Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import requests
|
3 |
+
|
4 |
+
# -----------------------------------------------------------
|
5 |
+
# SETUP: Hugging Face API and Models
|
6 |
+
# -----------------------------------------------------------
|
7 |
+
HUGGINGFACE_API_KEY = "your_huggingface_api_key" # Replace with your API key from https://huggingface.co/settings/tokens
|
8 |
+
HEADERS = {"Authorization": f"Bearer {HUGGINGFACE_API_KEY}"}
|
9 |
+
|
10 |
+
# Hugging Face Model Endpoints (Replace with your fine-tuned models if needed)
|
11 |
+
CLASSIFIER_API_URL = "https://api-inference.huggingface.co/models/unitary/unbiased-toxic-roberta"
|
12 |
+
GENERATOR_API_URL = "https://api-inference.huggingface.co/models/facebook/blenderbot-3B"
|
13 |
+
|
14 |
+
# -----------------------------------------------------------
|
15 |
+
# FUNCTION DEFINITIONS
|
16 |
+
# -----------------------------------------------------------
|
17 |
+
def detect_harmful_content(text):
|
18 |
+
"""
|
19 |
+
Detect harmful content in the input text using Hugging Face API.
|
20 |
+
"""
|
21 |
+
payload = {"inputs": text}
|
22 |
+
response = requests.post(CLASSIFIER_API_URL, headers=HEADERS, json=payload)
|
23 |
+
|
24 |
+
if response.status_code != 200:
|
25 |
+
return [{"category": "Error", "score": 0, "message": "Failed to fetch response"}]
|
26 |
+
|
27 |
+
results = response.json()
|
28 |
+
|
29 |
+
detected = []
|
30 |
+
threshold = 0.8 # Set confidence threshold
|
31 |
+
for result in results:
|
32 |
+
if result.get('score', 0) >= threshold:
|
33 |
+
detected.append({"category": result.get('label', 'Unknown'), "score": result.get('score', 0)})
|
34 |
+
|
35 |
+
return detected
|
36 |
+
|
37 |
+
def generate_mitigation_response(text, detected_categories):
|
38 |
+
"""
|
39 |
+
Generate a moderation response based on detected harmful categories.
|
40 |
+
"""
|
41 |
+
if not detected_categories:
|
42 |
+
return "✅ Content appears safe. No harmful content detected."
|
43 |
+
|
44 |
+
categories_str = ", ".join([cat["category"] for cat in detected_categories])
|
45 |
+
prompt = (f"The following content has been flagged for {categories_str}:\n\n"
|
46 |
+
f"\"{text}\"\n\n"
|
47 |
+
"Please generate a respectful and informative moderation response.")
|
48 |
+
|
49 |
+
payload = {"inputs": prompt, "parameters": {"max_length": 150}}
|
50 |
+
response = requests.post(GENERATOR_API_URL, headers=HEADERS, json=payload)
|
51 |
+
|
52 |
+
if response.status_code != 200:
|
53 |
+
return "⚠️ Error: Could not generate a response."
|
54 |
+
|
55 |
+
generated = response.json()
|
56 |
+
return generated[0].get('generated_text', "No response generated.")
|
57 |
+
|
58 |
+
# -----------------------------------------------------------
|
59 |
+
# STREAMLIT USER INTERFACE
|
60 |
+
# -----------------------------------------------------------
|
61 |
+
st.title("🔍 AI-Powered Hate Speech Detection & Mitigation")
|
62 |
+
st.markdown("Detects hate speech, misinformation, and cyberbullying in social media posts.")
|
63 |
+
|
64 |
+
user_input = st.text_area("✏️ Enter the text to analyze:")
|
65 |
+
|
66 |
+
if st.button("Analyze"):
|
67 |
+
if user_input.strip() == "":
|
68 |
+
st.error("⚠️ Please enter some text to analyze.")
|
69 |
+
else:
|
70 |
+
st.markdown("### 📊 Analysis Results")
|
71 |
+
detected = detect_harmful_content(user_input)
|
72 |
+
|
73 |
+
if detected and detected[0].get("category") != "Error":
|
74 |
+
for d in detected:
|
75 |
+
st.write(f"**Category:** {d['category']} | **Confidence:** {d['score']:.2f}")
|
76 |
+
else:
|
77 |
+
st.write("✅ No harmful content detected.")
|
78 |
+
|
79 |
+
st.markdown("### 💡 Mitigation Response")
|
80 |
+
mitigation_response = generate_mitigation_response(user_input, detected)
|
81 |
+
st.write(mitigation_response)
|