accent-detector / src /streamlit_app.py
amirjamali's picture
Refactor Dockerfile for improved dependency management and enhance Streamlit app initialization with better error handling for language identification and accent classification models
5bacc9d unverified
raw
history blame
22.8 kB
import streamlit as st
import os
import yt_dlp
import subprocess
import librosa
import numpy as np
import torch
import sys
# Global flag for SpeechBrain availability
HAS_SPEECHBRAIN = False
# Handle SpeechBrain import with fallbacks for different versions
try:
# Try the new path first (SpeechBrain 1.0+)
from speechbrain.inference.classifiers import EncoderClassifier
HAS_SPEECHBRAIN = True
except ImportError:
try:
# Try the legacy path
from speechbrain.pretrained.interfaces import EncoderClassifier
HAS_SPEECHBRAIN = True
except ImportError:
try:
# Try the very old path
from speechbrain.pretrained import EncoderClassifier
HAS_SPEECHBRAIN = True
except ImportError:
# If all fail, we'll handle this later in the code
st.error("⚠️ Unable to import SpeechBrain. Limited functionality available.")
EncoderClassifier = None
# Handle potential compatibility issues with transformers
try:
from transformers import AutoProcessor, AutoModelForAudioClassification
HAS_AUTO_PROCESSOR = True
except ImportError:
from transformers import AutoModelForAudioClassification
HAS_AUTO_PROCESSOR = False
st.warning("Using a compatible but limited version of transformers. Some features may be limited.")
from dotenv import load_dotenv
import matplotlib.pyplot as plt
import tempfile
import time
# Comment for deployment instructions:
# To deploy this app:
# 1. Make sure Docker is installed
# 2. Build the Docker image: docker build -t accent-detector .
# 3. Run the container: docker run -p 8501:8501 accent-detector
# 4. Access the app at http://localhost:8501
#
# For cloud deployment:
# - Streamlit Cloud: Connect your GitHub repository to Streamlit Cloud
# - Hugging Face Spaces: Use the Docker deployment option
# - Azure/AWS/GCP: Deploy the container using their container services
# Load environment variables (if .env file exists)
try:
load_dotenv()
except:
pass
# Check for OpenAI API access - optional for enhanced explanations
try:
import openai
openai.api_key = os.getenv("OPENAI_API_KEY")
have_openai = openai.api_key is not None
except (ImportError, AttributeError):
have_openai = False
# English accent categories
ENGLISH_ACCENTS = {
"en-us": "American English",
"en-gb": "British English",
"en-au": "Australian English",
"en-ca": "Canadian English",
"en-ie": "Irish English",
"en-scotland": "Scottish English",
"en-in": "Indian English",
"en-za": "South African English",
"en-ng": "Nigerian English",
"en-caribbean": "Caribbean English",
}
def download_video(url, video_path="video.mp4", cookies_file=None):
"""Download a video from a URL"""
ydl_opts = {
"outtmpl": video_path,
"quiet": False,
"no_warnings": False,
"verbose": True # More detailed output for debugging
}
# Only use cookies if explicitly provided via file upload
# Don't try to access browser cookies in Docker container
if cookies_file and os.path.exists(cookies_file):
ydl_opts["cookiefile"] = cookies_file
try:
# Special handling for YouTube URLs to try without cookies first
is_youtube = "youtube" in url.lower() or "youtu.be" in url.lower()
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
ydl.download([url])
if os.path.exists(video_path):
return True
else:
st.error(f"Video downloaded but file not found: {video_path}")
return False
except Exception as e:
error_msg = str(e)
st.error(f"Download error: {error_msg}")
# Provide specific guidance based on error type
if is_youtube and ("bot" in error_msg.lower() or "sign in" in error_msg.lower()):
st.warning("YouTube requires authentication. Please upload a cookies.txt file or try a direct video link.")
elif "not find" in error_msg.lower() and "cookies" in error_msg.lower():
st.warning("Browser cookies could not be accessed. Please upload a cookies.txt file.")
elif "network" in error_msg.lower() or "timeout" in error_msg.lower():
st.warning("Network error. Please check your internet connection and try again.")
