Spaces:
Running
Running
File size: 48,240 Bytes
3b528f9 b15f0c7 635694f 7eff467 1b3a125 7eff467 635694f 55dbd8d 635694f 55dbd8d 635694f 55dbd8d 635694f b15f0c7 094ee23 635694f aca25cc 094ee23 a9b23f3 aca25cc 094ee23 aca25cc 094ee23 aca25cc 094ee23 aca25cc a9b23f3 aca25cc a9b23f3 aca25cc a9b23f3 aca25cc 094ee23 a9b23f3 aca25cc a9b23f3 aca25cc a9b23f3 094ee23 aca25cc b15f0c7 635694f 5bacc9d 1b3a125 5bacc9d 635694f 7eff467 5bacc9d 7eff467 5bacc9d 635694f 1b3a125 635694f 1b3a125 635694f bb36a56 635694f bb36a56 635694f bb36a56 6f0cad3 55dbd8d aca25cc 6252089 6f0cad3 6252089 bb36a56 6252089 6f0cad3 55dbd8d aca25cc 55dbd8d 6252089 55dbd8d 6252089 55dbd8d 6252089 55dbd8d 6f0cad3 55dbd8d aca25cc 6252089 aca25cc 6252089 6f0cad3 6252089 aca25cc 6f0cad3 6252089 6f0cad3 aca25cc 6f0cad3 aca25cc 6252089 55dbd8d 6f0cad3 55dbd8d 6f0cad3 55dbd8d 6f0cad3 55dbd8d 6f0cad3 55dbd8d 6f0cad3 635694f b15f0c7 635694f b15f0c7 635694f a9b23f3 635694f b15f0c7 635694f a9b23f3 aca25cc a9b23f3 635694f 094ee23 a9b23f3 094ee23 a9b23f3 094ee23 a9b23f3 094ee23 a9b23f3 094ee23 a9b23f3 094ee23 635694f 094ee23 635694f 5235a31 635694f 5235a31 635694f bb36a56 6f0cad3 635694f ae1db9f 635694f b15f0c7 635694f a9b23f3 55dbd8d a9b23f3 55dbd8d 635694f aca25cc a9b23f3 6252089 aca25cc a9b23f3 635694f 55dbd8d 6252089 aca25cc 55dbd8d aca25cc 55dbd8d aca25cc 6f0cad3 aca25cc 6f0cad3 aca25cc 55dbd8d ae1db9f ccf2172 ae1db9f bb36a56 aa81f17 55dbd8d aa81f17 55dbd8d aca25cc 55dbd8d 635694f 55dbd8d b15f0c7 635694f b15f0c7 635694f 6252089 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 |
import streamlit as st
import os
import yt_dlp
import subprocess
import librosa
import numpy as np
import torch
import sys
# Global flag for SpeechBrain availability
HAS_SPEECHBRAIN = False
# Handle SpeechBrain import with fallbacks for different versions
try:
# Try the new path first (SpeechBrain 1.0+)
from speechbrain.inference.classifiers import EncoderClassifier
HAS_SPEECHBRAIN = True
except ImportError:
try:
# Try the legacy path
from speechbrain.pretrained.interfaces import EncoderClassifier
HAS_SPEECHBRAIN = True
except ImportError:
try:
# Try the very old path
from speechbrain.pretrained import EncoderClassifier
HAS_SPEECHBRAIN = True
except ImportError:
# If all fail, we'll handle this later in the code
st.error("β οΈ Unable to import SpeechBrain. Limited functionality available.")
EncoderClassifier = None
# Handle potential compatibility issues with transformers
try:
from transformers import AutoProcessor, AutoModelForAudioClassification
HAS_AUTO_PROCESSOR = True
except ImportError:
from transformers import AutoModelForAudioClassification
HAS_AUTO_PROCESSOR = False
st.warning("Using a compatible but limited version of transformers. Some features may be limited.")
