Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
import streamlit as st
|
2 |
-
from transformers import
|
3 |
from rdkit import Chem
|
4 |
from rdkit.Chem import Draw
|
5 |
from streamlit_ketcher import st_ketcher
|
@@ -14,31 +14,47 @@ st.set_page_config(
|
|
14 |
)
|
15 |
|
16 |
# --- Model Loading ---
|
|
|
17 |
@st.cache_resource
|
18 |
def load_model():
|
19 |
-
"""
|
|
|
|
|
|
|
20 |
model_name = "sagawa/ReactionT5v2-forward-USPTO_MIT"
|
21 |
try:
|
22 |
-
|
23 |
-
tokenizer =
|
|
|
24 |
return model, tokenizer
|
25 |
except Exception as e:
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
return None, None
|
28 |
|
29 |
# --- Core Functions ---
|
30 |
def predict_product(reactants, reagents, model, tokenizer, num_predictions):
|
31 |
"""Predicts the reaction product using the T5 model."""
|
32 |
# Format the input string as required by the model
|
33 |
-
|
|
|
|
|
|
|
|
|
34 |
|
35 |
input_ids = tokenizer.encode(input_text, return_tensors='pt')
|
36 |
|
37 |
-
# Generate predictions
|
38 |
outputs = model.generate(
|
39 |
input_ids,
|
40 |
max_length=512,
|
41 |
-
num_beams=num_predictions * 2, # Generate more beams for better
|
42 |
num_return_sequences=num_predictions,
|
43 |
early_stopping=True,
|
44 |
)
|
@@ -49,20 +65,23 @@ def predict_product(reactants, reagents, model, tokenizer, num_predictions):
|
|
49 |
|
50 |
def display_molecule(smiles_string, legend):
|
51 |
"""Generates and displays a molecule image from a SMILES string."""
|
|
|
|
|
|
|
52 |
mol = Chem.MolFromSmiles(smiles_string)
|
53 |
if mol:
|
54 |
try:
|
55 |
-
img = Draw.MolToImage(mol, size=(
|
56 |
st.image(img, use_column_width='auto')
|
57 |
except Exception as e:
|
58 |
st.warning(f"Could not generate image for SMILES: {smiles_string}. Error: {e}")
|
59 |
else:
|
60 |
st.warning(f"Invalid SMILES string provided: {smiles_string}")
|
61 |
|
62 |
-
|
63 |
# --- Initialize Session State ---
|
|
|
64 |
if 'reactants' not in st.session_state:
|
65 |
-
st.session_state.reactants = ""
|
66 |
if 'reagents' not in st.session_state:
|
67 |
st.session_state.reagents = ""
|
68 |
|
@@ -74,13 +93,14 @@ with st.sidebar:
|
|
74 |
|
75 |
# Example Reactions
|
76 |
example_reactions = {
|
77 |
-
"
|
78 |
-
"Esterification": ("CCO.O=C(O)C", "C(C)(=O)O"),
|
79 |
"Amide Formation": ("CCN.O=C(Cl)C", ""),
|
80 |
"Suzuki Coupling": ("[B-](C1=CC=CC=C1)(F)(F)F.[K+].CC1=CC=C(Br)C=C1", "c1ccc(B(O)O)cc1"),
|
|
|
81 |
}
|
82 |
|
83 |
-
def
|
|
|
84 |
example_key = st.session_state.example_select
|
85 |
reactants, reagents = example_reactions[example_key]
|
86 |
st.session_state.reactants = reactants
|
@@ -90,75 +110,70 @@ with st.sidebar:
|
|
90 |
"Load an Example Reaction",
|
91 |
options=list(example_reactions.keys()),
|
92 |
key="example_select",
|
93 |
-
on_change=
|
94 |
)
|
95 |
|
96 |
-
# Prediction Parameters
|
97 |
st.markdown("---")
|
98 |
st.subheader("Prediction Parameters")
|
99 |
-
num_predictions = st.slider("Number of Predictions", 1, 5, 1)
|
100 |
st.markdown("---")
|
101 |
|
102 |
-
# About Section
|
103 |
st.subheader("About")
|
104 |
st.info(
|
105 |
-
"This app uses the sagawa/ReactionT5v2-forward-USPTO_MIT model to predict chemical reaction products.
