File size: 18,392 Bytes
52d68d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
# Copyright (c) 2023-2024, Zexin He
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import os
import math
from tqdm.auto import tqdm
import torch
import torch.nn as nn
from torchvision.utils import make_grid
from accelerate.logging import get_logger

from .base_trainer import Trainer
from openlrm.utils.profiler import DummyProfiler
from openlrm.runners import REGISTRY_RUNNERS


logger = get_logger(__name__)


@REGISTRY_RUNNERS.register('train.lrm')
class LRMTrainer(Trainer):
    def __init__(self):
        super().__init__()

        self.model = self._build_model(self.cfg)
        self.optimizer = self._build_optimizer(self.model, self.cfg)
        self.train_loader, self.val_loader = self._build_dataloader(self.cfg)
        self.scheduler = self._build_scheduler(self.optimizer, self.cfg)
        self.pixel_loss_fn, self.perceptual_loss_fn, self.tv_loss_fn = self._build_loss_fn(self.cfg)

    def _build_model(self, cfg):
        assert cfg.experiment.type == 'lrm', \
            f"Config type {cfg.experiment.type} does not match with runner {self.__class__.__name__}"
        from openlrm.models import ModelLRM
        model = ModelLRM(**cfg.model)
        return model

    def _build_optimizer(self, model: nn.Module, cfg):
        decay_params, no_decay_params = [], []

        # add all bias and LayerNorm params to no_decay_params
        for name, module in model.named_modules():
            if isinstance(module, nn.LayerNorm):
                no_decay_params.extend([p for p in module.parameters()])
            elif hasattr(module, 'bias') and module.bias is not None:
                no_decay_params.append(module.bias)

        # add remaining parameters to decay_params
        _no_decay_ids = set(map(id, no_decay_params))
        decay_params = [p for p in model.parameters() if id(p) not in _no_decay_ids]

        # filter out parameters with no grad
        decay_params = list(filter(lambda p: p.requires_grad, decay_params))
        no_decay_params = list(filter(lambda p: p.requires_grad, no_decay_params))

        # monitor this to make sure we don't miss any parameters
        logger.info("======== Weight Decay Parameters ========")
        logger.info(f"Total: {len(decay_params)}")
        logger.info("======== No Weight Decay Parameters ========")
        logger.info(f"Total: {len(no_decay_params)}")

        # Optimizer
        opt_groups = [
            {'params': decay_params, 'weight_decay': cfg.train.optim.weight_decay},
            {'params': no_decay_params, 'weight_decay': 0.0},
        ]
        optimizer = torch.optim.AdamW(
            opt_groups,
            lr=cfg.train.optim.lr,
            betas=(cfg.train.optim.beta1, cfg.train.optim.beta2),
        )

        return optimizer

    def _build_scheduler(self, optimizer, cfg):
        local_batches_per_epoch = math.floor(len(self.train_loader) / self.accelerator.num_processes)
        total_global_batches = cfg.train.epochs * math.ceil(local_batches_per_epoch / self.cfg.train.accum_steps)
        effective_warmup_iters = cfg.train.scheduler.warmup_real_iters
        logger.debug(f"======== Scheduler effective max iters: {total_global_batches} ========")
        logger.debug(f"======== Scheduler effective warmup iters: {effective_warmup_iters} ========")
        if cfg.train.scheduler.type == 'cosine':
            from openlrm.utils.scheduler import CosineWarmupScheduler
            scheduler = CosineWarmupScheduler(
                optimizer=optimizer,
                warmup_iters=effective_warmup_iters,
                max_iters=total_global_batches,
            )
        else:
            raise NotImplementedError(f"Scheduler type {cfg.train.scheduler.type} not implemented")
        return scheduler

    def _build_dataloader(self, cfg):
        # dataset class
        from openlrm.datasets import MixerDataset