from dotenv import load_dotenv
import matplotlib.pyplot as plt
import tempfile
import time
# Deployment instructions:
# To deploy this app:
# 1. Make sure Docker is installed
# 2. Build the Docker image: docker build -t accent-detector .
# 3. Run the container: docker run -p 8501:8501 --volume /tmp/accent-detector:/app/uploads accent-detector
# For Windows: docker run -p 8501:8501 --volume C:\temp\accent-detector:/app/uploads accent-detector
# 4. Access the app at http://localhost:8501
#
# For cloud deployment:
# - Streamlit Cloud: Connect your GitHub repository to Streamlit Cloud
# - Hugging Face Spaces: Use the Docker deployment option with proper volume mounts
# - Azure/AWS/GCP: Deploy the container using their container services with persistent storage
#
# Troubleshooting file uploads:
# - Set maxUploadSize in .streamlit/config.toml
# - Ensure write permissions on upload directories
# - For 403 errors, check file size and format compatibility
# Load environment variables (if .env file exists)
try:
load_dotenv()
except:
pass
# Check for OpenAI API access - optional for enhanced explanations
try:
import openai
openai.api_key = os.getenv("OPENAI_API_KEY")
have_openai = openai.api_key is not None
except (ImportError, AttributeError):
have_openai = False
# English accent categories
ENGLISH_ACCENTS = {
"en-us": "American English",
"en-gb": "British English",
"en-au": "Australian English",
"en-ca": "Canadian English",
"en-ie": "Irish English",
"en-scotland": "Scottish English",
"en-in": "Indian English",
"en-za": "South African English",
"en-ng": "Nigerian English",
"en-caribbean": "Caribbean English",
}
def download_video(url, video_path="video.mp4", cookies_file=None):
"""Download a video from a URL"""
# Determine if this is a YouTube URL
is_youtube = "youtube" in url.lower() or "youtu.be" in url.lower()
# Create a unique directory for each download to avoid permission issues
timestamp = str(int(time.time()))
# Use proper temp directory for Windows or Linux
if os.name == 'nt': # Windows
temp_dir = os.path.join(os.environ.get('TEMP', 'C:\\temp'), f"video_download_{timestamp}")
else: # Linux/Mac
temp_dir = f"/tmp/video_download_{timestamp}"
os.makedirs(temp_dir, exist_ok=True)
# Set correct permissions for the temp directory
try:
os.chmod(temp_dir, 0o777) # Full permissions for all users
except Exception as e:
st.warning(f"Could not set directory permissions: {str(e)}. Continuing anyway.")
# Use the temp directory for the video path
if not os.path.isabs(video_path):
video_path = os.path.join(temp_dir, video_path)
ydl_opts = {
"outtmpl": video_path,
"quiet": False,
"verbose": True, # More detailed output for debugging
"format": "bestaudio/best", # Prefer audio formats since we only need audio
"postprocessors": [{
"key": "FFmpegExtractAudio",
"preferredcodec": "wav",
}] if is_youtube else [], # Extract audio directly for YouTube
"noplaylist": True,
"extractor_retries": 5, # Increased from 3 to 5
"socket_timeout": 45, # Increased from 30 to 45
"retry_sleep_functions": {
"http": lambda n: 5 * (n + 1), # 5, 10, 15, 20, 25 seconds
},
"nocheckcertificate": True, # Skip HTTPS certificate validation
"ignoreerrors": False, # Don't ignore errors (we want to handle them)
}
# Add cookies if provided
if cookies_file and os.path.exists(cookies_file):
ydl_opts["cookiefile"] = cookies_file
st.info("Using provided cookies file for authentication")
# Set permissions on cookies file to make sure it's readable
try:
os.chmod(cookies_file, 0o644) # Read-write for owner, read-only for others
except Exception as e:
st.warning(f"Could not set permissions on cookies file: {str(e)}. Continuing anyway.")
# Setup environment variables for cache directories
os.environ['HOME'] = temp_dir # Set HOME to our temp dir for YouTube-DL cache
os.environ['XDG_CACHE_HOME'] = os.path.join(temp_dir, '.cache') # For Linux
os.environ['APPDATA'] = temp_dir # For Windows
try:
if is_youtube:
st.info("Attempting to download from YouTube. This might take longer...")
# List of alternative YouTube frontends to try
youtube_alternatives = [
(url, "Standard YouTube"),
(url.replace("youtube.com", "yewtu.be"), "Invidious (yewtu.be)"),
(url.replace("youtube.com", "piped.video"), "Piped"),
(url.replace("youtube.com", "inv.riverside.rocks"), "Invidious (riverside)")
]
# If youtu.be is used, create proper alternatives
if "youtu.be" in url.lower():
video_id = url.split("/")[-1].split("?")[0]
youtube_alternatives = [
(url, "Standard YouTube"),
(f"https://yewtu.be/watch?v={video_id}", "Invidious (yewtu.be)"),
(f"https://piped.video/watch?v={video_id}", "Piped"),
(f"https://inv.riverside.rocks/watch?v={video_id}", "Invidious (riverside)")
]
success = False
for alt_url, alt_name in youtube_alternatives:
if alt_url == url and alt_name != "Standard YouTube":
continue # Skip redundant first entry
st.info(f"Trying {alt_name}... Please wait.")
try:
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
ydl.download([alt_url])
# If we get here without exception, it worked
st.success(f"Successfully downloaded using {alt_name}")
success = True
break
except Exception as download_error:
error_msg = str(download_error)
st.warning(f"{alt_name} download attempt failed: {error_msg}")
# Break early if it's a permission issue to avoid trying alternatives
if "permission" in error_msg.lower() or "access" in error_msg.lower():
st.error("Permission error detected. Stopping download attempts.")
raise download_error
# If all attempts failed
if not success:
st.error("All YouTube download methods failed.")