|
106 |
-
"Draw molecules or input SMILES strings, then click 'Predict Product'."
|
107 |
)
|
108 |
st.markdown("[View Model on Hugging Face](https://huggingface.co/sagawa/ReactionT5v2-forward-USPTO_MIT)")
|
109 |
|
110 |
# --- Main Application UI ---
|
111 |
st.title("Chemical Reaction Predictor")
|
|
|
112 |
|
113 |
-
#
|
114 |
-
model
|
|
|
115 |
|
|
|
116 |
if model and tokenizer:
|
117 |
st.success("Model loaded successfully!")
|
118 |
|
119 |
# Input Section
|
120 |
-
st.header("1.
|
121 |
input_tab1, input_tab2 = st.tabs(["✍️ Chemical Drawing Tool", "⌨️ SMILES Text Input"])
|
122 |
|
123 |
-
# Callback functions to update session state from text inputs
|
124 |
-
def on_reactant_text_change():
|
125 |
-
st.session_state.reactants = st.session_state.reactant_text
|
126 |
-
|
127 |
-
def on_reagent_text_change():
|
128 |
-
st.session_state.reagents = st.session_state.reagent_text
|
129 |
-
|
130 |
with input_tab1:
|
131 |
col1, col2 = st.columns(2)
|
132 |
with col1:
|
133 |
st.subheader("Reactants")
|
134 |
-
#
|
135 |
-
reactant_smiles_drawing = st_ketcher(
|
136 |
-
# If the drawing changes, update the session state
|
137 |
if reactant_smiles_drawing != st.session_state.reactants:
|
138 |
st.session_state.reactants = reactant_smiles_drawing
|
139 |
-
st.
|
140 |
|
141 |
with col2:
|
142 |
-
st.subheader("Reagents")
|
143 |
-
reagent_smiles_drawing = st_ketcher(
|
144 |
if reagent_smiles_drawing != st.session_state.reagents:
|
145 |
st.session_state.reagents = reagent_smiles_drawing
|
146 |
-
st.
|
147 |
|
148 |
with input_tab2:
|
149 |
st.subheader("Enter SMILES Strings")
|
150 |
-
|
151 |
-
st.text_input("
|
|
|
152 |
|
|
|
153 |
st.info(f"**Current Reactants:** `{st.session_state.reactants}`")
|
154 |
-
st.info(f"**Current Reagents:** `{st.session_state.reagents}`")
|
155 |
|
|
|
156 |
st.header("2. Generate Prediction")
|
157 |
if st.button("Predict Product", type="primary", use_container_width=True):
|
158 |
-
if not st.session_state.reactants:
|
159 |
-
st.error("Error: Reactants cannot be empty. Please
|
160 |
else:
|
161 |
-
with st.spinner("Running prediction...
|
162 |
predictions = predict_product(
|
163 |
st.session_state.reactants,
|
164 |
st.session_state.reagents,
|
@@ -167,9 +182,13 @@ if model and tokenizer:
|
|
167 |
num_predictions
|
168 |
)
|
169 |
st.header("3. Predicted Products")
|
170 |
-
|
171 |
-
st.
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
3 |
from rdkit import Chem
|
4 |
from rdkit.Chem import Draw
|
5 |
from streamlit_ketcher import st_ketcher
|
|
|
14 |
)
|
15 |
|
16 |
# --- Model Loading ---
|
17 |
+
# Use st.cache_resource to load the model only once
|
18 |
@st.cache_resource
|
19 |
def load_model():
|
20 |
+
"""
|
21 |
+
Loads the T5 model and tokenizer from Hugging Face.
|
22 |
+
Uses AutoModel for better compatibility.
|
23 |
+
"""
|
24 |
model_name = "sagawa/ReactionT5v2-forward-USPTO_MIT"
|
25 |
try:
|
26 |
+
# Use Auto* classes for robustness
|
27 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
28 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
29 |
return model, tokenizer
|
30 |
except Exception as e:
|
31 |
+
# Provide more detailed error information
|
32 |
+
st.error("An error occurred while loading the model.")
