import os import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.data as data from PIL import Image from torch.autograd import grad def clip_img(x): """Clip stylegan generated image to range(0,1)""" img_tmp = x.clone()[0] img_tmp = (img_tmp + 1) / 2 img_tmp = torch.clamp(img_tmp, 0, 1) return [img_tmp.detach().cpu()] def tensor_byte(x): return x.element_size()*x.nelement() def count_parameters(net): s = sum([np.prod(list(mm.size())) for mm in net.parameters()]) print(s) def stylegan_to_classifier(x, out_size=(224, 224)): """Clip image to range(0,1)""" img_tmp = x.clone() img_tmp = torch.clamp((0.5*img_tmp + 0.5), 0, 1) img_tmp = F.interpolate(img_tmp, size=out_size, mode='bilinear') img_tmp[:,0] = (img_tmp[:,0] - 0.485)/0.229 img_tmp[:,1] = (img_tmp[:,1] - 0.456)/0.224 img_tmp[:,2] = (img_tmp[:,2] - 0.406)/0.225 #img_tmp = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])(img_tmp) return img_tmp def downscale(x, scale_times=1, mode='bilinear'): for i in range(scale_times): x = F.interpolate(x, scale_factor=0.5, mode=mode) return x def upscale(x, scale_times=1, mode='bilinear'): for i in range(scale_times): x = F.interpolate(x, scale_factor=2, mode=mode) return x def hist_transform(source_tensor, target_tensor): """Histogram transformation""" c, h, w = source_tensor.size() s_t = source_tensor.view(c, -1) t_t = target_tensor.view(c, -1) s_t_sorted, s_t_indices = torch.sort(s_t) t_t_sorted, t_t_indices = torch.sort(t_t) for i in range(c): s_t[i, s_t_indices[i]] = t_t_sorted[i] return s_t.view(c, h, w) def init_weights(m): """Initialize layers with Xavier uniform distribution""" if type(m) == nn.Conv2d: nn.init.xavier_uniform_(m.weight) elif type(m) == nn.Linear: nn.init.uniform_(m.weight, 0.0, 1.0) if m.bias is not None: nn.init.constant_(m.bias, 0.01) def total_variation(x, delta=1): """Total variation, x: tensor of size (B, C, H, W)""" out = torch.mean(torch.abs(x[:, :, :, :-delta] - x[:, :, :, delta:]))\ + torch.mean(torch.abs(x[:, :, :-delta, :] - x[:, :, delta:, :])) return out def vgg_transform(x): """Adapt image for vgg network, x: image of range(0,1) subtracting ImageNet mean""" r, g, b = torch.split(x, 1, 1) out = torch.cat((b, g, r), dim = 1) out = F.interpolate(out, size=(224, 224), mode='bilinear') out = out*255. return out # warp image with flow def normalize_axis(x,L): return (x-1-(L-1)/2)*2/(L-1) def unnormalize_axis(x,L): return x*(L-1)/2+1+(L-1)/2 def torch_flow_to_th_sampling_grid(flow,h_src,w_src,use_cuda=False): b,c,h_tgt,w_tgt=flow.size() grid_y, grid_x = torch.meshgrid(torch.tensor(range(1,w_tgt+1)),torch.tensor(range(1,h_tgt+1))) disp_x=flow[:,0,:,:] disp_y=flow[:,1,:,:] source_x=grid_x.unsqueeze(0).repeat(b,1,1).type_as(flow)+disp_x source_y=grid_y.unsqueeze(0).repeat(b,1,1).type_as(flow)+disp_y source_x_norm=normalize_axis(source_x,w_src) source_y_norm=normalize_axis(source_y,h_src) sampling_grid=torch.cat((source_x_norm.unsqueeze(3), source_y_norm.unsqueeze(3)), dim=3) if use_cuda: sampling_grid = sampling_grid.cuda() return sampling_grid def warp_image_torch(image, flow): """ Warp image (tensor, shape=[b, 3, h_src, w_src]) with flow (tensor, shape=[b, h_tgt, w_tgt, 2]) """ b,c,h_src,w_src=image.size() sampling_grid_torch = torch_flow_to_th_sampling_grid(flow, h_src, w_src) warped_image_torch = F.grid_sample(image, sampling_grid_torch) return warped_image_torch