Spaces:
Runtime error
Runtime error
""" Swin Transformer Cross Attention | |
A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows` | |
- https://arxiv.org/pdf/2103.14030 | |
Code/weights from https://github.com/microsoft/Swin-Transformer | |
""" | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import numpy as np | |
from typing import Optional | |
def drop_path_f(x, drop_prob: float = 0., training: bool = False): | |
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). | |
This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, | |
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... | |
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for | |
changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use | |
'survival rate' as the argument. | |
""" | |
if drop_prob == 0. or not training: | |
return x | |
keep_prob = 1 - drop_prob | |
shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets | |
random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device) | |
random_tensor.floor_() # binarize | |
output = x.div(keep_prob) * random_tensor | |
return output | |
class DropPath(nn.Module): | |
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). | |
""" | |
def __init__(self, drop_prob=None): | |
super(DropPath, self).__init__() | |
self.drop_prob = drop_prob | |
def forward(self, x): | |
return drop_path_f(x, self.drop_prob, self.training) | |
def window_partition(x, window_size: int): | |
""" | |
Partition the feature map into non-overlapping windows based on the window size. | |
Args: | |
x: (B, H, W, C) | |
window_size (int): window size(M) | |
Returns: | |
windows: (num_windows*B, window_size, window_size, C) | |
""" | |
B, H, W, C = x.shape | |
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C) | |
# permute: [B, H//Mh, Mh, W//Mw, Mw, C] -> [B, H//Mh, W//Mh, Mw, Mw, C] | |
# view: [B, H//Mh, W//Mw, Mh, Mw, C] -> [B*num_windows, Mh, Mw, C] | |
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C) | |
return windows | |
def window_reverse(windows, window_size: int, H: int, W: int): | |
""" | |
Restore each window into a feature map. | |
Args: | |
windows: (num_windows*B, window_size, window_size, C) | |
window_size (int): Window size(M) | |
H (int): Height of image | |
W (int): Width of image | |
Returns: | |
x: (B, H, W, C) | |
""" | |
B = int(windows.shape[0] / (H * W / window_size / window_size)) | |
# view: [B*num_windows, Mh, Mw, C] -> [B, H//Mh, W//Mw, Mh, Mw, C] | |
x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1) | |
# permute: [B, H//Mh, W//Mw, Mh, Mw, C] -> [B, H//Mh, Mh, W//Mw, Mw, C] | |
# view: [B, H//Mh, Mh, W//Mw, Mw, C] -> [B, H, W, C] | |
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) | |
return x | |
class Mlp(nn.Module): | |
""" MLP as used in Vision Transformer, MLP-Mixer and related networks | |
""" | |
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): | |
super().__init__() | |
out_features = out_features or in_features | |
hidden_features = hidden_features or in_features | |
self.fc1 = nn.Linear(in_features, hidden_features) | |
self.act = act_layer() | |
self.drop1 = nn.Dropout(drop) | |
self.fc2 = nn.Linear(hidden_features, out_features) | |
self.drop2 = nn.Dropout(drop) | |
def forward(self, x): | |
x = self.fc1(x) | |
x = self.act(x) | |
x = self.drop1(x) | |
x = self.fc2(x) | |
x = self.drop2(x) | |
return x | |
class WindowCrossAttention(nn.Module): | |
r""" Window based multi-head self attention (W-MSA) module with relative position bias. | |
It supports both of shifted and non-shifted window. | |
Args: | |
dim (int): Number of input channels. | |
window_size (tuple[int]): The height and width of the window. | |
num_heads (int): Number of attention heads. | |
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True | |
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0 | |
proj_drop (float, optional): Dropout ratio of output. Default: 0.0 | |
""" | |
def __init__(self, dim, window_size, num_heads, qkv_bias=True, attn_drop=0., proj_drop=0.): | |
super().__init__() | |
self.dim = dim | |
self.window_size = window_size # [Mh, Mw] | |
self.num_heads = num_heads | |
head_dim = dim // num_heads | |
self.scale = head_dim ** -0.5 | |
# define a parameter table of relative position bias | |
self.relative_position_bias_table = nn.Parameter( | |
torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)) # [2*Mh-1 * 2*Mw-1, nH] | |
# get pair-wise relative position index for each token inside the window | |
coords_h = torch.arange(self.window_size[0]) | |
coords_w = torch.arange(self.window_size[1]) | |