|
33 |
+
st.error(f"Error Type: {type(e).__name__}")
|
34 |
+
st.error(f"Error Details: {e}")
|
35 |
+
# Add a hint about potential memory issues on Hugging Face Spaces
|
36 |
+
st.info("Hint: Free tiers on Hugging Face Spaces have limited memory (RAM). "
|
37 |
+
"If the app fails to load the model, it might be due to an Out-of-Memory error. "
|
38 |
+
"Consider upgrading your Space for more resources.")
|
39 |
return None, None
|
40 |
|
41 |
# --- Core Functions ---
|
42 |
def predict_product(reactants, reagents, model, tokenizer, num_predictions):
|
43 |
"""Predicts the reaction product using the T5 model."""
|
44 |
# Format the input string as required by the model
|
45 |
+
# Handle the case where reagents might be empty
|
46 |
+
if reagents and reagents.strip():
|
47 |
+
input_text = f"reactants>{reactants}.reagents>{reagents}>products>"
|
48 |
+
else:
|
49 |
+
input_text = f"reactants>{reactants}>products>"
|
50 |
|
51 |
input_ids = tokenizer.encode(input_text, return_tensors='pt')
|
52 |
|
53 |
+
# Generate predictions using beam search
|
54 |
outputs = model.generate(
|
55 |
input_ids,
|
56 |
max_length=512,
|
57 |
+
num_beams=num_predictions * 2, # Generate more beams for better diversity
|
58 |
num_return_sequences=num_predictions,
|
59 |
early_stopping=True,
|
60 |
)
|
|
|
65 |
|
66 |
def display_molecule(smiles_string, legend):
|
67 |
"""Generates and displays a molecule image from a SMILES string."""
|
68 |
+
if not smiles_string:
|
69 |
+
st.warning("Received an empty SMILES string.")
|
70 |
+
return
|
71 |
mol = Chem.MolFromSmiles(smiles_string)
|
72 |
if mol:
|
73 |
try:
|
74 |
+
img = Draw.MolToImage(mol, size=(300, 300), legend=legend)
|
75 |
st.image(img, use_column_width='auto')
|
76 |
except Exception as e:
|
77 |
st.warning(f"Could not generate image for SMILES: {smiles_string}. Error: {e}")
|
78 |
else:
|
79 |
st.warning(f"Invalid SMILES string provided: {smiles_string}")
|
80 |
|
|
|
81 |
# --- Initialize Session State ---
|
82 |
+
# This ensures that the state is preserved across reruns
|
83 |
if 'reactants' not in st.session_state:
|
84 |
+
st.session_state.reactants = "CCO.O=C(O)C" # Start with a default example
|
85 |
if 'reagents' not in st.session_state:
|
86 |
st.session_state.reagents = ""
|
87 |
|
|
|
93 |
|
94 |
# Example Reactions
|
95 |
example_reactions = {
|
96 |
+
"Esterification": ("CCO.O=C(O)C", ""),
|
|
|
97 |
"Amide Formation": ("CCN.O=C(Cl)C", ""),
|
98 |
"Suzuki Coupling": ("[B-](C1=CC=CC=C1)(F)(F)F.[K+].CC1=CC=C(Br)C=C1", "c1ccc(B(O)O)cc1"),
|
99 |
+
"Clear Inputs": ("", "")
|
100 |
}
|
101 |
|
102 |
+
def load_example():
|
103 |
+
# Callback to load selected example into session state
|
104 |
example_key = st.session_state.example_select
|
105 |
reactants, reagents = example_reactions[example_key]
|
106 |
st.session_state.reactants = reactants
|
|
|
110 |
"Load an Example Reaction",
|
111 |
options=list(example_reactions.keys()),
|
112 |
key="example_select",
|
113 |
+
on_change=load_example
|
114 |
)
|
115 |
|
|
|
116 |
st.markdown("---")
|
117 |
st.subheader("Prediction Parameters")
|
118 |
+
num_predictions = st.slider("Number of Predictions to Generate", 1, 5, 1, help="How many potential products should the model suggest?")
|
119 |
st.markdown("---")
|
120 |
|
|
|
121 |
st.subheader("About")
|
122 |
st.info(
|
123 |
+
"This app uses the sagawa/ReactionT5v2-forward-USPTO_MIT model to predict chemical reaction products."
