File size: 20,983 Bytes
96c003e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
import os
import base64
import json
import requests
from typing import Dict, List, Any, Optional
import fitz  # PyMuPDF
from PIL import Image
import io
import re
from dataclasses import dataclass, asdict
from pathlib import Path
from datetime import datetime

@dataclass
class TextBlock:
    text: str
    x: float
    y: float
    width: float
    height: float
    font_size: float
    font_name: str
    is_bold: bool = False
    is_italic: bool = False
    block_id: str = ""
    
    def to_dict(self) -> Dict[str, Any]:
        """Convert TextBlock to dictionary"""
        return asdict(self)

@dataclass
class ImageData:
    index: int
    base64_data: str
    bbox: tuple
    width: float
    height: float
    format: str = "PNG"
    
    def to_dict(self) -> Dict[str, Any]:
        """Convert ImageData to dictionary"""
        return asdict(self)

@dataclass
class TableData:
    bbox: tuple
    data: List[List[str]]
    rows: int
    columns: int
    
    def to_dict(self) -> Dict[str, Any]:
        """Convert TableData to dictionary"""
        return asdict(self)

@dataclass
class PageData:
    page_number: int
    text_blocks: List[TextBlock]
    images: List[ImageData]
    tables: List[TableData]
    page_width: float
    page_height: float
    word_count: int = 0
    character_count: int = 0
    
    def to_dict(self) -> Dict[str, Any]:
        """Convert PageData to dictionary"""
        return {
            "page_number": self.page_number,
            "text_blocks": [block.to_dict() for block in self.text_blocks],
            "images": [img.to_dict() for img in self.images],
            "tables": [table.to_dict() for table in self.tables],
            "page_width": self.page_width,
            "page_height": self.page_height,
            "word_count": self.word_count,
            "character_count": self.character_count
        }

class PDFToJSONConverter:
    def __init__(self, huggingface_token: str = None):
        self.hf_token = huggingface_token
        self.hf_headers = {
            "Authorization": f"Bearer {huggingface_token}" if huggingface_token else None
        }
        self.models = {
            "document_layout": "microsoft/layoutlm-base-uncased",
            "table_detection": "microsoft/table-transformer-detection",
            "ocr": "microsoft/trocr-base-printed",
            "math_detection": "facebook/detr-resnet-50"
        }
        self.hf_inference_url = "https://api-inference.huggingface.co/models"

    def pdf_to_base64(self, pdf_path: str) -> str:
        """Convert PDF file to base64 string"""
        try:
            with open(pdf_path, "rb") as pdf_file:
                return base64.b64encode(pdf_file.read()).decode('utf-8')
        except Exception as e:
            raise Exception(f"Error converting PDF to base64: {str(e)}")

    def extract_pdf_content(self, pdf_path: str) -> Dict[str, Any]:
        """Extract all content from PDF and return structured data"""
        doc = None
        try:
            if not os.path.exists(pdf_path):
                raise FileNotFoundError(f"PDF file not found: {pdf_path}")

            doc = fitz.open(pdf_path)

            if doc is None:
                raise RuntimeError("Failed to open PDF document")

            if doc.page_count == 0:
                raise ValueError("PDF document has no pages")

            print(f"πŸ“„ PDF opened successfully: {doc.page_count} pages")

            pages_data = []
            document_stats = {
                "total_pages": doc.page_count,
                "total_words": 0,
                "total_characters": 0,
                "total_images": 0,
                "total_tables": 0
            }

            for page_num in range(doc.page_count):
                try:
                    page = doc[page_num]
                    print(f"πŸ”„ Processing page {page_num + 1}/{doc.page_count}")

                    # Extract text blocks
                    text_blocks = []
                    try:
                        page_dict = page.get_text("dict")
                        text_blocks = self._extract_text_blocks_from_dict(page_dict, page_num)
                    except Exception as e:
                        print(f"⚠️ Dict method failed for page {page_num + 1}, falling back to simple text extraction: {e}")
                        text_blocks = self._extract_text_blocks_simple(page, page_num)

                    # Extract images
                    images = self._extract_images_safely(page, doc, page_num)
                    
                    # Extract tables
                    tables = self._detect_tables_safely(page)

                    # Get page dimensions
                    page_rect = page.rect

                    # Calculate statistics
                    page_text = " ".join([block.text for block in text_blocks])
                    word_count = len(page_text.split())
                    char_count = len(page_text)

