new-project / pdf_excel.py
amit01Xindus's picture
Upload 8 files
96c003e verified
import os
import pandas as pd
import fitz # PyMuPDF
import openpyxl
from openpyxl.utils.dataframe import dataframe_to_rows
from openpyxl.styles import Font, PatternFill, Border, Side, Alignment
from dataclasses import dataclass
from typing import List, Dict, Any, Tuple, Optional
import re
from pathlib import Path
import logging
from datetime import datetime
import numpy as np
# Optional imports with graceful fallback
try:
import camelot # For advanced table extraction
CAMELOT_AVAILABLE = True
except ImportError:
CAMELOT_AVAILABLE = False
print("⚠️ Camelot not installed. Run: pip install camelot-py[cv]")
try:
import tabula # Alternative table extraction
TABULA_AVAILABLE = True
except ImportError:
TABULA_AVAILABLE = False
print("⚠️ Tabula not installed. Run: pip install tabula-py")
# Set up logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
@dataclass
class TextBlock:
text: str
x: float
y: float
width: float
height: float
font_size: float
font_name: str
is_bold: bool = False
is_italic: bool = False
page_num: int = 1
block_id: str = ""
@dataclass
class TableData:
data: List[List[str]]
bbox: Tuple[float, float, float, float]
page_num: int
confidence: float = 0.0
has_header: bool = True
class PDFToExcelConverter:
"""
Enhanced PDF to Excel converter with multiple extraction methods
for better accuracy and handling of complex documents.
"""
def __init__(self):
# Check available extraction methods
available_methods = ['pymupdf'] # Always available
if CAMELOT_AVAILABLE:
available_methods.append('camelot')
if TABULA_AVAILABLE:
available_methods.append('tabula')
self.extraction_methods = available_methods
self.output_formats = {
'separate_sheets': 'Each table and text section on separate sheets',
'combined': 'All content combined logically',
'structured': 'Maintain document structure with proper formatting'
}
# Log available methods
logger.info(f"Available extraction methods: {', '.join(available_methods)}")
def extract_text_blocks_advanced(self, page, page_num: int) -> List[TextBlock]:
"""
Advanced text extraction with better formatting detection
"""
text_blocks = []
try:
# Method 1: Dictionary-based extraction (most detailed)
page_dict = page.get_text("dict")
for block_idx, block in enumerate(page_dict.get("blocks", [])):
if block.get("type", 1) != 0: # Skip non-text blocks
continue
for line_idx, line in enumerate(block.get("lines", [])):
for span_idx, span in enumerate(line.get("spans", [])):
text_content = span.get("text", "").strip()
if not text_content:
continue
bbox = span["bbox"]
flags = span.get("flags", 0)
# Enhanced font detection
font_name = span.get("font", "Arial")
font_size = span.get("size", 12)
is_bold = bool(flags & 16) or "bold" in font_name.lower()
is_italic = bool(flags & 2) or "italic" in font_name.lower()
text_block = TextBlock(
text=text_content,
x=bbox[0], y=bbox[1],
width=bbox[2] - bbox[0],
height=bbox[3] - bbox[1],
font_size=font_size,
font_name=font_name,
is_bold=is_bold,
is_italic=is_italic,
page_num=page_num,
block_id=f"p{page_num}_b{block_idx}_l{line_idx}_s{span_idx}"
)
text_blocks.append(text_block)
except Exception as e:
logger.warning(f"Advanced text extraction failed for page {page_num}: {e}")
# Fallback to simple extraction
text_blocks = self._extract_text_simple_fallback(page, page_num)
return text_blocks
def _extract_text_simple_fallback(self, page, page_num: int) -> List[TextBlock]:
"""
Fallback text extraction method
"""
text_blocks = []
try:
text = page.get_text()
if text.strip():
# Create a single text block for the entire page content
rect = page.rect
text_block = TextBlock(
text=text.strip(),
x=0, y=0,
width=rect.width,
height=rect.height,
font_size=12,
font_name="Arial",
page_num=page_num,
block_id=f"p{page_num}_fallback"
)
text_blocks.append(text_block)