return False
else:
# For non-YouTube URLs
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
ydl.download([url])
# Check if download was successful
if os.path.exists(video_path):
return True
else:
# Look for any downloaded files in the temp directory - more comprehensive search
downloaded_files = []
for root, _, files in os.walk(temp_dir):
for file in files:
if file.endswith(('.mp4', '.mp3', '.wav', '.m4a')):
downloaded_files.append(os.path.join(root, file))
if downloaded_files:
# Use the first media file found
first_file = downloaded_files[0]
try:
# Copy instead of move to avoid cross-device link issues
import shutil
shutil.copy(first_file, video_path)
return True
except Exception as copy_error:
st.error(f"Error copying downloaded file: {str(copy_error)}")
return False
st.error(f"Video downloaded but file not found: {video_path}")
return False
except Exception as e:
error_msg = str(e)
st.error(f"Download error: {error_msg}")
# Provide specific guidance based on error type
if is_youtube and ("bot" in error_msg.lower() or "sign in" in error_msg.lower() or "403" in error_msg):
st.warning("β οΈ YouTube requires authentication. Please try one of these solutions:")
st.markdown("""
1. **Upload a cookies.txt file** using the file uploader above
2. **Try a different video source** like Loom, Vimeo or direct MP3/WAV files
3. **Use the Audio Upload tab** instead of YouTube URLs
""")
elif "not find" in error_msg.lower() and "cookies" in error_msg.lower():
st.warning("Browser cookies could not be accessed. Please upload a cookies.txt file.")
elif "network" in error_msg.lower() or "timeout" in error_msg.lower():
st.warning("Network error. Please check your internet connection and try again.")
elif "permission" in error_msg.lower():
st.warning("Permission error. The application doesn't have access to create or write files in the temporary directory.")
st.info("Try running the Docker container with the proper volume mounts: `docker run -p 8501:8501 --volume /tmp/accent-detector:/app/uploads accent-detector`")
elif "not found" in error_msg.lower() and "ffmpeg" in error_msg.lower():
st.error("FFmpeg is not installed or not found in PATH.")
st.info("If running locally, please install FFmpeg. If using Docker, the container may be misconfigured.")
return False
finally:
# Clean up temp directory if it still exists
try:
if os.path.exists(temp_dir) and ("tmp" in temp_dir or "temp" in temp_dir.lower()):
import shutil
shutil.rmtree(temp_dir)
except Exception as cleanup_error:
st.warning(f"Could not clean up temporary directory: {str(cleanup_error)}")
pass
def extract_audio(video_path="video.mp4", audio_path="audio.wav"):
"""Extract audio from video file using ffmpeg"""
try:
subprocess.run(
['ffmpeg', '-i', video_path, '-vn', '-acodec', 'pcm_s16le', '-ar', '16000', '-ac', '1', audio_path],
check=True,
capture_output=True
)
return os.path.exists(audio_path)
except subprocess.CalledProcessError as e:
st.error(f"Error extracting audio: {e}")
st.error(f"ffmpeg output: {e.stderr.decode('utf-8')}")
raise
class AccentDetector:
def __init__(self):
# Initialize language identification model
self.have_lang_id = False
try:
if EncoderClassifier is not None:
self.lang_id = EncoderClassifier.from_hparams(
source="speechbrain/lang-id-commonlanguage_ecapa",
savedir="tmp_model"
)
self.have_lang_id = True
else:
st.error("SpeechBrain not available. Language identification disabled.")
except Exception as e:
st.error(f"Error loading language ID model: {str(e)}")
# Initialize the accent classifier
self.have_accent_model = False
try:
self.model_name = "speechbrain/lang-id-voxlingua107-ecapa"
# Handle case where AutoProcessor is not available
if HAS_AUTO_PROCESSOR:
self.processor = AutoProcessor.from_pretrained(self.model_name)
else:
# Fall back to using feature_extractor
from transformers import AutoFeatureExtractor
self.processor = AutoFeatureExtractor.from_pretrained(self.model_name)
self.model = AutoModelForAudioClassification.from_pretrained(self.model_name)
self.have_accent_model = True
except Exception as e:
st.warning(f"Could not load accent model: {str(e)}")
self.have_accent_model = False
def is_english(self, audio_path, threshold=0.7):
"""
Determine if the speech is English and return confidence score
"""
if not hasattr(self, 'have_lang_id') or not self.have_lang_id:
# If language ID model is not available, assume English
st.warning("Language identification is not available. Assuming English speech.")
return True, "en", 1.0
try:
out_prob, score, index, lang = self.lang_id.classify_file(audio_path)
score = float(score)
# Check if language is English (slightly fuzzy match)
is_english = "eng" in lang.lower() or "en-" in lang.lower() or lang.lower() == "en"
return is_english, lang, score
except Exception as e:
st.warning(f"Error identifying language: {str(e)}. Assuming English speech.")