                    # Create page data
                    page_data = PageData(
                        page_number=page_num + 1,
                        text_blocks=text_blocks,
                        images=images,
                        tables=tables,
                        page_width=page_rect.width,
                        page_height=page_rect.height,
                        word_count=word_count,
                        character_count=char_count
                    )
                    
                    pages_data.append(page_data)

                    # Update document statistics
                    document_stats["total_words"] += word_count
                    document_stats["total_characters"] += char_count
                    document_stats["total_images"] += len(images)
                    document_stats["total_tables"] += len(tables)

                except Exception as e:
                    print(f"❌ Error processing page {page_num + 1}: {e}")
                    # Create empty page data for failed pages
                    empty_page = PageData(
                        page_number=page_num + 1,
                        text_blocks=[],
                        images=[],
                        tables=[],
                        page_width=595,
                        page_height=842,
                        word_count=0,
                        character_count=0
                    )
                    pages_data.append(empty_page)

            result = {
                "document_info": {
                    "filename": os.path.basename(pdf_path),
                    "file_size": os.path.getsize(pdf_path),
                    "conversion_timestamp": self._get_current_timestamp(),
                    "converter_version": "1.0.0"
                },
                "document_statistics": document_stats,
                "pages": [page.to_dict() for page in pages_data]
            }
            
            return result

        except Exception as e:
            raise Exception(f"Error extracting PDF content: {str(e)}")
        finally:
            if doc is not None:
                try:
                    doc.close()
                    print("βœ… PDF document closed successfully")
                except Exception as e:
                    print(f"⚠️ Error closing PDF document: {e}")

    def _extract_text_blocks_from_dict(self, page_dict: dict, page_num: int) -> List[TextBlock]:
        """Extract text blocks from page dictionary with detailed formatting"""
        text_blocks = []
        
        for block_idx, block in enumerate(page_dict.get("blocks", [])):
            if "lines" not in block:
                continue
                
            for line_idx, line in enumerate(block["lines"]):
                for span_idx, span in enumerate(line["spans"]):
                    text_content = span.get("text", "").strip()
                    if text_content:
                        bbox = span["bbox"]
                        font_info = {
                            "size": span.get("size", 12),
                            "font": span.get("font", "Arial"),
                            "is_bold": "bold" in span.get("font", "").lower() or span.get("flags", 0) & 16,
                            "is_italic": "italic" in span.get("font", "").lower() or span.get("flags", 0) & 2
                        }
                        
                        text_block = TextBlock(
                            text=text_content,
                            x=round(bbox[0], 2),
                            y=round(bbox[1], 2),
                            width=round(bbox[2] - bbox[0], 2),
                            height=round(bbox[3] - bbox[1], 2),
                            font_size=round(font_info["size"], 2),
                            font_name=font_info["font"],
                            is_bold=font_info["is_bold"],
                            is_italic=font_info["is_italic"],
                            block_id=f"p{page_num}-b{block_idx}-l{line_idx}-s{span_idx}"
                        )
                        text_blocks.append(text_block)
        
        return text_blocks

    def _extract_text_blocks_simple(self, page, page_num: int) -> List[TextBlock]:
        """Fallback method for text extraction"""
        text_blocks = []
        try:
            blocks_data = page.get_text("blocks")
            for block_idx, block in enumerate(blocks_data):
                if block[6] == 0:  # Text block
                    text = block[4].strip()
                    if text:
                        x0, y0, x1, y1 = block[0], block[1], block[2], block[3]
                        
                        lines = text.split('\n')
                        line_height = (y1 - y0) / max(len(lines), 1)
                        
                        for line_idx, line in enumerate(lines):
                            if line.strip():
                                text_block = TextBlock(
                                    text=line.strip(),
                                    x=round(x0, 2),
                                    y=round(y0 + (line_idx * line_height), 2),
                                    width=round(x1 - x0, 2),
                                    height=round(line_height, 2),
                                    font_size=12.0,
                                    font_name="Arial",
                                    is_bold=False,
                                    is_italic=False,
                                    block_id=f"p{page_num}-simple-b{block_idx}-l{line_idx}"
                                )
                                text_blocks.append(text_block)
        except Exception as e:
            print(f"⚠️ Simple text block extraction failed: {e}")
        
        return text_blocks

    def _extract_images_safely(self, page, doc, page_num) -> List[ImageData]:
        """Extract images from page and return structured data"""
        images = []
        try:
            image_list = page.get_images(full=True)
            for img_index, img_info in enumerate(image_list):
                try:
                    xref = img_info[0]
                    