except Exception as e:
logger.error(f"Fallback text extraction failed for page {page_num}: {e}")
return text_blocks
def extract_tables_multiple_methods(self, pdf_path: str, page_num: int) -> List[TableData]:
"""
Extract tables using multiple methods and combine results
"""
all_tables = []
# Method 1: PyMuPDF built-in table detection
tables_pymupdf = self._extract_tables_pymupdf(pdf_path, page_num)
all_tables.extend(tables_pymupdf)
# Method 2: Camelot (if available)
if CAMELOT_AVAILABLE:
try:
tables_camelot = self._extract_tables_camelot(pdf_path, page_num)
all_tables.extend(tables_camelot)
except Exception as e:
logger.warning(f"Camelot extraction failed: {e}")
# Method 3: Tabula (if available)
if TABULA_AVAILABLE:
try:
tables_tabula = self._extract_tables_tabula(pdf_path, page_num)
all_tables.extend(tables_tabula)
except Exception as e:
logger.warning(f"Tabula extraction failed: {e}")
# Remove duplicates and return best tables
return self._deduplicate_tables(all_tables)
def _extract_tables_pymupdf(self, pdf_path: str, page_num: int) -> List[TableData]:
"""
Extract tables using PyMuPDF
"""
tables = []
try:
doc = fitz.open(pdf_path)
page = doc[page_num - 1] # Convert to 0-based index
detected_tables = page.find_tables()
for i, table in enumerate(detected_tables):
try:
table_data = table.extract()
if table_data and len(table_data) > 0:
# Clean the table data
cleaned_data = []
for row in table_data:
cleaned_row = []
for cell in row:
cell_text = str(cell).strip() if cell else ""
cleaned_row.append(cell_text)
if any(cleaned_row): # Only add non-empty rows
cleaned_data.append(cleaned_row)
if cleaned_data:
tables.append(TableData(
data=cleaned_data,
bbox=table.bbox,
page_num=page_num,
confidence=0.8, # PyMuPDF generally reliable
has_header=True
))
except Exception as e:
logger.warning(f"Error extracting PyMuPDF table {i}: {e}")
doc.close()
except Exception as e:
logger.error(f"PyMuPDF table extraction failed: {e}")
return tables
def _extract_tables_camelot(self, pdf_path: str, page_num: int) -> List[TableData]:
"""
Extract tables using Camelot (only if available)
"""
if not CAMELOT_AVAILABLE:
return []
tables = []
try:
# Camelot works with page numbers (1-based)
camelot_tables = camelot.read_pdf(pdf_path, pages=str(page_num), flavor='lattice')
for i, table in enumerate(camelot_tables):
df = table.df
if not df.empty:
# Convert DataFrame to list of lists
table_data = df.values.tolist()
# Add headers if they exist
if not df.columns.empty:
headers = df.columns.tolist()
table_data.insert(0, headers)
tables.append(TableData(
data=table_data,
bbox=(0, 0, 100, 100), # Camelot doesn't provide bbox
page_num=page_num,
confidence=table.accuracy / 100.0 if hasattr(table, 'accuracy') else 0.7,
has_header=True
))
except Exception as e:
logger.warning(f"Camelot extraction failed: {e}")
return tables
def _extract_tables_tabula(self, pdf_path: str, page_num: int) -> List[TableData]:
"""
Extract tables using Tabula (only if available)
"""
if not TABULA_AVAILABLE:
return []
tables = []
try:
# Tabula works with page numbers (1-based)
tabula_tables = tabula.read_pdf(pdf_path, pages=page_num, multiple_tables=True)
for i, df in enumerate(tabula_tables):
if not df.empty:
# Convert DataFrame to list of lists
table_data = df.fillna('').values.tolist()
# Add headers
headers = df.columns.tolist()
table_data.insert(0, headers)
tables.append(TableData(
data=table_data,
bbox=(0, 0, 100, 100), # Tabula doesn't provide bbox
page_num=page_num,
confidence=0.7,
has_header=True
))
except Exception as e:
logger.warning(f"Tabula extraction failed: {e}")
return tables
def _deduplicate_tables(self, tables: List[TableData]) -> List[TableData]:
"""
Remove duplicate tables by comparing content
"""
if not tables:
return tables
unique_tables = []
for table in tables:
is_duplicate = False
for existing_table in unique_tables:
