import argparse import os import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.data as data import yaml from PIL import Image from tqdm import tqdm from torchvision import transforms, utils from tensorboard_logger import Logger from utils.datasets import * from utils.functions import * from trainer import * torch.backends.cudnn.enabled = True torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = True torch.autograd.set_detect_anomaly(True) Image.MAX_IMAGE_PIXELS = None device = torch.device('cuda') parser = argparse.ArgumentParser() parser.add_argument('--config', type=str, default='001', help='Path to the config file.') parser.add_argument('--real_dataset_path', type=str, default='./data/ffhq-dataset/images/', help='dataset path') parser.add_argument('--dataset_path', type=str, default='./data/stylegan2-generate-images/ims/', help='dataset path') parser.add_argument('--label_path', type=str, default='./data/stylegan2-generate-images/seeds_pytorch_1.8.1.npy', help='laebl path') parser.add_argument('--stylegan_model_path', type=str, default='./pixel2style2pixel/pretrained_models/psp_ffhq_encode.pt', help='pretrained stylegan2 model') parser.add_argument('--arcface_model_path', type=str, default='./pretrained_models/backbone.pth', help='pretrained ArcFace model') parser.add_argument('--parsing_model_path', type=str, default='./pretrained_models/79999_iter.pth', help='pretrained parsing model') parser.add_argument('--log_path', type=str, default='./logs/', help='log file path') parser.add_argument('--resume', action='store_true', help='resume from checkpoint') parser.add_argument('--checkpoint', type=str, default='', help='checkpoint file path') opts = parser.parse_args() log_dir = os.path.join(opts.log_path, opts.config) + '/' os.makedirs(log_dir, exist_ok=True) logger = Logger(log_dir) config = yaml.load(open('./configs/' + opts.config + '.yaml', 'r'), Loader=yaml.FullLoader) batch_size = config['batch_size'] epochs = config['epochs'] iter_per_epoch = config['iter_per_epoch'] img_size = (config['resolution'], config['resolution']) video_data_input = False img_to_tensor = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) ]) img_to_tensor_car = transforms.Compose([ transforms.Resize((384, 512)), transforms.Pad(padding=(0, 64, 0, 64)), transforms.ToTensor(), transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) ]) # Initialize trainer trainer = Trainer(config, opts) trainer.initialize(opts.stylegan_model_path, opts.arcface_model_path, opts.parsing_model_path) trainer.to(device) noise_exemple = trainer.noise_inputs train_data_split = 0.9 if 'train_split' not in config else config['train_split'] # Load synthetic dataset dataset_A = MyDataSet(image_dir=opts.dataset_path, label_dir=opts.label_path, output_size=img_size, noise_in=noise_exemple, training_set=True, train_split=train_data_split) loader_A = data.DataLoader(dataset_A, batch_size=batch_size, shuffle=True, num_workers=2, pin_memory=True) # Load real dataset dataset_B = MyDataSet(image_dir=opts.real_dataset_path, label_dir=None, output_size=img_size, noise_in=noise_exemple, training_set=True, train_split=train_data_split) loader_B = data.DataLoader(dataset_B, batch_size=batch_size, shuffle=True, num_workers=2, pin_memory=True) # Start Training epoch_0 = 0 # check if checkpoint exist if 'checkpoint.pth' in os.listdir(log_dir): epoch_0 = trainer.load_checkpoint(os.path.join(log_dir, 'checkpoint.pth')) if opts.resume: epoch_0 = trainer.load_checkpoint(os.path.join(opts.log_path, opts.checkpoint)) torch.manual_seed(0) os.makedirs(log_dir + 'validation/', exist_ok=True) print("Start!") for n_epoch in tqdm(range(epoch_0, epochs)): iter_A = iter(loader_A) iter_B = iter(loader_B) iter_0 = n_epoch*iter_per_epoch trainer.enc_opt.zero_grad() for n_iter in range(iter_0, iter_0 + iter_per_epoch): if opts.dataset_path is None: z, noise = next(iter_A) img_A = None else: z, img_A, noise = next(iter_A) img_A = img_A.to(device) z = z.to(device) noise = [ee.to(device) for ee in noise] w = trainer.mapping(z) if 'fixed_noise' in config and config['fixed_noise']: img_A, noise = None, None img_B = None if 'use_realimg' in config and config['use_realimg']: try: img_B = next(iter_B) if img_B.size(0) != batch_size: iter_B = iter(loader_B) img_B = next(iter_B) except StopIteration: iter_B = iter(loader_B) img_B = next(iter_B) img_B = img_B.to(device) trainer.update(w=w, img=img_A, noise=noise, real_img=img_B, n_iter=n_iter) if (n_iter+1) % config['log_iter'] == 0: trainer.log_loss(logger, n_iter, prefix='scripts') if (n_iter+1) % config['image_save_iter'] == 0: trainer.save_image(log_dir, n_epoch, n_iter, prefix='/scripts/', w=w, img=img_A, noise=noise) trainer.save_image(log_dir, n_epoch, n_iter+1, prefix='/scripts/', w=w, img=img_B, noise=noise, training_mode=False) trainer.enc_scheduler.step() trainer.save_checkpoint(n_epoch, log_dir) # Test the model on celeba hq dataset with torch.no_grad(): trainer.enc.eval() for i in range(10): image_A = img_to_tensor(Image.open('./data/celeba_hq/%d.jpg' % i)).unsqueeze(0).to(device) output = trainer.test(img=image_A) out_img = torch.cat(output, 3) utils.save_image(clip_img(out_img[:1]), log_dir + 'validation/' + 'epoch_' +str(n_epoch+1) + '_' + str(i) + '.jpg') trainer.compute_loss(w=w, img=img_A, noise=noise, real_img=img_B) trainer.log_loss(logger, n_iter, prefix='validation') trainer.save_model(log_dir)