                    # Get image rectangles
                    img_rects = [r for r in page.get_image_rects(xref)]
                    if not img_rects:
                        continue
                    
                    bbox = img_rects[0]
                    
                    # Extract image data
                    pix = fitz.Pixmap(doc, xref)
                    if pix.n - pix.alpha < 4:  # Valid image
                        img_data = pix.tobytes("png")
                        img_base64 = base64.b64encode(img_data).decode()

                        image_data = ImageData(
                            index=img_index,
                            base64_data=img_base64,
                            bbox=(round(bbox.x0, 2), round(bbox.y0, 2), 
                                  round(bbox.x1, 2), round(bbox.y1, 2)),
                            width=round(bbox.x1 - bbox.x0, 2),
                            height=round(bbox.y1 - bbox.y0, 2),
                            format="PNG"
                        )
                        images.append(image_data)
                    pix = None
                except Exception as e:
                    print(f"⚠️ Error extracting image {img_index} on page {page_num+1}: {e}")
                    continue
        except Exception as e:
            print(f"⚠️ General error in image extraction for page {page_num+1}: {e}")
        return images

    def _detect_tables_safely(self, page) -> List[TableData]:
        """Extract tables from page and return structured data"""
        tables = []
        try:
            tabs = page.find_tables()
            for tab_index, tab in enumerate(tabs):
                try:
                    table_data = tab.extract()
                    if table_data:
                        # Clean table data
                        cleaned_data = []
                        for row in table_data:
                            cleaned_row = [str(cell).strip() if cell else "" for cell in row]
                            if any(cleaned_row):  # Only add non-empty rows
                                cleaned_data.append(cleaned_row)
                        
                        if cleaned_data:
                            table_obj = TableData(
                                bbox=(round(tab.bbox.x0, 2), round(tab.bbox.y0, 2),
                                      round(tab.bbox.x1, 2), round(tab.bbox.y1, 2)),
                                data=cleaned_data,
                                rows=len(cleaned_data),
                                columns=max(len(row) for row in cleaned_data) if cleaned_data else 0
                            )
                            tables.append(table_obj)
                except Exception as e:
                    print(f"⚠️ Error extracting table {tab_index}: {e}")
                    continue
        except Exception as e:
            print(f"⚠️ General error in table detection: {e}")
        return tables

    def convert_to_json(self, pdf_content: Dict[str, Any], output_path: str = None, 
                       pretty_print: bool = True, include_base64_images: bool = True) -> str:
        """Convert PDF content to JSON format"""
        print("πŸ”„ Converting to JSON format...")
        
        try:
            # Create a copy of the content for modification
            json_content = pdf_content.copy()
            
            # Add metadata
            json_content["conversion_options"] = {
                "pretty_print": pretty_print,
                "include_base64_images": include_base64_images,
                "json_schema_version": "1.0"
            }
            
            # Optionally remove base64 image data to reduce file size
            if not include_base64_images:
                for page in json_content["pages"]:
                    for image in page["images"]:
                        image["base64_data"] = "[Base64 data removed - set include_base64_images=True to include]"
            
            # Convert to JSON string
            if pretty_print:
                json_string = json.dumps(json_content, indent=2, ensure_ascii=False)
            else:
                json_string = json.dumps(json_content, ensure_ascii=False)
            