if self._tables_are_similar(table, existing_table):
# Keep the one with higher confidence
if table.confidence > existing_table.confidence:
unique_tables.remove(existing_table)
unique_tables.append(table)
is_duplicate = True
break
if not is_duplicate:
unique_tables.append(table)
return unique_tables
def _tables_are_similar(self, table1: TableData, table2: TableData, threshold: float = 0.8) -> bool:
"""
Check if two tables are similar (likely duplicates)
"""
if len(table1.data) != len(table2.data):
return False
if not table1.data or not table2.data:
return False
# Compare dimensions
if len(table1.data[0]) != len(table2.data[0]):
return False
# Compare content similarity
matching_cells = 0
total_cells = len(table1.data) * len(table1.data[0])
for i, (row1, row2) in enumerate(zip(table1.data, table2.data)):
for j, (cell1, cell2) in enumerate(zip(row1, row2)):
if str(cell1).strip().lower() == str(cell2).strip().lower():
matching_cells += 1
similarity = matching_cells / total_cells if total_cells > 0 else 0
return similarity >= threshold
def process_pdf_to_excel(self, pdf_path: str, output_path: str, format_type: str = 'structured') -> str:
"""
Convert PDF to Excel with enhanced processing
"""
logger.info(f"Starting PDF to Excel conversion: {pdf_path}")
if not os.path.exists(pdf_path):
raise FileNotFoundError(f"PDF file not found: {pdf_path}")
# Extract content from PDF
pdf_content = self._extract_comprehensive_content(pdf_path)
# Create Excel workbook
output_path = self._create_excel_workbook(pdf_content, output_path, format_type)
logger.info(f"Successfully converted PDF to Excel: {output_path}")
return output_path
def _extract_comprehensive_content(self, pdf_path: str) -> Dict[str, Any]:
"""
Extract all content from PDF using multiple methods
"""
content = {
'pages': [],
'total_pages': 0,
'metadata': {}
}
try:
doc = fitz.open(pdf_path)
content['total_pages'] = doc.page_count
content['metadata'] = doc.metadata
logger.info(f"Processing {doc.page_count} pages...")
for page_num in range(doc.page_count):
page = doc[page_num]
logger.info(f"Processing page {page_num + 1}/{doc.page_count}")
# Extract text blocks
text_blocks = self.extract_text_blocks_advanced(page, page_num + 1)
# Extract tables using multiple methods
tables = self.extract_tables_multiple_methods(pdf_path, page_num + 1)
# Extract images (basic)
images = self._extract_images_basic(page, page_num + 1)
page_content = {
'page_number': page_num + 1,
'text_blocks': text_blocks,
'tables': tables,
'images': images,
'page_width': page.rect.width,
'page_height': page.rect.height
}
content['pages'].append(page_content)
doc.close()
except Exception as e:
logger.error(f"Error extracting PDF content: {e}")
raise
return content
def _extract_images_basic(self, page, page_num: int) -> List[Dict]:
"""
Basic image extraction for reference
"""
images = []
try:
image_list = page.get_images()
for i, img in enumerate(image_list):
images.append({
'index': i,
'page': page_num,
'bbox': img # Simplified
})
except Exception as e:
logger.warning(f"Image extraction failed for page {page_num}: {e}")
return images
def _create_excel_workbook(self, content: Dict[str, Any], output_path: str, format_type: str) -> str:
"""
Create Excel workbook with proper formatting
"""
with pd.ExcelWriter(output_path, engine='openpyxl') as writer:
if format_type == 'structured':
self._create_structured_workbook(content, writer)
elif format_type == 'combined':
self._create_combined_workbook(content, writer)
else: # separate_sheets
self._create_separate_sheets_workbook(content, writer)
# Add summary sheet
self._add_summary_sheet(content, writer)
# Apply formatting
self._apply_excel_formatting(output_path)
return output_path
def _create_structured_workbook(self, content: Dict[str, Any], writer):
"""
Create structured workbook maintaining document flow
"""
