import argparse import os import sys from pathlib import Path from torchvision.utils import save_image from tqdm.auto import tqdm from hair_swap import HairFast, get_parser def main(model_args, args): hair_fast = HairFast(model_args) experiments: list[str | tuple[str, str, str]] = [] if args.file_path is not None: with open(args.file_path, 'r') as file: experiments.extend(file.readlines()) if all(path is not None for path in (args.face_path, args.shape_path, args.color_path)): experiments.append((args.face_path, args.shape_path, args.color_path)) for exp in tqdm(experiments): if isinstance(exp, str): file_1, file_2, file_3 = exp.split() else: file_1, file_2, file_3 = exp face_path = args.input_dir / file_1 shape_path = args.input_dir / file_2 color_path = args.input_dir / file_3 base_name = '_'.join([path.stem for path in (face_path, shape_path, color_path)]) exp_name = base_name if model_args.save_all else None if isinstance(exp, str) or args.result_path is None: os.makedirs(args.output_dir, exist_ok=True) output_image_path = args.output_dir / f'{base_name}.png' else: os.makedirs(args.result_path.parent, exist_ok=True) output_image_path = args.result_path final_image = hair_fast.swap(face_path, shape_path, color_path, benchmark=args.benchmark, exp_name=exp_name) save_image(final_image, output_image_path) if __name__ == "__main__": model_parser = get_parser() parser = argparse.ArgumentParser(description='HairFast evaluate') parser.add_argument('--input_dir', type=Path, default='', help='The directory of the images to be inverted') parser.add_argument('--benchmark', action='store_true', help='Calculates the speed of the method during the session') # Arguments for a set of experiments parser.add_argument('--file_path', type=Path, default=None, help='File with experiments with the format "face_path.png shape_path.png color_path.png"') parser.add_argument('--output_dir', type=Path, default=Path('output'), help='The directory for final results') # Arguments for single experiment parser.add_argument('--face_path', type=Path, default=None, help='Path to the face image') parser.add_argument('--shape_path', type=Path, default=None, help='Path to the shape image') parser.add_argument('--color_path', type=Path, default=None, help='Path to the color image') parser.add_argument('--result_path', type=Path, default=None, help='Path to save the result') args, unknown1 = parser.parse_known_args() model_args, unknown2 = model_parser.parse_known_args() unknown_args = set(unknown1) & set(unknown2) if unknown_args: file_ = sys.stderr print(f"Unknown arguments: {unknown_args}", file=file_) print("\nExpected arguments for the model:", file=file_) model_parser.print_help(file=file_) print("\nExpected arguments for evaluate:", file=file_) parser.print_help(file=file_) sys.exit(1) main(model_args, args)