|
|
|
124 |
)
|
125 |
st.markdown("[View Model on Hugging Face](https://huggingface.co/sagawa/ReactionT5v2-forward-USPTO_MIT)")
|
126 |
|
127 |
# --- Main Application UI ---
|
128 |
st.title("Chemical Reaction Predictor")
|
129 |
+
st.markdown("A tool to predict chemical reactions using a state-of-the-art Transformer model.")
|
130 |
|
131 |
+
# --- Model Loading and Main Logic ---
|
132 |
+
with st.spinner("Loading the prediction model... This may take a moment on first startup."):
|
133 |
+
model, tokenizer = load_model()
|
134 |
|
135 |
+
# Only proceed if the model loaded successfully
|
136 |
if model and tokenizer:
|
137 |
st.success("Model loaded successfully!")
|
138 |
|
139 |
# Input Section
|
140 |
+
st.header("1. Provide Reactants and Reagents")
|
141 |
input_tab1, input_tab2 = st.tabs(["✍️ Chemical Drawing Tool", "⌨️ SMILES Text Input"])
|
142 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
with input_tab1:
|
144 |
col1, col2 = st.columns(2)
|
145 |
with col1:
|
146 |
st.subheader("Reactants")
|
147 |
+
# This component's value is now directly tied to the session state
|
148 |
+
reactant_smiles_drawing = st_ketcher(st.session_state.reactants, key="ketcher_reactants")
|
|
|
149 |
if reactant_smiles_drawing != st.session_state.reactants:
|
150 |
st.session_state.reactants = reactant_smiles_drawing
|
151 |
+
st.rerun() # Use the modern rerun command
|
152 |
|
153 |
with col2:
|
154 |
+
st.subheader("Reagents (Optional)")
|
155 |
+
reagent_smiles_drawing = st_ketcher(st.session_state.reagents, key="ketcher_reagents")
|
156 |
if reagent_smiles_drawing != st.session_state.reagents:
|
157 |
st.session_state.reagents = reagent_smiles_drawing
|
158 |
+
st.rerun()
|
159 |
|
160 |
with input_tab2:
|
161 |
st.subheader("Enter SMILES Strings")
|
162 |
+
# Text inputs now also directly update the session state on change
|
163 |
+
st.text_input("Reactants SMILES", key="reactant_text", value=st.session_state.reactants, on_change=lambda: setattr(st.session_state, 'reactants', st.session_state.reactant_text))
|
164 |
+
st.text_input("Reagents SMILES", key="reagent_text", value=st.session_state.reagents, on_change=lambda: setattr(st.session_state, 'reagents', st.session_state.reagent_text))
|
165 |
|
166 |
+
# Display the current state clearly
|
167 |
st.info(f"**Current Reactants:** `{st.session_state.reactants}`")
|
168 |
+
st.info(f"**Current Reagents:** `{st.session_state.reagents or 'None'}`")
|
169 |
|
170 |
+
# Prediction Button
|
171 |
st.header("2. Generate Prediction")
|
172 |
if st.button("Predict Product", type="primary", use_container_width=True):
|
173 |
+
if not st.session_state.reactants or not st.session_state.reactants.strip():
|
174 |
+
st.error("Error: Reactants field cannot be empty. Please provide a molecule.")
|
175 |
else:
|
176 |
+
with st.spinner("Running prediction..."):
|
177 |
predictions = predict_product(
|
178 |
st.session_state.reactants,
|
179 |
st.session_state.reagents,
|
|
|
182 |
num_predictions
|
183 |
)
|
184 |
st.header("3. Predicted Products")
|
185 |
+
if not predictions:
|
186 |
+
st.warning("The model did not return any predictions.")
|
187 |
+
else:
|
188 |
+
for i, product_smiles in enumerate(predictions):
|
189 |
+
st.subheader(f"Top Prediction #{i + 1}")
|
190 |
+
st.code(product_smiles, language="smiles")
|
191 |
+
display_molecule(product_smiles, f"Predicted Product #{i + 1}")
|
192 |
+
|
193 |
+
elif not model or not tokenizer:
|
194 |
+
st.error("Application could not start because the model failed to load. Please check the error messages above.")
|