return False
def extract_audio(video_path="video.mp4", audio_path="audio.wav"):
"""Extract audio from video file using ffmpeg"""
try:
subprocess.run(
['ffmpeg', '-i', video_path, '-vn', '-acodec', 'pcm_s16le', '-ar', '16000', '-ac', '1', audio_path],
check=True,
capture_output=True
)
return os.path.exists(audio_path)
except subprocess.CalledProcessError as e:
st.error(f"Error extracting audio: {e}")
st.error(f"ffmpeg output: {e.stderr.decode('utf-8')}")
raise
class AccentDetector:
def __init__(self):
# Initialize language identification model
self.have_lang_id = False
try:
if EncoderClassifier is not None:
self.lang_id = EncoderClassifier.from_hparams(
source="speechbrain/lang-id-commonlanguage_ecapa",
savedir="tmp_model"
)
self.have_lang_id = True
else:
st.error("SpeechBrain not available. Language identification disabled.")
except Exception as e:
st.error(f"Error loading language ID model: {str(e)}")
# Initialize the accent classifier
self.have_accent_model = False
try:
self.model_name = "speechbrain/lang-id-voxlingua107-ecapa"
# Handle case where AutoProcessor is not available
if HAS_AUTO_PROCESSOR:
self.processor = AutoProcessor.from_pretrained(self.model_name)
else:
# Fall back to using feature_extractor
from transformers import AutoFeatureExtractor
self.processor = AutoFeatureExtractor.from_pretrained(self.model_name)
self.model = AutoModelForAudioClassification.from_pretrained(self.model_name)
self.have_accent_model = True
except Exception as e:
st.warning(f"Could not load accent model: {str(e)}")
self.have_accent_model = False
def is_english(self, audio_path, threshold=0.7):
"""
Determine if the speech is English and return confidence score
"""
if not hasattr(self, 'have_lang_id') or not self.have_lang_id:
# If language ID model is not available, assume English
st.warning("Language identification is not available. Assuming English speech.")
return True, "en", 1.0
try:
out_prob, score, index, lang = self.lang_id.classify_file(audio_path)
score = float(score)
# Check if language is English (slightly fuzzy match)
is_english = "eng" in lang.lower() or "en-" in lang.lower() or lang.lower() == "en"
return is_english, lang, score
except Exception as e:
st.warning(f"Error identifying language: {str(e)}. Assuming English speech.")
return True, "en", 0.5
def classify_accent(self, audio_path):
"""
Classify the specific English accent
"""
if not self.have_accent_model:
return "Unknown English Accent", 0.0
try:
# Load and preprocess audio
audio, sr = librosa.load(audio_path, sr=16000)
inputs = self.processor(audio, sampling_rate=sr, return_tensors="pt")
# Get predictions
with torch.no_grad():
outputs = self.model(**inputs)
# Get probabilities
probs = outputs.logits.softmax(dim=-1)[0]
prediction_id = probs.argmax().item()
confidence = probs[prediction_id].item()
# Get predicted label
id2label = self.model.config.id2label
accent_code = id2label[prediction_id]
# Map to English accent if possible
if accent_code.startswith('en-'):
accent = ENGLISH_ACCENTS.get(accent_code, f"English ({accent_code})")
confidence = confidence # Keep confidence as-is for English accents
else:
# If it's not an English accent code, use our pre-classification
is_english, _, _ = self.is_english(audio_path)
if is_english:
accent = "General English"
else:
accent = f"Non-English ({accent_code})"
confidence *= 0.7 # Reduce confidence for non-specific matches
return accent, confidence
except Exception as e:
st.error(f"Error in accent classification: {str(e)}")
return "Unknown English Accent", 0.0
def generate_explanation(self, audio_path, accent, confidence, is_english, language):
"""
Generate an explanation of the accent detection results using OpenAI API (if available)
"""
if not have_openai:
if is_english:
return f"The speaker has a {accent} accent with {confidence*100:.1f}% confidence. The speech was identified as English."
else:
return f"The speech was identified as {language}, not English. English confidence is low."
try:
import openai
is_english, lang, lang_score = self.is_english(audio_path)
prompt = f"""
Audio analysis detected a speaker with the following characteristics:
- Primary accent/language: {accent}
- Confidence score: {confidence*100:.1f}%
- Detected language category: {lang}
- Is English: {is_english}
Based on this information, provide a 2-3 sentence summary about the speaker's accent.
Focus on how clear their English is and any notable accent characteristics.
This is for hiring purposes to evaluate English speaking abilities.