return True, "en", 0.5
def classify_accent(self, audio_path):
"""
Classify the specific English accent
"""
if not self.have_accent_model:
return "Unknown English Accent", 0.0
try:
# Load and preprocess audio
audio, sr = librosa.load(audio_path, sr=16000)
inputs = self.processor(audio, sampling_rate=sr, return_tensors="pt")
# Get predictions
with torch.no_grad():
outputs = self.model(**inputs)
# Get probabilities
probs = outputs.logits.softmax(dim=-1)[0]
prediction_id = probs.argmax().item()
confidence = probs[prediction_id].item()
# Get predicted label
id2label = self.model.config.id2label
accent_code = id2label[prediction_id]
# Map to English accent if possible
if accent_code.startswith('en-'):
accent = ENGLISH_ACCENTS.get(accent_code, f"English ({accent_code})")
confidence = confidence # Keep confidence as-is for English accents
else:
# If it's not an English accent code, use our pre-classification
is_english, _, _ = self.is_english(audio_path)
if is_english:
accent = "General English"
else:
accent = f"Non-English ({accent_code})"
confidence *= 0.7 # Reduce confidence for non-specific matches
return accent, confidence
except Exception as e:
st.error(f"Error in accent classification: {str(e)}")
return "Unknown English Accent", 0.0
def generate_explanation(self, audio_path, accent, confidence, is_english, language):
"""
Generate an explanation of the accent detection results using OpenAI API (if available)
"""
if not have_openai:
if is_english:
return f"The speaker has a {accent} accent with {confidence*100:.1f}% confidence. The speech was identified as English."
else:
return f"The speech was identified as {language}, not English. English confidence is low."
try:
import openai
is_english, lang, lang_score = self.is_english(audio_path)
prompt = f"""
Audio analysis detected a speaker with the following characteristics:
- Primary accent/language: {accent}
- Confidence score: {confidence*100:.1f}%
- Detected language category: {lang}
- Is English: {is_english}
Based on this information, provide a 2-3 sentence summary about the speaker's accent.
Focus on how clear their English is and any notable accent characteristics.
This is for hiring purposes to evaluate English speaking abilities.
"""
response = openai.chat.completions.create(
model="gpt-3.5-turbo",
messages=[
{"role": "system", "content": "You are an accent analysis specialist providing factual assessments."},
{"role": "user", "content": prompt}
],
max_tokens=150
)
return response.choices[0].message.content.strip()
except Exception as e:
st.error(f"Error generating explanation: {str(e)}")
if is_english:
return f"The speaker has a {accent} accent with {confidence*100:.1f}% confidence. The speech was identified as English."
else:
return f"The speech was identified as {language}, not English. English confidence is low."
def analyze_audio(self, audio_path):
"""
Complete analysis pipeline returning all needed results
"""
# Check if it's English
is_english, lang, lang_score = self.is_english(audio_path)
# Classify accent if it's English
if is_english:
accent, accent_confidence = self.classify_accent(audio_path)
english_confidence = lang_score * 100 # Scale to percentage
else:
accent = f"Non-English ({lang})"
accent_confidence = lang_score
english_confidence = max(0, min(30, lang_score * 50)) # Cap at 30% if non-English
# Generate explanation
explanation = self.generate_explanation(audio_path, accent, accent_confidence, is_english, lang)
# Create visualization of the audio waveform
try:
y, sr = librosa.load(audio_path, sr=None)
fig, ax = plt.subplots(figsize=(10, 2))
ax.plot(y)
ax.set_xlabel('Sample')
ax.set_ylabel('Amplitude')
ax.set_title('Audio Waveform')
plt.tight_layout()
audio_viz = fig
# Make sure the figure can be saved
try:
# Test if the figure can be saved
import tempfile
with tempfile.NamedTemporaryFile(suffix='.png') as tmp:
plt.savefig(tmp.name)
except Exception as viz_save_error:
st.warning(f"Could not save visualization: {str(viz_save_error)}. Using simpler visualization.")
# Create a simple alternative visualization
import numpy as np
# Downsample for performance
sample_rate = max(1, len(y) // 1000)
y_downsampled = y[::sample_rate]
fig2, ax2 = plt.subplots(figsize=(8, 2))
ax2.plot(np.arange(len(y_downsampled)), y_downsampled)
ax2.set_title("Audio Waveform (simplified)")
audio_viz = fig2
except Exception as e:
st.warning(f"Could not generate audio visualization: {str(e)}")
audio_viz = None
return {
"is_english": is_english,
"accent": accent,
"accent_confidence": accent_confidence * 100, # Scale to percentage
"english_confidence": english_confidence,
"language_detected": lang,
"explanation": explanation,
"audio_viz": audio_viz
}
def process_uploaded_audio(file_input):
"""Process uploaded audio file
Args:
file_input: Either a StreamlitUploadedFile object or a string path to a file
"""
audio_path = None
temp_input_path = None
try:
# Create a unique filename based on timestamp
timestamp = str(int(time.time()))
# Create a deterministic uploads directory with full permissions
uploads_dir = os.path.join(os.getcwd(), "uploads")
os.makedirs(uploads_dir, exist_ok=True)
# Try Streamlit's own upload path first if available
streamlit_uploads_path = os.environ.get('STREAMLIT_UPLOADS_PATH')
if streamlit_uploads_path and os.path.isdir(streamlit_uploads_path):
uploads_dir = streamlit_uploads_path
st.info(f"Using Streamlit's upload directory: {uploads_dir}")
# Make sure uploads directory has proper permissions
try:
os.chmod(uploads_dir, 0o777) # Full permissions
except Exception as chmod_error:
st.warning(f"Could not set permissions on uploads directory: {str(chmod_error)}. Continuing anyway.")