        # build dataset
        train_dataset = MixerDataset(
            split="train",
            subsets=cfg.dataset.subsets,
            sample_side_views=cfg.dataset.sample_side_views,
            render_image_res_low=cfg.dataset.render_image.low,
            render_image_res_high=cfg.dataset.render_image.high,
            render_region_size=cfg.dataset.render_image.region,
            source_image_res=cfg.dataset.source_image_res,
            normalize_camera=cfg.dataset.normalize_camera,
            normed_dist_to_center=cfg.dataset.normed_dist_to_center,
        )
        val_dataset = MixerDataset(
            split="val",
            subsets=cfg.dataset.subsets,
            sample_side_views=cfg.dataset.sample_side_views,
            render_image_res_low=cfg.dataset.render_image.low,
            render_image_res_high=cfg.dataset.render_image.high,
            render_region_size=cfg.dataset.render_image.region,
            source_image_res=cfg.dataset.source_image_res,
            normalize_camera=cfg.dataset.normalize_camera,
            normed_dist_to_center=cfg.dataset.normed_dist_to_center,
        )

        # build data loader
        train_loader = torch.utils.data.DataLoader(
            train_dataset,
            batch_size=cfg.train.batch_size,
            shuffle=True,
            drop_last=True,
            num_workers=cfg.dataset.num_train_workers,
            pin_memory=cfg.dataset.pin_mem,
            persistent_workers=True,
        )
        val_loader = torch.utils.data.DataLoader(
            val_dataset,
            batch_size=cfg.val.batch_size,
            shuffle=False,
            drop_last=False,
            num_workers=cfg.dataset.num_val_workers,
            pin_memory=cfg.dataset.pin_mem,
            persistent_workers=False,
        )

        return train_loader, val_loader

    def _build_loss_fn(self, cfg):
        from openlrm.losses import PixelLoss, LPIPSLoss, TVLoss
        pixel_loss_fn = PixelLoss()
        with self.accelerator.main_process_first():
            perceptual_loss_fn = LPIPSLoss(device=self.device, prefech=True)
        tv_loss_fn = TVLoss()
        return pixel_loss_fn, perceptual_loss_fn, tv_loss_fn

    def register_hooks(self):
        pass

    def forward_loss_local_step(self, data):

        source_camera = data['source_camera']
        render_camera = data['render_camera']
        source_image = data['source_image']
        render_image = data['render_image']
        if 'source_image_back' in data:
            source_image_back = data['source_image_back']           #!!!
        else:
            source_image_back = None
        render_anchors = data['render_anchors']
        render_full_resolutions = data['render_full_resolutions']
        render_bg_colors = data['render_bg_colors']

        N, M, C, H, W = render_image.shape

        # forward
        outputs = self.model(
            image=source_image,
            source_camera=source_camera,
            render_cameras=render_camera,
            render_anchors=render_anchors,
            render_resolutions=render_full_resolutions,
            render_bg_colors=render_bg_colors,
            render_region_size=self.cfg.dataset.render_image.region,
            image_back=source_image_back,                        #!!!
        )

        # loss calculation
        loss = 0.
        loss_pixel = None
        loss_perceptual = None
        loss_tv = None

        if self.cfg.train.loss.pixel_weight > 0.:
            loss_pixel = self.pixel_loss_fn(outputs['images_rgb'], render_image)
            loss += loss_pixel * self.cfg.train.loss.pixel_weight
        if self.cfg.train.loss.perceptual_weight > 0.:
            loss_perceptual = self.perceptual_loss_fn(outputs['images_rgb'], render_image)
            loss += loss_perceptual * self.cfg.train.loss.perceptual_weight
        if self.cfg.train.loss.tv_weight > 0.: 
            loss_tv = self.tv_loss_fn(outputs['planes'])
            loss += loss_tv * self.cfg.train.loss.tv_weight

        return outputs, loss, loss_pixel, loss_perceptual, loss_tv

    def train_epoch(self, pbar: tqdm, loader: torch.utils.data.DataLoader, profiler: torch.profiler.profile):
        self.model.train()

        local_step_losses = []
        global_step_losses = []

        logger.debug(f"======== Starting epoch {self.current_epoch} ========")
        for data in loader:

            logger.debug(f"======== Starting global step {self.global_step} ========")
            with self.accelerator.accumulate(self.model):

                # forward to loss
                outs, loss, loss_pixel, loss_perceptual, loss_tv = self.forward_loss_local_step(data)
                
                # backward
                self.accelerator.backward(loss)
                if self.accelerator.sync_gradients and self.cfg.train.optim.clip_grad_norm > 0.:
                    self.accelerator.clip_grad_norm_(self.model.parameters(), self.cfg.train.optim.clip_grad_norm)
                self.optimizer.step()
                self.optimizer.zero_grad()