"""
response = openai.chat.completions.create(
model="gpt-3.5-turbo",
messages=[
{"role": "system", "content": "You are an accent analysis specialist providing factual assessments."},
{"role": "user", "content": prompt}
],
max_tokens=150
)
return response.choices[0].message.content.strip()
except Exception as e:
st.error(f"Error generating explanation: {str(e)}")
if is_english:
return f"The speaker has a {accent} accent with {confidence*100:.1f}% confidence. The speech was identified as English."
else:
return f"The speech was identified as {language}, not English. English confidence is low."
def analyze_audio(self, audio_path):
"""
Complete analysis pipeline returning all needed results
"""
# Check if it's English
is_english, lang, lang_score = self.is_english(audio_path)
# Classify accent if it's English
if is_english:
accent, accent_confidence = self.classify_accent(audio_path)
english_confidence = lang_score * 100 # Scale to percentage
else:
accent = f"Non-English ({lang})"
accent_confidence = lang_score
english_confidence = max(0, min(30, lang_score * 50)) # Cap at 30% if non-English
# Generate explanation
explanation = self.generate_explanation(audio_path, accent, accent_confidence, is_english, lang)
# Create visualization of the audio waveform
try:
y, sr = librosa.load(audio_path, sr=None)
fig, ax = plt.subplots(figsize=(10, 2))
ax.plot(y)
ax.set_xlabel('Sample')
ax.set_ylabel('Amplitude')
ax.set_title('Audio Waveform')
plt.tight_layout()
audio_viz = fig
except Exception as e:
st.warning(f"Could not generate audio visualization: {str(e)}")
audio_viz = None
return {
"is_english": is_english,
"accent": accent,
"accent_confidence": accent_confidence * 100, # Scale to percentage
"english_confidence": english_confidence,
"language_detected": lang,
"explanation": explanation,
"audio_viz": audio_viz
}
def process_uploaded_audio(uploaded_file):
"""Process uploaded audio file"""
with tempfile.NamedTemporaryFile(delete=False, suffix='.wav') as temp_file:
temp_file.write(uploaded_file.getvalue())
audio_path = temp_file.name
detector = AccentDetector()
results = detector.analyze_audio(audio_path)
# Clean up
os.unlink(audio_path)
return results
# --- Streamlit App ---
st.set_page_config(
page_title="🎤 English Accent Detector",
page_icon="🎤",
layout="wide"
)
st.title("🎤 English Accent Detection Tool")
st.markdown("""
This application analyzes a speaker's English accent from video URLs or audio uploads,
providing detailed insights for hiring evaluation purposes.
""")
# Add container for tips
with st.container():
st.info("""
💡 **Tips for best results:**
- Use **Loom** or **Vimeo** videos (more reliable than YouTube)
- For YouTube videos, you may need to provide cookies
- Audio clips of 15-30 seconds work best
- Clear speech with minimal background noise is ideal
""")
st.markdown("""
This app analyzes a speaker's English accent from a video or audio source.
It provides:
- Classification of the accent (British, American, etc.)
- Confidence score for English proficiency
- Explanation of accent characteristics
""")
# Create tabs for different input methods
tab1, tab2 = st.tabs(["Video URL", "Upload Audio"])
with tab1:
st.markdown("### 🎬 Analyze video from URL")
url = st.text_input("Enter a public video URL",
placeholder="https://www.loom.com/..., https://vimeo.com/..., or direct MP4 link")
# Recommend alternative sources
st.caption("⚠️ **Note**: YouTube videos often require authentication. For best results, use Loom, Vimeo or direct video links.")
# Add file uploader for cookies.txt
cookies_file = None
uploaded_cookies = st.file_uploader("Upload cookies.txt file for YouTube (if needed)",
type="txt",
help="Only needed for YouTube videos that require authentication")
if uploaded_cookies is not None:
# Save the uploaded cookies file to a temporary file
cookies_file = f"cookies_{int(time.time())}.txt"
with open(cookies_file, "wb") as f:
f.write(uploaded_cookies.getbuffer())
st.success("Cookies file uploaded successfully!")
with st.expander("Having trouble with YouTube videos?"):
st.markdown("""
### YouTube Authentication Issues
YouTube's anti-bot measures often block automated video downloads. To solve this:
#### Option 1: Use Alternative Video Sources (Recommended)
These typically work without authentication issues:
- [Loom](https://www.loom.com/) - Great for screen recordings
- [Vimeo](https://vimeo.com/) - High-quality video hosting
- [Streamable](https://streamable.com/) - Simple video sharing
- Any direct MP4 link
#### Option 2: Upload Cookies for YouTube
1. Install a browser extension like [Get cookies.txt](https://chrome.google.com/webstore/detail/get-cookiestxt-locally/cclelndahbckbenkjhflpdbgdldlbecc)
2. Login to YouTube in your browser
3. Use the extension to export cookies to a .txt file
4. Upload the cookies.txt file using the uploader above
#### Option 3: Use Audio Upload Instead
The 'Upload Audio' tab allows direct analysis of audio files without URL issues.