            # Save to file if output path provided
            if output_path:
                try:
                    Path(output_path).parent.mkdir(parents=True, exist_ok=True)
                    with open(output_path, 'w', encoding='utf-8') as f:
                        f.write(json_string)
                    print(f"βœ… JSON saved to: {output_path}")
                    print(f"πŸ“Š File size: {len(json_string):,} characters")
                except Exception as e:
                    print(f"⚠️ Error saving JSON to {output_path}: {e}")
            
            return json_string
            
        except Exception as e:
            raise Exception(f"Error converting to JSON: {str(e)}")

    def create_json_summary(self, pdf_content: Dict[str, Any]) -> Dict[str, Any]:
        """Create a summary of the PDF content without full data"""
        summary = {
            "document_info": pdf_content.get("document_info", {}),
            "document_statistics": pdf_content.get("document_statistics", {}),
            "page_summaries": []
        }
        
        for page in pdf_content.get("pages", []):
            page_summary = {
                "page_number": page["page_number"],
                "text_blocks_count": len(page["text_blocks"]),
                "images_count": len(page["images"]),
                "tables_count": len(page["tables"]),
                "word_count": page["word_count"],
                "character_count": page["character_count"],
                "page_dimensions": {
                    "width": page["page_width"],
                    "height": page["page_height"]
                },
                "sample_text": " ".join([block["text"] for block in page["text_blocks"][:3]])[:200] + "..." if page["text_blocks"] else ""
            }
            summary["page_summaries"].append(page_summary)
        
        return summary

    def _get_current_timestamp(self) -> str:
        """Get current timestamp as string"""
        return datetime.now().strftime("%Y-%m-%d %H:%M:%S")

    def process_pdf_to_json(self, pdf_path: str, output_path: str = None, 
                           pretty_print: bool = True, include_base64_images: bool = True,
                           create_summary: bool = False, use_hf_models: bool = False) -> str:
        """Main method to process PDF and convert to JSON"""
        print(f"πŸš€ Processing PDF to JSON: {pdf_path}")

        if not os.path.exists(pdf_path):
            raise FileNotFoundError(f"PDF file not found: {pdf_path}")

        print("πŸ“„ Extracting PDF content...")
        pdf_content = self.extract_pdf_content(pdf_path)

        if use_hf_models and self.hf_token:
            print("πŸ€– Attempting to enhance with Hugging Face models...")
            try:
                print("Note: Hugging Face model integration requires further implementation.")
            except Exception as e:
                print(f"⚠️ Hugging Face enhancement failed: {e}")

        print("πŸ”„ Converting to JSON...")
        json_content = self.convert_to_json(
            pdf_content, 
            output_path, 
            pretty_print, 
            include_base64_images
        )

        # Create summary file if requested
        if create_summary and output_path:
            summary_path = output_path.replace('.json', '_summary.json')
            summary_data = self.create_json_summary(pdf_content)
            summary_json = json.dumps(summary_data, indent=2, ensure_ascii=False)
            
            try:
                with open(summary_path, 'w', encoding='utf-8') as f:
                    f.write(summary_json)
                print(f"βœ… Summary JSON saved to: {summary_path}")
            except Exception as e:
                print(f"⚠️ Error saving summary: {e}")

        print("βœ… Processing complete!")
        return json_content

def main():
    """Main function to demonstrate PDF to JSON conversion"""
    # Set your Hugging Face token if needed
    HF_TOKEN = os.getenv("HF_API_TOKEN")

    # Initialize converter
    converter = PDFToJSONConverter(huggingface_token=HF_TOKEN)
    
    # Define paths
    pdf_path = "new-pdf.pdf"  # Change this to your PDF file path
    output_path = "converted_document.json"  # Output JSON file path

    try:
        # Convert PDF to JSON
        json_content = converter.process_pdf_to_json(
            pdf_path=pdf_path,
            output_path=output_path,
            pretty_print=True,  # Format JSON with indentation
            include_base64_images=True,  # Include image data (set False to reduce file size)
            create_summary=True,  # Create additional summary file
            use_hf_models=False  # Set to True if you want to use HuggingFace models
        )

        print(f"βœ… Successfully converted '{pdf_path}' to '{output_path}'")
        print(f"πŸ“Š JSON length: {len(json_content):,} characters")
        print(f"πŸ“„ Open '{output_path}' to view the structured JSON data!")

        # Optional: Print first 500 characters of JSON as preview
        print("\nπŸ“‹ JSON Preview (first 500 characters):")
        print("-" * 50)
        print(json_content[:500] + "..." if len(json_content) > 500 else json_content)

    except FileNotFoundError as e:
        print(f"❌ Error: {e}")
        print("Please ensure the PDF file exists at the specified path.")
    except Exception as e:
        print(f"❌ An unexpected error occurred: {str(e)}")
        import traceback
        traceback.print_exc()

if __name__ == "__main__":
    main()