                # track local losses
                local_step_losses.append(torch.stack([
                    _loss.detach() if _loss is not None else torch.tensor(float('nan'), device=self.device)
                    for _loss in [loss, loss_pixel, loss_perceptual, loss_tv]
                ]))

            # track global step
            if self.accelerator.sync_gradients:
                profiler.step()
                self.scheduler.step()
                logger.debug(f"======== Scheduler step ========")
                self.global_step += 1
                global_step_loss = self.accelerator.gather(torch.stack(local_step_losses)).mean(dim=0).cpu()
                loss, loss_pixel, loss_perceptual, loss_tv = global_step_loss.unbind()
                loss_kwargs = {
                    'loss': loss.item(),
                    'loss_pixel': loss_pixel.item(),
                    'loss_perceptual': loss_perceptual.item(),
                    'loss_tv': loss_tv.item(),
                }
                self.log_scalar_kwargs(
                    step=self.global_step, split='train',
                    **loss_kwargs
                )
                self.log_optimizer(step=self.global_step, attrs=['lr'], group_ids=[0, 1])
                local_step_losses = []
                global_step_losses.append(global_step_loss)

                # manage display
                pbar.update(1)
                description = {
                    **loss_kwargs,
                    'lr': self.optimizer.param_groups[0]['lr'],
                }
                description = '[TRAIN STEP]' + \
                    ', '.join(f'{k}={tqdm.format_num(v)}' for k, v in description.items() if not math.isnan(v))
                pbar.set_description(description)

                # periodic actions
                if self.global_step % self.cfg.saver.checkpoint_global_steps == 0:
                    self.save_checkpoint()
                if self.global_step % self.cfg.val.global_step_period == 0:
                    self.evaluate()
                    self.model.train()
                if self.global_step % self.cfg.logger.image_monitor.train_global_steps == 0:
                    self.log_image_monitor(
                        step=self.global_step, split='train',
                        renders=outs['images_rgb'].detach()[:self.cfg.logger.image_monitor.samples_per_log].cpu(),
                        gts=data['render_image'][:self.cfg.logger.image_monitor.samples_per_log].cpu(),
                    )

                # progress control
                if self.global_step >= self.N_max_global_steps:
                    self.accelerator.set_trigger()
                    break

        # track epoch
        self.current_epoch += 1
        epoch_losses = torch.stack(global_step_losses).mean(dim=0)
        epoch_loss, epoch_loss_pixel, epoch_loss_perceptual, epoch_loss_tv = epoch_losses.unbind()
        epoch_loss_dict = {
            'loss': epoch_loss.item(),
            'loss_pixel': epoch_loss_pixel.item(),
            'loss_perceptual': epoch_loss_perceptual.item(),
            'loss_tv': epoch_loss_tv.item(),
        }
        self.log_scalar_kwargs(
            epoch=self.current_epoch, split='train',
            **epoch_loss_dict,
        )
        logger.info(
            f'[TRAIN EPOCH] {self.current_epoch}/{self.cfg.train.epochs}: ' + \
                ', '.join(f'{k}={tqdm.format_num(v)}' for k, v in epoch_loss_dict.items() if not math.isnan(v))
        )

    def train(self):
        
        starting_local_step_in_epoch = self.global_step_in_epoch * self.cfg.train.accum_steps
        skipped_loader = self.accelerator.skip_first_batches(self.train_loader, starting_local_step_in_epoch)
        logger.info(f"======== Skipped {starting_local_step_in_epoch} local batches ========")

        with tqdm(
            range(0, self.N_max_global_steps),
            initial=self.global_step,
            disable=(not self.accelerator.is_main_process),
        ) as pbar:

            profiler = torch.profiler.profile(
                activities=[torch.profiler.ProfilerActivity.CPU, torch.profiler.ProfilerActivity.CUDA],
                schedule=torch.profiler.schedule(
                    wait=10, warmup=10, active=100,
                ),
                on_trace_ready=torch.profiler.tensorboard_trace_handler(os.path.join(
                    self.cfg.logger.tracker_root,
                    self.cfg.experiment.parent, self.cfg.experiment.child,
                )),
                record_shapes=True,
                profile_memory=True,
                with_stack=True,
            ) if self.cfg.logger.enable_profiler else DummyProfiler()
            
            with profiler:

                self.optimizer.zero_grad()
                for _ in range(self.current_epoch, self.cfg.train.epochs):

                    loader = skipped_loader or self.train_loader
                    skipped_loader = None
                    self.train_epoch(pbar=pbar, loader=loader, profiler=profiler)
                    if self.accelerator.check_trigger():
                        break

            logger.info(f"======== Training finished at global step {self.global_step} ========")