# Log upload dir info for debugging
st.info(f"Upload directory: {uploads_dir} (exists: {os.path.exists(uploads_dir)}, writable: {os.access(uploads_dir, os.W_OK)})")
# Handle different input types
if isinstance(file_input, str):
# If it's already a file path
temp_input_path = file_input
file_extension = os.path.splitext(temp_input_path)[1].lower()
st.info(f"Processing from saved file: {os.path.basename(temp_input_path)}")
else:
# If it's a StreamlitUploadedFile
file_extension = os.path.splitext(file_input.name)[1].lower()
# Write the uploaded file to disk with proper extension in the uploads directory
# Use a unique filename to avoid conflicts
safe_filename = ''.join(c if c.isalnum() or c in '._- ' else '_' for c in file_input.name)
temp_input_path = os.path.join(uploads_dir, f"uploaded_{timestamp}_{safe_filename}")
st.info(f"Saving uploaded file to: {temp_input_path}")
try:
# Write in chunks to handle large files better
chunk_size = 1024 * 1024 # 1MB chunks
buffer = file_input.getbuffer()
with open(temp_input_path, "wb") as f:
for i in range(0, len(buffer), chunk_size):
f.write(buffer[i:i+chunk_size])
# Verify file was written properly
if os.path.exists(temp_input_path):
file_size = os.path.getsize(temp_input_path)
st.success(f"File saved successfully: {file_size} bytes")
else:
st.error(f"Failed to save file - file doesn't exist after writing")
except Exception as write_error:
st.error(f"Error writing uploaded file: {str(write_error)}")
# Try alternative temp directory as fallback
try:
import tempfile
temp_dir = tempfile.gettempdir()
temp_input_path = os.path.join(temp_dir, f"uploaded_{timestamp}_{safe_filename}")
st.warning(f"Trying alternative location: {temp_input_path}")
with open(temp_input_path, "wb") as f:
f.write(file_input.getbuffer())
except Exception as alt_write_error:
st.error(f"Alternative write also failed: {str(alt_write_error)}")
raise
# For MP4 files, extract the audio using ffmpeg
if file_extension == ".mp4":
st.info("Extracting audio from video file...")
audio_path = os.path.join(uploads_dir, f"extracted_audio_{timestamp}.wav")
try:
# Add -y flag to overwrite output file if it exists
subprocess.run(
['ffmpeg', '-y', '-i', temp_input_path, '-vn', '-acodec', 'pcm_s16le', '-ar', '16000', '-ac', '1', audio_path],
check=True,
capture_output=True
)
st.success(f"Audio extracted successfully to {audio_path}")
# Remove the original video file if extraction was successful
if os.path.exists(audio_path) and os.path.getsize(audio_path) > 0:
os.remove(temp_input_path)
except subprocess.CalledProcessError as e:
st.error(f"Error extracting audio: {e}")
if e.stderr:
st.error(f"FFmpeg output: {e.stderr.decode('utf-8')}")
raise
else:
# For audio files, process based on format
if file_extension in [".mp3", ".m4a", ".ogg", ".flac"]:
# Convert to WAV for better compatibility
audio_path = os.path.join(uploads_dir, f"converted_audio_{timestamp}.wav")
st.info(f"Converting {file_extension} to WAV format for analysis...")
try:
# Use a verbose ffmpeg command with more options for compatibility
process = subprocess.run(
[
'ffmpeg', '-y', '-i', temp_input_path,
'-ar', '16000', '-ac', '1', '-c:a', 'pcm_s16le',
# Add error handling flags
'-err_detect', 'ignore_err',
# Add buffers for better handling
'-analyzeduration', '10000000', '-probesize', '10000000',
audio_path
],
check=True,
capture_output=True
)
# Verify the file was created successfully
if os.path.exists(audio_path) and os.path.getsize(audio_path) > 0:
st.success(f"Audio converted successfully: {os.path.getsize(audio_path)} bytes")
# If conversion was successful, remove the original file to save space
os.remove(temp_input_path)
else:
st.warning("Conversion produced an empty file. Trying fallback conversion method...")