coords = torch.stack(torch.meshgrid([coords_h, coords_w], indexing="ij")) # [2, Mh, Mw] | |
coords_flatten = torch.flatten(coords, 1) # [2, Mh*Mw] | |
# [2, Mh*Mw, 1] - [2, 1, Mh*Mw] | |
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # [2, Mh*Mw, Mh*Mw] | |
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # [Mh*Mw, Mh*Mw, 2] | |
relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0 | |
relative_coords[:, :, 1] += self.window_size[1] - 1 | |
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1 | |
relative_position_index = relative_coords.sum(-1) # [Mh*Mw, Mh*Mw] | |
self.register_buffer("relative_position_index", relative_position_index) | |
self.q = nn.Linear(dim, dim, bias=qkv_bias) | |
self.kv = nn.Linear(dim, dim * 2, bias=qkv_bias) | |
self.attn_drop = nn.Dropout(attn_drop) | |
self.proj = nn.Linear(dim, dim) | |
self.proj_drop = nn.Dropout(proj_drop) | |
nn.init.trunc_normal_(self.relative_position_bias_table, std=.02) | |
self.softmax = nn.Softmax(dim=-1) | |
def forward(self, x, kv, mask: Optional[torch.Tensor] = None): | |
""" | |
Args: | |
x: input features with shape of (num_windows*B, Mh*Mw, C) | |
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None | |
""" | |
# [batch_size*num_windows, Mh*Mw, total_embed_dim] | |
B_, N, C = x.shape | |
# q(): -> [batch_size*num_windows, Mh*Mw, 1*total_embed_dim] | |
# reshape: -> [batch_size*num_windows, Mh*Mw, 3, num_heads, embed_dim_per_head] | |
# permute: -> [3, batch_size*num_windows, num_heads, Mh*Mw, embed_dim_per_head] | |
q = self.q(x).reshape(B_, N, 1, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) | |
# [batch_size*num_windows, num_heads, Mh*Mw, embed_dim_per_head] | |
kv = self.kv(kv).reshape(B_, N, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) | |
k, v = kv.unbind(0) # make torchscript happy (cannot use tensor as tuple) | |
# transpose: -> [batch_size*num_windows, num_heads, embed_dim_per_head, Mh*Mw] | |
# @: multiply -> [batch_size*num_windows, num_heads, Mh*Mw, Mh*Mw] | |
q = q * self.scale | |
attn = (q @ k.transpose(-2, -1)) | |
# relative_position_bias_table.view: [Mh*Mw*Mh*Mw,nH] -> [Mh*Mw,Mh*Mw,nH] | |
relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view( | |
self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) | |
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # [nH, Mh*Mw, Mh*Mw] | |
attn = attn + relative_position_bias.unsqueeze(0) | |
if mask is not None: | |
# mask: [nW, Mh*Mw, Mh*Mw] | |
nW = mask.shape[0] # num_windows | |
# attn.view: [batch_size, num_windows, num_heads, Mh*Mw, Mh*Mw] | |
# mask.unsqueeze: [1, nW, 1, Mh*Mw, Mh*Mw] | |
attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0) | |
attn = attn.view(-1, self.num_heads, N, N) | |
attn = self.softmax(attn) | |
else: | |
attn = self.softmax(attn) | |
attn = self.attn_drop(attn) | |
# @: multiply -> [batch_size*num_windows, num_heads, Mh*Mw, embed_dim_per_head] | |
# transpose: -> [batch_size*num_windows, Mh*Mw, num_heads, embed_dim_per_head] | |
# reshape: -> [batch_size*num_windows, Mh*Mw, total_embed_dim] | |
x = (attn @ v).transpose(1, 2).reshape(B_, N, C) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |
class SwinTransformerCABlock(nn.Module): | |
r""" Swin Transformer Cross Attention Block. | |
Args: | |
dim (int): Number of input channels. | |
num_heads (int): Number of attention heads. | |
window_size (int): Window size. | |
shift_size (int): Shift size for SW-MSA. | |
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. | |
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True | |
drop (float, optional): Dropout rate. Default: 0.0 | |
attn_drop (float, optional): Attention dropout rate. Default: 0.0 | |
drop_path (float, optional): Stochastic depth rate. Default: 0.0 | |
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU | |
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm | |
""" | |
def __init__(self, dim, num_heads, window_size=7, shift_size=0, | |
mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0., drop_path=0., | |
act_layer=nn.GELU, norm_layer=nn.LayerNorm): | |
super().__init__() | |
self.dim = dim | |
self.num_heads = num_heads | |
self.window_size = window_size | |
self.shift_size = shift_size | |
self.mlp_ratio = mlp_ratio | |
assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size" | |
self.norm1 = norm_layer(dim) | |
self.attn = WindowCrossAttention( | |
dim, window_size=(self.window_size, self.window_size), num_heads=num_heads, qkv_bias=qkv_bias, | |
attn_drop=attn_drop, proj_drop=drop) | |
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
self.norm2 = norm_layer(dim) | |
mlp_hidden_dim = int(dim * mlp_ratio) | |