            # final checkpoint and evaluation
            self.save_checkpoint()
            self.evaluate()

    @torch.no_grad()
    @torch.compiler.disable
    def evaluate(self, epoch: int = None):
        self.model.eval()

        max_val_batches = self.cfg.val.debug_batches or len(self.val_loader)
        running_losses = []
        sample_data, sample_outs = None, None

        for data in tqdm(self.val_loader, disable=(not self.accelerator.is_main_process), total=max_val_batches):

            if len(running_losses) >= max_val_batches:
                logger.info(f"======== Early stop validation at {len(running_losses)} batches ========")
                break

            outs, loss, loss_pixel, loss_perceptual, loss_tv = self.forward_loss_local_step(data)
            sample_data, sample_outs = data, outs

            running_losses.append(torch.stack([
                _loss if _loss is not None else torch.tensor(float('nan'), device=self.device)
                for _loss in [loss, loss_pixel, loss_perceptual, loss_tv]
            ]))

        total_losses = self.accelerator.gather(torch.stack(running_losses)).mean(dim=0).cpu()
        total_loss, total_loss_pixel, total_loss_perceptual, total_loss_tv = total_losses.unbind()
        total_loss_dict = {
            'loss': total_loss.item(),
            'loss_pixel': total_loss_pixel.item(),
            'loss_perceptual': total_loss_perceptual.item(),
            'loss_tv': total_loss_tv.item(),
        }

        if epoch is not None:
            self.log_scalar_kwargs(
                epoch=epoch, split='val',
                **total_loss_dict,
            )
            logger.info(
                f'[VAL EPOCH] {epoch}/{self.cfg.train.epochs}: ' + \
                    ', '.join(f'{k}={tqdm.format_num(v)}' for k, v in total_loss_dict.items() if not math.isnan(v))
            )
            self.log_image_monitor(
                epoch=epoch, split='val',
                renders=sample_outs['images_rgb'][:self.cfg.logger.image_monitor.samples_per_log].cpu(),
                gts=sample_data['render_image'][:self.cfg.logger.image_monitor.samples_per_log].cpu(),
            )
        else:
            self.log_scalar_kwargs(
                step=self.global_step, split='val',
                **total_loss_dict,
            )
            logger.info(
                f'[VAL STEP] {self.global_step}/{self.N_max_global_steps}: ' + \
                    ', '.join(f'{k}={tqdm.format_num(v)}' for k, v in total_loss_dict.items() if not math.isnan(v))
            )
            self.log_image_monitor(
                step=self.global_step, split='val',
                renders=sample_outs['images_rgb'][:self.cfg.logger.image_monitor.samples_per_log].cpu(),
                gts=sample_data['render_image'][:self.cfg.logger.image_monitor.samples_per_log].cpu(),
            )

    @Trainer.control('on_main_process')
    def log_image_monitor(
        self, epoch: int = None, step: int = None, split: str = None,
        renders: torch.Tensor = None, gts: torch.Tensor = None,
        ):
        M = renders.shape[1]
        merged = torch.stack([renders, gts], dim=1)[0].view(-1, *renders.shape[2:])
        renders, gts = renders.view(-1, *renders.shape[2:]), gts.view(-1, *gts.shape[2:])
        renders, gts, merged = make_grid(renders, nrow=M), make_grid(gts, nrow=M), make_grid(merged, nrow=M)
        log_type, log_progress = self._get_str_progress(epoch, step)
        split = f'/{split}' if split else ''
        self.log_images({
            f'Images_split{split}/rendered': renders.unsqueeze(0),
            f'Images_split{split}/gt': gts.unsqueeze(0),
            f'Images_merged{split}': merged.unsqueeze(0),
        }, log_progress)