# Try alternative conversion method - simpler command
fallback_cmd = ['ffmpeg', '-y', '-i', temp_input_path, audio_path]
subprocess.run(fallback_cmd, check=True, capture_output=True)
if not os.path.exists(audio_path) or os.path.getsize(audio_path) == 0:
st.warning("Fallback conversion also failed. Using original file.")
audio_path = temp_input_path
except subprocess.CalledProcessError as e:
st.warning(f"Conversion warning: {e}")
if e.stderr:
st.warning(f"FFmpeg error: {e.stderr.decode('utf-8')}")
st.info("Using original file instead.")
audio_path = temp_input_path
else:
# For already WAV files, use them directly
audio_path = temp_input_path
st.info(f"Using WAV file directly: {audio_path}")
detector = AccentDetector()
results = detector.analyze_audio(audio_path)
# Clean up
if audio_path and audio_path != temp_input_path and os.path.exists(audio_path):
os.remove(audio_path)
return results
except Exception as e:
error_msg = str(e)
st.error(f"Error processing audio: {error_msg}")
# Add detailed debugging info
import traceback
st.error(f"Error details: {traceback.format_exc()}")
# Show file info if available
if temp_input_path and os.path.exists(temp_input_path):
st.info(f"Input file exists: {temp_input_path}, size: {os.path.getsize(temp_input_path)} bytes")
os.remove(temp_input_path)
else:
if temp_input_path:
st.warning(f"Input file does not exist: {temp_input_path}")
if audio_path and os.path.exists(audio_path):
st.info(f"Audio file exists: {audio_path}, size: {os.path.getsize(audio_path)} bytes")
os.remove(audio_path)
else:
if audio_path:
st.warning(f"Audio file does not exist: {audio_path}")
# Check for common error types
if "ffmpeg" in error_msg.lower():
st.warning("FFmpeg error detected. The audio conversion failed.")
st.info("Try a different audio format or check if FFmpeg is installed correctly.")
elif "permission" in error_msg.lower():
st.warning("Permission error detected.")
st.info("Check that the uploads directory is writable.")
elif "no such file" in error_msg.lower():
st.warning("File not found error detected.")
st.info("The file may have been moved, deleted, or not saved correctly.")
raise
return results
# --- Streamlit App ---
st.set_page_config(
page_title="π€ English Accent Detector",
page_icon="π€",
layout="wide"
)
st.title("π€ English Accent Detection Tool")
st.markdown("""
This application analyzes a speaker's English accent from video URLs or audio uploads,
providing detailed insights for hiring evaluation purposes.
""")
# Add container for tips
with st.container():
st.info("""
π‘ **Tips for best results:**
- Use **Loom** or **Vimeo** videos (more reliable than YouTube)
- For YouTube videos, you may need to provide cookies
- Audio clips of 15-30 seconds work best
- Clear speech with minimal background noise is ideal
""")
st.markdown("""
This app analyzes a speaker's English accent from a video or audio source.
It provides:
- Classification of the accent (British, American, etc.)
- Confidence score for English proficiency
- Explanation of accent characteristics
""")
# Create tabs for different input methods
tab1, tab2 = st.tabs(["Video URL", "Upload Audio"])
with tab1:
st.markdown("### π¬ Analyze video from URL")
url = st.text_input("Enter a public video URL",
placeholder="https://www.loom.com/..., https://vimeo.com/..., or direct MP4 link")
# Add alternative invidious frontend option for YouTube
use_alternative = st.checkbox("Try alternative YouTube source (for authentication issues)",
value=True,
help="Uses an alternative frontend (Invidious) that may bypass YouTube restrictions")
# Recommend alternative sources
st.caption("β οΈ **Note**: YouTube videos often require authentication. For best results, use Loom, Vimeo or direct video links.")
# Add file uploader for cookies.txt
cookies_file = None
uploaded_cookies = st.file_uploader("Upload cookies.txt file for YouTube (if needed)",
type="txt",
help="Only needed for YouTube videos that require authentication")
if uploaded_cookies is not None:
# Save the uploaded cookies file to a temporary file
cookies_file = f"cookies_{int(time.time())}.txt"
with open(cookies_file, "wb") as f:
f.write(uploaded_cookies.getbuffer())
st.success("Cookies file uploaded successfully!")
with st.expander("Having trouble with YouTube videos?"):
st.markdown("""
### YouTube Authentication Issues
YouTube's anti-bot measures often block automated video downloads. To solve this:
#### Option 1: Use Alternative Video Sources (Recommended)
These typically work without authentication issues:
- [Loom](https://www.loom.com/) - Great for screen recordings
- [Vimeo](https://vimeo.com/) - High-quality video hosting
- [Streamable](https://streamable.com/) - Simple video sharing
- Any direct MP4 link
#### Option 2: Upload Cookies for YouTube
1. Install a browser extension like [Get cookies.txt](https://chrome.google.com/webstore/detail/get-cookiestxt-locally/cclelndahbckbenkjhflpdbgdldlbecc)
2. Login to YouTube in your browser
3. Use the extension to export cookies to a .txt file
4. Upload the cookies.txt file using the uploader above
#### Option 3: Use Audio Upload Instead
The 'Upload Audio' tab allows direct analysis of audio files without URL issues.