for page_data in content['pages']:
page_num = page_data['page_number']
# Process tables first
table_count = 0
for table in page_data['tables']:
if table.data:
df = pd.DataFrame(table.data[1:], columns=table.data[0] if table.has_header else None)
sheet_name = f"P{page_num}_Table{table_count + 1}"[:31]
df.to_excel(writer, sheet_name=sheet_name, index=False)
table_count += 1
# Process text content
if page_data['text_blocks']:
# Group text blocks by proximity and formatting
text_groups = self._group_text_blocks(page_data['text_blocks'])
for i, group in enumerate(text_groups):
if group['content'].strip():
text_df = pd.DataFrame([{
'Content': group['content'],
'Font_Size': group.get('font_size', 12),
'Is_Bold': group.get('is_bold', False),
'Position_X': group.get('x', 0),
'Position_Y': group.get('y', 0)
}])
sheet_name = f"P{page_num}_Text{i + 1}"[:31]
text_df.to_excel(writer, sheet_name=sheet_name, index=False)
def _create_combined_workbook(self, content: Dict[str, Any], writer):
"""
Create combined workbook with all tables and text together
"""
all_tables = []
all_text = []
for page_data in content['pages']:
page_num = page_data['page_number']
# Collect all tables
for i, table in enumerate(page_data['tables']):
if table.data:
df = pd.DataFrame(table.data[1:], columns=table.data[0] if table.has_header else None)
df['Source_Page'] = page_num
df['Table_Index'] = i + 1
all_tables.append(df)
# Collect all text
text_content = '\n'.join([block.text for block in page_data['text_blocks']])
if text_content.strip():
all_text.append({
'Page': page_num,
'Content': text_content.strip()
})
# Write combined tables
if all_tables:
combined_tables = pd.concat(all_tables, ignore_index=True)
combined_tables.to_excel(writer, sheet_name='All_Tables', index=False)
# Write combined text
if all_text:
text_df = pd.DataFrame(all_text)
text_df.to_excel(writer, sheet_name='All_Text', index=False)
def _create_separate_sheets_workbook(self, content: Dict[str, Any], writer):
"""
Create workbook with each element on separate sheets
"""
table_counter = 1
text_counter = 1
for page_data in content['pages']:
page_num = page_data['page_number']
# Each table gets its own sheet
for table in page_data['tables']:
if table.data:
df = pd.DataFrame(table.data[1:], columns=table.data[0] if table.has_header else None)
sheet_name = f"Table_{table_counter}"[:31]
df.to_excel(writer, sheet_name=sheet_name, index=False)
table_counter += 1
# Page text gets its own sheet
if page_data['text_blocks']:
text_content = '\n'.join([block.text for block in page_data['text_blocks']])
if text_content.strip():
text_df = pd.DataFrame([{'Page': page_num, 'Content': text_content}])
sheet_name = f"Text_{text_counter}"[:31]
text_df.to_excel(writer, sheet_name=sheet_name, index=False)
text_counter += 1
def _group_text_blocks(self, text_blocks: List[TextBlock]) -> List[Dict]:
"""
Group text blocks by proximity and formatting
"""
if not text_blocks:
return []
# Sort by position (top to bottom, left to right)
sorted_blocks = sorted(text_blocks, key=lambda b: (b.y, b.x))
groups = []
current_group = {
'content': '',
'font_size': sorted_blocks[0].font_size,
'is_bold': sorted_blocks[0].is_bold,
'x': sorted_blocks[0].x,
'y': sorted_blocks[0].y
}
for block in sorted_blocks:
# Check if block should be in current group (similar formatting and position)
if (abs(current_group['font_size'] - block.font_size) < 2 and
current_group['is_bold'] == block.is_bold):
current_group['content'] += ' ' + block.text
else:
# Start new group
if current_group['content'].strip():
groups.append(current_group)
current_group = {
'content': block.text,
'font_size': block.font_size,
'is_bold': block.is_bold,
'x': block.x,
'y': block.y
}
# Add last group
if current_group['content'].strip():
groups.append(current_group)
return groups
def _add_summary_sheet(self, content: Dict[str, Any], writer):
"""
