_pages': 0, 'metadata': {} } try: doc = fitz.open(pdf_path) content['total_pages'] = doc.page_count content['metadata'] = doc.metadata logger.info(f"Processing {doc.page_count} pages...") for page_num in range(doc.page_count): page = doc[page_num] logger.info(f"Processing page {page_num + 1}/{doc.page_count}") # Extract text blocks text_blocks = self.extract_text_blocks_advanced(page, page_num + 1) # Extract tables using multiple methods tables = self.extract_tables_multiple_methods(pdf_path, page_num + 1) # Extract images (basic) images = self._extract_images_basic(page, page_num + 1) page_content = { 'page_number': page_num + 1, 'text_blocks': text_blocks, 'tables': tables, 'images': images, 'page_width': page.rect.width, 'page_height': page.rect.height } content['pages'].append(page_content) doc.close() except Exception as e: logger.error(f"Error extracting PDF content: {e}") raise return content def _extract_images_basic(self, page, page_num: int) -> List[Dict]: """ Basic image extraction for reference """ images = [] try: image_list = page.get_images() for i, img in enumerate(image_list): images.append({ 'index': i, 'page': page_num, 'bbox': img # Simplified }) except Exception as e: logger.warning(f"Image extraction failed for page {page_num}: {e}") return images def _create_excel_workbook(self, content: Dict[str, Any], output_path: str, format_type: str) -> str: """ Create Excel workbook with proper formatting """ with pd.ExcelWriter(output_path, engine='openpyxl') as writer: if format_type == 'structured': self._create_structured_workbook(content, writer) elif format_type == 'combined': self._create_combined_workbook(content, writer) else: # separate_sheets self._create_separate_sheets_workbook(content, writer) # Add summary sheet self._add_summary_sheet(content, writer) # Apply formatting self._apply_excel_formatting(output_path) return output_path def _create_structured_workbook(self, content: Dict[str, Any], writer): """ Create structured workbook maintaining document flow """ for page_data in content['pages']: page_num = page_data['page_number'] # Process tables first table_count = 0 for table in page_data['tables']: if table.data: df = pd.DataFrame(table.data[1:], columns=table.data[0] if table.has_header else None) sheet_name = f"P{page_num}_Table{table_count + 1}"[:31] df.to_excel(writer, sheet_name=sheet_name, index=False) table_count += 1 # Process text content if page_data['text_blocks']: # Group text blocks by proximity and formatting text_groups = self._group_text_blocks(page_data['text_blocks']) for i, group in enumerate(text_groups): if group['content'].strip(): text_df = pd.DataFrame([{ 'Content': group['content'], 'Font_Size': group.get('font_size', 12), 'Is_Bold': group.get('is_bold', False), 'Position_X': group.get('x', 0), 'Position_Y': group.get('y', 0) }]) sheet_name = f"P{page_num}_Text{i + 1}"[:31] text_df.to_excel(writer, sheet_name=sheet_name, index=False) def _create_combined_workbook(self, content: Dict[str, Any], writer): """ Create combined workbook with all tables and text together """ all_tables = [] all_text = [] for page_data in content['pages']: page_num = page_data['page_number'] # Collect all tables for i, table in enumerate(page_data['tables']): if table.data: df = pd.DataFrame(table.data[1:], columns=table.data[0] if table.has_header else None) df['Source_Page'] = page_num df['Table_Index'] = i + 1 all_tables.append(df) # Collect all text text_content = '\n'.join([block.text for block in page_data['text_blocks']]) if text_content.strip(): all_text.append({ 'Page': page_num, 'Content': text_content.strip() }) # Write combined tables if all_tables: combined_tables = pd.concat(all_tables, ignore_index=True) combined_tables.to_excel(writer, sheet_name='All_Tables', index=False) # Write combined text if all_text: text_df = pd.DataFrame(all_text) text_df.to_excel(writer, sheet_name='All_Text', index=False) def _create_separate_sheets_workbook(self, content: Dict[str, Any], writer): """ Create workbook with each element on separate sheets """ table_counter = 1 text_counter = 1 for page_data in content['pages']: page_num = page_data['page_number'] # Each table gets its own sheet for table in page_data['tables']: if table.data: df = pd.DataFrame(table.data[1:], columns=table.data[0] if table.has_header else None) sheet_name = f"Table_{table_counter}"[:31] df.to_excel(writer, sheet_name=sheet_name, index=False) table_counter += 1 # Page text gets its own sheet if page_data['text_blocks']: text_content = '\n'.join([block.text for block in page_data['text_blocks']]) if text_content.strip(): text_df = pd.DataFrame([{'Page': page_num, 'Content': text_content}]) sheet_name = f"Text_{text_counter}"[:31] text_df.to_excel(writer, sheet_name=sheet_name, index=False) text_counter += 1 def _group_text_blocks(self, text_blocks: List[TextBlock]) -> List[Dict]: """ Group text blocks by proximity and formatting """ if not text_blocks: return [] # Sort by position (top to bottom, left to right) sorted_blocks = sorted(text_blocks, key=lambda b: (b.y, b.x)) groups = [] current_group = { 'content': '', 'font_size': sorted_blocks[0].font_size, 'is_bold': sorted_blocks[0].is_bold, 'x': sorted_blocks[0].x, 'y': sorted_blocks[0].y } for block in sorted_blocks: # Check if block should be in current group (similar formatting and position) if (abs(current_group['font_size'] - block.font_size) < 2 and current_group['is_bold'] == block.is_bold): current_group['content'] += ' ' + block.text else: # Start new group if current_group['content'].strip(): groups.append(current_group) current_group = { 'content': block.text, 'font_size': block.font_size, 'is_bold': block.is_bold, 'x': block.x, 'y': block.y } # Add last group if current_group['content'].strip(): groups.append(current_group) return groups def _add_summary_sheet(self, content: Dict[str, Any], writer): """ Add summary sheet with document statistics """ total_tables = sum(len(page['tables']) for page in content['pages']) total_text_blocks = sum(len(page['text_blocks']) for page in content['pages']) summary_data = { 'Statistic': [ 'Total Pages', 'Total Tables', 'Total Text Blocks', 'Processing Date', 'Document Title' ], 'Value': [ content['total_pages'], total_tables, total_text_blocks, datetime.now().strftime('%Y-%m-%d %H:%M:%S'), content['metadata'].get('title', 'Unknown') ] } summary_df = pd.DataFrame(summary_data) summary_df.to_excel(writer, sheet_name='Summary', index=False) def _apply_excel_formatting(self, file_path: str): """ Apply formatting to the Excel file """ try: wb = openpyxl.load_workbook(file_path) # Define styles header_font = Font(bold=True, color="FFFFFF") header_fill = PatternFill(start_color="366092", end_color="366092", fill_type="solid") border = Border( left=Side(style='thin'), right=Side(style='thin'), top=Side(style='thin'), bottom=Side(style='thin') ) for sheet_name in wb.sheetnames: ws = wb[sheet_name] # Format headers if ws.max_row > 0: for cell in ws[1]: cell.font = header_font cell.fill = header_fill cell.alignment = Alignment(horizontal='center', vertical='center') cell.border = border # Auto-adjust column widths for column in ws.columns: max_length = 0 column_letter = column[0].column_letter for cell in column: try: if len(str(cell.value)) > max_length: max_length = len(str(cell.value)) except: pass adjusted_width = min(max_length + 2, 50) ws.column_dimensions[column_letter].width = adjusted_width wb.save(file_path) except Exception as e: logger.warning(f"Could not apply formatting: {e}") # Usage example and main function def install_dependencies(): """ Print installation instructions for missing dependencies """ print("šŸ“¦ INSTALLATION INSTRUCTIONS:") print("=" * 50) required_packages = [ ("PyMuPDF", "pip install PyMuPDF", True), ("pandas", "pip install pandas", True), ("openpyxl", "pip install openpyxl", True), ("numpy", "pip install numpy", True), ("camelot-py", "pip install camelot-py[cv]", CAMELOT_AVAILABLE), ("tabula-py", "pip install tabula-py", TABULA_AVAILABLE) ] print("\nāœ… CORE PACKAGES (Required):") for name, cmd, available in required_packages[:4]: status = "āœ… Installed" if available else "āŒ Missing" print(f" {name}: {status}") if not available: print(f" Install: {cmd}") print("\nšŸ”§ OPTIONAL PACKAGES (For better table extraction):") for name, cmd, available in required_packages[4:]: status = "āœ… Installed" if available else "āŒ Missing" print(f" {name}: {status}") if not available: print(f" Install: {cmd}") print("\nšŸ’” INSTALL ALL AT ONCE:") print("pip install PyMuPDF pandas openpyxl numpy camelot-py[cv] tabula-py") print("\n" + "=" * 50) def main(): """ Main function to demonstrate usage """ print("šŸš€ Enhanced PDF to Excel Converter") print("=" * 40) # Show installation status install_dependencies() converter = PDFToExcelConverter() # Example usage pdf_path = "input.pdf" # Replace with your PDF path output_path = "output.xlsx" # Replace with desired output path try: # Check if PDF file exists if not os.path.exists(pdf_path): print(f"\nāŒ PDF file not found: {pdf_path}") print("Please update the 'pdf_path' variable with your actual PDF file path.") return print(f"\nšŸ”„ Converting: {pdf_path}") result = converter.process_pdf_to_excel( pdf_path=pdf_path, output_path=output_path, format_type='structured' # Options: 'structured', 'combined', 'separate_sheets' ) print(f"āœ… Conversion completed successfully: {result}") except Exception as e: print(f"āŒ Conversion failed: {e}") print("\nšŸ› ļø TROUBLESHOOTING:") print("1. Make sure all required packages are installed") print("2. Check that your PDF file exists and is readable") print("3. Ensure you have write permissions for the output directory") if __name__ == "__main__": main()