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) | |
def forward(self, x, kv, attn_mask): | |
H, W = self.H, self.W | |
B, L, C = x.shape | |
assert L == H * W, "input feature has wrong size" | |
shortcut = x | |
x = self.norm1(x) | |
x = x.view(B, H, W, C) | |
kv = self.norm1(kv) | |
kv = kv.view(B, H, W, C) | |
# pad feature maps to multiples of window size | |
# Pad the feature map to multiples of the window size. | |
pad_l = pad_t = 0 | |
pad_r = (self.window_size - W % self.window_size) % self.window_size | |
pad_b = (self.window_size - H % self.window_size) % self.window_size | |
x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b)) | |
kv = F.pad(kv, (0, 0, pad_l, pad_r, pad_t, pad_b)) | |
_, Hp, Wp, _ = x.shape | |
# cyclic shift | |
if self.shift_size > 0: | |
shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2)) | |
shifted_kv = torch.roll(kv, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2)) | |
else: | |
shifted_x = x | |
shifted_kv = kv | |
attn_mask = None | |
# partition windows | |
x_windows = window_partition(shifted_x, self.window_size) # [nW*B, Mh, Mw, C] | |
x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # [nW*B, Mh*Mw, C] | |
kv_windows = window_partition(shifted_kv, self.window_size) # [nW*B, Mh, Mw, C] | |
kv_windows = kv_windows.view(-1, self.window_size * self.window_size, C) # [nW*B, Mh*Mw, C] | |
# W-MSA/SW-MSA | |
attn_windows = self.attn(x_windows, kv_windows, mask=attn_mask) # [nW*B, Mh*Mw, C] | |
# merge windows | |
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C) # [nW*B, Mh, Mw, C] | |
shifted_x = window_reverse(attn_windows, self.window_size, Hp, Wp) # [B, H', W', C] | |
# reverse cyclic shift | |
if self.shift_size > 0: | |
x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2)) | |
else: | |
x = shifted_x | |
if pad_r > 0 or pad_b > 0: | |
# Remove the padded data from the front. | |
x = x[:, :H, :W, :].contiguous() | |
x = x.view(B, H * W, C) | |
# FFN | |
x = shortcut + self.drop_path(x) | |
x = x + self.drop_path(self.mlp(self.norm2(x))) | |
return x | |
class CrossAttentionLayer(nn.Module): | |
def __init__(self, dim, depth, num_heads, window_size, | |
mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0., | |
drop_path=0., norm_layer=nn.LayerNorm,): | |
super().__init__() | |
self.dim = dim | |
self.depth = depth | |
self.window_size = window_size | |
self.shift_size = window_size // 2 | |
# build blocks | |
self.blocks = nn.ModuleList([ | |
SwinTransformerCABlock( | |
dim=dim, | |
num_heads=num_heads, | |
window_size=window_size, | |
shift_size=0 if (i % 2 == 0) else self.shift_size, | |
mlp_ratio=mlp_ratio, | |
qkv_bias=qkv_bias, | |
drop=drop, | |
attn_drop=attn_drop, | |
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path, | |
norm_layer=norm_layer) | |
for i in range(depth)]) | |
def create_mask(self, x, H, W): | |
# calculate attention mask for SW-MSA | |
# Ensure that Hp and Wp are multiples of window_size. | |
Hp = int(np.ceil(H / self.window_size)) * self.window_size | |
Wp = int(np.ceil(W / self.window_size)) * self.window_size | |
# Have the same channel arrangement as the feature map for ease of subsequent window_partition. | |
img_mask = torch.zeros((1, Hp, Wp, 1), device=x.device) # [1, Hp, Wp, 1] | |
h_slices = (slice(0, -self.window_size), | |
slice(-self.window_size, -self.shift_size), | |
slice(-self.shift_size, None)) | |
w_slices = (slice(0, -self.window_size), | |
slice(-self.window_size, -self.shift_size), | |
slice(-self.shift_size, None)) | |
cnt = 0 | |
for h in h_slices: | |
for w in w_slices: | |
img_mask[:, h, w, :] = cnt | |
cnt += 1 | |
mask_windows = window_partition(img_mask, self.window_size) # [nW, Mh, Mw, 1] | |
mask_windows = mask_windows.view(-1, self.window_size * self.window_size) # [nW, Mh*Mw] | |
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) # [nW, 1, Mh*Mw] - [nW, Mh*Mw, 1] | |
# [nW, Mh*Mw, Mh*Mw] | |
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0)) | |
return attn_mask | |
def forward(self, x, kv, H, W): | |
attn_mask = self.create_mask(x, H, W) # [nW, Mh*Mw, Mh*Mw] | |
for blk in self.blocks: | |
blk.H, blk.W = H, W | |
x = blk(x, kv, attn_mask) | |
return x, H, W | |
if __name__ == '__main__': | |
shape = [8, 3, 32, 64, 64] | |
tensor = torch.zeros(shape) | |
_, _, _, H, W = tensor.shape | |
front_plane = tensor.reshape(-1, 32, 64*64).permute(0, 2,1).contiguous() | |
back_plane = torch.zeros(front_plane.shape) | |
model = CrossAttentionLayer( | |
dim=32, | |
depth=2, | |
num_heads=8, | |
window_size=2, | |
) | |
output = model(front_plane, back_plane, H, W) | |