Spaces:
Build error
Build error
import gradio as gr | |
import tensorflow as tf | |
import cv2 | |
import mtcnn | |
import numpy as np | |
model = tf.keras.models.load_model('./model') | |
def load_and_preprocess_image(im_path, detector, maxWidth = 512): | |
desiredLeftEye = (0.36, 0.43) | |
# Load the image and convert it to grayscale | |
try: | |
image = cv2.imread(im_path) | |
except: | |
return 0 | |
if image is None: | |
return 0 | |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
# Detect the face in the image | |
result = detector.detect_faces(image) | |
# Get the bounding box for the face | |
x, y, w, h = result[0]['box'] | |
desiredFaceWidth = 224 | |
desiredFaceHeight = 224 | |
# Get the landmarks for the face | |
landmarks = result[0]['keypoints'] | |
# Calculate the angle between the eyes | |
eye_1 = landmarks['left_eye'] | |
eye_2 = landmarks['right_eye'] | |
dy = eye_2[1] - eye_1[1] | |
dx = eye_2[0] - eye_1[0] | |
angle = np.arctan2(dy, dx) * 180 / np.pi | |
desiredRightEyeX = 1.0 - desiredLeftEye[0] | |
dist = np.sqrt((dx ** 2) + (dy ** 2)) | |
desiredDist = (desiredRightEyeX - desiredLeftEye[0]) * desiredFaceWidth | |
scale = desiredDist / dist | |
eyesCenter = ((eye_1[0] + eye_2[0]) // 2, (eye_1[1] + eye_2[1]) // 2) | |
# grab the rotation matrix for rotating and scaling the face | |
M = cv2.getRotationMatrix2D(eyesCenter, angle, scale) | |
# update the translation component of the matrix | |
tX = desiredFaceWidth * 0.5 | |
tY = desiredFaceHeight * desiredLeftEye[1] | |
M[0, 2] += (tX - eyesCenter[0]) | |
M[1, 2] += (tY - eyesCenter[1]) | |
(w, h) = (desiredFaceWidth, desiredFaceHeight) | |
output = cv2.warpAffine(image, M, (w, h), flags=cv2.INTER_CUBIC) | |
output = np.array(output) | |
output = tf.image.convert_image_dtype(output, dtype=tf.float32) | |
output = tf.image.rgb_to_grayscale(output) | |
output = tf.tile(output, [1, 1, 3]) | |
output = tf.clip_by_value(output, 0, 1) | |
return output | |
def predict_remaining_life(img_path): | |
detector = mtcnn.MTCNN() | |
# Transform the target image and add a batch dimension | |
img = load_and_preprocess_image(img_path, detector) | |
img = np.expand_dims(img, axis = 0) | |
#print(img.shape) | |
#plt.imshow(img) | |
# Put model into evaluation mode and turn on inference mode | |
pred = model.predict(img) | |
pred = round(pred[0][0]*100,1) | |
# Return the prediction dictionary and prediction time | |
return pred | |
# Create title, description and article strings | |
title = "Remaining Life Predictor" | |
description = "A Convolutional Neural Net to predict how many years a person has left to live using their facial image" | |
article = "Methodology and data explained at [arxiv article](https://arxiv.org/abs/2301.08229)" | |
# Create the Gradio demo | |
demo = gr.Interface(fn=predict_remaining_life, # mapping function from input to output | |
inputs=gr.Image(type="filepath"), # what are the inputs? | |
outputs=gr.Number(label="Remaining Life (Year)"), | |
title=title, | |
description=description, | |
article=article) | |
# Launch the demo! | |
demo.launch(debug=False, # print errors locally? | |
share=False) # generate a publically shareable URL? |