""")
if st.button("Analyze Video"):
if not url:
st.warning("Please enter a valid URL")
else:
try:
# Create a placeholder for status updates
status = st.empty()
# Generate unique filenames using timestamp to avoid conflicts
timestamp = str(int(time.time()))
video_path = f"video_{timestamp}.mp4"
audio_path = f"audio_{timestamp}.wav"
# Download and process the video
status.text("Downloading video...")
download_success = download_video(url, video_path, cookies_file)
if not download_success:
st.error("Failed to download video")
else:
status.text("Extracting audio...")
extract_success = extract_audio(video_path, audio_path)
if not extract_success:
st.error("Failed to extract audio")
else:
status.text("Analyzing accent... (this may take a moment)")
detector = AccentDetector()
results = detector.analyze_audio(audio_path)
# Display results
st.success("✅ Analysis Complete!")
# Create columns for results
col1, col2 = st.columns([2, 1])
with col1:
st.subheader("Accent Analysis Results")
st.markdown(f"**Detected Accent:** {results['accent']}")
st.markdown(f"**English Proficiency:** {results['english_confidence']:.1f}%")
st.markdown(f"**Accent Confidence:** {results['accent_confidence']:.1f}%")
# Show explanation in a box
st.markdown("### Expert Analysis")
st.info(results['explanation'])
with col2:
if results['audio_viz']:
st.pyplot(results['audio_viz'])
# Show audio playback
st.audio(audio_path)
# Clean up files
try:
if os.path.exists(video_path):
os.remove(video_path)
if os.path.exists(audio_path):
os.remove(audio_path)
if cookies_file and os.path.exists(cookies_file):
os.remove(cookies_file)
except Exception as e:
st.warning(f"Couldn't clean up temporary files: {str(e)}")
except Exception as e:
st.error(f"Error during analysis: {str(e)}")
with tab2:
st.markdown("### 🎵 Upload Audio File")
st.caption("**Recommended option!** Direct audio upload is more reliable than video URLs.")
uploaded_file = st.file_uploader("Upload an audio file",
type=["wav", "mp3", "m4a", "ogg", "flac"],
help="Support for WAV, MP3, M4A, OGG and FLAC formats")
if uploaded_file is not None:
# Show a preview of the audio
st.markdown("#### Audio Preview:")
st.audio(uploaded_file)
st.markdown("#### Ready for Analysis")
col1, col2 = st.columns([1, 3])
with col1:
analyze_button = st.button("Analyze Audio", type="primary", use_container_width=True)
with col2:
st.caption("Tip: 15-30 seconds of clear speech works best for accent detection")
if analyze_button:
with st.spinner("Analyzing audio... (this may take 15-30 seconds)"):
try:
results = process_uploaded_audio(uploaded_file)
# Display results
st.success("✅ Analysis Complete!")
# Create columns for results
col1, col2 = st.columns([2, 1])
with col1:
st.subheader("Accent Analysis Results")
st.markdown(f"**Detected Accent:** {results['accent']}")
st.markdown(f"**English Proficiency:** {results['english_confidence']:.1f}%")
st.markdown(f"**Accent Confidence:** {results['accent_confidence']:.1f}%")
# Show explanation in a box
st.markdown("### Expert Analysis")
st.info(results['explanation'])
with col2:
if results['audio_viz']:
st.pyplot(results['audio_viz'])
except Exception as e:
st.error(f"Error during analysis: {str(e)}")
# Add footer with deployment info
st.markdown("---")
st.markdown("Deployed using Streamlit • Built with SpeechBrain and Transformers")
# Add a section for how it works
with st.expander("ℹ️ How It Works"):
st.markdown("""
This app uses a multi-stage process to analyze a speaker's accent:
1. **Audio Extraction**: The audio track is extracted from the input video or directly processed from uploaded audio.
2. **Language Identification**: First, we determine if the speech is English using SpeechBrain's language identification model.
3. **Accent Classification**: For English speech, we analyze the specific accent using a transformer-based model trained on diverse accent data.
4. **English Proficiency Score**: A confidence score is calculated based on both language identification and accent clarity.
5. **Analysis Summary**: An explanation is generated describing accent characteristics relevant for hiring evaluations.
""")