""")
if st.button("Analyze Video"):
if not url:
st.warning("Please enter a valid URL")
else:
try:
# Create a placeholder for status updates
status = st.empty()
# Generate unique filenames using timestamp to avoid conflicts
timestamp = str(int(time.time()))
video_path = f"video_{timestamp}.mp4"
audio_path = f"audio_{timestamp}.wav"
# Download and process the video
status.text("Downloading video...")
download_success = download_video(url, video_path, cookies_file)
if not download_success:
st.error("Failed to download video")
else:
status.text("Extracting audio...")
extract_success = extract_audio(video_path, audio_path)
if not extract_success:
st.error("Failed to extract audio")
else:
status.text("Analyzing accent... (this may take a moment)")
detector = AccentDetector()
results = detector.analyze_audio(audio_path)
# Display results
st.success("β
Analysis Complete!")
# Create columns for results
col1, col2 = st.columns([2, 1])
with col1:
st.subheader("Accent Analysis Results")
st.markdown(f"**Detected Accent:** {results['accent']}")
st.markdown(f"**English Proficiency:** {results['english_confidence']:.1f}%")
st.markdown(f"**Accent Confidence:** {results['accent_confidence']:.1f}%")
# Show explanation in a box
st.markdown("### Expert Analysis")
st.info(results['explanation'])
with col2:
if results['audio_viz']:
try:
st.pyplot(results['audio_viz'])
except Exception as viz_error:
st.warning("Could not display visualization due to torchvision issue.")
st.info("Audio analysis was successful even though visualization failed.")
# Show audio playback
st.audio(audio_path)
# Clean up files
try:
if os.path.exists(video_path):
os.remove(video_path)
if os.path.exists(audio_path):
os.remove(audio_path)
if cookies_file and os.path.exists(cookies_file):
os.remove(cookies_file)
except Exception as e:
st.warning(f"Couldn't clean up temporary files: {str(e)}")
except Exception as e:
st.error(f"Error during analysis: {str(e)}")
with tab2:
st.markdown("### π΅ Upload Audio File")
st.caption("**Recommended option!** Direct audio upload is more reliable than video URLs.")
# Add some information about file size limits
st.info("π **File Requirements**: \n"
"β’ Maximum file size: 200MB \n"
"β’ Supported formats: WAV, MP3, M4A, OGG, FLAC, MP4 \n"
"β’ Recommended length: 15-60 seconds of clear speech")
uploaded_file = st.file_uploader("Upload an audio file",
type=["wav", "mp3", "m4a", "ogg", "flac", "mp4"],
help="Support for WAV, MP3, M4A, OGG, FLAC and MP4 formats",
accept_multiple_files=False)
if uploaded_file is not None: # Show a preview of the audio
st.markdown("#### Audio Preview:")
try:
st.audio(uploaded_file)
st.markdown("#### Ready for Analysis")
col1, col2 = st.columns([1, 3])
with col1:
analyze_button = st.button("Analyze Audio", type="primary", use_container_width=True)
with col2:
st.caption("Tip: 15-30 seconds of clear speech works best for accent detection")
except Exception as preview_error:
st.warning(f"Could not preview audio: {str(preview_error)}")
# If preview fails, still allow analysis
analyze_button = st.button("Analyze Audio (Preview Failed)", type="primary")
st.caption("Proceeding with analysis might still work even if preview failed")
if analyze_button:
with st.spinner("Analyzing audio... (this may take 15-30 seconds)"):
try:
# Check file size before processing
file_size_mb = len(uploaded_file.getvalue()) / (1024 * 1024)
if file_size_mb > 190: # Stay below the 200MB limit with some buffer
st.error(f"File size ({file_size_mb:.1f}MB) is too large. Maximum allowed is 190MB.")
st.info("Tip: Try trimming your audio to just the speech segment for better results.")
else: # Create a progress bar to show processing stages
progress_bar = st.progress(0)
# Check the file type and inform user about processing steps
file_extension = os.path.splitext(uploaded_file.name)[1].lower()
if file_extension == '.mp4':
st.info("Processing video file - extracting audio track...")
elif file_extension in ['.mp3', '.m4a', '.ogg', '.flac']:
st.info(f"Processing {file_extension} audio file...")
progress_bar.progress(25, text="Saving file...")
# First save the file to a known location to bypass 403 errors
# Create an uploads directory if it doesn't exist
uploads_dir = os.path.join(os.getcwd(), "uploads")
os.makedirs(uploads_dir, exist_ok=True) # Save the file first to avoid streaming it multiple times
temp_file_path = os.path.join(uploads_dir, f"temp_{int(time.time())}_{uploaded_file.name}")
with open(temp_file_path, "wb") as f:
f.write(uploaded_file.getbuffer())
progress_bar.progress(50, text="Analyzing audio...")
# Process using the saved file path directly
results = process_uploaded_audio(temp_file_path)
progress_bar.progress(100, text="Analysis complete!")
# Display results
st.success("β
Analysis Complete!")