Add summary sheet with document statistics
"""
total_tables = sum(len(page['tables']) for page in content['pages'])
total_text_blocks = sum(len(page['text_blocks']) for page in content['pages'])
summary_data = {
'Statistic': [
'Total Pages',
'Total Tables',
'Total Text Blocks',
'Processing Date',
'Document Title'
],
'Value': [
content['total_pages'],
total_tables,
total_text_blocks,
datetime.now().strftime('%Y-%m-%d %H:%M:%S'),
content['metadata'].get('title', 'Unknown')
]
}
summary_df = pd.DataFrame(summary_data)
summary_df.to_excel(writer, sheet_name='Summary', index=False)
def _apply_excel_formatting(self, file_path: str):
"""
Apply formatting to the Excel file
"""
try:
wb = openpyxl.load_workbook(file_path)
# Define styles
header_font = Font(bold=True, color="FFFFFF")
header_fill = PatternFill(start_color="366092", end_color="366092", fill_type="solid")
border = Border(
left=Side(style='thin'),
right=Side(style='thin'),
top=Side(style='thin'),
bottom=Side(style='thin')
)
for sheet_name in wb.sheetnames:
ws = wb[sheet_name]
# Format headers
if ws.max_row > 0:
for cell in ws[1]:
cell.font = header_font
cell.fill = header_fill
cell.alignment = Alignment(horizontal='center', vertical='center')
cell.border = border
# Auto-adjust column widths
for column in ws.columns:
max_length = 0
column_letter = column[0].column_letter
for cell in column:
try:
if len(str(cell.value)) > max_length:
max_length = len(str(cell.value))
except:
pass
adjusted_width = min(max_length + 2, 50)
ws.column_dimensions[column_letter].width = adjusted_width
wb.save(file_path)
except Exception as e:
logger.warning(f"Could not apply formatting: {e}")
# Usage example and main function
def install_dependencies():
"""
Print installation instructions for missing dependencies
"""
print("πŸ“¦ INSTALLATION INSTRUCTIONS:")
print("=" * 50)
required_packages = [
("PyMuPDF", "pip install PyMuPDF", True),
("pandas", "pip install pandas", True),
("openpyxl", "pip install openpyxl", True),
("numpy", "pip install numpy", True),
("camelot-py", "pip install camelot-py[cv]", CAMELOT_AVAILABLE),
("tabula-py", "pip install tabula-py", TABULA_AVAILABLE)
]
print("\nβœ… CORE PACKAGES (Required):")
for name, cmd, available in required_packages[:4]:
status = "βœ… Installed" if available else "❌ Missing"
print(f" {name}: {status}")
if not available:
print(f" Install: {cmd}")
print("\nπŸ”§ OPTIONAL PACKAGES (For better table extraction):")
for name, cmd, available in required_packages[4:]:
status = "βœ… Installed" if available else "❌ Missing"
print(f" {name}: {status}")
if not available:
print(f" Install: {cmd}")
print("\nπŸ’‘ INSTALL ALL AT ONCE:")
print("pip install PyMuPDF pandas openpyxl numpy camelot-py[cv] tabula-py")
print("\n" + "=" * 50)
def main():
"""
Main function to demonstrate usage
"""
print("πŸš€ Enhanced PDF to Excel Converter")
print("=" * 40)
# Show installation status
install_dependencies()
converter = PDFToExcelConverter()
# Example usage
pdf_path = "input.pdf" # Replace with your PDF path
output_path = "output.xlsx" # Replace with desired output path
try:
# Check if PDF file exists
if not os.path.exists(pdf_path):
print(f"\n❌ PDF file not found: {pdf_path}")
print("Please update the 'pdf_path' variable with your actual PDF file path.")
return
print(f"\nπŸ”„ Converting: {pdf_path}")
result = converter.process_pdf_to_excel(
pdf_path=pdf_path,
output_path=output_path,
format_type='structured' # Options: 'structured', 'combined', 'separate_sheets'
)
print(f"βœ… Conversion completed successfully: {result}")
except Exception as e:
print(f"❌ Conversion failed: {e}")
print("\nπŸ› οΈ TROUBLESHOOTING:")
print("1. Make sure all required packages are installed")
print("2. Check that your PDF file exists and is readable")
print("3. Ensure you have write permissions for the output directory")
if __name__ == "__main__":
main()