File size: 5,461 Bytes
0f0e0b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
from __future__ import annotations

import math
import random

import gradio as gr
import torch
from PIL import Image, ImageOps
from run_edit import run_model
from cool_models import make_models

help_text = """"""

example_instructions = [
    "Make it a picasso painting",
    "as if it were by modigliani",
    "convert to a bronze statue",
    "Turn it into an anime.",
    "have it look like a graphic novel",
    "make him gain weight",
    "what would he look like bald?",
    "Have him smile",
    "Put him in a cocktail party.",
    "move him at the beach.",
    "add dramatic lighting",
    "Convert to black and white",
    "What if it were snowing?",
    "Give him a leather jacket",
    "Turn him into a cyborg!",
    "make him wear a beanie",
]

model_id = "timbrooks/instruct-pix2pix"

def main():
    # pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained(model_id, torch_dtype=torch.float16, safety_checker=None).to("cuda")
    segmodel, model, diffusion, ldm, bert, clip_model, model_params = make_models()

    def generate(
        input_image: Image.Image,
        from_text: str,
        instruction: str,
        negative_prompt: str,
        randomize_seed: bool,
        seed: int,
        guidance_scale: float,
        clip_guidance_scale: float,
        cutn: int,
        l2_sim_lambda: float
    ):
        seed = random.randint(0, 100000) if randomize_seed else seed

        if instruction == "":
            return [seed, input_image]

        generator = torch.manual_seed(seed)

        edited_image_1 = run_model(
            segmodel, model, diffusion, ldm, bert, clip_model, model_params,
            from_text, instruction, negative_prompt, input_image.convert('RGB'), seed, guidance_scale, clip_guidance_scale, cutn, l2_sim_lambda
        )

        # edited_image = input_image
        return [seed, edited_image_1]

    def reset():
        return [
            "Randomize Seed", 1371, None, 5.0,
            150, 16, 10000
        ]

    with gr.Blocks() as demo:
        gr.HTML("""<h1 style="font-weight: 900; margin-bottom: 7px;">
   RDM: Region-Aware Diffusion for Zero-shot Text-driven Image Editing
</h1>
<p>For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings.
<br/>
<a href="https://huggingface.co/spaces/timbrooks/instruct-pix2pix?duplicate=true">
<img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
<p/>""")
        with gr.Row():
            with gr.Column(scale=1, min_width=100):
                generate_button = gr.Button("Generate")
            # with gr.Column(scale=1, min_width=100):
            #     load_button = gr.Button("Load Example")
            with gr.Column(scale=1, min_width=100):
                reset_button = gr.Button("Reset")
            with gr.Column(scale=3):
                from_text = gr.Textbox(lines=1, label="From Text", interactive=True)
                instruction = gr.Textbox(lines=1, label="Edit Instruction", interactive=True)
                negative_prompt = gr.Textbox(lines=1, label="Negative Prompt", interactive=True)

        with gr.Row():
            input_image = gr.Image(label="Input Image", type="pil", interactive=True)
            edited_image_1 = gr.Image(label=f"Edited Image", type="pil", interactive=False)
            # edited_image_2 = gr.Image(label=f"Edited Image", type="pil", interactive=False)
            input_image.style(height=512, width=512)
            edited_image_1.style(height=512, width=512)
            # edited_image_2.style(height=512, width=512)

        with gr.Row():
            # steps = gr.Number(value=50, precision=0, label="Steps", interactive=True)
            seed = gr.Number(value=1371, precision=0, label="Seed", interactive=True)
            guidance_scale = gr.Number(value=5.0, precision=1, label="Guidance Scale", interactive=True)
            clip_guidance_scale = gr.Number(value=150, precision=1, label="Clip Guidance Scale", interactive=True)
            cutn = gr.Number(value=16, precision=1, label="Number of Cuts", interactive=True)
            l2_sim_lambda = gr.Number(value=10000, precision=1, label="L2 similarity to original image")

            randomize_seed = gr.Radio(
                ["Fix Seed", "Randomize Seed"],
                value="Randomize Seed",
                type="index",
                show_label=False,
                interactive=True,
            )
            # use_ddim = gr.Checkbox(label="Use 50-step DDIM?", value=True)
            # use_ddpm = gr.Checkbox(label="Use 50-step DDPM?", value=True)
        
        gr.Markdown(help_text)

        generate_button.click(
            fn=generate,
            inputs=[
                input_image,
                from_text,
                instruction,
                negative_prompt,
                randomize_seed,
                seed,
                guidance_scale,
                clip_guidance_scale,
                cutn,
                l2_sim_lambda
            ],
            outputs=[seed, edited_image_1],
        )
        reset_button.click(
            fn=reset,
            inputs=[],
            outputs=[
                randomize_seed, seed, edited_image_1, guidance_scale,
                clip_guidance_scale, cutn, l2_sim_lambda
            ],
        )

    demo.queue(concurrency_count=1)
    demo.launch(share=False, server_name="0.0.0.0")


if __name__ == "__main__":
    main()