Spaces:
Build error
Build error
Commit
·
2b9840c
1
Parent(s):
de673d6
Add the model and the app
Browse files- .gitattributes +1 -0
- app.py +103 -0
- model/.DS_Store +0 -0
- model/keras_metadata.pb +3 -0
- model/saved_model.pb +3 -0
- model/variables/variables.data-00000-of-00001 +3 -0
- model/variables/variables.index +0 -0
- requirements.txt +7 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
model/variables/variables.data-00000-of-00001 filter=lfs diff=lfs merge=lfs -text
|
app.py
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import tensorflow as tf
|
3 |
+
import cv2
|
4 |
+
import mtcnn
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
model = tf.keras.models.load_model('./model')
|
8 |
+
|
9 |
+
def load_and_preprocess_image(im_path, detector, maxWidth = 512):
|
10 |
+
|
11 |
+
desiredLeftEye = (0.36, 0.43)
|
12 |
+
|
13 |
+
# Load the image and convert it to grayscale
|
14 |
+
try:
|
15 |
+
image = cv2.imread(im_path)
|
16 |
+
except:
|
17 |
+
return 0
|
18 |
+
|
19 |
+
if image is None:
|
20 |
+
return 0
|
21 |
+
|
22 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
23 |
+
|
24 |
+
# Detect the face in the image
|
25 |
+
result = detector.detect_faces(image)
|
26 |
+
|
27 |
+
# Get the bounding box for the face
|
28 |
+
x, y, w, h = result[0]['box']
|
29 |
+
|
30 |
+
desiredFaceWidth = 224
|
31 |
+
desiredFaceHeight = 224
|
32 |
+
|
33 |
+
# Get the landmarks for the face
|
34 |
+
landmarks = result[0]['keypoints']
|
35 |
+
|
36 |
+
# Calculate the angle between the eyes
|
37 |
+
eye_1 = landmarks['left_eye']
|
38 |
+
eye_2 = landmarks['right_eye']
|
39 |
+
dy = eye_2[1] - eye_1[1]
|
40 |
+
dx = eye_2[0] - eye_1[0]
|
41 |
+
angle = np.arctan2(dy, dx) * 180 / np.pi
|
42 |
+
|
43 |
+
desiredRightEyeX = 1.0 - desiredLeftEye[0]
|
44 |
+
|
45 |
+
dist = np.sqrt((dx ** 2) + (dy ** 2))
|
46 |
+
desiredDist = (desiredRightEyeX - desiredLeftEye[0]) * desiredFaceWidth
|
47 |
+
scale = desiredDist / dist
|
48 |
+
|
49 |
+
eyesCenter = ((eye_1[0] + eye_2[0]) // 2, (eye_1[1] + eye_2[1]) // 2)
|
50 |
+
|
51 |
+
# grab the rotation matrix for rotating and scaling the face
|
52 |
+
M = cv2.getRotationMatrix2D(eyesCenter, angle, scale)
|
53 |
+
# update the translation component of the matrix
|
54 |
+
tX = desiredFaceWidth * 0.5
|
55 |
+
tY = desiredFaceHeight * desiredLeftEye[1]
|
56 |
+
M[0, 2] += (tX - eyesCenter[0])
|
57 |
+
M[1, 2] += (tY - eyesCenter[1])
|
58 |
+
|
59 |
+
(w, h) = (desiredFaceWidth, desiredFaceHeight)
|
60 |
+
output = cv2.warpAffine(image, M, (w, h), flags=cv2.INTER_CUBIC)
|
61 |
+
|
62 |
+
output = np.array(output)
|
63 |
+
|
64 |
+
output = tf.image.convert_image_dtype(output, dtype=tf.float32)
|
65 |
+
|
66 |
+
output = tf.image.rgb_to_grayscale(output)
|
67 |
+
output = tf.tile(output, [1, 1, 3])
|
68 |
+
|
69 |
+
output = tf.clip_by_value(output, 0, 1)
|
70 |
+
|
71 |
+
return output
|
72 |
+
|
73 |
+
def predict_remaining_life(img_path):
|
74 |
+
detector = mtcnn.MTCNN()
|
75 |
+
# Transform the target image and add a batch dimension
|
76 |
+
img = load_and_preprocess_image(img_path, detector)
|
77 |
+
img = np.expand_dims(img, axis = 0)
|
78 |
+
#print(img.shape)
|
79 |
+
#plt.imshow(img)
|
80 |
+
# Put model into evaluation mode and turn on inference mode
|
81 |
+
pred = model.predict(img)
|
82 |
+
pred = round(pred[0][0]*100,1)
|
83 |
+
|
84 |
+
# Return the prediction dictionary and prediction time
|
85 |
+
return pred
|
86 |
+
|
87 |
+
|
88 |
+
# Create title, description and article strings
|
89 |
+
title = "Remaining Life Predictor"
|
90 |
+
description = "A Convolutional Neural Net to predict how many years a person has left to live using a facial image"
|
91 |
+
article = "https://arxiv.org/abs/2301.08229"
|
92 |
+
|
93 |
+
# Create the Gradio demo
|
94 |
+
demo = gr.Interface(fn=predict_remaining_life, # mapping function from input to output
|
95 |
+
inputs=gr.Image(type="filepath"), # what are the inputs?
|
96 |
+
outputs=gr.Number(label="Remaining Life (Year)"),
|
97 |
+
title=title,
|
98 |
+
description=description,
|
99 |
+
article=article)
|
100 |
+
|
101 |
+
# Launch the demo!
|
102 |
+
demo.launch(debug=False, # print errors locally?
|
103 |
+
share=False) # generate a publically shareable URL?
|
model/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
model/keras_metadata.pb
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:12267191038e5ed3282719d4ad76f6d4d9081c7577ab407b70bb7fddb1519334
|
3 |
+
size 57879
|
model/saved_model.pb
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:43c1adf18e88d5eb74bf50fede2446a05246f409febd3572413f9f1ca862fb9f
|
3 |
+
size 342554
|
model/variables/variables.data-00000-of-00001
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6e80346bfc2f1fc28f3a549352900464d5106015a637716b808380012d1e4ef4
|
3 |
+
size 165845415
|
model/variables/variables.index
ADDED
Binary file (2.26 kB). View file
|
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch==1.12.0
|
2 |
+
torchvision==0.13.0
|
3 |
+
gradio==3.1.4
|
4 |
+
tensorflow==2.11.0
|
5 |
+
numpy==1.24.0
|
6 |
+
mtcnn==0.1.0
|
7 |
+
cv2==4.6.0
|