# Create columns for results
col1, col2 = st.columns([2, 1])
with col1:
st.subheader("Accent Analysis Results")
st.markdown(f"**Detected Accent:** {results['accent']}")
st.markdown(f"**English Proficiency:** {results['english_confidence']:.1f}%")
st.markdown(f"**Accent Confidence:** {results['accent_confidence']:.1f}%")
# Show explanation in a box
st.markdown("### Expert Analysis")
st.info(results['explanation'])
with col2:
if results['audio_viz']:
try:
st.pyplot(results['audio_viz'])
except Exception as viz_error:
st.warning("Could not display visualization due to torchvision issue.")
st.info("Audio analysis was successful even though visualization failed.")
except subprocess.CalledProcessError as e:
st.error("Error processing audio file")
st.error(f"FFmpeg error: {e.stderr.decode('utf-8') if e.stderr else str(e)}")
st.info("Troubleshooting tips:\n"
"β’ Try a different audio file format (WAV or MP3 recommended)\n"
"β’ Make sure the file is not corrupted\n"
"β’ Try a shorter audio clip")
except PermissionError as e:
st.error(f"Permission error: {str(e)}")
st.info("The app doesn't have permission to access or create temporary files. "
"This could be due to Docker container permissions. "
"Contact the administrator or try using a different file.")
except OSError as e:
st.error(f"System error: {str(e)}")
st.info("Check that the file isn't corrupted and try with a smaller audio clip.")
except Exception as e:
error_msg = str(e)
st.error(f"Error during analysis: {error_msg}")
if "403" in error_msg:
st.warning("Received a 403 Forbidden error. This may be due to: \n"
"β’ File size exceeding limits\n"
"β’ Temporary file permission issues\n"
"β’ Network restrictions")
st.info("Try a smaller audio file (less than 50MB) or a different format.")
elif "timeout" in error_msg.lower():
st.warning("The request timed out. Try a shorter audio clip or check your internet connection.")
elif "memory" in error_msg.lower():
st.warning("Out of memory error. Try a shorter audio clip.")
else:
st.info("If the problem persists, try a different audio file format such as MP3 or WAV.")
# Add footer with deployment info
st.markdown("---")
st.markdown("Deployed using Streamlit β’ Built with SpeechBrain and Transformers")
# Add a section for how it works
with st.expander("βΉοΈ How It Works"):
st.markdown("""
This app uses a multi-stage process to analyze a speaker's accent:
1. **Audio Extraction**: The audio track is extracted from the input video or directly processed from uploaded audio.
2. **Language Identification**: First, we determine if the speech is English using SpeechBrain's language identification model.
3. **Accent Classification**: For English speech, we analyze the specific accent using a transformer-based model trained on diverse accent data.
4. **English Proficiency Score**: A confidence score is calculated based on both language identification and accent clarity.
5. **Analysis Summary**: An explanation is generated describing accent characteristics relevant for hiring evaluations.
""")
# Add debug function for troubleshooting HTTP errors
def debug_http_errors():
"""Print debug information for HTTP errors"""
st.warning("β οΈ HTTP 400 Error Debugging Mode")
st.markdown("""
### Common HTTP 400 Error Causes:
1. **File size exceeds limits** (current limit: 150MB)
2. **File format incompatibility**
3. **Network interruption** during upload
4. **Server-side timeout** during processing
5. **Permissions issues** in container
""")
# Show environment info
st.subheader("Environment Information")
env_info = {
"STREAMLIT_UPLOADS_PATH": os.environ.get("STREAMLIT_UPLOADS_PATH", "Not set"),
"STREAMLIT_SERVER_MAX_UPLOAD_SIZE": os.environ.get("STREAMLIT_SERVER_MAX_UPLOAD_SIZE", "Not set"),
"Current directory": os.getcwd(),
"Python version": sys.version
}
for key, value in env_info.items():
st.code(f"{key}: {value}")
# Check if uploads directory is writable
uploads_dir = os.environ.get("STREAMLIT_UPLOADS_PATH", os.path.join(os.getcwd(), "uploads"))
os.makedirs(uploads_dir, exist_ok=True)
try:
test_file = os.path.join(uploads_dir, "test_write.txt")
with open(test_file, "w") as f:
f.write("Test write permission")
os.remove(test_file)
st.success(f"β Upload directory is writable: {uploads_dir}")
except Exception as e:
st.error(f"β Cannot write to upload directory: {str(e)}")
# Test ffmpeg
try:
result = subprocess.run(["ffmpeg", "-version"], capture_output=True, text=True)
st.success(f"β FFmpeg is available")
except Exception as e:
st.error(f"β FFmpeg error: {str(e)}")
# Add debug mode flag to the app
debug_mode = False
with st.expander("π§ Troubleshooting Tools"):
debug_mode = st.checkbox("Enable Debug Mode for HTTP 400 Errors")
if debug_mode:
debug_http_errors()
# Add option for user to try different upload method
alt_upload = st.checkbox("Use alternative upload method (for HTTP 400 errors)")
if alt_upload:
st.info("Using alternative upload method that may bypass some HTTP 400 errors")
|